
Efficient Approaches to Robust and Cooperative

Wireless Network Design

by

Tony Q.S. Quek

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Electrical Engineering and Computer Science
January 31, 2008

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Moe Z. Win

Associate Professor

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T. P. Orlando

Chairman, Department Committee on Graduate Students



2



Efficient Approaches to Robust and Cooperative Wireless

Network Design

by

Tony Q.S. Quek

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In wireless networks, relaying and user cooperation offer several attractive benefits
such as higher throughput, better power efficiency, and larger coverage. As a result,
cooperative networks are regarded as one of the most promising enabling technologies
able to meet the increasingly high rate demands and quality of service requirements
in wireless networks. In this dissertation, we investigate the efficient design of cooper-
ative wireless networks from the perspectives of robust resource allocation, wideband
communications, and energy efficiency.

Given that the primary resource to be allocated is the relay node’s transmis-
sion power, we propose robust and efficient relay power allocation algorithms when
the global channel state information is subject to uncertainty. In addition, we pro-
pose practical algorithms that do not require frequent tracking of the global channel
state information. This work reveals that ignoring global channel state information
uncertainties and solving the relay power optimization problems often lead to poor
performance, highlighting the importance of robust algorithm designs in practical
wireless networks.

Wideband cooperative networks allow for both higher data rate and higher re-
sistance to interference. Since the gains achieved by using cooperation come at the
cost of higher node complexity and substantial coordination overhead, it is important
to study practical low-complexity signaling and receiver schemes suitable for wide-
band networks. In particular, we consider transmitted-reference signaling schemes
and provide a unified performance analysis in terms of bit error rate. Since wideband
networks are expected to coexist with many existing narrowband systems, it is im-
portant to characterize the effect of narrowband interference. We further extend the
performance analysis of transmitted-reference signaling schemes to include the effect
of narrowband interference.

Finally, we conclude by studying the benefits of cooperation in a wireless sen-
sor network, which aims at detecting the presence or absence of a certain physical
phenomenon of interest using geographically dispersed sensor nodes. We propose a
consensus flooding protocol and analyze its average energy consumption. We inves-
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tigate the tradeoff between the detection reliability and the energy efficiency when
nodes are allowed to cooperate.

By addressing the above design challenges, this dissertation will be useful for
obtaining insight into the theory and application of cooperative networks in future
communication systems.

Thesis Supervisor: Moe Z. Win
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivations

Cooperative wireless networking has recently emerged as one of the most promising

enabling technologies, as it is able to address a wide range of application scenarios,

including cellular networks, IEEE 802.11 networks, wireless sensor networks (WSNs),

and ad-hoc networks, to enhance connectivity, extend coverage, and improve energy

efficiency and communication reliability. In these cooperative networks, the main

feature is that relay nodes pool their resources in a distributed manner to enhance

the reliability of wireless transmission links.

The first design challenge to overcome is the efficient use of resource allocation to

increase the throughput or energy efficiency of the cooperative networks. Given that

the primary resource to be allocated is the relay node’s transmission power, can we

design robust and efficient relay power allocation (RPA) algorithms when the global

channel state information (CSI) is subject to uncertainty? Can we design practical

algorithms that do not require frequent tracking of the global CSI? By addressing

these questions in our design, we ensure that our proposed algorithms are robust and

practical.

The second issue is the study of ultrawide bandwidth (UWB) as an enabling

low-complexity technology for cooperative networks. In particular, we focus on non-

coherent UWB communications due to their low-complexity and low-power consump-
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tion. Therefore, we are interested in fully understanding the performance limits of

such UWB communications for their possible implementation in future wideband

cooperative networks.

Finally, we study the benefits of cooperation in a specific type of wireless network,

WSN, where it involves the fusion of information about a phenomenon of interest

(PoI) at a fusion center. Our goal is to investigate the tradeoff between the detection

reliability and the energy efficiency when nodes are allowed to cooperate.

1.2 Robust Resource Allocation

Resource allocation in wireless networks promises significant benefits such as higher

throughput, longer network lifetime, better quality-of-service (QoS), and lower net-

work interference. In relay networks, the primary resource is the transmission power

because it affects both the lifetime and the scalability of the network. For example,

consider a WSN in which both the individual sensor power and the total network

power are constrained. These twofold constraints are present since sensor nodes typi-

cally have limited power resources, such as a battery or solar cell, resulting in a finite

total network power proportional to the number of nodes in the network. To prolong

network lifetime, it is important to determine the optimal transmission power of the

sensor nodes [1–3]. Furthermore, regulatory agencies may limit the total transmission

power to reduce interference to other users. For example, consider a relay-enhanced

cellular network, where nodes are deployed to relay transmissions from a base sta-

tion to a distant user. In such a network, efficient power allocation can be used 1)

to minimize network interference while satisfying certain QoS requirements; and 2)

to maximize network throughput while controlling the amount of network interfer-

ence [4–6].

However, the benefits promised by power allocation algorithms depend on the

quality of the global CSI, which is rarely perfect in practice. As such, algorithm

design should take into account such uncertainties in the global CSI. Nevertheless, it

is unclear how to incorporate CSI uncertainties in power allocation algorithm design
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with the current optimization frameworks. Moreover, conventional power allocation

algorithms require tracking of the global CSI at the timescale of fast-fading. This

requires frequent communication between the relay nodes and the central unit to

determine new power allocations.1 Therefore, the following important questions arise

in practice:

• How can we control network interference by incorporating individual relay and

aggregate power constraints in our RPA algorithms?

• What are the fundamental limits on performance gains that can be achieved

with RPA when uncertainties exist in the global CSI?

• Is it possible to design RPA algorithms that are robust to global CSI uncer-

tainty?

• Is it feasible to implement RPA algorithms by tracking only large-scale fading

which is on the order of seconds?

To address these issues of robustness, we adopt a robust optimization methodology

developed in [7,8]. Specifically, this methodology treats uncertainty by assuming that

CSI is a deterministic variable within a bounded set of possible values. The size of

the uncertainty set corresponds to the amount of uncertainty about the CSI.2 This

methodology ensures that the robust counterpart of uncertain optimization problem,

i.e., optimization problem with uncertain global CSI, leads to feasible solutions and

yields good performance in all realizations of CSI within the uncertainty set.

In relay networks, various relaying schemes have been proposed and studied [9,10].

Among these, considerable attention has been given to decode-and-forward (DF) and

amplify-and-forward (AF) relaying. In DF relaying, the relay node fully decodes, re-

encodes, and retransmits the source messages. In AF relaying, the relay node simply

forwards a scaled version of its received signal. To reduce the required cooperation

overhead, these relaying schemes can also be implemented with only a subset of ac-

tive relay nodes, which are appropriately selected [11–14]. Furthermore, many of

1As a result, this incurs a power penalty due to intense signal processing.
2The singleton uncertainty set corresponds to the case of perfect CSI.
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the recent works have focused on RPA. For DF relay networks, [13, 15–18] consider

orthogonal relay transmissions while [14,19] exploit the possibility of performing dis-

tributed beamforming over a common bandwidth. The problem formulations include

maximizing capacity [16, 19], minimizing outage probability [13, 14], and minimizing

transmission power [15, 17]. Similarly, for AF relay networks, [15, 18, 20–23] consider

orthogonal relay transmissions while [24] considers relay transmissions over a common

bandwidth. The problem formulations include maximizing capacity [18, 21, 22, 24],

minimizing outage probability [23], and minimizing transmission power [15, 20]. In

all the above works, power allocation is performed without imposing any individual

relay power constraint.

Here, we focus on an AF relay network.3 The AF relaying is attractive due to its

simplicity (i.e., complexity and cost of relaying is minimal), security (i.e., relay node

does not need to decode any information), power-efficiency (i.e., power consumption is

minimal due to simple circuitry), and ability to realize full diversity order. Moreover,

the AF relaying has been shown to be optimal in certain situations [26, 27]. We

consider that all relay nodes operate in a common frequency band. This allows

faster and easier deployment of the relay nodes since the addition of relay nodes to

the existing network will have little effect on the source and the destination nodes;

e.g., specific relay channel assignments are not necessary. We consider coherent and

noncoherent AF relaying, depending on the knowledge of CSI available at each relay

node. When an AF relay node has access to its locally-bidirectional CSI, it can

perform distributed beamforming so that the relayed signals add up coherently at the

destination node, i.e., coherent AF relaying [26–28]. If the relay node cannot perform

distributed beamforming, it adopts the noncoherent AF relaying [9, 12, 28].

The goal is to propose a centralized optimization framework for determining the

optimal RPA of the relay nodes at the central unit. In a centralized design, the relay

nodes need to send their local CSI to the central unit, which determines the trans-

mit power allocation among the relay nodes.4 However, all previous works assume

3The hardware demonstration at the MIT Media Laboratory shows that AF relay nodes can be
built easily with existing wireless transceivers [25].

4Exactly how this global CSI can be obtained by the central unit is beyond the scope of this
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perfect global CSI at the central unit [13–24]. In practice, such an assumption is too

optimistic since the knowledge of global CSI is rarely perfect in practice; i.e., uncer-

tainties in CSI arise as a consequence of imperfect channel estimation, quantization,

synchronization errors, hardware limitations, implementation errors, or transmission

errors in feedback channels. In general, imperfect CSI causes performance degrada-

tion of wireless systems [29,30]. Moreover, the power allocation algorithms proposed

in the above works require the central unit to track the global CSI at the time-scale

of fast-fading. This requires frequent communication between the relay nodes and

the central unit to determine new power allocations.5

1.3 Wideband Communications

The emergence of ubiquitous wireless services has prompted the exploration of us-

ing increasingly larger transmission bandwidths, often in challenging environments

and over portions of bandwidth that are already in use for legacy systems. Current

demands in quality and reliability of wireless connections suggest that ever-higher

bandwidths in various frequency bands will be made available in an unlicensed man-

ner for unrestricted wireless access. As a result, UWB spread-spectrum systems

have received considerable attention from the scientific, commercial, and military

sectors [31–34]. UWB technology is known to provide many advantages over tradi-

tional narrowband systems. The key motivation for using UWB systems is the ability

to highly resolve multipath, as well as the availability of technology to implement

and generate UWB signals with relatively low complexity. The fine delay resolution

properties make UWB radio a viable candidate for communications [35–38], as well

as for ranging and localization in dense multipath environments [39–42].

Wideband cooperative networks allow for both higher data rate and higher re-

sistance to interference. Since the gains achieved by using cooperation come at the

cost of higher node complexity and substantial coordination overhead, it is important

dissertation.
5As a result, this incurs a power penalty due to intense signal processing.
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to study practical low-complexity signaling and receiver schemes suitable for UWB

networks. To demodulate UWB signals, the reference signal can be locally generated

by the receiver, which requires accurate acquisition and channel estimation. We refer

to this class of systems as locally generated reference (LGR) systems. Since LGR

systems in wideband channels require a large number of Rake fingers to capture most

of the multipath energy [36–38], this greatly increases the complexity of each UWB

node. As a result, it is unlikely that these UWB nodes are inexpensive and low-

power, and, consequently, may not be appropriate for WSN applications. Moreover,

the channel estimation and synchronization requirements can be very stringent for

such LGR systems.

As an alternative to LGR systems, a reference signal can be transmitted along with

the data. Such a signaling scheme, referred to as transmitted-reference (TR) signaling,

was first considered in the early 1950s [43]. TR signaling involves the transmission of a

reference and data signal pair, separated either in time [44,45] or in frequency [46,47].6

Due to its simplicity, there is renewed interest in TR signaling for UWB systems

[48–51] which can exploit multipath diversity inherent in the environment without

the need for channel estimation and stringent acquisition. The receiver can simply be

an autocorrelation receiver (AcR), which can be modified to include noise averaging

for better performance.7 Since TR signaling allocates a significant part of the symbol

energy to transmitting reference pulses, differential encoding over consecutive symbols

can also be used to alleviate inefficient resource usage. This alternative TR signaling

is referred to as differential transmitted-reference (DTR) signaling [52].

A typical approach to analyzing the bit error probability (BEP) performance

of TR signaling with AcR in UWB systems is to obtain the conditional BEP, us-

ing a Gaussian approximation of the noise components at the output of the AcR

[48–50]. The BEP of TR signaling can then be obtained by numerically averag-

6In order for this pair of separated signals to experience the same channel, either the time
separation must be less than the channel coherence time, or the frequency separation must be less
than the channel coherence bandwidth.

7Besides using TR signaling with AcR, there has been an emerging interest using energy detection
for pulse position signaling schemes for low-data rate UWB applications in the IEEE 802.15.4a
standardization process.
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ing the conditional BEP with a quasi-analytical/experimental approach [49, 53] or

a quasi-analytical/simulation approach [50]. Although one can also use the derived

BEP in [54] and [55], these results are only applicable to Rayleigh fading. Since the

amplitude distribution of the resolved multipaths in typical UWB channels can be

drastically different from the Rayleigh distribution [37,38], there is a compelling need

for analytical expressions that are valid for a broad class of fading distributions.

Furthermore, due to its large transmission bandwidth, UWB systems need to

coexist and contend with many narrowband communication systems. Therefore, a

thorough performance analysis of TR systems in the presence of narrowband systems

is essential for successful deployment of UWB systems. Previous work in this area

includes the study of the effect of UWB signals on some commercial narrowband

communication systems [56–59], the analysis of UWB systems in the presence of

narrowband interference (NBI) with conventional receiver structures involving a LGR

[60–66], and the development of techniques to suppress NBI in UWB systems [67–71].

However, only a few results are available for the performance of TR and DTR signaling

schemes in the presence of NBI [72–74].

1.4 Energy Efficiency

The last part of the dissertation is dedicated to a more specific kind of wireless net-

work - a WSN for sensing a PoI in the sensor field by geographically dispersed nodes.

With the development of low-cost and low-power transceivers, sensors, and embedded

processors, there has been growing interest in WSNs for a wide variety of applications,

from surveillance and security to environmental hazard monitoring [75–78]. In most

applications, the intelligent fusion of information from geographically dispersed sensor

nodes, commonly known as distributed data fusion, is an important issue. A related

problem is the decentralized (or distributed) detection problem, where a network of

sensors, together with a global detector (or fusion center), cooperatively undertake

the task of identifying a PoI. However, unlike in classical decentralized detection

problems [79–82], greater challenges exist in a WSN setting. There are stringent
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power constraints for each node [75–77], and communication channels from nodes to

the fusion center are severely bandwidth-constrained. In addition, the communica-

tion channels are no longer lossless (e.g, fading, noise and, possibly, interference are

present) [83–86], and the observation at each sensor node is spatially varying [87,88].

Motivated by [87, 88], we consider decentralized detection in a dense WSN with ran-

domly deployed, identical sensor nodes. In order to capture uncertainty in the total

number of active nodes in the WSN due to node malfunction, node power depletion,

or random behavior of data gathering process, we consider the number of activated

nodes within the WSN at any particular time to be random.

In addition, unlike previous works in [79–88], we allow the possibility of cooper-

ation among the sensor nodes, where multiple sensor nodes pool their resources in a

distributed manner to enhance the reliability of the transmission link. For example,

it has been shown in [89] that the capacity of many-to-one data gathering channels,

with fixed total average power, scales as Θ(logK) in dense WSN, where K is the

number of nodes. In fact, this capacity scaling is possible by the use of cooperative

diversity. In [90], it has also been shown that cooperation can increase reliability in

WSN. Specifically, in the context of decentralized detection, cooperation allows sensor

nodes to exchange information and to continuously update their local decisions until

consensus is reached across the nodes [91–94]. For example, cooperation in decen-

tralized detection can be accomplished via the use of the Parley algorithm [91]. This

algorithm has been shown to converge to a global decision after a sufficient number

of iterations when certain conditions are met. However, without a fully-connected

network and given that the sensor observations are spatially varying, the Parley al-

gorithm may converge to a wrong decision at most of the nodes.

Since network connectivity and node density greatly affects the reliability and

energy efficiency of WSNs, it is not clear a priori whether cooperation improves both

of these performance measures. More specifically, in our context of decentralized

detection in WSN, the designer of the network is confronted with questions: When

is cooperation better in terms of reliability and energy efficiency? How do network

connectivity, node density, and PoI intensity affect our cooperative protocol?
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1.5 Dissertation Outline

The main contribution of this dissertation is to investigate how cooperation among

nodes leads to the design of efficient network from the perspectives of robust resource

allocation, wideband communications, and energy efficiency. In addition, UWB tech-

nology has been investigated as the enabling technology due to its capability to op-

erate with low-complexity and low-power consumption. The organization of the dis-

sertation is as follows:

In Chapter 2, we develop RPA algorithms for coherent and noncoherent AF relay

networks [95–97]. The goal is to maximize the output SNR under individual as well as

aggregate relay power constraints. We show that these RPA problems, in the presence

of perfect global CSI, can be formulated as quasiconvex optimization problems. In

such settings, the optimal solutions can be efficiently obtained via a sequence of

convex feasibility problems, in the form of second-order cone programs (SOCPs).

Furthermore, we develop robust optimization framework for RPA problems in the

case of uncertain global CSI. We show that the robust counterparts of our uncertain

convex feasibility problems with ellipsoidal uncertainty sets can be formulated as

semi-definite programs (SDPs).

In Chapter 3, we formulate the RPA problem as the total transmitted relay power

minimization problem subject to a QoS constraint [98].8 Our algorithms track only

the large-scale fading and thereby leading to practical implementations. We show

that our optimization problems for coherent and noncoherent AF relay networks can

be cast as an SOCP and a linear program (LP), respectively, under perfect knowledge

of large-scale fading. Under ellipsoidal uncertainty sets, the robust counterparts of

the power minimization problems for coherent and noncoherent AF relay channels

can be formulated as an SDP and an SOCP, respectively.

In Chapter 4, we analyze the BEP performance of TR and DTR signaling schemes

for a UWB system with AcR in dense multipath channels [99–101]. We develop an

analytical framework, based on the sampling expansion approach, to derive closed-

8The required QoS is considered to be satisfied when the output SNR at the destination node
exceeds a given target value.
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form BEP expressions valid for a broad class of fading channels. We consider both

AcRs and modified AcRs with noise averaging. We obtain a rule of thumb for the

asymptotic SNR penalty which is useful for comparing a TR system to an ideal Rake

receiver.

In Chapter 5, we analyze the BEP performance of TR and DTR signaling schemes

in the presence of NBI [102–104]. We develop a quasi-analytical method as well as an

approximate analytical method to evaluate the BEP of TR and DTR signaling in the

presence of NBI. We quantify the effects of NBI and channel power dispersion profile

on the optimum integration interval of an AcR.

In Chapter 6, we investigate the problem of binary decentralized detection in

a randomly deployed dense WSN, where the communication channels between the

nodes and the fusion center are bandwidth constrained [105–108]. We compare two

different fusion architectures depending on whether sensor nodes are allowed to col-

laborate or not. We characterize the effects of PoI intensity, realistic link models,

consensus flooding protocol, and network connectivity on the system reliability and

average energy consumption for both fusion architectures. We propose a consensus

flooding protocol that accounts for scenarios with weak PoI intensity and reduces the

possibility of false-alarm flooding.

In Chapter 7, we give our conclusions and some discussions for future work.

Notation: Throughout the dissertation, we use the following notations. Boldface

upper-case letters denote matrices, boldface lower-case letters denote column vectors,

and plain lower-case letters denote scalars. The notations E {X} and V {X} denote

the expectation and variance of a random variable (r.v.) X, respectively. The su-

perscripts (·)T , (·)∗, and (·)† denote the transpose, complex conjugate, and transpose

conjugate, respectively. IIIn denotes the n×n identity matrix, [BBB]ij denotes the (i, j)th

element of BBB, 111 denotes a vector with all 1 elements, 000 denotes a vector with all 0

elements, and eeek denotes a standard basis vector with a 1 at the kth element. tr(·),
| · |, and ‖ · ‖ denote the trace operator, absolute value, and standard Euclidean norm,

respectively. RK
+ and RK

++ denote the nonnegative and positive orthants in Euclidean

vector space of dimension K, respectively. aaa‖bbb and aaa ∦ bbb denote that aaa is parallel to
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bbb and aaa is not parallel to bbb, respectively. BBB � 0 and BBB ≻ 0 denote that BBB is positive

semi-definite and positive definite, respectively. We denote the primal optimization

problem as P, its associated dual optimization problem as DP, and its associated

robust counterpart as RP .
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Chapter 2

Robust Power Allocation

Algorithms for Wireless Relay

Networks

In this chapter, we develop RPA algorithms for coherent and noncoherent AF relay

networks. The goal is to maximize the output SNR under individual as well as aggre-

gate relay power constraints. We show that these RPA problems, in the presence of

perfect global CSI, can be formulated as quasiconvex optimization problems. In such

settings, the optimal solutions can be efficiently obtained via a sequence of convex

feasibility problems in the form of SOCPs. Furthermore, we introduce robust opti-

mization methodology that accounts for uncertainties in the global CSI. We show that

the robust counterparts of our convex feasibility problems with ellipsoidal uncertainty

sets can be formulated as SDPs.

2.1 Problem Formulation

We consider a wireless relay network consisting of Nr + 2 nodes, each with single-

antenna: a designated source-destination node pair together with Nr relay nodes

located randomly and independently in a fixed area (see Fig. 2-1). We consider a

scenario in which there is no direct link between the source and destination nodes. All
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Figure 2-1: Wireless relay network.

nodes operating in a common frequency band are in half-duplex mode, so transmission

occurs over two time slots.

In the first time slot, the relay nodes receive the signal transmitted by the source

node. After processing the received signals, the relay nodes transmit the processed

data to the destination node during the second time slot while the source node remains

silent. We assume perfect synchronization at the destination node.1 The received

signals at the relay and destination nodes can then be written as

yyyR = hhhBxS + zzzR, First slot (2.1)

yD = hhhT
FxxxR + zD, Second slot (2.2)

where xS is the transmitted signal from the source node to the relay nodes, xxxR is the

Nr × 1 transmitted signal vector from the relay nodes to the destination node, yyyR

is the Nr × 1 received signal vector at the relay nodes, yD is the received signal at

the destination node, zzzR ∼ ÑK(000,ΣΣΣR) is the Nr × 1 noise vector at the relay nodes,

and zD ∼ Ñ (0, σ2
D) is the noise at the destination node.2 Note that the different

1Exactly how to achieve this synchronization or the effect of small synchronization errors on
performance is beyond the scope of this dissertation [27].

2Ñ (µ, σ2) denotes a complex circularly symmetric Gaussian distribution with mean µ and vari-
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noise variances at the relay nodes are reflected in ΣΣΣR , diag(σ2
R,1, σ

2
R,2, . . . , σ

2
R,Nr

).

Moreover, zzzR and zD are independent. Furthermore, they are mutually uncorrelated

with xS and xxxR. With perfect global CSI at the destination node, hhhB and hhhF are Nr×1

known channel vectors from source to relay and from relay to destination, respectively,

where hhhB = [hB,1, hB,2, . . . , hB,Nr]
T ∈ CNr and hhhF = [hF,1, hF,2, . . . , hF,Nr]

T ∈ CNr. For

convenience, we shall refer to hhhB as the backward channel and hhhF as the forward

channel.

At the source node, we impose an individual source power constraint PS, such that

E{|xS|2} ≤ PS. Similarly, at the relay nodes, we impose both individual relay power

constraint P and aggregate relay power constraint PR such that the transmission

power allocated to the kth relay node pk , [QQQR]k,k ≤ P for k ∈ Nr and tr (QQQR) ≤ PR,

where QQQR , E{xxxRxxx
†
R| hhhB} and Nr = {1, 2, . . . , Nr}.

For AF relaying, the relay nodes simply transmit scaled versions of the exact

signals they have received while satisfying power constraints. In this case, xxxR in (2.2)

is given by

xxxR = GGGyyyR, (2.3)

where GGG denotes the Nr ×Nr diagonal matrix representing relay gains and thus3

QQQR = GGG
(
PShhhBhhh

†
B + ΣΣΣR

)
GGG†. (2.4)

The diagonal structure of GGG ensures that each relay node only requires the knowl-

edge about its own received signal. When each relay node has access to its locally-

bidirectional CSI, it can perform distributed beamforming.4 As such, this is referred

ance σ2. Similarly, ÑK(µµµ,ΣΣΣ) denotes a complex K-variate Gaussian distribution with a mean vector
µµµ and a covariance matrix ΣΣΣ.

3Note that in (2.4), the source employs the maximum allowable power PS in order to maximize
the SNR at the destination node.

4Here, locally-bidirectional CSI refers to the knowledge of hB,k and hF,k at the kth relay node.
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to as coherent AF relaying and the kth diagonal element of GGG is given by [26, 27]

g
(k)
coh =

√
βkpk

h∗B,k

|hB,k|
h∗F,k

|hF,k|
, (2.5)

where βk = 1/(PS|hB,k|2 + σ2
R,k). On the other hand, when forward CSI is absent at

each relay node, the relay node simply forwards a scaled version of its received signal

without any phase alignment. This is referred to as noncoherent AF relaying and the

kth diagonal element of GGG is given by [9, 12, 22, 109]

g
(k)
noncoh =

√
βkpk. (2.6)

Using (2.1)-(2.3), the received signal at the destination node can be written as

yD = hhhT
FGGGhhhBxS + hhhT

FGGGzzzR + zD︸ ︷︷ ︸
,z̃D

, (2.7)

where z̃D represents the effective noise at the destination node. The instantaneous

SNR at the destination node conditioned on hhhB and hhhF is defined as

SNR(ppp) ,
E
{
|hhhT

FGGGhhhBxS|2 |hhhB,hhhF

}

E {|z̄D|2 |hhhF}
=

PShhh
T
FGGGhhhBhhh

†
BGGG

†hhh∗F
hhhT

FGGGΣΣΣRGGG
†hhh∗F + σ2

D

, (2.8)

where ppp = [p1, p2, . . . , pNr]
T . Our goal is to maximize system performance by optimally

allocating transmission power of the relay nodes. We adopt the SNR at the destination

node as the performance metric and formulate the RPA problem as follows:

maxppp SNR(ppp)

s.t. tr (QQQR) ≤ PR,

0 ≤ [QQQR]k,k ≤ P, ∀k ∈ Nr.

(2.9)

Note that the optimal solution to the problem in (2.9) maximizes the capacity of the

AF relay network under perfect global CSI since this capacity, given by 1
2
log(1+SNR),

is a monotonically increasing function of SNR.
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2.2 Optimal Relay Power Allocation

We provide a framework for formulating coherent and noncoherent AF RPA problems,

under perfect global CSI at the destination node, using optimization methods such as

quasiconvex optimization and SOCP [110,111]. Details of these optimization methods

can be found in Appendix A.

2.2.1 Coherent AF Relaying

It will be apparent that (2.9) is a nonconvex optimization problem. It is generally

difficult to solve this class of optimization problems, and, often, we may end up

obtaining locally optimal solutions. Here, we show how this difficulty can be allevi-

ated by transforming into another domain.5 Specifically, we can transform (2.9) for

the coherent AF RPA problem into a quasiconvex optimization problem, such that

the upper-level set satisfies an SOC constraint. We now present our results in the

following:

Proposition 1. The coherent AF relay power allocation problem can be transformed

into a quasiconvex optimization problem as

Pcoh : maxζζζ fcoh(ζζζ) , PS

σ2
D

(cccTζζζ)2

‖AAAζζζ‖2+1

s.t. ζζζ ∈ S,
(2.10)

and the feasible set S is given by

S =

{
ζζζ ∈ RNr

+ :
∑

k∈Nr

ζ2
k ≤ 1, 0 ≤ ζk ≤ √

ηp, ∀k ∈ Nr

}
,

where ζk ,
√

pk

PR
is the optimization variable and ηp , P/PR. In addition, ccc =

[c1, c2, . . . , cNr]
T ∈ RNr

+ , and AAA = diag(a1, a2, . . . , aNr) ∈ RNr×Nr
+ are defined for nota-

5Our approach follows the general philosophy of solving difficult problems in another domain
[112,113].
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tional convenience where

ck =
√
βkPR |hB,k||hF,k|, (2.11)

ak =

√
βkPR |hF,k|σR,k

σD
. (2.12)

Proof. First, to show that Pcoh is a quasiconvex optimization problem, we simply need

to show that the objective function fcoh(ζζζ) is quasiconcave and the constraint set in

(2.10) is convex. The constraint set in (2.10) is simply the intersection of a hypercube

with an SOC. Since the intersection of convex sets is convex, the constraint set in

(2.10) is again convex. For any t ∈ R+, the upper-level set of fcoh(ζζζ) that belongs to

S is given by

U(fcoh, t) =

{
ζζζ ∈ S :

PS

σ2
D

(cccTζζζ)2

‖AAAζζζ‖2 + 1
≥ t

}

=

{
ζζζ ∈ S : cccTζζζ

√
PS

tσ2
D

≥
√

(1 + ‖AAAζζζ‖2)

}

=




ζζζ ∈ S :




cccTζζζ
√

PS

tσ2
D

 1

AAAζζζ





 �K 0




. (2.13)

It is clear that U(fcoh, t) is a convex set since it can be represented as an SOC. Since

the upper-level set U(fcoh, t) is convex for every t ∈ R+, fcoh(ζζζ) is, thus, quasiconcave.

Note that a concave function is also quasiconcave. We now show that fcoh(ζζζ) is not

concave by contradiction. Suppose that fcoh(ζζζ) is concave. We consider ζζζa and ζζζb

such that ζζζa = ζ1eee1 and ζζζb = δζ1eee1 for 0 ≤ ζ1 ≤ √
ηp, ζ

2
1 ≤ 1, and 0 < δ < 1. Clearly,

ζζζa and ζζζb ∈ S. For any λ ∈ [0, 1], we have

fcoh(λζζζa + (1 − λ)ζζζb) =
PS/σ

2
D

a2
1

c21
+ 1

ζ2
1 [λc1+δc1(1−λ)]2

, g(ζ1), (2.14)

where g(ζ1) is clearly convex in ζ1. Due to convexity of g(ζ1), the following inequality
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must hold

g(λζ
(1)
1 + (1 − λ)ζ

(2)
1 ) ≤ λg(ζ

(1)
1 ) + (1 − λ)g(ζ

(2)
1 ). (2.15)

Now, by letting ζ
(1)
1 = ζ1/[λ+ δ(1− λ)] and ζ

(2)
1 = δζ1/[λ+ δ(1− λ)], we can rewrite

(2.15) as

fcoh(λζζζa + (1 − λ)ζζζb) ≤ λfcoh(ζζζa) + (1 − λ)fcoh(ζζζb). (2.16)

Thus, we have showed that there exists ζζζa, ζζζb ∈ S and λ ∈ [0, 1], such that (2.16)

holds. By contradiction, fcoh(ζζζ) is not concave on S.

Remark 1. Note that fcoh(ζζζ) is a quasiconcave function, ζk denotes the fractional

power allocated to the kth relay node, and ηp denotes the ratio between the individual

relay power constraint and the aggregate relay power constraint, where 0 < ηp ≤ 1.

Remark 2. It is well-known that we can solve Pcoh efficiently through a sequence

of convex feasibility problems using the bisection method [111].6 In order for the

bisection method to work, it is important that we initialize an interval that contains the

optimal solution, i.e., tmin ≤ fcoh(ζζζopt) ≤ tmax. It takes exactly ⌈log2((tmax − tmin)/ε)⌉
iterations before the algorithm terminates, where ε denotes the termination criteria

parameter [111]. In our case, we can always let tmin corresponding to the uniform

RPA and we only need to choose tmax appropriately. We formalize these results in

the following lemma.

Lemma 1. The program Pcoh in Proposition 1 can be solved numerically using the

bisection method:

0. Initialize tmin = fcoh(ζζζmin), tmax = fcoh(ζζζmax), where fcoh(ζζζmin) and fcoh(ζζζmax)

define a range of relevant values of fcoh(ζζζ), and set tolerance ε ∈ R++.

6Note that the program Pcoh is always feasible as long as ηp > 0.
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1. Solve the convex feasibility program P(SOCP)
coh (t) in (2.17) by fixing t = (tmax +

tmin)/2.

2. If Scoh(t) = ∅, then set tmax = t else set tmin = t.

3. Stop if the gap (tmax − tmin) is less than the tolerance ε. Go to Step 1 otherwise.

4. Output ζζζopt obtained from solving P(SOCP)
coh (t) in Step 1.

where the convex feasibility program can be written in SOCP form as

P(SOCP)
coh (t) : find ζζζ

s.t. ζζζ ∈ Scoh(t),
(2.17)

with the set Scoh(t) given by

Scoh(t) =




ζζζ ∈ RNr

+ :




cccTζζζ
√

PS

tσ2
D

 1

AAAζζζ





 �K 0,


 1

ζζζ


 �K 0,




ηp+1

2
ζζζTeeek

ηp−1
2





 �K 0, ∀k ∈ Nr




.

(2.18)

Proof. We first show that for each given t, the convex feasibility program is an SOCP.

For each t, the first constraint in (2.18) follows immediately from (2.13), which is an

SOC constraint. Clearly, the aggregate relay power constraint in (2.10) can be cast

as an SOC constraint using (A.4). Lastly, the individual relay power constraints can

be cast as SOC constraints as follows:

ζζζTeeek ≤ √
ηp

⇔
√

(ζζζTeeek)2 +
(ηp − 1)2

4
≤ ηp + 1

2

⇔

∥∥∥∥∥∥


ζζζTeeek

ηp−1
2



∥∥∥∥∥∥
≤ ηp + 1

2
(2.19)

In summary, P(SOCP)
coh is an SOCP since S(coh)(t) is equivalent to the intersection of

(Nr + 2) SOC constraints and the objective function is linear.
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Remark 3. In Lemma 1, we formulate the convex feasibility problem in the form

of SOCP, which can be solved efficiently [114]. Although an SOC constraint can be

represented as an LMI, it is always computationally more efficient and stable to solve

SOCP rather than SDP [111,114]. Nevertheless, we have included the equivalent SDP

representation of such SOCP in the following corollary for comparison with the robust

formulation in the subsequent section.

Corollary 1. The equivalent SDP representation of our convex feasibility program

can be written as

P(SDP)
coh (t) : find ζζζ

s.t. ζζζ ∈ Scoh(t),
(2.20)

where Scoh(t) is now given by

Scoh(t) =

{
ζζζ ∈ RNr

+ :




cccTζζζ
√

PS

tσ2
D
IIINr+1

(
1

AAAζζζ

)

(
1

AAAζζζ

)T

cccTζζζ
√

PS

tσ2
D



� 0,


IIINr ζζζ

ζζζT 1


 � 0,




ηp+1

2
III2

(
ζζζTeeek

ηp−1
2

)

(
ζζζTeeek

ηp−1
2

)T

ηp+1
2



� 0, ∀k ∈ Nr

}
. (2.21)

2.2.2 Noncoherent AF Relaying

Similar to the formulation of coherent AF RPA problem in (2.10), we can expressed

the the noncoherent AF RPA problem as

Pnoncoh : maxζζζ
PS

σ2
D

|cccT ζζζ|2
‖AAAζζζ‖2+1

s.t. ζζζ ∈ S,
(2.22)
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where S and AAA are given in Proposition 1. The difference is in ccc = [c1, c2, . . . , cNr] ∈
CNr, where

ck =
√
βkPR hB,khF,k.

As a result, we cannot directly apply Lemma 1 to solve Pnoncoh in (2.22). Instead,

we introduce the following lemma which enables us to decompose Pnoncoh into 2L

quasiconvex optimization subproblems, each of which can then be solved efficiently

via the algorithm presented in Lemma 1.

Lemma 2 (Linear Approximation of Modulus [115,116]). The modulus of a complex

number Z ∈ C can be linearly approximated with the polyhedral norm given by

pL(Z) = max
l∈L

{
Re {Z} cos

(
lπ

L

)
+ Im {Z} sin

(
lπ

L

)}
,

where L = {1, 2, . . . , 2L}, Re {Z} and Im {Z} denote the real and imaginary parts

of Z, and the polyhedral norm pL(Z) is bounded by

pL(Z) ≤ |Z| ≤ pL(Z) sec
( π

2L

)
.

and L is a positive integer such that L ≥ 2.

Remark 4. It follows from Lemma 2 that pL(Z) approaches |Z| quadratically as

L → ∞. As a result, we can approximate the modulus of a complex number with

arbitrary accuracy by increasing L. Using Lemma 2, we reformulate (2.9) for the

noncoherent AF RPA problem in parallel with Proposition 1.

Proposition 2. The noncoherent AF relay power allocation problem can be approxi-

mately decomposed into 2L quasiconvex optimization subproblems. The master prob-

lem can be written as

maxl∈L fnoncoh(ζζζ
opt
l ) (2.23)
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where

fnoncoh(ζζζ) ,
PS

σ2
D

[
Re
{
cccTζζζ
}

cos(lπ/L) + Im
{
cccTζζζ
}

sin(lπ/L)
]2

‖AAAζζζ‖2 + 1

and ζζζopt
l is the optimal solution of the following subproblem Pnoncoh(l):

Pnoncoh(l) : maxζζζl
fnoncoh(ζζζ l)

s.t. Re
{
cccTζζζ l

}
cos(lπ/L) + Im

{
cccTζζζ l

}
sin(lπ/L) ≥ 0,

ζζζ l ∈ S.
(2.24)

The feasible set S is given by

S =

{
ζζζ ∈ RNr

+ :
∑

k∈Nr

ζ2
k ≤ 1, 0 ≤ ζk ≤ √

ηp, ∀k ∈ Nr

}
,

where ζk ,
√

pk

PR
is the optimization variable and ηp , P/PR. In addition, ccc =

[c1, c2, . . . , cNr]
T ∈ CNr , and AAA = diag(a1, a2, . . . , aNr) ∈ RNr×Nr

+ are defined as

ck =
√
βkPR hB,khF,k, (2.25)

ak =

√
βkPR |hF,k|σR,k

σD
. (2.26)

Proof. Similar to the proof of Proposition 1.

Remark 5. Note that S and AAA in Proposition 2 are exactly the same as that in Propo-

sition 1. The difference is in ccc only. Unlike Pcoh, we now need to solve 2L quasiconvex

optimization subproblems due to the approximation of |cccTζζζ| using Lemma 2.

Lemma 3. Each of the 2L subproblems Pnoncoh(l) in Proposition 2 can be solved

efficiently by the bisection method via a sequence of convex feasibility problems in the

form of SOCP. The 2L solutions {ζζζopt
l }2L

l=1 then forms a candidate set for the optimal

ζζζopt that maximizes our master problem.

Proof. Each of the 2L quasiconvex optimization problems Pnoncoh(l), l ∈ L, in Propo-

sition 2 can be solved efficiently via a sequence of convex feasibility problems using
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the bisection method. For completeness, we present the algorithm for solving Pnoncoh

in (2.22), as follows:

0. Initialize tmin = fnoncoh(ζζζmin), tmax = fnoncoh(ζζζmax), where fnoncoh(ζζζmin) and fnoncoh(ζζζmax)

define a range of relevant values of fnoncoh(ζζζ l), and set tolerance ε ∈ R++.

1. For l ∈ L, solve Pnoncoh(l) using the bisection method as follows:

1-1. Solve the convex feasibility program P(SOCP)
noncoh (t, l) in (2.27) by fixing t =

(tmax + tmin)/2.

1-2. If Snoncoh(t, l) = ∅, then set tmax = t else set tmin = t.

1-3. Stop if the gap (tmax − tmin) is less than the tolerance ε. Go to Step 1-1

otherwise.

3. Output ζζζopt with maximum fnoncoh(ζζζ
opt
l ) obtained from solving the 2L subproblems

in Step 1.

where the convex feasibility program can be written in SOCP form as

P(SOCP)
noncoh (t, l) : find ζζζ l

s.t. ζζζ l ∈ Snoncoh(t, l),
(2.27)

with the set Snoncoh(t, l) given by

Snoncoh(t, l)

=

{
ζζζ l ∈ RNr

+ :




[
Re
{
cccTζζζ l

}
cos(lπ/L) + Im

{
cccTζζζ l

}
sin(lπ/L)

]√
PS

tσ2
D

 1

AAAζζζ l





 �K 0,


 1

ζζζ l


 �K 0,




ηp+1
2

 ζζζT
l eeek

ηp−1
2





 �K 0, Re

{
cccTζζζ l

}
cos(lπ/L) + Im

{
cccTζζζ l

}
sin(lπ/L) ≥ 0,

∀k ∈ Nr

}
.
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2.3 Robust Relay Power Allocation

To account for uncertainties associated with the global CSI of the relay network, we

adopt a robust optimization methodology briefly summarized in Appendix A.3 [7,8].

Specifically, this methodology treats uncertainty by assuming that CSI is a determin-

istic variable within a bounded set of possible values. The size of the uncertainty set

corresponds to the amount of uncertainty about the CSI.7 This methodology ensures

that the robust counterparts of our optimization problems lead to feasible solutions

and yield good performance in all realizations of CSI within the uncertainty set. As

in [7, 8], we consider an ellipsoidal uncertainty set for simplicity.8

2.3.1 Coherent AF Relaying

Using the robust methodology, we formulate the robust counterpart of our AF RPA

problem in Proposition 1 with uncertainties in AAA and ccc, as follows:

maxζζζ fcoh(ζζζ,AAA,ccc)

s.t. ζζζ ∈ S, ∀ (AAA,ccc) ∈ U ,
(2.28)

where the feasible set S is given in Proposition 1 and U is an uncertainty set that

contains all possible realizations ofAAA and ccc. To solve the above optimization problem,

we incorporate the uncertainties associated with AAA and ccc into the convex feasibility

program in (2.17) of Lemma 1. Since (AAA,ccc) only appears in the first constraint of

(2.18), we simply need to focus on this constraint and build its robust counterpart as

7The singleton uncertainty set corresponds to the case of perfect CSI.
8Besides resulting in mathematical simplification, the ellipsoidal uncertainty set is well-motivated

by practical CSI error models [117]. The size of the ellipsoidal uncertainty set can be known a priori

from preliminary knowledge of the imperfect CSI estimation and/or from extensive wireless channel
measurement campaigns.
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follows:

cccTζζζ ≥
√
tσ2

D

PS
(1 + ‖AAAζζζ‖2), ∀(AAA,ccc) ∈ U . (2.29)

However, we adopt a conservative approach which assumes that U affecting (2.29) is

sidewise, i.e., the uncertainty affecting the right-hand side in (2.29) is independent of

that affecting the left-hand side. Specifically, we have U = UR × UL. Without such

an assumption, it is known that a computationally tractable robust counterpart for

(2.29) does not exist, which makes the conservative approach rather attractive [118].

Our results are summarized in the next theorem.

Theorem 1. The robust coherent AF relay power allocation problem in (2.28) can

be solved numerically via Lemma 1, except that the convex feasibility program is now

conservatively replaced by its robust counterpart given as follows:

P(robust)
coh (t) : find ζζζ

s.t. ζζζ ∈ Scoh(t,AAA,ccc), ∀AAA ∈ UR, ccc ∈ UL,
(2.30)

with the sidewise independent ellipsoidal uncertainty sets UR and UL are given by

UR =

{
AAA = AAA0 +

∑

j∈NA

zjAAAj : ‖zzz‖ ≤ ρ1

}
(2.31)

UL =

{
ccc = ccc0 +

∑

j∈Nc

ujcccj : ‖uuu‖ ≤ ρ2

}
, (2.32)

where NA = {1, 2, . . . , NA}, Nc = {1, 2, . . . , Nc}, and NA and Nc are the dimensions

of zzz and uuu, respectively. Then, the approximate robust convex feasibility program

P(robust)
coh (t) can be written in SDP form as:

find (ζζζ, τ, µ)

s.t. (ζζζ, τ, µ) ∈ Wcoh(t),
(2.33)
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such that (ζζζ, τ, µ) ∈ RNr
+ × R+ × R+ and the feasible set Wcoh(t) is given by

Wcoh(t) =

{
ζζζ ∈ RNr

+ :




µIIINA
000NA

Ă̆ĂA
T

000T
NA

λ− µρ2
1 ζζζTAAAT

0

Ă̆ĂA AAA0ζζζ λIIINr


 � 0,




cccT
0 ζζζ−τ

ρ2
IIINc c̆̆c̆c

c̆̆c̆cT
cccT
0 ζζζ−τ

ρ2


 � 0,




ηp+1
2
III2

(
ζζζTeeek

ηp−1
2

)

(
ζζζTeeek

ηp−1
2

)T

ηp+1
2



� 0,


IIINr ζζζ

ζζζT 1


 � 0,


 τ

√
tσ2

D

PS√
tσ2

D

PS
τ


 � 0, ∀k ∈ Nr

}
,

where λ = τ
√
PS/tσ2

D − 1, Ă̆ĂA = [AAA1ζζζ,AAA2ζζζ, . . . ,AAANA
ζζζ] and c̆̆c̆c =

[
cccT1 ζζζ, ccc

T
2 ζζζ, . . . , ccc

T
Nc
ζζζ
]T

.

Proof. Under sidewise independence assumption, ζζζ is robust feasible for (2.29) if there

exists τ ∈ R+ such that [7, 118, 119]

√
tσ2

D

PS
(1 + ‖AAAζζζ‖2) ≤ τ, ∀AAA ∈ UR (2.34)

τ ≤ cccTζζζ, ∀ccc ∈ UL. (2.35)

First, we consider (2.34) by rewriting it as follows:

∥∥∥∥∥∥


 1

AAAζζζ



∥∥∥∥∥∥
≤ τ

√
PS

tσ2
D

, ∀AAA ∈ UR. (2.36)

We now replace the constraint in (2.36) by

1 + ‖AAAζζζ‖ ≤ τ

√
PS

tσ2
D

, ∀AAA ∈ UR. (2.37)
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Indeed, if (2.37) is satisfied, then (2.36) is always satisfied since

∥∥∥∥∥∥


 1

AAAζζζ



∥∥∥∥∥∥
≤ 1 + ‖AAAζζζ‖, (2.38)

By letting λ = τ
√
PS/tσ2

D − 1, we have

0 ≤ λ,
∥∥∥AAA0ζζζ + Ă̆ĂAzzz

∥∥∥ ≤ λ, ∀zzz ∈ {zzz : ‖zzz‖ ≤ ρ1}, (2.39)

where we have substituted AAA defined by the uncertainty set UR in (2.31). Note that

when λ = 0, we have AAA0ζζζ = 000 and Ă̆ĂA = 000 for (2.39) to hold. Now, by expanding

(2.39) in terms of a quadratic form of zzz, we have

0 ≤ λ,

0 ≤ q0(zzz) ∀zzz ∈ {zzz : 0 ≤ q1(zzz)}, (2.40)

where

q0(zzz) = −zzzT Ă̆ĂA
T
Ă̆ĂAzzz − 2

(
Ă̆ĂA

T
AAA0ζζζ

)T

zzz − ζζζTAAAT
0AAA0ζζζ + λ2

q1(zzz) = ρ2
1 − zzzTzzz. (2.41)

We exploit the following lemma to express the quadratic constraints in (2.40) in terms

of matrix inequality.

Lemma 4 (S-procedure [111]). Let q0(zzz) = zzzTBBB0zzz + 2bbbT0 zzz + c0 and q1(zzz) = zzzTBBB1zzz +

2bbbT1 zzz+ c1 be two quadratic functions of zzz, where BBB0 and BBB1 are symmetric, and there

exists some zzz0 satisfying q1(zzz0) > 0. Then, we have

q1(zzz) ≥ 0 ⇒ q0(zzz) ≥ 0 iff

∃ α ∈ R+ :


BBB0 bbb0

bbbT0 c0


− α


BBB1 bbb1

bbbT1 c1


 � 0.
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From Lemma 4, it follows that (2.40) is satisfied if and only if there exists α ∈ R+

such that


 −Ă̆ĂAT

Ă̆ĂA − Ă̆ĂA
T
AAA0ζζζ(

−Ă̆ĂAT
AAA0ζζζ

)T

λ2 − ζζζTAAAT
0AAA0ζζζ


− α


−IIINA

000NA

000T
NA

ρ2
1


 � 0. (2.42)

In the case of λ = 0, it is easy to see that (2.42) is satisfied only when α = 0. To

convert the above quadratic matrix inequality into a linear matrix inequality (LMI),

we first let α = λµ for some µ ∈ R+. Rearranging (2.40), we have9

∆DDD , λ


µIIINA

000NA

000T
NA

λ− µρ2
1


−


 Ă̆ĂA

T

ζζζTAAAT
0


IIINr


 Ă̆ĂA

T

ζζζTAAAT
0




T

� 0. (2.43)

To linearize (2.43), we rely on the following lemma:

Lemma 5 (Schur Complement [111]). Let

MMM =


 AAA BBB

BBBT DDD




be a symmetric matrix with DDD ≻ 0. Then, MMM � 0 if and only if the Schur complement

of DDD in MMM , i.e., ∆DDD = AAA−BBBDDD−1BBBT � 0.

If λ > 0, it follows that 1
λ
∆DDD in (2.43) is the Schur complement of λIIINr in

MMM ,




µIIINA
000NA

Ă̆ĂA
T

000T
NA

λ− µρ2
1 ζζζTAAAT

0

Ă̆ĂA AAA0ζζζ λIIINr


 , (2.44)

and by Lemma 5, MMM � 0 since 1
λ
∆DDD � 0. For λ = 0, MMM � 0 holds if and only if

µ = 0, AAA0ζζζ = 000 and Ă̆ĂA = 000. Thus, we have the first LMI in Wcoh(t). In summary, a

pair (ζζζ, τ) satisfies (2.34) if there exists some µ ∈ R+ and τ ≥
√
tσ2

D/PS such that

the triple (ζζζ, τ, µ) satisfies the LMI in (2.44).

9When λ = 0, we have µ = 0.
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Next, we turn to the condition (2.35). By substituting ccc defined by the uncertainty

set UL in (2.32) into (2.35), we have equivalently

−
(
cccT0 ζζζ − τ

)
≤ c̆̆c̆cTuuu, ∀uuu ∈ {uuu : ‖uuu‖ ≤ ρ2}, (2.45)

and the robust constraint in (2.45) can be expressed as

−
(
cccT0 ζζζ − τ

)
≤ min

uuu:‖uuu‖≤ρ2

{
c̆̆c̆cTuuu
}
. (2.46)

From the Cauchy-Schwartz inequality, the minimum value on the right-hand side of

(2.46) is equal to −ρ2‖c̆̆c̆c‖, and hence we obtain an SOC constraint, as follows:




cccT
0 ζζζ−τ

ρ2

c̆̆c̆c


 �K 0. (2.47)

Using (A.6), we can represent (2.47) as




cccT
0 ζζζ−τ

ρ2
IIINc c̆̆c̆c

c̆̆c̆cT
cccT
0 ζζζ−τ

ρ2


 � 0, (2.48)

which is the second LMI in Wcoh(t). The third and fourth LMIs in Wcoh(t) follow

straightforwardly from the results in (2.21), and the last LMI is easily obtained by

representing the constraint τ ≥
√
tσ2

D/PS in terms of an LMI.

Remark 6. The use of constraint (2.37), instead of (2.36), enables us to formulate

P(robust)
coh (t) into a SDP. Note that the robust feasible set Wcoh(t) in (2.33) is always

contained in the set of robust feasible solutions of P(robust)
coh (t).

2.3.2 Noncoherent AF Relaying

In the next theorem, we formulate the robust counterparts of the 2L subproblems in

Lemma 3 with uncertainties associated with AAA and ccc.
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Theorem 2. The robust noncoherent AF relay power allocation problem can be ap-

proximately decomposed into 2L subproblems. Under sidewise independent ellipsoidal

uncertainty sets UR and UL given by

UR =

{
AAA = AAA0 +

∑

j∈NA

zjAAAj : ‖zzz‖ ≤ ρ1

}
(2.49)

UL =

{
ccc = ccc0 +

∑

j∈Nc

ujcccj : ‖uuu‖ ≤ ρ2

}
, (2.50)

with each subproblem can be solved efficiently using the bisection method, except that

the convex feasibility program is now replaced with its approximate robust counterpart

in the form of an SDP:

P(robust)
noncoh (t, l) : find (ζζζ l, τ, µ)

s.t. (ζζζ l, τ, µ) ∈ Wnoncoh(t, l),
(2.51)

such that each l ∈ L, (ζζζ, τ, µ) ∈ RNr
+ × R+ × R+, and the set Wnoncoh(t, l) is given by

Wnoncoh(t, l)

=

{
ζζζ l ∈ RNr

+ :




µIIINA
000NA

Ă̆ĂA
T

l

000T
NA

λ− µρ2
1 ζζζT

l AAA
T
0

Ă̆ĂAl AAA0ζζζ l λIIINr


 � 0,




M(l)
ρ2
IIINc c̆̆c̆cl

c̆̆c̆cTl
M(l)
ρ2


 � 0,




[Re{cccT
0 ζζζl} cos(lπ/L)+Im{cccT

0 ζζζl} sin(lπ/L)]
ρ2

IIINc c̆̆c̆cl

c̆̆c̆cTl
[Re{cccT

0 ζζζl} cos(lπ/L)+Im{cccT
0 ζζζl} sin(lπ/L)]

ρ2


 � 0,




ηp+1

2
III2

(
ζζζT

l eeek

ηp−1
2

)

(
ζζζT

l eeek

ηp−1
2

)T

ηp+1
2



� 0,


IIINr ζζζ l

ζζζT
l 1


 � 0,


 τ

√
tσ2

D

PS√
tσ2

D

PS
τ


 � 0, ∀k ∈ Nr

}
,
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where λ = τ
√
PS/tσ

2
D − 1,

c̆̆c̆cl =




Re
{
cccT1 ζζζ l

}
cos(lπ/L) + Im

{
cccT1 ζζζ l

}
sin(lπ/L)

Re
{
cccT2 ζζζ l

}
cos(lπ/L) + Im

{
cccT2 ζζζ l

}
sin(lπ/L)

...

Re
{
cccTNc

ζζζ l

}
cos(lπ/L) + Im

{
cccTNc

ζζζ l

}
sin(lπ/L)




M(l) =
[
Re
{
cccT0 ζζζ l

}
cos(lπ/L) + Im

{
cccT0 ζζζ l

}
sin(lπ/L)

]
− τ

Ă̆ĂAl = [AAA1ζζζ l,AAA2ζζζ l, . . . ,AAANA
ζζζ l] .

Proof. The results follow straightforwardly from Lemma 3 and using similar steps

leading to Theorem 1.

2.4 Numerical Results

In this section, we illustrate the effectiveness of our power allocation algorithms for

coherent and noncoherent AF relay networks using numerical examples. We deter-

mine the RPAs using our proposed algorithms with ε = 0.001 in Chapters 2.3 and

2.4.10 We consider hhhB and hhhF to be mutually independent random vectors with inde-

pendent and identically distributed elements which are circularly symmetric complex

Gaussian r.v.’s, i.e., hB,k ∼ Ñ (0, 1) and hF,k ∼ Ñ (0, 1) for all k. The noise variances

are normalized, such that σ2
R,k = 1 and σ2

D = 1. For numerical illustrations, we use

the outage probability, defined as P{SNR(ppp) < γth}, as the performance measure,

where γth is the value of the target receive SNR and it is set at γth = 10 dB. The

uncertainty sets in Theorems 1 and 2 are chosen such that NA = 1, Nc = 1, AAA1 = AAA0,

and ccc1 = ccc0. We consider ρ1 = ρ2 = ρ, where ρ = 0 corresponds to perfect knowledge

of the global CSI and ρ = 1 corresponds to an uncertainty that can be as large as the

size of the estimated global CSI, i.e., AAA0 and ccc0.

Figure 2-2 shows the outage probability as a function of PS/σ
2
D for the coherent AF

10Our proposed optimal and robust power allocation algorithms, respectively, require solutions of
convex feasibility programs in the form of SOCP and SDP. We use the SeDuMi convex optimization
package to obtain such numerical solutions [120].
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Figure 2-2: Outage probability as a function of PS/σ
2
D for the coherent AF relay

network with ηp = 0.1.

relay network with ηp = 0.1. We consider relay networks with Nr = 10 and Nr = 20,

and compare the performance of uniform and optimal RPAs. When Nr = 10, both

the uniform and optimal power allocations result in the same performance. This can

be explained by the fact that it is optimal for each relay node to transmit at the

maximum transmission power P when ηp = P/PR = 0.1. When Nr = 20, we first

observe that lower outage probabilities can be achieved for both power allocations

compared to the case with Nr = 10, due to the presence of diversity gains in coherent

AF relay network. In addition, significant performance improvements with optimal

RPA compared to uniform RPA can be observed since optimal RPA can exploit the

channel variation more effectively for larger Nr to enhance the effective SNR at the

destination node.

Similar to Fig. 2-2, we show the outage probability as a function of PS/σ
2
D for the

noncoherent AF relay network with ηp = 0.1 in Fig. 2-3. Under uniform RPA, we
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Figure 2-3: Outage probability as a function of PS/σ
2
D for the noncoherent AF relay

network with ηp = 0.1.

observe that the increase in the number of relay nodes do not yield any performance

gain. This behavior of noncoherent AF relay network is consistent with the results

of [28], and can be attributed to the lack of locally-bidirectional CSIs at the relay

nodes, making coherent combining at the destination node impossible. However, we

can see that performance improves with optimal RPA compared to uniform RPA, and

this improvement increases with Nr. Comparing Figs. 2-2 and 2-3, even with optimal

RPA, the noncoherent AF relay network performs much worse than the coherent AF

case, since optimal RPA is unable to fully reap the performance gain promised by

coherent AF case due to the lack of distributed beamforming gain.

Figures 2-4 and 2-5 show the effect of uncertainties associated with the global

CSI on the outage probabilities of coherent and noncoherent AF networks using non-

robust RPAs when Nr = 20 and ηp = 0.1. By non-robust algorithms, we refer to

optimization algorithms in Chapter 2.3 that optimize RPAs based only on AAA0 and
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Figure 2-4: Effect of uncertain global CSI on the outage probability of the coherent
AF relay network using non-robust algorithm for ηp = 0.1 and Nr = 20.

ccc0 instead of the true global CSI AAA and ccc, where AAA = AAA0 + zAAA1 and ccc = ccc0 + uccc1.
11

Clearly, we see that ignoring CSI uncertainties in our designs can lead to drastic

performance degradation when the uncertainty size ρ becomes large. In these figures,

we can see that when ρ is less than 0.01, we may ignore CSI uncertainties since the

performance degradation is negligible. However, performance deteriorates rapidly as

ρ increases. For example, to maintain at an outage probability of 10−2 in coherent AF

relay network, PS/σ
2
D needs to increase by an additional of about 5 dB when ρ = 0.25.

For the noncoherent AF case, a larger increase in PS/σ
2
D is required to maintain a

target outage probability when ρ = 0.25. These results show that RPA is sensitive

with respect to uncertainties in global CSI, and motivates the need for RPAs that are

robust to global CSI uncertainties.

Figures 2-6 and 2-7 show the outage probabilities of coherent and noncoherent

11These results are generated based on the worst case scenario, where z = ρ and u = −ρ.
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Figure 2-5: Effect of uncertain global CSI on the outage probability of the noncoherent
AF relay network using non-robust algorithm for ηp = 0.1 and Nr = 20.

AF relay networks as a function of the size of the uncertainty set ρ using robust

RPAs when Nr = 20 and ηp = 0.1. For comparison, we also plot the performance

of uniform and non-robust RPAs in these plots. We observe that non-robust RPAs

still offer some performance improvements over uniform RPAs as long as ρ is not

large. When ρ is large, the effectiveness of non-robust RPA algorithms is significantly

reduced. On the other hand, we see that robust RPAs provide significant performance

gain over non-robust RPAs over a wide range of ρ, showing the effectiveness of our

robust algorithms in the presence of global CSI uncertainty.
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Figure 2-6: Outage probability as a function of size of uncertainty set ρ for the
coherent AF relay network with PS/σ

2
D = 3 dB, ηp = 0.1, and Nr = 20.
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Figure 2-7: Outage probability as a function of size of uncertainty set ρ for the
noncoherent AF relay network with PS/σ

2
D = 12 dB, ηp = 0.1, and Nr = 20.
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Chapter 3

Robust Wireless Relay Networks:

Slow Power Allocation with

Guaranteed QoS

In this chapter, we formulate RPA problem as the total relay transmission power

minimization problem subject to a QoS constraint.1 Our algorithms track only the

large-scale fading and thereby lead to practical implementations. We show that our

optimization problems for coherent and noncoherent AF relay networks can be cast

as an SOCP and an LP, respectively, under perfect knowledge of large-scale fading.

Under ellipsoidal uncertainty sets, the robust counterparts of the power minimization

problems for coherent and noncoherent AF relay channels can be formulated as an

SDP and an SOCP, respectively.

3.1 Problem Formulation

Adopting the same network model as in Chapter 2.1, we consider a wireless relay

network with one source-destination node pair and Nr relay nodes. In general, we

can decompose each instantaneous element in hhhB and hhhF in (2.1) and (2.2) into the

1The required QoS is considered to be satisfied when the output SNR at the destination node
exceeds a given target value.
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product of two different fading effects with different timescales [121]. Specifically, we

can write

hB,k = αB,k

√
SB,k, (3.1)

hF,k = αF,k

√
SF,k, (3.2)

where αB,k ∈ C and αF,k ∈ C reflect the channel gain associated with small-scale fad-

ing from the source to the kth relay and the kth relay to the destination, respectively.

Such small-scale fading is typically due to local scattering of the environment and

varies with a timescale on the order of milliseconds, and we can model αB,k ∼ Ñ (0, 1)

and αF,k ∼ Ñ (0, 1) for all k. Each is assumed to be independent across all the relay

nodes.2 On the other hand, SB,k ∈ R+ and SF,k ∈ R+ capture the large-scale fading

effects that are caused by shadowing. Large-scale fading varies with a timescale on

the order of seconds. Usually, we can model SB,k and SF,k as [121]

SB,k =
10σdBN/10

dε
B,k

, (3.3)

SF,k =
10σdBN/10

dε
F,k

, (3.4)

where dB,k and dF,k are the normalized distances from the kth relay to the source and

destination, respectively, ε is the path-loss exponent which corresponds to a decay in

power, σdB is the standard deviation of the log-normal shadowing in dB, and N is a

real Gaussian r.v. such that N ∼ N (0, 1).3

As in Chapter 2, we impose an individual source power constraint PS and an

individual relay power constraint P on the transmit power of the kth relay, pk, where

pk ≤ P . Our goal is to employ power allocation intelligently so as to minimize the

2The independence assumption arises due to the presence of different propagation paths and
scatterers for each relay node.

3The parameter ε is environment-dependent and can approximately range from 1.6 (e.g., hallways
inside buildings) to 8 (e.g., dense urban environments), where ε = 2 corresponds to the free space
propagation [122]. On the other hand, the typical values of σdB range from 4 to 13 dB for outdoor
channels [122]. For ease of exposition, we have assumed that the attenuations due to shadowing are
independent and identically distributed (i.i.d.).
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total relay transmission power of the relay nodes while satisfying the system QoS

requirement. Likewise in Chapter 2, the kth diagonal element of GGG for noncoherent

AF relaying is given by

g
(k)
noncoh =

√
βkpk, (3.5)

where βk = 1/(PSf
2
B,k + σ2

R,k). Comparing (3.5) with (2.6), the amplification factor

βk in (3.5) only requires knowledge of the large-scale fading gain, fB,k, which is easier

to track considering the timescale over which large-scale fading varies [109, 123]. On

the other hand, when each relay node can track the phase information of the small-

scale fading for both backward and forward channels, it can perform distributed

beamforming. This is referred to as coherent AF relaying, and the kth diagonal

element of GGG is given by

g
(k)
coh =

√
βkpk

α∗
B,k

|αB,k|
α∗

F,k

|αF,k|
. (3.6)

The instantaneous SNR at the destination node conditioned on hhhB and hhhF is given

in (2.8). Note that ppp = [p1, p2, . . . , pNr]
T denotes the vector of transmitted powers of

the relay nodes.

Given instantaneous hhhB and hhhF at the destination node, we formulate the RPA

problem for minimizing the total relay transmission power subject to the constraint

on SNR at the destination node. This constraint is equivalent to a certain QoS

requirement such as the bit error rate or outage probability, where QoS is satisfied

when the SNR at the destination node exceeds a given target value γth. With this

QoS constraint, we can mathematically formulate the optimization problem as

PSNR(γth) : minppp tr (QQQR)

s.t. γth ≤ SNR (ppp) ,

0 ≤ [QQQR]k,k ≤ P, ∀k ∈ Nr,

(3.7)

where Nr = {1, 2, . . . , Nr} and the last constraint in (3.7) captures the fact that
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relay transmission power in practical systems cannot be arbitrarily large.4 Note that

solving the program PSNR(γth) in (3.7) requires the instantaneous values of hhhB and

hhhF.

Due to the timescale associated with small-scale fading, frequent communication

between the relay nodes and the central unit is required to determine new power

allocations. This motivates practical algorithms that track only large-scale fading.

One possible approach is to adopt the certainty-equivalent (CE) formulation, which

was developed in the context of power control for cellular networks [124,125]. In our

context, the CE output SNR for noncoherent AF relaying can be written as

SNR
CE
noncoh (ppp) =

PS

∑Nr

k=1 βkSB,kSF,kpk∑Nr

k=1 βkSF,kσ2
R,kpk + σ2

D

, (3.8)

where we have replaced all r.v.’s associated with {αF,k}Nr
k=1 and {αB,k}Nr

k=1 in (2.8)

with their expected values. For coherent AF relaying, we approximate the CE output

SNR as

SNR
CE
coh (ppp) ≈

PS

(∑Nr

k=1

√
βkSB,kSF,kpk

)2

∑Nr

k=1 βkSF,kσ2
R,kpk + σ2

D

. (3.9)

Indeed, (3.9) is an upper bound of the actual CE output SNR. We choose to use this

expression in (3.9) since it allows efficient formulation for the optimization problem.

Substituting (3.8) and (3.9) into (3.7), we can now design power allocation algorithms

that track only large-scale fading. However, these slow power allocations may lead

to undesirably high outage probability, i.e., P {SNR (ppp) < γth}, due to the random

fluctuations caused by small-scale fading. This can be alleviated by using a larger

SNR target value to allow for fade margins [125–127].5 In our case, this corresponds

to using a target value γCE
th = κγth with κ > 1, where we refer to γCE

th as the CE SNR

target value.6

4Note that in conventional QoS formulation, the last constraint in (3.7) is omitted, hence it is
guaranteed to be feasible in the absence of CSI uncertainties.

5Note that this also compensates for the use of approximation in (3.9).
6Clearly, κ depends on the types of relaying scheme. For convenience, we use the same notation

κ for both noncoherent and coherent AF relay networks.
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3.2 Optimal Relay Power Allocation

In this section, we consider the power optimization problems subject to CE SNR

constraints for both coherent and noncoherent AF relay networks.

3.2.1 Coherent AF Relaying

Let AAA = diag(a1, a2, . . . , aNr) ∈ RNr×Nr
+ and ccc = [c1, c2, . . . , cNr]

T ∈ RNr
+ where

ak =
σR,k

σD

√
βkSF,k, (3.10)

ck =
√
βkSF,kSB,k. (3.11)

The CE power optimization problem for the coherent AF relay network can be for-

mulated as

PCE
coh(γ

CE
th ) : minζζζ

∑Nr

k=1 ζ
2
k

s.t. γCE
th ≤ PS

σ2
D

(cccT ζζζ)2

‖AAAζζζ‖2+1
,

ζζζ ∈ Xζ ,

(3.12)

where ζk =
√
pk and Xζ = {ζζζ ∈ RNr:0 ≤ ζk ≤

√
P , ∀k ∈ Nr}.7

Theorem 3. The program PCE
coh(γ

CE
th ) is a strictly convex optimization program with

a compact feasible set. When the problem is feasible, there exists a unique optimal

solution ζζζopt. We can equivalently formulate PCE
coh(γ

CE
th ) in SOCP form as8

minζζζ,t t

s.t.




cccTζζζ
√

PS

γCE
th σ2

D
 1

AAAζζζ





 �K 0,




t+1
2

 ζζζ

t−1
2





 �K 0,

ζζζ ∈ Xζ.

(3.13)

7Similarly, the above program only requires the perfect knowledge of large-scale fading.
8The SOCP form can be solved efficiently [114].
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Proof. Clearly, the objective function ‖ζζζ‖2 is a strictly convex function since the

Hessian matrix of the objective function is positive definite [110, 111]. To show that

the feasible set is convex, we cast the first constraint in (3.12) in standard form as

follows:

cccTζζζ

√
PS

γCE
th σ

2
D

≥

∥∥∥∥∥∥


 1

AAAζζζ



∥∥∥∥∥∥
, (3.14)

which can be rewritten in the form of an SOC constraint as




cccTζζζ
√

PS

γCE
th σ2

D
 1

AAAζζζ





 �K 0. (3.15)

Therefore, the feasible set in (3.12) is convex since it is the intersection of a hypercube

and an SOC, which are both convex sets [110, 111]. As a result, PCE
coh(γ

CE
th ) is a

strictly convex optimization program. Moreover, the feasible set is bounded since it

is contained in a hypercube. It is also closed since it consists of the intersection of

an SOC and a hypercube, which are both closed sets [110, 111]. Therefore, it follows

that the feasible set is compact. By the Weierstrass theorem, it follows that there

exists at least one optimal solution for program PCE
coh(γ

CE
th ) [110, 111]. Furthermore,

given the strict convexity of ‖ζζζ‖2, there is a unique optimal solution ζζζopt.

To cast PCE
coh(γ

CE
th ) into an SOCP, we use a slack variable t ∈ R+. The program

can be equivalently written as9

minζζζ,t t

s.t.




cccTζζζ
√

PS

γCE
th σ2

D
 1

AAAζζζ





 �K 0,

∑Nr

k=1 ζ
2
k ≤ t,

ζζζ ∈ Xζ .

(3.16)

9Note that there is no loss of optimality by introducing such a slack variable [110,111].
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From [114], we can easily express the second constraint in (3.16) as




t+1
2

 ζζζ

t−1
2





 �K 0. (3.17)

Substituting (3.17) into (3.16), we obtain the program (3.13) in SOCP form.

Remark 7. Since we can represent the program (3.12) in SOCP from Theorem 3, we

can numerically solve the problem and verify its feasibility using standard optimization

packages like SeDuMi [120]. Nevertheless, it is still important to devise analytical

methodology to verify the consistency of the problem.

Proposition 3 (Feasibility). A necessary and sufficient condition for PCE
coh(γ

CE
th ) to

be feasible is given by

γCE
th σ

2
D

PS

≤ Υopt, (3.18)

where Υopt is the optimal objective value of the following maximization problem :

maxζζζ
(cccTζζζ)2

‖AAAζζζ‖2+1

s.t. ζζζ ∈ Xζ .
(3.19)

Furthermore, we can derive a necessary condition given by

γCE
th <

PS‖ccc‖2

σ2
Dτmin(AAA

TAAA)
, (3.20)

where τmin(AAA
TAAA) denotes the smallest eigenvalue ofAAATAAA, and τmin(AAA

TAAA) = mink∈Nr a
2
k.

Proof. The necessary and sufficient condition for PCE
coh(γ

CE
th ) to be feasible can be

immediately obtained by maximizing the right-hand side of the CE SNR constraint

in (3.12) with respect to all possible ζζζ. This maximization can be formulated as

an optimization problem in Chapter 2.2, which is shown to be quasiconvex with a
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non-empty feasible set since ηP > 0. To derive (3.20), we first note that

γCE
th σ

2
D

PS
< max

ζζζ∈Xζ

(
(cccTζζζ)2

‖AAAζζζ‖2

)
, (3.21)

since the right-hand side of (3.21) is strictly greater than the right-hand side of (3.18).

The right-hand side of (3.21) can be further bounded by

max
ζζζ∈Xζ

(
(cccTζζζ)2

‖AAAζζζ‖2

)
≤ ‖ccc‖2

minζζζ∈Xζ

‖AAAζζζ‖2

‖ζζζ‖2

. (3.22)

where we have applied the Cauchy-Schwartz inequality to the vectors ccc and ζζζ. From

(3.22), we apply the Rayleigh-Ritz theorem to obtain the desired result [128, p. 176].

Remark 8. Proposition 3 provides us with useful conditions not only for verifying

the feasibility of PCE
coh(γ

CE
th ), but also for designing system parameters such as PS, γ

CE
th ,

and K. For example, we could use the simple condition in (3.20) to check if PCE
coh(γ

CE
th )

is infeasible. We check the condition in (3.18) only when (3.20) is satisfied. When

(3.18) or (3.20) fails, we adjust the system parameters to ensure that both (3.18)

and (3.20) are satisfied. This process effectively converts an infeasible program into

a feasible one.

Next, we formulate the dual problem of (3.12) and derive its Karush-Kuhn-Tucker

(KKT) conditions in the following theorem.

Theorem 4 (Duality). The dual problem of PCE
coh(γ

CE
th ) is given by

DPCE
coh(γ

CE
th ) : maxµ,λλλ,ννν g(µ,λλλ,ννν)

s.t. IIINr + µQQQ ≻ 0,
(3.23)

with

g(µ,λλλ,ννν) =
µγCE

th σ
2
D

PS
−tr (ΛΛΛ)−1

4
(λλλ− ννν)T(IIINr +µQQQ)−1(λλλ− ννν)

QQQ =
γCE

th σ
2
D

PS
AAATAAA− ccccccT ,
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ΛΛΛ =
√
Pdiag(λ1, λ2, . . . , λNr),

where µ ∈ R+, λλλ ∈ RNr
+ and ννν ∈ RNr

+ are the dual feasible variables. If the primal

problem is strictly feasible, strong duality holds and there exists µ > 0 such that

µ > − 1

τmin (QQQ)
. (3.24)

Moreover, the optimal primal solution ζζζopt is of the form

ζζζopt = −1

2
(IIINr + µoptQQQ)−1 (λλλopt − νννopt), (3.25)

where (µopt,λλλopt, νννopt) is the optimal dual solution and µopt satisfies the condition in

(3.24).

Proof. First, we set up the Lagrangian function L : RNr × R × RNr × RNr associated

with the primal problem (3.12) as

L(ζζζ, µ,λλλ,ννν) =
µγCE

th σ
2
D

PS

− tr (ΛΛΛ) + ζζζT (IIINr + µQQQ)ζζζ + ζζζT (λλλ− ννν), (3.26)

where µ, λλλ, and ννν are the Lagrange multipliers corresponding to the CE SNR con-

straint and power constraints in (3.12), respectively. The dual problem DPCE
coh(γ

CE
th )

is given by

maxµ,λλλ,ννν g(µ,λλλ,ννν)

s.t. IIINr + µQQQ ≻ 0,
(3.27)

where the dual feasible variables are µ ∈ R+, λλλ ∈ RNr
+ , and ννν ∈ RNr

+ . Under some

constraint qualifications, strong duality holds.10 In this case, the KKT optimality

conditions are both necessary and sufficient, and the optimal solutions of the primal

and dual problems, ζζζopt ∈ RNr
+ and (µopt,λλλopt, νννopt) ∈ R+ × RNr

+ × RNr
+ , must satisfy

the following three conditions.

10One simple version of the constraint qualifications is Slater’s condition [111].
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Feasibility conditions :

γCE
th σ

2
D

PS
+ ζζζT

optQQQζζζopt ≤ 0,

ζk,opt −
√
P ≤ 0, k ∈ Nr

−ζk,opt ≤ 0, k ∈ Nr,

Complementary slackness conditions :

µopt

(
γCE

th σ
2
D

PS

+ ζζζT
optQQQζζζopt

)
= 0,

λk,opt

(
ζk,opt −

√
P
)

= 0, k ∈ Nr

−νk,optζk,opt = 0, k ∈ Nr,

Stationarity condition :

∇ζζζL(ζζζopt, µopt,λλλopt, νννopt) = 0.

Using (3.26), we can evaluate the stationarity condition to obtain

ζζζopt = −1

2
(IIINr + µoptQQQ)−1 (λλλopt − νννopt), (3.28)

where (3.28) has a unique ζζζopt since the matrix (IIINr + µoptQQQ) is positive definite.

Furthermore, using the complementary slackness condition, we have µopt > 0 since

ζζζopt must satisfy the CE SNR constraint with equality when the primal problem is

feasible [129]. Combining the above results, we obtain

µopt > − 1

τmin (QQQ)
, (3.29)

where we have used the fact that the eigenvalues of a positive definite matrix are

strictly positive and τmin (IIINr + µQQQ) = 1 + µτmin (QQQ).
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3.2.2 Noncoherent AF Relaying

Let ddd = [d1, d2, . . . , dNr]
T ∈ RNr

+ and eee = [e1, e2, . . . , eNr]
T ∈ RNr

+ where

dk =
σ2

R,k

σ2
D

βkSF,k, (3.30)

ek = βkSF,kSB,k. (3.31)

The CE power optimization problem for the noncoherent AF relay network can be

formulated as

PCE
noncoh(γ

CE
th ) : minppp

∑Nr

k=1 pk

s.t. γCE
th ≤ PS

σ2
D

eeeTppp

dddTppp+1
,

ppp ∈ Xp,

(3.32)

where Xp = {ppp ∈ RNr : 0 ≤ pk ≤ P, ∀k ∈ Nr}. Note that the above program only

requires perfect knowledge of large-scale fading.

Theorem 5. The program PCE
noncoh(γ

CE
th ) is a linear program given by

minppp 111Tppp

s.t. mmm ≥ BBBppp,
(3.33)

where BBB ∈ R(2Nr+1)×Nr and mmm ∈ R2Nr+1 are given by

BBB =




dddT − PS

γCE
th σ2

D
eeeT

IIINr

−IIINr


 , mmm =




−1

P111

000


 . (3.34)

When the problem is feasible, there exists a set of optimal solutions {pppopt} when −111‖bbb1,
and a unique optimal solution pppopt when −111 ∦ bbb1, such that bbb1 = ddd− PS

γCE
th σ2

D
eee.

Proof. To show that PCE
noncoh(γ

CE
th ) is an LP, we simply express the CE SNR constraint

and the power constraints in the form of bbbTkppp ≤ mk, where bbbTk is the kth row vector of

the matrix BBB and mk is the kth element of the vector mmm defined in (3.34). Since the
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objective function is linear in ppp and the feasible set is a polyhedron, it follows that

we have an LP, as shown in (3.33). When the problem is feasible, the polyhedron is

non-empty and the optimal objective value is finite. Furthermore, the polyhedron is

bounded since it is contained in a hypercube. From [130, Corollary 2.2], it follows

that there is at least one extreme point in the polyhedron. Therefore, there exists at

least one optimal solution for program PCE
noncoh(γ

CE
th ) [130, Theorem 2.8]. Note that the

uniqueness of the optimal solution depends on the direction of bbb1. Since the objective

function is to minimize 111Tppp, the optimal solution is to travel as far as possible in

the −111 direction. However, when −111‖bbb1, the set of optimal solutions lies along the

hyperplane bbbT1 ppp = m1 as this is the boundary of the feasible set. On the other hand,

when −111 ∦ bbb1, there is a unique optimal solution that can be found by moving in the

−111 direction.

Remark 9. To verify the feasibility of PCE
noncoh(γ

CE
th ), we consider the following simple

LP :

minppp,t t

s.t. mmm+ t111 ≥ BBBppp,
(3.35)

where t ∈ R. It is clear that the program PCE
noncoh(γ

CE
th ) is feasible when topt ≤ 0, where

topt is the optimal solution to the LP in (3.35). Since LP can be solved very easily

with simplex algorithm, we can also use (3.35) to determine γCE
th that corresponds to

topt ≤ 0. Such γCE
th will result in feasible program PCE

noncoh(γ
CE
th ).

As for the case of the coherent AF relay network, we formulate the dual problem

of (3.32) in the following theorem.

Theorem 6 (Duality). The dual problem of PCE
noncoh(γ

CE
th ) is given by

DPCE
noncoh(γ

CE
th ) : maxννν −mmmTννν

s.t. BBBTννν + 111 = 000,
(3.36)

where ννν ∈ R2Nr+1
+ is the dual feasible variable. Since strong duality holds when either

the primal or dual problems is feasible, there exists an optimal νννopt ∈ R2Nr+1
+ such
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that

111Tpppopt +mmmTνννopt = 0

BBBTνννopt + 111 = 000. (3.37)

Proof. First, we set up the Lagrangian function L : RNr ×R2Nr+1 associated with the

primal problem (3.36) as

L(ppp,ννν) = −mmmTννν +
(
BBBTννν + 111

)T
ppp, (3.38)

where ννν is the Lagrange multipliers corresponding to the linear constraints in (3.36).

The dual problem DPCE
noncoh(γ

CE
th ) is given by

maxννν −mmmTννν

s.t. BBBTννν + 111 = 000,

ννν � 000.

(3.39)

For LP, strong duality holds when either one of the primal or dual problems is feasible

[111,130]. Thus, (pppopt, νννopt) are optimal if and only if they satisfy the following three

conditions.

Feasibility condition of the primal problem :

BBBpppopt ≤mmm,

Feasibility conditions of the dual problem :

BBBTνννopt + 111 = 000,

νk,opt ≥ 0, k ∈ Nr

Zero duality gap condition :

111Tpppopt +mmmTνννopt = 0.
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3.3 Robust Relay Power Allocation

To account for CSI uncertainties, we adopt the robust optimization methodology

introduced in Chapter 2. As in [7, 8], we consider an ellipsoidal uncertainty set for

simplicity.

3.3.1 Coherent AF Relaying

In the following, we formulate the robust counterpart of PCE
coh(γ

CE
th ) by incorporating

uncertainties in AAA and ccc in the following theorem. Since (AAA,ccc) appears only in the

first constraint of (3.12), we need to simply focus on this constraint and build its

robust counterpart given by

cccTζζζ ≥
√
γCE

th σ
2
D

PS

(1 + ‖AAAζζζ‖2), ∀(AAA,ccc) ∈ U . (3.40)

In the following, we adopt the conservative approach which assumes that U affecting

(3.40) is sidewise as described in Chapter 2.3.

Theorem 7. Let UR and UL be sidewise independent ellipsoidal uncertainty sets given

by

UR =

{
AAA = AAA0 +

∑

j∈NA

ujAAAj : ‖uuu‖ ≤ ρ1

}
(3.41)

UL =

{
ccc = ccc0 +

∑

j∈Nc

vjcccj : ‖vvv‖ ≤ ρ2

}
, (3.42)

where NA = {1, 2, . . . , NA}, Nc = {1, 2, . . . , Nc}, and NA and Nc are the dimen-

sions of uuu and vvv, respectively. The approximate robust counterpart of PCE
coh(γ

CE
th ) with
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uncertainty sets UR and UL can be written in SDP form:

RPCE
coh(γ

CE
th ) : minζζζ,t,τ,µ t

s.t. (ζζζ, t, τ, µ) ∈ Scoh(γ
CE
th ),

(3.43)

where (ζζζ, t, τ, µ) ∈ RNr
+ × R+ × R+ × R+ and the feasible set Scoh(γ

CE
th ) is given by

Scoh(γ
CE
th ) =

{
ζζζ ∈ RNr

+ :




µIIINA
000NA

Ă̆ĂA
T

000T
NA

τ
√

PS

γCE
th σ2

D
− 1 − µρ2

1 ζζζTAAAT
0

Ă̆ĂA AAA0ζζζ
(
τ
√

PS

γCE
th σ2

D
− 1
)
IIINr


 � 0,




cccT
0 ζζζ−τ

ρ2
IIINc c̆̆c̆c

c̆̆c̆cT
cccT
0 ζζζ−τ

ρ2


 � 0,




(
t+1
2

)
IIINr+1

(
ζζζ

t−1
2

)

(
ζζζT t−1

2

)
t+1
2



� 0,




(
P+1

2

)
III2

(
ζk

P−1
2

)

(
ζk

P−1
2

)
P+1

2



� 0,


 τ

√
γCE
th σ2

D

PS√
γCE
th σ2

D

PS
τ


 � 0, ∀k ∈ Nr

}
, (3.44)

where Ă̆ĂA = [AAA1ζζζ,AAA2ζζζ, . . . ,AAANA
ζζζ], and c̆̆c̆c =

[
cccT1 ζζζ, ccc

T
2 ζζζ, . . . , ccc

T
Nc
ζζζ
]T

.

Proof. Due to the sidewise independence assumption, ζζζ is robust feasible if there

exists τ ∈ R+ such that [118, 119]

√
γCE

th σ
2
D

PS
(1 + ‖AAAζζζ‖2) ≤ τ, ∀AAA ∈ UR (3.45)

τ ≤ cccTζζζ, ∀ccc ∈ UL. (3.46)
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First, we consider (3.45) by rewriting it as follows:

∥∥∥∥∥∥


 1

AAAζζζ



∥∥∥∥∥∥
≤ τ

√
PS

γCE
th σ

2
D

, ∀AAA ∈ UR. (3.47)

We now replace (3.47) by11

0 ≤ λ,
∥∥∥AAA0ζζζ + Ă̆ĂAuuu

∥∥∥ ≤ λ, ∀uuu ∈ {uuu : ‖uuu‖ ≤ ρ1}, (3.48)

where λ = τ
√
PS/γ

CE
th σ

2
D − 1 and we have substituted AAA defined by the uncertainty

set UR in (3.41). Now, by expanding (3.48) in terms of a quadratic form of uuu, we have

0 ≤ λ,

0 ≤ q0(uuu), ∀uuu ∈ {uuu : 0 ≤ q1(uuu)}, (3.49)

where

q0(uuu) = −uuuT Ă̆ĂA
T
Ă̆ĂAuuu− 2

(
Ă̆ĂA

T
AAA0ζζζ

)T

uuu− ζζζTAAAT
0AAA0ζζζ + λ2

q1(uuu) = ρ2
1 − uuuTuuu. (3.50)

From Lemma 4, it follows that (3.49) is satisfied if and only if there exists α ∈ R+

such that


 −Ă̆ĂAT

Ă̆ĂA −Ă̆ĂAT
AAA0ζζζ(

−Ă̆ĂAT
AAA0ζζζ

)T

λ2 − ζζζTAAAT
0AAA0ζζζ


− α


−IIINA

000NA

000T
NA

ρ2
1


 � 0. (3.51)

To convert the above quadratic matrix inequality into an LMI, we first let α = λµ

11It follows from the triangle inequality that if (3.48) is satisfied, then (3.47) is always satisfied.
Note that with the use of constraint (3.48), instead of (3.47), we have converted RPCE

coh(γ
CE
th ) into

an SDP.
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for some µ ∈ R+. Rearranging (3.51), we have12

∆EEE , λ


µIIINA

000NA

000T
NA

λ− µρ2
1


−


 Ă̆ĂA

T

ζζζTAAAT
0


IIINr


 Ă̆ĂA

T

ζζζTAAAT
0




T

� 0. (3.52)

If λ > 0, it follows that 1
λ
∆EEE in (3.52) is the Schur complement of λIIINr in

MMM ,




µIIINA
000NA

Ă̆ĂA
T

000T
NA

τ
√

PS

γCE
th σ2

D
− 1 − µρ2

1 ζζζTAAAT
0

Ă̆ĂA AAA0ζζζ (τ
√

PS

γCE
th σ2

D
− 1)IIINr


 , (3.53)

and by Lemma 5, MMM � 0 since 1
λ
∆EEE � 0. For λ = 0, MMM � 0 holds if and only if

µ = 0, AAA0ζζζ = 000 and Ă̆ĂA = 000. Thus, we have the first LMI in (3.44). In summary, a

pair (ζζζ, τ) satisfies (3.45) if there exists some µ ∈ R+ and τ ≥
√
γCE

th σ
2
D/PS such that

the triple (ζζζ, τ, µ) satisfies MMM � 0.

Next, we turn to (3.46) and substitute ccc defined by the uncertainty set UL in (3.42)

into (3.46), we have equivalently

c̆̆c̆cTvvv ≥ −
(
cccT0 ζζζ − τ

)
, ∀vvv ∈ {vvv : ‖vvv‖ ≤ ρ2}. (3.54)

Following similar steps leading to (2.45), we can express the robust constraint in

(3.54) as




cccT
0 ζζζ−τ

ρ2

c̆̆c̆c


 �K 0. (3.55)

Using [114], we can represent (3.55) in the form of an LMI as




cccT
0 ζζζ−τ

ρ2
IIINc c̆̆c̆c

c̆̆c̆cT
cccT
0 ζζζ−τ

ρ2


 � 0. (3.56)

Therefore, we obtain the second LMI in (3.44). The other three LMIs in (3.44) are

12When λ = 0, we have µ = 0.
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easily obtained by representing the SOC constraint in terms of LMIs [114, p. 196].

3.3.2 Noncoherent AF Relaying

Similarly, we formulate the robust counterpart of PCE
noncoh(γ

CE
th ) with uncertainties in

ddd and eee.

Theorem 8. Let U be an ellipsoidal uncertainty set given by

U =

{
∆∆∆(ddd,eee) = ∆∆∆0 +

∑

j∈N∆

wj∆∆∆j : ‖www‖ ≤ ρ0

}
, (3.57)

where ∆∆∆j , PS

γCE
th σ2

D
eeej − dddj ∈ RK , N∆ = {1, . . . , N∆}, and N∆ is the dimension of

www. The robust counterpart of PCE
noncoh(γ

CE
th ) with uncertainty set U is equivalent to the

following SOCP:

RPCE
noncoh(γ

CE
th ) : minppp 111Tppp

s.t. ppp ∈ Snoncoh(γ
CE
th ),

(3.58)

where the feasible set Snoncoh(γ
CE
th ) is given by

Snoncoh(γ
CE
th ) =



ppp ∈ RK:




∆∆∆T
0 ppp−1
ρ0

∆̆̆∆̆∆


�K 0, ppp ∈ Xp



, (3.59)

and ∆̆̆∆̆∆ =
[
∆∆∆T

1 ppp,∆∆∆
T
2 ppp, . . . ,∆∆∆

T
N∆
ppp
]T

.

Proof. Since only (ddd,eee) in the first constraint of PCE
noncoh(γ

CE
th ) is subject to uncertainty,

we will focus on this constraint and build its robust counterpart, which is given by

eeeTppp ≥ γCE
th σ

2
D

PS

(
1 + dddTppp

)
, (3.60)

for all (ddd,eee) that satisfies ∆∆∆(ddd,eee) ∈ U . By substituting (3.57) into (3.60), we have

equivalently

∆̆̆∆̆∆
T
www ≥ −

(
∆∆∆T

0 ppp− 1
)
, ∀www ∈ {www : ‖www‖ ≤ ρ0}, (3.61)
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Figure 3-1: An example realization of a wireless relay network.

and the robust constraint in (3.61) is equivalent to an SOC constraint, as follows:




∆∆∆T
0 ppp−1
ρ0

∆̆̆∆̆∆


 �K 0. (3.62)

Since the objective function is linear in ppp and the rest of the constraints in (3.59) are

linear constraints, it follows that RPCE
noncoh(γ

CE
th ) is an SOCP.

3.4 Numerical Results

To illustrate the performance of our proposed algorithms, we consider networks with

Nr relay nodes deployed randomly and independently over a 10m × 10m square. For

each network, the source and destination nodes are positioned on the opposite sides of

the square, i.e., the source node is fixed at (x, y) = (0m, 5m) and the destination node
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is fixed at (x, y) = (10m, 5m). One possible realization of the network with Nr = 64 is

shown in Fig. 3-1. For each realization of the random network topology, we generate

SB,k and SF,k according to (3.3) and (3.4) with ε = 4. This procedure is repeated for

20,000 realizations. The noise variances are normalized such that σ2
R,k = 1 and σ2

D = 1.

The constraint on the maximum transmission power of each individual relay node is

set at P = 10 dB. Throughout this section, we use the SeDuMi optimization package

[120] to determine the RPAs according to our algorithms described in described in

Chapters 3.2 and 3.3. The uncertainty sets in Theorems 7 and 8 are chosen such

that N∆ = 1, ∆∆∆1 = ∆∆∆0, NA = 1, AAA1 = AAA0, and Nc = 1, ccc1 = ccc0. We consider

ρ0 = ρ1 = ρ2 = ρ, where ρ = 0 corresponds to perfect knowledge of the global CSI

and ρ = 1 corresponds to an uncertainty that is of the same size as the estimated

global CSI, i.e., ddd0, eee0,AAA0, ccc0.

Figures 3-2 and 3-3 show the outage probabilities (the SNR constraint in (3.7)

is not satisfied) as a function of γth for coherent and noncoherent relay networks,

respectively.13 The power allocations used in these plots were obtained by solving

PCE
coh(γ

CE
th ) and PCE

noncoh(γ
CE
th ) using our proposed algorithms.14 It can be seen that the

outage probabilities of the coherent and noncoherent AF relay networks decrease as

the factor κ increases. This decrease shows that the CE formulation, which enables

implementation of practical algorithms that track only large-scale fading, can effec-

tively account for the random fluctuations in the actual instantaneous SNR as well

as compensate for the use of approximation in (3.9). Comparing Figs. 3-2 and 3-3,

we see that the CE approach is less effective in noncoherent AF relay networks, even

with larger κ values, owing to the absence of phase alignment at the relay nodes.15

There may be some situations where PCE
coh(γ

CE
th ) and PCE

noncoh(γ
CE
th ) are infeasible. We

denote the probabilities of such events as CE outage probabilities, i.e., probabilities

that the CE SNR constraints in (3.12) and (3.32) are not satisfied. The CE outage

probabilities as a function of γCE
th are plotted for various values of PS in Figs. 3-4 and

13The chosen value of σdB in these plots is typical for macrocellular applications [122].
14Recall from Chapter 3.1 that the SNR constraint in (3.7) may not be satisfied even when

PCE
coh(γ

CE
th ) and PCE

noncoh(γ
CE
th ) are feasible.

15In such cases, time diversity techniques can be used [127].
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Figure 3-2: Outage probability of the coherent AF relay network with Nr = 64, PS =
30 dB, and σdB = 8 dB.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

κ = 1
κ = 5
κ = 10

P
{S

N
R
(pp p

)
<
γ

th
}

γth (dB)

Figure 3-3: Outage probability of the noncoherent AF relay network with Nr = 64,
PS = 30 dB, and σdB = 8 dB.
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Figure 3-4: CE outage probability of the proposed power allocation algorithm for the
coherent AF relay network as a function of γCE

th with Nr = 64 and σdB = 8 dB.

3-5 for coherent and noncoherent AF relay networks, respectively. We see from these

figures that, for a fixed CE SNR target value, an increase in source power is required

to maintain a lower outage probability. This increase in required source power is more

drastic in noncoherent AF relay networks compared to coherent AF relay networks.

We next compare our power allocation algorithms in terms of power-efficiency

∆P , where ∆P , 10 log(NrP/
∑Nr

k=1 pk) is defined as the ratio of the total relay

transmission power based on the naive scheme and that based on our algorithm.16

Figures 3-6 and 3-7 show the complementary cumulative distribution function (ccdf)

of ∆P for coherent and noncoherent AF relay networks with different numbers of

relay nodes and CE SNR target values.17 We see that our proposed algorithms offer

significant power savings in both networks. These figures indicate that ∆P increases

when the number of relay nodes increases. This is because our power allocation

16Recall that the naive scheme is referred to one that employs maximum transmission power at
each relay node.

17The ccdf of a r.v. X gives the probability that X is above a particular level.
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Figure 3-5: CE outage probability of the proposed power allocation algorithm for the
noncoherent AF relay network as a function of γCE

th with Nr = 64 and σdB = 8 dB.

algorithms exploit the channel variations in the spatial domain. When γCE
th decreases,

the efficiency increases, since less relay power expenditure is required to satisfy the

CE SNR constraint. Comparing Figs. 3-6 and 3-7, we see that the increase in power-

efficiency is more significant, due to a higher cooperative gain, in coherent AF relay

networks compared to noncoherent AF relay networks, as observed in [95].

Figures 3-8 and 3-9 show the ccdf of ∆P for coherent and noncoherent AF relay

networks with different numbers of relay nodes and σdB. These figures indicate that

∆P increases when σdB increases, implying that our proposed power allocation algo-

rithms are more efficient for channels with large fluctuations. This increase in ∆P is

more significant for large networks for the same reason noted in previous paragraph.

Figures 3-10 and 3-11 show the cumulative distribution function (cdf) of the min-

imum number of relay nodes that are necessary to achieve a certain percentage of

the total relay transmission power in coherent and noncoherent AF relay networks,

respectively. We observe that most of the total relay transmission power tends to be
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Figure 3-6: Ccdf of ∆P of the coherent AF relay network for different K and γCE
th

with PS = 30 dB and σdB = 8 dB. The solid and dashed lines indicate Nr = 8 and
64, respectively.
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Figure 3-7: Ccdf of ∆P of the noncoherent AF relay network for different K and γCE
th

with PS = 30 dB and σdB = 8 dB. The solid and dashed lines indicate Nr = 8 and
64, respectively.
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Figure 3-8: Ccdf of ∆P of the coherent AF relay network for different Nr and σdB

with PS = 30 dB and γCE
th = 6 dB. The solid and dashed lines indicate K = 8 and 64,

respectively.
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Figure 3-9: Ccdf of ∆P of the noncoherent AF relay network for different Nr and σdB

with PS = 30 dB and γCE
th = 6 dB. The solid and dashed lines indicate Nr = 8 and

64, respectively.
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distributed among a smaller subset of relay nodes in the noncoherent case, compared

to the coherent case. This suggests that relay selection is beneficial in noncoherent

AF relay networks as observed in [12].

Lastly, we compare the robust algorithms in terms of the CE outage probabilities.

Figures 3-12 and 3-13 show the CE outage probability as a function of the size of the

uncertainty set ρ for coherent and noncoherent AF relay networks, respectively. We

observe from these figures that adopting non-robust algorithms, i.e., simply ignoring

uncertainties in the global CSI, results in a high penalty in terms of outage probabil-

ity. On the other hand, we clearly see that robust algorithms provide lower outage

probabilities compared to non-robust algorithms.
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Figure 3-10: Effect of relay transmission power on cdf of the number of relay nodes
for the coherent AF relay network with Nr = 64, PS = 30 dB, σdB = 8 dB, and
γCE

th = 6 dB.
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Figure 3-11: Effect of relay transmission power on cdf of the number of relay nodes
for the noncoherent AF relay network with Nr = 64, PS = 30 dB, σdB = 8 dB, and
γCE

th = 6 dB.
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Figure 3-12: CE outage probability of robust power allocation algorithms for the
coherent AF relay network with Nr = 64, PS = 30 dB, σdB = 8 dB, and γCE

th = 6 dB.
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Figure 3-13: CE outage probability of robust power allocation algorithms for the
noncoherent AF relay network with Nr = 64, PS = 30 dB, σdB = 8 dB, and γCE

th =
6 dB.
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Chapter 4

Transmitted-Reference

Communication Systems

In this chapter, we develop an analytical framework, based on the sampling expansion

approach, to derive closed-form expressions for the BEP of TR and DTR signaling

schemes in dense multipath channels. We consider receiver structures that employ

AcR and modified AcR. From our results, we assess the validity of the conventional

Gaussian approximation. In addition, we derive computationally simple lower bound

on the BEP expression to obtain the SNR penalty associated with AcR, as compared

to All-Rake (ARake) and Partial-Rake (PRake) receivers.

4.1 System and Channel Models

4.1.1 Transmitted-Reference

The transmitted signal of TR signaling for user k can be decomposed into a reference

signal block b
(k)
r (t) and a data modulated signal block b

(k)
d (t) as given by

s
(k)
TR(t) =

∑

i

b(k)
r (t− iNsTf) + d

(k)
i b

(k)
d (t− iNsTf), (4.1)

85



Figure 4-1: Illustration of the TR signaling scheme.

where Tf is the average pulse repetition period, d
(k)
i ∈ {−1, 1} is the ith data symbol,

and NsTf is the symbol duration. The reference signal and modulated signal blocks,

each consisting of Ns/2 transmitted signal pulses, can be written as1

b(k)
r (t) =

Ns
2
−1∑

j=0

√
Epa

(k)
j p(t− j2Tf − c

(k)
j Tp),

b
(k)
d (t) =

Ns
2
−1∑

j=0

√
Epa

(k)
j p(t− j2Tf − c

(k)
j Tp − Tr), (4.2)

where b
(k)
d (t) is equal to a version of b

(k)
r (t), delayed by Tr, and p(t) is a unit energy

bandpass signal pulse with duration Tp and center frequency fc. The energy of the

transmitted pulse is then Ep = Es/Ns, where Es is the symbol energy. In our case of

binary signaling, the symbol energy equals the energy per bit, Eb. To enhance the

robustness of TR systems against interference and to allow multiple access, DS and/or

1Note that other combinations of data and reference pulses are also possible [131]. For simplicity
and without loss of generality, we have adopted conventional TR signaling, in which the number of
reference and data pulses are equal and Ns is even [49, 52].
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TH spread spectrum techniques can be used as shown in (4.2). In DS signaling, {a(k)
j }

is the bipolar pseudo-random sequence of the kth user.2 In TH signaling, {c(k)
j } is

the pseudo-random sequence of the kth user, where c
(k)
j is an integer in the range

0 ≤ c
(k)
j < Nh, and Nh is the maximum allowable integer shift. A simplified example

that illustrates TR signaling is shown in Fig. 4-1. The duration of the received

UWB pulse is Tg = Tp + Td, where Td is the maximum excess delay of the channel.

To preclude inter-symbol interference (ISI) and intra-symbol interference (isi)3, we

assume that Tr ≥ Tg and (Nh − 1)Tp +Tr + Tg ≤ 2Tf , where Tr is the time separation

between each pair of data and reference pulses. If the symbol interval is less than the

channel coherence time, all these pairs of separated signals will experience the same

channel.4 Note that Tr is constant for our case, as shown in Fig. 4-1, in contrast

to [48], where the inter-pulse delays vary for different pairs of data-modulated and

reference pulses.

4.1.2 Differential Transmitted-Reference

The transmitted signal of DTR signaling for user k is given by

s
(k)
DTR(t) =

∑

i

e
(k)
i b(k)(t− iNsTf), (4.3)

where b(k)(t) is the kth user’s block-modulated signal with symbol interval NsTf , and

Ns is the number of transmitted signal pulses in each block. The data symbol d
(k)
i

is now differentially encoded such that e
(k)
i = e

(k)
i−1d

(k)
i , where d

(k)
i ∈ {−1, 1}. The

b(k)(t)-shaped signal block can be written as

b(k)(t) =
Ns−1∑

j=0

√
Epa

(k)
j p(t− jTf − c

(k)
j Tp), (4.4)

2Walsh-Hadamard sequences are used in [131].
3ISI and isi may not always be negligible due to constraints on Tf and data-rate requirements.

In this case, our results will serve as a lower bound.
4For TR signaling with an AcR, only adjacent data and reference pulses need to be within the

channel coherence time. The condition that all pulses within a symbol experience the same channel,
however, will enable us to extend our analysis to TR signaling with a modified AcR, where the
channel is assumed to be constant over two symbols.
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where {a(k)
j } and {c(k)

j } are the DS and TH sequences that provide robustness to

interference and multiple-access capability for DTR systems. Note that a DTR signal

looks similar to a short-code CDMA signal, except that pulses are separated by at

least Tg and TH is also present. The TH sequence is pseudo-random with the range

0 ≤ c
(k)
j < Nh, where Nh satisfies (Nh − 1)Tp + Tg ≤ Tf to preclude ISI and isi. The

channel must be constant over two symbols in order to use differential encoding over

two adjacent symbols.

4.1.3 Channel Model

The received signal can be written as

rTR(t) =

∫ +∞

−∞
h(τ)sTR(t− τ)dτ + n(t), (4.5)

where h(t) is the impulse response of the channel and n(t) is zero-mean, white Gaus-

sian noise with two-sided power spectral density N0/2. Note that a similar equation

also applies to DTR signaling by replacing sTR(t) with sDTR(t). The channel impulse

response, modeled as linear time-invariant, can be written as h(t) =
∑L

l=1 αlδ(t− τl),

where L is the number of resolvable multipath components, and αl and τl respectively

denote the attenuation and delay of lth path. We can express αl = |αl| exp(jφl), where

φl = 0 or π with equal probability. As in [37, 38], we consider the resolvable dense

multipath channel,5 i.e., |τl − τj | ≥ Tp, ∀l 6= j, where τl = τ1 + (l− 1)Tp, and {αl} are

assumed to be statistically independent r.v.’s.

4.2 Receiver Models

In the following, we suppress the index k since we are considering single user system.

Without loss of generality, we consider the detection of the data symbol at i = 0. We

5Such an assumption may not be always true [132,133]. However, the dense resolvable multipath
channel serves as a reasonable approximation to realistic UWB channels. Therefore, our BEP
analysis still provides insight into the performance of TR signaling.
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Figure 4-2: AcR for TR and DTR signaling schemes.

assume perfect synchronization at the receiver.6

4.2.1 Autocorrelation Receiver

As shown in Fig. 4-2, the AcR first passes the received signal through an ideal

bandpass zonal filter (BPZF) with center frequency fc to eliminate out-of-band noise.

If the bandwidth W of the BPZF is large enough, then the signal spectrum will

pass through undistorted. Consequently, the ISI and isi caused by filtering will be

negligible. In this case, the output of the BPZF for TR and DTR signaling can be

expressed respectively as

r̃TR(t) =
∑

i

Ns
2
−1∑

j=0

L∑

l=1

[√
Epαlajp(t− iNsTf − j2Tf − cjTp − τl)

+
√
Epαlajdip(t− iNsTf − j2Tf − cjTp − Tr − τl)

]

+ ñ(t), (4.6)

6It has been shown that we can relax the assumption of perfect synchronization in TR signaling
due to its robustness against synchronization errors [134, 135]. However, exactly how this synchro-
nization is achieved [134,136] and the sensitivity analysis of synchronization errors [135] are beyond
the scope of this dissertation.
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and

r̃DTR(t) =
∑

i

Ns−1∑

j=0

L∑

l=1

√
Epαlajeip(t− iNsTf − jTf − cjTp − τl) + ñ(t), (4.7)

where ñ(t) is a zero-mean, Gaussian random process with autocorrelation function

Rñ(τ) = WN0 sinc(Wτ) cos(2πfcτ). (4.8)

Note that when W ≫ 1/Tg, Rñ(τ) in (4.8) is approximately equal to zero for |τ | ≥ Tg.

This implies that the noise samples separated by more than Tg or at a multiple of

1/W are statistically independent.

The filtered received signal is passed through a correlator with integration interval

T (Tp ≤ T ≤ Tg), as shown in Fig. 4-2, to collect the received signal energy. The

integration interval T determines the number of multipath components (or equiva-

lently, the amount of energy) captured by the receiver, as well as the amount of noise

and interference accumulation. As will be shown in later sections, the optimum T

depends on various channel conditions, such as the decay factor of the channel power

dispersion profile (PDP), and on the signal-to-interference ratio (SIR). The decision

statistics generated at the integrator output of the AcR can be written respectively

as

ZTR =

Ns
2
−1∑

j=0

∫ j2Tf+Tr+cjTp+T

j2Tf+Tr+cjTp

r̃TR(t) r̃TR(t− Tr)dt, (4.9)

and

ZDTR =

Ns−1∑

j=0

∫ jTf+cjTp+T

jTf+cjTp

r̃DTR(t) r̃DTR(t−NsTf)dt, (4.10)

for TR and DTR signaling.
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4.2.2 Modified Autocorrelation Receiver

The AcR performance for both TR and DTR signaling can be improved by averaging

respectively over Ns/2 andNs received reference pulses from the previous symbol [49].7

This, however, requires the channel to remain constant over two symbols. The decision

statistics of this modified AcR for TR and DTR signaling are given respectively by

ZATR =

Ns
2
−1∑

j=0

aj

∫ j2Tf+Tr+cjTp+T

j2Tf+Tr+cjTp

r̃TR(t)

×


 2

Ns

Ns
2
−1−j∑

k=−j

aj+kr̃TR

(
t− (Ns − 2k)Tf − (cj − cj+k)Tp − Tr

)

 dt,

(4.11)

and

ZADTR =
Ns−1∑

j=0

aj

∫ jTf+cjTp+T

jTf+cjTp

r̃DTR(t)

×
[

1

Ns

Ns−1−j∑

k=−j

aj+kr̃DTR

(
t− (Ns − k)Tf − (cj − cj+k)Tp

)]
dt.

(4.12)

Note that the modified AcR generally has a higher receiver complexity than AcR

since it requires additional memory to store previous received samples and averaging

them to obtain the decision statistics in (4.11) and (4.12).

4.3 Performance Analysis

Next, we first derive the BEP of TR signaling with AcR in dense multipath channels

using the Gaussian approximation approach and point out the limitations of such an

approach. To alleviate such limitations, we develop an analytical framework based

7This averaging can be thought of as forming an estimate of the channel. In fact, when the
observation noise is Gaussian, this is equivalent to forming a maximum likelihood estimate of the
channel [29].
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on sampling expansion approach to derive the BEP expressions for TR and DTR

signaling schemes when AcR and modified AcR are used.

4.3.1 Gaussian Approximation Approach

First, by representing the output of AcR in (4.9) in terms of four components, Z1,

Z2, Z3, and Z4, where each of these terms is defined and derived in Appendix B.1. The

conventional approach to analyze the performance of TR signaling is to assume that

the distributions of the noise components Z2, Z3, and Z4 are conditionally Gaussian

and mutually uncorrelated when conditioned on {αl}L
l=1 [48–50]. This assumption is

valid when the time-bandwidth product or Ns is large. When the time-bandwidth

product is large, (4.9) can be approximated by a conditional Gaussian r.v. by invoking

the Central-Limit Theorem [49,50]. When Ns is large, Z4 in (B.4) can also be approx-

imated as Gaussian by the Central-Limit Theorem [49]. The mutually uncorrelated

assumption is valid when W ≫ 1/Tg [49, 50]. Only when all the above assumptions

are valid, can we invoke the Gaussian approximation to derive the conditional BEP

for TR signaling with AcR as8

P {e|γTR} = Q




√√√√E
{
ZTR|{αl}LCAP

l=1 , d0 = +1
}2

V
{
ZTR|{αl}LCAP

l=1

}


 , (4.13)

where Q(·) is the Gaussian Q-function, γTR = Es

2N0

∑LCAP

l=1 α2
l denotes the instanta-

neous received SNR of TR signaling with AcR, LCAP , ⌈min{WT,WTg}⌉ denotes

the actual number of multipath components captured by the AcR.

Under the Gaussian approximation, the derivation of the conditional BEP in (4.13)

is reduced to the derivation of the conditional mean and variance. The conditional

mean is given by

E
{
ZTR|{αl}LCAP

l=1 , d0 = +1
}

=
Es

2

LCAP∑

l=1

α2
l , (4.14)

8Note that we have exploited symmetry about d0 to obtain (4.13).
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and the derivation can be found in Appendix B.1. The mutual independence assump-

tion of Z2, Z3, and Z4 leads to the following result (see Appendix B.2)

V
{
ZTR|{αl}LCAP

l=1

}
= V

{
Z2|{αl}LCAP

l=1

}
+ V

{
Z3|{αl}LCAP

l=1

}
+ V

{
Z4|{αl}LCAP

l=1

}

≈ N0Es

2

LCAP∑

l=1

α2
l +

Ns

4
N2

0WT. (4.15)

Using (4.13)-(4.15), we can rewrite the conditional BEP for TR signaling with AcR

in (4.13) as

P {e|γTR} = Q


 γTR√

γTR + Ns

4
WT


 . (4.16)

From (4.16), we can see that the amount of received energy captured by the AcR

depends on WT . Under the resolvable multipath assumption, LCAP increases with

WT until LCAP = L. Increasing WT beyond this point will only accumulate more

noise energy in the receiver as seen in the denominator of (4.16). The BEP of TR

signaling can then be obtained by averaging the conditional BEP in (4.16) as

Pe,TR =

∫ ∞

0

P {e|x} fγTR
(x)dx, (4.17)

where fγTR
(·) is the pdf of γTR. The direct approach to evaluate (4.17) seems in-

tractable since P{e|x} is written in terms of a definite integral (i.e., Gaussian Q-

function) whose limit is a r.v. to be averaged. A common approach to alleviate

this problem is to use the alternative expression for the Gaussian Q-function which

has previously enabled numerous analysis of wireless scenarios involving fading chan-

nels [137]. Even with this approach, the evaluation of (4.17) is very difficult, if at all

possible, since γTR appears in both the numerator and denominator of the argument

to the Q-function. At this point, one may resort to numerically averaging (4.17) via

a quasi analytical/experimental approach [49, 53] as suggested originally in [37] or

a quasi-analytical/simulation approach [50]. Hence, this motivates us to develop an

alternative approach to derive closed-form BEP expressions of TR signaling schemes
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for a broad class of fading channels.

4.3.2 Sampling Expansion Approach

To enable the BEP analysis of TR signaling schemes, we can use the sampling func-

tions as the set of orthonormal functions to project the received waveform onto the

subspace of band-limited functions with approximate dimensionality 2WT . Further

details regarding this sampling expansion approach can be found in Appendix B.3.

Transmitted-Reference

The conditional BEP for TR signaling with AcR can be found by evaluating

P {e|γTR} =
1

2
P {ZTR < 0|d0 = +1} +

1

2
P {ZTR > 0|d0 = −1} . (4.18)

To derive the conditional BEP in (4.18), we rewrite ZTR in (4.9) as follows:

ZTR =

Ns
2
−1∑

j=0

∫ T

0

[
b̆r(t+ j2Tf + cjTp) + ñ(t+ j2Tf + cjTp)

]

×
[
d0b̆d(t+ j2Tf + cjTp + Tr) + ñ(t+ j2Tf + cjTp + Tr)

]
dt,

(4.19)

where b̆r(t) , (br∗h∗hZF)(t), b̆d(t) , (bd∗h∗hZF)(t), and hZF(t) is the impulse response

of the BPZF. Note that if the symbol interval is less than the coherence time, all

pairs of separated pulses will experience the same channel; hence b̆r(t+j2Tf +cjTp) =

b̆d(t + j2Tf + cjTp + Tr) for all t ∈ (0, T ) and j. In this case, we can significantly

simplify the expression in (4.19) as follows:

ZTR =

Ns
2
−1∑

j=0

∫ T

0

[
wj(t) + η1,j(t)

][
d0wj(t) + η2,j(t)

]
dt

=

Ns
2
−1∑

j=0

Uj , (4.20)
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where we have used wj(t) , b̆r(t + j2Tf + cjTp) =
√
Epaj

∑L
l=1 αlp(t − τl), η1,j(t) ,

ñ(t+ j2Tf + cjTp), and η2,j(t) , ñ(t+ j2Tf + cjTp + Tr), all defined over the interval

[0, T ]. Note that because the noise samples are taken at least Tg apart, they are

essentially independent, regardless of cj .
9 We further observe that Uj is simply the

integrator output corresponding to the jth received modulated monocycle. Applying

the sampling expansion approach developed in Appendix B.3, we can represent Uj as

Uj =
1

2W

2WT∑

m=1

(
d0w

2
j,m + wj,mη2,j,m + d0wj,mη1,j,m + η1,j,mη2,j,m

)
, (4.21)

where wj,m, η1,j,m, and η2,j,m, for odd m (even m) are the real (imaginary) parts of the

samples of the equivalent low-pass version of wj(t), η1,j(t), and η2,j(t) respectively,

sampled at Nyquist rate W over the interval [0, T ]. Conditioned on d0 and aj = +1,

we can express (4.21) in the form of a summation of squares:

Uj|d0=+1 =
2WT∑

m=1

[(
1√
2W

wj,m + β1,j,m

)2

− β2
2,j,m

]
, (4.22)

Uj|d0=−1 =

2WT∑

m=1

[
−
(

1√
2W

wj,m − β2,j,m

)2

+ β2
1,j,m

]
, (4.23)

where β1,j,m = 1
2
√

2W
(η2,j,m + η1,j,m) and β2,j,m = 1

2
√

2W
(η2,j,m − η1,j,m) are statistically

independent Gaussian r.v.’s with variance σ2
TR = N0

4
. Due to the statistical symmetry

of Uj with respect to d0, we simply need to calculate the BEP conditioned on d0 = +1.

For notational simplicity, we define the normalized r.v.’s Y1, Y2, Y3, and Y4 as

Y1 ,
1

2σ2
TR

Ns
2
−1∑

j=0

2WT∑

m=1

(
1√
2W

wj,m + β1,j,m

)2

,

Y2 ,
1

2σ2
TR

Ns
2
−1∑

j=0

2WT∑

m=1

β2
2,j,m,

Y3 ,
1

2σ2
TR

Ns
2
−1∑

j=0

2WT∑

m=1

(
1√
2W

wj,m − β2,j,m

)2

,

9As a result, no assumption on cj is required since the above analysis is independent of {cj}.
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Y4 ,
1

2σ2
TR

Ns
2
−1∑

j=0

2WT∑

m=1

β2
1,j,m. (4.24)

Conditioned on the channel, Y1 and Y3 are noncentral chi-squared r.v.’s, whereas Y2

and Y4 are central chi-squared r.v.’s each having NsWT degrees of freedom. Both Y1

and Y3 have the same non-centrality parameter, given by

µTR =
1

2σ2
TR

Ns
2
−1∑

j=0

∫ T

0

w2
j (t)dt =

Es

N0

LCAP∑

l=1

α2
l . (4.25)

The probability density functions (pdfs) of Y1 and Y2 conditioned on µTR are then

given by

fY1|µTR
(y1) = fNC(y1, µTR, qTR), (4.26)

fY2|µTR
(y2) = fC(y2, qTR), (4.27)

where qTR = NsWT
2

. We have defined the following pdfs for notational convenience

fNC(y, µ, n) , e−(y+µ)

(
y

µ

) (n−1)
2

In−1 (2
√
yµ) , y ≥ 0

fC(y, n) ,
y(n−1)

(n− 1)!
exp (−y) , y ≥ 0

where In−1(·) is the (n − 1)th order modified Bessel function of the first kind. The

functions fNC(y, µ, n) and fC(y, n) respectively are the pdfs of the noncentral and

central chi-squared r.v.’s with 2n degrees of freedom and non-centrality parameter

µ [137]. Using (4.26) and (4.27) and the fact that γTR = µTR/2, the conditional BEP

in (4.18) becomes

P {e|γTR} = P {Y1 < Y2|d0 = +1}

=
e−µTR/2

2qTR

qTR−1∑

n=0

(µTR/2)n

n!

qTR−1∑

k=n

1

2k

(k + qTR − 1)!

(k − n)!(qTR + n− 1)!
, (4.28)
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where the detailed derivation of (4.28) can be found in Appendix B.4. Recall that

the conditional BEP in (4.16), obtained by the Gaussian approximation, has the γTR

appearing in both the numerator and denominator of the Gaussian Q-function, which

makes the BEP analysis in fading channels intractable. In contrast, the form in (4.28)

is desirable as it enables the averaging of P{e|γTR} with respect to γTR as follows:

Pe,TR = EγTR

{
P {e|γTR}

}

=
1

2qTR

qTR−1∑

n=0

EµTR

{
(µTR/2)n e−µTR/2

}

n!

qTR−1∑

k=n

1

2k

(k + qTR − 1)!

(k − n)!(qTR + n− 1)!

=
1

2qTR

[
qTR−1∑

n=0

(−j)n

n!

dn

dvn
ψµTR

(jv/2)

∣∣∣∣
jv=−1

qTR−1∑

k=n

1

2k

(k + qTR − 1)!

(k − n)!(qTR + n− 1)!

]

, Pe(ψµTR
(jv), qTR), (4.29)

where ψµTR
(jv) , E {exp(jvµTR)} is the characteristic function (CF) of µTR. When

the channel is resolvable and multipath components are statistically independent,

ψµTR
(jv) =

∏LCAP

l=1 ψl(
jvEs

N0
), where ψl(jv) is the CF of α2

l whose closed-form expression

is known for a broad class of channel fading statistics [137]. Therefore, (4.29) gives

us a closed-form expression for the BEP of TR signaling with AcR.

Next, we extend the above analysis to derive the BEP of TR signaling with mod-

ified AcR. In this case, the variance of η1,j,m/
√

2W is now reduced to N0/Ns due to

the noise averaging effect in (4.10). As a result, the variance σ2
ATR of β1,j,m and β2,j,m

becomes

σ2
ATR =

V {η2,j,m} + V {η1,j,m}
8W

=
N0(Ns + 2)

8Ns
, (4.30)

and the non-centrality parameter of Y1 in (4.24) becomes

µATR ,
1

2σ2
ATR

Ns
2
−1∑

j=0

∫ T

0

w2
j (t)dt=

2Ns

Ns + 2

(
Es

N0

LCAP∑

l=1

α2
l

)
. (4.31)

Note that the non-centrality parameter of a modified AcR is at most two times larger
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than that of AcR from Table 4.1. Using (4.29), the BEP of TR signaling with a

modified AcR can be written as

Pe,ATR = Pe(ψµATR
(jv), qTR), (4.32)

where ψµATR
(jv) , E {exp(jvµATR)} is the CF of µATR.

Differential Transmitted-Reference

Using the sampling approach, we can represent Uj as

Uj =
1

2W

2WT∑

m=1

(
d0w

2
j,m + e−1wj,mη2,j,m + e0wj,mη1,j,m + η1,j,mη2,j,m

)
, (4.33)

where wj,m, η1,j,m, and η2,j,m, for odd m (even m) are the real (imaginary) parts of

the samples of the equivalent low-pass version of wj(t) , (b∗h∗hZF)(t+jTf +cjTp) =
√
Epaj

∑L
l=1 αlp(t− τl), η1,j(t) , ñ(t+ jTf + cjTp −NsTf), and η2,j(t) , ñ(t+ jTf +

cjTp), respectively, sampled at Nyquist rate W over the interval [0, T ]. Similar to

TR signaling, our following analysis requires no assumption on {cj}, and we exploit

statistical symmetry of Uj with respect to d0 and {aj}. Conditioned on d0 = +1, we

can express (4.33) in the form of (4.22),10 where in this case β1,j,m = 1
2
√

2W
(e−1η2,j,m +

e0η1,j,m) and β2,j,m = 1
2
√

2W
(e−1η2,j,m−e0η1,j,m) are statistically independent Gaussian

r.v.’s. with variance σ2
DTR = N0

4
. Due to symmetry, we only need to consider Y1 and

Y2 in (4.24), where the non-centrality parameter of Y1 is now given by

µDTR ,
1

2σ2
DTR

Ns−1∑

j=0

∫ T

0

w2
j (t)dt =

2Es

N0

LCAP∑

l=1

α2
l , (4.34)

and the pdfs of Y1 and Y2 conditioned on µDTR are given by

fY1|µDTR
(y1) = fNC(y1, µDTR, qDTR), (4.35)

fY2|µDTR
(y2) = fC(y2, qDTR), (4.36)

10When d0 = +1, the pairs of differentially encoded bits are either (e−1, e0) = (+1, +1) or
(e−1, e0) = (−1,−1) with probability 1

2
each. By symmetry, we only need to consider (e−1, e0) =

(+1, +1).
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Table 4.1: TR Signaling schemes

Signaling Non-centrality parameter Variance of β1,j,m Degrees of freedom
of Y1 of Y1

TR Es

N0

LCAP∑

l=1

α2
l

N0

4
NsWT

2

ATR 2Ns

(Ns+2)

(
Es

N0

LCAP∑

l=1

α2
l

)
N0(Ns+2)

8Ns

NsWT
2

DTR 2Es

N0

LCAP∑

l=1

α2
l

N0

4 NsWT

ADTR 4Ns

(Ns+1)

(
Es

N0

LCAP∑

l=1

α2
l

)
N0(Ns+1)

8Ns
NsWT

where qDTR = NsWT . As shown in Table 4.1, we can observe that the basic difference

between TR and DTR signaling lies not only in a doubled non-centrality parameter,

but also in double the degrees of freedom. The non-centrality parameter reflects the

amount of useful energy captured by the correlator at the receiver, hence, larger values

result in better performance. On the contrary, the degrees of freedom of Y1 account

for the noise accumulation in the integration interval; thus, larger values result in

poorer performance. Following the derivation leading to (4.29), the BEP of DTR

signaling with AcR can be written as

Pe,DTR = Pe(ψµDTR
(jv), qDTR), (4.37)

where ψµDTR
(jv) , E {exp(jvµDTR)} is the CF of µDTR.

For DTR signaling with a modified AcR, the non-centrality parameter of Y1 in

(4.24) becomes

µADTR ,
1

2σ2
ADTR

Ns−1∑

j=0

∫ T

0

w2
j (t)dt =

4Ns

(Ns + 1)

(
Es

N0

LCAP∑

l=1

α2
l

)
, (4.38)
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where the variance σ2
ADTR of β1,j,m and β2,j,m is

σ2
ADTR =

V {ei−1η2,j,m} + V {eiη1,j,m}
8W

=
N0(Ns + 1)

8Ns
. (4.39)

The pdfs of Y1 and Y2 conditioned on µADTR are now given by

fY1|µADTR
(y1) = fNC(y1, µADTR, qDTR), (4.40)

fY2|µADTR
(y2) = fC(y2, qDTR). (4.41)

Following the derivation leading to (4.29), the BEP of DTR signaling with a modified

AcR is given by

Pe,ADTR = Pe(ψµADTR
(jv), qDTR). (4.42)

where ψµADTR
(jv) , E {exp(jvµADTR)} is the CF of µADTR.

4.3.3 SNR Penalty

With the closed-form expression in (4.29), one can now answer the following question:

What is the SNR penalty associated with TR signaling with AcR when compared to

ARake and PRake receivers? In the following, we provide some numerical results

and a computationally simple lower bound on (4.29) to quantify the SNR penalty

associated with TR signaling with AcR.

The ideal Rake receiver with full diversity is known as the ARake receiver [138],

whereas the PRake receiver refers to a lower complexity Rake receiver that combines

only the first incoming Lp multipath components [139]. Note that both receivers

assume perfect channel estimation. By using the alternative expression for Gaussian

Q-function [137], the BEP of BPSK for a PRake receiver in independent Nakagami

channels with uniform PDP, is given by [137]

Pe,PRake =
1

π

∫ π
2

0

(
1 +

γ̄

m sin2 θ

)−mLp

dθ, (4.43)
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where γ̄ = Es

LN0
. When Lp = L, (4.43) simply becomes the BEP of BPSK for the

ARake receiver. From (4.28), we can derive a simple lower bound on the BEP of TR

signaling with AcR by using a first order Taylor series approximation of (4.28) about

E {µTR} to obtain

Pe,TR ≥ exp (−E {µTR} /2)
2qTR

qTR−1∑

i=0

(E {µTR} /2)i

i!

qTR−1∑

k=i

1

2k

(k + qTR − 1)!

(k − i)!(qTR + i− 1)!
,

(4.44)

where E {µTR} = Es/N0. Note that the right-hand-side of (4.44) becomes a lower

bound on Pe,TR since the remaining terms in the Taylor series expansion of (4.28)

about E {µTR} are all positive.

4.4 Numerical Results

In this section, we evaluate the performance of TR and DTR signaling schemes based

on our derived BEP expressions in previous sections. For UWB channels, it has

been verified experimentally that the multipath gains can be modeled as Nakagami-

m r.v.’s [38]. As a result, we consider a dense resolvable multipath channel, where

each multipath gain is Nakagami distributed with fading severity index m and uni-

form PDP with L = 40. Figures 4-3 and 4-4 show the BEP performance of TR

signaling with AcR with Ns = 2 and Ns = 16 respectively. Both figures show that the

performance of TR signaling with AcR generally improves as WT increases. This is

expected since more multipath components are captured by the receiver, resulting in

an increase in diversity order as well as energy capture. It can also be seen that results

based on the Gaussian approximation can differ from our closed-form BEP expression

in (4.29). Furthermore, the accuracy of the Gaussian approximation improves as WT

and Ns increase as explained in Section 4.3.1.

The effect of WT on the BEP performance of TR signaling with Ns = 16 is shown

in Fig. 4-5. It can be observed that the BEP decreases with WT until it reaches the
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Figure 4-3: BEP performance of TR signaling with AcR with m = 2.0 and Ns =
2. The solid and dashed lines denote the Gaussian approximation and sampling
expansion, respectively.
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Figure 4-4: BEP performance of TR signaling with AcR with m = 2.0 and Ns =
16. The solid and dashed lines denote the Gaussian approximation and sampling
expansion, respectively.
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Figure 4-5: Effect of integration interval T of AcR on the performance of TR signaling.

optimum value of 40, which is equal to L.11 This behavior, which is more pronounced

at high Eb/N0, can be explained by the fact that the loss due to noise accumulation

is less than the gain of capturing more multipath energy as WT increases. However,

increasing WT beyond the optimum value will only accumulate more noise energy,

as reflected in the increase of BEP after WT = 40. In addition, we can also see that

the diversity gain is larger for the higher fading severity index m, especially for large

values of Eb/N0.

In Fig. 4-6, the effect of Ns on the BEP performance of TR signaling with AcR

is plotted using (4.29) with WT = L. For a fixed Eb/N0, increasing Ns is equivalent

to increasing the degrees of freedom of qTR in (4.28), which leads to more noise

energy accumulation. This can be seen as the gradual performance degradation as Ns

increases in Fig. 4-6. In order to improve the performance of TR signaling with AcR,

the modified AcR can be used and the BEP performance comparison is shown in Fig.

11Note that the optimum integration interval of AcR is not always equal to L, and depends on
the PDP of the channel.
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Figure 4-6: Effect of Ns on the performance of TR signaling with AcR with m = 2.0
and WT = L.

4-7 using (4.29) and (4.32). In Fig. 4-7, we compares the BEP performance of TR

and DTR signaling schemes when WT = L. The difference between TR and DTR

signaling is about 2 dB, slightly less than the 3 dB expected from the doubling of

the non-centrality parameter shown in Table 4.1. This loss of 1 dB can be attributed

to more noise accumulation as qDTR = 2qTR. Note that the optimum WT is L for

uniform PDP as shown in Fig. 4-5. By comparing the performance between an AcR

and a modified AcR, it can be observed in Fig. 4-7 that the modified AcR performs

better than the AcR by about 3 dB for both signaling schemes. This accounts for

the increase of about a factor of two in the instantaneous received SNR through the

non-centrality parameter when a modified AcR is used, as indicated in Table 4.1.

Lastly, in Fig. 4-8, the lower bound in (4.44) is plotted against the exact BEP

in (4.30) when WT = L.12 In addition, the BEP performance curves of the ARake

and PRake receivers using (4.43) are included to obtain the SNR penalty associated

12Fig.8 shows the BEP as low as 10−6 only to illustrate the behavior of the lower bound; these
extremely low BEP’s are not practical, especially for wireless mobile communications.
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Figure 4-7: BEP performance of TR and DTR signaling schemes with m = 2.0 and
WT = L. The solid and dashed lines indicate the TR and DTR signaling, respectively.
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Figure 4-8: BEP performance comparison between TR signaling with AcR, PRake
and ARake receivers with m = 2.0 and WT = L. The dashed lines indicate the lower
bound in (4.44).
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with AcR. It can be observed that the lower bound in (4.44) is quite close to the

exact expression in (4.29) for the BEP range of interest. Hence, this computationally

simple lower bound can be used for assessing the SNR penalty associated with an

AcR, as compared to ARake and PRake receivers. For example, it can be seen in Fig.

4-8 that the AcR suffers a SNR penalty of about 8.8 dB and 12.6 dB respectively at

BEP = 10−3 for Ns = 2 and Ns = 16 with respect to ARake receiver. Observe that

TR system performs more than 6 dB worse than the ideal system. The reasons due

to this SNR gap can be accounted by the 3 dB loss due to reference energy, 3 dB

loss due to noncoherent-based detection, and the remaining SNR loss due to noise

accumulation in the presence of multipath channels. From (4.16), we see that this

effect is captured by the term NsWT/4 in the denominator. In addition, the SNR

penalty decreases with respect to PRake receiver when Lp decreases. At BEP = 10−3,

the SNR penalty associated with AcR, as compared to PRake receiver with Lp = 10

is about 2.1 dB and 5.9 dB respectively for Ns = 2 and Ns = 16.
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Chapter 5

Transmitted-Reference Schemes in

the Presence of Narrowband

Interference

In this chapter, we analyze the performance of TR and DTR signaling schemes in the

presence of NBI. We adopt the sampling expansion approach developed in Chapter 4

to analyze the BEP performance in the presence of NBI. We develop a quasi-analytical

method as well as an approximate analytical method to evaluate the BEP of TR and

DTR signaling in the presence of NBI and show that the approximate analytical

method is particularly useful in obtaining BEP expressions that provide insight into

the effect of NBI.

5.1 Narrowband Interference Analysis

In the presence of NBI, the received signal can be written as r(t) = (h ∗ s)(t) +

J(t) + n(t), where J(t) denotes the NBI and s(t) denotes the signal transmitted via

TR or DTR signaling. The autocorrelation function of the superposition of the two

independent noise processes, nT(t) , J(t)+n(t), is given by RnT
(τ) = RJ(τ)+

N0

2
δ(τ),

where RJ(τ) = E {J(t)J(t+ τ)}. Since the bandwidth of typical NBI is smaller than

that of the transmitted pulse, the autocorrelation function of ñT(t), the bandpass
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filtered version of nT(t), is given by

RñT
(τ) = RJ(τ) +WN0 sinc(Wτ) cos(2πfcτ). (5.1)

As in [64], we model the NBI as a single-tone continuous-wave signal given by1

J(t) = αJ

√
2J0 cos(2πfJt+ θ), (5.2)

where J0 is the average NBI power, αJ is a slowly-varying Rayleigh distributed r.v.

with E {α2
J} = 1, fJ is the NBI carrier frequency, and θ is the random phase, uniformly

distributed over [0, 2π).2 Thus, RJ(τ) = J0 cos(2πfJτ), which means that ñT(t) is

colored, and the samples of ñT(t) taken at an interval of 1/W are correlated. In

the following, we derive the BEP of TR and DTR signaling with an AcR in the

presence of NBI, where we define SIR , Es/(NsTfJ0). The extension to modified AcR

is straightforward and omitted for brevity.

5.1.1 Transmitted-Reference

By incorporating the NBI given in (5.2) and using the sampling expansion approach

proposed in Chapter 4.3.2, we can rewrite Uj in (4.21) as

Uj =
1

2W

2WT∑

m=1

[
d0w

2
j,m + wj,m(ξ2,j,m + η2,j,m) + d0wj,m(ξ1,j,m + η1,j,m)

+ (ξ1,j,m + η1,j,m)(ξ2,j,m + η2,j,m)

]
, (5.3)

where ξ1,j,m and ξ2,j,m, for odd m (even m) respectively are the real (imaginary) parts

of the samples of the equivalent low-pass version of ξ1,j(t) and ξ2,j(t), given by

ξ1,j(t) = αJ

√
2J0 cos [2πfJ (t+ j2Tf + cjTp) + θ] ,

1Results in [64] show that NBI can be reasonably well approximated by a tone interferer, where
the interfering node is located at a fixed distance from the receiver.

2Unlike UWB signals, NBI experiences frequency flat fading and the amplitude αJ is assumed to
be constant over at least two symbols of TR signaling.
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ξ2,j(t) = αJ

√
2J0 cos [2πfJ (t+ j2Tf + cjTp + Tr) + θ] . (5.4)

The rest of the terms in (5.3) are defined similarly to those in (4.21). By condi-

tioning on d0, we can rewrite (5.3) in the form of (4.22) and (4.23), where β1,j,m ,

1
2
√

2W
(η2,j,m + ξ2,j,m + η1,j,m + ξ1,j,m) and β2,j,m , 1

2
√

2W
(η2,j,m + ξ2,j,m − η1,j,m − ξ1,j,m).

Further conditioning on θ, αJ, and {cj}, the quantities ξ1,j,m and ξ2,j,m in (5.4) are

deterministic, and the conditional variance σ2
TR of β1,j,m and β2,j,m is simply N0

4
. Thus,

the statistical characterization of Uj when conditioned on θ, αJ, {cj}, {aj}, and {αl}
is no longer symmetric with respect to d0 due to the presence of the interference term.

Note that Uj|d0=+1 is simply the difference of two noncentral chi-squared r.v.’s with

the same degrees of freedom, but different non-centrality parameters. As a result,

we need to separately calculate the conditional BEP with respect to d0 to obtain the

overall BEP.

First, we derive the non-centrality parameters of Y1 and Y2 when conditioned on

Ψ as follows:

µ
(NBI)
TR,Y1

,
1

2σ2
TR

Ns
2
−1∑

j=0

∫ T

0

[
wj(t) +

ξ1,j(t) + ξ2,j(t)

2

]2

dt

≈ Es

N0

LCAP∑

l=1

α2
l +

α2
JNsJ0T

2N0
+
α2

JNsJ0T

2N0
cos(2πfJTr)

+
4αJ|P̂ (fJ)|

√
2EpJ0 cos (πfJTr)

N0

Ns
2
−1∑

j=0

aj

×
LCAP∑

l=1

αl cos (2πfJ (τl + j2Tf + cjTp + Tr/2) + ϕ) , (5.5)

µ
(NBI)
TR,Y2

,
1

8σ2
TR

Ns
2
−1∑

j=0

∫ T

0

(ξ2,j(t) − ξ1,j(t))
2dt

≈ α2
JNsJ0T

2N0
− α2

JNsJ0T

2N0
cos(2πfJTr), (5.6)

where Ψ ,

{
αJ, {αl}L

l=1, ϕ, {cj}Ns/2
j=1 , {aj}Ns/2

j=1

}
. The detailed derivation and the justi-

fication of the approximations leading to (5.5) and (5.6), as well as the definition of ϕ
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and P̂ (fJ) can be found in Appendix C.1. Note that Y2 in (4.24) is now a noncentral

chi-squared r.v. due to the presence of NBI. From (5.5) and (5.6), it is interesting

to see that the NBI affects the performance by changing the conditional means and

variances of Y1 and Y2.
3 Using (5.5) and (5.6), the conditional pdfs of Y1 and Y2 are

given by

fY1|Ψ(y1) = fNC

(
y1, µ

(NBI)
TR,Y1

, qTR

)
, (5.7)

fY2|αJ
(y2) = fNC

(
y2, µ

(NBI)
TR,Y2

, qTR

)
, (5.8)

where we have suppressed the conditioning r.v.’s {αl}, ϕ, {cj}, and {aj} in (5.8) since

(5.6) does not depend on these r.v.’s. Now, to evaluate the BEP for ZTR ≤ 0 when

d0 = +1, we use the inversion theorem [140] to obtain

P {ZTR ≤ 0|d0 = +1}

=
1

2
+

1

π

∫ ∞

0

(
1

1 + v2

)qTR

Re





EΨ

{
exp

(
−jvµ

(NBI)
TR,Y1

1+jv

)
exp

(
jvµ

(NBI)
TR,Y2

1−jv

)}

jv




dv,

(5.9)

where Re{·} denotes the real part. By resorting to a quasi-analytical method, the

statistical expectation in (5.9) can be calculated by numerically averaging each argu-

ment within the expectation with respect to its corresponding r.v.’s. Alternatively,

we can resort to an approximate analytical method, where we consider the last term

in (5.5) negligible compared to the first two terms.4 As a result, we can further sup-

press the conditioning r.v.’s ϕ, {cj}, and {aj} in (5.7), since the dependence of µ
(NBI)
TR,Y1

on these r.v.’s is now negligible. The approximate BEP conditioned on d0 = +1 can

be rewritten as

3The mean and variance of a non-central chi-squared r.v. are given by (k + µ) and 2(k + 2µ)
respectively, where k is the degrees of freedom and µ is the non-centrality parameter.

4The validity of this approximation will be discussed in details in Appendix C and numerical
results.
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P {ZTR ≤ 0|d0 = +1}

≃ 1

2
+

1

π

∫ ∞

0

(
1

1 + v2

)qTR

Re





E{αl},αJ

{
exp

(
−jvµ

(NBI)
TR,Y1

1+jv

)
exp

(
jvµ

(NBI)
TR,Y2

1−jv

)}

jv




dv

=
1

2
+

1

π

∫ ∞

0

(
1

1 + v2

)qTR

Re




ψµTR

(
−jv
1+jv

)
ψJ (gTR,d0=+1(jv))

jv



 dv

, P (NBI)
e

(
ψµTR

(jv), ψJ (gTR,d0=+1(jv)) , qTR

)
, (5.10)

where ψµTR
(jv) is defined after (4.29). Given that ψJ(jv) is the CF of α2

J, gTR,d0=+1(jv)

in (5.10) is defined as follows:

gTR,d0=+1(jv) ,
−jv

1 + jv
· NsJ0T

2N0

[
1 + cos(2πfJTr)

]
+

jv

1 − jv
· NsJ0T

2N0

[
1 − cos(2πfJTr)

]
.

(5.11)

In the absence of NBI or when J0 = 0, (5.10) gives us an alternative, but equivalent,

expression to (4.29) for the BEP of TR signaling with an AcR.5

From (4.23), we can observe that Uj|d0=−1, when conditioned on Ψ, is also the

difference of two noncentral chi-squared r.v.’s with same degrees of freedom, but with

different non-centrality parameters. Following the derivation from (5.5) to (5.9), we

can again resort to the quasi-analytical method to evaluate P {ZTR > 0|d0 = −1}. We

first derive the non-centrality parameters of Y3 and Y4 in (4.24) conditioned on Ψ as

follows:

µ
(NBI)
TR,Y3

≈ Es

N0

LCAP∑

l=1

α2
l +

α2
JNsJ0T

2N0

− α2
JNsJ0T

2N0

cos(2πfJTr)

+
4αJ|P̂ (fJ)|

√
2EpJ0 sin (πfJTr)

N0

Ns
2
−1∑

j=0

aj

5Note that the difference in the expressions lies in the fact that we have used the inversion
theorem [137,140] to derive P {ZTR ≤ 0|d0 = +1} in (5.10).
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×
LCAP∑

l=1

αl sin (2πfJ (τl + j2Tf + cjTp + Tr/2) + ϕ) , (5.12)

µ
(NBI)
TR,Y4

≈ α2
JNsJ0T

2N0

+
α2

JNsJ0T

2N0

cos(2πfJTr), (5.13)

where the detailed derivation and the justification of the approximations leading to

(5.12) and (5.13) can be found in Appendix C.2. We then replace µ
(NBI)
TR,Y1

and µ
(NBI)
TR,Y2

in (5.9) with µ
(NBI)
TR,Y3

and µ
(NBI)
TR,Y4

to obtain P {ZTR > 0|d0 = −1}. Alternatively, under

the approximate analytical method leading to (5.10) and (5.11) when the dependence

of µ
(NBI)
TR,Y3

on ϕ, {cj} and {aj} is negligible, we can ignore the last term in (5.12). The

approximate BEP conditioned on d0 = −1 is then given by

P {ZTR > 0|d0 = −1} ≃ P (NBI)
e

(
ψµTR

(jv), ψJ (gTR,d0=−1(jv)) , qTR

)
, (5.14)

where gTR,d0=−1(jv) in (5.14) is defined as follows:

gTR,d0=−1(jv) ,
−jv

1 + jv
· NsJ0T

2N0

[
1 − cos(2πfJTr)

]
+

jv

1 − jv
· NsJ0T

2N0

[
1 + cos(2πfJTr)

]
.

(5.15)

Using (5.10) and (5.14), it follows that the approximate BEP of TR signaling with

an AcR in the presence of NBI is given by

P
(NBI)
e,TR ≃ 1

2

[
P (NBI)

e

(
ψµTR

(jv), ψJ (gTR,d0=+1(jv)) , qTR

)

+ P (NBI)
e

(
ψµTR

(jv), ψJ (gTR,d0=−1(jv)) , qTR

)]
. (5.16)

Note that the fidelity of the above approximation depends on the insignificance of

the last terms in both µ
(NBI)
TR,Y1

and µ
(NBI)
TR,Y3

. As shown in Appendix C and the numerical

results, the approximation is in good agreement with the quasi-analytical results for

cases of practical interest.6

6However, in cases when this approximation fails, we can always resort to the quasi-analytical
method.
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5.1.2 Differential Transmitted-Reference

Following the sampling expansion approach and incorporating the NBI in (5.2), we

can rewrite Uj in (4.33) as

Uj =
1

2W

2WT∑

m=1

[
d0w

2
j,m + e−1wj,m(ξ2,j,m + η2,j,m) + e0wj,m(ξ1,j,m + η1,j,m)

+ (ξ1,j,m + η1,j,m)(ξ2,j,m + η2,j,m)

]
, (5.17)

where ξ1,j,m and ξ2,j,m, for odd m (even m) are the real (imaginary) parts of the

samples of the equivalent low-pass version of ξ1,j(t) , J(t + jTf + cjTp − NsTf),

and ξ2,j(t) , J(t + jTf + cjTp), respectively, in the interval [0, T ], and the rest of

the terms in (5.17) are defined similarly as in (4.33). Conditioned on d0, we can

rewrite (5.17) in the form of (4.22) and (4.23), where β1,j,m = 1
2
√

2W
(e−1η2,j,m +

e−1ξ2,j,m+e0η1,j,m+e0ξ1,j,m) and β2,j,m = 1
2
√

2W
(e−1η2,j,m+e−1ξ2,j,m−e0η1,j,m−e0ξ1,j,m).

Further conditioning on θ, αJ, {cj}, and d0 = +1, the conditional variance σ2
DTR of

β1,j,m and β1,j,m is N0

4
.7 Following the discussion for TR signaling, we will develop

the approximate analytical method below. Under the approximation presented in

Appendix C.3, the conditional non-centrality parameters of Y1 and Y2 in (4.24) are

given by

µ
(NBI)
DTR,Y1

≈ 2Es

N0

LCAP∑

l=1

α2
l +

α2
JNsJ0T

N0
+
α2

JNsJ0T

N0
cos(2πfJNsTf), (5.18)

µ
(NBI)
DTR,Y2

≈ α2
JNsJ0T

N0
− α2

JNsJ0T

N0
cos(2πfJNsTf), (5.19)

and the conditional non-centrality parameters of Y3 and Y4 in (4.24) are given by

µ
(NBI)
DTR,Y3

≈ 2Es

N0

LCAP∑

l=1

α2
l +

α2
JNsJ0T

N0
− α2

JNsJ0T

N0
cos(2πfJNsTf), (5.20)

µ
(NBI)
DTR,Y4

≈ α2
JNsJ0T

N0
+
α2

JNsJ0T

N0
cos(2πfJNsTf). (5.21)

7Note that this conditional variance σ2
DTR remains the same even when d0 = −1.
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Using (5.18) to (5.21), the approximate BEP of DTR signaling with an AcR in the

presence of NBI is then given by

P
(NBI)
e,DTR ≃ 1

2

[
P (NBI)

e

(
ψµDTR

(jv), ψJ (gDTR,d0=+1(jv)) , qDTR

)

+ P (NBI)
e

(
ψµDTR

(jv), ψJ (gDTR,d0=−1(jv)) , qDTR

)]
, (5.22)

where ψµDTR
(jv) is defined after (4.37), gDTR,d0=+1(jv) and gDTR,d0=−1(jv) are defined

as follows:

gDTR,d0=+1(jv) ,
−jv

1 + jv
· NsJ0T

N0

[
1 + cos(2πfJNsTf)

]

+
jv

1 − jv
· NsJ0T

N0

[
1 − cos(2πfJNsTf)

]
, (5.23)

gDTR,d0=−1(jv) ,
−jv

1 + jv
· NsJ0T

N0

[
1 − cos(2πfJNsTf)

]

+
jv

1 − jv
· NsJ0T

N0

[
1 + cos(2πfJNsTf)

]
. (5.24)

We remark that (5.16) and (5.22) can be evaluated for a broad class of fading channels,

including Nakagami, Rice, and Rayleigh, whose CFs are known in closed-form [137].

5.2 Numerical Results

In this section, we evaluate the performance of TR and DTR signaling schemes with

NBI, based on the unified analysis developed in previous sections. We consider a

bandpass UWB system with pulse duration Tp = 0.5 ns, average repetition period

Tf = 100 ns, and Ns = 16. For simplicity, Tr is set such that there is no ISI or

isi in the system, i.e., Tr = 2Tf − Tg − NhTp. We consider a TH sequence of all

ones (cj = 1 for all j) and Nh = 2. The NBI carrier frequency is fJ = 2.45 GHz.8

Since the NBI experiences flat Rayleigh fading, the CF of α2
J is ψJ(jv) = 1/(1 − jv).

For UWB channels, it has been verified experimentally that the multipath gains can

be modeled as Nakagami-m r.v.’s [38]. As a result, we consider a dense resolvable

8For our numerical results, we assume that the NBI is within the band of interest.
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Figure 5-1: BEP performance of TR signaling with AcR in the presence of NBI for
(L, ǫ,m) = (32, 0, 3) and WT = L.

multipath channel, where each multipath gain is Nakagami distributed with fading

severity index m and average power E {α2
l }, where E {α2

l } = E {α2
1} exp [−ǫ(l − 1)],

for l = 1, . . . , L, are normalized such that
∑L

l=1 E {α2
l } = 1. For simplicity, the fading

severity index m is assumed to be identical for all paths. The average power of the

first arriving multipath component is given by E {α2
1}, and ǫ is the power decay factor.

With this model, we consider two sets of parameters, (L, ǫ,m) = (32, 0, 3) for uniform

PDP and (32, 0.4, 3) for exponential PDP.

To better understand the validity of the approximation developed in Section V,

we compare the BEP performance of TR signaling with an AcR in the presence of

NBI when aj = 1 for all j and |P̂ (fJ)| ≈
√
Tp.

9 Fig. 5-1 shows the BEP performance

of TR signaling for different SIR values, (L, ǫ,m) = (32, 0, 3) and WT = L. It can

be observed that the approximate analytical results are in good agreement with the

quasi-analytical results. We further investigate the effect of the NBI carrier frequency

9For simplicity, we have considered the case where the frequency response of p(t) is flat over the
bandwidth W .
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Figure 5-2: Effect of NBI carrier frequency on BEP performance of TR signaling with
AcR for (L, ǫ,m) = (32, 0, 3) and WT = L.

on the fidelity of the approximation in Fig. 5-2 for (L, ǫ,m) = (32, 0, 3), WT = L, and

SIR = -5 dB. Similar to the results in Fig. 5-1, the approximate analytical method

is in good agreement with the quasi-analytical results, showing the usefulness of

the approximation for investigating the performance of TR signaling schemes in the

presence of NBI.

To understand the effect of NBI and PDP on the choice of integration interval T

of an AcR, we first plot the BEP of TR signaling in Fig. 5-3 as a function of time-

bandwidth product, WT , using an analytical approximation for (L, ǫ,m) = (32, 0, 3).

Fig. 5-3 shows that with this PDP, the optimum T is always equal to Tg (i.e., WT =

L), regardless of the presence of NBI. It can also be observed that the performance

gain for using the optimum T is significant in the absence of NBI, especially at

high Eb/N0. This is because, in the absence of NBI, more useful energy is captured

with increasing WT until optimum WT is reached for high Eb/N0. However, in the

presence of NBI, interference energy is also accumulated for every increase in WT ,
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Figure 5-3: Effect of integration interval T on BEP performance of TR signaling
with AcR for uniform PDP. The solid and dashed lines indicate Eb/N0 = 20 dB and
Eb/N0 = 15 dB, respectively.

causing performance degradation. This trade-off is more subtle for channels with

non-uniform PDP, as illustrated in Fig. 5-4 for (L, ǫ,m) = (32, 0.4, 3). It can be seen

that the optimum T is no longer at Tg, since the gain from collecting more residual

multipath energies inherent in the channel with exponential PDP is not sufficient to

compensate for the noise accumulation beyond the optimum point. Moreover, we

observe that the optimum T increases with Eb/N0 and SIR, due to decreasing noise

and interference accumulation. In general, the optimum T depends on the channel

PDP, the operating Eb/N0, and the SIR. Consequently, it is important that the AcR

is designed with an appropriate choice of T . Some of our work in this direction is

reported in [141].

The effect of NBI on TR and DTR signaling with an AcR is plotted in Fig. 5-5 for

different SIR values, (L, ǫ,m) = (32, 0.4, 3), and optimum T chosen for each Eb/N0

and SIR. First, we can observe that the error floor for large values of Eb/N0 becomes
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Figure 5-4: Effect of integration interval T on BEP performance of TR signaling with
AcR for exponential PDP. The solid and dashed lines indicate Eb/N0 = 20 dB and
Eb/N0 = 15 dB, respectively.

more significant as SIR decreases for both signaling schemes. In the absence of NBI,

DTR signaling has a gain of about 3 dB compared to TR signaling. However, this

gain diminishes as SIR decreases. After certain points (e.g, Eb/N0 = 20, 16, 10 dB for

SIR = -5, -10, -20 dB, respectively), DTR signaling performs worse than TR signaling,

as indicated by the error floor. In the interference-limited regime, it is particularly

interesting to observe that TR signaling is more robust against NBI compared to

DTR signaling. This is because interference is more severe in DTR signaling due to

the presence of more noise and interference terms as qDTR = 2qTR. Despite a doubling

of the received multipath energies in DTR signaling compared to TR signaling, the

presence of more interference terms essentially outweighs this gain, as indicated by

the crossing of the curves in Fig. 5-5.

118



0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

P

No NBI

SIR = −10 dB
SIR = −5 dB

SIR = −20 dB

Eb/N0 (dB)

Figure 5-5: Effect of NBI on BEP performance of TR and DTR signaling with AcR
for (L, ǫ,m) = (32, 0.4, 3) and optimum T chosen for each SNR and SIR. The solid
and dashed lines indicate the TR and DTR signaling, respectively.
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Chapter 6

Cooperation for Energy Efficiency

in Wireless Sensor Networks

In this chapter, we investigate the problem of binary decentralized detection in a

dense and randomly deployed WSN, whereby the communication channels between

the nodes and the fusion center are bandwidth-constrained. We consider a scenario in

which sensor observations, conditioned on the alternate hypothesis, are independent

but not identically distributed across the sensor nodes. We compare two different

fusion architectures, namely, the parallel fusion architecture (PFA) and the cooper-

ative fusion architecture (CFA), for such bandwidth-constrained WSNs, where each

sensor node is restricted to send a 1-bit information to the fusion center. For each

architecture, we derive expression for the probability of decision error at the fusion

center. We propose a consensus flooding protocol for CFA and analyze its average

energy consumption. We analyze the effects of PoI intensity, realistic link models,

consensus flooding protocol, and network connectivity on the system reliability and

average energy consumption for both fusion architectures.

6.1 Sensing Model

We consider a dense WSN with a large number of identical sensor nodes deployed

randomly over a wide region. Our goal is to detect or monitor a PoI in the sensor field
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using these geographically dispersed nodes. First, we model the PoI as an isotropic

signal source with path loss factor αf . This model is general and captures PoI such

as leakage of some contaminating chemical in industrial settings, a moving armored

vehicle in a battlefield, or a source of a radioactive material [142–145]. The path

loss factor αf will depend on the type of signal considered (chemical contamination,

sound, radioactive radiation, etc.). Thus, the received signal strength at a distance d

away from the PoI is given by

P (d) =
P0

dαf
, (6.1)

where P0 is the signal strength of the PoI measured at 1 meter from the location of

the PoI.

The location of the sensor nodes can be a direct consequence of certain random

deployment strategies. For example, sensor nodes may be air-dropped or launched

via artillery in battlefields or unknown environments. Under this scenario, the spatial

distribution of the nodes over the region can be modeled by a homogeneous Poisson

point process with intensity ρ. The probability that there are nt sensor nodes within

region A of size |A| is given by

P {Nt = nt} =
λnt

t exp (−λt)

nt!
, nt ≥ 0 (6.2)

where Nt is a Poisson r.v. with mean λt = E {Nt} = ρ|A|. We assume that the sensor

observations are independent conditioned on whether the PoI is present or absent. In

particular, when conditioned on the presence of the PoI, the sensor observations are

not identically distributed across the nodes, i.e., the observations at the nodes are

spatially varying. In this case, the independent observation at each sensor node after

appropriate sampling and processing is given by

yn =




zn, when PoI is absent
√
P (dn) + zn, when PoI is present,

(6.3)
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Figure 6-1: Parallel fusion architecture.

where n = 1, . . . , Nt, and zn is the independent observation noise across the nodes

and is distributed according to a zero-mean Gaussian distribution with variance σ2
z ,

i.e., zn ∼ N (0, σ2
z), and P (dn) is the received signal strength at the nth node with a

distance dn away from the PoI given by (6.1).

Thus, we can formulate the above decentralized detection problem as a binary

hypothesis testing problem with the following hypotheses:

H0 : PoI absent

H1 : PoI present. (6.4)

For simplicity, we assume that the PoI is located at the center of region A when

conditioned on H1.
1 The fusion center’s task is to decide whether the PoI is present

in the WSN based on the information collected from the sensor nodes.

1As a result, we can neglect the border effects.
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6.2 Decentralized Detection Problem

Given the sensing model in Chapter 6.1, we want to decide whether the PoI has

occurred in region A given that sensor nodes are allowed to cooperate or not to

cooperate depending on the fusion architectures.

6.2.1 Parallel Fusion Architecture

In PFA, all the nodes make their local decisions independently without cooperat-

ing with one another. Since we are considering bandwidth-constrained WSNs, i.e.,

the communication channels between the sensor nodes and the fusion center are

bandwidth-constrained, each sensor is restricted to sending a 1-bit information to

the fusion center.2 Consequently, local decisions are quantized as follows:

un =





−1, when Ĥ(yn) = H0

+1, when Ĥ(yn) = H1,
(6.5)

and Ĥ(yn) is the decision made at the nth node. The detection performance of the

nth node can be characterized by its corresponding probability of false-alarm and

detection, denoted by P
(n)
f and P

(n)
d respectively. The probability of false-alarm is

given by

P
(n)
f = P{yn ≥ ζn|H0} = Q

(
ζn
σz

)
, (6.6)

where ζn is the local decision threshold of the nth node. The probability of detection

at the nth node is then given by

P
(n)
d = P{yn ≥ ζn|H1, P (dn)} = Pd(ζn, dn), (6.7)

2Note that in some applications, it is reasonable to relax the bandwidth constraint on the com-
munication channels. In such scenarios, the nodes can be designed to send more information bits
about their inference, e.g, sending quantized sensor observations or quantized local likelihood ratios.
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where Pd(ζ, d) is defined as follows:

Pd(ζ, d) , Q

(
ζ −

√
P (d)

σz

)
. (6.8)

During the data-retrieval period, the fusion center will trigger the nodes within its

activation range by sending a beacon signal. All the nodes that are within this

activated region A then send their local decisions to the fusion center. Without loss of

generality, we consider an equivalent discrete-time communication model [85,86,88].3

As shown in Fig. 6-1, local decisions {un} are transmitted over parallel channels to

the fusion center.

The received signal at the fusion center from the nth sensor node is given by

rn =
√
aEbun + wn, (6.9)

where Eb is the transmit energy per bit, and a accounts for the up-link path loss,

which is assumed to be identical for all nodes.4 The channel noise, wn, is modeled as

a zero-mean Gaussian r.v. with variance N0/2 and it is assumed to be i.i.d. across

the nodes. We can define SNR = aEb/N0 as the received SNR from each node at the

fusion center. The goal of the fusion center is to make a global decision about the

hypotheses based on the Nt received observations given by r = [r1, . . . , rNt]
T .

Given Nt = nt, a, {P (n)
d }, and {P (n)

f }, the optimal fusion rule is given by

Λ(r) = log

[
nt∏

n=1

prn|H1(rn|H1)

prn|H0(rn|H0)

]
H1
>
6
H0

τ. (6.10)

As pointed out in [85,86], the above fusion rule is not easily computable at the fusion

center, particularly for bandwidth-constrained WSNs, since it requires each node to

send its P
(n)
d and P

(n)
f to the fusion center or the fusion center needs to know a priori

3Such a simplified assumption allows us to study in isolation the effect of cooperation between
the nodes. Moreover, this model implicitly assumes that coherent detection with perfect channel
state information and perfect synchronization is performed at the fusion center.

4When the fusion center is located at an altitude significantly higher than the radius of the sensor
field, this is a reasonable assumption.
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P
(n)
d and P

(n)
f for all n, which directly depends on the locations of all the nodes, the

intensity of the PoI, and the local threshold ζn.5 As a result, the fusion center can

only rely on suboptimal fusion rule; in particular, we adopt the equal gain combining

(EGC) fusion rule given by

Λ(r) =
1

nt

nt∑

n=1

rn

H1
>
6
H0

τ, (6.11)

which has been shown to be robust for a wide range of SNR [85,86]. In the following,

we consider the scenario in which all nodes use the common local threshold ζ . In this

case, P
(n)
f = Pf is fixed as a design parameter (generally Pf ≪ 1) so that the decision

threshold ζ can be evaluated according to (6.6).

Now, using the spatial Poisson distribution of the nodes and (6.8), the number

of nodes that can detect the PoI when conditioned on H1, hence with local decision

un = +1, is a Poisson r.v., Nd, with mean given by

λd = ENd = ρ

∫

A

Pd(ζ, ‖x− xPoI‖)dx, (6.12)

where x and xPoI denote the locations of sensor node and PoI, respectively. Condi-

tioned on Nt, the ratio λd/λt is the average percentage of nodes in region A which

successfully detects the PoI. Using Pd(ζ, d) given by (6.8), the integral in (6.12) can

be evaluated numerically. Note the expression in (6.12) is general and is applicable

for general PoI and sensor measurement models, as long as Pd(ζ, d) is well-defined.6

On the other hand, by the spatial Poisson distribution of the nodes, the false-alarmed

nodes can be obtained by thinning the original sensor nodes with thinning probability

(1 − Pf). Hence, the number of false-alarmed nodes, Nf , is also Poisson distributed

5Here, we do not consider the presence of an intelligent sensor manager at the fusion center that
is capable of selecting only the useful information from the sensor field or know the shape of the
spatial signal of PoI.

6For example, when the sensor noise zn is negligible and A is large, log-normal shadowing in (6.1)
leads to an analogous model adopted in [146], which admits a closed-form expression for (6.12).
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Figure 6-2: Cooperative fusion architecture.

with mean given by

λf = E {Nf} = λtPf . (6.13)

Note that λf is generally smaller than λd for small Pf .

6.2.2 Cooperative Fusion Architecture

In CFA, the sensor nodes need to disseminate and agree on a common decision

throughout the network via a consensus flooding protocol, before sending the agreed

decision to the fusion center as shown in Fig. 6-2. Similar to (6.9), activated nodes

send the agreed decision to the fusion center via parallel channels.
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Consensus Flooding Protocol

When the PoI intensity is weak7, Parley algorithm is likely to lead to consensus

in the wrong decision since majority of the nodes in the WSN have rejected H1.

Although [94] attempts to relax the stringent assumptions of conventional Parley

algorithm, it requires self-organizing network that is capable of exchanging enormous

amount of information. This greatly limits the applicability of this algorithm in large

scale networks, especially if energy constraint is enforced at each sensor node. As

such, we propose a consensus flooding protocol that accounts for weak PoI intensity

and reduces the possibility of false-alarm flooding. We define the deliver ratio, Dr, as

the ratio between the number of nodes that declare u = +1 at the end of flooding and

the total number of nodes. Specifically, we introduce a voting scheme in our flooding

protocol via the use of a threshold Th. Through Th, we can find a good trade-off

between a high Dr when PoI is present and a low Dr when PoI is absent. The latter

situation can be achieved by minimizing the possibility of false-alarm flooding. The

details of our consensus flooding protocol are given as follows:

S1 The consensus flooding protocol is activated by sending a beacon signal from the

fusion center to the sensor field.

S2 All activated nodes make a decision based on the measured strength of the PoI

intensity.

S3 Nodes that have declared Ĥ = H1 (PoI is present) will each send a broadcast

packet to neighboring nodes only once. Each node then initiates a counter with

a value of one, sets a fixed assessment delay (FAD), and proceeds to S5.

S4 Nodes that have declared Ĥ = H0 (PoI is absent) will remain silent and listen to

neighboring nodes. Each node then initiates a counter with a value of zero, sets

a FAD, and proceeds to S5.

S5 During FAD, the counter is incremented by one for each received broadcast packet.

7In the numerical results, we will show that the main advantage of CFA is achieved in such a
scenario.
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S6 After FAD expires, each node compares its counter with a pre-set value Th. If

counter is less than Th, set Ĥ = H0. Otherwise, set Ĥ = H1.

S7 If the node has changed its decision and has not broadcasted before, it will proceed

to S3. Else it will remain silent.

S8 The consensus flooding protocol is stopped after a certain number of iterations,

and all activated nodes send their decisions to the fusion center.

Note that the above flooding protocol differs from the conventional broadcasting pro-

tocols. Conventional broadcasting protocols are designed to maximize the delivery

ratio as well as to minimize the redundant retransmissions, regardless of the cor-

rectness of the message broadcasted [147, 148].8 Unlike the Parley algorithm [91] or

conventional broadcasting protocols [147,148], our consensus flooding protocol adopts

a voting scheme to enable agreement in decisions and to control false-alarm flooding.

In addition, only nodes that declareH1 are allowed to broadcast their decisions. When

time constraint is not stringent, the FAD value and the number of protocol iterations

can be chosen large enough to allow the consensus flooding protocol to terminate

correctly. The choice of the threshold Th in the voting scheme essentially depends on

the degree of connection, which is defined as the average number of neighbors, λh,

each node can hear. Thus, we can parameterize our consensus flooding protocol by

(Th, λh, Dr), where the parameters, Th and λh, are chosen to meet a given Dr when

conditioned on H1, and to minimize the possibility of false-alarm flooding.

Inter-node Communication Model

We model our inter-node wireless links as being subjected to attenuation with both

distance and log-normal shadowing [146, 149, 150]. The motivation for considering

such a channel model stemmed from the fact that deterministic path-loss model often

leads to inaccurate analysis due to ignorance of the stochastic nature of wireless

8In [147,148], the delivery ratio is simply defined as the ratio between the number of nodes that
received the broadcasted message over the total number of nodes.
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channel [151–154]. For example, it has been shown by several authors that shadowing

improves the connectivity properties of the wireless networks [146, 149,150].

The received packet energy of a receiving node at a distance r away from the

broadcasting node can be written as

Erec = EfloodKr
−α10

Si,j
10 , (6.14)

where Eflood is the energy required by each node to broadcast a packet and it generally

depends on the inter-node transmitted power, bit rate, and packet length. The path

loss exponent, α, of the wireless inter-node link takes values between 2 and 4, and

K is a constant that depends on the antenna gain and wavelength. We consider the

attenuation due to shadowing between any two nodes i and j as i.i.d. For log-normal

shadowing, Si,j ∼ N (0, σ2
S). Now, we consider that all nodes have the same receiver

sensitivity, where Emin is the minimum receive energy such that packets are correctly

detected with probability one if and only if Erec is greater than Emin, otherwise they

are discarded. Mathematically, this is equivalent to the connection condition, whereby

node i and j at a given distance r apart are connected if

r ≤ Rc , ac exp (bcSi,j) , (6.15)

where ac =
(

KEflood

Emin

) 1
α

, bc = ln 10
10α

, and Rc can be interpreted as the connection

distance, which is a r.v. due to the effect of shadowing. In the absence of shadowing

(i.e., Si,j = 0), Rc is a deterministic circular coverage radius.

From the spatial Poisson distribution of the nodes, given that a particular node

falls within a disk of radius r0, its location is uniformly distributed over the disk.

Given this particular node, the number of nodes, Nh, connected to it forms a Poisson

process with mean given by

λh =

∫ 2π

0

∫ ∞

0

ρrQ

(
1

bcσS
ln

r

ac

)
drdθ

= 2πρ

∫ ∞

−∞

∫ ac exp(bcσSx)

0

r√
2π

exp

(
−x

2

2

)
drdx
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= πρa2
c

∫ ∞

−∞

1√
2π

exp

(
−x

2

2
+ 2bcσSx

)
dx

= πρa2
c exp

(
2b2cσ

2
S

)
. (6.16)

From (6.16), we can observe that the degree of connection increases with shadowing

and this coincides with the results of [146, 149, 150]. Given a certain λh, we can use

(6.16) to obtain the required packet energy Eflood, which is given by

Eflood

Emin
=

1

K

(
λh

ρπ exp (2b2cσ
2
S)

)α
2

. (6.17)

Network Connectivity Analysis

The analytical characterization of Dr for our consensus flooding protocol is not a

trivial problem. Here, we will provide some conservative bounds through the use

of network connectivity concepts [149, 150]. We will show how we can relate Dr,

through the concept of network connectivity, to the protocol parameters λh and Th.

In particular, we will obtain bounds on the range of λh to satisfy a specified Dr under

both hypothesis (PoI present and absent). In the following, we provide some notions

of network connectivity which we use in our analysis.

Definition 1. The network can be viewed as a directed graph where each node is a

vertex and a directed edge exists from vertex i to j if and only if node i can directly

transmit to node j. A network is said to be connected if for every pair of vertexes

there exits a directed path between them.

Definition 2. The probability that the network is connected and each node has at

least n neighbors is defined as Pc{n}.

Since Nh is Poisson distributed, the probability that a node does not hear a

sufficient number of neighboring nodes (Nh < Th) is given by

PTh
= P{hears less than Th nodes} =

Th−1∑

i=0

λi
h exp (−λh)

i!
, (6.18)

and the probability that a node is isolated, i.e., it cannot hear any neighboring node
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(Th = 1) is then given by

P {Nh = 0} = exp (−λh). (6.19)

Given that Nt = nt, the conditional probability that none of these nodes is isolated

is approximated by [149,150]

P{no node isolated|Nt = nt} ∼= (1 − P {Nh = 0})nt , (6.20)

where the approximation arises from the assumption that the events of isolated nodes

are statistically independent. The validity of this approximation has been verified

via simulations in [149, 150]. By the spatial Poisson distribution of the nodes, the

probability that none of the nodes is isolated is given by

P{no node isolated} =
∞∑

nt=0

P{no node isolated|Nt = nt}
λnt

t exp (−λt)

nt!

= exp(−λt exp(−λh)), (6.21)

and we make the approximation that Pc{1} ≈ P{no node isolated} when the network

is highly connected [149,150].9

When Th > 1 (consensus flooding protocol with voting scheme enabled), the

condition for a node to change its decision to un = +1 is when it hears at least Th

neighbors. Similar to (6.20), the conditional probability that none of the nodes has a

degree of connection less than Th can be approximated by10

P{no node with Nh < Th|Nt = nt} ∼= (1 − PTh
)nt , (6.22)

which becomes (6.20) when Th = 1. Using (6.18) and (6.22), the probability that

9Note that the non-existence of isolated nodes is only a necessary, but not sufficient condition for
a network to be connected.

10The approximation arises from the assumption that the events of isolated nodes are statistically
independent.
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none of the nodes has a degree of connection less than Th is given by

P{no node with Nh < Th} = exp

(
−λt exp(−λh)

Th−1∑

i=0

λi
h

i!

)
, (6.23)

where we can similarly make the approximation that Pc{Th} ≈ P{no node with Nh <

Th} when the network is highly connected. The validity of our approximations in

(6.21) and (6.23) will be verified via simulations in a later section. In addition, we

will further verify our claim via simulations that when the network is highly connected

according to our definition 2, i.e., Pc{Th} ≥ 0.9, the delivery ratio Dr of the consensus

flooding protocol under H1 is also high, i.e., under H1, Dr ≥ Pc{Th}. Since this is a

conservative condition, we can only determine an upper bound on λh given Th and

Dr using (6.21) and (6.23).

With our consensus flooding protocol, for a given Dr, the number of nodes, Na,

that agree on the correct local decision u = +1 under H1 is approximated as a Poisson

r.v. with mean given by

λa = E {Na} = λtDr. (6.24)

On the other hand, we also need to ensure that our consensus flooding protocol

minimizes the possibility of false-alarm flooding. Considering that the density of

false-alarmed nodes is ρPf and for a given Pf in (6.6), the conditional probability that

all nodes hear less than Th false-alarmed nodes is given by

P{all nodes hear less than Th false-alarmed nodes|Nt = nt}

∼=
(

exp(−Pfλh)

Th−1∑

i=0

(Pfλh)
i

i!

)nt

, (6.25)

and the probability that all nodes hear less than Th false-alarmed nodes is then given

by

P{all nodes hear less than Th false-alarmed nodes}
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= exp

{
λt

[(
exp(−Pfλh)

Th−1∑

i=0

(Pfλh)
i

i!

)
− 1

]}
. (6.26)

Note that the event that all nodes hear less than Th false-alarmed nodes is only a

sufficient, but not necessary condition for absence of false-alarm flooding. Since the

probability that no false flooding occurs is greater than (6.26), we can ensure that

our consensus flooding protocol minimizes the possibility of false-alarm flooding by

satisfying P{false-alarm flooding occurs} ≤ Pf .
11

In summary, we have developed a framework for determining the connection de-

gree of our consensus flooding protocol with a given Pf and Th, and high delivery

ratio, i.e., Dr ≥ 0.9, using concept of network connectivity. Specifically, we use

(6.23) and (6.26) to determine λh by fixing Dr ≥ 0.9 (when POI is present) and

P{false alarm flooding occurs} ≤ Pf . It is interesting to note that, due to the Pois-

son nature of the WSN, these probabilities do not depend on the channel model

details, but only on the synthetic parameter, namely the connection degree λh.

6.3 Performance Analysis

6.3.1 Probability of Error Analysis

We consider a Bayesian approach, whereby the a priori probabilities of the null and

alternate hypotheses, P {H0} and P {H1}, are known at the fusion center. Without

loss of generality, we assume that the hypotheses are equally likely. The fusion center

employs the EGC fusion rule in (6.11) with threshold τ = 0.12 Utilizing the total

probability law, we can write the probability of decision error at the fusion center as

Pe =
1

2
P {e|H1} +

1

2
P {e|H0} , (6.27)

11The motivation for this criterion comes from the consideration that at the fusion center we do
not want a catastrophic false-alarm flooding event with a probability higher than the Pf of each
node.

12Note that the EGC fusion rule treats all the received observations equally, and τ = 0 is a
reasonable choice due to our antipodal signal structure of un.
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Parallel Fusion Architecture

The conditional probability P {e|H1} in (6.27) is given by

P {e|H1} = ENt

{
P

(
nt∑

n=1

rn ≤ 0|Nt = nt, H1

)}

= ENt

{
Nt∑

m=0

B(m,λd/λt, Nt)
[
1 −Q

(
−(2m−Nt)

√
2SNR/Nt

)]}
.

(6.28)

Similar to (6.28), we can also derive P {e|H0} in (6.27) as follows:

P {e|H0} = ENt

{
P

(
nt∑

n=1

rn > 0|Nt = nt, H0

)}

= ENt

{
Nt∑

m=0

B(m,λf/λt, Nt)Q
(
−(2m−Nt)

√
2SNR/Nt

)}
, (6.29)

By substituting (6.28) and (6.29) into (6.27), we obtain the probability of decision

error for PFA at the fusion center as follows:

P (PFA)
e =

1

2
ENt

{
Nt∑

m=0

B(m,λd/λt, Nt)
[
1 −Q

(
−(2m−Nt)

√
2SNR/Nt

)]}

+
1

2
ENt

{
Nt∑

m=0

B(m,λf/λt, Nt)Q
(
−(2m−Nt)

√
2SNR/Nt

)}
, (6.30)

where B(n, p, nt) denotes the binomial probability distribution of a r.v. n with pa-

rameters nt and p.

Cooperative Fusion Architecture

The conditional probability P {e|H1} follows straightforwardly from (6.28) and is

given by

P {e|H1} = ENt

{
P

(
nt∑

n=1

rn ≤ 0|Nt = nt, H1

)}
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= ENt

{
Nt∑

m=0

B(m,λa/λt, Nt)
[
1 −Q

(
−(2m−Nt)

√
2SNR/Nt

)]}
.

(6.31)

On the other hand, P {e|H0} is given by

P {e|H0} = ENt

{
P

(
nt∑

n=1

rn > 0|Nt = nt, H0

)}

= ENt

{
Q
(√

2NtSNR

)}
, (6.32)

where all nodes send the common correct decision u = 0 after the consensus flooding

when Pf is small. Thus, by substituting (6.31) and (6.32) into (6.27), we obtain the

probability of decision error for CFA at the fusion center as follows:

P (CFA)
e =

1

2
ENt

{
Nt∑

m=0

B(m,λa/λt, Nt)
[
1 −Q

(
−(2m−Nt)

√
2SNR/Nt

)]}

+
1

2
ENt

{
Q
(√

2NtSNR

)}
. (6.33)

6.3.2 Energy Efficiency Analysis

The average energy consumed by each node in the PFA to convey a single information

bit to the fusion center at a target Pe is simply given by

E(PFA)
avg = E

(PFA)
b , (6.34)

since the PFA does not have any cooperation overhead. To execute the consensus

flooding protocol in the CFA, the average number of nodes that send a broadcast

packet under H1 is equal to λa + λd · PTh
. Recall that λa is the average number of

nodes which sent a broadcast packet during the flooding process and agreed on the

correct decision, and λd · PTh
is the average number of nodes which detected the PoI

but did not participate in the flooding process since they do not hear a sufficient

number of neighbors. Combining both the transmission and the flooding energy, the
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average energy consumed by each node to convey a single information bit to the fusion

center when conditioned on H1 is given by

E
(CFA)
avg|H1

= E
(CFA)
b +

Eflood

λt

(λa + λd · PTh
) . (6.35)

According to our analysis in Chapter 6.2.3, our consensus flooding protocol can ensure

that the probability of false-alarm flooding is lower than Pf . As a result, the average

number of nodes that send a broadcast packet is not larger than λf , and the average

energy consumed by each node to convey a single information bit to the fusion center

when conditioned on H0 is given by

E
(CFA)
avg|H0

= E
(CFA)
b +

Efloodλf

λt
. (6.36)

Combining (6.35) and (6.36), the total average energy consumed by each node in the

CFA to convey a single information bit to the fusion center at a target Pe is given by

E(CFA)
avg = P(H0)

[
E

(CFA)
b +

Efloodλf

λt

]
+ P(H1)

[
E

(CFA)
b +

Eflood

λt

(
λa + λd · PTh

)]

= E
(CFA)
b

{
1 +

δ

2λt

[
λf +

(
λa + λd · PTh

)]}
, (6.37)

where Eflood = δEb. In realistic WSNs, the choice of δ depends mainly on the re-

lationship between the up-link path-loss and the inter-node wireless links in (6.14).

In general, Eflood

2λt
[λf + (λa + λd · PTh

)] accounts for the cooperation overhead since it

represents the increase in the average energy consumption per node in order to coop-

erate.13

By using (6.34) and (6.37), we can then compute the average energy gain (in dB)

due to cooperation as

∆E = 10 log

(
E

(PFA)
avg

E
(CFA)
avg

)
= 10 log


 E

(PFA)
b

E
(CFA)
b

{
1 + δ

2λt

[
λf + (λa + λd · PTh

)
]}


 .

(6.38)

13Note that we have considered implicitly that the energy required for listening is negligible.
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For a target Pe, SNR(PFA) and SNR(CFA) can be determined by simply inverting (6.30)

and (6.33) respectively. Substituting these values into (6.38), we obtain

∆E = 10 log


 SNR

(PFA)

SNR
(CFA)

{
1 + δ

2λt

[
λf + (λa + λd · PTh

)
]}


 . (6.39)

From (6.39), we can observe that the gain from cooperation depends on how much

energy is spent on local data exchange. This additional required energy explicitly

depends on the connectivity of the network through PTh
, the delivery ratio of the

consensus flooding protocol through λa, the average flooding energy through δ, and

the average number of active sensor nodes through λt.

6.4 Numerical Results

In this section, we evaluate the performance of both architectures based on our analyt-

ical results developed in the previous sections. As shown, our methodology highlights

dependency on a large set of parameters that reflect different aspects of the system,

such as the average number of nodes in the sensor field (through λt), PoI intensity

(through λd/λt), inter-node wireless link condition (through λh), target probability

of decision error at the fusion center (Pe), probability of false-alarm (Pf), and the

consensus flooding protocol (Th, λh, Dr).

Our simulation setup consists of a square of 300 × 300 m2 with 500 nodes ran-

domly and independently placed. However, only a circle of radius 75 m is considered

to avoid border effects. No medium access control is considered. The inter-node

communication model in (6.14) is used with K = 40 dB, α = 3.5 and σS = 4. In

Fig. 6-3, we plot Pc{Th} based on simulation and analytical expression (6.23) when

λd/λt = 0.5 and PoI is present.14 It can be seen that for large λh, Pc{Th} tends to

1 for different Th values, and the simulation and analytical results are in good agree-

ment verifying that (6.23) is a good approximation for Pc{Th}. Moreover, we have

14We have also verified by simulation that the effect of the ratio λd/λt is negligible. The results
are not shown due to space constraint.
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Figure 6-3: Comparison of Pc{Th} using simulation and analytical results when
λd/λt = 0.5. The solid and dashed lines indicate the analytical result using (6.23)
and simulation result respectively.

plotted simulation results for Dr in Fig. 6-3, and, indeed, we can observe that Pc{Th}
is lower than Dr. As a result, we can obtain an upper bound on λh for a given Th

and Dr ≥ 0.9 from (6.23). For example, given that Th = 3, we have λh = 11 and 15

for Dr = 0.9 and Dr = 0.99 respectively. In the following, we will consider two sets

of consensus flooding protocol parameters (Th, λh, Dr) = (3, 11, 0.9), and (Th, λh, Dr)

= (3, 15, 0.99).15

The performance of both architectures as a function of λt in the sensor field with

different PoI intensity (λd/λt = 0.1 and λd/λt = 0.8) is plotted in Fig. 6-4. The

consensus flooding protocol parameter set used is (Th, λh, Dr) = (3, 11, 0.9), and SNR

= -15 dB. For weak PoI intensity (λd/λt = 0.1), PFA performs poorly as expected

due to small sensing coverage. For strong PoI intensity (λd/λt = 0.8), PFA performs

better and the probability of error decays with increasing λt. For CFA, we can observe

15For these sets of consensus flooding protocol parameters, the condition that
P{false-alarm flooding occurs} ≤ Pf is also satisfied for Pf = 10−3 using (6.26).
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Figure 6-4: Performance of PFA and CFA with respect to the average number of
nodes. The solid and dashed lines indicate PFA and CFA respectively. The flooding
protocol parameter set used is (Th, λh, Dr) = (3, 11, 0.9), and SNR = -15 dB.

that the probability of error decays with increasing λt regardless of the PoI intensity.

This shows that CFA provides reliability in WSN especially when the PoI intensity

may be weak or unknown.

Next, we consider the effect of PoI intensity on the performance of both architec-

tures when λt = 500 and SNR = -15 dB in Fig. 6-5. Two sets of consensus flooding

protocol parameters are used for comparison in CFA. It can be seen that CFA is

insensitive to the PoI intensity, and the protocol with higher delivery ratio performs

better at the expense of a higher energy consumption due to the increased degree of

connection λh required. Similar to Fig. 6-4, we can observe that PFA performs better

as the PoI intensity increases, showing that the reliability of PFA depends heavily on

the PoI intensity. Note that this performance also depends on the threshold at the

fusion center, which we have assumed to be zero for this case. If the fusion center

has more information about the sensor field and the PoI,16 it can then optimize this

16Here, information refers to the individual probability of detection of each node and the a priori
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Figure 6-5: Effect of PoI intensity through λd/λt and delivery ratio of the consensus
flooding protocol on the performance of PFA and CFA when λt = 500 and SNR =
-15 dB. The solid and dashed lines indicate PFA and CFA respectively. The flooding
protocol parameter sets used are (Th, λh, Dr) = (3, 11, 0.9) and (Th, λh, Dr) = (3, 15,
0.99).

threshold to obtain a better performance than that shown in Fig. 6-5.

The effect of PoI intensity, delivery ratio, network connectivity, and flooding en-

ergy on the energy efficiency of CFA at Pe = 1 × 10−4 and λt = 500 is plotted in

Figs. 6-6 and 6-7. In Fig. 6-6, we compare two sets of consensus flooding protocol

parameters with different Dr and λh. Using (6.17), we can determine the values of

Eflood/Emin for λh = 11 and 15, respectively. By letting the δ that corresponds to

λh = 11 to be 0.1, we can then obtain the new δ that corresponds to λh = 15 using

the values of Eflood/Emin. From Fig. 6-6, we can observe that as the PoI intensity

increases, the average energy gain due to cooperation decreases since PFA becomes

more reliable. It can also be seen that higher deliver ratio offers a greater average

energy efficiency due to cooperation. However, this average energy gain due to coop-

probabilities of the hypotheses.
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Figure 6-7: Effect of PoI intensity through λd/λt and flooding energy on energy
efficiency of CFA when Pe = 1×10−4 and λt = 500. The flooding protocol parameter
set used is (Th, λh, Dr) = (3, 11, 0.9).
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eration can go below 0 dB at a certain region of high PoI intensity, since the increase

in average energy consumption needed to execute flooding outweighs the gain in en-

ergy efficiency resulting from cooperation. To further investigate this phenomenon,

we consider different values of δ (δ = 0.1, δ = 1 and δ = 10) with the consensus

flooding protocol parameter set (Th, λh, Dr) = (3, 11, 0.9) in Fig. 6-7. It can be seen

clearly in Fig. 6-7 that the average energy gain due to cooperation decreases as δ

increases. Recall that δ mainly depends on the node transmitter power, bit rate and

packet length. This result shows that these parameters have to be carefully designed

to make δ small, in order for CFA to be more energy efficient than PFA. Depending

on the PoI intensity, PFA can be more energy efficient than CFA, especially for larger

values of δ. For example, when δ = 10, it is more energy efficient to implement PFA

in regions with PoI intensity λd/λt ≥ 0.7.

Lastly, we consider the effect of node density on the energy efficiency of CFA at

Pe = 1 × 10−4 and λd/λt = 0.8 with the consensus flooding protocol parameter set

(Th, λh, Dr) = (3, 11, 0.9) in Fig. 6-8. As λt increases, the average energy gain due to

cooperation decreases and tends to reach a floor. Similar to Fig. 6-7, we also observe

here that the average energy gain due to cooperation decreases as δ increases.
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Figure 6-8: Effect of node density and flooding energy cost on energy efficiency of
CFA when Pe = 1× 10−4 and λd/λt = 0.8. The flooding protocol parameter set used
is (Th, λh, Dr) = (3, 11, 0.9).
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Chapter 7

Conclusions

This final chapter summarizes the contributions of the dissertation and highlights

numerous areas for further research.

7.1 Contributions

In Chapter 2, we developed RPA algorithms that maximize the output SNR of co-

herent and noncoherent AF relay networks under both individual and aggregate relay

power constraints. We showed that the coherent AF RPA problem, in the presence

of perfect global CSI, can be formulated as a quasiconvex optimization problem.

Thus, these RPA problems can be solved efficiently using the bisection method via

a sequence of convex feasibility problems, in the form of SOCPs. We also showed

that the noncoherent AF RPA problem, in the presence of perfect global CSI, can

be approximately decomposed into 2L quasiconvex optimization subproblems. Each

subproblem can be solved efficiently by the bisection method via a sequence of con-

vex feasibility problems in the form of SOCP. Even with optimal RPA, we showed

that the noncoherent AF relay network performs much worse than the coherent AF

case. For the coherent AF case, we have distributed beamforming, which helps to

reduce the severity of deep fades. Therefore, some form of diversity techniques needs

to be exploited to further reduce the outages for the noncoherent AF case, e.g., time

diversity or spatial receiver diversity. By applying the robust optimization methodol-
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ogy, we showed that the robust counterparts of our convex feasibility problems with

ellipsoidal uncertainty sets can be formulated as SDPs. Our results revealed that

ignoring global CSI uncertainties and solving the relay power optimization problem

often leads to poor performance. As a result, this work highlights the importance of

robust algorithm designs in practical wireless networks.

In Chapter 3, we formulated the AF RPA problem as the total relay transmission

power minimization problem subject to a QoS constraint. With the CE output SNR

constraint, we proposed practical algorithms that track only large-scale fading. With

perfect knowledge of the large-scale fading, we showed that the optimization problems

for the coherent and noncoherent AF relay networks can be cast as an SOCP and

an LP, respectively. The conditions for verifying the feasibility of these problems

and the optimality of the solutions are also derived. Furthermore, we extended these

optimization problems to take into account uncertainties in the knowledge of large-

scale fading. For ellipsoidal uncertainty sets, we showed that the robust counterparts

of our optimization problems for the coherent and noncoherent AF relay networks can

be formulated as an SDP and an SOCP, respectively. Numerical results showed that

the proposed algorithms provide significant power savings over the naive scheme that

employs maximum transmission power at each relay node. In addition, our robust

algorithms provide effective and feasible solutions, yielding good performance in the

presence of uncertainties associated with the global CSI.

In Chapter 4, we analyzed the performance of TR and DTR signaling in dense

multipath UWB channels. We derived the BEP expression for the TR signaling

with AcR via the Gaussian approximation and sampling expansion approaches. We

showed the limitation of the Gaussian approximation whose validity depends on the

assumption of a large time-bandwidth product or large number of transmitted pulses

per symbol. Based on the sampling expansion approach, we developed an analytical

framework to derive a closed-form expression for the BEP of TR and DTR signaling

with AcR for a broad class of fading channels. We extended our methodology to

derive the BEP of TR and DTR signaling with modified AcR. We compared the

performance of TR signaling with AcR with that of the ARake and PRake receivers
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using our computationally simple lower bound. This allowed us to obtain the SNR

penalty associated with TR signaling with an AcR, as compared to ARake and PRake

receivers for the BEP range of interest.

In Chapter 5, we developed a quasi-analytical method as well as an approximate

analytical method to evaluate the BEP of TR and DTR signaling in the presence of

NBI. We showed that the approximate analytical method is particularly useful in ob-

taining BEP expressions that provide insight into the effect of NBI on the performance

of TR signaling schemes. We showed that the approximation is in good agreement

with the quasi-analytical results. We quantified the effects of NBI and channel PDP

on the optimum integration interval of an AcR, showing that NBI imposes a practical

limit on the amount of multipath energy that can be captured by an AcR. In particu-

lar, we showed that the optimum integration interval strongly depends on the channel

PDP and the SNR, as well as the SIR. We compared TR and DTR signaling in terms

of their sensitivity to NBI and revealed that the BEP improvement provided by DTR

signaling is entirely different in noise-limited and interference-limited regimes.

In Chapter 6, we investigated a binary decentralized detection problem in a dense,

randomly deployed and bandwidth-constrained WSN when the sensor observations

are spatially varying. We compared two different fusion architectures, namely, the

parallel fusion architecture and the cooperative fusion architecture, in bandwidth-

constrained WSNs, where each node is restricted to sending a 1-bit information to

the fusion center. We derived expressions for the probability of decision error at the

fusion center and analyzed the average energy consumption for each architecture. We

quantified the effect of PoI intensity, realistic link models, consensus flooding protocol,

and network connectivity on the system reliability and average energy consumption

for both fusion architectures. We showed that cooperation using our proposed consen-

sus flooding protocol is particularly advantageous in scenarios where the PoI intensity

may be weak or unknown. Consequently, this work identifies a fruitful approach for

obtaining insight into the design of cooperative WSNs, as well as the understanding of

the trade-off issues among reliability and energy efficiency in the presence of spatially

varying sensor observations, network connectivity, and realistic link models.
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7.2 Future work

For future research on the design of cooperative networks, we have summarized some

interesting areas and extensions that are worth pursuing.

• Robust Resource Allocation: In our robust counterpart formulation, we as-

sume that there is no distributional information of the global CSI uncertainty,

and adopt the robust optimization methodology developed in [7, 8]. However,

when there is some distributional information of the global CSI uncertainty,

one can then employ stochastic optimization and safeguard constraints against

violation using chance or probabilistic constraints [114, 155, 156]. The general

difficulty of such a probabilistic approach is that computational tractable chance

constraints only exist for some known distributions, and we often end up with

non-convex chance constraints in most cases. Another possible direction is to

design distributed power allocation algorithms instead of centralized design as

studied in this dissertation. In the distributed design, the dual decomposition

method provides a computationally tractable way to solve this power alloca-

tion problem [157]. In addition, it may be interesting to investigate how to

extend such distributed algorithms to incorporate CSI uncertainties. Another

possible direction is to generalize the formulation in this dissertation to the case

of multiple-antenna relay nodes. It is well-known that multiple antennas can

offer significant improvements in terms of spectral efficiency and link reliability.

Therefore, it is interesting to study how resource allocation and efficient trans-

mission designs can further increase the performance gains for such systems,

as well as to understand how these gains depend on the number of antennas.

Extension to the case of multiple source-destination pairs and multihop may be

fruitful. Besides focusing on AF relaying, it would be interesting to consider

other relaying schemes in the above studies.

• Wideband Communications: Since UWB systems need to coexist and con-

tend with many narrowband communication systems, it is important to analyze

the performance of TR signaling schemes in the presence of various narrowband
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systems for successful deployment of UWB systems. As a result, it is important

to study the performance in the case of multiple NBI, particularly using an

interesting interference model has been considered in [158–160]. Moreover, an

analytical comparison with energy detector is also worth investigating since both

energy detector and AcR have been considered as potential low-complexity and

low-sampling rate solutions in IEEE 802.15.4a standardization process. Some

results along this direction can be found in [161, 162]. Besides investigating

effect of NBI, it may be worthwhile to study the effect of other wideband sys-

tems or multiuser interference on UWB systems using either energy detector

or AcR. In addition, it would be interesting to see how we can incorporate TR

signaling into wideband cooperative networks design by taking into account the

multipath fading channels and different relaying schemes.

• Energy Efficiency: In this dissertation, we have considered that the links

from the nodes to the fusion center are subjected to identical large-scale fad-

ing. In general, the nodes are randomly distributed and the fusion center may

be deployed such that the channels from different sensor nodes to the fusion

center are subjected to different large-scale and small-scale fading. It would be

of interest to examine ways in which current work can be extended to settings

that include such effects. In addition, knowledge of channel state information

at the sensor nodes through feedback may allow the nodes to exploit oppor-

tunistic transmission. This dissertation has not examined the scenario with

mobility. Therefore, it would be interesting to investigate how mobility can af-

fect our results. Another interesting avenue would be to extend our framework

to a distributed multi-target classification problem [163]. This would be very

relevant in practical WSNs where more than one target or event must be classi-

fied. It would be interesting to see what types of communication and detection

strategies at the sensor nodes are needed under different power, network, and

complexity constraints.
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Appendix A

Mathematical Preliminaries

A.1 Generalized Convexity

In this appendix, we provide some mathematical preliminaries on generalized convex-

ity.

Definition 3. The lower-level set of a function f : RN → R is defined as L(f, α) =

{xxx ∈ RN : f(xxx) ≤ α}. Similarly, the upper-level set of a function f : RN → R is

defined as U(f, α) = {xxx ∈ RN : f(xxx) ≥ α}.

Definition 4. Let S be a convex subset of RN . A function f : S → R is said to be

quasiconvex if and only if its lower-level sets L(f, α) are convex sets for every α ∈ R.

Similarly, f is said to be quasiconcave if and only if its upper-level sets U(f, α) are

convex sets for every α ∈ R.

Definition 5. Alternatively, a function f : S → R is said to be quasiconvex if and

only if

f(λxxx+ (1 − λ)yyy) ≤ max {f(xxx), f(yyy)} , (A.1)

for every xxx,yyy ∈ S, and 0 ≤ λ ≤ 1. Similarly, f is said to be quasiconcave if and only

if

f(λxxx+ (1 − λ)yyy) ≥ min {f(xxx), f(yyy)} , (A.2)
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for every xxx,yyy ∈ S, and 0 ≤ λ ≤ 1.

Definition 6. If S ⊆ RN is a convex set, then f : S → R is concave on S if

f(λxxx+(1−λ)yyy) ≥ λf(xxx)+ (1−λ)f(yyy) for every xxx,yyy ∈ S, and 0 ≤ λ ≤ 1. Similarly,

f : S → R is convex on S if f(λxxx+(1−λ)yyy) ≤ λf(xxx)+(1−λ)f(yyy) for every xxx,yyy ∈ S,

and 0 ≤ λ ≤ 1.

A.2 Conic Programming

Mathematically, SOCPs are a class of convex programming problems in which a linear

objective function is minimized over the intersection of SOC constraints [114, 164].

The second-order cone (also known as quadratic, ice-cream, or Lorentz cone) K is

defined as the norm cone for the Euclidean norm and is given by

K =
{
uuu ∈ RN , t ∈ R+ : ‖uuu‖ ≤ t

}
. (A.3)

The notation �K in (A.3) denotes the generalized inequality with respect to K as

follows:


 t
uuu


 �K 0 ⇔ ‖uuu‖ ≤ t. (A.4)

Therefore, an SOCP is a conic problem in which the standard form is given by [114]:

min
xxx

qqqTxxx

s.t.


ccc

T
i xxx+ di

AAAixxx+ bbbi


 �K 0, i ∈ {1, 2, . . . ,M}, (A.5)

where xxx ∈ RN is the optimization variable, and the data parameters are qqq ∈ RN ,

AAAi ∈ RNi×N , bbbi ∈ RNi, ccci ∈ RN , and di ∈ R. In addition, it is well-known that SOCP

also includes several important standard convex optimization problems, such as LP,

quadratic programming (QP), and quadratically constrained quadratic programming
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(QCQP). In addition, we can always represent an SOC constraint in (A.4) in terms

of a linear matrix inequality (LMI), as follows [114]:


 t
uuu


 �K 0 ⇔


 tIIIN uuu

uuuT t


 � 0. (A.6)

As a result, SOCP can always be represented as a SDP.1 However, it has been shown

that is it computationally more efficient to solve SOCP compared to SDP by interior-

point methods [114, 164].

Lemma 6. The function f(xxx) = xxxTxxx is SOC representable.

Proof. The epigraph of f(xxx), denoted by Epi(f), is given by

Epi(f) =
{
(xxx, t) ∈ S × R : xxxTxxx ≤ t

}

=

{
(xxx, t) ∈ S × R : xxxTxxx+

(t− 1)2

4
≤ (t+ 1)2

4

}

=



(xxx, t) ∈ S × R :

∥∥∥∥∥∥
xxx

t−1
2

∥∥∥∥∥∥
≤ t+ 1

2





=





(xxx, t) ∈ S × R :




t+1
2

xxx

t−1
2


 �K 0





where we have used the fact that t = (t+1)2

4
− (t−1)2

4
and the generalized inequality in

(A.4) to represent Epi(f) as a cone.

A.3 Robust Optimization

A generic mathematical programming problem is given by

minimizexxx f0(xxx)

subject to fi(xxx) ≥ 0, ∀i ∈ {1, 2, . . . , m},
(A.7)

1SDP problems are a class of convex optimization problems in which a linear function is minimized
over the cone of positive semi-definite matrices.
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where xxx is the optimization variable, f0 is the objective function, and {fi} are in-

equality constraint functions. In the nominal model, it is assumed that the nominal

data is completely known, and it is possible to solve (A.7). However, in practice, each

{fi} can be perturbed and the optimal solutions based on the nominal model in (A.7)

may become infeasible or even useless [165].

A more appropriate design approach is to ensure that the optimal solutions re-

main feasible and yield good performance in all possible realizations of unknown per-

turbations. We make distinction from stochastic uncertainty where the probability

distributions of the underlying stochastic perturbations are known. This requirement

often creates heavy burden on the system designer since in many realistic applica-

tions, such information is unavailable or too costly to obtain. In the following, we

treat uncertainty as a collection of data, which we call the uncertainty set. The size

of the uncertainty set corresponds to the amount of uncertainty about the data.2

Mathematically, the robust counterpart of the optimization problem in (A.7) with

uncertain data can be formulated as [7, 8]:

minζζζ f0(ζζζ,DDD0)

s.t. fi(ζζζ,DDDi) ≥ 0, ∀i ∈ {1, 2, . . . , m},
DDDj ∈ Uj , ∀j = 0, 1, . . . , m,

(A.8)

where {DDDi} are the uncertain data associated with the uncertainty sets {Ui}. The

feasible set and optimal solutions of (A.8) are called the robust feasible set and robust

optimal solutions, respectively. Note that this methodology does not assume that the

data uncertainty is of stochastic nature, and it only looks for solutions which remain

feasible for all possible data within the uncertainty set.

One might see that the cardinality of Ui can be potentially large and hence, the

robust counterpart may end up with infinitely many inequalities, in which case, it

is known as semi-infinite optimization problem. It is well-known that semi-infinite

problems, even convex ones, are not always tractable. This limits severely on the size

of problem we could address under the robust framework. Nevertheless, it has been

2The singleton uncertainty set corresponds to the case of perfect knowledge of the data.
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shown that there are important problems coupled with reasonable choices of uncer-

tainty sets, that retain polynomial complexity [7,8]. In such cases, there usually exist

equivalent robust counterparts, which are explicit convex optimization problems, that

are polynomially solvable using efficient algorithms such as interior-point methods.

One such example is an ellipsoidal uncertainty set, defined as follows [7, 8]:

Ui =
{
DDDi =DDDi,0 +

N∑

j=1

δjDDDi,j : ‖δδδ‖ ≤ ρ
}

(A.9)

where DDDi,0 is the nominal data, DDDi,j is the jth direction of data perturbation, and δδδ

is the perturbation vector. The level of feasibility of each robust constraint in (A.8)

is controlled by adjusting ρ deterministically. Although the uncertain-but-bounded

model of uncertainty in (A.9) requires a priori knowledge of ρ, it is much easier to

point out the support of the distribution of δδδ rather than the distribution itself. For

example, we may estimate the size of the ellipsoidal uncertainty set from the data

obtained from preliminary knowledge of the imperfect CSI estimation and/or from

extensive wireless channel measurement campaigns. Besides resulting in mathemat-

ical simplification, the ellipsoidal uncertainty set is also well-motivated by practical

CSI error models [117].
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Appendix B

BEP Derivation of TR Signaling

B.1 Output statistics of the AcR

In this appendix, we expand the output statistics of ZTR as

Z1 ,

Ns
2
−1∑

j=0

∫ ∞

−∞

∫ j2Tf+Tr+cjTp+T

j2Tf+Tr+cjTp

[
h(τ)sTR(t− τ)h(τ)sTR(t− Tr − τ)

]
dtdτ

=

Ns
2
−1∑

j=0

[
LCAP∑

l=1

α2
l

∫ j2Tf+cjTp+T

j2Tf+cjTp

sTR(t− τl)sTR(t+ Tr − τl)dt

+

LCAP∑

l=1

LCAP∑

m=1

αlαm

∫ j2Tf+cjTp+T

j2Tf+cjTp

sTR(t− τl)sTR(t+ Tr − τm)dt

]

=
Es

2
d0

LCAP∑

l=1

α2
l (B.1)

Z2 ,

Ns
2
−1∑

j=0

∫ ∞

−∞

∫ j2Tf+Tr+cjTp+T

j2Tf+Tr+cjTp

h(τ)sTR(t− τ)ñ(t− Tr)dtdτ

=

Ns
2
−1∑

j=0

LCAP∑

l=1

αl

∫ j2Tf+cjTp+T

j2Tf+cjTp

sTR(t+ Tr − τl)ñ(t)dt (B.2)

Z3 ,

Ns
2
−1∑

j=0

∫ ∞

−∞

∫ j2Tf+Tr+cjTp+T

j2Tf+Tr+cjTp

h(τ)sTR(t− Tr − τ)ñ(t)dtdτ

157



=

Ns
2
−1∑

j=0

LCAP∑

l=1

αl

∫ j2Tf+cjTp+T

j2Tf+cjTp

sTR(t− τl)ñ(t+ Tr)dt (B.3)

Z4 ,

Ns
2
−1∑

j=0

∫ j2Tf+Tr+cjTp+T

j2Tf+Tr+cjTp

ñ(t)ñ(t− Tr)dt

=

Ns
2
−1∑

j=0

∫ j2Tf+cjTp+T

j2Tf+cjTp

ñ(t)ñ(t+ Tr)dt. (B.4)

B.2 Conditional Variances of the output of AcR

In this appendix, we derive the conditional variances of Z2, Z3, and Z4 as shown below

V
{
Z2|{αl}LCAP

l=1

}

=

Ns
2
−1∑

j=0

Ns
2
−1∑

j′=0

LCAP∑

l=1

α2
l

∫ j2Tf+cjTp+T

j2Tf+cjTp

∫ j′2Tf+cj′Tp+T

j′2Tf+cj′Tp

sTR(t+ Tr − τl)sTR(u+ Tr − τl)Rñ(t− u)dtdu

≃ Es

4
N0

LCAP∑

l=1

α2
l (B.5)

V
{
Z3|{αl}LCAP

l=1

}

=

Ns
2
−1∑

j=0

Ns
2
−1∑

j′=0

LCAP∑

l=1

α2
l

∫ j2Tf+cjTp+T

j2Tf+cjTp

∫ j′2Tf+cj′Tp+T

j′2Tf+cj′Tp

sTR(t− τl)sTR(u− τl)Rñ(t− u)dtdu

≃ Es

4
N0

LCAP∑

l=1

α2
l . (B.6)

Since the noise components are zero-mean, jointly Gaussian r.v.’s, and by using the

result for the fourth-moment of jointly Gaussian random variables [166], the condi-

tional variance of Z4 can be derived as

V
{
Z4|{αl}LCAP

l=1

}

=

Ns
2
−1∑

j=0

Ns
2
−1∑

j′=0

∫ j2Tf+cjTp+T

j2Tf+cjTp

∫ j′2Tf+cj′Tp+T

j′2Tf+cj′Tp

R2
ñ(t− u) + Rñ(t− u− Tr)Rñ(t− u+ Tr)dtdu

≃ Ns

4
N2

0WT. (B.7)
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Note that in the above derivations, we have assumed that W ≫ 1/Tg so Rñ(τ) in

(4.8) is approximately equal to zero for |τ | ≥ Tg.

B.3 Sampling Expansion Approach

In this appendix, we show how we can use the sampling expansion approach to rep-

resent a signal of finite duration with a fixed number of samples. Using this approx-

imation, we can easily represent the signal energy in a finite duration with a finite

sum of squares of samples. In the following, we begin with the low-pass signals before

proceeding to the bandpass signals.

B.3.1 Lowpass Signals

Consider a low-pass real signal x(t) which is bandlimited over [−Wb,Wb]. Recall from

the inverse Fourier Transform, we can represent this signal as

x(t) =

∫ Wb

−Wb

X(f)ej2πftdf, (B.8)

where X(f) is the Fourier transform of x(t). From the Sampling theorem, it is well

known that x(t) can be represented by the Whittaker-Shannon-Kotel’nikov sampling

series [167–169] as

x(t) =

∞∑

m=−∞
xmsinc(2Wbt−m), (B.9)

where sinc(x) = sin(πx)/πx and xm = x(m/2Wb) denotes the mth sample of x(t),

sampled at a Nyquist rate of 2Wb. In the mathematical literature, the series in (B.9)

is also known as a cardinal series since the sampling functions are the cardinal sine

functions or sinc functions.1

Now, if x(t) is of almost finite duration T , we can approximate x(t) by truncating

1Note that the set of orthonormal functions in the expansion of (B.9) is {√2Wbsinc(2Wbt−m)}
with corresponding coefficients 1√

2Wb

x
(

m
2Wb

)
.
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the cardinal series in (B.9) to about 2WbT terms. This is the famous “Dimensionality

Theorem” or “2WbT -Theorem” [166,169,170]. It is clear that non-zero signals cannot

be both bandlimited and timelimited at the same time. As a result, a different set of

orthonormal functions known as prolate spheroidal wave functions instead of sampling

functions have been studied [171–174]. In [171–174], the authors showed that 2WbT

terms suffice to approximate the energy in a finite duration of a bandlimited process.2

Although the sampling approach lacks mathematical precision in the notion of both

bandlimited and timelimited signals, it has been shown to be very useful in gaining

engineering insight into a variety of problems [166,169,170,175]. In the following, we

show how the sampling approach can be used to approximate a bandlimited signal

x(t) with approximate duration T by a sum of 2WbT terms as follows:

x(t) ∼=
2WbT∑

m=1

xmsinc(2Wbt−m), 0 ≤ t ≤ T. (B.10)

Using the fact that

∫ ∞

−∞
sinc(2Wbt− i)sinc(2Wbt− j)dt =





1/2Wb, i = j

0, i 6= j,
(B.11)

we can then approximate the signal energy in the interval [0, T ] by

E =

∫ T

0

x2(t)dt ∼= 1

2Wb

2WbT∑

m=1

x2
m. (B.12)

In addition, we can also use the sampling approach to calculate

U =

∫ T

0

x(t)y(t)dt ∼= 1

2Wb

2WbT∑

m=1

xmym, (B.13)

where ym = y(m/2Wb) denotes the mth sample of a bandlimited signal y(t), sampled

2Since UWB channel can contain several hundreds paths of significant strength [37, 38], the
number of degrees of freedom available in a given time-bandwidth product is also large and thus
allow us to apply the “Dimensionality Theorem” to represent the received bandpass signals as 2WT -
tuple real vectors.
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at a Nyquist rate of 2Wb.

Next, we consider bandlimited low-pass white Gaussian noise, n(t), with power

spectral density N0/2 over [−Wb,Wb]. Similarly, we can represent n(t) over interval

[0, T ] in terms of 2WbT samples as follows:

n(t) ∼=
2WbT∑

m=1

nmsinc(2Wbt−m), 0 ≤ t ≤ T, (B.14)

where nm = n(m/2Wb) is the mth sample of n(t), sampled at a Nyquist rate of

2Wb over [0, T ], and nm is a Gaussian r.v. with zero-mean and variance N0W , i.e.,

nm ∼ N (0, N0W ). Note that the noise samples are i.i.d. across m. The noise energy

in [0, T ] can then be written as

∫ T

0

n2(t)dt ∼=
2WbT∑

m=1

(
nm√
2Wb

)2

, (B.15)

where (B.15) is the sum of 2WbT squared independent Gaussian r.v.’s, each with zero-

mean and variance N0/2, which is equivalent to a central chi-squared distribution with

2WbT degrees of freedom. Using (B.10) and (B.14), we can represent the received

signal as

r(t) ∼=
2WbT∑

m=1

(xm + nm) sinc(2Wbt−m), 0 ≤ t ≤ T, (B.16)

and the normalized received signal energy can be approximated as

1

σ2
n

∫ T

0

r2(t)dt ∼= 1

2Wbσ2
n

2WbT∑

m=1

(xm + nm)2, (B.17)

where we let σ2
n = N0/2. The sum in (B.17) now has a noncentral chi-square distri-

bution with 2WbT degrees of freedom and a non-centrality parameter given by

µ =
1

σ2
n

∫ T

0

x2(t)dt =
2E
N0

. (B.18)
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Furthermore, we can calculate the normalized U in (B.13) with noise as follows

1

σ2
n

∫ T

0

r1(t)r2(t)dt ∼=
1

2Wbσ2
n

2WbT∑

m=1

(xm + n1,m)(ym + n2,m)

=
1

2Wbσ2
n

2WbT∑

m=1

(xmym + ymn1,m + xmn2,m + n1,mn2,m),

(B.19)

where r1(t) = x(t) +n1(t) and r2(t) = y(t) + n2(t). Note that (4.21) in Chapter 4.3.2

takes a form similar to (B.19).

B.3.2 Bandpass Signals

Deterministic Case

Consider a real bandpass signal x(t) with bandwidth W at carrier frequency fc (as-

suming that fc > W/2). We can write x(t) in terms of its complex baseband equivalent

representation as follows [166,176–179]:

x(t) = k Re
{
xb(t)e

j2πfct
}

=
k

2

[
xb(t)e

j2πfct + x∗b(t)e
−j2πfct

]

= k [xI(t) cos(2πfct) − xQ(t) sin(2πfct)] , (B.20)

where k is a normalization factor and xb(t) = xI(t) + jxQ(t) is the complex baseband

equivalent signal of x(t) over frequency range of [−W/2,W/2]. The signal components

xI(t) and xQ(t) are called the in-phase (I) and quadrature (Q) components of xb(t),

respectively, where xI(t) = Re{xb(t)} and xQ(t) = Im{xb(t)}.

Taking the Fourier transform of x(t) gives

X(f) =

∫ ∞

−∞
x(t)e−j2πftdt

=
k

2

∫ ∞

−∞

[
xb(t)e

j2πfct + x∗b(t)e
−j2πfct

]
e−j2πftdt
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=
k

2
[Xb(f − fc) +X∗

b(−f − fc)] . (B.21)

This is the basic frequency domain relationship between the spectrum of the real

bandpass signal X(f) and the spectrum of the complex baseband equivalent signal

Xb(f). Figure B-1 shows the relationship between the spectrum of the bandpass

signal X(f), its scaled version XA(f) which is restricted to positive frequencies, and

its complex baseband equivalent signal Xb(f).3 Now, we will use Fig. B-1 to interpret

equation (B.20). Starting from an arbitrary complex baseband equivalent signal xb(t)

with Fourier transform Xb(f) as shown in the bottom of the figure, we first construct

XA(f) by translating Xb(f) to fc as depicted in the middle of the figure. We then

use XA(f) to construct a conjugate symmetric bandpass signal X(f) and scale the

amplitude by k/2 to proceed from the middle of the figure to the top.4 This simple

example shows how we can use (B.20) to generate a real-valued bandpass signal for

any given complex baseband signal.

Likewise, we can also obtain the complex baseband equivalent representation given

any real-valued bandpass signal by reversing the frequency domain operations in the

above example. Specifically, suppose that x(t) is an arbitrary real bandpass signal.

Thus, x(t) must satisfy the conjugate symmetry condition, so knowledge of only the

non-negative frequencies of X(f) is sufficient for reconstruction of X(f). In fact, such

knowledge is supplied by the analytic-equivalent signal xA(t) with Fourier transform

given by

XA(f) = 2U(f)X(f) =





2X(f), f > 0

0, otherwise,
(B.22)

where U(f) is the unit step function. Equivalently, (B.22) can be expressed in the

3The inverse Fourier transform of XA(f) is known as the analytic-equivalent signal for x(t).
4Since x(t) is a real-valued signal, its Fourier transform must satisfy conjugate symmetry

condition, i.e., X(f) = X∗(−f). Note that this conjugate symmetry condition implies that
Re{X(f)} = Re{X(−f)} (real part is symmetric) and Im{X(f)} = −Im(X(−f)) (imaginary part
is antisymmetric).
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Figure B-1: Frequency domain relationship between a real bandpass signal x(t) and
its complex equivalent signals xA(t) and xb(t).

time-domain as

xA(t) =

∫ ∞

−∞
XA(f)ej2πftdf =

[
δ(t) +

j

πt

]
∗ x(t), (B.23)

where the inverse Fourier transform of U(f) is 1
2

[
δ(t) + j

πt

]
. Note that the imaginary

part of the analytic signal is denoted by x̆(t) , 1/πt∗x(t).5 From (B.23), the original

real bandpass signal x(t) is clearly the real part of the analytic equivalent signal as

given by

x(t) = Re{xA(t)}. (B.24)

Now, by letting xA(t) = kxb(t)e
j2πfct, we obtain the equivalent relationship in (B.20).

5x̆(t) is also called the Hilbert transform of x(t) since the filter with impulse response 1/πt is
basically a ±π/2 phase shifter for all frequencies in the input signal.
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Moreover, the equivalent frequency-domain relationship between xA(t) and xb(t) is

given by

Xb(f) =
1

k
XA(f + fc). (B.25)

Thus, Xb(f) is obtained by translating XA(f) to the left by fc. Again, we refer to

Fig. B-1 to illustrate the relationship between X(f), XA(f), and Xb(f). However, we

now go from top to bottom: starting from an arbitrary conjugate symmetric X(f), we

construct XA(f), and then Xb(f). In summary, we can obtain a complex baseband

equivalent signal xb(t) that satisfies (B.20) and (B.21) starting from an arbitrary real

bandpass signal x(t).

Next, we turn to the relationship between the energy of x(t) and xb(t) as follows:

E =

∫ ∞

−∞
x2(t)dt =

k2

2

∫ ∞

−∞
|Xb(f − fc)|2df =

k2

2

∫ ∞

−∞
|xb(t)|2dt, (B.26)

where we have used the Parseval’s relation and (B.21) to obtain the above results.

From (B.26), we can see that although the normalization factor k appears to be

arbitrary, it leads to different scaling factor between the energies of xb(t) and x(t).

In the following, we briefly summarize the different normalization factors k used

in the literature [166, 176–179].

• When k = 2 [176], the energy of x(t) is twice that of xb(t). During down-

conversion, the baseband signal xI(t) can be retrieved by multiplying x(t) by

cos(2πfct) and ideal low-pass filtering at baseband [−W/2,W/2]. Similarly, the

baseband signal xQ(t) can be retrieved by multiplying x(t) by − sin(2πfct) and

ideal low-pass filtering at baseband [−W/2,W/2]. In this way, we have ensured

that the transmitted and received signals have equal energies.

• When k =
√

2 [166, 177], the energies of x(t) and xb(t) are equal. For down-

conversion, xI(t) and xQ(t) can be obtained simply by modulating x(t) by
√

2 cos(2πfct) and −
√

2 sin(2πfct) followed by ideal low-pass filtering at base-

band [−W/2,W/2], respectively.
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• When k = 1 [178, 179], the energy of x(t) is half that of xb(t). For down-

conversion, xI(t) and xQ(t) can be obtained by modulating x(t) by 2 cos(2πfct)

and −2 sin(2πfct) followed by ideal low-pass filtering at baseband [−W/2,W/2],

respectively.

Random Case

So far, we have focused on the complex representation of deterministic real band-

pass signals. Here, we will show how the results from the deterministic case can be

extended to bandpass random processes. Consider a real bandpass, wide-sense sta-

tionary (WSS) random process x(t), we can equivalently represent x(t) using (B.20)

as follows:

x(t) = Re
{
kxb(t)e

j2πfct
}

= Re {xA(t)} , (B.27)

where xA(t) and xb(t) are now complex random processes. Similar to (B.22), we

pass x(t) through a linear-time invariant (LTI) filter with transfer function 2U(f) to

obtain analytic-equivalent signal xA(t) with power spectral density given by

SxA
(f) = 4|U(f)|2Sx(f) = 4U(f)Sx(f), (B.28)

where Sx(f) denotes the power spectral density of x(t) and xA(t) is WSS6 (See Fig.

B-2). Using the fact that xb(t) = 1
k
xA(t)e−j2πfct, the autocorrelation function of xb(t)

is

Rxb
(t, τ) =

1

k2
E
{
xA(t)e−j2πfctx∗A(t− τ)ej2πfc(t−τ)

}

=
1

k2
E {xA(t)x∗A(t− τ)}e−j2πfcτ

=
1

k2
RxA

(τ)e−j2πfcτ . (B.29)

6The output of any LTI system whose input is WSS is still WSS.
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Thus, xb(t) is also WSS with power spectral density equal to

Sxb
(f) =

∫ ∞

−∞
Rxb

(τ)e−j2πfτdτ

=
1

k2
SxA

(f + fc), (B.30)

which shows that the power spectral density of xb(t) is the version of SxA
(f) translated

to the origin (See Fig. B-2). Note that (B.28) and (B.30) show that the power spectral

density of xb(t) is 4/k2 times the one-sided power spectral density of x(t).

Next, we consider the I and Q components of xb(t) and show the relation between

the autocorrelation function of x(t) and the autocorrelation and cross-correlation

functions of xI(t) and xQ(t). First, we derive the autocorrelation function of x(t)

using (B.20) as follows:

Rx(t, τ)

= Rx(τ)

= k2E
{

[xI(t) cos(2πfct) − xQ(t) sin(2πfct)]

× [xI(t− τ) cos(2πfc(t− τ)) − xQ(t− τ) sin(2πfc(t− τ))]
}

= k2
[
RxI

(t, τ) cos(2πfct) cos(2πfc(t− τ)) +RxQ
(t, τ) sin(2πfct) sin(2πfc(t− τ))

− RxI,xQ
(t, τ) cos(2πfct) sin(2πfc(t− τ)) − RxQ,xI

(t, τ) sin(2πfct) cos(2πfc(t− τ))
]

=
k2

2

{[
RxI

(t, τ) +RxQ
(t, τ)

]
cos(2πfcτ) +

[
RxI

(t, τ) − RxQ
(t, τ)

]
cos(2πfc(2t− τ))

−
[
RxQ,xI

(t, τ) −RxI,xQ
(t, τ)

]
sin(2πfcτ)

−
[
RxQ,xI

(t, τ) +RxI,xQ
(t, τ)

]
sin(2πfc(2t− τ))

}
. (B.31)

Since x(t) is WSS, RxI
(t, τ), RxI

(t, τ), RxI,xQ
(t, τ), and RxQ,xI

(t, τ) must depend only

on τ . In addition, the right-hand side of (B.31) must only be a function of τ and this

condition is satisfied only if the following equalities hold:

RxI
(τ) = RxQ

(τ) (B.32)

RxI,xQ
(τ) = −RxQ,xI

(τ). (B.33)
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Figure B-2: Power spectrum relationship between a real bandpass random signal x(t)
and its complex equivalent random signals xA(t) and xb(t). (Note that all amplitudes
are normalized to Sx(fc))
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As a result, (B.31) reduces to

Rx(τ) = k2
[
RxI

(τ) cos(2πfcτ) −RxQ,xI
(τ) sin(2πfcτ)

]
. (B.34)

Furthermore, we can also derive the relation between the autocorrelation function of

xb(t) and the autocorrelation and cross-correlation functions of xI(t) and xQ(t) as

follows:

Rxb
(t, τ) = E

{
[xI(t) + jxQ(t)] [xI(t− τ) − jxQ(t− τ)]

}

= RxI
(τ) +RxQ

(τ) + j
[
RxQ,xI

(τ) − RxI,xQ
(τ)
]

= 2
[
RxI

(τ) + jRxQ,xI
(τ)
]
, (B.35)

where we have used the equalities in (B.32) and (B.33) to obtain (B.35). By incor-

porating the results in (B.29), (B.34) and (B.35), we have

Rx(τ) =
k2

4

[
Rxb

(τ)ej2πfcτ +R∗
xb

(τ)e−j2πfcτ
]

=
k2

2
Re
{
Rxb

(τ)ej2πfcτ
}

=
1

2
Re {RxA

(τ)} , (B.36)

which shows the equivalent relation between x(t), xA(t), and xb(t) in terms of their

respective autocorrelation functions. Finally, using (B.36) (See Fig. B-2), we obtain

the power spectral density of x(t) as follows:

Sx(f) =
k2

4

∫ ∞

−∞

[
Rxb

(τ)ej2πfcτ +R∗
xb

(τ)e−j2πfcτ
]
e−j2πfτdτ

=
k2

4
[Sxb

(f − fc) + Sxb
(−f − fc)] . (B.37)

For example, when the bandpass random process is white Gaussian noise n(t) with

169



double-sided power spectral density given by

Sn(f) =





N0

2
, fc −W/2 ≤ |f | ≤ fc +W/2

0, otherwise.
(B.38)

From (B.27) and (B.30), its analytic-equivalent signal nA(t) has power spectral density

equal to

SnA
(f) =





2N0, fc −W/2 ≤ f ≤ fc +W/2

0, otherwise,
(B.39)

and its complex baseband equivalent signal nb(t) has power spectral density equal to

Snb
(f) =





2N0

k2 , −W/2 ≤ f ≤W/2

0, otherwise.
(B.40)

Since the power spectrum of n(t) is symmetric around fc, it follows that the power

spectrum of nb(t) is an even function from (B.30). This implies that Rnb
(τ) is real

for all τ , and so (B.35) yields RnQ,nI
(τ) = 0. This means that nI(t) and nQ(t) are

independent since nI(t) and nQ(t) are uncorrelated Gaussian processes. In this case,

the real and imaginary parts of nb(t) each have power spectral density equal to

SnI
(f) = SnQ

(f) =





N0

k2 , −W/2 ≤ f ≤W/2

0, otherwise.
(B.41)
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Sampling Expansion

In the following, we use (B.20) to express a real determinstic bandpass signal x(t)

with bandwidth W and duration T as follows:

x(t) = k
[
xI(t) cos(2πfct) − xQ(t) sin(2πfct)

]
, (B.42)

where xI(t) and xQ(t) have a frequency range of [−W/2,W/2]. From (B.10) and

letting Wb = W/2, we can approximate xI(t) and xQ(t) over a duration T as

xI(t) ∼=
WT∑

m=1

xI,msinc(Wt−m), 0 ≤ t ≤ T

xQ(t) ∼=
WT∑

m=1

xQ,msinc(Wt−m), 0 ≤ t ≤ T, (B.43)

where xI,m = xI(m/W ) and xQ,m = xQ(m/W ). It follows from (B.12) and (B.26)

that the signal energy of x(t) in the interval [0, T ] can be approximated by

E =

∫ T

0

x2(t)dt ∼= k2

2

WT∑

m=1

[(
xI,m√
W

)2

+

(
xQ,m√
W

)2
]
, (B.44)

and the correlation of x(t) and y(t) in (B.13) becomes

U =

∫ T

0

x(t)y(t)dt ∼= k2

2W

WT∑

m=1

(xI,myI,m + xQ,myQ,m) , (B.45)

where yI,m = yI(m/W ) and yQ,m = yQ(m/W ).

Similarly, a bandpass WSS Gaussian noise n(t) with double-sided power spectral

density N0/2 can be represented as

n(t) = k
[
nI(t) cos(2πfct) − nQ(t) sin(2πfct)

]
, (B.46)

and the complex baseband equivalent signals nI(t) and nQ(t) with a frequency range

of [−W/2,W/2] over interval [0, T ] can be approximated using (B.14) with Wb = W/2
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as

nI(t) ∼=
WT∑

m=1

nI,msinc(Wt−m), 0 ≤ t ≤ T

nQ(t) ∼=
WT∑

m=1

nQ,msinc(Wt−m), 0 ≤ t ≤ T, (B.47)

where nI,m = nI(m/W ) and nQ,m = nQ(m/W ) are themth samples of nI(t) and nQ(t),

sampled at a Nyquist rate W over [0, T ], respectively. In addition, nI,m and nQ,m are

i.i.d. Gaussian r.v.’s with zero-mean and variance N0W/k
2, respectively. Similar to

the argument in (B.44), the noise energy in [0, T ] can be written as

∫ T

0

n2(t)dt ∼= k2

2

WT∑

m=1

[(
nI,m√
W

)2

+

(
nQ,m√
W

)2
]
, (B.48)

which is equivalent to having a central chi-squared distribution with 2WT degrees of

freedom. Using (B.43) and (B.47), the received complex baseband equivalent signals

over interval [0, T ] can be expressed as

rI(t) ∼=
WT∑

m=1

(xI,m + nI,m) sinc(Wt−m), 0 ≤ t ≤ T

rQ(t) ∼=
WT∑

m=1

(xQ,m + nQ,m) sinc(Wt−m), 0 ≤ t ≤ T, (B.49)

where r(t) = k
[
rI(t) cos 2πfct−rQ(t) sin 2πfct

]
is the received bandpass signal. There-

fore, the normalized received signal energy can be approximated as

1

σ2
n

∫ T

0

r2(t)dt =
1

2σ2
n

∫ T

0

[
r2
I (t) + r2

Q(t)
]
dt

=
1

2σ2
n

∫ T

0

[xI(t) + nI(t)]
2 dt

+
1

2σ2
n

∫ T

0

[xQ(t) + nQ(t)]2 dt

∼= k2

2Wσ2
n

WT∑

m=1

[
(xI,m + nI,m)2 + (xQ,m + nQ,m)2

]
, (B.50)
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where (B.50) has a noncentral chi-square distribution with 2WT degrees of freedom

and a non-centrality parameter given by

µ =
1

σ2
n

∫ T

0

x2(t)dt =
2E
N0

. (B.51)

Furthermore, the normalized U in (B.19) becomes

1

σ2
n

∫ T

0

r1(t)r2(t)dt

∼= k2

2Wσ2
n

WT∑

m=1

[(xI,m + nI,1,m)(yI,m + nI,2,m) + (xQ,m + nQ,1,m)(yQ,m + nQ,2,m)]

=
k2

2Wσ2
n

2WT∑

m=1

(x̃mỹm + ỹmñ1,m + x̃mñ2,m + ñ1,mñ2,m), (B.52)

where x̃2m−1 , xI,m, x̃2m , xQ,m, ỹ2m−1 , yI,m, and ỹ2m , yQ,m for m = 1, . . . ,WT .

Note that (4.21) in Chapter 4.3.2 has a form similar to (B.52) with k = 1.

B.4 Derivation of (4.28)

In this appendix, we derive the expression for (4.28), where Y1 and Y2 are defined

in (4.26) and (4.27) with pdfs fNC(y1, µ, n) and fC(y2, n) respectively. Consider two

new r.v.’s R1 and R2 where R1 =
√
Y1 and R2 =

√
Y2, the pdfs of R1 and R2 can be

found by using transformation of r.v. as follows

fR1(r1) = 2r1fNC(r2
1, µ, n) (B.53)

fR2(r2) = 2r2fC(r2
2, n). (B.54)

Using (B.54), FR2(r2) can be obtained as

FR2(r2) = 1 − e−r2
2

n−1∑

i=0

r2i
2

i!
. (B.55)
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By using (B.53) and (B.55), we can rewrite

P {Y1 < Y2} =

∫ ∞

0

2rn
1 e

−(r2
1+µ)

(
1

µ

)(n−1)/2

In−1 (2r1
√
µ) e−r2

1

n−1∑

i=0

r2i
1

i!
dr1

= e−µ
n−1∑

i=0

2

i!

(
1

µ

)(n−1)/2 ∫ ∞

0

rn+2i
1 e−2r2

1In−1 (2r1
√
µ) dr1. (B.56)

By using the result from [180], we have the following integral given by

∫ ∞

0

xn+2ie−2x2

In−1 (2x
√
µ) dx =

1

2n

[
i! (4µ)(n−1)/2

2n+i

]
e

µ
2

i∑

k=0

(i+ n− 1)!

(i− k)!(n− 1 + k)!

(µ/2)k

k!
.

(B.57)

By substituting (B.57) into (B.56), we have

P {Y1 < Y2} =
e−

µ
2

2n

n−1∑

i=0

(
µ
2

)i

i!

n−1∑

k=i

1

2k

(k + n− 1)!

(k − i)!(n + i− 1)!
. (B.58)
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Appendix C

BEP Derivation of TR signaling

with NBI

C.1 Derivation of (5.5) and (5.6)

In this appendix, the derivation of the non-centrality parameters µ
(NBI)
TR,Y1

in (5.5) and

µ
(NBI)
TR,Y2

in (5.6) are shown. We begin first with the derivation of µ
(NBI)
TR,Y1

which can be

written as

µ
(NBI)
TR,Y1

=
1

2σ2
TR

Ns
2
−1∑

j=0

∫ T

0

w2
j (t)dt

︸ ︷︷ ︸
,µA

+
1

8σ2
TR

Ns
2
−1∑

j=0

∫ T

0

(ξ1,j(t) + ξ2,j(t))
2 dt

︸ ︷︷ ︸
,µB

+
1

2σ2
TR

Ns
2
−1∑

j=0

∫ T

0

wj(t) (ξ1,j(t) + ξ2,j(t)) dt

︸ ︷︷ ︸
,µC

, (C.1)

where we can futher simplify µA and µB in (C.1) as follows:

µA =
1

2σ2
TR

Ns
2
−1∑

j=0

∫ T

0

w2
j (t)dt =

Es

N0

LCAP∑

l=1

α2
l ,

µB ≈ α2
JNsJ0T

2N0
+
α2

JNsJ0T

2N0
cos(2πfJTr). (C.2)
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Note that we have simply used the result in (4.25) to obtain µA in (C.2). However,

to obtain µB in (C.2), we need to expand all the terms of µB in (C.1) as follows:

1

8σ2
TR

Ns
2
−1∑

j=0

∫ T

0

ξ2
1,j(t)dt =

α2
JJ0

2N0

Ns
2
−1∑

j=0

[
T +

sin (4πfJ(T + j2Tf + cjTp) + 2θ)

4πfJ

−sin (4πfJ(j2Tf + cjTp) + 2θ)

4πfJ

]
≈ α2

JNsJ0T

4N0
,

1

8σ2
TR

Ns
2
−1∑

j=0

∫ T

0

ξ2
2,j(t)dt ≈

α2
JNsJ0T

4N0
, (C.3)

where we have made the above approximations by observing that T ≫ 1
4πfJ

and

| sin(φ)| ≤ 1. In addition,

1

4σ2
TR

Ns
2
−1∑

j=0

∫ T

0

ξ1,j(t)ξ2,j(t)dt ≈ µD. (C.4)

where µD =
α2

JNsJ0T

2N0
cos(2πfJTr) when T cos(2πfJTr) ≫ 1

4πfJ
. Otherwise, µD is on

the same order as 1
4πfJ

, which is negligible compared to the first term of µB in

(C.2). As a result, we can ignore the latter case and consider only the scenario

when T cos(2πfJTr) ≫ 1
4πfJ

as shown in (C.2).

Next, we can rewrite µC in (C.1) as

µC =
2αJ

√
2EpJ0

N0

Ns
2
−1∑

j=0

aj

LCAP∑

l=1

αl

∫ Tp

0

p(t)
[
cos (2πfJ(t+ τl + j2Tf + cjTp) + θ)

+ cos (2πfJ(t+ τl + j2Tf + cjTp + Tr) + θ)
]
dt. (C.5)

In order to further simplify (C.5), we first look at how we can solve for
∫ Tp

0
p(t) cos(2πfJ t+

φ) dt as follows:

∫ Tp

0

p(t) cos(2πfJ t+ φ) dt
(a)
=

1

2

∫ ∞

−∞
p(t)

[
e2πfJt+φ + e−2πfJt−φ

]
dt

(b)
=

1

2

∫ ∞

−∞
P̂ (f)

[
eφδ(f − fJ) + e−φδ(f + fJ)

]
df
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(c)
=

1

2
P̂ (fJ) e

φ +
1

2
P̂ ∗(fJ) e

−φ

(d)
= ℜ

{
|P̂ (fJ)| eφe arg P̂ (fJ)

}

(e)
= |P̂ (fJ)| cos

(
φ+ arg P̂ (fJ)

)

where (a) follows from the assumption that p(t) is zero outside the interval [0, Tp]; (b)

follows from the Parseval’s relationship; (c) follows from the fact that p(t) is real so

P̂ (−f) = P̂ ∗(f); (d) follows from the definition of the real part of a complex number;

and (e) express in terms of cosine. Now, by substituting this result into (C.5) and

using the fact that cosA+ cosB = 2 cos((A+B)/2) cos((A− B)/2), we obtain

µC =
2αJ|P̂ (fJ)|

√
2EpJ0

N0

Ns
2
−1∑

j=0

aj

LCAP∑

l=1

αl

×
[
cos
(
2πfJ(τl + j2Tf + cjTp) + θ + arg P̂ (fJ)

)

+ cos
(
2πfJ(τl + j2Tf + cjTp + Tr) + θ + arg P̂ (fJ)

)]

=
4αJ|P̂ (fJ)|

√
2EpJ0 cos(πfJTr)

N0

Ns
2
−1∑

j=0

aj

LCAP∑

l=1

αl

× cos (2πfJ(τl + j2Tf + cjTp + Tr/2) + ϕ) , (C.6)

where |P̂ (fJ)| is the magnitude of the frequency response of p(t) at frequency fJ. The

composite random phase is given by ϕ , arg{P̂ (fJ)} + θ, where arg{P̂ (fJ)} is the

angle of the frequency response of p(t) at frequency fJ, and ϕ is uniformly distributed

over [0, 2π). In summary, we obtain µ
(NBI)
TR,Y1

in (5.5) using (C.2) and (C.6).

Using (C.1), (C.2) and (C.6), we can determine the validity of the approximate

analytical method using the following ratios:

µA

µC
=

∣∣∣∣∣∣

∑LCAP

l=1 α2
l

αJ cos (πfJTr)
∑Ns

2
−1

j=0 aj

∑LCAP

l=1 αl cos
(
2πfJ

(
τl + j2Tf + cjTp + Tr

2

)
+ ϕ

)

∣∣∣∣∣∣

× Ns

4|P̂ (fJ)|

√
TfSIR

2
, (C.7)
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µB

µC

=

∣∣∣∣∣∣
αJ cos(πfJTr)

∑Ns
2
−1

j=0 aj

∑LCAP

l=1 αl cos
(
2πfJ

(
τl + j2Tf + cjTp + Tr

2

)
+ ϕ

)

∣∣∣∣∣∣

× NsLCAPTp

4|P̂ (fJ)|

√
1

2TfSIR
(C.8)

For a given set of system parameters, we simply need to check if µA + µB ≫ µC

using (C.7) and (C.8). For example, this can arise when Walsh-Hadamard sequences

are used for {aj}. To elaborate on this example, we first numerically average (over

{αl} and αJ) the quantities within | · | of (C.7) and (C.8) for a typical set of system

parameters (Tf = 100ns, Tp = 0.5ns, Tr = 40ns, possible fJ = 1.575 GHz, 3.5 GHz,

and 5.745 GHz) and considering cj = 1 for all j and Walsh-Hadamard sequences for

{aj}. Results have shown that the value of | · | in (C.7) and (C.8) is always greater

than 1. Approximating these factors by 1 and |P̂ (fJ)| ≈
√
Tp, we focus on the rest of

the terms in (C.7) and (C.8). Since Tf is usually on the order of 100 times Tp, and Ns

and LCAP are usually larger than 4
√

2, we can verify that µA + µB ≫ µC and neglect

µC when SIR ≥ −20 dB.

Using similar approach leading to (C.3) and (C.4), we can approximate µ
(NBI)
TR,Y2

in

(5.6) straightforwardly as follows:

µ
(NBI)
TR,Y2

=
1

8σ2
TR

Ns
2
−1∑

j=0

∫ T

0

(ξ2,j(t) − ξ1,j(t))
2dt

≈ α2
JNsJ0T

2N0
− α2

JNsJ0T

2N0
cos(2πfJTr). (C.9)

C.2 Derivation of (5.12) and (5.13)

In this appendix, the non-centrality parameters µ
(NBI)
TR,Y3

in (5.12) and µ
(NBI)
TR,Y4

in (5.13)

are derived. Following similar steps in Appendix D.1, µ
(NBI)
TR,Y3

can be written as

µ
(NBI)
TR,Y3

=
1

2σ2
TR

Ns
2
−1∑

j=0

∫ T

0

w2
j (t)dt

︸ ︷︷ ︸
,µ̃A

+
1

8σ2
TR

Ns
2
−1∑

j=0

∫ T

0

(ξ2,j(t) − ξ1,j(t))
2 dt

︸ ︷︷ ︸
,µ̃B
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+
1

2σ2
TR

Ns
2
−1∑

j=0

∫ T

0

wj(t) (ξ2,j(t) − ξ1,j(t)) dt

︸ ︷︷ ︸
,µ̃C

≈ Es

N0

LCAP∑

l=1

α2
l +

α2
JNsJ0T

2N0
− α2

JNsJ0T

2N0
cos(2πfJTr)

+
4αJ|P̂ (fJ)|

√
2EpJ0 sin (−πfJTr)

N0

Ns
2
−1∑

j=0

aj

LCAP∑

l=1

αl

× sin (2πfJ (τl + j2Tf + cjTp + Tr/2) + ϕ) , (C.10)

where µ̃A and µ̃B in (C.10) follows straightforwardly from (C.2) and (C.9), and we

have used the results in (C.5) and (C.6) and the fact that cosB − cosA = 2 sin((A+

B)/2) sin((A− B)/2) to obtain µ̃C in (C.10). Next, µ
(NBI)
TR,Y4

in (5.13) is given by

µ
(NBI)
TR,Y4

=
1

8σ2
TR

Ns
2
−1∑

j=0

∫ T

0

(ξ2,j(t) + ξ1,j(t))
2dt

≈ α2
JNsJ0T

2N0
+
α2

JNsJ0T

2N0
cos(2πfJTr), (C.11)

where the above result follows directly from (C.2).

C.3 Derivation of (5.18), (5.19), (5.20), and (5.21)

Under the approximate analytical method, we can approximate the conditional non-

centrality parameters of Y1 as

µ
(NBI)
DTR,Y1

≈ 1

2σ2
DTR

Ns−1∑

j=0

∫ T

0

w2
j (t)dt

︸ ︷︷ ︸
,µA

+
1

8σ2
DTR

Ns−1∑

j=0

∫ T

0

(ξ1,j(t) + ξ2,j(t))
2 dt

︸ ︷︷ ︸
,µB

, (C.12)
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where µA and µB are obtained using similar approach as shown in Appendix C.1. For

brevity, we only give the results as follows:

µA =
1

2σ2
DTR

Ns−1∑

j=0

∫ T

0

w2
j (t)dt =

2Es

N0

LCAP∑

l=1

α2
l ,

µB ≈ α2
JNsJ0T

N0

+
α2

JNsJ0T

N0

cos(2πfJNsTf). (C.13)

where the differences between (C.13) and (C.2) lies in a doubled captured signal

energy, double degrees of freedom, and the delay separation is now NsTf instead of

Tr. As a result, we have the following desired results:

µ
(NBI)
DTR,Y2

=
1

8σ2
DTR

Ns−1∑

j=0

∫ T

0

(ξ2,j(t) − ξ1,j(t))
2dt

≈ α2
JNsJ0T

N0
− α2

JNsJ0T

N0
cos(2πfJNsTf) (C.14)

µ
(NBI)
DTR,Y3

≈ 1

2σ2
DTR

Ns−1∑

j=0

∫ T

0

w2
j (t)dt+

1

8σ2
DTR

Ns−1∑

j=0

∫ T

0

(ξ2,j(t) − ξ1,j(t))
2 dt

≈ 2Es

N0

LCAP∑

l=1

α2
l +

α2
JNsJ0T

N0
− α2

JNsJ0T

N0
cos(2πfJNsTf) (C.15)

µ
(NBI)
DTR,Y4

=
1

8σ2
DTR

Ns−1∑

j=0

∫ T

0

(ξ1,j(t) + ξ2,j(t))
2dt

≈ α2
JNsJ0T

N0

+
α2

JNsJ0T

N0

cos(2πfJNsTf). (C.16)
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robust maximin approach for MIMO communiations with imperfect channel

state information based on convex optimization,” IEEE Trans. Signal Process.,

vol. 54, no. 1, pp. 346–360, Jan. 2006.

[118] A. Ben-Tal, A. Nemirovski, and C. Roos, “Robust solutions of uncertain

quadratic and conic-quadratic problems,” SIAM J. Optim., vol. 13, no. 2, pp.

535–560, 2002.

[119] A. Ben-Tal and A. Nemirovski, “Robust optimization - Methodology and ap-

plications,” Math. Program. Ser B, vol. 92, no. 3, pp. 453–480, 2002.

193



[120] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-

metric cones,” Optim. Meth. Softw., vol. 11-12, pp. 625–653, Aug. 1999.

[121] A. F. Molisch, Wireless Communications, 1st ed. Piscataway, New Jersey,

08855-1331: IEEE Press, J. Wiley and Sons, 2005.

[122] A. Goldsmith, Wireless Communications. Cambridge, UK: Cambridge Uni-

versity Press, 2006.

[123] R. U. Nabar, H. Bölcskei, and F. W. Kneubühler, “Fading relay channels: Per-

formance limits and space-time signal design,” IEEE J. Sel. Areas Commun.,

vol. 22, no. 6, pp. 1099–1109, Aug. 2004.

[124] S. Kandukuri and S. Boyd, “Optimal power control in interference-limited

fading wireless channels with outage-probability specifications,” IEEE Trans.

Wireless Commun., vol. 1, no. 1, pp. 46–55, Jan. 2002.

[125] J. Papandriopoulos, J. Evans, and S. Dey, “Optimal power control for Rayleigh-

faded multiuser systems with outage constraints,” IEEE Trans. Wireless Com-

mun., vol. 4, no. 6, pp. 2705–2715, Nov. 2005.

[126] M. Andersin and Z. Rosberg, “Time variant power control in cellular networks,”

in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun.,

vol. 1, Taipei, TAIWAN, Oct. 1996, pp. 193–197.

[127] S. V. Hanly, “Capacity and power control in spread spectrum macrodiversity

radio networks,” IEEE Trans. Commun., vol. 44, no. 2, pp. 247–256, Feb. 1996.

[128] R. A. Horn and C. R. Johnson, Matrix Analysis, 1st ed. Cambridge: Cambridge

University Press, 1990.

[129] J. Zander, “Performance of optimum transmitter power control in cellular radio

systems,” IEEE Trans. Veh. Technol., vol. 41, no. 1, pp. 57–62, Feb. 1992.

[130] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, 1st ed.

Belmont, MA 02178-9998: Athena Scientific, 1997.

194



[131] Y.-L. Chao and R. Scholtz, “Novel UWB transmitted-reference signaling

schemes,” in Proc. Asilomar Conf. on Signals, Systems and Computers, vol. 1,

Pacific Grove, CA, Nov. 2004, pp. 652–656.

[132] C.-C. Chong and S. K. Yong, “A generic statistical-based UWB channel model

for high-rise apartments,” IEEE Trans. Antennas Propag., vol. 53, no. 8, pp.

2389–2399, Aug. 2005.

[133] C.-C. Chong, Y.-E. Kim, S. K. Yong, and S.-S. Lee, “Statistical characterization

of the UWB propagation channel in indoor residential environment,” Wireless

Commun. and Mobile Computing, vol. 5, no. 5, pp. 503–512, Aug. 2005.

[134] S. R. Aedudodla, S. Vijayakumaran, and T. F. Wong, “Acquisition of direct-

sequence transmitted reference ultra-wideband signals,” IEEE J. Sel. Areas

Commun., vol. 24, no. 4, pp. 759–765, Apr. 2006.

[135] N. He and C. Tepedelenlioglu, “Performance analysis of non-coherent UWB

receivers at different synchronization levels,” IEEE Trans. Wireless Commun.,

vol. 5, no. 6, pp. 1266–1273, Jun. 2006.

[136] M. Casu and G. Durisi, “Implementation aspects of a transmitted-reference

UWB receiver,” Wireless Commun. Mobile Comput., vol. 5, no. 5, pp. 537–549,

Aug. 2005.

[137] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels:

A Unified Approach to Performance Analysis, 1st ed. New York, NY, 10158:

John Wiley & Sons, Inc., 2000.

[138] M. Z. Win, G. Chrisikos, and N. R. Sollenberger, “Performance of Rake re-

ception in dense multipath channels: Implications of spreading bandwidth and

selection diversity order,” IEEE J. Sel. Areas Commun., vol. 18, no. 8, pp.

1516–1525, Aug. 2000.

195



[139] D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Performance of selec-

tive Rake reception in a realistic UWB channel,” in Proc. IEEE Int. Conf. on

Commun., vol. 2, New York, NY, May 2002, pp. 763–767.

[140] J. Gil-Pelaez, “Note on the inversion theorem,” Biometrika, vol. 38, no. 3, pp.

481–482, Dec. 1951.

[141] D. Dardari, A. Giorgetti, M. Chiani, T. Q. S. Quek, and M. Z. Win, “A stop-

and-go transmitted-reference UWB receiver,” in Proc. IEEE Int. Conf. on Utra

Wideband, Waltham, MA, Sep. 2006, pp. 309–314.

[142] P. Haschberger, M. Bundschuh, and V. Tank, “Infrared sensor for the detection

and protection of wildlife,” J. Opt. Eng., vol. 35, no. 3, pp. 882–889, Mar. 1996.

[143] M. Hawkes and A. Nehorai, “Wideband source localization using a distributed

acoustic vector-sensor array,” IEEE Trans. Signal Process., vol. 51, no. 6, pp.

1479–1491, Jun. 2003.

[144] R. Nemzek, J. Dreicer, D. C. Torney, and T. Warnock, “Distributed detection

sensor networks for detection of mobile radioactive sources,” IEEE Trans. Nucl.

Sci., vol. 51, no. 4, pp. 1693–1700, Aug. 2004.

[145] S. M. Brennan, A. M. Mielke, and D. C. Torney, “Radioactive source detection

by sensor networks,” IEEE Trans. Nucl. Sci., vol. 52, no. 3, pp. 813–819, Jun.

2005.

[146] J. Orriss and S. K. Barton, “Probability distributions for the number of radio

transceivers which can communicate with one another,” IEEE Trans. Commun.,

vol. 51, no. 4, pp. 676–681, Apr. 2003.

[147] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm prob-

lem in a mobile ad hoc network,” Wireless Networks, vol. 8, no. 2/3, pp. 153–

167, Mar. 2002.

196



[148] B. Williams and T. Camp, “Comparison of broadcasting techniques for mobile

ad hoc networks,” in Proc. ACM Symp. on Mobile Ad Hoc Networking and

Computing, Lausanne, SWITZERLAND, Jun. 2002, pp. 194–205.

[149] D. Miorandi and E. Altman, “Coverage and connectivity of Ad Hoc networks

in presence of channel randomness,” in Proc. IEEE Joint Conf. of the IEEE

Computer and Commun. Societies, vol. 1, Miami, FL, Mar. 2005, pp. 491–502.

[150] C. Bettstetter and C. Hartmann, “Connectivity of wireless multihop networks in

a shadow fading environment,” Wireless Networks, vol. 11, no. 5, pp. 571–579,

Sep. 2005.

[151] M. Zorzi and S. Pupolin, “Optimum transmission ranges in multihop packet

radio networks in the presence of fading,” IEEE Trans. Commun., vol. 43,

no. 7, pp. 2201–2205, Jul. 1995.

[152] D. Maltz, J. Broch, and D. Johnson, “Lessons from a full-scale mutlihop wireless

ad-hoc network testbed,” IEEE Personal Commun. Mag., vol. 8, no. 1, pp. 48–

59, Feb. 2001.

[153] A. Ephremides, “Energy concerns in wireless networks,” IEEE Commun. Mag.,

vol. 9, no. 4, pp. 48–59, Aug. 2002.

[154] A. J. Goldsmith and S. B. Wicker, “Design challenges for energy-constrained

ad hoc wireless networks,” IEEE Commun. Mag., vol. 9, no. 4, pp. 8–27, Aug.

2002.

[155] A. Charnes and W. Cooper, “Chance-constrained programming,” Management

Science, vol. 6, no. 1, pp. 73–79, Oct. 1959.

[156] J. Birge and F. Louveaux, Introduction to Stochastic Programming. New York:

Springer-Verlag, 1997.

[157] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for net-

work utility maximization,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp.

1439–1451, Aug. 2006.

197



[158] E. Sousa, “Performance of a spread spectrum packet radio network link in a

Poisson field of interferers,” IEEE Trans. Inf. Theory, vol. 38, no. 6, pp. 1743–

1754, Nov. 1992.

[159] J. Ilow, D. Hatzinakos, and A. Venetsanopoulos, “Performance of FH SS radio

networks with interference modeled as a mixture of Gaussian and alpha-stable

noise,” IEEE Trans. Commun., vol. 46, no. 4, pp. 509–520, Apr. 1998.

[160] P. C. Pinto, C.-C. Chong, A. Giorgetti, M. Chiani, and M. Z. Win, “Narrowband

communication in a Poisson field of ultrawideband interferers,” in Proc. IEEE

Int. Conf. on Utra Wideband, Waltham, MA, Sep. 2006, pp. 387–392.

[161] A. Rabbachin, T. Q. S. Quek, P. Pinto, I. Oppermann, and M. Z. Win, “UWB

energy detector in the presence of multiple narrowband interferers,” in Proc.

IEEE Int. Conf. on Utra Wideband, SINGAPORE, Sep. 2007, pp. 857–862.

[162] ——, “Effect of Aggregate Narrowband Interference on the UWB Autocor-

relation Receiver,” in Proc. IEEE Int. Conf. on Utra Wideband, Hannover,

GERMANY, Sep. 2008, submitted.

[163] J. H. Kotecha, V. Ramachandran, and A. M. Sayeed, “Distributed multitarget

classification in wireless sensor networks,” IEEE J. Sel. Areas Commun., vol. 23,

no. 4, pp. 703–713, Apr. 2005.

[164] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Math. Pro-

gram. Ser B, vol. 95, no. 1, pp. 3–51, 2003.

[165] A. Ben-Tal and A. Nemirovski, “Robust solutions of linear programming prob-

lems contaminated with uncertain data,” Math. Program. Ser B, vol. 88, pp.

411–424, 2000.

[166] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering,

1st ed. London: John Wiley & Sons, Inc., 1965.

198



[167] E. T. Whittaker, “On the functions which are represented by the exapansions

of the interpolation theory,” Proc. Roy. Soc. Edinburgh, vol. 35, pp. 181–194,

1915.

[168] V. Kotel’nikov, “On the carrying capacity of the “ether” and wire in telecommu-

nications,” Material for the First All-Union Conference of Questions of Com-

munication, Izd. Red. Upr. Svyazi RKKA, 1933.

[169] C. E. Shannon, “Communications in the presence of noise,” Proc. IRE, vol. 37,

pp. 10–21, Jan. 1949.

[170] R. G. Gallager, Information Theory and Reliable Communication, 1st ed. New

York, NY, 10158: John Wiley & Sons, Inc., 1968.

[171] D. Slepian and H. Pollak, “Prolate spheroidal wave functions, Fourier analysis

and uncertainty: Part I,” Bell Sys. Tech. Journal, vol. 40, pp. 43–64, Jan. 1961.

[172] H. Landau and H. Pollak, “Prolate spheroidal wave functions, Fourier analysis

and uncertainty: Part II,” Bell Sys. Tech. Journal, vol. 40, pp. 65–84, Jan.

1961.

[173] ——, “Prolate spheroidal wave functions, Fourier analysis and uncertainty: Part

III,” Bell Sys. Tech. Journal, vol. 41, pp. 1295–1336, Jul. 1962.

[174] D. Slepian, “On bandwidth,” Proc. IEEE, vol. 64, no. 3, pp. 292–300, Mar.

1976.

[175] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc. IEEE,

vol. 55, no. 4, pp. 523–531, Apr. 1967.

[176] R. G. Gallager, Principles of Digital Communication. 6.450 MIT Course Notes,

2007.

[177] D. Tse and P. Viswanath, Fundatmentals of Wireless Communications. New

York, NY: Cambridge University Press, 2005.

199



[178] S. Benedetto and E. Biglieri, Principles of Digital Transmission with Wireless

Applications, 1st ed. New York, NY, 10013: Kluwer Academic/Plenum Pub-

lishers, 1999.

[179] J. G. Proakis, Digital Communications, 4th ed. New York, NY, 10020:

McGraw-Hill, Inc., 2001.

[180] W. Lindsey, “Error probabilities for rician fading multichannel reception of

binary and N-ary signals,” IEEE Trans. Inf. Theory, vol. 11, no. 4, pp. 339–

350, Oct. 1964.

200


