
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-061 October 10, 2008

Modular Generation and Customization

Jonathan Edwards

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4407443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modular Generation and Customization

Jonathan Edwards
MIT Computer Science and Artificial Intelligence Lab

edwards@csail.mit.edu

Abstract
Modularity and flexibility can conflict in multi-language sys-
tems. For example, the templates commonly used to gener-
ate web pages must be manually updated when the database
schema changes. Modularity can be improved by generating
web pages automatically from the database schema, but it is
hard for such a generator to produce the same variety of out-
puts that are easily achieved by ad hoc edits to a template.
Ideally, such ad hoc edits would be abstracted into trans-
formations that compose with the generator, offering both
modularity and flexibility. However common customizations
cannot be abstracted using the standard techniques of textual
identifiers and ordinal positions.

These difficulties are distilled into a challenge problem to
evaluate potential solutions. A solution is proposed based on
field trees, a new data model for software artifacts that pro-
vides persistent identifiers and unshifting positions within
sequences. But using field trees with conventional program-
ming languages and development environments requires
more effort than the ad hoc editing they seek to supplant.
Field trees are therefore extended into differential trees,
which integrate artifacts and their transformations into a uni-
fied representation.

Categories and Subject Descriptors D.2.11 [SOFTWARE
ENGINEERING]: Software Architectures; D.2.7 [SOFT-
WARE ENGINEERING]: Distribution, Maintenance, and
Enhancement; D.2.3 [SOFTWARE ENGINEERING]: Cod-
ing Tools and Techniques; D.2.6 [SOFTWARE ENGINEER-
ING]: Programming Environments

General Terms Languages, Design

Keywords Generative programming, transformations, re-
finement, customization, templates

1. Introduction
Complex systems are often built from multiple specialized
languages and representations [8, 24]. For example a web
system might use Java, SQL, HTML, and PHP. There are
good reasons for language diversity: specialized syntax and
semantics can make it easier to express certain aspects of
a design, leverage specialized tools, and standardize inter-
faces between systems. Unfortunately diversity can also lead
to disharmony. This paper focuses specifically on the prob-
lem of modularity between artifacts written in multiple lan-
guages. Changes in one artifact can lead to the need for man-
ual changes in others because there is duplicated information
or interdependencies between internal structures.

For example, web pages are often generated with a tem-
plate language like PHP that embeds fragments of exe-
cutable language syntax within HTML. These fragments
can dynamically extract fields from a database record and
expand them into HTML form fields. But when the database
schema changes, as when adding or deleting fields, many
templates may need to be manually adjusted. We could make
the system more modular by generating HTML pages di-
rectly from the database schema. However to vary the de-
sign of the generated pages we would have to customize or
parameterize the generator, which can be complicated and
difficult. In contrast it is easy to implement arbitrary cus-
tomizations with ad hoc edits to templates. It seems that we
face a conflict between modularity and flexibility.

Such conflicts have been intensively studied within single
languages, resulting in effective techniques, but the multi-
language case is less well developed. This paper makes four
contributions:

1. The above web programming scenario is refined into a
simple challenge problem in order to evaluate different
approaches to multi-language modularity.

2. To address common problems in existing approaches,
a new abstraction of sequential structure is proposed:
positional sequences, which provide unshifting positions.

3. Positional sequences are generalized into field trees, a
model of software artifacts that solves the challenge
problem by abstracting generation and customization into
modularly composable transformations.

1 2008/10/6

{id: "1234", name: "John Smith", phone: "555-1212"}

Figure 1. The Data object.

<table>

<tr>

<td>id</td>

<td><input type="text", value="1234"/></td></tr>

<tr>

<td>name</td>

<td><input type="text", value="John Smith"/></td></tr>

<tr>

<td>phone</td>

<td><input type="text", value="555-1212"/></td></tr>

</table>

Figure 2. Generic HTML: Form.

4. Field trees are extended into differential trees, which
integrate artifacts and their transformations into a unified
representation.

The Subtext project [12, 14] is developing a programming
environment based on differential trees that seeks to make
modular transformation of software artifacts nearly as easy
to use as ad hoc editing. The guiding hypothesis of this
research is that competing with the ease and flexibility of
ad hoc editing will require an approach with the utmost
simplicity and conceptual coherence. This paper reports on
progress made toward that goal.

2. The Challenge
The purpose of this challenge is to present an example of a
commonplace multi-language modularity problem that is as
simple as possible, so that the problem can be more clearly
seen, and potential solutions more easily compared. Figure 1
defines an object Data as a JavaScript object literal with three
text fields: id, name, and phone. Figure 2 shows an HTML
fragment, called Form, that displays these fields in a table
(the surrounding boilerplate HTML has been elided). The
browser rendering of Form is shown below it.

We want to customize this generic layout to move the id

field below the name field, and to change the label on the
name field to be customer. Note that form customizations
in practice often involve more complex structural changes,
such as forming groups, dividing into multiple frames, align-
ing to a grid, etc. Figure 3 shows the customized HTML,
called CustomForm, with deletions struck-through and inser-
tions in bold. These two HTML forms could be produced in a
number of ways, the most common in practice being the use

<table>

<tr>

<td>id</td>

<td><input type="text", value="1234"/></td></tr>

<tr>

<td>namecustomer</td>

<td><input type="text", value="John Smith"/></td></tr>

<tr>

<td>id</td>

<td><input type="text", value="1234"/></td></tr>

<tr>

<td>phone</td>

<td><input type="text", value="555-1212"/></td></tr>

</table>

Figure 3. Customized HTML: CustomForm.

{id account: "1234", company: "Acme, Inc.",

 name: "John Smith", phone: "555-1212"}

Figure 4. Evolved object Data′.

<table>

<tr>

<td>account</td>

<td><input type="text", value="1234"/></td></tr>

<tr>

<td>company</td>

<td><input type="text", value="Acme, Inc."/></td></tr>

<tr>

<td>name</td>

<td><input type="text", value="John Smith"/></td></tr>

</table>

Figure 5. Evolved generic HTML: Form′.

of a template language like PHP that extracts the data fields
dynamically, using distinct templates for each form. The
CustomForm template would typically be constructed from
Form by copy and paste edits. High levels of duplication in
web applications have been confirmed by a study [30].

The difficulty arises when the database schema evolves.
Figure 4 shows the evolved version of Data, called Data′.
The id field has been renamed to account, the company field
has been inserted, and the phone field has been deleted. We
expect the forms to evolve correspondingly, into Form′ in

2 2008/10/6

<table>

<tr>

<td>account</td>

<td><input type="text", value="1234"/></td></tr>

<tr>

<td>company</td>

<td><input type="text", value="Acme, Inc."/></td></tr>

<tr>

<td>namecustomer</td>

<td><input type="text", value="John Smith"/></td></tr>

<tr>

<td>account</td>

<td><input type="text", value="1234"/></td></tr>

 </table>

Figure 6. Evolved customized HTML: CustomForm′.

Generate Generate

Evolve

Customize Customize

Data

Form

CustomForm

Form′

Data′

CustomForm′

Figure 7. Transformations.

Figure 5 and CustomForm′ in Figure 6. If we were using
templates, we would need to manually edit both of them to
get the correct result. That is easy in this case, but in practice
such changes can be far more widespread, laborious, and
error-prone.

The challenge is to provide a solution that adapts auto-
matically to any schema evolution involving insertion,
deletion, and renaming of fields.

2.1 Modular generation and customization
The approach that will be proposed in this paper is to provide
two transformations Generate and Customize that compose as
shown in Figure 7. We will refer to a generating transforma-
tion as one that maps artifacts across languages in a multi-
language system, and a customizing transformation as one
that maps between artifacts in the same language.

It is easy to write the Generate transformation: simply it-
erate over the data fields and map them into the correspond-
ing HTML in the same order. The heart of the problem is

getting the Customize transformation to do the same thing
on Form′ as on Form: move the id field (which has been re-
named to account) to be after the name field, whose label is
changed to customer. This can be seen as a problem of mod-
ularity: being able to abstract the intentions of Customize so
that they are preserved when composed with Generate on dif-
ferent sources.

2.2 The difficulty
As will be discussed in the related work section, the chal-
lenge is difficult because it undermines the basis of many
approaches:

1. Textual identifiers. The renaming of id to account will
baffle code looking for the id field by name.

2. Ordinal position in sequences. Inserting the company

field shifts the position of the name field, so if the id

field is moved to the same ordinal position as before it
will end up above the name field, not below it.

Both of these issues warrant further clarification. First, it
is acceptable to handle the renaming of id by an automatic
refactoring on the transformation code that replaces all oc-
currences of id with company. But refactoring is not possible
if the code uses the string literal “id”, which in general can
not be distinguished from uses of the same string as data,
error messages, etc. Some mechanism for identifying or pa-
rameterizing field names is needed to support refactoring.

The second clarification is about the requirements on the
move operation. It is required that the ordering between
fields in CustomForm must be preserved in CustomForm′,
regardless of arbitrary insertions, deletions, and renamings
in Data′ (including deleting name). This requirement might
be criticized as too strict, because the order of fields on
a screen is not really important. Try telling that to a UI
designer! More to the point, order is of the essence in many
software artifacts, as in the order of statements in a program.
It is reasonable to expect that software transformations not
alter relative orderings when exposed to changes in their
sources.

2.3 An ad hoc solution
An ad hoc solution can be assembled from some common
engineering practices, but it does not generalize well. Basi-
cally, “markers” are added into the source and generated ar-
tifacts so that transformations can get handles on them. Each
<tr> tag in Form can be given a name marker as an ID at-
tribute naming the Data field it corresponds to. This allows
Customize to find the HTML related to id in order to move it.
To handle field renaming, Customize can not rely on literal
strings to match names, but must use a level of symbolic in-
direction, perhaps via a set of static constants defining each
name’s string. Customize needs to know where to move id to.
This position could be determined by inserting a positional
marker into Data after the name field, wrapped inside a spe-

3 2008/10/6

cially formatted JavaScript comment. Generate would notice
such comment markers, and map them through into the gen-
erated HTML, wrapped as an HTML comment, or perhaps
with some tag that browsers will ignore.

While technically a solution to the challenge, this ap-
proach does not generalize well, for a number of reasons.
The syntax for embedding markers is different for each lan-
guage, and comment-wrapped markers are fragile and in-
visible to many tools. The programmer must invent unique
marker names for source locations involved in a transfor-
mation, an annoying imposition. Generated markers must be
made unique, often using concatenative “name mangling”,
which depends upon language and application conventions.
Generating markers is problematic in cases such as the con-
catenation of two sequences. Customizing transforms need
markers within generated artifacts, but these can only be
created by inserting markers within source artifacts at the
proper place. The proper place depends upon the internal im-
plementation of the generator, and may not even exist, as in
the case of concatenating a sequence with itself.

Marker techniques are common in practice, but the author
knows of no tool or framework that can solve the challenge
problem without being first extended. The general solution
proposed in this paper can be seen as an attempt to “do
markers right”.

3. A General Solution
A general solution emerges from the observation that the
difficulties of the challenge problem surround notions of
identity. Textual identifiers can be renamed, and so do not
provide a stable identity. Ordinal positions in sequences can
shift, and so do not provide a stable way to locate elements.

We can provide a stable replacement for textual identi-
fiers by storing our artifacts in some kind of database which
assigns persistent internal IDs. A specialized editor coupled
to the database must be provided to allow editing of the ar-
tifacts. A number of the approaches described in the related
work section also take this step, which offers additional soft-
ware engineering benefits beyond the scope of this paper.

3.1 Positional sequences
The problem of shifting positions in sequential structures is
rooted in the fact that we treat sequences as integer-indexed
arrays. To solve this problem we introduce an alternative ab-
straction of sequential structure. A positional sequence is a
sorted map from a domain of identifiers called positions. Po-
sitions are totally ordered and dense, like the rational num-
bers. To insert an element into a sequence, a unique new
position is allocated between the positions of the adjacent
elements. Assigning an element to a position in a sequence
replaces the current element at that position, or inserts it if
there is none. The crucial property provided by positions is
that insertions, deletions, and lookups at different preallo-
cated positions are independent of each other, regardless of

execution order. This property helps transformations on se-
quences to be composed modularly.

We are interested in global positioning: all positions used
within a database are totally ordered, and new positions are
globally unique. Global positioning makes sequences com-
mensurable, which as we will see is crucial to abstracting the
Customize transform. A brute force implementation could
use infinite precision rational numbers, but would have to
track them in an index, and would suffer from the fact that
the bit length of rationals grows unboundedly under repeated
insertion at a fixed location. The current implementation [14]
assigns an incrementing 64 bit serial number to positions
for global uniqueness. Positions are organized into a tree,
with the children of a position being ordered before it, by
ascending serial number. Positions are encoded as a path of
serial numbers from the root of this notional tree. More com-
pressed encodings of positions could be achieved with peri-
odic global repositioning.

Positional sequences provide the essential missing ingre-
dient to solve the challenge problem. It can be solved by
storing the artifacts in a persistent data model that incorpo-
rates both stable identifiers for objects and stable positions
within sequences. One approach would be to add positional
sequences as a new kind of collection class in an OODB. Al-
ternatively, we could take a database tailored for software ar-
tifacts like Molhado [29] and substitute positional sequences
for its array-based ones. Such approaches could solve the
challenge problem with the least incremental investment in
infrastructure. However the goal of this paper is not to min-
imize cost but to optimize conceptual coherence. Accord-
ingly, we will generalize positional sequences into a uniform
model for representing software artifacts: field trees.

3.2 Field trees
Field trees use nested positional sequences to unify the no-
tions of objects, fields, and sequences. A field tree is a tree
whose non-root nodes are labeled with positions. The nodes
are called fields. Fields with the same parent must have dif-
ferent positions. Non-root fields are optionally assigned val-
ues drawn from some fixed set (here numbers and strings).
We can make several observations:

1. Fields are uniquely identified by the path of positions
down from the root of the tree. Position paths serve as
objects ID’s.

2. A field serves as a positional sequence of its children,
which are said to be contained in it.

3. Fields in different containers can have the same position.
A container thus serves as a record/structure, with posi-
tions identifying the members unambiguously.

Positions can optionally be named with strings, which need
not be unique. To simplify the presentation we will tem-
porarily assume that all positions have unique names.

4 2008/10/6

tag: "table"

contents

id

tag: "tr"

contents

c1

tag: "td"

contents

c2: "id"

c3

tag: "td"

contents

c4

tag: "input"

type: "text"

value: "1234"

name

phone

…
…

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

id: "1234"

name: "John Smith"

phone: "555-1212"

b) Form

1

2

3

a) Data

Figure 8. Data and Form as field trees.

3.3 The field tree solution
Figure 8 shows how Data and Form are represented as field
trees, displayed as outlines that a structure-aware editor
might use. Each field is on a separate line, with the name
of its position indented to show the containment structure of
the tree. The root of the tree is implicit — its children are
the un-indented lines. Vertical lines connect sibling fields.
The Data object is the trivial tree in (a) containing three leaf
fields with positions named id, name, and phone in that or-
der. The values assigned to the fields are shown following a
colon to the right of their position names.

To represent HTML as a field tree, a DOM-like con-
vention for encoding XML into a regular tree structure is
adopted, shown for Form in Figure 8(b). Each XML tag is
encoded as a subtree containing the field tag, which is as-
signed the name of the tag as a string value, as in line 1. The
XML contents of the tag are placed within the contents field
on line 2. XML attributes are encoded as sibling fields of
tag and contents, as in the <input> tag on lines 15 and 16.
A conventional XML DOM would treat the contents field as
an array or collection, which in field trees are replaced by
positional sequences. The arbitrarily named positions c1, c2,
c3, and c4 have been allocated to properly sequence the el-
ements of the contents fields. These arbitrary names will be
discarded later when we discuss anonymous positions.

Note that the contents of the <table> tag use the same
positions as the Data fields that they correspond to: id on
line 3, name on line 17, and phone on line 18. For brevity,
the name and phone subtrees have been collapsed, indicated
by the ellipsis buttons on their right. As will be seen, the
positional correlation between Data and Form is the key
to solving the challenge. Field trees enable this correlation
by unifying records and sequences. The Generate transform
simply iterates over the Data fields and maps each one to a

tag: "table"

contents

id

name

tag: "tr"

contents

c1

tag: "td"

contents

c2: "name" "customer"

c3

tag: "td"

contents

c4

tag: "input"

type: "text"

value: "John Smith"

id2

phone

…
…

…

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

Figure 9. CustomForm as a field tree.

corresponding position in Form, plugging in the proper <td>

sub-tree, as shown in lines 3–16 for the id field.
Figure 9 shows how Customize transforms Form into Cus-

tomForm. The label of the name field is changed on line 10.
The id subtree on line 3 has been deleted. A new position id2

is allocated between name and phone, which is used to insert
the id subtree of the form at line 18. The schema evolution
will allocate a new position company in between id and name,
which will map through to the form, but it is guaranteed not
to disrupt the relative order of the other form fields, includ-
ing id2. This is because the same positions are used in the
data and the form, and allocating a new position does not
change the relative ordering of existing positions. Note that
these new positions are allocated once when the transforma-
tions are written, not every time they execute.

A Java implementation of the solution is presented in
Appendix A. It is assumed that the field tree database pro-
vides a Position enum that symbolically defines each posi-
tion with the proper internal identifier. The id component of
the form is found unambiguously despite its being renamed
during the evolution because the name of a position can be
changed without changing its identity. Code compiled with
the old version of the Position enum will still run correctly.
Preferably, renamings in the field tree would invoke a re-
name refactoring on the enum to co-evolve the code.

3.4 Anonymous positions
We must revisit the earlier assumption that all positions have
unique names. The crucial use of these names was in the
transformation code as symbolic constants for referenced
positions. The positions c1, c2, . . . are particularly troubling,
as we don’t want to have to invent symbolic names every
time we insert something in a sequence. But we also don’t
want to hard-code hex strings for internal position IDs.

5 2008/10/6

This problem could be solved by storing the Java trans-
formation program itself inside the same field tree database,
perhaps by encoding its AST as a field tree. References to
positions would become special AST nodes containing the
internal identifier of the position. The position would be fed
to the compiler as an expression encoding the position’s in-
ternal identifier, but would be presented in the program edi-
tor using the position’s symbolic name. If the position lacked
a name, non-textual techniques could be used, such as a hy-
perlink to a field with the proper position. The effect is to
allow “non-textual literals” in the program — constants de-
fined by the environment without a textual encoding. This
approach would require a big infrastructure investment, but
it establishes that in principle we do not need symbolic
names for positions. It also eliminates the need to refactor
the code when a position is renamed — position names be-
come a feature of the user interface, not the semantics.

Field tree summary: Field trees solve the challenge prob-
lem by providing stable identities and positions so that trans-
formations expressed in those terms can be composed mod-
ularly. The programmer is not required to provide markers
because they are already built in. Field trees serve as a com-
mon medium for artifacts in different languages that supports
modular transformations between them.

4. An Integrated Solution
Field trees allow the challenge problem to be solved with a
conventional language like Java, but at a cost in complex-
ity that is still too high to compete with ad hoc editing of
templates. Coding transformations in Java or even special-
ized transformation languages is complex to start with, and
field trees add the need to properly map positions through the
transformations. In pursuit of simplicity and conceptual co-
herence, field trees can be generalized into differential trees,
which integrate field trees and declarative specifications of
their transformations into a single unified representation.

Differential trees declaratively specify field tree transfor-
mations that automatically establish stable positional corre-
spondences between artifacts. They also offer deep copying
and overriding of trees, as well as arbitrary functional com-
putation. As with the prior Java solution, in order to have
non-textual literal references into field trees, the transforma-
tion language must itself be embedded in the field tree. This
necessity is made a virtue: differential trees are “the LISP”
of field trees, living within them and using them as its “S-
expressions”. The result is a unified model of software arti-
facts and their transformations.

Differential trees extend field trees in two ways:

1. Fields can point to other fields. Their value can be not
only a string or number but also a path of positions
denoting another field.

2. The value assigned to a field defines its contents and
usage in four different ways, called modes, to be detailed

below. These modes are distinguished in the outline with
variants of the colon character: a double colon, a colon-
equals, and a double-colon-equals.

4.1 Differential trees by example
Figure 10 shows a series of examples explaining the inter-
pretation of differential trees. The assignments of values to
fields are seen as a set of definitions whose implications are
worked out, a process called integration.

Figure 10(a) shows an example of two definition modes:
colon and double-colon. The fields a and b contained in x

are defined with a single colon to be leaf nodes with the
value 1. The field y is defined using a double-colon to be a
deep copy of the field x. The result of integrating this tree is
diagrammed below as it might appear in a user interface for
differential trees.1 The fields a and b have been copied from
x into y in lines 5 and 6. The arrows on the right indicate
references between fields, and serve as non-textual literals
for anonymous fields.

Note the black bars in the left margin. Integration is
declarative, and only “fills out” the initial differential tree
with additional derived definitions, never altering the ini-
tial definitions. The initial definitions are distinguished from
the derived ones by the black bars. The fact that integra-
tion leaves the original program intact means that program-
ming can be done by directly editing the “live” execution
displayed in the outline, as with a spreadsheet. Accordingly,
the initial state of the differential tree will be omitted in sub-
sequent examples, as it is equal to the barred lines.

Figure 10(b) shows how copied structures are incremen-
tally overridden. The copy of x into y from the previous ex-
ample has its a field overridden to 2. Only the b field on line
6 gets inherited. Differential trees construct transformations
by layering overriding copies in this way, somewhat like in-
heritance and overriding in OO languages except that it can
delve deeply into sub-trees. Every definition expresses an
overriding difference between its containers and their defini-
tions — hence the term “differential”.

Figure 10(c) shows what happens when the entire tree
from 10b is copied. Field f on line 1 contains the prior tree in
lines 2–7. Field g on line 8 copies f, yielding lines 9–14. Note
that when the definition of y on line 5 gets copied to line 12,
its referenced value changes from f.x to g.x to maintain the
same relative location within the copy. The end result is the
same in this case, but would not have been if there were some
change inside g.x. Copying preserves the internal structure
of copying and overriding isomorphically, and can be said to
be “higher-order” [16]. References outside of the tree being
copied are not changed but are “captured”, as in a closure.
The arrow on the right of line 12 is dashed to indicate it has
been inherited.

Figure 10(d) shows that copying can be recursive. Copy-
ing a structure into itself produces an infinitely deep tree.

1 These diagrams are “paper prototypes” of the UI under development

6 2008/10/6

01

02

03

04

05

06

07

08

09

10

11

12

13

14

a) copying b) overriding c) higher-order copying d) recursive copying e) computation

x

a: 1

b: 1

y:: x

a: 1

b: 1

x

a: 1

b: 1

y:: x

a: 2

b: 1

f

x

a: 1

b: 1

y:: f.x

a: 2

b: 1

g:: f

x

a: 1

b: 1

y:: g.x

a: 2

b: 1

f

a:: f

a:: f.a

a:: f.a.a …

f:: add

in: 1

with: 2

out: 3

g:: add

in:= f.out 3

with: 1

out: 4

x

a: 1

b: 1

y:: x

Integration

1

2

3

4

5

6

1

2

3

4

5

6

7

8

1

2

3

4

5

6

1

2

3

4

x

a: 1

b: 1

y:: x

a: 2

Integration

Figure 10. Differential trees by example.

Integration is implemented lazily, and limits tree depth anal-
ogously to a stack depth limit. The outline display shows the
use of an expander button hiding a portion of the tree.

Higher-order copying and recursion make differential
trees Turing-complete, demonstrated by an embedding of
Lambda calculus [13]. Although theoretically unnecessary,
for convenience we add primitive functions. Figure 10(e)
shows an example of the add primitive. Field f on line 1 is
a call to add, which is a structure containing three fields: in,
with, and out (used by convention in all functions). The in

and with fields are expected to have rational number values.
When the tree is integrated, the out field on line 3 is defined
as the value of the sum.

The field g on line 5 is another call to add which adds
1 to the result of the prior addition. The two additions are
linked by the definition of g.in on line 6 using the := mode.
That mode tells the addition function to use as its argument
the value of f.out, which will be 3. A chain of := definitions
will be followed until a : or :: definition is found. Values pass
between := definitions like the way values pass through con-
ventional variable assignments, hence the use of the standard
assignment operator :=. To visualize function execution, the
resolved value 3 is displayed underlined on the right of line
6. The fourth definition mode, ::=, combines tree copying
with value chaining, but will not be used in this paper.

Appendix B contains a formal semantics of differential
trees as used in this paper. Two alternative implementations
of differential trees were used in prior research on program-
ming environments [12, 14]. These implementations added
a number of convenience and safety features such as private
fields that cannot be overridden in instances. A technical re-
port [13] describes advanced features of the implementations
not considered here, including mutable state and the incor-
poration of change history. Of note is that mutable state al-
lows user inputs on forms to be mapped backwards through
generation and customization transformations to the source
data.

4.2 The differential tree solution
The differential tree solution of the challenge problem is
shown in Figure 11. It does the same thing as the prior Java
solution in field trees, but more succinctly and declaratively.
The Generate transform at line 5 uses the map primitive
to apply a function over each of the Data fields. The map

primitive’s in parameter is bound to Data on line 6, and the
func parameter is defined on lines 7–23. The contents of the
<table> tag in Form are copied from the collected outputs of
the mapped functions at line 26. CustomForm is derived from
Form at line 27. The id component of the form is deleted
at line 29 by assigning the special value delete to it. It is
reinserted at location id2 at line 35. The label of the name

field is overridden to be “customer” at line 34.
Figure 12 drills into the execution of the mapping of the

id field. The mapping is constructed inside the body structure
on lines 8–29, where each element takes the position of
an input element and contains an instance of the mapped
function (on lines 9, 28, and 29). The mapping of the id

element on line 9 is fully expanded. Its in field is linked
to the corresponding input element on line 10. The mapped
function is expected to construct an appropriate HTML tree
in its out field at line 14. Lines 15–27 are essentially a
template of an HTML <tr> tag, where the label for the
field is defined at line 20 and its value is defined at line 27.
The label definition uses a call to the reflective primitive
valueName at line 11, which determines the string name
of the input field’s position. This internal call is given the
position name f1 to make the presentation clearer, but in
practice would be anonymous. The value definition on line
27 just copies the value from the input field on line 10.

The outputs of each mapped function are collected into
the overall output of the mapping at lines 30–33, each auto-
matically given the same position as the corresponding input
elements. As we saw in the previous section, it is this po-
sitional correspondence between Data and Form that allows

7 2008/10/6

Data

id: "1234"

name: "John Smith"

phone: "555-1212"

Generate:: map

in:: Data

func

f1:: valueName

in: Generate.func.in

out

tag: "tr"

contents

c1

tag: "td"

contents

c2:= Generate.func.f1.out

c3

tag: "td"

contents

c4

tag: "input"

type: "text"

value:= Generate.func.in

Form

tag: "table"

contents:: Generate.out

CustomForm:: Form

contents

id:= delete

name

contents

c1

contents

c2: "customer"

id2:: Form.contents.id

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Figure 11. Differential tree solution of challenge problem.

Customize to survive the evolution of Data. All transforma-
tion primitives create such correspondences. For example,
concatenation of sequences p and q generates tupled posi-
tions 〈1, pi〉 . . . 〈2, qi〉. Note that new positions can be stably
inserted between such synthetic positions. Ensuring stable
unique correspondences through transformations are a key
benefit of differential trees.

While Figure 12 may appear complex, consider that what
we are doing is essentially browsing an execution trace of a
typical higher-order mapping, showing the complete detail
of all computations and data flows. One benefit is “debug-
ging by browsing” [12]. Another is the automatic provision
of traceability [11].

4.3 From templates to transformations
The Subtext project is developing a programming environ-
ment based on differential trees with the goal of making
transformative programming as easy as ad hoc copy and
paste editing of templates. Ironically, differential trees are
similar to templates in the way they intermix literal arti-
fact structure with computation. But differential trees ex-

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

…

…
…

…

…
…

…

…

…

Data

Generate:: map

in:: Data

id: “1234”

name: “John Smith”

phone: “555-1212”

func

body

id:: Generate.func

in:= Generate.in.id "1234"

f1:: valueName

in: Generate.body.id.in

out: "id"

out

tag: "tr"

contents

c1

tag: "td"

contents

c2:= Generate.body.id.f1.out "id"

c3

tag: "td"

contents

c4

tag: "input"

type: "text"

value:= Generate.body.id.in "1234"

name:: Generate.func

phone:: Generate.func

out

id:: Generate.body.id.out

name:: Generate.body.name.out

phone:: Generate.body.phone.out

Form

tag: "table"

contents:: Generate.out

CustomForm:: Form

Figure 12. Detailed mapping of id.

press their computations declaratively, with layered overrid-
ing copies that, in a sense, are abstractions of those same
copy and paste operations. The core concept of differen-
tial trees is that all structure arises from higher-order ab-
stract copy and paste operations. The hypothesis is that this
conceptual coherence, and its congruence with actual pro-
gram editing practices, will enable a compelling realization
of transformative programming.

5. Related Work
Visual UI builders have long used marker techniques, as de-
scribed in section 2.3, to allow their generated code to be
customized within limits. Code generation techniques are
the subject of Generative Programming [10], while Model
Driven Engineering [21] focuses on generation from models.
These approaches handle customization through Roundtrip
Engineering [4], which attempts to map such customizations
back into the source representation so that regeneration will
preserve them. The limitation of Roundtrip Engineering is

8 2008/10/6

that it only handles customizations which can be expressed
in the source domain, implying that the target domain adds
no expressive power. But a major reason for the use of mul-
tiple languages is precisely that they add expressive power.
Another view of Roundtrip Engineering is that it extends the
source language with annotations or metadata, which may
include fragments from target languages. But that still de-
pends on there being some place in the source artifact to at-
tach such metadata.

The Magritte [31] web framework is representative of this
latter approach, providing a Smalltalk dialect of “descrip-
tions” which can be attached as metadata to a schema. The
challenge problem might be addressed by attaching to each
data field a description containing its HTML label string and
its ordinal position in the form. But when the company field
is added, the ordinals must be manually re-numbered, vio-
lating the requirement of automatic adaptation. The meta-
data approach does not generalize to more complicated cus-
tomizations that alter the structure of the HTML, such as
dividing the fields across multiple tables, where a simple or-
dinal would no longer suffice.

Language features to modularize customization have
been intensively studied, but only language-neutral ap-
proaches relevant to multi-language systems will be cited
here. These include Architecture Description Languages
[26], hyperslices [33], feature models [9, 23], aspectual fea-
tures [2, 18, 27], XVCL [19], and invasive software compo-
sition [3]. A representative approach is AHEAD [5], which
uses nested equations to specify hierarchical overriding as
in differential trees. XAK [34] refines XML by requiring
name markers to be inserted within a base XML document
to establish refinement points. Feature Software Trees [1]
represent the hierarchical structure of artifacts like field
trees, and provide hierarchical overriding, called superim-
position [6], as in differential trees. All of the approaches in
this paragraph focus on the customization of source artifacts
through linking, overriding, or weaving, applied to named
program points. It is ideal when such named points exist, but
presuming upon programmers to provide such points, espe-
cially if refactoring is required, risks losing out to copy and
paste. These approaches do not construct arbitrary generat-
ing transformations, nor address how to furnish generated
artifacts with named customization points.

The need for persistent identifiers in software artifacts has
long been recognized, and is supported in software repos-
itories like Molhado [29] and modeling facilities like the
OMG MOF. There are a number of approaches to provid-
ing stable positions in sequences, although they have not
been used in databases or repositories. Emacs maintains sta-
ble markers in text buffers. Text editing frameworks offer
similar constructs, for example javax.swing.text.Position. Op-
erational transformation [15] and Darcs [32] make sequence
operations commutative through compensating adjustments
to their ordinal positions. Interruptible Iterators [25], and the

Apache CursorableLinkedList provide stable collection itera-
tors. C5’s views [22] can serve as cursors. None of these
constructs are intended to be persistent identifiers, though
perhaps they could be serialized as such. They offer only
sequence-local positions, which do not help correlate gener-
ated artifacts with their sources as global positions do.

There are many specialized transformation languages,
like XSLT, ATL [20], and Stratego/XT [7]. They depend
upon parsing or pattern matching of the source, making it
hard to abstract customizations in the presence of renaming
and shifting. Recent bidirectional transformation languages
[17, 28, 35] have appealing functional semantics and ad-
dress the mapping of changes through transforms. They lack
a model of stable sequence positions, but perhaps could be
applied to field trees as an alternative to differential trees.
Differential trees can make deep changes within structures,
whereas these languages take the functional approach of de-
constructing top-down and then reconstructing bottom-up.

6. Conclusions
This paper spotlights a problem that deserves greater atten-
tion: the expression of ad hoc customizations as abstract
transformations. Differential trees are a novel approach, but
it is hoped that others will be stimulated by the challenge.
The conclusions of this paper are:

1. Multi-language systems could be made more modular
while retaining flexibility by replacing copy and paste
programming with composable transformations that gen-
erate and customize.

2. Many customizations refer to locations not stably defined
by the standard techniques of textual identifiers and ordi-
nal positions. These difficulties are distilled by the chal-
lenge problem, and overcome with the help of a new ab-
straction of sequential structure: positional sequences.

3. Field trees generalize positional sequences into a com-
mon medium for artifacts in different languages that sup-
ports modular transformations between them.

4. Differential trees unify field trees and their transforma-
tions into a single coherent model as the basis of trans-
formative programming.

Acknowledgments
Discussions with Daniel Jackson, Derek Rayside, Emina
Torlak, and Eunsuk Kang were helpful. Helpful comments
were offered by Damien Pollet, Kevin Reid, Nat Pryce, and
John Zabroski.

9 2008/10/6

A. Java field tree solution

 static Tree generate(Tree in) {
 Tree tableContents = new Tree();
 for (Entry<Position, Object> e :
 in.entrySet()) {
 // name of data field
 Tree c1Contents = new Tree();
 c1Contents.put(Position.c2,
 e.getKey().toString());
 // input field loaded from data
 Tree c1 = new Tree();
 c1.put(Position.tag, "td");
 c1.put(Position.contents, c1Contents);
 Tree input = new Tree();
 input.put(Position.tag, "input");
 input.put(Position.type, "text");
 input.put(Position.value,
 in.get(e.getKey()));
 Tree c3Contents = new Tree();
 c3Contents.put(Position.c4, input);
 Tree c3 = new Tree();
 c3.put(Position.tag, "td");
 c3.put(Position.contents, c3Contents);
 Tree trContents = new Tree();
 trContents.put(Position.c1, c1);
 trContents.put(Position.c3, c3);
 // map to data's position
 Tree tr = new Tree();
 tr.put(Position.tag, "tr");
 tr.put(Position.contents, trContents);
 tableContents.put(e.getKey(), tr);
 }
 Tree out = new Tree();
 out.put(Position.tag, "table");
 out.put(Position.contents, tableContents);
 return out;
 }

 static Tree customize(Tree in) {
 Tree out = in.deepCopy();
 Tree contents =
 (Tree) out.get(Position.contents);
 // move id field
 contents.put(Position.id2,
 contents.remove(Position.id));
 // change name->customer
 Tree t = contents;
 t = (Tree) t.get(Position.name);
 t = (Tree) t.get(Position.contents);
 t = (Tree) t.get(Position.c1);
 t = (Tree) t.get(Position.contents);
 t.put(Position.c2, "customer");
 return out;
 }
}

import java.util.TreeMap;
import java.util.Map.Entry;

public class Main {
 // simulate database generation of symbolic
 // position values
 enum Position {
 id, name, id2, phone, tag, contents, type,
 value, c1, c2, c3, c4
 }

 /* Field trees are represented with a
 * TreeMap<Position, Object>, where the
 * Objects are either sub-trees or boxed leaf
 * values.
 */
 static class Tree extends
 TreeMap<Position, Object> {
 Tree deepCopy() {
 Tree copy = new Tree();
 for (Entry<Position, Object> e :
 this.entrySet()) {
 if (e.getValue() instanceof Tree) {
 Tree value =
 ((Tree) (e.getValue())).deepCopy();
 copy.put(e.getKey(), value);
 } else {
 copy.put(e.getKey(), e.getValue());
 }
 }
 return copy;
 }
 }

 public static void main(String[] args) {
 // Simulate load of data from database
 Tree data = new Tree();
 data.put(Position.id, "1234");
 data.put(Position.name, "John Smith");
 data.put(Position.phone, "555-1212");
 Tree form = generate(data); // generate
 Tree form2 = customize(form); // customize
 }

10 2008/10/6

B. Differential Tree Semantics
This appendix defines the semantics of differential trees
as used in the paper. The goal is to precisely explain the
essential nature of differential trees, not to prove formal
properties, nor to model an actual implementation. A “big-
step” style is used that is mute about errors, lapsing into
undefinedness. The more complex small-step semantics in a
prior technical report [13] detects error conditions explicitly
and extends the semantics in several directions.

B.1 Definitions
We take a set of positions P containing the rationals Q,
Booleans B, characters C, and all position tuples 〈p1, pn〉.
Strings are character tuples. P also contains the predefined
positions add, map, valueName, in, with, out, body, and delete.
P has a total dense ordering ≤, which is consistent with the
natural orders of Q, B, C, and the dictionary order on tuples.
P contains extra positions in between all of the aforemen-
tioned ones to allow arbitrary insertions, but we will treat all
positions as preallocated here.

A Path is a finite non-empty sequence of positions, writ-
ten using the dot operator as p1. p2 . . . pn. Notation will be
abused to treat positions interchangeably with the singleton
path containing them, and the dot operator is overloaded to
append positions as well as concatenate paths. The length of
a path x is len(x). The last position of a path x is leaf(x).
The name of a position p is name(p), which is the empty
string for anonymous positions, and is the expected print
string for integers, Booleans, strings, and tuples.

B.2 Differential trees as relations
A differential tree over P can be seen as a subset of Path×
Mode × Path where each tuple represents a definition.
The left hand paths must be unique, and Mode is the set
{: , :: , := , ::=}. To express the semantics of differential trees,
we will add a natural number qualifying each definition,
called its provenance. Because definitions can be stacked at
multiple heights in the tree, inheritance can occur in multiple
overriding layers. A definition of a field x with provenance
n has been inherited from the definition of the nth container
of x, whose path is the prefix of x with length (len(x)− n).
If n = len(x), the definition is inherited from the root of
the tree, which means it is an initial definition specified by
the programmer. If n = 1, then the definition was inherited
from its immediate container. If n = 0, then the definition
was not inherited at all, but was internally computed by a
primitive function. The rule is that the definition with the
highest provenance overrides all others.

We express the semantics as inference rules on the rela-
tion | | ⊆ Path × N × Mode × Path where the natural
numbers are the provenances. This relation contains all the
initial definitions, with their provenance set to the length of
the left hand path, which guarantees they will override all
derived definitions.

Overriding is determined by the quaternary predicate d e
defined as:

dx n d ye ≡ |x n d y| ∧ ∀m. (|x m | ⇒ m ≤ n)

B.3 Integration
Integration is defined by the single inference rule:

dx ye dy.z n d we n ≥ len(z)
|x.z len(z) d φ |

where φ =

x if w = y

x.u if ∃u |w = y.u

w otherwise

This rule states that if x is defined as the path y (after
overriding), and somewhere within y there is another defi-
nition, then the corresponding location within x will inherit
that definition, subject to two provisos. The first proviso is
that only definitions with a provenance at least as high as y
will be inherited from it. In other words, inheritance from
internal definitions within y will be ignored, since they will
be recapitulated within x, perhaps differently. The other pro-
viso is that the value of the definition to be inherited depends
on whether it is located within y or not, which is the condi-
tional definition of φ. If the value is located within y it is
mapped to the corresponding location within x. Otherwise it
is “captured” as is.

B.4 Primitive functions
Primitive functions are specified in additional rules that cre-
ate 0-provenance definitions, which prevents them from be-
ing inherited rather than being recalculated. Recall that func-
tion parameter fields can be linked to other fields with the :=
and ::= definition modes. The helper function ref determines
the value to be used, called the field’s reference, by chasing
down those links.

Determining the reference of a field involves another
complication: the value of a field is allowed to be a path
that traverses into a leaf node. The path beneath the leaf will
be followed starting at the value of the leaf. This means that
the value of the leaf is being “dereferenced” — allowing a
path to represent an arbitrary traversal of pointers within the
tree. Dereferencing is done by the loc helper function.

Note that dereferencing is deferred untill a function needs
it, rather than being taken care of during integration (as in
the implementation). What this means is that a leaf field,
defined by a : or := definition, may not physically be a
leaf: any substructure of its value will be copied into it, but
then later ignored by the loc function. This approach makes
the integration rule simpler, and in fact corresponds to the
conceptual model of the user interface, where a leaf can be
expanded to see the contents of its value, just as if it had been
copied into it.

11 2008/10/6

loc(p) = p

loc(x.p) =

y.p if d loc(x) : ye
y.p if d loc(x) := ye
loc(x).p otherwise

where p ∈ P.

ref(x) =

y if d loc(x) : ye
y if d loc(x) :: ye
ref(y) if d loc(x) := ye
ref(y) if d loc(x) ::= ye
⊥ otherwise

The add function adds the values of its in and with fields
and sets the sum into its out field:

ref(x) = add ref(x.in) = n ∈ Q ref(x.with) = m ∈ Q
|x.out 0 : (n+m)|

The valueName function returns the name of the leaf of
the value of a location, which is often used to represent the
value symbolically in print strings and the UI.

ref(x) = valueName ref(x.in) = y dy ze
|x.out 0 : name(leaf(z))|

The map function rule fires for each non-deleted sub-
field p of its in parameter. It instantiates a copy of the func

parameter as body.p, binding its body.p.in parameter to the
sub-field. The output of the function is collected into out.p.
Unlike the implementation, deletions are not filtered out
immediately during integration, but later by the map and
other functions that enumerate sequences.

ref(x) = map p ∈ P
dx.in.p e ¬ dx.in.p := deletee

|x.body.p 0 :: x.func|
|x.body.p.in 0 := x.in.p|
|x.out.p 0 :: x.body.p.out|

References
[1] S. Apel and C. Lengauer. Superimposition: A

Language-Independent Approach to Software Compo-
sition. In ETAPS Intl. Symp. on Software Composition,
2008.

[2] S. Apel, T. Leich, and G. Saake. Aspectual mixin
layers: aspects and features in concert. In ICSE, 2006.

[3] U. Aßmann. Invasive Software Composition. Springer-
Verlag, 2003.

[4] U. Aßmann. Automatic Roundtrip Engineering. Elec-
tronic Notes in Theoretical Computer Science, 82(5),
2003.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Trans. on Software Engi-
neering, 30(6), 2004.

[6] J. Bosch. Superimposition: a component adaptation
technique. Information and Software Technology, 41
(5), 1999.

[7] M. Bravenboer, K. Kalleberg, R. Vermaas, and
E. Visser. Stratego/XT 0.17. A language and toolset
for program transformation. Science of Computer Pro-
gramming (to appear), 2008.

[8] P. Clements and L. Northrup. Software product lines.
Addison-Wesley, 2002.

[9] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on Superimposed
Variants. In GPCE, 2005.

[10] K. Czarnecki and U. Eisenecker. Generative pro-
gramming: methods, tools, and applications. Addison-
Wesley, 2000.

[11] K. Czarnecki and S. Helsen. Classification of Model
Transformation Approaches. In OOPSLA Workshop
on Generative Techniques in the Context of the Model
Driven Architecture, 2003.

[12] J. Edwards. Subtext: Uncovering the simplicity of
programming. In OOPSLA, 2005.

[13] J. Edwards. First Class Copy & Paste. Technical report,
MIT CSAIL, 2006. URL http://hdl.handle.net/1721.
1/32980.

[14] J. Edwards. No ifs, ands, or buts: uncovering the sim-
plicity of conditionals. In OOPSLA, 2007.

[15] C. Ellis and S. Gibbs. Concurrency control in group-
ware systems. ACM SIGMOD Record, 18(2), 1989.

[16] E. Ernst. Higher-order hierarchies. In ECOOP, 2003.

[17] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt. Combinators for bi-directional
tree transformations: a linguistic approach to the view
update problem. In POPL, 2005.

[18] W. Harrison, H. Ossher, and P. Tarr. General Compo-
sition of Software Artifacts. In Intl. Symp. on Software
Composition, 2006.

[19] S. Jarzabek and L. Shubiao. Eliminating redun-
dancies with a “composition with adaptation” meta-
programming technique. In ESEC/FSE, 2003.

[20] F. Jouault and I. Kurtev. Transforming Models with
ATL. In Model Transformations in Practice Workshop
at MoDELS’05, 2005.

[21] S. Kent. Model Driven Engineering. In Intl. Conf. on
Integrated Formal Methods, 2002.

[22] N. Kokholm and P. Sestoft. The C5 generic collection
library for C# and CLI. The IT University of Copen-
hagen, 2006.

12 2008/10/6

[23] M. Laguna, B. González-Baixauli, and J. Marqués.
Seamless development of software product lines. In
GPCE, 2007.

[24] R. Lammel and E. Meijer. Mappings Make Data Pro-
cessing Go ’Round. In Generative and Transforma-
tional Techniques in Software Engineering, 2005.

[25] J. Liu, A. Kimball, and A. Myers. Interruptible itera-
tors. POPL, 2006.

[26] J. Magee and J. Kramer. Dynamic structure in software
architectures. In FSE-4, 1996.

[27] M. Mezini and K. Ostermann. Variability management
with feature-oriented programming and aspects. In
FSE-12, 2004.

[28] S. Mu, Z. Hu, and M. Takeichi. An algebraic approach
to bi-directional updating. ASIAN Symposium on Pro-
gramming Languages and Systems, 2004.

[29] T. Nguyen, E. Munson, and J. Boyland. The Molhado
hypertext versioning system. In ACM conf. on Hyper-
text & hypermedia, 2004.

[30] D. C. Rajapakse and S. Jarzabek. An investigation
of cloning in web applications. In Intl. Conf. on Web
Engineering, 2005.

[31] L. Renggli, S. Ducasse, and A. Kuhn. Magritte –
a meta-driven approach to empower developers and
end users. Intl. Conf. On Model Driven Engineering
Languages And Systems, 2007.

[32] D. Roundy. Darcs: distributed version management
in Haskell. In ACM SIGPLAN workshop on Haskell,
2005.

[33] P. Tarr, H. Ossher, W. Harrison, and J. Sutton, S.M. N
degrees of separation: multi-dimensional separation of
concerns. ICSE, 1999.

[34] S. Trujillo, D. Batory, and O. Diaz. Feature refactoring
a multi-representation program into a product line. In
GPCE, 2006.

[35] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and
H. Mei. Towards automatic model synchronization
from model transformations. In ASE, 2007.

13 2008/10/6

