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ABSTRACT 

The goal of this work is to develop a charged-particle microbeam for use in radiobiological research 
at the MIT Laboratory for Accelerator Beam Applications (LABA). The purpose of this device is to 
precisely explore the radiation response of biological systems on a cellular and subcellular level, 
particularly in the area of temporal and spatial effects of radiation on in vitro systems. An 
accelerator-based 750 keV proton source was characterized and integrated into a laboratory-scale 
device that includes a deflection/gating system, single-particle detection system, irnagmg and 
positioning system, and a collunation system with two designed modes: a "charged-particle microslit" 
for delivering a -3 micron by 1 mm dose profile; and a pinhole aperture for delivering a -3 micron 
diameter pattern of radiation. The entire device measures less than 4 m, requires minimal radiation 
shieldmg, and u h e s  a dedicated ion source. 

The charged particle microslit has been fully characterized and used to deliver a radiation pattern to a 
series of mammahan fibroblast cell monolayers that have subsequently been assayed for duect and 
indluect chemical effects of radiation, double-stranded DNA damage, and DNA repair protein 
localization. These studies d contribute to the understandmg of the radiation-induced bystander 
effect, which is generally defined as the induction of biological effects in cells that are not duectly 
traversed by ionizing radiation. Analysis of the range of assays performed on the microbeam- 
irradiated cells demonstrates that even though the physical radiation dose is confined to a subnuclear 
width (< 5 microns), in many cases the biological effects of the radiation extend for many cell widths 
(> 40 microns) and show dependence on the initial radiation dose delivered to the duectly irradated 
cells. 

As an experimental system, the LABA Microbeam was designed to be practically turn-key, and most 
applications require only one operator to perform. The LABA Microbeam represents a significant 
step towards a cost-effective and easily operated charged-particle microbeam appropriate for use as a 
standard laboratory research tool. Further work remains in automation of the microbeam subsystems 
and optirnization/characterization of the pinhole-aperture c o h a t o r ,  as well as expanding the scope 
of the radiobiological assays performed using the charged-particle microslit. 
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Professor of Nuclear Science and Enpeering, Massachusetts Institute of Technology 
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Chapter 1. Introduction and Overview 

1.1 The LABA Microbeam Project 

The goal of this work is the development and characterization of an economical and compact 

charged-particle microbeam system capable of delivering a subnuclear dstribution of radation dose. 

Application of such a device d increase understandng of radobiology and radation interactions 

with biological systems on a cellular and subcellular level, permitting precise quantitative 

investigations of the cellular response to radation, particularly in the area of temporal and spatial 

effects on in vitro systems. For the purposes of this thesis, a microbeam is defined as a focused or 

colhated radation source capable of delivering a localized dose dstribution to an area with micron- 

level resolution. 

The Laboratory for Accelerator Beam Applications (LABA) has been investigating a possible design 

for a charged-particle radobiological rnicrobeam since the Fall of 2000.10With two small charged- 

particle accelerator options avadable, each with sufficient energy to penetrate a monolayer of cells on 

a simple cell dsh, the possibdity of a charged-particle microbeam of sufficiently compact design and 

low cost that it would be reasonable for regular hospital, commercial, or industrial use was viewed as 

a realizable goal. 

1.2 Thesis Overview 

This thesis d d e t d  the process of the design, development, and characterization of a compact and 

inexpensive charged-particle microbeam for use in radobiological research, as well the initial 

application of the device to the study of the cellular response to radation. 

Chapter 1 introduces the LABA Microbeam project, its goals, accomplishments, and future 

applications. 

Chapter 2 provides background on the hlstory of microbeams in radobiology and the basis 

of microbeam techniques, and describes existing rnicrobeam projects all over the world. 

Chapter 3 describes the hardware and software used to generate and deliver a vertically- 

oriented charged-particle beam to the experimental endstation of the LABA Microbeam. 



Chapter 4 describes the subsystems comprising the biological endstation and lscusses the 

experimental methodology used to characterize the operation of each system. 

Chapter 5 describes the biological target holder design and development, and detds how 

the methodologies for performing a range of radlobiologcal stules with the LABA charged- 

particle microbeam were developed and applied. 

Chapter 6 presents general conclusions about the LABA Microbeam, and describes the 

future work needed to improve upon the system so that it may meet its full potential as a 

standard research tool. 

Lastly, the Appendix provides greater d e t d  on the LABA Microbeam control systems and 

detection electronics, the methods used to prelct  the operations of the deflection and 

bendmg magnet subsystems, the ralobiological assays performed on microbeam-irralated 

cells, and the post-processing image analysis techniques used. 

1.3 The LABA Charged-Particle Microbeam 

Despite progress in microbeam development and its proven usefulness as a tool for rachobiologcal 

research, avdability of machines with which research may be performed has presented a major 

barrier to microbeam techniques becoming standard research tools."' Most microbeams currently in 

operation or under development u&ze very large accelerators and ancdlary facdities. Adltionally, in 

many cases the beam time is shared with other projects, and maintenance of the accelerator and 

associated apparatus requires a large staff of well-trained physicists and engneers to operate. On the 

other hand, the entire MIT LABA charged-particle microbeam, measuring less than 4 m and costing 

in its entirety < $2 d o n  (in 2002 US dollars), udzes  a delcated ion source and can be placed in 

an existing room due to the fact that the ralation background it creates is low enough that the 

operators may sit in the room whde it is energzed. (Figure 1.1) The system is designed to be 

practically "turn-key," and most experiments require only one operator to conduct (although two 

operators are required at all times by MIT Ralation Protection Office (RPO) pdelines). 



Figure 1.1 The LABA Charged-Particle Microbeam.

The microbeam apparatus includes an electrostatic accelerator that provides a horizontal beam, an

electrostatic deflection system capable of gating the beam, a 900 bending magnet to redirect the

charged-particle beam vertically, and a dedicated endstation for biological irradiations consisting of a

light source, imaging camera, micron-resolution stage, single-particle counter, and beam collimation

assembly. The He++ or H+ charged-particle beam is delimited using either a slit or a pinhole

collimator assembly. Particle counting is performed upstream of the cell dish using an organic plastic

scintillator in combination with two photomultiplier tubes (PMTs) in coincidence mode that are used

both for dose measurement and as the control signal for shuttering the beam with the electrostatic

deflection system. Control software, developed in-house, manipulates all aspects of the hardware

including the accelerator, beam line components, vacuum systems and all subsystems of the

biological endstation.

1.4 Accomplishments

The charged particle microslit has been fully characterized and used to deliver a radiation pattern to a

series of cell monolayers that have subsequently been assayed for direct and indirect chemical effects

of irradiation, double-stranded DNA damage, and DNA repair protein localization. These studies

will contribute to the understanding of the cellular response to radiation, and more specifically, to the

characterization of the radiation-induced bystander effect (generally defined as the induction of



biological effects in cells that are not directly traversed by ionizing radation). Analysis of the assays 

performed on microbeam-irradated cells demonstrates that even through the physical radation dose 

delivered by the LABA Microbeam is confined to a subnuclear size (< 5 microns), in many cases the 

biological effects of the radiation extend for many cell widths (> 40 microns), and show dependence 

on the initial radiation dose delivered to the directly irradiated cells. Additionally, pre-treatment of 

irradiated cells with the gap-junction intercellular communication (GJIC) blocker linahne has 

demonstrated the mode of transmission of two of these biologically-mediated secondary effects of 

radiation are at least in part due to GJIC-medated cellular interactions. 

As an experimental system, the LABA Microbeam successfully performs as a device that can be 

operated by biologsts and physicians, instead of a team of physicists and engineers. Due to its small 

size, simple and easy-to-use interface, h t e d  radation shieldmg requirements, and applicabhty to a 

wide range of workplace environments, the LABA Microbeam represents a sigmficant step towards a 

cost-effective and easy-to-operate charged-particle microbeam appropriate for use as a standard 

laboratory research tool. Further work remains in extending the automation of the microbeam 

subsystems and optimization/characterization of the pinhole-aperture collunator, as well as 

expandng the scope of the radiobiological assays performed using the charged-particle rnicroslit. 



Chapter 2. Background 

2.1 LABA Charged-Particle Microbeam 

The Laboratory for Accelerator Beam Applications (LABA) has been investigating the design and 

implementation of a charged-particle microbeam for radiobiological research since 2000.1(" With two 

small charged-particle accelerators avadable with sufficient energy to penetrate a thin tissue- 

approximating layer of cells on a simple dish at her disposal, one of which had been developed by 

Pyramid Technical Consultants (Waltham, MA USA) to serve as a small, inexpensive laboratory-size 

tool, Professor Jacquelyn Yanch proposed the possibhty of a microbeam of sufficiently compact 

design and low cost that it would be reasonable for hospital/cornmercial/industrial use. 

Most microbeams currently in operation or under development u h e  large and complex accelerators 

and andary fachties. Availabhty presents a major problem, as most rnicrobeams share beam time 

with other projects, and maintenance of the accelerator and associated apparatus requires a staff of 

well-trained physicists and engineers. The LABA Microbeam was designed to overcome these 

barriers of cost and complexity in order to allow microbeam techniques to serve as standard research 

tools. Compared to other microbeam accelerators currently operating and under development, the 

LABA Microbeam has a number of advantages and disadvantages. The small size of the system 

allows for portability and ease of maintenance. The dose equivalent rate at the operator position 

during an irradiation is generally < 0.5 mrem/hr, so the LABA Microbeam requires little or no 

additional radiation shelding. The centralized control system permits a single operator to manage 

almost all aspects of the microbeam operation, and the dedcated accelerator allows for flexible 

irradiation scheduling. On the other hand, the accelerator is only capable of generating a very h t e d  

range of energies, and the maximum energy for singly-charged ions that the accelerator can safely 

generate at the present time is approximately 800 keV. 

2.2 Review of Microbeams 

2.2.1 History 

Charged particle microbeams have a surprisingly lengthy history, gven the complexity of the 

apparatus; however, only recently have biological advances provided the tools required to take full 

advantage of their use. The primary operational rnicrobeams today are located at Columbia 



University's Radiological Research Accelerator Fachty (RARAF), and at the UK-based Gray Cancer 

Institute. A number of other microbeams are under construction or are at some level of 

characterization. 

The use of radiation as a general cellular probe was reviewed by Zirkle in 1947,115 with the specific 

application of partial irradiation of cells described in 1953,l16 but a rigorous description of the use of 

microbeams as an analytical probe was fust provided in 1987."" It was observed that targeted 

irradiation of portions of individual cells would be of interest to biological research for two reasons - 

f ~ s t ,  because it would allow investigators to gain information about how radiation induces damage in 

living systems; and second, because it would aid in the analysis of the normal functions of various 

cellular components by selectively and specifically altering them.116 

Zirkle and Bloom accomplished this by hecting a beam of charged particles (2 MeV protons 

produced by a vertical Van de Graaff electrostatic generator, with a range of 73 pm in tissue) through 

one of two coha to r s  - one, type "G," consists of two parallel plates pressed together, one of which 

had a microscopic groove cut or scored into it (Figure 2.1), creating a triangular aperture; and type 

"XS," which consisted of two crossed slits, each of whch could be adjusted to a desired width 

(Figure 2.2), creating a variable size rectangular aperture. 

C B A  

"XS" 

Figure 2.1 "G" Type Collunator, consisting Figure 2.2 "XS" Type Collunator, consisting 
of a pair of parallel plates, one of which has a of two crossed slits, each of which could be 

"notch" cut into the opposing face."" adjusted to a desired width."" 

The particles had to traverse two mica windows with a stopping power equivalent of 25-30 pm in 

tissue (about 5 pm thick). While this methodology did provide a hlghly-collunated beam (over 95% 

of transmitted particles within a 5 pm diameter spot for their optimal "G" type collimator design), 



there was no precise control over the number of particles transmitted, and vacuum control was very 

poor, leading to a lugh degree of energy straggle. Poor particle energy control from straggle and 

accelerator "wobble" led to poor dosimetry, wluch in turn introduced a degree of error (>5%) 

unacceptable for a true dose-effect study with the precision and accuracy desired today. 

A host of other inadequacies plagued initial microbeam development. Visualmation and targeting of 

cells was h t e d  by the lack of efficient electronic imaging systems, and without computerization, 

automated identification and logging of cell and/or nuclear location was not possible. Maching of 

mechanical components to micron-level tolerances was prohibitively expensive, and aclueving precise 

stage motion to accuracies greater then 10- 100 microns was prohibitively lfficult, wluch introduced 

mechanical errors large enough to overwhelm targeting precision and prevented reliable targeting of 

structures on the order of a cell or smaller. The biological techniques avadable between 1950 and the 

early 1980's were highly h t e d ,  especially in the areas of advanced cell culture and cell signaling.279 104 

Technical advances in physics, electronics, biology, and enpeering were required to provide the 

microbeam desired. By 1987, Watt and Grime had described the fundamental requirements for the 

use of heavy charged ions as analytical probes, inclulng advances in d e h t i n g  techniques (both 

physical collirnation and focusing methods) as well as and targeting technology. The tirneline shown 

Figure 2.3 illustrates the advances in precision and beamspot size through the late 1980's for 

microbeams developed for in-vacuum sample analysis.104 
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Figure 2.3 An illustration of the time-scale of development of in-vacuum charged-particle analytical 
microbeams. "'4 

The last two decades have seen the biological developments needed to make the charged-particle 

microbeam truly useful as a radiobiological research tool. As of 2005, six international workshops on 

the use of microbeam probes for investigation of cellular radiation response have been held as 

biological advances have enlarged the potential areas of microbeam research.'. 2. 3 Direct utbation 

of an accelerator-based microprobe for biologcal research began to occur in the early 90's. At that 

point, laboratories in the USA,34 UK,"'. 32. and Japan began developing charged-particle 

microprobes for irradiation of cells in vitro.5 l1 In the past 10 years there has been a rapid increase in 

the number of centers developing or planning to develop charged-particle and x-ray rnicrobeams. 

Initial studies focused on the use of collimated or focused charged-particle beams to study low 

dose/single particle effects;65 to selectively irradiate a specific subset of cells in a homogeneous or 

heterogeneous cell culture p0pulation;8(~ or to selectively irradate specific sub-cellular portions of 

individual cells, generally the cytoplasm or the nucleus.655.")6 The potential for reliable subnuclear 

dose deposition made the possibility of investigating spatial and temporal distribution of DNA 

damage repair proteins a reality.'" 



There are currently approximately 14 microbeams at some level of operation worldwide, primarily 

studying low-dose effects and "non-targeted" responses such as bystander effects, genomic instabdity 

and adaptive responses.3 

2.2.2 Significance of Microbeam Techniques 

The precision that microbeam irradation provides is of key importance to radobiological studes for 

a number of 3l9 81,l04 

1) it allows the experimenter to precisely control the amount of radiation deposited in a given 

cell or defmed subpopulation of cells, as well as permitting the targeting of a specific subset 

of cells from a larger population 

2) it allows investigation into the dstribution of radiosensitivity across a cell or nucleus, in that 

micron resolution and single particle control permits the deposition of varymg levels of 

radiation intensity across the cell or subcellular structures 

3) defmed subnuclear dstribution of radation dose allows visualization of damage repair 

protein locahzation and the time evolution of DNA damage resolution 

4) it allows targeting of specific cellular regons and the ablhty to return to those regions to 

permit direct visuahation of radation effects over time (such as for membrane damage 

studies). 

The most important aspect of microbeam irradiation is the role it can play in improving the statistical 

nature of dose determination. Tradtional broad-beam irradations of cell cultures rely on 

probabhstic "average" numbers of particle traversals - for example, a tradtional "broad beam" 

irradation follows Poisson statistics, such that an irradation designed to deliver an average of one 

particle per nucleus (a "ht") would result in 37% of the irradated cells receiving no "hits," 37% of 

the irradated cells receiving a single "ht," and 26% of the irradated cells receiving 2 or more hits.65 

W e  the average dose is the same for a Poisson-distributed mean number of charged-particle 

irradiations in a broad-beam irradation as it is for a set of uniformly targeted, single-hit irradations in 

a microbeam irradiation, the true dose dstribution on the cellular level is completely dfferent. With 

the precision and accuracy of a properly designed microbeam, the statistical and heterogeneous 

nature of broad-beam irradiations is overcome and replaced by the relative certainty and uniformity 

of targeted irradiation. 



Precise spatial targeting allows the operator to selectively irradiate the nucleus duectly, or spare the 

nucleus and irradiate only the cytoplasm, permitting study of the relative contribution of the passage 

of a charged particle to a range of biological damage endpoints. Irradiation of a specific cell type 

(using fluorescently tagged surface markers, for example) in a heterogeneous cell population would 

allow the study of a range of cell-specific secondary biological effects. An understandng of these 

reactions on the cellular level could contribute a great deal towards "personalized therapy," in which 

a radlotherapeutic r e w e n  could be optimized in ~ i t m  to an indvidual patient's needs in order to 

maximize therapeutic benefit. 

2.2.3 Characteristics of a Microbeam 

As previously mentioned, a microbeam is a device capable of delivering a precisely controlled 

amount of radiation to a specified target of micron dlrnensions. In its simplest form, radiation must 

be generated, duected towards a target, and regulated spatially and temporally in such a way that a 

specified dose may be deposited in that target or targets. In developing such a device, certain specific 

subsystems are needed: 

1) a radiation source, 

2) a collimating/focusing system for generating a micron-scale beam spot, 

3) a detection system, used to precisely control the number of particles w i t h  the micron- 

scale beam spot, and 

4) a targeting/positioning system, used to align the beam relative to the target (or vice 

versa). 

There are many possible ways to design these subsystems - a brief overview of each follows, 

although point 3) is broken into 2 general categories: a detection system and a shuttering system. 

A radiation source is defined as the means by which the radiation used by the microbeam apparatus 

is produced. This may be a source of charged particles, such as protons, alphas or electrons; or it 

could be a source of x- or gamma rays. A charged-particle source could range from a simple 

radionuclide-based source such as Americium-241 (241Am), which has the advantages of highly 

flexible size requirements and low expense, but is limited to specific energes and charged-particle 

types (alphas, electrons, and positrons); to an accelerator-based source such as a Van de Graaff, 

Cockcroft-Walton, or cyclotron, all of which are sipficantly larger than any radonuclide source as 

well as orders of magmtude more expensive, but provide a much greater range of possible energies, 



intensities, and particle types for use in biological irradiations. An x- or gamma ray beam can also be 

provided in a wide range of energies through a number of cathode-ray, radionuclide, or synchrotron 

sources. 

A collimating/focusing system is the most crucial defining component of a "micro"-beam, in that 

it is the means by which the beam spot produced by the radiation source may be collimated to a 

precise, micron-scale cross-sectional area. Physical c o h a t i o n  methods, in which a physical barrier 

is imposed in the path of the beam to reduce the cross-sectional area of the beam to a micron-scale 

spot, are probably the simplest way to control the profile of a radiation beam as well as reduce the 

beam intensity, although they may be considered a "brute force" method. This method is 

appropriate for both charged-particle sources and x- or gamma ray sources, but in the latter cases 

scattering effects may cause difficulties in obtaining a small spot in whch the majority of all particles 

fall. "Focusing" methods may also be used on both classes of radiation. In the case of charged 

particles, electrostatic or magnetic focusing elements may be employed; in the case of uncharged 

particles such as x- or gamma rays, dffractive and/or reflective elements may be used. Focusing 

methods do not generally reduce the initial beam intensity significantly, which would make higher- 

intensity radiation sources more difficult to control; the higher the beam current, the more difficult it 

is to h t  the number of transmitted particles delivered to the target. 

A detection system generally consists of two components; a detection system that verifies that the 

target has been hit and by how many particles, and a gating system that "shutters" the beam, allowing 

a single or specified number of particles to hit the target. 

particle detection system: a system capable of detecting precise amounts of radiation dose 

or single particles. A number of methods exist, includmg transmission detectors, in which 

the radiation must have sufficient penetrating power to traverse the transmission detector, 

with enough remaining to irradiate the cell; and termination detectors, including surface 

barrier and thin-window proportional counters, in whlch case the radiation used must have 

sufficient energy to penetrate the entire target and any other intervening material before it 

reaches the detector face. Generally, the particle detection system also provides the signal to 

the gating system. 

gating system: a means by which to limit the number of particles, usually coordinated with 

the single-particle detection system. The gating system could employ a physical barrier 

(mechanical shuttering) or use electrostatic or magnetic means to divert the beam away from 

the target (electromagnetic shuttering). 



Last, a targeting/positioning system is crucial to the use of a microbeam as an analytical or 

biological probe. Such a system requires both a visualization methodology that permits visualization 

of cells and/or subcellular components that should be able to log the locations of cells or landmarks 

on the cells for irradiation, and a means by which to either place the target in the path of the beam 

(such as an x-y automated stage) or to l r ec t  the beam to the target (such as electrostatic or 

electromagnetic beam positioning). Stage-based targeting is generally used for physically collimated 

beam methods, whereas electrostatic/electromagnetic based targeting methods are generally coupled 

with focused beam methods due to the fact that the hardware to l r ec t  the beam is already present. 

2.2.4 Existing Microbeams 

As of 2004, there are approximately 14 microbeams at some level of operation worldwide.3 Many of 

these microbeams are at the most embryonic of stages, while a few, notably the Gray Cancer Institute 

and Columbia RARAF microbeams, are highly developed and fully operational. Countries engaged 

in microbeam research include the US (3 - Columbia RARAF (charged-particle and x-ray), MIT 

LABA, and Texas A&M), UK (GCI (charged-particle and x-ray), Japan (3 - JAERI, Tsukuba (x-ray 

only), SPICE/Cluba), Chma (Chmese Academy of Science in Hefei), Germany (4 - GSI, PTB, 

Munich and LIPSION/Leipzig), France (CENBG) and Italy (INFN-LNL). Other fachties are also 

exploring the option of developing microbeams - for example, in the US, the Advanced Light Source 

at Berkeley has also been used to produce x-rays for microbeam irradation.lt 2>" 7 

An overview of the many microbeams and their operating characteristics is provided in Table 2.1 

below. The two longest-established microbeams at the Gray Cancer Institute in the UK and the 

RARAF Microbeam in the USA will be dscussed in more detd.  
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2.2.4.1 Gray Cancer Institute Microbeam

The Gray Cancer Institute (GCI) Microbeam, part of the Gray Cancer Research Trust in the UK, is

one of the oldest established microbeams, having been in routine operation since 1996. Specifically,

the microbeam utilizes the Gray Cancer Institute's 4 MeV Van de Graaff accelerator, which provides

either singly- or doubly-charged particles (generally protons, He-3 and He-4) with an RF ion source.

The layout of the GCI facility is shown in Figure 2.4 below.

Figure 2.4 The Gray Cancer Institute Van de Graaff beamline.32

These ions are directed through a -10 m beamline using a number of bending magnets,

focusing/steering magnets, deflectors, and slits, and then collimated via a glass capillary tube with

possible inner bore diameter of 5, 1.5, or 1 rnm. Ions passing through the collimator traverse an

18tpm-thick scintillating film, which allows determination of particle fluence by a photomultiplier

tube positioned above the cell dish. The signal from the PMT-based detection system may be used

to trigger a shuttering system that mechanically blocks the beam. 32 33 The collimator/deflector block

used in the GCI Microbeam is shown in Figure 2.5.
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Figure 2.5 The GCI Microbeam collimator-detector assemblies and cell dish.33

The individual subsystems of the GCI Microbeam are summarized in Table 2.1 above. The

subsystems work together as shown in Figure 2.6:
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Figure 2.6 An illustration of the GCI Microbeam subsystems. 38

Characterization of the collimated beam shows that the GCI Microbeam is able to deliver >90% of

transmitted particles within a 2 pm diameter area of the center of the target, with the remainder

falling within a 5 pm diameter area. The GCI Microbeam has demonstrated that it is capable of
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performing single-particle irradiations of the nucleus and/or cytoplasm of specific, individual cells. 

The maximum throughput of the system is over 15,000 cells/hr. 

In addition, the Gray Lab has been developing an x-ray microbeam. Rather that accelerating charged 

particles, the Ultrasoft X-Ray Microbeam uses diffracted 278 eV carbon K-shell x-rays focused to a 

sub-micron spot size. The purpose of such a device is to look at clustered DNA damage, whch 

generally takes the form of a number of DNA base and/or backbone chemical modifications and 

DNA single strand breaks in close proximity to one another, rather than the DNA double strand 

break (DSB) damage induced by heavy charged particles.92 T h s  is possible because low-LET 

radiation such as gamma and x-rays has a "sparsely ionizing" pattern of radiation damage, in which 

damage manifests in a range of chemical modifications to DNA bases and/or the DNA backbone. 

When a number of these chemical modifications occur in close proximity to each other, they form a 

"cluster," which may cause damage to DNA that can overwhelm the afflicted cells' abihty to repair 

themselves, or inadvertently cause greater damage in the repair process.17. 959 

2.2.4.2 RARAF Microbeam 

The Radiological Research Accelerator Fachty (RARAF), at Columbia University's Center for 

Radiological Research in New York, lays claim to the second major charged-particle microbeam. The 

microbeam utilrzes a Model D l  4.2 MeV Van de Graaff accelerator, which accelerates helium or 

hydrogen ions produced by the Facility's duoplasmatron ion source. The layout of the fachty is 

shown in Figure 2.7. 



Figure 2.7 Layout of the ground floor of the RARAF microbeam facility. A 900 bending magnet is 
located at "C," drrecting a vertical beam to the second-floor irradiation area." 

Charged particles travel -2 m to a horizontal bending magnet, and then travel -10 m to a vertical 900 

bendmg magnet that redrrects the beam to an irradiation area on the next floor above. 

Collunation is accomplished with a set of laser-dnlled apertures consisting of two 12.5 pm -thick 

stainless steel foils with 5 p m  and 6 pm holes separated by a 300pm spacer (constructed by Lenox 

Laser, Glen Arm MD, USA). Cells are plated on a custom cell dish in which the base is composed of 

a 4 pm-thick polypropylene f h .  Single-particle detection is accomplished using a PI0 gas-fded 

pulsed ion counter placed above the cells, which requires that the cell medium be removed during 

irradation. The counting signal may be used to trigger a set of electrostatic deflection plates that is 

capable of gating the beam. 

RARAF is currently implementing modifications to its microbeam that wdl improve the spatial 

resolution of the beam from + 3.5 pm to + 0.3 pm by incorporating an electrostatic focusing lens 

instead of physical collunation, and allow the use of a wider range of charged particles using a laser 

ion source.3> 25 

The inhvidual subsystems of the RARAF Microbeam are summarized in Table 2.1 above. The 

subsystems work together as shown in Figure 2.8. 
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Figure 2.8 An illustration of the coordination of the RARAF Mcrobeam subsystems.~4 



Using physical collunation methods, the RARAF Microbeam is capable of generating a beamspot in 

which approximately 91% of transmitted particles lie within a 5 pm dameter area, 7% fall w i t h  an 8 

p dameter "halo" region about the center of the target, and the remaining 2% are scattered about a 

> 8 pn dameter area. The electrostatic deflection plate gating system has a rise and fall time such 

that there is a 0.04% chance of an extra particle being delivered to the target during an irradation. 

The RARAF microbeam is capable of performing single-particle irradations of the nucleus and/or 

cytoplasm of specific, indvidual cells. The throughput of the system is over 10,000 cells/hr.'5* a 

2.2.5 Applications 

Charged-particle microbeams are research tools with a wide range of biologcal applications. With a 

very precise microbeam, capable of generating a < 5 pn beamspot, exploration of the temporal and 

spatial distribution of DNA damage repair processes in response to a subnuclear dstribution of 

radation becomes possible.3" 76 The abhty to precisely target the number and type of cells allows for 

well-controlled investigations into the radation-induced bystander effect and its mechanisms. 

Additionally, it permits the investigation of how tissue organization affects the type and extent of 

radation response. Registration of the location of a charged-particle "hit" may allow visualization of 

changes in membrane permeabhty and/or structure integrity. Further detds regardmg particularly 

interesting applications of microbeams follow. 

2.2.5.1 Radiation-Induced Bystander Effect Studies 

The radiation-induced bystander effect is generally defined as the induction of biological effects in 

cells that are not directly traversed by ionizing radation.58.72 

2.2.5.1.1 Radiation-Induced Bystander Effect Background 

Accordmg to the currently accepted model,48 radiation interacts with DNA (defined by Hall to be the 

"critical target for biological damage-42) through two mechanisms: 

- "direct" interaction with the critical target, in which the DNA strand itself is structurally 

altered or disrupted; and 

- "indirect" action via free radical damage, in which case free radcals are produced by 

radation interactions in sufficiently close proximity to a DNA strand that they are able to 

reach and chemically interact with the critical target. 



Both of these effects happen on a very short timescale, as ion radcals have lifetimes on the order of 

lo-"' seconds, and free radcals survive about 10-5 seconds.42 However, studies over the last decade 

and a half have demonstrated that the "induect" effects of radation may be far more complex than 

the relatively simple interaction of free radcals with DNA, in that radation damage on the cellular 

level seems to result in a cascade of biological processes that impact not only the hectly irradiated 

cells, but cells that are in close contact or continuous with the medum that the irradated cells are 

bathed in as well. S89 729 749 

It may be necessary to reclassify "induect" radation damage into two distinct forms: the "proximal 

induect," which encompasses the chemical damage induced by ion and free radcals in close contact 

with the DNA strand; and "distal indirect," which includes the potentially far-reaching biological 

effects that are induced by radation damage and may result in addtional damage to the injured cell as 

well as to other cells in the area. This "distal induect" form of radiobiological action, known as the 

radation-induced bystander effect, was fus t characterized by Nagasawa and Little in 1992.'4 Using a 

simple benchtop a-particle irra&ator,62 chinese hamster ovary (CHO) cells were exposed to 0.03-0.25 

cGy of a-particles. While only 0.07-0.6% of cell nuclei should have been physically traversed by the 

a-particles at these doses, 30-45% of the cells in the population were shown to have an increased 

frequency of sister chromatid exchanges over background. 

As the classic radation effects on DNA described by Hall were insufficient to explain this result, a 

biologically-medated secondary pathway must exist by which the cells not "hit" by radation could 

st111 experience observable damage endpoints similar to those induced by radation.4" 5% 72.749 919 112 

Other recent studes using charged-particle microbeams have shown that the magmtude of this effect 

can be much greater than expected - studes using the Gray Lab microbeam have shown that 

targeting as few as four cells (primary human fibroblasts) in a population of several thousand with 

one or more alpha particles results in apoptosis and micronuclei formation in 25 to 40 times as many 

nearby cells, with the increase in micronuclei formation correspondmg most closely to increased 

dose.%' 

The radiation-induced bystander effect is generally defined as the induction of biological effects in 

cells that are not duectly traversed by ionizing radiation. A wide range of data exists describing this 

radiation-induced bystander effect, fahng into two general categories: broad beam studes with 

medium transfer, in which the medium from broad beam irradiated cells triggers an observable 

biological effect in unirradiated cells;"JI and rnicrobeam studies, in which a controlled amount of 



ionizing radlation (specified numbers of charged particles, or dlscrete amounts of gamma/x-ray 

radiation) are dlrected at specific cells or portions of specified cells, with observation of biologcal 

effects in neighboring cells.83 

Medium transfer experiments have demonstrated a range of bystander effects, includlng induction of 

apoptosis,59 chromosomal aberrations, cell cycle delay, and cell lethality.699 7' In these experiments, 

it has been observed that the choice of cell type (epithelial vs. fibroblast, for example) appears to 

have a significant effect on the biological outcome. Many experiments suggest that the observed 

effect is initiated by a molecule or set of molecules secreted by irradlated cells. This secreted 

component must be capable of transferring damage (or inducing pathways that result in damage) to 

neighboring and dis tant cells."' 7". 723 73 

Bystander experiments using single-particle irradiations with charged-particle microbeams have 

demonstrated an equally wide range of bystander effects, includlng mutation,ll() oncogenic 

transf~rmation,~ chromosomal aberrations," and cell lethality." m e n  cells are in close contact, 

allowing gap junction intercellular communication (GJIC), the bystander effect has been observed to 

be of a much larger magnitude than the phenomenon demonstrated in medium transfer experiments, 

and ths  contact enhancement can be reduced by the use of GJIC inhbitors such as lindane.4 

Microbeam studies performed with non-confluent cultures have also demonstrated transmission of 

biological effects consistent with mediation by diffusion completely independent of GJIC.") This 

supports the conclusion that there is more than one biological mediator of the radiation-induced 

biological effect, and that the mechanisms of bystander damage transfer dffer between the secreted 

and GJIC forms of transmission. In addltion, the cell type and environment as well as the type of 

radlation used may play a sipficant role in how the radation-induced bystander effect is manifested. 

2.2.5.1.2 Implications of the Radiation-Induced Bystander Effect 

In general, bystander effects have been demonstrated for both high- and low-LET radations but 

tend to be of greater magnitude for densely ionizing radiation such as alpha particles. Evidence 

exists for a comparable bystander effect in three-dunensional normal tissue,51> 739 1°7 and models have 

been developed to investigate how such an effect would impact such a system." Bystander studles 

imply that the "target" for the biological effects of radiation may be much larger than that actually 

experiencing direct radiation damage, which could have serious consequences for treatment planning 

and dose control. 



2.2.5.1.2.1 Radiation Protection 

The most serious implications for radation protection are demonstrated by the bystander studies of 

Zhou et al.,llQ. which have investigated low dose effects on mutation frequency. A non-linear 

increase in mutation frequency in the zero to one alpha traversal range suggests that a simple linear 

extrapolation of radation risks from high to low dose may be invalid (see Figure 2.9 and 2.10 

below) ."('I * 

Percentage of Cells Irradiated with One Alpha Particle 

Figure 2.9 Induced CD59 mutant fractions per 105 survivors obtained from populations of AL cells 
in which 0, 5, 10,20, or 100°/o had been irradiated with exactly one or particle through its nucleus 

using the RARAF Microbeam. Induced mutant fraction = total mutant fraction minus background 
incidence, which was 46+/-10 mutants per 105 clonogenic survivors in AL cells used in these 

experiments. Data are pooled from three to seven independent experiments. Error bars represent 
+/- SD. The calculated curve deviates slightly from a straight line fitting because of the slight 

cytotoxic effect of single particle traversal among the irradated cells."l 



Average Exact 
number of a-particles number of a-particles 

I 

per nucleus per nucleus 

Figure 2.10 Mutation frequency as a hnction of the number of alpha particles traversing cell nuclei. 
[from Hall 2003, based on data of Zhou et al. 2 0 0 0 , 2 0 0 1 ] 4 3 ~ ~ ~ ~ ~ ~  

Dose Response Relationship for 
Mutations in A, Cells 

Current risk estimates are based on extrapolating high-dose cancer induction data (Uranium miners 

. 

and Hiroshma/Nagasaki bombing survivors) in a linear manner to low doses.12 If a low-dose 

suprahear effect exists (as suggested in Figure 2.10), these estimates could be much lower than they 

should be for an accurate assessment of cancer risk due to increased mutation frequency. While a 

direct relation between mutation frequency and cancer induction has not yet been established, 

increased mutation frequency is inlcative of genornic instability, which many stules link dlrectly to 

cancer formation (hypermutation is a key contributor to malignancy)." 112 Various extrapolation 

models are shown below in Figure 2.11. 



Figure 2.11 Schematic representation of dfferent possible extrapolations of measured radation risks 
down to very low doses, all of which could, in principle, be consistent with higher-dose 

epidemiological data. Curve a, linear extrapolation; curve b, downwardly curving (decreasing slope), 
curve c, upwardly curving (increasing slope); curve d, threshold; curve e, hormetic.12 

In addtion to a possible supralinear effect (curve b in Figure 2.11), there is also a possibility that risk 

estimates overestimate the dose, as a host of mechanisms have been proposed to justify a hormetic 

or adaptive response.12 In the former of these two scenarios, a certain amount of low-dose radation 

exposure may theoretically upregulate radation-related DNA repair mechanisms and/or immune 

responses. In the latter case, a brief low-dose exposure stimulates the DNA repair machinery of the 

exposed cells for an extended period, so that they may more effectively cope with a later insult. 

2.2.5.1.2.2 Radiation Therapy 

The radation-induced bystander effect poses some concern for radation therapy, as it could possibly 

affect the theoretical benefits achieved by precisely targeted therapies, in either a negative or positive 

manner. It is possible that the secondary biological effects could enlarge the effective field and 

induce unexpected and/or uncontrolled abscopal ("out-of-field") effects, characterized as responses 

that follow irradation but occur outside of the zone of actual radation absorption. This could result 

in a loss of therapeutic control at the edges of the exposed field, as the biologcal response of the 

irradated tissue may not correlate with the spatial distribution of radation dose. Much of current 

clinical radation therapy is based on "broad field" irradiations of relatively high dose (1.5-2.0 Gy 

dady). With such a large uniformly irradiated volume, it is possible that bystander effects only 

contribute to heightened "dose" at the edges of the field, in the cells that are in closest contact with 



the irradiated cells. Several "targeted" therapies are in development or at the early stages of clinical 

application, includmg: 

- Radioimmunotherapy (RIT), whose target specificity is based on antibody affinity to specific 

cellular targets, and incorporates radionuclides to deliver therapeutic radiation dose; 

- Radionuclide-labeled receptors or growth factors that are specific to a target tissue (generally 

a tumor); 

- Neutron Capture Therapy (NCT), a bimodal therapy in which a patient is gven a highly 

neutron-absorbing isotope (any isotope with a large neutron absorption cross-section, such 

as Boron-10) incorporated into a compound that is selectively absorbed by tumor tissue, 

coupled with exposure to a neutron beam. The resulting neutron/isotope interaction is 

intended to occur preferentially in tumor tissue, resulting in a highly specific deposition of 

energy that selectively destroys tumor tissue; 

- Charged-Particle Therapy, (including hadron therapies such as proton beam therapy) that use 

highly focused beams of charged particles in conjunction with a delivery system capable of 

directing the beam at a precisely located tumor mass from multiple angles (many degrees of 

freedom), allowing for rmlluneter or sub-eter deposition of therapeutic radiation dose. 

Any of these therapy methodologies can create small, non-uniform distributions of energy such that 

many irradiated cells d be in close proximity to neighboring, un-irradiated cells. If proximity to 

irradiated cells is sufficient for transmission of the radiation-induced bystander effect, and 

proportional to the magnitude of the observed biological outcomes (whlch seems to be the case with 

studies that look at the role of gap-junction intercellular communication (GJIC)), this could result in 

a significant increase in net abscopal effect where the mass of tissue affected by radiation-induced 

biological damage is as large or larger than the mass of tissue to which the radiation dose was 

adrmnis tered.8. 

To illustrate this point, assume a tumor volume, approximated as a sphere, 5 cm in radius r. 

Surface Area (SA) = 47tr2 = 31 4 cm2; 

4 
Volume (V) = - 7tr" 524 cm3 

3 



Following irradation of this volume, and assuming that the radation-induced bystander effect 

"biological me&ator7' is able to &ffuse a &stance x d  of 0.2 mm (a conservative estimate based on 

LABA studies), the bystander-affected volume Vb is now that contained within radius rb, where: 

rb = r + x d  Equation 2.1 

The dfference between the irradated tumor volume V and the bystander biologcal medator- 

affected volume Vb is then given by Equation 2.2: 

4 
Vb = - n(rb)3 = 530 cm3 

3 

Vb-V = Va Equation 2.2 

Based on these assumptions, the bystander abscopal volume (V.) would be 6 cd, or approximately 

1% of the total tumor volume. 

It is possible to take the same tumor volume V (524 cm3) defined above and dsaibute the total 

volume among a number of smaller tumors (number of sites n). Then, solving for the radius of the 

indvidual tumor site r,: 

Equation 2.3 

The resulting total bystander biologcal medator-affected volume Vb,n for n irradated tumor sites is 

given by Equation 2.4: 

Equation 2.4 

and the total bystander abscopal volume Va,n for n irradated tumor sites is given by Equation 2.5: 

Vb,n-V = Va,n Equation 2.5 

The resulting increases in surface area and bystander abscopal volume Va,n, (assuming none of the 

bystander biological mediator-affected volumes overlap), is illustrated in Table 2.2. 



# of Tumor Sites 
n 
1 
10 
100 

1,000 
10,000 
100,000 

1,000,000 

Tumor Surface Area 

314 
677 

1,458 
3,141 
6,768 
14,582 
31,416 

Abscopal Volume 

6 

Abscopal Volume 
(% tumor volume) 

1 O/o 

3% 
6% 
12% 
28% 
67% 
174% 

Table 2.2 Size of the "abscopal" bystander-affected volume (V.,.) with the number of distributed 
irradiated sites in a nonuniformly-irradiated field. (For a faed total tumor volume of 524 cm" and 

effective "biological mediator" diffusion distance of 0.2 mm). 

Given that a 70 kg male has a total body volume of approximately 70,000 cm3, there is obviously a 

k t  to the size of the abscopal volume. While this is a very simple approximation, the concern 

remains - with RIT, NCT, and the other labeled-protein techniques, the number of irradiated sites 

could be in the tens or hundreds of thousands, possibly even in the d o n s .  It has been 

demonstrated that the radiation-induced bystander effect plays a biologcally-relevant role in the 

response of in vivo normal and tumor tissue to radiation,519 7% lo7 and cell-cell contact and/or 

proximity has been suggested to play a role in the magnitude of the response."'7 The potential for a 

correspondmg geometric increase in bystander-affected volume and the possible negative impact on 

the benefits of increasingly-targeted therapies makes the need to understand and, if possible, control 

this effect highly critical for the future of radiation therapy. 

2.3 Chapter Summary 

The resulting aim is to develop a proof-of-principle prototype for a laboratory-size microbeam 

suitable for hospital or industrial installation. As many of the radiobiologcal research options 

presented by charged-particle microbeams have h e c t  application to clinical research, a design that is 

safe and appropriate for hospital use is essential. A description of the accelerator and beamline 

components wdl be provided in Chapter 3, and the methods by which each beamline component 

was characterized d be discussed. 



Chapter 3. LABA Accelerator and Beamline

This chapter will discuss the design and characterization of the components of the LABA

Microbeam that are responsible for generating and delivering a vertically-oriented charged particle

beam to the experimental endstation. A diagram of the major components that make up the LABA

Microbeam is shown in Figure 3.1, including the accelerator itself, the integrated Faraday cup, the

electrostatic deflector system, the quadrupole triplet, the 900 bending magnet, and the experimental

endstation. The relevant components to be discussed in this chapter are surrounded by the blue

dashed box.
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Figure 3.1 Overview diagram of the LABA Microbeam accelerator, beamline, and experimental
endstation. Relevant components discussed in this chapter are surrounded by the blue dashed box.

The Laboratory for Accelerator Beam Applications charged-particle microbeam accelerator is a

multi-stage linear accelerator, of the type first built by J. D. Cockcroft and E. T. S. Walton in 1932.18,

19 The accelerator is capable of accelerating protons, deuterons, and alphas (He-3 and He-4),

although its primary use to this point has been to generate beams of protons. The original

application of the device was for proton-induced x-ray emission (PIXE) surface analysis, and the

accelerator is well suited for use in microbeam techniques due to the stability (energy and

positioning) and relatively low intensity of the generated beam current, precise voltage regulation, as

well as the small size of the in-lab device."I



Control of the various beamline subsystems is managed on the "Vacuum," "Accelerator Control,"

and "Facilities" screens of the central computer-based control system, discussed in detail in Section

3.3 later in this Chapter. These screens control the components marked b, d, e, and f on Figure 3.2

(surrounded by a blue dashed box), corresponding to the accelerator, deflector, quadrupole triplet,

and bending magnet, respectively.

Figure 3.2 Control diagram (Chapter 3 components surrounded by blue dashed box). a) CPU, b)
Accelerator, c) Faraday cup, d) Deflector, e) Quadrupole Triplet, f) Bending Magnet, g) Collimator

assembly, h) Scintillating plastic, i) PMT 1, j) PMT 2, k) Cells on cell dish, 1) X-direction stage motor,
m) Y-direction stage motor, n) Objective on motorized focus, o) Dichroic mirror, p) Light shutter, q)

Light (UV) source, r) CCD camera.

3.1 Accelerator Components

The accelerator, shown in Figures 3.3 and 3.4, was designed and constructed by Newton Scientific,

Inc. (NSI, Cambridge MA, USA) and the beamline and initial versions of the components between

the accelerator and before the bending magnet were designed and constructed by Pyramid Technical

Consultants (PTC, Waltham MA, USA), including the Faraday cup, a set of deflector plates, and the

quadrupole triplet. Prior to coming on-line the accelerator and beam tube were donated to MIT, at

which point the elements "upstream" of the LABA Microbeam experimental endstation that are

......----.--- -..-- ---- --------------- ..



responsible for producing the charged-particle beam prior to collimation and delivery to a biological

target were designed, constructed, and/or characterized.

Figure 3.3 The LABA single stage electrostatic accelerator, with the vessel sealed for operation. The

pressure vessel is approximately 1.8 meters long, and is normally pressurized to 95 psi with SF6.

Figure 3.4 The LABA single-stage electrostatic accelerator, with the pressure vessel opened to

expose the accelerating column and terminal.



3.1.1 Ion Source/Accelerator 

The LABA Microbeam makes use of a 1.5 MeV single-stage electrostatic accelerator, shown in 

Figures 3.3 and 3.4. This accelerator is capable of ionizing and accelerating a number of particle 

types (generally protons, deuterons, He-3, and He-4), as well as singly- and doubly-charged states. 

The accelerator column is housed within a pressure vessel consisting of an accelerating tube, a high- 

voltage power supply, the high voltage terminal assembly, ion source, and associated electronics. The 

pressure vessel contains SF6, an insulating gas, usually pressurized to 95 psi. 

3.1.1.1 Design 

The ion source (see Figures 3.5 and 3.6) located in the high voltage terminal consists of a quartz 

chamber in which an RF oscdlator coil ionizes the gas by stripping it of electrons. The resulting 

plasma is s t abhed  by a set of electrostatic field plates. The ionized gas is forced towards the 

Cockcroft-Walton accelerating elements by an extraction probe that can be hnctionally considered a 

point charge; as a result, the ions are extracted in the 271 direction towards the beamline. A focusing 

element, acting as a lens, is located immediately outside of the quartz ionization chamber and is 

always at power in order to generate a relatively forward-biased beam of charged particles. Focusing 

the beam also serves to prevent errant charged-particles from dlschargmg against the electrostatic 

accelerating rings, which can result in erratic beam current or transient power loss. After passing 

through this "lens" the ions are injected at low energy (15-30 keV) into the acceleration stack and the 

resulting beam is accelerated and focused by the electrostatic field of the accelerating tube (designed 

to attain a final maximum energy of 1.5 MeV (singly-charged ions) or 3.0 MeV (doubly-charged 

ions)) -52, 109 
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Figure 3.5 LABA Microbeam terminal components exposed.

Figure 3.6 Quartz ionization chamber containing the hydrogen plasma generated by the RF
oscillator coils.

In addition to housing the ion source for the charged-particle accelerator, the high voltage terminal

also contains the source gas in a pressurized bottle. While this is necessary due to the design of the

accelerator, it may be inconvenient when the source gas runs out or if one wishes to use an alternate

accelerant. Accessing the accelerant in order to change or refill the gas requires the removal of SF 6

from the tank, after which the vessel must be brought up to atmospheric pressure and the tank and



terrninal housing removed. Gas flow is regulated by a needle valve controlled from the central 

control system. 

The LABA charged-particle accelerator is much smaller (approximately 1.8 m long, 0.77 m in 

diameter and weighing about 500 kg) and more manageable than the Van de Graaff,32$34 Pelletron,45? 

46 and Cyclotron54 systems used by other rnicrobeams (as shown in Table 2.1, Chapter 2), but 

produces a smaller range of particles and energies. The reduction in size and complexity is possible 

because the NSI design uthzes an all-solid-state high voltage power supply that is significantly more 

compact and power efficient than other hardware designs. A 30-stage symmetrical series-fed cascade 

rectifier power supply is used to supply continuous current to the 1.5 MV terminal. A high 

frequency, pulse-width modulated converter supplies power to the multiplier stack through two AC 

couphg capacitator columns that charge each of the power supply stages. The AC voltage is 

rectified and filtered and appears as a DC voltage on the high voltage terminal. With this series-fed 

design, excellent voltage regulation (AV/V < 0.005%) is acheved without the need for the "tank 

liner" voltage s tabher  that is required to achieve efficient voltage regulation in mechanically charged 

systems.529 rng Voltage regulation wdl be critical for studies requiring precise knowledge of particle 

energy and hence particle LET. 

3.1.1.2 Characterization Methods 

An understanding of the shape and intensity of the charged-particle beam at several stages along the 

beamhe is critical to the proper characterization of the beam. A number of methods are avadable 

for this analysis, includmg: 

Faraday cup 

Quartz window 

Track etch techniques (CR39, LR115) 

Radiochromic film techniques (MD55, HD-810) 

To measure the current of the charged-particle beam generated by the accelerator up to the 

begmning of the beamline, an integrating Faraday cup that can be inserted into the beam path 

without breaking vacuum was used. This Faraday cup, shown in Figures 3.7a and b, was attached 

to a Keithley analog electrometer. (Keithley Model 602, Keithley Instruments Inc., Cleveland, O H  

USA) This allowed for measurement of beam current prior to manipulation by bearnline 

components. Under pressure conrlltions that permit safe operation of the accelerator (typically, 



stable tank pressures less than 5x10-5 Torr), beam currents range from a few nanoamperes to several

microamperes (10-9 - 10-6 A), depending primarily on tank pressure and extraction voltage.

a. b.

Figure 3.7 Faraday cup current measurement system at the accelerator exit, a) Probe in beam path
allowing for current measurement, b) Probe out, beamline open.

Verification of beam throughput, position, and general profile at the end of the beamline

immediately prior to collimation in the experimental endstation is easily accomplished through the

use of a quartz window. When charged particles interact with the quartz, the resulting

excitations/ionizations create a luminescence that, provided the charged particle beam is of sufficient

intensity, is visible to the naked eye. This allows for very rapid verification of the location and

general profile of the incident beam at the window. The setup for quartz window irradiation in the

experimental endstation is shown in Figure 3.8.

Figure 3.8 Quartz window irradiation setup in the experimental endstation. The collimator assembly
is removed to allow the vertically-oriented beam to strike the quartz window.

Both track-etch and radiochromic techniques are based on radiation-induced chemical reactions,

which generate a semi-permanent record of the spatial delivery of radiation dose. In order to



determine the dimensions of the resulting image, the track-etch plastic or radiochromic film is

compared to a standard, or "graticle," as shown in Figure 3.9.

Figure 3.9 Microscopic standard, or "graticle," at 10x magnification. Spacing between the closely
packed lines is 10 [im.

The graticle itself is mounted on a microscope slide, and a set of images of the graticle at 5x, 10x,

40x, 63x, and 100x magnification was taken using a SPOT CCD camera (Diagnostic Instruments,

Sterling Heights, MI USA) attached to a Zeiss Axioplan 2 microscope (Zeiss Inc., Oberkochen

Germany). These images were used as sizing standards to determine the dimensions of all images

taken in the course of the characterization of the LABA microbeam.

Track etch techniques are based on the effects of ionizing radiation passing through a polymer-based

material. Radiation interactions result in excitation, de-excitation, and polymer chain breaks along

the track. These interactions produce regions where chemically reactive sites are formed. (Shown in

Figure 3.10)



* 

Figure 3.10 Effect of the passage of a charged particle through a polymer.30 

Treating chemically reactive sites with a strong base such as NaOH results in degradation of the 

polymer about the site, creating an etched pit that can be visualized with a microscope. Two types of 

track-etch film were used in our verification processes - Type I LR115 f h  and CR39 plastic. 

Type I LR115, produced by the DosiRad Corporation (Lognes, France), consists of a 6 pm red 

cellulose nitrate (C6HsOqN2) layer on a 100 pn clear polyester base. It is hghly sensitive, detecting 

charged particles including low-energy pr0tons.3~) W e  LR115 has several disadvantages, includmg 

high sensitivity to abrasion, temperature, oxidation, and a range of chemical actions, with carehl 

handling the following properties make Type I LR115 very useful for frequent beam verification:5.30 

High image contrast (white pits on a red background) 

Relatively fast etchng time (less than 1 hour) 

Type I LR115 development parameters in the literature suggest the use of 2.5N NaOH in a 60°C 

bath for 25-40 minutes,5. 22 but optimization to the LABA microbeam irradiation suggests that 

etchmg the exposed film in 60°C 1N NaOH for -40 rnin provides the most defined and 

reproducible pits. A representative image of a charged-particle slit irradation is shown in Figure 

3.11. 



Figure 3.11 Example LR115 image of a 200 Gy charged-particle irradiation through a -1.5 ýtm x
1mm slit. Spacing between stripes = 20 [im. All tracks within 5 mrn field demarcated by white lines,

average track profile width = 3.2 [m (10x magnification, color adjusted)

CR39 (Columbia Resin #39) plastic is made by polymerization of the dietilenglycol bis allylcarbonate

(also known as allyl diglycol carbonate, or ADC). The monomer is an allyl resin containing the

functional group [CH2=CH-CH 2-]. The monomer itself contains two of these functional groups

and has the following structure:

0

II
CH 2 - CH 2 - O - C - O - CH 2 - CH = CH 2

0 0

CH 2 - CH 2 - 0 - C - O - CH2- CH = CH 2

Because of the presence of the two allyl functional groups, the monomer can not only polymerize

but also cross-link which results in an optically clear, amorphous, thermoset plastic with a high

uniformity of response (<1% variation) and high sensitivity to protons in the energy range produced

by the LABA accelerator (-1 MeV).'5 CR39 is a sound choice for producing archival verification

images that will be kept for extended periods and for generating very precise pits because of the

following properties:16

* high abrasion resistance

* high-quality optical properties (allowing for detailed imaging of fine pit/beamspot structure



* retention of optical properties despite long-term exposure to chemicals such as solvents,

highly oxidizing acids, and strong bases

* resistance to heat distortion up to 1000C

* resistance to oxidation

Optimal etching conditions have been recorded using 6N NaOH at 700C, generating the steepest

response curve for CR39,39 but pit visualization in LABA applications seems best accomplished with

5N NaOH at 60 0C for 2.5 hours. A representative image of a charged-particle slit irradiation is

shown in Figure 3.12.
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Figure 3.12 Example CR39 image of a series of -300, 100, and 200 Gy charged-particle irradiations
through a -1.5 jm x 1mm slit. (20x magnification)

Radiochromic techniques are similar to track-etch techniques in that radiation interactions with the

target material result in chemical changes, but these chemical changes directly cause the radiochromic

target material to observably change color. For radiochromic beam verification experiments, a

modified version of the Gafchromic MD55 film (International Specialty Products) was used. This

film consists of a radiation-sensitive gel active layer, approximately 16 prm thick, on clear, transparent

2.6 mil (-67 pm) polyester. Normally two pieces of this film are then laminated together with two

layers of two-sided adhesive tape, each approximately 1 mil (~-25 pm) thick, surrounding a 1 mil thick

clear, transparent polyester base, as shown in Figure 3.13a. However, the charged particles

produced by the LABA accelerator do not have sufficient range to penetrate the clear polyester base,

so a modified version of the MD55 film was obtained prior to lamination, as shown in Figure 3.13b.



Clear Polyester - 2.6 mils
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a. b.

Figure 3.13 a) Standard MD55 film configuration, b) Modified MD55 film configuration, suitable
for low-energy charged-particle irradiation. (GafChromic, International Specialty Products)

A standardized form of the "modified" MD55 radiochromic film has more recently become available

as HD-810 film. This film consists of a radiation-sensitive gel active layer, approximately 6.5 rpm

thick, on dear, transparent 3.8 mil (-97 ipm) polyester. The active layer is protected from oxidation

and abrasion by a gelatin surface layer approximately 0.75 Wnm thick, as shown in Figure 3.14.

Clear Polyester - 3.8 mils

Figure 3.14 HD-810 film configuration. (GafChromic, International Specialty Products)

In both of these radiochromic film types, the active layer is a radiation sensitive monomer. Upon

exposure to radiation, the active component polymerizes to form a dye polymer that causes the

irradiated portion of the film to turn blue. (The reaction has an incubation period of at least 1

pisecond, and the polymerization proceeds with first order kinetics and a rate constant of -103 sec'

for the first few minutes after exposure. 61 These film types were particularly useful for beam

throughput verification due to instantaneous response of the film to radiation exposure. A

representative image of a charged-particle slit irradiation is shown in Figure 3.15.



Figure 3.15 Example MD55 (modified) image of a series of 100 Gy charged-particle irradiations
through a -1.5-18 ýpm x 1mm slit. (5x magnification, color adjusted)

3.1.1.3 Ion Source Characterization

While the LABA Microbeam accelerating column was originally designed for the generation of up to

1.5 MeV singly-charged particles or 3.0 MeV doubly-charged particles, power supply limitations

generally restrict operation to energies less than 800 keV, and cells are usually irradiated with a

collimated beam of 750 keV protons (range of -17.2 im in water).

In developing a microbeam for precisely controlled radiobiological studies, it is important for the

radiation source to be well-characterized in terms of fluence as well as energy. The beam current

must be manageable so that the end goal of limiting the irradiation of a target to a single particle is

possible. For the LABA Microbeam, this degree of control cannot be obtained at the level of the

accelerator, as the lowest achievable current is on the order of nanoamperes, or 6.3 billion (6.3x10 9)

protons/second. As the existing electronics used in deflecting and "gating" the beam operate at best

on the order of microseconds (more often on the millisecond scale), a 103-106 order or magnitude

reduction in beam current will still be necessary at some point along the beamline.

The Faraday cup was used to characterize the charged-particle beam generated by the accelerator up

to the beginning of the beamline (at the exit of the accelerator). This allowed for measurement of

beam current prior to manipulation by beamline components. The first step of accelerator beam

characterization required an understanding of the intensity of the charged-particle beam as it exits the

accelerator, and determining the operating state that provided the most stable beam. This intensity

can be affected by a number of operating conditions, including:

* previous operating state



* the amount of source gas introduced into the accelerator

* the terminal voltage (typically 750 kV)

* the voltage applied to the focus electrode (ranging from 6 - 12 kV)

* the voltage applied to the extraction electrode (ranging from 0 - 5kV)

By varying each condition in turn, it was found that the extraction voltage was the single most

important factor contributing to the intensity of the beam, as indicated by the current measured on

the Faraday cup. All other factors were kept as consistent as possible during biological irradiations.

A relationship between extraction voltage and the current measured on the electrometer is shown in

Figure 3.16, with the extraction voltage region between 0.4 kV and 1.0 kV showing the most linear

relationship, and the extraction voltage region between 0.3 kV and 0.6 kV showing the least degree of

deviation. For experimental irradiations, knowledge of the current at the Faraday cup is not as useful

as an accurate assessment of the actual particle fluence at the target, but it is important to ensure that

a stable beam current is delivered. Thus, based on these observations, subsequent biological

experiments were performed primarily at extraction voltages around 0.5 kV.
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Figure 3.16 Microbeam current at the Faraday cup as a function of the applied extraction voltage.

While stability of beam current is of crucial importance in the operation of the LABA Microbeam,

the most critical current measurement is that made at the exit of the collimator in the experimental

endstation (discussed in detail in Chapter 4), as it bears the most direct relationship to the dose

------------------- --



delivered to the biological target. Current measurements exiting the collimator were performed by a

combination of single particle detection and track-etch methods, and were used to determine the

fmal charged-particle fluence on the target. These investigations will be described in detail in

Chapter 4.

3.1.1.4 Safety Interlocks

Underneath the graphical control interface is a network of safety interlocks, implemented to ensure

the safety of components within the high-voltage terminaL Incorporation of automated interlocks is

necessary to provide a sufficient level of protection for the accelerator since user response times are

not rapid enough to prevent catastrophic "arcing" (short circuit across a gap due to insulation

breakdown) made possible by increased pressures in the accelerator tank. For example, if pressures

within the accelerator exceed safe values, safety interlocks programmed into the control software

immediately respond by setting the terminal voltage to 0, thus avoiding an arc that could seriously

damage or destroy the digital electronics housed within the high-voltage terminaL All electronics

housed outside of the terminal are optically isolated from the rest of the system, adding an additional

level of passive protection. Similarly, critical gate valves in the beam line cannot be opened unless

required settings for the vacuum pumps meet specific conditions.

3.1.1.4.1 Electronic Interlocks

A number of software interlocks have been developed to protect the accelerator against an

uninformed user or to prevent a transient operating condition from damaging the accelerator. On

the "Accelerator Control" screen (refer to Section 3.3.1), these consist of a number of programmed

limitations on the magnitude and manner of terminal voltage increases, constant monitoring of tank

pressures to shut off power in the case of a pressure spike, and limitations on the amount and rate at

which source gas may be introduced into the accelerator.

On the 'CYacuum" screen (refer to Section 3.3.2), software interlocks prevent the unsafe opening of

gate valves or operation of the turbopumps. On the "Facilities" screen (refer to Section 3.3.3), the

only software interlocks implemented pertain to the controls for the bending magnet power supply.

As sudden increases in current may damage the bending magnet coils (due to the threat of significant

inductive heating) any user-requested increase in current is automatically made in small (0.1 A)

incremental steps.
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3.1.1.4.2 Physical Interlocks

In addition to the range of software interlocks integrated directly into the control system, a number

of physical interlocks have been implemented to protect the accelerator hardware and associated

electronics.

The accelerator terminal power supply, located outside of the accelerator vessel, consists of a high

voltage driver and a generating voltage meter (GVM). The GVM checks the high voltage driver

voltage against the voltage specified by the operator, which would otherwise steadily increase. As

precise voltage control is necessary for the intended experimental applications of the microbeam, and

excessively high voltages (> 900 kV at the present time for the LABA Microbeam Accelerator) could

damage the accelerator terminal electronics and the high voltage driver, the driver power supply is

interlocked to a fuse box that will not allow it to be turned on without the GVM activated to

modulate it. The fuse box is located underneath the accelerator tank, as shown in Figure 3.17.

Figure 3.17 Fuse box that prevents terminal power supply from being activated without the GVM
voltage regulator engaged.

In the event of an "arc," the control electronics would be vulnerable to disruption by the discharge.

All control electronics are optically isolated from the accelerator to limit the likelihood of such an

occurrence.

3.2 Beamline Components/Optics



Once the particle beam leaves the accelerator it travels down a 1.2 m beam tube. This beamline 

houses a number of control elements (shown schematically in Figure 3.18), including a set of x-y 

steering plates for beam deflection that serves as an electrostatic shutter for beam gating, and a 

magnetic quadrupole triplet. The quadrupole triplet could be used for later studes in which a 

focused, high intensity beam is desired (the original configuration of the microbeam was a horizontal 

set-up designed to provide a highly focused (1 pm) beam spot in vacuum for use in proton-induced 

x-ray emission (PIXE) studes or other surface analysis techniques) or for defocusing the beam to 

reduce its intensity through the collunation system in the experimental endstation. Vacuum is 

maintained in the bearnline using a two-stage vacuum system, in which high vacuum (10-7 Torr) is 

maintained by a Varian V250 and Varian V550 Turbopump (Varian Inc. Vacuum Technologies, 

Lexington, MA USA) in parallel with the beamhe. The pair of turbopumps are backed by a Varian 

TriScroll 300 roughing pump, which maintains low vacuum (10-2 Torr) and vents to atmosphere. 

The turbopumps, quadrupole triplet, and the bending magnet are cooled by a chilled water system. 

Figure 3.18 LABA beamline schematic. (based on drawings from Andrew Dart, Pyramid Technical 
Consultants) 

The beamline, constructed in part by Pyramid Technical Consultants (PTC), Waltham, MA, includes 

an X/Y deflector plate system that is used to electrostatically deflect the beam. The deflector system 

plays a number of roles in the operation of the LABA Microbeam, includmg dose control during 

experiments, beam gating for particle counting, and general shuttering of the beam. 

3.2.1.1 Deflector Design 

The X/Y deflectors are powered by two "kickers," which are robust power supplies with very rapid 

voltage rise times (KEPCO bipolar operational power supply/amplifier model BDP lOOOM (+/- 

1000 VDC, +/- 40 mADC)). (Figure 3.19a and b) 



Figure 3.19 a) LABA Microbeam deflector assembly, b) Deflector power supplies.

Control of the deflectors will be explained in more detail in Section 3.3.3 of this Chapter. To be

useful, the deflectors must be able to divert the beam sufficiently so that no accelerated charged

particles make it through the collimator when the deflection plates are engaged. Testing the

deflection system to determine if it meets this requirement was accomplished with a series of

methods, including beam on the quartz window, radiochromic film, and track-etch detection. As

only track-etch methods are capable of registering a single "hit," they served as the "gold standard"

for this study.

3.2.1.2 X/Y Deflector Characterization

In the characterization of the charged-particle beam deflector, the first step is to establish an

understanding of the forces involved in electrostatic deflection. To allow the deflector system to

absolutely prevent any of the beam from being directed upon the biological target in the

experimental endstation, it is necessary to ensure that none of the original beam enters the bending

magnet. As an additional failsafe, the bending magnet itself may be utilized to filter the beam to

some degree, in that the magnet is "tuned" to allow only a beam of a particular energy and

orientation to undergo the 900 bend for vertical beam alignment.

The deflector itself is -0.15 m in length, the diameter of the beam tube is -0.012 m, and the total

distance between the deflector and the beginning of the bending magnet is -1 m. The direction of

the beam is defined as "z," and "x" and "y" are defined as the horizontal transverse and vertical

transverse directions, respectively. This arrangement is shown in Figure 3.20.

b.a.
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Figure 3.20 A diagrammatic representation of the LABA x/y electrostatic deflector. The beam tube
diameter and deflection length are labeled. (Courtesy Andrew Dart, Pyramid Technical Consultants)

Following the methods of Larson at the Brookhaven National Laboratory,5 5 a reasonable estimate for

the y-displacement necessary to "dump" the charged-particle beam on the beam tube wall prior to

entering the bending magnet based on the geometry of the LABA Microbeam beamline would be

ydeflect = 0.006 m at 1 m, equivalent to a deflection angle (oc) of 5.6 steradians. This would place the

termination of the beam on the beam tube wall beyond the quadrupole triplet and before the bending

magnet. Moreover, the beam should be deflected vertically "up," which results in the bending

magnet "overdeflecting" the beam, rather than creating a situation where the bending magnet may

accidentally compensate for the electrostatic deflection and "undeflect" the beam.

The full derivation of the required electrostatic field strength is provided in Appendix C, Section

C.1 It was shown that a 560 V/cm electrostatic field (Ey) was required to sufficiently deflect a beam

of 750 KeV protons. Given the 1.2 cm plate gap (d) built into the LABA deflection system, the

necessary applied voltage V = Eyd = (560)(1.2) = 670V. Thus, deflection of a 750 keV proton

beam is within the operating parameters of the existing +/- 1000 VDC power supplies. The general

equation for the deflector voltage required to completely terminate the beam as a function of the

charged-particle energy using the LABA Microbeam deflection system is given by Equation 3.1:

V = Ed = d Equation 3.1
Ae



where Ey = electric field in the vertical (y) direction

S= deflection angle (- 5.6 steradians)

X= length of deflection field (~0.15 m)

e = qp = charge of a proton (1.6022 x 10-19 C).

mp = mass of a proton (1.6726 x 10-27 kg)

d = plate gap (1.2 cm)

A plot of charged-particle energy (MeV) vs. the deflector voltage (V) required to completely

terminate the beam using the LABA Microbeam deflection system is shown in Figure 3.21.
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Figure 3.21 Plot of deflection voltage required to completely terminate the charged-particle beam vs.
the terminal voltage using the LABA Microbeam deflection system.

It was found experimentally that a minimal field of 600 V in the "y" direction was sufficient to

completely deflect the beam, generating no "pits" in the LR115 track-etch film. An example of a

deflector verification experiment is shown in Figure 3.22. In this example, the charged-particle

microslit was scanned across the film, with the deflectors engaged while the stage was in motion

between the two slit images, but disengaged to the right of the second slit. Between the two slits,

only the normal background for the LR115 is noted (from prior abrasion or other damage to the film

surface), but after the second slit a large number of pits may be observed.



Deflection on Deflcction off

Figure 3.22 LR115 image of charged-particle microslit showing on/off deflection pattern. The

deflectors were engaged while the stage was in motion between the two slit images, but disengaged to
the right of the second slit. (10x magnification, color adjusted)

The single-particle detection system (discussed in greater detail in Chapter 4), will be used to provide

the signal that prompts shuttering of the beam, as well as managing the dose delivered to the

biological target during the microslit irradiation experiments. Characterization of the deflector

system in conjunction with the single-particle detection system and the collimators used in the

experimental endstation will be described more fully in Chapter 4, Section 4.3.4.

3.2.2 Quadrupole Triplet

Any alteration in the shape of the cross-sectional profile of the charged-particle beam prior to the

horizontal beam entering the bending magnet may be accomplished through the use of the

quadrupole magnet triplet. (Figure 3.23a and b) The quadrupole triplet is located after the deflector

and before the bending magnet, and is controlled by executables on the "Facilities" screen of the

control system graphical interface.



a. b.

Figure 3.23 a) LABA Microbeam quadrupole triplet, b) Quadrupole power supplies, KEPCO
Model ATE 6-50M (0-6 VDC, 0-50 ADC), one for each component of the triplet.

Current for the quadrupole triplet is provided by a set of three KEPCO power supplies with

automatic crossover (KEPCO Model ATE 6-50M (0-6 VDC, 0-50 ADC)). Overall, the quadropole

has little relevance to the final output of the microbeam, as the effect of the collimation system on

the final beam profile is dominant and obliterates any "shape" that the beam may have had

previously. As a result, it was not used very often in our experiments, although it may be used to

somewhat focus or defocus the charged-particle beam prior to its entry into a 900 bending magnet,

adding an additional level of control over the final beam intensity on target.

3.2.3 Bending Magnet

The accelerator used for the LABA charged-particle microbeam was originally designed for the

purpose of surface analysis studies using proton-induced x-ray emission (PIXE) and other

techniques, and the charged-particle beam was aligned horizontally (parallel to the floor). A 901

bending magnet was incorporated into the beamline to produce a vertical beam.

3.2.3.1 Bending Magnet Design

A vertically aligned beam was obtained by adding a 90" bending magnet (designed by Pyramid

Technical Consultants of Waltham, MA USA and constructed by Buckley Systems Ltd. of New

Zealand), allowing the irradiation of horizontally-placed cell dishes. This major conversion had two

purposes - the first for its benefit to biological studies, as it simplifies the irradiation and allows the

growth medium to remain on the cells in a conformation that also allows the medium to be exposed

to air (allowing oxygen to diffuse to the cells). This is crucial for experiments requiring long-



irradiation times, and avoids introducing additional stresses that could interfere with biological

observations. Horizontal and vertical irradiation configurations are shown in Figure 3.24. The

horizontal beam configuration was the original design for the microbeam, in which the biological

endstation was placed shortly after the quadrupole triplet. This design introduced a number of

concerns in the biological management of the cells, as it was difficult to keep the cells covered in

growth medium while at the same time exposing them to a uniform oxygen concentration. As

shown in Figure 3.24, the placement of the vent allows the cells at the top of the dish the greatest

access to air, but poor coverage with growth medium; the cells at the bottom of the dish are amply

covered with growth medium but starved for oxygen due to the long distance that it must diffuse

through the covering medium in order to reach the cells. The vertical beam configuration addressed

this concern, allowing for uniform growth medium coverage and oxygen exposure. Cell dish design

will be discussed in greater detain in Chapter 5, Section 5.2.
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Figure 3.24 Horizontal and vertical target irradiation configurations, cut away side views and images.
The top images depict the horizontal irradiation configuration, used before the installation of the

bending magnet. The lower images depict the vertical irradiation configuration, used in the LABA
Microbeam experimental endstation.
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The second major benefit of the bending magnet is that it acts as an energy filter. Because the

bending of an ion's path in a magnetic field is a function of the charge on the ions and the ion energy

(kinetic), the magnet selectively transports the ions of choice into the vertical orientation (those of

inappropriate energy/charge are over- or under-bent, and are grounded out on the beam tube prior

to the target). For example, if the operator wishes to irradiate a biological target with a doubly-

charged helium beam (He-3 or He-4), the beam may be contaminated with singly-charged ions of the

same isotope, with only half the energy of the desired particle. The bending magnet would filter out

these ions, depositing them on the wall of the waveguide.

The bending magnet and power supply are shown in Figure 3.25a, b, and c.

a.

C.

Figure 3.25 a) Bending magnet prior to installation with the high-vacuum waveguide lying on top,
b) Bending magnet installed in the beamline, waveguide inside and connected to high-vacuum

system, c) Bending magnet power supply, Electronic Measurements Inc. EMS Power Supply Model
EMS 150-33 (0-150 VDC, 0-33 ADC).

3.2.3.2 Bending Magnet Characterization

In order to characterize the bending magnet, a relationship between proton energy and magnetic field

was needed. The full derivation of the required magnetic field strength is provided in Appendix C,

Section C.2. It was shown that the relation for the magnetic field required to produce a 9(• bend in

the charged-particle beam produced by the LABA accelerator is provided by Equation 3.2:



Equation 3.2 

where R= radlus of curvature of bendmg magnet (0.280 m) 

q, = charge of a proton (1.6022 x 10." C) 

m,, = mass of a proton (1.6726 x 10-27 kg) 

V,, = accelerator terminal voltage (V) 

Equation 3.2 provides a relationship between magnetic field strength and the lunetic energy of the 

proton. However, missing is a factor relating the bendlng magnet current to the strength of the 

resulting magnetic field. A plot of magnet current vs. central magnetic field, as displayed in Figure 

3.26, supplies this last relationship. From the figure, a slope of 0.2812 kG/A can be inferred. Thus, 

the needed relationship between magnet current and magnetic field is calculated to be 35.56 A/Tesla. 

Combining this value with Equation 3.2 results in the relationship between proton energy and 

magnet current shown in Equation 3.3: 

BendingMagnet Curren t( A )  = [ - ,/=I 35 .56 %esla Equation 3.3 
RqP 
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Figure 3.26 Relationship between magnet current and the resulting magnetic field lpmvided by Pyramid 
Technical Constrltants)s" 

Using this relationship, experimental characterization of the bendmg magnet subsystem (composed 

of the bending magnet itself, the bending magnet power supply, and the control system) was then 

performed by a series of experiments in which protons of various energies were passed through the 

bending magnet, and the magnet current was adjusted via the CPU untd the proton beam was 

centered on the quartz window placed in the target position within the experimental endstation. The 

setup for quartz window irradiation was shown above in Figure 3.8, and Figures 3.27a and b below 

show the irradiation of the quartz window with the beam properly centered. 



a. b.

Figures 3.27 a) Closeup view of the quartz window with room lights on, b) Image of the centered
beamspot on the quartz window with the room lights off.

Once the beam was centered on the quartz window, thus indicating that the correct magnetic field

had been produced, the CPU magnet current was recorded for that proton energy along with the

voltage applied across the programming terminals of the magnet power supply. The measured

programming voltages were used to calculate the actual bending magnet currents, which were

compared to those requested by the CPU. The results of this experiment are displayed graphically in

Figure 3.28. The magnetic field, and thus the magnet current, should vary as (proton energy)1 /2 ; the

relationship in Figure 3.28 only appears linear due to the small range of proton energies plotted.
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Figure 3.28 Plot of bending magnet current vs. proton energy required for a 900 bend (verified by
quartz window irradiation). Error bars represent the standard deviation of three sets of experimental

measurements.
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Magnet currents calculated by Equation 3.3 were compared to the experimental magnet currents 

that produced a beam spot on the quartz window, and a correction ratio of 1.061 was calculated for 

750 keV protons and could be a result of a number of different sources of error (possibly the 35.57 

A/Tesla slope determined from Figure 3.26). The 1.061 correction ratio at 750 keV appears 

consistent over the range of proton energies most likely to be used for ra&obiological studies as 

determined by SRIM calculations and within the h t a t i ons  of the LABA Microbeam accelerator, so 

it was incorporated into Equation 3.3 to correct the calculated magnet currents. Equation 3.4 is 

the result (37.74 A/Tesla = 35.57 A/Tesla * 1.061). 

BendingMagnet Current ( A )  = [-&-,/-I 3 7.71 %esia Equation 3.4 

3.2.3.3 Safety Interlocks 

The bending magnet power supply is passively interlocked by its voltage regulation and by a hse  

system. Voltage regulation is performed by a circuit that prevents the control voltage from the 

OptoElectronics (capable of ranging from 0-5 V) from exceeding a voltage of 50 mV to the control 

inputs of the bending magnet power supply. This prevents the power supply from applylng 

excessive current to the magnetic coils of the bending magnet. Additionally, because excessive 

current can cause heating in the magnetic coils sufficient to overwhelm the chdled water coohg  

system, the circuit is tied to a 30 A fuse. 

3.3 Accelerator Control Systems 

The LABA Microbeam is controlled primady by a graphical interface, which is written in a 

proprietary language developed by Pyramid Technical Consultants (Waltham, MA USA).56 This 

interface simplifies operation of the accelerator and the various subsystems and provides a platform 

for the automation of specific tasks. For the beamline components (leading up to but not including 

the experimental endstation), automation is responsible for a h t e d  number of tasks, including: 1) 

emergency shutdown of all critical accelerator systems, 2) "soft" startup of the accelerator vacuum 

systems after a shutdown or power fdure, 3) "priming" of the plasma to generate an accelerated 

beam, and 4) the tuning of the bending magnet current to the energy of the charged particles so that 

it produces the exact magnetic field required to direct the horizontal particle beam vertically through 



the beam collimator. These automated tasks will be described more fully in the sections specific to

the applicable control system, and full descriptions of all executables on the control screens are

provided in Appendix A.

The three screens discussed in this Chapter that are used in the basic operation of the LABA

Microbeam are the Vacuum Screen (Figure 3.30), the Accelerator Control Screen (Figure 3.31), and

the Facilities Screen (Figure 3.32). The Acquire and Image Screens will be discussed in detail in

Chapter 4. All screens have a common border that allows the operator to run experiments, monitor

the integrity of the vacuum system, rapidly turn off critical systems, and switch between the various

system interfaces. Figure 3.29 shows this common border with the variable interface removed.

Figure 3.29 The "Common Border," present on all graphical interface screens.

The Scan buttons allow the operator to start, pause, and stop a pre-defined experiment, as specified

on the "Acquire" screen (to be explained in detail in Chapter 4 and Appendix A). The displays

indicate the number of scans performed and the total duration of an individual scan. The Pressures

I - ,



readback indicates vacuum pressures in the foreline, tank, and roughing line and allows the operator

to quickly and continuously assess the integrity of the system.

Other options on the "common border" include the Emergency Off and Exit buttons, which

disable the machine in a way that turns off critical components first in the case of the former, or in

an orderly fashion suitable for quickly restarting the machine later in the case of the latter. The

"common border" also has a set of Screen Selection buttons that permit the operator to rapidly

switch between control screens (Accelerator Control, Vacuum, Facilities, Acquire, Data, and Image).

3.3.1 Vacuum Control

Crucial to the operation of the LABA Microbeam is the vacuum system that insulates the accelerating

elements and prevents electrical discharge ("arcing"). The Vacuum Screen is shown in Figure 3.30.

Figure 3.30 The "Vacuum Screen" graphical interface, which allows the operator to control the
LABA Microbeam vacuum subsystems and open/close the beamline (common border removed).

At various points on the vacuum system diagram are the turbopump icons (TP1 and TP2) that allow

the operator to change the operating characteristics of the vacuum system turbopumps, and the gate



valve icons (Vl, V2, V3, V6, and V7) that allow the operator to open or close the gate valves that are 

used to isolate portions of the system. 

TPl or "Turbo #I" is a Varian V250 Turbopump (Varian Inc. Vacuum Technologies, Lexington, 

MA USA) with an operating speed of 56 krpm. It provides high vacuum (on the order of lo-' torr 

for a closed beamline, 10-5 torr with the microslit c o h a t o r  in place on an open beamline, and 10-6 

torr with the pinhole c o h a t o r  in place on an open beamline) for the microbeam foreline. It is 

physically mounted after the deflectors and quadrupole magnets, between the V7 and V1 gate valves 

prior to the bending magnet. TP2 or "Turbo #2" is a Varian V550, with an operating speed of 42 

krpm. It provides hgh vacuum (on the order of 10-7 Torr for a closed beamline and 10-Tor r  whlle 

generating beam) for the microbeam accelerator tank. It is located imrnedlately at the exit of the 

accelerator tank. SP1 indicates the "roughing pump," a Varian Triscroll 300 that maintains the low 

vacuum (<5x10-2 torr) required for the operation of the Turbopumps. 

The Vacuum Screen also has readbacks that indlcate the pressures in the foreline, tank, and roughing 

h e  (identical to those on the "common border7'), as well as controls that can engage or disengage 

vacuum system software interlocks and automatically restore the vacuum system after a shutdown. 

3.3.2 Accelerator Control 

All the elements needed to generate a charged-particle beam are accessible via the LABA Microbeam 

"Accelerator Control" screen (shown in Figure 3.31), whch also provides a number of automated 

functions to simplify the startup process for the operator. 



Figure 3.31 "Accelerator Control" Screen, which allows the user to regulate the accelerator
components: terminal voltage, filament, oscillator plate, focusing element, extraction probe, gas

valve, and priming solenoid (common border removed).

The controls on the Accelerator Control Screen have the most direct effect on charged-particle beam

generation and intensity. The Accel Enable controls set the terminal voltage and the resulting

particle energy. The critical pressure setting (usually defined as 5.0x10 -5 Torr) is located directly

beneath the Accel Enable controls, and is used to specify a tank pressure which, if exceeded, will

result in an automatic shut down of the accelerator. The Filament Enable, Plate Enable, and

Focus Enable are not generally adjusted by the operator during use. Extraction Enable activates

the extraction voltage controls that allow the operator to adjust the extraction voltage, which directly

affects the bean current intensity. Gas Enable activates the gas bottle needle valve controls, which

regulate the amount of source gas available to ionize and accelerate.

One of the automated functions is the Get Beam command, which triggers the solenoid for a

specified number of seconds, after which it turns off the solenoid and switches the Extraction

voltage to the specified value. The solenoid is used to "prime" the plasma by preventing it from

leaving the quartz ionization chamber, which creates a pressure load. Releasing the solenoid allows a

burst of plasma to escape, which eventually initiates the generation of a stable charged-particle beam.



The two floating readbacks on the Accelerator Control Screen are the DC Buss readback, which

indicates the voltage available for the various terminal components, and the tank pressure, which is

the same as the tank pressure on the "common border."

3.3.3 Facilities Control

Once a charged-particle beam is generated, the LABA Microbeam "Facilities" screen (shown in

Figure 3.32) allows the operator to manipulate the beam in a number of ways between the exit of

the accelerator tank, through the bending magnet, and into the experimental endstation.

Figure 3.32 The "Facilities Screen" graphical interface, which allows the operator to control the
LABA Microbeam beamline subsystems and deflect the beam (common border removed).

The three functional groups on the Facilities control Screen are the Scanner, the Quadrupoles, and

the Magnet. The Scanner controls determine the deflection of the beam in two dimensions

perpendicular to the beamline. The presets specifically allow the operator to define "resting" and

"active" deflection during the course of an irradiation - these presets are engaged while the

experimental stage (to be described in detail in Chapter 4) is in motion, and disengaged when the



stage is at rest. The Quadrupoles controls independently adjust the current applied to each the 

magnets in the quadrupole triplet, allowing the operator to alter the beam profde to varylng degrees. 

The Magnet control is used to set the current applied to the bendng magnet, in order to generate a 

vertically-oriented beam. 

3.4 Chapter Summary 

In this chapter, the hardware and software used to generate and deliver a vertically-oriented charged- 

particle beam to the experimental endstation of the LABA Microbeam was described. In Chapter 4, 

the subsystems comprising the biological endstation d be described and experiments performed to 

characterize the operation of each system will be dscussed. 



4. LABA Microbeam Experimental System

In Chapter 3, the hardware and software used to generate and deliver a vertically-oriented charged-

particle beam to the experimental endstation was described. The LABA microbeam experimental

endstation is housed within a light-tight box mounted above the bending magnet, as shown in

Figure 4.1. In this chapter, the subsystems comprising the biological endstation are described and

experiments performed to characterize the operation of each system are discussed.
-------------------------------------

Roughing I An

Figure 4.1 Schematic diagram showing the main components of the LABA Microbeam beamline
components, with the components pertinent to this Chapter marked by a dashed blue box. (Note:

drawing not to scale).

4.1 Experimental Endstation

Every component in the beamline prior to the endstation has served to produce a vertically-directed

beam of charged particles, approximately 1.5 cm in diameter, with minimal energy straggle. The low

degree of energy straggle is a key point in the overall "quality" of the microbeam, accomplished both

at the level of the accelerator itself and then refined by the bending magnet, which selects for the

"correct" energy by being tuned for a particular terminal voltage - particles of other energies are

"over-" or "under-bent" and collide with the wall of the beam tube.

The elements of the endstation shape the final beam profile, providing the actual microbeam to be

directed onto a target, as well as monitoring the current on the target (with the goal of limiting to

single particles by interacting with the shuttering system), and imaging/positioning the target with

respect to the beamspot.
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Located immediately above the 90' bending magnet, the experimental endstation consists of the 

following subsystems (illustrated in Figures 4.2 and 4.3): 

a collimator or slit to delimit the beam, 
a 2-dimensional motorized stage with micron-scale precision, 
a plastic scintillator, hght guide and two photomultiplier tubes (PMTs) for particle counting, 
a specially desqped cell dish, 
a hght source (visible and UV range) with shuttering mechanism, 
a visible/UV light objective with motorized z-motion focusing, dichroic mirror, and a CCD 
camera with image intensifier for cell visualization. 

Figure 4.2 A CAD drawing of downstream portion of the microbeam showing the position of the 
hght-tight cell-irradiation experimental endstation above the bendmg magnet. (A larger view of the 
endstation, with labels, can be seen in Figure 4.3). The endstation is located approximately 4.5 ft 

above floor-level; a 2.5 ft-high stand is used to access the endstation. (codcdey ofAndretv Dad, Pyramid 
Technical Consdctants) 
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Figure 4.3 Experimental Endstation components. The UV light source is mounted on the outside
of the light-tight box to minimize light contamination, and all other components (x/y stage, imaging
system, UV light shutter, collimation and particle detection system) are housed inside. (courtesy Andrew

Dart, Pyramid Technical Consultants)

The deflection plates, motorized stage, PMTs, light source and CCD camera are interfaced with the

control PC for management of all aspects of cell irradiation, as shown in Figure 4.4. Control of the

various beamline subsystems is managed on the "Image" and "Acquire" screens of the central

control system, discussed in detail in Section 4.5 later in this Chapter. Specifically, these screens

control the components marked g-r on Figure 4.4 (surrounded by a blue dashed box),

corresponding to the collimation, single-particle detection, stage, and imaging systems.
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Figure 4.4 Control diagram (Chapter 4 components surrounded by blue dashed box). a) CPU, b)
Accelerator, c) Faraday cup, d) Deflector, e) Quadrupole Triplet, f) Bending Magnet, g) Collimator

assembly, h) Scintillating plastic, i) PMT 1, j) PMT 2, k) Cells on cell dish, 1) X-direction stage
motor, m) Y-direction stage motor, n) Objective on motorized focus, o) Dichroic mirror, p) Light

shutter, q) Light (UV) source, r) CCD camera.

Irradiations are performed with a collimated beam of protons or alpha particles. The collimation is

accomplished either through the use of an approximately 1.5 pm x 1mm laser-drilled slit or a 1.5 or 5

jm pinhole aperture consisting of a 1 mm section of capillary tube with a 1.5 or 5 itm inner diameter

channel held by a positionable mount. (Discussed in greater detail in Section 4.4)

4.2 Calculations and Design Considerations

The LABA Microbeam accelerating column was designed for the generation of up to 1.5 MeV singly-

charged particles (usually protons, which at 1.5 MeV have a range of 45.6 mm in air or 49.8 jtm in

water) or 3.0 MeV doubly-charged particles (usually He++ ions, which at 3.0 MeV have a range of 17

mm in air or 18.4 pm in water). However, at the present time power supply limitations generally

restrict operation to energies less than 800 keV, and cells are usually irradiated with a collimated

beam of 750 keV protons. The 750 keV protons that can be routinely generated by the LABA

accelerator have a range of 15.3 mm in air or 17.2 jm in water, calculated using a simple air- or

water-target model in SRIM 2003. 9 4, 113 Assuming a 6 pm cell thickness (typical for the fibroblasts

used for preliminary radiobiological experiments,99 to be discussed in greater detail in Chapter 5),



that allows for only -11 pm of water-equivalent range that may be occupied by the vacuum window,

the scintillating material (discussed in Section 4.3) and the material that is used for the cell dish (be

discussed in greater detail in Chapter 5).

SRIM 2003 was used to simulate a beam of 750 keV protons passing through a number of different

collimator/cell target models in order to test whether the experimental design was suitable. As

shown in Figures 4.5a and b, this range is sufficient for the charged-particle microslit collimator

system, in which the protons must penetrate the 1.4 pm Mylar vacuum window, the 1.4 p.m Mylar

cell dish, and the entire effective thickness of the cell (Figure 4.5a), and for the pinhole aperture

collimator system, in which the protons must penetrate the 1.4 pm Mylar vacuum window, the 5.0

pm scintillating plastic for the single-particle detection system, the 1.4 pm Mylar cell dish, and the

entire effective thickness of the cell (Figure 4.5b).
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Figure 4.5 a) SRIM 2003 calculation for the charged-particle microslit, in which a 750 keV proton

beam traverses the 1.4 pm Mylar vacuum window, the 1.4 pjm Mylar cell dish, 6 pm of cell thickness
(cytoplasm and nucleus), and terminates in medium, b) SRIM 2003 calculation for the pinhole
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aperture collunator, in which a 750 keV proton beam traverses the 1.4 p Mylar vacuum window, 5 
pm of scindlating plastic, the 1.4 pn Mylar cell dish, 6 pm of cell hckness (cytoplasm and nucleus), 

and terminates in medium.94 

4.3 Single Particle Detection System 

In the design of a single-particle irradiation system, a reliable and accurate method of detecting single 

particles is required, as well as a method of using that signal to activate the shuttering system for the 

beam to h t  the delivered radiation dose to a single particle or specified number of particles. The 

deflector system components are described in detail in Chapter 3, and its use as a shuttering system 

is described below in Section 4.3.4. 

Single-particle detection has been handled in a number of ways for charged-particle microbeams. 

Particles may be detected immediately after exiting the collunator and before traversing the cells 

f'pre-target detection"), or after traversing the cell dish material and cell targets ("post-target 

detection"). The two primary means of single-particle detection are with a "pre-target" transmission 

scindlator, and with a "post-target" ionization chamber. 

The GCI Microbeam at the Gray Cancer Institute in England uses the transmission scindlator 

technique. Placing a series of three thin (each 6 pm thick) pieces of organic scintillating plastic (total 

thickness of 18 pm) between the collunator and the cell dlsh allows for the production of a 

measurable number of photons during a charged-particle traversal. These photons are detected by a 

photo-multiplier tube (PW, housed in one of the positions on the observation microscope turret 

(as shown in Figure 4.6). Because the observation microscope objective must be moved aside to 

engage the detector assembly, continuous observation of the cells during irradration is not possible.)' 
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Figure 4.6 GCI Microbeam collimator and single particle detection apparatus.33

The RARAF Microbeam at Columbia University detects charged particles either before or after they

pass through the cell, using either a solid-state detector for pre-target detection or a gas-filled

ionization chamber mounted on the 40x objective of the observation microscope above the cell dish

for post-target detection. The latter method requires the removal of practically all the medium from

above the irradiated cells so that transmitted particles of sufficient energy are still present for

detection, but confers the advantage of continuous observation of the cells during an irradiation.

This arrangement is shown in Figure 4.7.82

Figure 4.7 RARAF Microbeam observation microscope, with gas-filled ionization chamber mounted
on 40x objective."



A scintlllator method s d a r  to the one used in the GCI Microbeam was chosen for the LABA 

Microbeam, primady to optimize for a wide range of radiobiological research given the h t e d  range 

of the 750 keV protons that may be routinely generated by the LABA accelerator. The requirement 

of medium removal for use of "post-target" methods that hectly detect particles after passing 

through the cell target was viewed as overly problematic for radiobiological studies, as it precluded 

long irradiation times during which the cells could potentially dry out. Altering the cells' 

environment in this manner introduces the possibihty of "biological error" from a wide range of 

cellular responses to the perceived environmental insult. While the RARAF Microbeam partially 

addresses this problem by maintaining a moist atmosphere over the cells, it doesn't address altered 

biological variables such as oxygen tension, nutrient concentration, and waste difhsion, so the 

environment is still sipficantly changed. The LABA design was also modlfied to address the issue 

facing the GCI microbeam, in that the GCI detection system does not allow for continuous 

observation and monitoring of the irradiated cells while the detector assembly is in position. 

4.3.2 LABA Design, Coincidence Techniques 

For the LABA Microbeam, a system by which the passage of a single charged particle may be 

detected as the cell is irradiated, origmally devised by O'Meara et al. in 200277 has been designed and 

implemented. This method uses a -5 pm thick film of scintdlating plastic (Bicron BC-400 organic 

scintdlator, Saint-Gobain Crystals and Detectors, Paris France), a light p d e  to which the scintdlating 

plastic is attached with optical cement (Bicron BC-600 optical cement), and two photomultiplier 

tubes (Hamamatsu R7400U series) operating in coincidence mode. The signal produced by the 

detection system wdl be used to trigger the electrostatic deflector, in order to shutter the beam 

immediately after a particle or specified number of particles traverses the scintdlator. A diagram of 

this apparatus is shown in Figure 4.8. 

The scintdlating plastic was chosen because it is ready avadable in thin sheets of -5 pm thickness, 

has high conversion efficiency and allows for a very short resolving time (rise time of -0.9 ns, decay 

time of -2.4 ns). (Saint-Gobain Crystals and Detectors, Paris France) This compares well to typical 

resolving times for plastic scintdlators and silicon charged-particle detectors, which are generally on 

the order of a few nanoseconds for the energy range of 0.1 to 1 MeV.I4. 53 The light p d e  was 

included because it collects a greater fraction of the light emitted when the charged particle traverses 

the scintillating plastic, effectively increasing the solid angle subtended by the PMTs and improving 

the signal avadable to the detectors. 
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Figure 4.8 Diagram of the LABA Microbeam single-particle detection system, including the
scintillating film, light guides, and photomultiplier tubes.

rigure 4.V LADA smgle-particle detection system, consisting or two 1vi-v s mountea via a yoke to
the collimator assembly, with light guide and scintillating plastic in place over the collimator aperture.

Coincidence measurement, or the measurement of events that occur in two separate detectors within

a given time interval, was chosen because it reduces the error associated with random detection

pulses in the photomultiplier tubes. A simple coincidence circuit accomplishes this by summing the

voltage "height" of two input pulses occurring within a pre-defined interval, passing the resultant

sum pulse through a discriminator level that is greater than the "height" of a single pulse, and only

7it particit particl
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generating an output pulse when the two overlapping input pulses exceed this level. (dustrated in 

Figure 4.10) The uniformity of the energy deposited by the 750 keV protons generated by the LABA 

accelerator as they pass through the scintdlating f h  is such that the output pulses are highly similar 

in amplitude. 
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Figure 4.10 Pulse height &scrimination for a simple coincidence circuit." 

The period during which the two input pulses can be accepted is defined as the resolving time, which 

is determined by the width of an indvidual pulse, r, such that the ideal resolving time is equal to 27. 

However, in practice the actual resolving time may be greater than 27 due to electronics delay and 

timing jitter. 

However, use of a coincidence analyzer improves upon this scheme by allowing for the analysis of 

several input signals. The coincidence module produces a logic pulse output when the input pulses, 

on the active inputs, occur within the defined resolving time window (usually selected by a front 

panel control on the module itself). Specification of the resolving time window is of utmost 

importance, since, as noted previously, detector events may occur at random times. These can create 

"accidental" coincidences between two pulses which result in background counts in the coincidence 

counting. The rate of "accidental" or random coincidences is gven by Equation 4.1: 

Nacc = N1N2(2r) Equation 4.1 

Where: 

N1 = Count rate in detector number 1 

N2 = Count rate in detector number 2 



N, = resolving time of the coincidence circuit = 2,

From Equation 4.1, it seems that the simplest way to reduce the number of "accidental"

coincidences is to make the resolving time as small as possible. However, the number of counts in

the detectors is dependent upon the experiment parameters and the type of detector used, and the

resolving time cannot be reduced below the amount of time jitter in the detector pulses without

losing true coincident events. Thus, the type of detector determines the minimum possible resolving

time.

The LABA coincidence detection electronics setup, using two PMT-based detectors, is shown in

Figure 4.11. The unipolar pulse from the amplifier is processed by a constant-fraction timing SCA to

produce a standard NIM logic pulse for the coincidence unit. Either an alpha-emitting radionuclide

or a pulse generator may be used to test operation, but the latter also allows the operator to test

delays.

incident p:rticlc beam

Figure 4.11 LABA Microbeam coincidence detection system electronics (Amp=spectroscopy
amplifier, TSCA=timing single-channel analyzer).

Table 4.1 lists the electronics used in the LABA Microbeam single particle detection system.



I Preamplifer 1 2 Hamamatsu C5781 Socket Assemblies, attached to a +/- 15 V I 

Component Type 
Detector 

Model 
2 Hamamatsu R7400U series PMTs 

I Counter I 1 Ortec 770 Counter I 

High Voltage Power Supply 
Amplifier 

Timing Single Channel Analyzer 
Coincidence Analyzer 

I Com~uter Interface I 1 Canberra 871 5ADC I 

power supply 
2 Canberra 3105 HV power supplies (1-5000 V) 

1 Ortec 471 Spectroscopy Amplifier 
1 Aptec 6300 Spectroscopy Amplifier 

2 Canberra 2037A Edge/Crossover TSCAs 
1 Canberra 2040 Coincidence Analvzer 

Table 4.1 Electronics used for the PMT-based LABA mcrobeam single-particle detection system. 

In order to properly operate the LABA Microbeam coincidence detection system a timing curve was 

obtained in which coincidences are measured as a function of the time interval between the start 

input (from one PMT/TSCA) and the stop input (from the other PMT/TSCA). In the ideal case of 

no time jitter in either detector, the solid curve in Figure 4.l2a is obtained. Real detectors such as 

the photomultiplier-based system used in the LABA Microbeam will produce the dashed curve 

shown in Figure 4.l2a, and the minimum resolving time setting is the width of the flat region (above 

which all true coincidences are collected).l4. 53 Figure 4.l2b shows the resolving time curve for the 

LABA Microbeam coincidence detection system. 

ideal detectors 
- - - actual detectors 

- 
TIME 
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Figure 4.12 a) Typical resolving time curve14, b) LABA Microbeam coincidence detection system
resolving time curve shown as a light blue dashed line, superimposed over TAC output data from the

two PMTs. Signal is normalized to 1.

The full-width half-maximum (FWHM) of the system is -0.268 pIsec, and because the shape of the

curve is roughly Gaussian, FWHM=2.35*o.S3 The resulting value for a is then 0.114 psec, and in

order to reduce the probability of false coincidences to < 1%, a 10*o spread (1.14 psec) was

determined. Using these values, it can be stated the coincidence system should be able to reliably

detect single-particle transmissions whose intensity is < 0.8 particles/[isec with > 99% accuracy. As

the highest intensity through the charged-particle microslit is approximately 0.11 particles/Vsec and

the highest theoretical intensity through the proposed pinhole aperture is approximately 0.165

particles/msec, both collimation systems are within the detection limits of the LABA single-particle

detection system.

4.3.3 Verification

In practice, it is difficult if not impossible to analyze coincidence events with 100% confidence due

to the statistical uncertainties inherent to the nature of the electronic processes. Some of these

errors include statistical timing errors from the detection process and uncertainties in the electronics

resulting from timing jitter, amplitude walk and noise, which lead to statistically variable time delays

between processed events. Despite these issues, coincidence detection techniques seem to be the

most appropriate method of determining the fluence of the charged-particle microbeam entering

from the collimating apparatus in the LABA experimental endstation, given the restrictions created



by the limited amount of light production in the thin scintillators required by the low energy of the

proton beam that may be generated by the LABA accelerator.

For the LABA Microbeam, the proposed coincidence detection method of using a thin film of

scintillating plastic (-5um) coupled to a light guide with Bicron BC-600 optical cement and two

photomultiplier tubes was evaluated with respect to detection efficiency and its physical effect on the

quality of the beam with respect to energy and radial straggle. High detection efficiency (on the order

of 99%) is required for precise control of radiation delivery, and the physical effect of the detection

system must have a minimal impact on the quality of the beam so as not to compromise spatial and

energy resolution. Data from simulation and from experiments using a test assembly and an Am-241

alpha particle source will be used in this discussion.

A test assembly was constructed that would allow for the two PMT detectors in coincidence to be

compared with a silicon surface barrier detector (which operates at -100% detection efficiency).s6 A

diagram of this arrangement and the actual test assembly are shown in Figures 4.13 and 4.14a,b.

incident particle beam

Figure 4.13 Coincidence detection test assembly diagram.

In addition to the electronics listed above in Table 4.1, the following electronics were used for the

silicon surface barrier (SSB) detector (Table 4.2).

Component Type Model
Detector Silicon Surface Barrier, 10 [±m silicon on gold substrate

Preamplifer 1 Ortec 1421H Preamplifier



High Voltage Power Supply 1 Harshaw NV-25A HV power supply (0-2000 V)
Amplifier 1 Canberra 816 Amplifier

Timing Single Channel Analyzer 1 Ortec 553 TSCA
Table 4.2 Electronics used for the silicon surface barrier (SSB) detector.

Figure 4.14 Coincidence detection test assembly, a) top and b) side views.

In Table 4.3, the manipulations performed on the single-particle detection system to increase

detection efficiency are shown. The experiments were performed using a 0.3 .tCi 241Am source (T 1/2

= 432 years), counting for 100 seconds unless otherwise noted. The silicon surface barrier (SSB)

detector high voltage was set to 100 V, and the two photomultiplier (PMT) detectors in coincidence

mode were set to 800 V.

Manipulation SSB Counts PMT(1,2) Detection
Counts Efficiency

Baseline, unwrapped ligtuide in place 20,204 16,792 83.1%
Timing SCA lower level raised to 3.0 V 16,281 14,383 88.3%

Birmn optical couphng grease added to 9,241 8,322 90.1%
PMTs (Bicron BC-630)

ight guide cleaned and arms wrapped in 9,180 8,584 93.5%
reflective foil

Timing SCA lower level raised to 3.5 V 15,768 14,978 95.0%
Foil added to top of scintillator 13,410 13,127 97.9%

'ght guide cleaned again w/ toothpaste, 12,994 12,801 98.5%
arms r-wrapped in reflectivefoil
Redo previous, 20 minute count 156,211 153,111 98.0%
Table 4.3 Progression of manipulations used to improve the detection efficiency of the two

photomultiplier (PMT) detectors in coincidence mode with respect to the silicon surface barrier
(SSB) detector. All errors calculated to be < 1%.

Efforts made to further improve the detection efficiency of the PMT-based coincidence detector

system met with mixed results; no manipulation of the system was successful at increasing the

detection efficiency to 99% or more.



4.3.4 Shutter Application

As described in Chapter 3, Section 3.2.1.2, the deflector system is capable of gating the beam "on"

or "off" as specified by the operator. The gating signal is provided by feeding the output signal from

the coincidence analyzer in the single-particle detection system (see Figure 4.11) through an analog-

to-digital converter (ADC). The resulting digital signal is then sent to the CPU, where the operator

can specify the number of particles that is allowed to pass before the deflector is engaged. When the

operator-specified number of particles has been delivered to the target, the deflector is electronically

activated and remains activated until particle delivery is again desired. Figure 4.15 shows an on/off

pattern of film irradiation using the deflector system. In this particular application, the default for

the deflector is "on," preventing protons from reaching the target - in this case, a piece of LR115

track-etch film pressed onto a cell dish. The stage was set to move in 20 ýim steps, and dwell for 0.1

seconds between each step. The deflectors disengage for the length of the dwell time, allowing

particles to reach the film, and then re-engage while the stage is moving.

Figure 4.15 Testing of"on/off" deflector pattern with LR115, using X=500V, Y=600V deflector
parameters. Comparison of charged-particle microslit irradiations with the deflection enabled

between dwells on the top, and with the deflection disabled on the bottom. (20 lim spacing between
dwells, color adjusted, 10x magnification)

4.4 Collimation/Target Design and Verification



Designing the c o h a t o r  that delimits the charged-particle beam is a challengmg task - several 

considerations come into play: 

Aspect Ratio: The aspect ratio is defined as the ratio between the length of the c o h a t o r  

and the width of the aperture. A small aspect ratio allows more of a penumbra effect from 

charged particles that are not in line with the desired beam, while a large aspect ratio is more 

likely to occlude the beam if not oriented properly. 

Photon Production/"Contamination7': Some materials interact with charged particles to 

produce x-rays; for example, PIXE, or proton-induced x-ray emission, may produce a 

significant x-ray background. Th~s  could result in a "dirty" or "contaminated" beam, where a 

non-negligible dose is distributed outside of the targeted region and low-LET radiation is 

delivered along with the charged particles within the targeted region. This confounds the 

desired precision of a microbeam. 

Space/Design Limitations: For the LABA microbeam, while the light-tight experimental 

endstation box is sizeable, there is a lot of other equipment limiting the avdable space. 

Two classes of collimator have been designed - a slit-type c o h a t o r  (the "microslit") capable of 

delivering a line-shaped distribution of radation, and a pinhole aperture collunator that delivers a 

point dstribution of radiation. 

4.4.1 Charged-Particle Microslit Design 

The aim in developing a charged-particle microslit was to attain the abhty to deliver a radiation 

distribution with a width less than the dameter of a mammalian cell nucleus (< 5 pm), and a length 

greater than the diameter of many (>20) full mammalian cell widths (at least 200 pm). A custom slit 

with these characteristics was produced by laser M n g ,  creating a 1.5-1.8 pm x 1.1 mm slit in a 40 

pm thick stainless steel substrate. (Produced by Lenox Laser, Glen Arm MD, USA) A dagram of 

the vacuum assembly on which the microslit was mounted is shown in Figure 4.16, indicating the 

points where the lightguide and the yoke for the PMTs are mounted. 



Figure 4.16 Microslit collimator base assembly schematic, showing the points where the lightgude 
for the single-particle detection system and the yoke that holds the two photomultiplier tubes in 

place are located. (Courteg Andrew Dart, Pyramid Technical ConsuItants) 

Theoretical beamspot hens ions  produced by the charged-particle microslit were determined by 

extrapolating the aspect ratio of the slit (25:l) through to the biologcal target and adding the 

contribution from radial straggle caused by interactions with the intervening material (1.4 pm of 

mylar, 5 pm of scintillating material from the single-particle detection system, an addltional 1.4 pm of 

mylar (the base of the cell dlsh, to be discussed further in Chapter 5, Section 5.2) as modeled by the 

SRIM 2003 code.94. ll".he calculated beam profile was determined to be 2.2 + 0.15 pm, 

subsequently verified by irradiation of LR115 track-etch film (Section 4.4.3). 

The microslit assembly is covered with a 1.4 pm layer of mylar to help maintain vacuum and prevent 

dust from occludmg the slit over time. Figure 4.17 shows the charged-particle microslit assembly in 

place in the LABA Microbeam experimental endstation, with the single-particle detection system 

removed. (The fully assembled system with the single-particle detection system in place was 

previously shown in Figure 4.9.) 



Figure 4.17 The charged-particle microslit assembly in place in the LABA Microbeam experimental
endstation, with the single-particle detection system removed.

4.4.2 Charged-Particle Pinhole Aperture Design

The aim in developing a charged-particle pinhole aperture was to attain the ability to deliver a point

radiation distribution with a diameter of < 3 ptm. As discussed in Chapter 2 (Section 2.1.3), there

are many means by which the charged particle beam generated by the LABA Microbeam accelerator

could be collimated or focused to a micron-scale size. The GCI Microbeam (Section 2.1.4.1), for

example, uses a glass capillary tube to physically collimate their beam down to < 3 rpm. The RARAF

Microbeam (Section 2.1.4.2), on the other hand, uses a set of 5 pm and 6 pmn apertures laser-drilled

in 12.5 Ipm thick stainless steel discs separated by a 300 Wm spacer to produce a roughly 5-8 pm

beamspot. It was determined that physical collimation with a glass capillary tube (O.D. 250 Umn, I.D.

1.5 rpm) would be the method used for the LABA charged-particle pinhole aperture.

The pinhole aperture consists of a 1 mm piece of glass capillary tubing mounted in a positionable

vacuum assembly. (Figure 4.18a,b)

a)



Figure 4.18 Pinhole aperture collimator assembly, a) side view and b) top view. On side view 
dlagram: (1) Collimator Block, (2) Collimator Shaft, (3) Shaft Nut, (4) Adjuster Screw, (5) 

Compression Spring for Shaft (Lee Spring LC-026E-I), (6) 0-Ring (Viton #007), (7) 0-Ring (Viton 
#002), (8) Collimator Tube (1 pm I.D., glass capillary), (9) Spring Retainer Screw, (10) Compression 

Spring (Lee Spring LC-024A-4), (11) 0-Ring (Viton #010) 

Theoretical beamspot dlrnensions produced by the charged-particle pinhole aperture were 

determined by extrapolating the aspect ratio of the inner dameter of the glass capdlary tube 

(1 100: 1.5) through the intervening dls tance and addmg the contribution from radlal straggle caused 

by interactions with the intervening material (1.4 pm of mylar, 5 pm of scinttllating material from the 

single-particle detection system, and an addltional 1.4 pm of mylar (the base of the cell dsh, to be 

dscussed further in Chapter 5, Section 5.2) as modeled by the SRIM 2003 code.'+ "3 The 

calculated beam profile was determined to be a circle with a dlameter of 1.8 k 0.2 pm, although this 

has not yet been physically demonstrated by irradation of LR115 track-etch f h  (Section 4.4.3). A 

comparison of SRIM 2003 calculations for the aperture collimators used in the GCI, RARAF, and 

LABA Microbeams is shown in Table 4.4. 

Microbeam Particle 

Gray Lab 
protons 

Columbia 5.3 MeV a 
particles 

1 MITWBA) 1 0.75MeV 
protons 

Collimator Type Intervening Material 

1.5 pm by 1 mm 
glass capdlary 

5 pm and 6 pm 
dlscs separated by 

300 um 

3.0 pm mylar, 18 pm 
scintillating plastic, 4.0 

pm polypropylene 
1.4 pm mylar, 3.8 pm 

polypropylene 

1.5 pm by 1 mm 
glass capdlary 

2.8 pm mylar, 5 pm 
scintillating plastic 

Calculated 
Beamspot Size 

Table 4.4 A comparison of SRIM 2003 calculations for the aperture collimators used in the GCI, 
RARAF, and LABA Microbeams. 

The design shown in Figure 4.18 was finahzed by Pyramid Technical Consultants (Waltham MA, 

USA) and was constructed by Machine Technology (Beverly MA, USA). The collimator itself is 

actually a 1 mm long piece of glass capillary tubing (fused silica tubing, OSGE) with a 1.5 pm inner 

dameter and 250 pm outer dmneter. The shaft in which the capdlary tubing is held (#2 in Figure 

4.18a) may be "tuned" with respect to the beam direction using the orthogonal x/y "adjuster screws" 

(#4 in Figure 4.18a), which are opposed by a set of springs (#I0 in Figure 4.18a). The pinhole 

collimator assembly is covered with a 1.4 pm layer of mylar to help maintain vacuum and prevent 

dust from occluding the capillary tube over time. 

Generating appropriate lengths of capillary tubing required the construction of a custom tube cutter, 

shown in Figures 4.19a and b. The motor turns a damond saw that is used to nick the tubing; a 



Starrett micrometer allows the operator to advance the stock capillary tubing forward so that an exact

length may be cut.

Figure 4.19 a) Schematic of collimator cutter, side view. The red dashed line indicates the channel
in which the collimator stock is placed. b) Image of actual collimator cutter. The blade is diamond

edged, motor turns at constant speed. The Starrett micrometer is used to determine length of
capillary tube to be cut.

Images of the capillary and the pinhole aperture assembly glass capillary tube in place are shown in

Figures 4.20a and b.

a.

Figure 4.20 a) Image of glass capillary tube with scale; large ticks separation = 100 rim, small tick
separation = 10 [pm, measured capillary outer diameter = 227 lim, inner diameter = 1.5 p.m; b) Pinhole

aperture assembly with glass capillary tube in place.

4.4.3 Verification Methods and Design Assessment
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The methods available for verifying microbeam beamspot characteristics were introduced in Chapter

3, Section 3.1.1.2. The subset of these techniques used in beamspot characterization at the

endstation includes:

* Faraday cup

* Track etch techniques (CR39, LR115)

* Radiochromic film techniques (MD55, HD-810)

The Faraday cup was used primarily to maintain consistency of operating parameters at the level of

the accelerator. Track etch techniques are considered to be the standard for providing the most

useful data with respect to the true beam profile, as they show the exact distribution of particle tracks

that result from the collimated beamspot.

4.4.3.1 Charged Particle Microslit Verification

The beam profile generated by the charged-particle microslit was verified using both radiochromic

and track-etch techniques. While both of these methods are capable of generating a physical

representation of the beamspot dimensions at the target, the "gold standard" for beam profiling is

the image on a track-etch film because of its ability to show individual particle hits. The beam profile

for the charged-particle microslit is shown in Figure 4.21, obtained from a charged-particle microslit

irradiations of -300, 100, and 200 Gy in 20 [m steps on CR39 track-etch plastic. The black bar

indicates 10 ý±m. Comparison of the track-etch images to the microscopic standard verified that the

width of the beam profile generated by the charged-particle microslit under the conditions used for

biological irradiation was 2.5-3.0 rnm.

Figure 4.21 Beam profile of the LABA microslit, -300, 100, and 200 Gy charged-particle
irradiations separated by 20 ýLm steps on CR39 track-etch plastic. The black bar indicates 10 jlm.

(20x magnification)



In Figure 4.22, modified MD55 radiochromic films were irradiated for different dwell times,

demonstrating the dependency of beam profile width on delivered dose. It should be noted that the

radiochromic film characterization method is useful for demonstrating inhomogeneities in dose

distribution - the gaps evident in Figure 4.22 are due to occlusion of the laser-drilled slit by dust

after extended operation, underscoring the importance of protecting the slit with a thin layer of

mylar.

10 seconds 5 seconds 2 seconds <1 second
(approx. 11 (approx. 6 (approx. 5 (approx. 2.5

microns wide) microns wide) microns wide) microns wide)
Figure 4.22 Slit aspect width on modified MD55 film with variation in irradiation time. (color

adjusted)

In addition to determining the beam profile, track-etch techniques are well suited for measuring the

current at the exit of the charged-particle microslit. Total beam current is primarily a function of the

extraction voltage applied to the plasma, which is measured using a Faraday cup and electrometer at

the exit of the accelerator. Dose delivered to the biological target, however, is solely a function of

the number of particles delivered through the slit. Thus, the relationship between the total beam

current and the corresponding dose delivered by the collimated current at the target position must be

determined.

Using track etch techniques to determine charged-particle beam intensity at the target position

required the use of LR1 15 film irradiated in steps, with constant velocity sweep between short dwell

times. The beam traverses the film in 1 mm steps at a speed of 1.5 mm/sec, with 1 second dwells

each step, after which the film was etched, and the resulting "pits" were counted using an eyepiece

grid with square size calibrated to the graticle standard as shown in Figure 4.23.
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Figure 4.23 "Pits" in LR1 15 film used to determine intensity of the beam through the microslit
assembly (color adjusted).

For example, a 0.02 pA beam on the Faraday cup results in a beam intensity of 2.2x10 4 particles/sec.

For most charged-particle microslit irradiations, the single-particle detection system is not used.

From SRIM 2003 calculations, it can be determined that after traversing the 1.4 ýpm of Mylar that

serves as the vacuum window and an additional 1.4 ýpm of Mylar that serves as the base of the cell

dish, a beam of 750 keV protons will deliver 275 keV/particle to the cell (assuming 7 ýpn cell

thickness). Energy is deposited in a very small volume of unit density, 2.5 p.m wide by 1mm long by

7 pm deep, for a total irradiated mass of 1.26x10"- kg. Thus, by varying the extraction voltage and

dwell time, we can vary the dose distributed to the cells through the microslit over a range from tens

to hundreds of Gy, as shown in Figure 4.24.
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Figure 4.24 Dose Rate to Cells (Gy/sec) vs. Extraction Voltage (kV) for charged-particle microslit
irradiations, in which the 750 keV beam traverses a total of 2.8 ýim of Mylar prior to interacting with

the cell target.

Because the goal of a microbeam is to attain as uncontaminated and controlled a charged-particle

beam as possible, it is necessary to verify that no significant radiation dose is delivered outside of the

desired beamspot. One possible source of radiation dose outside of the slit region is x-ray

contamination produced by charged-particle interactions with the collimator material. This

verification was performed using a calibrated ýiRem radiation survey meter (Bicron Micro-Rem

Radiation Monitor, Saint-Gobain Crystals and Detectors, Paris France) and radiographic techniques.

In Figure 4.25a,b, sheets of standard radiographic film (Kodak T-MAT G/RA film) were used to

determine if a significant amount of x-ray contamination was produced by the protons terminating in

the collimator material (i.e., not passing through the microslit). The film was placed within a light-

tight sleeve of cardboard of sufficient thickness to fully attenuate any protons, but scarcely attenuate

the low-energy x-rays that may be produced by the proton-induced x-ray emission in the collimator

material.

a. b.

Figure 4.25 a) Irradiated film with rings indicating the position of 1, 5, and 10 minute irradiations, as
well as the pressure-induced exposure from slit top, b) baseline film exposure. Width of rings = 2

cm.

While the x-ray film is sensitive to just a few mrem, the only darkening of the film was noted when it

was pressed vigorously against the slit itself. This suggests that proton-induced x-ray emission
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(PIXE) does not significantly contribute to the dose delivered to the cells by the charged-particle

microslit.

4.4.3.1 Charged Particle Pinhole Aperture Verification

The beam profile generated by the charged-particle pinhole aperture was analyzed primarily through

track-etch techniques, as the small size of the intended beamspot would be difficult to detect using

radiochromic methods. Figure 4.20a showed a light-microscopy image of a glass capillary tube with

a measured capillary outer diameter (OD) of 227 him and an inner diameter (ID) of 1.5 JLm. For

initial testing purposes, a glass capillary tube with a measured capillary outer diameter (OD) of 285

.tm and an inner diameter (ID) of 5 ptm was used, as it was deemed simpler to initially visualize a

larger beamspot. An image of the glass capillary tube in place within the pinhole aperture assembly

and an example of the beamspot generated by the charged-particle pinhole aperture are shown in

Figures 4.26a and b, the latter obtained from a series of five second charged-particle pinhole

aperture irradiations of LR115 track-etch plastic.

a. b.

Figure 4.26 a) Image of glass capillary tube, measured capillary outer diameter = 285 rim, inner
diameter = 5 p~m; b) Track etch image of 5 sec pinhole aperture irradiation, large ticks separation =

100 ýtm, small tick separation = 10 p.m.

As can be seen in Figure 4.26b, the pinhole aperture collimator did not generate a < 10 ýpm

beamspot on the track-etch film; instead, a nearly 100 p.m penumbra around a -15 p.m central spot

resulted, surrounded by a secondary penumbra over 400 pm in diameter. It is hypothesized that the

secondary 400 p.m penumbra is the result of protons streaming around the outside glass capillary

tube, but it is not understood how the inner 100 p.m penumbra could have arisen. Further work will
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be necessary to eliminate the penumbra effect and reduce the size of the pinhole aperture beamspot

to a subnuclear size.

One important consideration in the future use of the pinhole aperture is that the slightest deviation

from proper alignment will completely block the charged-particle beam from getting through. For

example, the capillary tubing used in the pinhole aperture collimator is 1mm in length with a 1.5 Ium

inner diameter, resulting in a 1:667 aspect ratio for transmission through the inner channel. Such a

large aspect ratio means that a deviation of as little as 0.0860 would be sufficient to completely block

transmission of the vertical beam. Thus, it was determined that the development of a simple and

rapid method of tuning the beam was necessary to ensure proper alignment.

A simple tuning unit using a photomultiplier tube optically coupled to a light guide upon which a 50

pjm piece of scintillating plastic was mounted was designed and built. Figures 4.27a and b depict the

photomultiplier tube (PMT) based detection system used to verify that the pinhole aperture

collimator is properly aligned.

a. b. 4

Figure 4.27 a) PMT-based tuning system, mounted in place of the 10x objective in the z-directional
focusing stage, b) Face of PMT-based tuning system, showing coupling of 50 jim scintillating film on

light guide to the PMT via BC-630 optical grease.

The PMT-based tuning system output is currently a simple counting system, with an electronics

setup similar to that seen in Figure 4.11 (although for only one photomultiplier detector). Table 4.5

lists the electronic components used in the tuning system.
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Preamplifer I 1 Hamamatsu C5781 Socket Assembly, attached to a +/- 15 V I 
Component T e e  

Detector 

I I Dower SUDD~V I 

Model 
1 Hamamatsu R7400U series PMT 

- 

High voltage Power Supply 
Am~lifier 

1 

Computer Interface (not yet used) I 1 Canberra 871 5 ADC 
Table 4.5 Electronics used for the PMT-based tuning system. 

1 Harshaw NV-25A HV power supply (0-2000 V) 
1 Canberra 816 Amplifier 

I 

Timing Single Channel Analyzer 
Counter 

Once the characterization of the pinhole aperture assembly is complete, the tuning system wdl be 

integrated hlly into the CPU-based control system using the Canberra 8715 ADC. Currently the lox 

objective must be removed and the PW-based tuning system must be run through the objective 

mount; a modular mount has been proposed that, once installed, d allow one-step switching 

between the lox microscopy objective and the beam tuning system. Full characterization of the 

pinhole aperture and implementation of the tuning system are beyond the scope of this thesis, and 

wdl be considered in future work. 

1 Ortec 553 TSCA 
1 Ortec 770 Counter 

4.5 Experimental Control Systems 

To attain the precision necessary for a charged-particle microbeam to control the number of particles 

traversing individually targeted cells, the software and physical components of the microbeam must 

be effectively integrated and coordinated through a manageable interface with the user. 

The LABA control software, written in a proprietary language (Pyramid Technical Consultants, 

Waltham, MA) similar to C++ and running under the Windows NT operating system,5"s 

responsible for con t rohg  every aspect of the LABA microbeam, rangmg from accelerator start-up 

and shutdown to manipulation of all beam-line components, including the subsystems of the 

endstation devoted specifically to cellular irradiation. 

The control system has three general "properties": 

an interface within which parameters for the hardware can be both set and monitored 

routinely by the user 

the ability to input parameters necessary for specification of a particular cell irradiation 

experiment 

automated protection of the accelerator in the event of unexpected and unsafe increases 

in pressure or terminal voltage. 



Controls specific to the various subsystems (Vacuum, Accelerator, Magnet/Deflector, Imaging,

Imaging/Targeting) are divided into logical groups, with common functionality being grouped into

distinct graphical user control interfaces. The Vacuum, Accel Control, and Facilities screens were

covered in detail in Chapter 3, so the focus of this section will be on the "Acquire" and "Image"

subsystem control screens.

4.5.1 Stage Movement/Positioning

As previously stated, a microbeam must be able to direct the beam to the target, or place the target in

the path of the beam with a high degree of accuracy and precision. For the LABA Microbeam, the

latter method was chosen as it simplifies the collimation system and associated hardware. The

desired goal for the accuracy of stage motion is to be able to target a specific x/y coordinate within +

3 ipm of the desired positioning.

4.5.1.1 Physical System

The positioning stage for the LABA charged-particle microbeam is an X/Y stage mounted directly

above the slit aperture (collimator). The 2-dimensional stage consists of a pair of Parker Zeta4 Drive

Compumotors (5000 steps/revolution) coupled to precision Starrett micrometers (Starrett Model

#261L, 0.001 inches/graduation; 25 graduations/revolution) that drive a precision x-y stage

platform, the lattermost of which is shown in Figures 4.28a and b.

Figure 4.28 LABA Microbeam experimental stage system a) top view, b) placed within the light-
tight box of the experimental endstation.
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Based on the parameters of the Compumotors and the Starrett micrometers, the positioning stage is

fundamentally limited to a certain step size.

(5000steps/ rev/ grad/ (lin/ .4mm) 7874 steps/m
/rev)( /25grad)( /0.0001in) /25.4mml /MM

Given the tolerances of the components, at 7874 steps/mm, the finest possible step size is -0.2 km.

However, additional error can arise in a number of areas, including but not limited to the coupling of

the compumotors to the micrometers, the coupling of the micrometers to the stage, and friction

and/or mechanical errors in the stage motion.

In Figure 4.29a and b, the imaging screen used to verify the accuracy and precision of stage motion

is shown. Using the graticle described in Chapter 3, Section 3.1.1.2, we can directly visualize the

motion of the standard markings with the CCD camera system (to be described in more detail in

Section 4.5.2), and calculate motion with an accuracy of < +/- 0.50 [pm based on the pixel counts.

a. b.

Figure 4.29 A screen capture of the image produced by the CCD camera on the CPU screen which
shows the graticle scale, CPU readout and jog controls used during the calibration of the stage a)

along the x-axis, b) along the y-axis.

In calibrating the 2-dimensional motion of the positioning stage, it was initially "homed" in both the

x and y direction to the preset position of (0, 0). The microscope graticle was attached to the stage's

sample mount arm in the same position occupied by the cell dish, with the alignment of the graticle

in the same direction of the axis being tested. The graticle was visualized using the UV lamp,

dichroic mirror, 10x objective, and CCD camera that will be described in full in Section 4.5.2.1. The

image collected by the CCD camera was used to produce a live image on the CPU screen, as shown

in Figures 4.29a and b. The stage was moved in both the x and y direction until the fine end of the
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graticule scale was within the field of view of the CCD camera, which was previously determined to

be approximately 630 ipm x 467 pin, and brought into focus using the z-direction motor coupled to

the 10x objective. Once in focus, an arbitrary 0.1 mm marking on the graticle scale was aligned with

the edge of the CPU image.

For all stage motion verification experiments, the x and y coordinates of the stage indicated on the

CPU screen were recorded at an arbitrary initial stage position. Using the computer jog controls, the

stage was jogged in steps of a designated distance (generally 1 pm, 2 pm, 5 pm, and 10 pm) at a

specified range of velocities (generally 0.1, 0.25, 0.50, and 1.0 mm/sec) and accelerations (generally

5.0, 10.0, and 20.0 mm/sec2) along x or y axis (aligning the graticle to the observed axis as necessary)

until the next 0.1 mm marking on the graticule scale was aligned with the edge of the CPU image,

indicating on the graticle scale that the stage had moved 0.1 mm (100 pm). The CPU readout was

recorded for the new stage position, which was 100 pm away from the previous recording. The stage

was stepped in this manner, with readings taken every 100 jpm, until the graticle indicated that the

stage had moved a total distance of 2 mm. Figures 4.30a and b below show a typical measurement

of CPU-indicated position deviation from position measured on the graticle image using these

methods for a step size of 5 pm, stage velocity of 1.0 mm/sec, and an acceleration of 20 mm/sec2.
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Figure 4.30 a) X-Motion: Graph of CPU-indicated position deviation from position measured on

the graticle image for a step size of 5 pmn, velocity of 1.0 mm/sec, and acceleration of 20 mm/sec2.

Sum of mean deviation of 0.2 pm, standard deviation of 0.9 pm, and measurement error of 0.5 pm
yield a total positional error of ± 1.6 pm with the stage moving in the x-direction; b) Y-Motion:

Graph of CPU-indicated position deviation from position measured on the graticle image for a step

of 5 pm, 1.0 mm/sec, 20 mm/sec2. Sum of mean deviation of 0.2 pm, standard deviation of 1.3 pm,
and measurement error of 0.5 pm yield a total positional error of ± 2.0 pm with the stage moving in

the y-direction.

With a positional error of ± 1.6 pm in the x-direction and a positional error of ± 2.0 pm in the y-

direction, the total radial positional error is ± 2.6 pm. Based on the total positional error of the stage

system, it may be stated that the LABA Microbeam positioning stage can precisely and accurately

target a specific x/y coordinate within ± 3 ýpm.

4.5.1.2 Stage Control, via the "Acquire" Screen

The "Acquire" control screen, shown in Figure 4.31 with the ubiquitous "Common Border"

removed (as described in Chapter 3, Section 3.3), allows the operator to set the parameters of a

particular irradiation experiment, or "scan."
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Figure 4.31 The "Acquire" control screen with "Common Border" removed.

Displayed in the upper left hand comer, the Status Screen shows a cursor during the course of a

scan that indicates the relative position of the stage. When the stage is not in its "home" position

following the completion of a scan, the program reminds the operator to return it prior to the

initiation of a new scan. Directly below the Status Screen are the Stage Movement controls, that

provide the operator with automated homing, manual X/Y stage motion control, manual Z control

for the motorized focusing element tied to the microscope objective, speed control for the stage

motion, and a general setup feature.

The Acquisition Type controls in the upper right hand corner allow the operator to limit the type

of scan to specific types: Manual, which has the greatest degree of open parameters;

Point, which will only move the stage to a specific location defined by the operator;

Line, which will sweep the stage from one operator-specified point to another; and

Area, which will pan the stage repeatedly over an area, used for large automated tasks.

Below these controls are the Scan Data readbacks, that provide scan-specific data based on

operator-defined parameters. The Scan Parameters in the lower right allow the operator to enter a

number of parameters that define the behavior of a scan, specifically:

Resolution, the distance between each step movement of the stage;
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Dwell Time, how long the stage will stay at rest between steps;

Deflection, which automatically turns on deflection while the stage is in motion; and

Position 1,2, which sets the initial and final X/Y coordinates for the stage movement.

4.5.2 Imaging/Targeting

A necessary feature of the endstation is a means by which we may visualize and target objects for

irradiation. For nuclear irradiations, this is accomplished by staining the cells with a vital dye such as

Hoechst 33258, which intercalates between the base pairs of DNA. This allows for direct

visualization of nuclear DNA with relatively low background after washout, and the centroid of the

stained nuclei may be calculated in order to direct the beam. More information on protein and

nuclear staining will be provided in Chapter 5.

4.5.2.1 Physical System

The imaging system consists of a UV lamp, light shutter, dichroic mirror, CCD camera, and 10x

objective on a motorized stage mounted over the biological target, shown in Figure 4.32a and b.

1ta. 0.

Figure 4.32 a) Assembly of optical arrangement in light-tight box, UV light source not pictured
(outside of light-tight box). b) Diagram of optical arrangement without light-tight box.

The image is fed back to the central CPU-based control system, which displays the image and

performs the processing required to calculate and register the coordinates of the targeted cells

(Figure 4.33). This information is then used to guide the stage and positioning system (Figure

4.31).

4.5.2.2 Imaging Control, via the "Image" Screen

The "Imaging" control screen, shown in Figure 4.33 with the "Common Border" removed,
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provides the operator with a direct interface into the LABA Microbeam imaging system. Some of

the imaging functions, such as cell targeting, are automated - however, the screen allows full manual

control of all operations as well.

Figure 4.33 "Image" control screen with "Common Border" removed. The visualization window
shows a view of the crossbar of the letter "T" in "MIT," written in black ink on regular paper.

Displayed in the upper left hand comer, the visualization window shows the image that is currently

being captured by the CCD camera - if the camera is not acquiring data, a static image of the last

image captured remains on the screen. The "Live Image" indicator light is on while the camera is

actively capturing images. Directly below the visualization window is a set of Stage Movement

controls, that provide the operator with readbacks of the current stage position, automated homing,

manual X/Y stage motion control, manual Z control for the motorized focusing element tied to the

microscope objective, and a general setup feature.

To the right of the visualization window are the View Controls, which set the imaging system on

live or snapshot image capture modes. Below this is the Cell Info window, which allows the

operator to designate a number of cells to locate and register. To the right of these two control sets
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is a series of image manipulation tools, permitting the user to modify the edge-finding and threshold

functions, the focus, and the size of the region of interest imaged.

Figures 4.34a and b show examples of the type of base images used to map out the centroids of the

cell nuclei. Because the software must establish the edges of the cell nuclei before it is able to

determine the center of mass, it must be possible to discriminate the nucleus of one cell from that of

another. Figure 4.34a shows a relatively sparsely plated cell dish, where most of the cell nuclei are

distinct. Figure 4.34b shows a very densely plated cell dish, where it is very difficult to distinguish

once cell nuclei from the next.

a. b.

Figure 4.34 Fibroblast nuclei stained with Hoechst 33258 DNA-binding dye. a) Sparsely plated cells,
b) Densely plated cells.

The software cannot currently discriminate well between cell nuclei in the latter case. If the software

is not able to readily distinguish a nucleus, it rejects it and moves on to the next. The positions of

each centroid will be logged to a file, and the x-y stage can be instructed to return to them

sequentially or randomly over the entire dish or only over a selected region of interest. Full

automation of the imaging and targeting system is beyond the scope of this thesis, and will be

considered in future work.

4.6 Chapter Summary

In this chapter, the subsystems comprising the biological endstation were described and the

experimental methodology used to characterize the operation of each system was discussed. In

Chapter 5, the application of the LABA charged-particle microbeam to radiobiological investigations

will be described.

115





5. Biological Applications of the LABA Microbeam 

5.1. Background 

Ever since the development of the first cyclotron by E.O. Lawrence at Berkeley and the resulting 

ability to accelerate heavy charged particles to energes sufficient to penetrate living tissue, physicists 

and biologsts have been exploring their application to biological and medcal research.'" With the 

development and characterization of the charged-particle microslit complete, it is possible to 

investigate the response of cells to a subcellular dstribution of radation, delivered across a 

monolayer of cells with the LABA Microbeam. 

It is hoped that this technique will shed further illumination on the radation-induced bystander 

effect, by which irradiated cells appear to interact with other cells by currently unknown mechanisms 

to propagate the biological effects of radation damage. (The radation-induced bystander effect is 

dscussed in greater d e t d  in Chapter 2.) Such research provides an examination of the mechanisms 

by which low-level radiation may cause damage to populations of cells, which in turn may lead to 

pathological states in human tissues and organs. It is pertinent both to radation protection, in which 

low doses of ionizing radation on the order most often seen occupationally or by the general public 

may lead to increased risks of cancer or genomic instability, and to radotherapeutic amounts of 

radation, in which the interactions of radation with cells in mixed environments may shed light on 

how to maximize the response of tumor tissue to radation while reducing the damage to healthy 

tissues. 

5.1.1 Radiobiological Assay Techniques 

The radation response chain is a complex and nonlinear pathway. As dscussed in Chapter 2, the 

initial action of radation on a biological system is chemical - the energy deposited by the radation 

acts to break the bonds in DNA molecules, as well as to ionize water to produce free radicals that in 

turn cause further damage. An "injury signal" seems to be generated in response to this damage, 

setting in motion a cascade of biological reactions. Damage repair proteins are localized to the 

site(s), and the initial event is followed by a clean repair, mutation(s), or fixed damage that can kill the 

cell or impair its abllity to reproduce. 



The choice of biologcal assay techniques applied to the IABA Microbeam radiobiological studies 

was based heavily on the range of biological effects of interest - for example, one could look at 

fundamental chemical effects of radiation interaction with cellular material through the generation 

of reactive oxygen species such as peroxides, oxygen radicals, and superoxide anions; the damage to 

the double-stranded DNA (dsDNA) target of interest indicated by histone phosphorylation in 

proximity to a DNA double-strand break; or the aftereffects of such damage through the localization 

of double-stranded DNA break repair proteins. This is by no means an exhaustive list, but it 

covers the range of cause, effect, and consequence. 

To assay each of these "steps" in the radiation response chain, the following assays were chosen: 

1) Chemical effect: a compound known as 6-carboxy-2',7'-dichlorodihydrofluorescein &acetate, 

di(acetoxymethy1 ester) (carboxy-HzDCF-Dh, Invitrogen Co., Carlsbad CA USA) dye may be used 

to label the production of reactive oxygen species (ROS, including oxygen rahcals (0.-), hydroxyl 

radials (OH-), superoxide ions (02-), and peroxides (H202)) from radiation interactions with 

intracellular water.75 Carboxy-HzDCF-Drl is initially soluble in cell membranes, allowing it to 

permeate cells. Once in the cytoplasm, in the presence of reactive oxygen species, the carboxy- 

H2DCF-DA molecule is cleaved, becoming both imperrneant in cell membranes and f luo res~en t .~~  A 

diagram of the carboxy-HzDCF-DA chemical process and an image produced using the ROS stain 

on a monolayer of charged-particle microslit-irradiated mouse fibroblast (MF) cells are shown in 

Figures 5.la and b. 
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Figure 5.1 a) Conversion of carboxy-H 2DCFDA from non-fluorescent form to fluorescent form,67

b) 200 Gy charged-particle microslit irradiation of mouse fibroblast (MF) cells pre-treated with
carboxy-H2DCF-DA, visualized immediately (1-3 min) after irradiation. (5x magnification, spacing

between the dark lines = 500 lim, width of dark lines - 75 jim)

Because ROS have also been identified as signaling intermediates, 26 it is not possible to state that the

ROS signal is confined to the initial interaction of radiation with water in the irradiated cells.

Additionally, ROS have been implicated in a number of bystander studies, 49, 86 making their induction

a good initial subject for LABA Microbeam studies. It is expected that both directly irradiated cells

and those cells affected through radiation-induced bystander effect mechanisms will demonstrate

some level of ROS induction after charged-particle microslit irradiation.

2) dsDNA damage: It has been noted that a certain structural protein identified as histone H2A.X

becomes phosphorylated if in the proximity of a DNA double-strand break. This protein is a 14 kDa

ubiquitous member of the H2A histone family that contains an evolutionarily conserved

Serine/Glutamine motif at the protein C-terminus in eukaryotes.85 Serine 139 within this motif

becomes rapidly phosphorylated (on the order of milliseconds) in the presence of a DNA double-

strand break to yield a form known as y-H2A.X. Phosphorylation reaches half its maximum between

1-3 minutes after DNA damage occurs, and hundreds to several thousand molecules of y-H2A.X are

present per dsDNA break, providing a high degree of amplification.87, 88, 89, 102 A diagram of the y-

H2A.X assay technique is provided in Figure 5.2a.
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a. b.

Figure 5.2 y-H2A.X assay. a) At the top, intact native chromatin is shown with occasional H2A.X
histone protein present (white circles) among other histone protein types (grey circles). In the

middle, phosphorylated chromatin is shown in the presence of a dsDNA break (red circles). At the
bottom, primary antibody is bound to the phosphorylated H2A.X (y-H2A.X), and a secondary

antibody covalently conjugated to a fluorophore (blue circles) is binding to the primary antibody; b)
Expression of y-H2A.X in 200 Gy charged-particle microslit irradiated NF cell nuclei (40x

magnification, color adjusted).

Assaying for y-H2A.X relies on an immunocytochemical technique using a mouse-generated

antibody to the phosphorylated motif. This antibody is highly specific, detecting only

phosphorylated histones at sites of double-strand DNA breaks. 85, 87, 8 8, 89, 96, 102

3) DNA Damage Repair: Many proteins have been identified as having a role in the repair of

radiation induced DNA damage. One of these, Mre-11 (of which hMrell is the form found in

humans), is an endonuclease of single-stranded DNA and an exonuclease of double-stranded DNA,

facilitating DNA repair.7 9 Mrell is associated with the repair process known as Non-Homologous

End Joining (NHEJ), which is the primary means by which mammalian cells may repair double

strand DNA breaks. In this process, Mrell acts as a 3' to 5' exonuclease - other proteins involved

include XRCC4/5/6/7, Rad50 (which stimulates Mrell exonuclease), and NBS1 (which interacts

directly with both Rad50 and Mrel 1).6 Figures 5.3a and b show an anti-hMRE11 fluorescent stain

and a DAPI (DNA-specific stain) counterstain of the same normal fibroblast (NF) cell, during what

appears to be a cell division.
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Figure 5.3 hMRE11-stained NF cells following 100 Gy "stripe" irradiation of cell dish. The cell
shown was not directly irradiated, but was plated in the same dish as irradiated cells; a) anti-hMRE11

stain of an unirradiated NF cell, b) DAPI (DNA stain) counterstain of the same cell.

Assaying for hMrell 1 is also an immunocytochemical technique, using a rabbit-generated antibody to

a conserved sequence in the protein structure. This allows visualization of localization of the hMrell 1

protein to the damage site. 76

5.1.2 Other Radiobiological Stains

Several other stains were used to counterstain the cells for registration of the assay images against an

image of the cell nuclei, or as a general assay of cell health.

1) Nuclear Imaging: A simple stain exists to highlight nuclear material - a vital dye known as

Hoechst 33258 may be used to stain the DNA in the nuclei of the cells to be imaged.32 The dye

molecule, shown in Figure 5.4a, is specific for the A-T base pairs of DNA, but is not considered

toxic (or to interfere with radiation response) at levels less than 5 jig/ml.2 4,50 An image of Hoechst

33258-stained V79 cells is shown in Figure 5.4b.
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Figure 5.4 a) Hoechst 33258 molecule,21>2' b) Hoechst 33258-stained V79 cells (50 nM 
concentration of the dye in normal growth medium, 5x mapfication, color adjusted). 

Counterstaining with Hoechst 33258 dye was done for two reasons; frrst, it provided a high-contrast 

image of cell nuclei suitable for analysis and targeting using the LABA Wcrobeam imagng system 

(see Chapter 4, Section 4.5.2), and second, comparing images of the highly-specific Hoechst 33258 

nuclear stain to images produced using the two DNA repair- and damage-specific stains described 

above (anti-hMREll and anti-y-H2A.X) allows for verification of co-localization with nuclear 

material. 

2) Live/Dead Assay: The Live/Dead assay is a simple chemical stain assay that uses a combination 

of two molecules (Figures 5.5a and b) with dramatically drfferent properties with respect to the 

intepty of the cell membrane.20 This assay was used to determine relative cell health, and whether 

any particular manipulation of the cells was simply killing them outright. 

Figure 5.5 Live/Dead assay components.6") Calcein-AM, b) Ethidrum h o m o h e r - 1  (EthD-1). 

The Calcein acetoxymethyl (AM) ester derivative of fluorescent Calcein (Figure 5.5a) is used for the 

imaging of live cells. The addition of the AM ester group results in an uncharged molecule that can 

easily permeate cell membranes. Once inside the cell, the lipophilic bloclung groups are cleaved by 

nonspecific intracellular cytosolic esterases, resulting in a charged form of the compound that is 

relatively impermeable in cell membranes. Calcein AM is colorless and non fluorescent untd 

hydrolyzed, which results in the dye selectively staining the cytoplasm of intact cells. Target working 

concentrations are between 1 and 10 pM.66 

Ethidrum h o m o h e r - 1  (EthD-1, Figure 5.5b) is used for the imagng of dead and some forms of 

fatally damaged cells, the common characteris tic being severe membrane damage. EthD- 1 has a 

high-affinity for nucleic acids, and exhibits a red fluorescence when bound. It is specific for dead 

and dying cells in that it is only able to pass through their compromised membranes, and has a 

working concentration s d a r  to that of Calcein AM.66 



The intended purpose of using the Live/Dead assay (or its components) during the course of the 

initial LABA Microbeam experiments was to serve as a probe for membrane damage. For example, 

the ROS assay above requires an intact membrane to contain the fluorescent oxidized form of 

carboxy-HzDCF-DA. The ethidium h o m o h e r  (EthD-I) can be used to verify if the cell membrane 

has been compromised. 

5.2 Tissue Culture/Cell Dish Design 

Cell lines cultured for experiments using the LABA Mtcrobeam included Normal Human Fibroblast 

(NF) cells obtained from the Radiation Oncology Department at Massachusetts General Hospital 

(Boston, MA USA), Chinese Hamster Lung Fibroblast (V79) cells obtained from ATCC (Manassas, 

VA USA), and Mouse Fibroblast (MF) cells obtained from the Engleward Laboratory at the 

Massachusetts Institute of Technology (Cambridge, MA USA). All cell lines were maintained 

identically in Dulbecco's Modification of Eagle's Medum (DMEM) with 4.5 pg/ml glucose 

(Mediatech CellGro, Herndon, VA USA), supplemented with 10% fetal bovine serum (Sigrna- 

Aldrich Co., St. Louis, MO USA), 10 pg/ml streptomycin and 10 pg/ml penicilhn (Mediatech 

CellGro, Herndon, VA USA), and lOmM HEPES Buffer (Hyclone, Logan, UT USA). 

Mammalian fibroblasts were chosen for the initial applications of the microbeam because they are 

relatively hardy, simple and inexpensive to culture, and possess nuclei of an easily targetable size (> 

10 pm). Figures 5.6a and b show the shape of a V79 cell on Mylar and a histogram of their 

measured nuclear cross-sectional area.24 Both the NF  and MF cells were morphologically 

indistinguishable from and of equal or greater cross-sectional area than V79 cells by light microscopy, 

so they wdl be considered grossly morphologcally slmdar for the purposes of the initial LABA 

microbeam studies. Figure 5 . 6 ~  illustrates the variation in linear energy transfer (LET) of the 

protons delivered by the charged-particle microslit as they pass through the cell material, after the 

750 keV proton beam has traversed the 1.4 pm mylar vacuum window, 5 pm scinullating plastic of 

the single-particle detection system, and the 1.4 pm mylar cell dish. 
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Figure 5.6 a) Diagram of V79 cell on Mylar (based on Pugliese 1997); b) Histogram of V79 nuclear 
cross-sectional area, mean is 106 pmz, standard deviation of 27 pm2,24 c) Plot of LET (keV/pm) vs. 

cell depth (pm) calculated using SRIM 2003, after the 750 keV proton beam has traversed the 1.4 pm 
mylar vacuum window, 5 pm scintillating plastic of the single-particle detection system, and the 1.4 

pm mylar cell dish (residual proton beam energy prior to cellular material = 445.6 keV, standard 
deviation of 10.5 keV). 

On average, V79 fibroblasts are about 6 pm hck,99 whch, as described in Section 5.2, is capable of 

being traversed by the 750 keV protons generated by the LABA Microbeam after passing through 

the Mylar of the vacuum window and the cell dish as well as the scintillating plastic of the particle 

detection system. 

As mentioned in Chapter 3, the vertically aligned beam allows the irradiation of horizontally-placed 

cell dishes. This simplifies the irradiation process and allows the growth medium to remain on the 



cells in a conformation that also allows the medium to be exposed to air (allowing oxygen to diffuse

to the cells). As a result, long irradiations (-30 min or more) may be performed without adversely

affecting the cells. The cell dish and irradiation configuration are shown in Figure 5.7. The plating

surface is approximately 2 cm in diameter, with an effective plating area of - 285 mm 2 that allows for

> 1.0x10 6 mammalian fibroblast cells to be deposited in a confluent monolayer.

N Ilcdiuamr

Cell Dish

protin bc':n

SA. 1 1 um

Figure 5.7 Vertical target irradiation configurations, cut away side view and physical placement in
LABA Microbeam experimental endstation. Note that the cell monolayer is not to scale.

Irradiation dishes were prepared using a custom-made stainless-steel tray (Machine Technology,

Beverly, MA USA), onto which either a 3.7 tm thick polypropylene film or a 1.4 rtm thick Mylar film

was affixed using 3M Spray Mount adhesive (3M, St. Paul, MN USA), as shown in Figure 5.7. A full

description of the cell dish preparation is provided in Appendix D, Section D.2.

Adherence of the cells is a major issue with the custom cell dishes used in the LABA Microbeam.

Standard tissue culture materials were too thick for the 750 keV protons produced by the LABA

Microbeam accelerator to traverse with sufficient remaining energy to fully penetrate the target cells,

so a number of very thin (< 4 ltm thick) plastic films were examined. Unfortunately, mammalian

fibroblasts do not adhere to these plastics well as they tend to carry a net neutral or positive charge,
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and mammalian fibroblasts preferentially adhere to substances with a net negative charge. A number 

of products exist that can impart a net negative charge or other adherent properties to a surface, and 

several of these were tested with the custom cell &shes. The results are shown in Table 5.1, which 

provides the relative effectiveness of various cell treatments for the 3.7 pm thick polypropylene f h  

and 1.4 pm thick Mylar f h .  

Dish Pre~aration 
3.7 pm polypropylene 

no treatment 

Cell- Tuk 

F N C  Coating Mix 

S@ Pob-l-@ne 

1.4 pm Mylar 

no treatment 

Cell-Tak 

E N C  
Sigma Po4-1-bsine 

E M S  1'04-lI&sine 

Table 5.1 Different cell dish preparations for 4 pm tl 

13% 

31% 

36% 

56% 

94% 

ck polypropylene f h  

% Viable 

N / D  
9% 

8% 

1 3% 

7% 

d 1.4 pm thick Mylar 

Standard Deviation 

film. "% Viable" indcates the percentage of treated &shes in which the entire cell monolayer 
remained intact through the fixation step in the immunocytochemical staining process. The number 

of dshes for each con&tion ranged from 16 to 40. The treatments used were Cell-Tak 
(Collaborative Biomedtcal Products, Bedford, MA USA), FNC Coating Mix (Athena Environmental 
Sciences, Inc., Baltimore MD USA), Sigma poly-L-lysine (Sigma-Aldnch Co., St. Louis, MO USA), 

and Electron Microscopy Sciences (EMS) poly-1-lysine (Electron mcroscopy Sciences, Fort 
Washington PA USA). 

5.3 Charged-Particle Microslit Experiments 

As shown in Chapter 4, the LABA charged-particle rnicroslit was designed and characterized to 

deliver a radation dose dstribution of subnuclear width, such that the exposed area would be 

approximately 3-8 pm in width and 1 mm in length. By varying the duration of the cell exposure 

and/or the intensity of the charged-particle beam (primarily by varyrng the accelerator extraction 

voltage), a dose on the order of 1-2 Gy to hundreds of Gy is possible in a matter of seconds. 

5.3.1 Experimental Design 

The charged-particle microslit was originally designed as an alternative to the construction of a grid 

"mask," which was intended to provide a regularly repeating radiation delivery pattern in which a 

biological target would receive a varying degree of high proton dose and no proton dose. This 



pattern was to be generated by alternating an attenuating material to block charged particles with

voids to allow charged particles to freely pass through. However, construction of the grid soon

proved to be too difficult in the case of the charged-particle beam produced by the LABA

Microbeam accelerator, as a suitable rigid substrate could not be found that would support the

attenuating material without completely attenuating the charged-particle beam itself.

The motivating idea behind grid construction was a 1998 Science paper by Nelms et al., 76 in which a

grid (shown in Figure 5.8a) was used to create a pattern of synchrotron-produced 1.34 keV x-rays in

which the "void" zones of the grid received 100 Gy and the "attenuating" zones of the grid received

0.5 Gy. A subset of the results from such an irradiation performed using the x-ray grid is provided in

Figure 5.8b, in which a grid-irradiated 37Lu fibroblast nucleus stained for hMRE 11 (as explained in

Section 5.1.1) and counterstained with DAPI (a nuclear binding dye) is shown. The merging of the

hMRE11 and DAPI images demonstrated the localization of the DNA repair protein to the nucleus

of the cell.

A
WMt·On -- r~j~C.UuIwgrur
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B

a) b)

Figure 5.8 a) (A) Diagram of the Nelms et al.76 partial volume irradiation scheme. Thickness of the

Mylar surface (8 jim) is not drawn to scale. (B), scanning electron micrograph of irradiation mask.
Bar, 1 jtm; b) hMrel 1 stripes, 37Lu fibroblasts (A) hMrel 1 (C) DNA (DAPI) (D) Merged image of

(A) to (C). Bar, 10 ýjm.
76

The irradiation pattern deemed most suitable for radiobiological experiments using the charged-

particle microslit is a "stripe"-style irradiation, in which the microslit is scanned lengthwise across the

cell dish. The result of this irradiation is a dose distribution over the cells a few microns in width,

and several mm in length. After treatment with a contrast agent such as an immunocytochemical

stain or reactive dye, the effect of the radiation dose is more easily observable due to its magnitude
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and shape. Also, the spatial dstribution of secondary biologcal effects (such as the radation induced 

bystander effect) may then be modeled as a 1-dlrnensional effect. The dose delivered to the cells was 

varied between 1 and 200 Gy. 

Treatment with carboxy-HzDCF-DA prior to irradation allows visualization of the generation of 

reactive oxygen species (ROS), part of the initial cellular insult. Immunocytochemical treatment after 

the cells have been irradated and faed with anti-phosphorylated histone H2A.X (y-H2A.X) allows 

for visuahzation of the approximate location of DNA double-strand breaks in chromosomal DNA, 

while treatment with anti-hMrell allows visualization of one step in the non-homologous end- 

joining (NHEJ) DNA repair process. 

5.3.2 Experimental Methods 

5.3.2.1 Biological Preparation 

Irradation dshes were prepared as described in Section 5.2 (Figure 5.7)/Appendix D, Section 

D.2. Prior to an irradation experiment, exponentially growing cultured cells are trypsinized and 

resuspended in normal growth medrum, and then plated on the prepared thin fh/stainless-steel 

dishes such that the cells after adhesion would be 90-100% confluent. The cells were incubated in 

the stainless steel microbeam dshes protected by a plastic cell culture d s h  at 37°C for 8-12 hours. In 

almost all cases, cells were pre-treated with a 50 nM solution of Hoechst 33258 DNA-bindng dye in 

relevant growth medum, incubated at 37OC for 30 min, and then washed 2x with 1X PBS at room 

temperature (22OC) (3 min/wash). After the cells were washed, relevant growth medium was then 

restored. 

A variation that was used with some drsh preparations was treatment with lindane. Lindane is a y- 

isomer of hexachlorocyclohexane that functions as a gap junction intercellular communication 

(GJIC) blocker." Gap junctions are specialized protein structures in cell membranes that create 

channels between cells, and GJIC is a means by which small molecules may pass between cells 

through these low-resistance channels. Lindane-susceptible GJIC has been previously implicated as a 

mediator of radration-induced bystander damagef and its use was intended to determine if GJIC- 

related mechanism(s) were involved in any observed biological effects. 

Irradations were performed at room temperature (22OC). Irradrations lasted 5-30 min, depending on 

area irradiated and total dose delivered. At times ranging from 10 minutes to 2 hours after 



irradiation, cells were washed twice with 22'C 1X PBS (3 min/wash) and then fixed with 100% 

methanol on ice for 20 min. 

5.3.2.2 Irradiation Methods 

750 keV protons were generated using the 1.5 MeV charged-particle accelerator at the MIT LABA. 

Using the charged-particle microslit, radiation dose was delivered in 3 pm swaths over 5-10 mm 

lengths, such that multiple "stripes" were delivered over the area of the cell dish. Proton dose in the 

irradiated areas was initially approximately 200 Gy, while unirradiated areas received no dose. Later 

experiments were performed at progressively lower dose. Dose was calculated using LR115 f h  to 

determine proton fluence (for more information, refer to Chapter 4, Section 4.4.3.1) and the SRIM 

2003 code was used to calculate the dose per proton.94> 

It was expected that the results of the charged-particle microslit experiments would conform to the 

results obtained from the x-ray gnd irradiations of 37Lu fibroblasts reported by Nelms et al.76 

(explained in d e t d  in Section 5.3.1), in that the charged-particle microslit delivered a s d a r  pattern 

of radiation to cells over a subnuclear width. However, by distributing the physical radiation dose in 

long, uniform strips of subnuclear width, it was intended that any resulting biological secondary 

effects would be more easily modeled as one-dunensional effects, simpliking the quantification of 

the results and eventual application to a radiation-induced secondary biological response model. 

Background dose was determined by placing a calibrated pRem radiation meter (Bicron mcro-Rem 

Radiation Monitor, Saint-Gobain Crystals and Detectors, Paris France) within the experimental 

endstation during a charged-particle microslit irradiation, with the face of the detector dtrectly above 

the cell dish. Ambient measurements (without power to the accelerator) in this position were 

generally -10-15 prem/hr, and typical background dose values in this position with the accelerator 

on and the c o h a t e d  beam bected upon a cell dish ranged from 0.50-0.75 mrem/hr. Given that 

most stripe irradiations take < 5 min/dish, the conservative average background dose to a cell dish is 

approximately 42-63 prem. 

5.3.2.3 Biological Assay Techniques used on LABA Microbeam-irradiated Cells 

ROS 

The specific dye used for the chemical effect staining is 6-carboxy-2',7'- dichlorodihydrofluorescein 

diacetate, di(acetoxymethyl ester), or carboxy-H2DCF-DA. (Invitrogen Co., Carlsbad CA USA) 



Assaying for reactive oxygen species (ROS) production withxarboxy-HzDCF-DA is a simple process 

in which, during the pre-treatment Hoechst 33258 staining step described in Section 5.3.2.1, the cells 

are co-incubated with a solution of carboxy-HzDCF-DA (50 nMJ and Hoechst 33258 (50 nMJ in 

normal growth medlum at 37OC for 30 min, and washed 2x with 1X phosphate-buffered saline (PBS) 

at room temperature (22OC) (3 minlwash). Carboxy-HzDCF-DA dye may also be added alone with 

the same incubation and washing steps. After the cells have been washed, relevant growth medlum is 

then restored. The cells may be visualized irnmedtately with no further manipulation after irradation, 

before fixation. 

Immtlno ytochemistly 

Both the y-H2A.X and Mi-ell assays rely on immunocytochemical techniques using a mouse- or 

rabbit-generated antibody to a protein-specific amino acid sequence. These techniques require that 

the cells be fixed in methanol following irradation, stabhzed with a formaldehyde solution, and 

permeabhzed with a detergent solution. To  protect against non-specific bindmg of the primary and 

secondary antibody, the cells were treated with a bloclung solution and incubated for 1 hour at 37°C. 

After one wash, the cells were then incubated for 1 hour at 37°C with the primary antibody solution 

(either anti-hhlrell antibody (EMD Biosciences, CA USA) or anti-phosphorylated histone H2A.X 

antibody (Upstate USA Inc., Charlottesville VA USA), washed, and then incubated for another 30 

min at 37°C with a secondary antibody with high specificity to the primary antibody and conjugated 

to a fluorophore (usually fluorescein isothiocyanate (FITC) or rhodarnine). The cells may be 

visualized following the final washout of the secondary antibody solution. 

All images of irradiated cells were captured using a SPOT charge-coupled device camera (Diagnostic 

Instmments, Sterling Heights, MI USA) mounted on a Zeiss Axioplan 2 epifluorescent microscope 

(Zeiss Inc., Oberkochen Germany). Images generated were processed using Microsoft Photo Edltor 

and/or analyzed using MATLAB scripts. (See Appendix E for detads on image analysis) 



Figure 5.9 Imaging equipment. A Zeiss Axioplan 2 microscope connected to a 7 Megapixel SPOT
Camera, images acquired by the computer on the left.

In all radiobiological assays, simple negative controls were performed in which dishes with confluent

monolayers of mammalian fibroblast cells were placed in the experimental endstation (out of the

path of the collimated charged-particle beam) and "sham-irradiated," such that they were subjected

to conditions identical to irradiated cells (movement, handling, temperature variation, any

background radiation dose, etc) with the exception of direct exposure to the collimated charged-

particle beam. The negative control dishes were then visualized (in the case of ROS), or stained and

visualized (in the case of y-H2A.X and hMRE11). As discussed in Section 5.3.2.2, the background

dose rate in the experimental endstation with the accelerator on and the collimated beam directed

upon a cell dish results in a conservative average background dose to the cell dish of approximately

42-63 ýtRem. Observable induction of ROS, y-H2A.X and/or hMRE11 was not expected from such

a small dose, and none of the controls displayed any signal above background induction levels

following sham irradiation. Where applicable, positive controls for each assay are described below in

the relevant results section.

More details on the biological assay techniques used thus far in the LABA Microbeam are provided

in Appendix D.

5.3.3 Results

5.3.3.1 Chemical Effect: ROS/carboxy-H 2DCF-DA Studies

A series of irradiations was performed looking specifically at induction of reactive oxygen species

(ROS) activity. The irradiation pattern was a set of 3-4 -5mm long "stripes," 500 [rm apart, across
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monolayers of 100% confluent mouse fibroblast (MF) cells pretreated with the carbox-1 I121)(F'-DA

dye. The radiation dose to the irradiated cells was approximately 200 Gy, estimated from previous

track-etch studies (for more information, refer to Chapter 4, Section 4.4.3.1). The assay was

performed as described in Appendix D, Section D.3. For comparison, negative and positive

controls for the ROS assay are presented in Figures 5.10a, b, c, and d. The positive control images

were taken of cells pretreated with H20 2 (0.05% final concentration) and incubated for 5 min prior

to imaging. Additionally, ROS controls were generated for lindane-treated (lin+) V79 cells.

a.

c. d.

Figure 5.10 Negative and positive ROS controls for both lindane-treated (lin+) and untreated (lin-)
V79 cells, pretreated with carboxy-H 2DCF-DA dye. Positive controls are pretreated with H20 2

(0.05% final concentration) and incubated for 5 min prior to imaging, a) lin- negative control, b) lin+
negative control, c) lin- positive control, d) lin+ positive control. (5x magnification)

The primary observation in the irradiated cells was the presence of the dark lines in the areas that

were directly irradiated using the charged-particle microslit. (Figures 5.11a and b) Measurement of
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the distance between them confirms that they are exactly 500 C.m apart, which would refute the

possibility that they are artifacts from an alternate event, and they were observed on multiple dishes.

~75 jm

-500 Itm

-70 Im

-500 gm

133



Figure 5.11 a) Irradiated MF, carboxy-1HI2DCF-DA stain (5x magnification), b) Irradiated MF,
carboxy-H 2DCF-DA stain (5x magnification) with scaling bars indicating the width of the "dark

stripe" and the distance between "dark stripes."

The mechanism by which an inverse ROS signal would result from charged-particle irradiation is not

known. One hypothesis is that the high dose (-200 Gy) delivered by the charged-particle microslit

resulted in significant membrane damage, leading to increased permeability and ROS dye leakage.

Comparison of the visible light image of the irradiated cells shown in Figure 5.11a revealed that the

cell membranes were visibly altered following the irradiation. This comparison is shown in Figures

5.12a and b.

Figure 5.12 a) Visible light microscopy detail of -200 Gy charged-particle microslit irradiated,
carboxy-H 2DCF-DA-stained MF cells, in which a loss of appreciable membrane structure can be

observed, b) Registered ROS image. The width of this change equal to the width of the dark
"stripe" observed in Figure 5.11a.

The second observation of interest was the presence of "bursts," or focal expression of ROS activity

in small clusters of 10-20 cells. (Figures 5.13a, b, and c) These bursts appeared shortly after

irradiation (--1-3 min) and developed from small clusters to large clusters over the course of their

imaging (-10-20 min). The "burst" clusters appeared both in the immediate proximity of the dark

"stripes" (within 1-2 cell widths) and at distances over 20 cell widths away from the irradiated sites.
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b. C.

Figure 5.13 ROS "bursts" in irradiated cells pre-treated with carboxy-H 2DCF-DA. a) Closeup of
"bursts" flanking either side of slit irradiation (within 1-2 cell widths) taken immediately after

irradiation, (b) Closeup of "burst" ROS cluster distal to irradiation site (> 20 cell widths away), v)
Closeup of "burst" ROS cluster distal to irradiation site. (> 20 cell widths away) taken -3 min after

irradiation. (cropped 10x magnification, all images color adjusted)

Comparison to the positive controls in Figures 5.10c and b reveals a marked difference in the

appearance of the charged-particle microslit-irradiated cells. The ROS induction in the positive

controls is diffuse with several focal points in individual cells, while the ROS induction in the

"bursts" is very bright and manifests in clumps of 12-20 cells. The presence of "burst" expression of

ROS activity, as denoted by the carboxy-IH2DCF-DA dye, suggests that one or more cells in a region

experience an event that triggers a large amount of ROS activity within the insulted cell and the cells
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in very close contact/proximity to it. It is interesting to note that treatment of the cells with lindane

(50 nM suspension in normal growth medium) prior to irradiation appears to eliminate the induction

of ROS "burst" clusters, resulting in only a diffuse expression of ROS as indicated by carbox\-

H2DCF-DA fluorescence comparable to the positive control shown in Figure 5.10d.

5.3.3.2 dsDNA Damage: anti y-H2A.X Studies

A series of irradiations was performed looking specifically at the induction of y-H2A.X. The

irradiation pattern for Figures 5.14-5.20 was a set of 3 -5mm long "stripes," 500 itm apart, across a

monolayer of 100% confluent normal human fibroblast (NF) cells, counterstained with Hoechst

33258 dye. The radiation dose to the first set of irradiated cells was approximately 200 Gy, estimated

from previous track-etch studies (for more information, refer to Chapter 4, Section 4.4.3.1), and

then progressively decreased to 1 Gy. Cells were incubated for 30-40 min following irradiation,

washed two times with 1X phosphate-buffered saline (PBS) and then fixed in methanol on ice. The

assay was performed as described in Appendix D, Section D.4.

Preliminary inspection of the 200 Gy charged-particle microslit-irradiated y-H2A.X stained images

(Figures 5.14a and b) shows a diffuse y-H2A.X signal with a higher intensity along the regions that

received dose "stripes." Again, measurement of the distance between "stripes" confirms that they

are exactly 500 tim apart, which would refute the possibility that they are artifacts from an alternate

event, and they were also observed on multiple dishes.

a. b.

Figure 5.14 a) Irradiated NF, y-H2A.X stain (5x magnification, color adjusted), b) Irradiated NF, y-
H2A.X stain (5x magnification, color adjusted).
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Closer examination of the y-H2A.X images shows that the nuclei within the directly irradiated

regions show not only a greater intensity of staining, but a greater number of more intense foci

(Figures 5.15a and b).

a. b.

Figure 5.15 a) Directly irradiated NF, y-H2A.X stain detail (40x magnification, color adjusted), b)
Unirradiated NF (but in same dish as irradiated NF), y-H2A.X stain detail (40x magnification, color

adjusted).

Once the image was acquired with the microscope (in 8-bit grayscale TIFF format), a quantitative

analysis of the y-H2A.X images was performed using MATLAB (for details, see Appendix E.2), in

which the following manipulations were performed:

1. Images were rotated so the fluorescent strip was aligned vertically

2. Images cropped to remove optical edge effects

3. Images were processed by a MATLAB script, which recorded the pixel intensity across the

image in a direction perpendicular to the stripe and generated an intensity profile

Many such profiles were obtained for the stripe images produced at a particular dose, with or without

lindane treatment (usually 20-40 per dish, or ~-100 per dose point and lindane condition). The

profiles were then averaged and the full-width half-maximum (FWHM) and standard deviation for

the average intensity profile of the series was determined. An average intensity profile of the y-

H2A.X image in the direction of the irradiation "stripe" was also generated. This analysis is shown in

Figures 5.13 and 5.14. (Corresponding to Figures 5.11a and b, respectively).
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Figure 5.16 a) Color-adjusted raw image of irradiated cells, stained for y-H2A.X, b) B&W aligned
image for analysis, c) Vertically averaged intensity profile across the aligned image, with 40th degree

polynomial curve fit. 1 pixel - 1.4 rim.
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Figure 5.17 a) Color-adjusted raw image of irradiated cells, stained for y-H2A.X. b) B&W aligned
image for analysis, c) Vertically averaged intensity profile across the aligned image, with 40th degree

polynomial curve fit. 1 pixel - 1.4 im.
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The width of the y-H2A.X "stripes" were compared to a scaled intensity averaged image of a CR39

track-etch slit irradiation to demonstrate the relative widths of the "physical" and "biological" effects,

as shown in Figures 5.18 and 5.19 (corresponding to Figures 5.16 and 5.17, respectively).

Grayscle Proil of mage: "plolme-1.tl

Distenc (Mn)

Figure 5.18 Plot of averaged y-H2A.X profiles compared to the averaged CR39 profile (corresponds
to Figure 5.16a).

I

Dianc ()un

Figure 5.19 Plot of averaged y-H2A.X profiles compared to the averaged CR39 profile (corresponds
to Figure 5.17a).
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The intensity average comparisons clearly show that the width of the biological effect of the -200

Gy charged-particle microslit irradiation is significantly larger than the width of the actual physical

distribution of radiation dose. As a rough estimate, the "full-width, half max" (FWHM) values of the

right peak in Figure 5.18 and the center peak in Figure 5.19 are approximately 90 ýLm across,

compared to the -3 Vm width of the image on the CR39 track-etch plastic.

An additional series of irradiations was performed looking specifically at variations in magnitude of

induction of y-H2A.X. The irradiation pattern was a set of 3 -5mm long "stripes," 500 [tm apart,

across a monolayer of 100% confluent Chinese Hamster Lung Fibroblast (V79) cells. The radiation

dose to the irradiated cells was performed at approximately 1-2, 10-20, and 60-80 Gy, estimated from

previous track-etch studies (for more information, refer to Chapter 4, Section 4.4.3.1). Also, half of

the irradiated cell dishes were treated with lindane (50 nM suspension in normal growth medium) to

block gap junction intercellular communication (GJIC) in order to establish whether GJIC-based

mechanism(s) were involved in the observed biological effect. An example series of images from one

of these irradiations at 10-20 Gy and the corresponding averaged intensity profile of the anti-y-

H2A.X stain are shown in Figures 5.20a and b. These figures demonstrate the reproducibility of

the unexpectedly wide profile of the y-H2A.X signal with respect to the physical beam profile.

a.
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Figure 5.20 a) Color-adjusted raw image slices of 10-20 Gy proton-irradiated V79 cells, stained for
y-H2A.X. b) Vertically averaged intensity profiles across the aligned image for each image slice. The

individual y-H2A.X peaks were intentionally offset to aid in visualization, and are not registered to
other slices.

In Figure 5.21, averaged intensity profiles for the anti-y-H2A.X stain for 1-2 Gy, 10-20 Gy, and 60-

80 Gy charged-particle microslit V79 irradiations (with and without lindane treatment) are compared

to the scaled image of the physical beam profile as measured using CR39 track-etch film.
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Figure 5.21 Vertically averaged intensity profiles across the charged-particle microslit-irradiated y-
H2A.X peak images, comparing the 1-2 Gy lindane(+/-) V79 irradiations, 10-20 Gy lindane(+/-)

V79 irradiations, 60-80 Gy lindane(+/-)V79 irradiations, and a CR39 track-etch image

Averaged intensity profiles for each of the anti-y-H2A.X stained irradiated V79 cell monolayers were

used to compare the average full-width half-maximum (FWHM) of the y-H2A.X peaks for the

lindane-treated and untreated cells. Table 5.2 shows the y-H2A.X average peak FWHM for the

irradiated V79 cells with respect to delivered dose from this experiment and the experiment

described above (Figures 5.13-5.16), as well as the effect of lindane treatment.

Dose Lindane FWHM St. Dev.

(Gy) Treatment (Apm) (pm)

200 -90 -10

60-80 - 52.7 6.5

60-80 + 49.5 4.9

10-20 - 23.8 0.9

10-20 + 20.5 0.3

1-2 - 14.9 2.1

1-2 + 12.2 1.7

Table 5.2 Comparison of y-H2A.X average peak FWHM with respect to delivered dose and
presence of lindane. All cells were V79 except for the 200 Gy series, which were NF cells.

143

a

-r
u
a
lj
6
a

a

a

o
a
k

(3



While only a limited number of dose points has been investigated to date, there seems to be a

correlation of radiation dose to the FWHM of the y-H2A.X average peak. Additionally, treatment

with a 50 nM concentration of lindane prior to irradiation seems to have a measurable effect on the

width of the y-H2A.X average intensity FWHM of the 10-20 Gy signal (over two standard deviations

separation in both directions); however, there does not seem to be a statistically significant effect

from lindane treatment on the FWHM of the y-H2A.X average peak for the other V79 proton

microslit irradiation dose points.

Figure 5.22 plots the FWHM of the y-H2A.X-stained charged-particle microslit irradiated cell

images vs. the physical dose delivered to the cells.
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Figure 5.22 Plot of the FWHM of the y-H2A.X-stained irradiated cell images vs. radiation dose
delivered by the charged-particle microslit, with and without lindane treatment.

53.3.3 DNA Repair. anti-hMRE11 Studies

A series of irradiations was performed looking specifically at the localization of hMRE11 in response

to charged-particle microslit irradiation. The irradiation pattern was chosen to be a set of 3 -5mm

long "stripes," 500 Itm apart, across a monolayer of 100% confluent normal human fibroblast (NF)

cells, counterstained with DAPI (a DNA-binding dye). The radiation dose to the irradiated cells was

approximately 200 Gy, estimated from previous track-etch studies (for more information, refer to



Chapter 4, Section 4.4.3.1). The assay was performed as described in Appendix D, Section D.5.

A possible charged-particle microslit-irradiated nucleus is shown in Figure 5.23.

Figure 5.23 Charged-particle microslit-irradiated NF (-50 Gy), hMRE11 stain. (40x magnification,
color adjusted)

The stripe across the center of the NF cell shown in Figure 5.23 is believed to represent a

heterogeneous subnuclear DNA repair response involving hMRE11. It certainly is different in

character to the hMRE11 image of a mitotic cell shown in Figure 5.3, and while the distinct "stripe"

across the middle does not conform to other biological processes, it does conform to the physical

width of the charged-particle microslit beam profile.

This is the only assay of the three (ros, h2ax, mrel 1) that were chosen for initial charged-particle

microslit irradiation studies that possibly corresponds to the Nelms et. al study7 6 discussed in Section

5.3.1. However, as relatively little data have been generated at this point evaluating charged-particle

microslit irradiations using the anti-hMRE11 stain, it cannot be said with certainty that the above

image represents a directly irradiated cell; in addition, no significant bystander effects have yet been

noted using anti-hMRE11 immunocytochemical techniques with LABA Microbeam-irradiated cells.

5.3.4 Discussion

Three separate radiobiological assays have been performed using the LABA Microbeam charged-

particle microslit, and no two types of assay have generated completely consistent results. The first

hypothesis is that this is merely a reflection of the complexity of the cellular response to radiation -
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each assay examined a completely separate phase in the radiation response chain, and a wide range of 

signalmg pathways and biological medators has been implicated in each of these phases by other 

research groups. For example, many groups have observed hhKEI1 foci in nuclei after irradation, 

but only one paper has examined very high-contrast 'stripes' across nucleus resulting from 100 Gy 

soft x-ray irradation, generated by a synchrotron source.76 

It is of interest that the hMREI1 and y-H2A.X stripes generated by the LABA Microbeam charged- 

particle microslit irradiations were of such variable contrast. High-dose irradations, on the order of 

200 Gy, resulted in very widespread induction of biological signal, particularly in the y-H2A.X assay, 

while lower dose irradations, on the order of 1-20 Gy, resulted in more defined induction of 

biological signal. A number of factors could be influencing this variation in observed response. For 

example, the hMREl 1 /y-H2A.X localization may be highly dose, time, or LET-dependent; most 

likely, it is a combination of all three. The total irradation dose administered by the LABA 

Microbeam for most of the described experiments was significantly hgher than a standard 

radotherapy treatment fraction (-2 Gy), which may have influenced the resulting biological effects. 

In addtion, the irradated cell monolayer fixation and staining protocols (timing and technique), as 

well as cell type, could have played a role in how the assays hmction. All of these variables are areas 

of continuing experimentation. 

Of the issues that may be chrectly addressed, a purely physical flaw or miscalculation in the radiation 

delivery system could have come into play, where the actual aspect of the beam was significantly 

wider than predcted or previously measured. This is highly unlikely, as the observed dfference 

between the physical beam profde and the induced radobiological response was generally an order of 

magnitude or greater. This degree of beam widening could possibly be accounted for by the 

experimental geometry, but there would have to be a significant increase either in the intervening 

dstance between the colhator  and the target and/or in the amount of material traversed. SRIM 

calculations suggest that even a 0.5 mm air gap between the surface of the charged-particle microslit 

and the cell dsh  (possibly due to setup error on the part of the operator) would only result in an 

addtional straggle of -1.9 pm (radal straggle of 750 keV protons through 500 pm air, 1.4 pm Mylar, 

and 11 pm water), and adhtional intervening material that does not prevent the beam from 

interacting with the cells adds radal straggle on the order of 0.6 pm (radial straggle of 750keV 

protons through 1.4 pm Mylar, -6 pm water, remainder through cell material). Re-verification of the 

charged-particle microslit beam profde was performed using either CR39 or LR115 track-etch film 

under the same conditions as the cell irradiations (usually at the end of the cell irradation 



experiment), and the beam profde was repeatedly demonstrated to be on the order of 3-5 pm in 

width. 

The next possible issue was the possible effects of x-rays induced from the interaction of the 750 

keV c o h a t e d  proton beam with the material of the charged-particle microslit c o h a t o r  substrate 

(stainless steel). This also seemed unlikely, as the dameter of the beam hitting the charged-particle 

microslit substrate was several mm, not tens of microns, so one would expect a much wider swath of. 

induced y-H2A.X expression on the irradated cell monolayers than was observed in the experiments 

presented above. If induced x-rays are responsible for the wide "stripe" observed, examination of 

the proton-induced x-ray emission (PIXE) cross-sections for 750 keV protons on stainless steel 

suggested that a small yield of -8 keV photons could be expected; the spectrum of the proton- 

induced radiation in the c o h a t o r  material was examined accordmgly. A very low dose rate was 

observed by placing a calibrated pRem radation meter (Bicron Micro Rem, Saint-Gobain Crystals 

and Detectors, Paris France) within the experimental endstation during a charged-particle microslit 

irradation, with the face of the detector directly above the cell dish. (See Section 5.3.2.2) The 

measured non-proton dose at this position during the irradations was -0.50-0.75 mrem/hour, and 

given that most cell dsh  irradations are finished in less than 5 min, the total non-proton dose to the 

cell dish would be approximately 42-63 pRem. It was expected that this background dose rate was 

below the threshold for y-H2A.X induction, and this factor was tested both by irradating a piece of 

chical radiographic film (Kodak T-MAT G/RA f h )  using a completely occluded slit (see Chapter 

4, Section 4.4.3.1) and using the same occluded slit to irradate a series of cell monolayers prepared 

as described in Section 5.3.2.1. It was expected that a completely occluded slit would not allow the 

transmission of any protons, but leave proton-induced x-ray emission unaffected. Although a small 

x-ray background from proton interactions with the stainless steel of the slit did indeed persist, in 

neither the f h  nor the sham-irradiated cells was a significant increase in signal observed (Section 

5.3.2.3). 

It was also suggested that background x-ray radiation from brehmsstrahlung during the acceleration 

process and/or excitation/de-excitation x-rays arising from the ion source could result in a 

sipficant x-ray dose contamination for the irradated cells. This of course could not explain the 

observed "stripe" images; and ROS, y-H2A.X and hMRE11 staining of control dishes that were kept 

in the experimental endstation during charged-particle microslit irradations but never directly 

exposed to the proton beam did not result in appreciable signal over background. 



One assumption that was made with the initial LABA Microbeam charged-particle microslit 

radrobiological studres was that it would be best to start with three independent assays, each 

examining a completely separate phase in the radiation response chain. Because a wide range of 

signahng pathways and biological medrators have been implicated in each of these phases by other 

research groups, and because there may be no duect relation of one assay to the effect examined in 

one of the downstream assays, this may have actually complicated the examination of the cellular 

response to radiation. A refinement for future radrobiological assays would be to specifically 

compare two assays that take place in the same general phase of the cellular radiation response chain 

- for example, the localization of two independent dsDNA or ssDNA strand break repair proteins in 

response to a charged-particle microslit irradiation. Of course, the assays already developed should 

not be abandoned, as a wide range of variables sttll need to be explored. 

It is possible that the results for the ROS and y-H2A.X studies are not incompatible with the results 

from the Nelrns et a1 x-ray gnd irrahation study (Section 5.3.1).76 ROS induction does not 

necessanly lead to dsDNA breaks, nor when dsDNA breaks result are they necessarily repaired by 

Non-Homologous End Joining (NHEJ) dsDNA repair (the form of repair in which hMREll is 

involved). The y-H2A.X phosphorylation may also be due to double-strand break damage that is not 

repaired by NHEJ dsDNA repair; alternatively, it could be the result of an aberrant y-H2A.X 

induction in the absence of an actual dsDNA break. 

It is evident that the "radiobiological effective beam width," as measured by the spatial drstribution 

of observed biological effects subsequent to irradiation, is significantly larger than the "physical beam 

width," as measured by the track-etch charged-particle microslit irradiation images. In several cases, 

most notably the ROS and y-H2A.X assays, the biological effects of the radiation extended for many 

cell widths (> 40 pm), and demonstrated a dependence on the initial rahation dose delivered to the 

duectly irradiated cells. Pre-treatment of a subset of the irradrated cells with the gap-junction 

intercellular communication (GJIC) blocker lindane additionally demonstrated that the mode of 

transmission of the ROS and y-H2A.X-related biological effects is at least in part due to GJIC- 

mediated cellular interactions. Observations that a charged-particle beam with a "physical beam 

width" on the order of -3 pm had sipficant induction of biologcal effects over a magnitude greater 

spatial range could signify a bystander effect that may play a role in radotherapeutic dose control and 

treatment outcome. 

5.4 Chapter Summary 



In this Chapter, the design and construction of the biological target holder was described, and the 

methodology for performing a range of radobiologcal studes was dscussed. In Chapter 6,  general 

conclusions about the LABA Microbeam wdl be presented, and the future work needed to improve 

upon the system so that it may meet its full potential as a standard research tool w~l l  be dscussed. 



Chapter 6. Conclusions and Future Work 

The primary goal of this work, to develop an economical and compact charged-particle microbeam 

capable of delivering a dose distribution of subnuclear width, has been accomplished. The entire 

MIT LABA charged-particle microbeam, measuring less than 4 m and costing in its entirety < $2 

d o n  (in 2002 US dollars), may be placed in an existing room as the radiation background it creates 

is low enough that the operators may sit in the room while it is energized, thus saving on additional 

cost and space needs for radiation shieldmg. It utilizes a dedicated ion source, and may be put into 

operation from standby mode in as little as 10 minutes. As a simple, compact system capable of 

being operated with minimal trained personnel, the LABA Microbeam is a prototype for a general- 

purpose microbeam. 

The charged particle microslit has been fully characterized and used to deliver a radiation pattern to a 

series of cell monolayers that have subsequently been assayed for duect and induect chemical effects 

of irradiation, double-stranded DNA damage, and DNA repair protein localization. Data from these 

studies d contribute towards the characterization of the radiation-induced bystander effect. 

Analysis of the assays performed on microbeam-irradiated cells demonstrates that even though the 

physical radiation dose delivered by the LABA Microbeam is confined to a subnuclear width (< 5 

pm), in several cases (the ROS and y-H2A.X assays in particular) the biological effects of the 

radiation extend for many cell widths (> 40 pm), and show dependence on the initial radiation dose 

delivered to the hectly irradiated cells. Additionally, pre-treatment of irradiated cells with the gap- 

junction intercellular communication (GJIC) blocker Linhne has demonstrated the mode of 

transmission of two of these biologically-mediated secondary effects of radiation is at least in part 

due to GJIC-mediated cellular interactions. 

While the LABA charged-particle microbeam is already a powerful research too, additional work wdl 

significantly expand its capabhties. As possibly the smallest microbeam in the world, the LABA 

Microbeam holds the greatest potential to serve as an economical research tool in smaller 

laboratories and hospital settings. 

6.1 LABA Microbeam Design Improvements 

6.1.1 Hardware Optimization 



A root hutation of the LABA Microbeam is the terminal power supply/&ver for the electrostatic 

accelerator itself. Although it was designed to accelerate singly-charged particles up to 1.5 MeV and 

doubly-charged particles up to 3.0 MeV, the driver becomes unstable and fads at energies over -900 

keV. The imposition of a large safety margn led to the choice of 750 keV as the standard beam 

energy for the accelerator, which h u t s  the thickness of the scintdlating plastic used in the single- 

particle detection system (and, as a result, the total light output of the plastic and the coincidence 

detection efficiency of the detection system), the range of materials that may be used in the cell dlsh, 

and the geometry of cells that can be irradiated. 

While the charged-particle microbeam is capable of delivering radiation doses of hundreds of Gy 

with ease, for many chically-relevant studies it is more important to be able to deliver dose on the 

order of 0.1-1 Gy; radlation protection studles would require an even lower dose range. Addition of 

a filter/dehter/aperture near the exit of the accelerator, with or without defocusing the beam using 

the quadrupole triplet, may be usehl in reducing the dose rate for lower dose applications of the 

charged-particle microslit. 

Components in the LABA Microbeam experimental endstation that stand most in need of 

improvement include the pinhole aperture collimation system and the single-particle detection and 

counting system. The pinhole/capillary aperture was never wholly satisfactory, and issues with the 

penumbra generated by the charged-particle beam passing through the c o h a t o r  need to be 

resolved. The single-particle counting system's highest attained counting efficiency was 98.5O/o, 

although 98.0% was a more typical value once the parameters were optimized. It is possible that 

using a higher energy beam and a thicker piece (or multiple stacked pieces) of scintdlating plastic 

would improve the light output and possibly enhance this efficiency to the desired value of -99%. 

In the long term, while both the charged-particle microslit and the pinhole aperture collimation 

techniques are usehl applications of the microbeam technique, the pinhole aperture is the more 

versatde of the two. W e  it is possible to replicate the radlation dose dlstribution of the microslit 

with the pinhole collimator by slowly sweeping the micron-scale spot along a cell monolayer, the 

microslit method will never be able to admmster a point dose or target individual cells. 

6.1.2 Automation 

The application of the charged-particle microslit required only a limited range of automated features, 

all of which have already been integrated into the control software. For future large-scale or complex 



irradiations, more automated features d have to be developed. Of primary concern is the nuclear 

targeting system, which needs to be able to recognize and accurately distinguish the centroid of every 

cell nucleus in the visual field, and be able to automatically position those centroids in the path of the 

beam for sequential irradiations. The operator should be able to specify a number of cells to be 

targeted (either all, a random percentage of the whole, or a specified subset) and an automated 

function would determine which subset of tracked cells d be targeted and hit with specified 

number of protons. 

To make the LABA Microbeam a truly "turn-key" system, the startup process should be made a one- 

button affair. The current startup procedure, while relatively simple, requires the operator to follow a 

short series of procedures, punctuated with diagnostic checks to ensure the safety of the accelerator 

hardware. Consistent operation under well-maintained conditions would allow this process to be 

streamluled and automated. 

Several refinements could be made to the current cell dish configuration to improve its use in 

radiobiological studies - as stated above, the hi tat ions on terminal voltage, and as such on the 

energy of the charged-particle beam, seriously restricts the thickness and choice of cell d s h  material. 

Several facets of the endstation and dish may contribute to deleterious effects on the cells. Two 

issues that may be resolved in the short term are the lack of temperature regulation and the optical 

geometry of the stainless steel dish. The addition of a low-power heating element to the endstation 

or to the dish itself (the entire dish could serve as a heating element, with proper regulation) could 

remove ths  confoundmg factor. Making the dish shallower would allow for easier visualization by 

microscopy (currently, the objectives come up against the walls of the dishes, which restricts the area 

of the dish that may be viewed). Larger surface area is another possibhty, but the range of the x-y 

stage motion h u t s  the total "range" that may be viewed. 

In the long term, advanced cell culture and microenvironment control techniques could be integrated 

to provide a much more powerful research tool. For example, a microfluidic injection control system 

could be integrated with a more complex dish, creating a system that combines precise targeting of 

specific cells with an "in-vivtr0"-style regulated microenvironment. Coupled with cell-patterning 

techniques to generate a tissue-like cellular architecture within the dish, this could allow for the 

culturing of a patient's tumor cells in an artificial tissue environment that closely mimics their own, 

permitting the radiation oncologist/radiation oncology physicists to accurately simulate a 



radotherapeutic treatment with or without complementary onco-pharmacological compounds. 

Experimental data from microbeam-based irradation and analysis of tissue response to radation and 

onco-pharmacological compounds could contribute to highly indvidualized (optimized) therapy 

designs for patients. This is an area in which the LABA Microbeam design is crucial, for only a 

small, relatively inexpensive microbeam available within a hospital environment could make this 

generahzed application possible. 

6.2 Radiobiological Modeling 

One of the more ambitious long-term goals of the radobiological assays performed using the LABA 

Microbeam is to gather data of a sufficiently rigorous and quantitative nature that accurate and 

precise cellular radobiological response models may be developed. Using full dose-range studes, the 

biological effect of the soluble and du-ectly transmitted (via GJIC, for example) biologcal medators 

of the radiation-induced bystander effect can be elucidated, providng insight into the complex set of 

interactions that occurs within a cell and between cells after exposure to radation. 

Most radodosimetric models focus solely on the du-ect rachation interaction, when the actual 

response of a tissue (a set of cells worlung towards a specific function, proximate to each other) 

seems to be due both to du-ect rachation insult and a set of biologically-medated subreactions. For a 

cell hlt by radation, both of these interactions are evident. For a non-hit cell, only the biologically- 

medated effects d be noted. Thus, a model that integrates these responses over a group of cells 

may serve as a significantly more accurate predictor of radation response at the organismal level. 

This begs the question: How does one separate out the radological and biological effects of 

radation? Microbeam techniques provide the answer. Consider the following example: in order to 

quantib effects of irradation on every single cell in a system (where cells are contiguous, as in a 

tissue model), one first needs a case in which is only possible when every single cell in tissue system is 

hit by a precise number of particles, referred to as a "universal microbeam irradation." Subsequent 

observation of a biological endpoint or range of endpoints then provides the sum damage &,,) for a 

tissue system for that endpoint(s). 

Medium transfer experiments would then be performed, in which the medium from a series of 

"universial microbeam irradiation" irradiated cells is transferred to otherwise unmochfied cell 

cultures, providing the contribution of soluble biologically-mediated factors towards the induction of 

the chosen biological endpoints (Xbblr>pjcal = BS+BJ. Sirnilar experiments using gap junction 



intercellular communication (GJIC) blockers such as lindane can then be used to determine the 

relative contributions of GJIC-medated (BJ and dffusion-medated (B,) effects on damage 

expression (B, vs Bs+BJ. 

Universal microbeam irradation experiments with GJIC-blockers would show the contribution of 

soluble factors and radation to the induction of the chosen biological endpoint(s) (Xradiation and soluble 

factors = Xradiation + Bs). 

The end result is a set of relations that can be used to simulate the complete response (Xtot) of a cell 

to specific initiating radation dose via Equation 6.1: 

Xtot = Xradiation + Xbiological = Xradiation + Bs + Bg Equation 6.1 

Where B, = induced response from soluble factors 

B, = induced response from GJIC-medated factors = Xt(,t - Xradlati<)n and factoo 

Xbiologicd = total biological-medated induced response = B, + B, 

Xradiation = induced response from dwect irradation = XtOt - Xbi,>lqrjcd 

BR = Xtot - Xradiation and soluble factors 

Xradiation and soluble factors = Xradiation + Bs 

The equation for the total biological endpoint induction for a single cell as a function of initially 

admmistered radation dose would then be: 

Xtot(D) = Xraciiation (D) + Bs(D) + Bg(D) 

For a cell, the summation with respect to endpoints is: 

endpoint s endpoint s 

And for a system, the summation with respect to cells is: 

Equation 6.2 

Equation 6.3 

C C x t o t ( ~ ) = C  C X , ~ , ~ ~ ( D ) + B ~ ( D ) + B ~ ( D )  Equation 6.4 
cells endpoint s cells endpo int s 



The result may be used to model the net effect of a radcltion exposure on a tissue system. While this 

is a daunting task that would require a vast number of experiments and would no doubt vary 

significantly by cell type and tissue microenvironment, the comprehensive understandng of the hll 

range of radtobiological response to radation it would impart would be highly beneficial both to 

basic science and clinical application. 



Appendix A: Accelerator Control Systems and Interlocking 

A.l Control Systems 

The LABA Microbeam Accelerator is controlled primarily by a graphical interface, which is written in 

a proprietary language developed by Pyramid Technical Consultants Paltham, MA USA). This 

interface simplifies operation of the accelerator and the various subsystems, as well as providing a 

platform for the automation of specific tasks. At this level (leadmg up to but not including the 

experimental endstation), automation is responsible for a h t e d  number of tasks, includmg: 1) 

emergency shutdown of all critical accelerator systems, 2) "soft" startup of the accelerator vacuum 

systems after a shutdown or power fdure, 3) "priming" of the plasma to generate an accelerated 

beam, and 4) the tuning of the bending magnet current to the energy of the charged particles so that 

it produces the exact magnetic field required to &eft the horizontal particle beam vertically through 

the beam colLunator. These automated tasks wdl be described more fully in the sections specific to 

the applicable control system. 

The three screens used in the basic operation of the LABA Microbeam Accelerator are the Vacuum 

Screen (Figure A.2), the Accelerator Control Screen (Figure A.3), and the Fachties Screen (Figure 

A.4). All screens have a common border that allows the operator to run experiments, monitor the 

intepty of the vacuum system, rapidly turn off critical systems, and switch between the various 

system interfaces. Figure A.l shows this common border with the variable interface removed. 



Figure A.1 The "Common Border," present on all graphical interface screens.

Description of "Common Border" executables and displays: (clockwise from the PTC symbol in the

upper left corner)

Scan: These allow the operator to start, pause, and stop an experimental scan, as specified on the

"Acquire" screen (to be explained in detail in Chapter 4). The displays indicate the number of scans

performed and the total duration of an individual scan.

Pressures: Vacuum pressures in the foreline, tank, and roughing line indicate the integrity of the

system.

Emergency Off: One of the automated subsystems that allows the operator to quickly and

selectively turn off critical components and isolate vulnerable accelerator subsystems.

Screen Selection: Permits the operator to rapidly switch between control screens (Accelerator

Control, Vacuum, Facilities, Acquire, Data, and Image).

Beamline Patency: Indicates whether an open path exists for delivery of accelerated particles to the

experimental endstation.

Exit: Terminates the LABA Microbeam control program.

A.1.1 Vacuum Control
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Crucial to the operation of the LABA Microbeam is the vacuum system that insulates the accelerating

elements and prevents electrical discharge, or "arcing," as well as preventing scattering of the

accelerated ions along the beamline. The Vacuum Screen is shown in Figure A.2 below.

Figure A.2 The "Vacuum Screen" graphical interface, which allows the operator to control the
LABA Microbeam vacuum subsystems and open/close the beamline.

Description of Vacuum Screen executables:

TP1: "Turbo #1" is a Varian V250 Turbopump, with an operating speed of 56 krpm. It provides

high vacuum (on the order of 10- 7 torr for a closed beamline, 10-s torr with the microslit collimator in

place on an open beamline, and 10 6 torr with the pinhole collimator in place on an open beamline)

for the microbeam foreline. It is physically mounted after the deflectors and quadrupole magnets,

between the V7 and V1 gate valves prior to the bending magnet.

TP2: "Turbo #2" is a Varian V550, with an operating speed of 42 krpm. It provides high vacuum

(on the order of 10-7 torr for a closed beamline and 10-6 torr while generating beam) for the

microbeam accelerator tank. It is located immediately at the exit of the accelerator tank.
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Vl: V1 is a gate valve, isolating the endstation low-vacuum line from the general roughing h e .  

V2: V2 is a gate valve, isolating the low-vacuum side of TP1 from the general roughing line. 

V3: V3 is a gate valve, isolating the low-vacuum side of 'IT2 from the general roughing line. 

V4, V5: V4 and V5 are test valves that are not used as part of normal operation. 

V6: V6 is a gate valve, isolating the hgh-vacuum side of the b e a d n e  from the high-vacuum side of 

the endstation line. It is located immediately prior to the benhng magnet and is the last gate valve 

on the high-vacuum side prior to the experimental endstation and collunation of the beam. 

V7: V7 is a gate valve that isolates the high-vacuum side of the forehe from the accelerator tank. It 

is located immediately between the deflector and the quadrupoles magnets. 

V8: V8 does not truly exist. 

A.1.2 Accelerator Control 

All the elements needed to generate a charged-particle beam are accessible via the LABA Microbeam 

"Accelerator Control" screen (shown in Figure A.3), which also provides a number of automated 

functions to simplify the startup process for the operator. 



Figure A.3 "Accelerator Control" Screen, which allows the user to regulate the accelerator
components: terminal voltage, filament, oscillator plate, focusing element, extraction probe, gas

valve, and priming solenoid.

Description of Accelerator Control Screen executables: (clockwise from "Accel Enable")

Accel Enable: This toggles the terminal voltage on/off, as well as allowing the operator to set the

terminal voltage to the desired amount (usually 0.750 MeV).

DC Buss OKI This indicates whether sufficient voltage is provided by step-down from the terminal

voltage to run the systems inside the accelerator. The readback provides the voltage generated by

stepdown - safe values range from 12-30V.

Filament Enable: This simply toggles the filament on and off.

Plate Enable: This toggles the plate voltage on/off, as well as allowing the operator to set the plate

voltage to the desired amount (usually 600V).

Focus Enable: This toggles the focus voltage on/off, as well as allowing the operator to set the

focus voltage to the desired amount (usually 6 kV).
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Extraction Enable: This toggles the extraction voltage on/off, as well as allowing the operator to 

set the extraction voltage to the desired amount (usually 5 kV for "priming," 0.5 kV during operation 

while generating beam). 

Gas Enable: This toggles the gas voltage on/off, as well as allowing the operator to set the gas 

voltage "speed" to the desired amount (usually 5 V) and open and close the source gas needle valve 

to provide source gas to ionize and accelerate. 

Solenoid Enable: This toggles the solenoid onloff. 

"Get Beam": One of the automated functions, triggers the solenoid for a specified number of 

seconds, after which it turns off the solenoid and switches the Extraction voltage to the specified 

value. Used to "prime" the plasma and initiate the generation of a charged-particle beam. 

A.1.3 Facilities Control 

Once a charged-particle beam is generated, the LABA Microbeam "Fachties" screen (shown in 

Figure A.4) allows the operator to manipulate the beam in a number of ways between the exit of the 

accelerator tank, through the bendng magnet, and into the experimental endstation. 



Figure A.4 The "Facilities Screen" graphical interface, which allows the operator to control the
LABA Microbeam beamline subsystems and deflect the beam.

Description of Facilities Screen executables: (left to right)

Steerer (X and Y): Not used.

Scanner (X and Y): These allow the deflection of the beam in two dimensions perpendicular to the

beamline. The presets specifically allow the operator to define "resting" and "active" deflection

during the course of an irradiation - these presets are engaged while the experimental stage (to be

described in detail in Chapter 4) is in motion, and disengaged when the stage is at rest.

Quadrupoles: These control the current applied to the magnets in the quadrupole triplet, and allow

the operator to alter the beam profile to varying degrees.

Magnet: This sets the current applied to the bending magnet that turns the horizontal beam into a

vertical beam, directed into the experimental endstation. The "autoset" button automatically sets the

bending magnet current to the value required for the kinetic energy of the accelerated particles

(which, in turn, is a function of the terminal voltage set on the "Accelerator Control" screen). The

popup screen is shown in Figure A.5.
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Figure A.5 Interpreter window displaying the calculated magnetic field strength and magnet current
required to produce a 90" bend in the charged-particle beam.

A.1.3.1 Bending Magnet Control

A precise and automated means of tuning the bending magnet current for specific proton energies

was deemed necessary. In order to achieve this level of automation, the relationship between proton

energy and magnetic field determined in Chapter 3 and explained in detail in Appendix C, Section

C.2 was used.

The interpreter (proprietary software developed by Pyramid Technical Consultants, Waltham LMA

USA) running on the CPU controls the bending magnet current that generates the magnetic field.

The user enters a value for the magnet current at the CPU, and this input value is internally

converted to a voltage ranging from 0 to 5 volts by a Digital-to-Analog converter (DAC). This

output voltage is then scaled down by a voltage divider, which consists of a 15 Ohm resistor in series

with an 820 Ohm resistor. This scaled-down voltage is then placed across the programming inputs

(0-100 mV) of an Electronic Measurements Inc. EMS Power Supply Model EMS 150-33 (0-150

VDC, 0-33 ADC), which is attached in series to the terminals of the bending magnet.

Editing the appropriate line in the file that controls the variable associated with the bending magnet

('Loopl.tab) can alter the scaling applied by the interpreter to the user-input magnet current. Figure

1 displays the information originally defined in the 'Loopl.tab' file for the magnet current (i.e.,

c_Mag_I), which is used in the conversion that determines the output voltage of the DAC.

I/O c_Mag_ I ANALOG C6 U LINEAR 025 025 //0 to 5V

Figure A.6 Scaling information, in the 'Loopl.tab' file, used to translate the CPU input for magnet
current into a DAC output voltage.



Of particular sigmficance in Figure 1 is the number sequence '0 25 0 25'. Each pair of numbers 

corresponds to a range of magnet current values. The frrst range of 0 - 25 A is translated by the 

interpreter so that it corresponds to a voltage range of 0 - 5 V, such that the output voltage from the 

DAC is related to the user-input magnet current by Equation A.l: 

CPU - magnet -current 
DAC(V) = 

25 
). 5v Equation A.l 

The second range of 0 - 25 A in Figure A.6 Above refers to the range of values that the user may 

input for the magnet current. Values below 0 A or above 25 A d not be accepted as valid user 

input. It should also be noted here that the scaling factors in 'Loopl.tab' fde for 'c-MagI' were 

origmally '0 25 0 25'. These values were then changed to '0 29.9 0 25' , to account for the 

correction factor included in Equation 3.10 in Chapter 3. 

The voltage output from the DAC is fed into the aforementioned voltage dvider (VD), a 15 Ohm 

and a 820 Ohm resistor in series, which dvides the DAC output voltage by a factor of approx. 56 

(i.e., (1 5 + 820) / 15). This dvided voltage is then applied across the programming terminals of the 

magnet power supply. For the bendng magnet power supply, the programming range is 0 - 100 mV 

for the current range of 0 - 33 A. Thus, Equation A.2 relates the power supply input voltage to the 

power supply current output. 

input - voltage 
PS - output - current(A) = ).33A Equation A.2 

This output current is then applied to the bendng magnet to produce the required magnetic field. 

The current output from the magnet power supply can be related back to the user-input CPU magnet 

current by combining both Equations A.l and A.2 to produce Equation A.3. 

I CPU - magnet -current .5v* 1 OOOm V 

PS-output -current(A) = 25 A 15 + 820 
33A Equation A.3 

1OOmV. 
15 

The calculation of CPU magnet current shown by Equation A.3 was coded into the interpreter to 

complete the aforementioned automation. When the 'Autoset' button is pressed, the user is 



presented with a pop-up window similar to the one shown in Figure A.6 above. If the user so

wishes, the interpreter will then step the CPU magnet current up until the calculated magnet current

is reached. If the user chooses no, then no action is taken.

A.1.4 Stage Control, via the "Acquire" Screen

Figure A.7 "Acquire" control screen.

Description of Acquire Screen executables: (clockwise from "Stage Must Be Homed")

Status Screen (upper left): Shows a cursor during the course of a scan that indicates the relative
position of the stage. When the stage is not in its "home" position following the completion of a
scan, the program reminds the operator to return it prior to the initiation of a new scan.

Acquisition Type (upper right): The Acquisition Type controls in the upper right hand corner

allow the operator to limit the type of scan to specific types: Manual, which has the greatest degree of
open parameters;

Point, which will only move the stage to a specific location defined by the operator;

Line, which will sweep the stage from one operator-specified point to another; and

Area, which will pan the stage repeatedly over an area, used for large automated tasks.
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Scan Data (middle right): Provides scan-specific data based on operator-defined parameters.

Scan Parameters (lower right): The Scan Parameters in the lower right allow the operator to

enter a number of parameters that define the behavior of a scan, specifically:

Resolution, the distance between each step movement of the stage;

Dwell Time, how long the stage will stay at rest between steps;

Deflection, which automatically turns on deflection while the stage is in motion; and

Position 1,2, which sets the initial and final X/Y coordinates for the stage movement.

Stage Movement (lower left): Provides the operator with automated homing, manual X/Y stage

motion control, manual Z control for the motorized focusing element tied to the microscope

objective, speed control for the stage motion, and a general setup feature.

A.1.5 Imaging Control, via the "Image" Screen

Figure A.8 "Image" control screen.

Description of Image Screen executables: (left to right from "Live Image")

Visualization Screen (upper left): The visualization window shows the image that is currently

being captured by the CCD camera - if the camera is not acquiring data, a static image of the last
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image captured remains on the screen. The "Live Image" indicator light is on while the camera is 

actively capturing images. 

Stage Movement: Directly below the visuahzation window are a set of Stage Movement controls, 

that provide the operator with readbacks of the current stage position, automated homing, manual 

X/Y stage motion control, manual Z control for the motorized focusing element tied to the 

microscope objective, a general setup feature. 

Map: below the visualtzation window and to the right of the Stage Movement controls, depicts the 

location of the beam with respect to a virtual image of the entire dish. 

View Controls: To the right of the visualtzation window are the View Controls, which set the 

imagmg system on live or snapshot image capture modes. 

Cell Info: Below View Controls are the Cell Info controls, which allow the operator to designate a 

number of cells to locate and register. 

Image Controls: To the right of View Controls are a series of image manipulation tools, permitting 

the user to modfy the edge-findmg and threshold functions 

Image Autofocus: Allows the user to engage the autofocus function. 

Current ROI: Allows the operator to set the size of the region of interest imaged. 

A.2 Safety Interlocks 

Underneath the graphical interface is a network of safety interlocks, implemented to ensure the safety 

of components w i t h  the hgh-voltage terminal. Incorporation of automated interlocks is necessary 

to provide a sufficient level of protection for the accelerator since user response tirnes are not rapid 

enough to prevent catastrophic "arcing77 (short circuit across a gap due to insulation breakdown) due 

to increased pressures in the accelerator tank. For example, if pressures within the portion of the 

bearnline housed inside the accelerator exceed safe values (the tank pressure), safety interlocks 

programmed into the control software immediately respond by setting the terminal voltage to 0, thus 

avoidng an arc that could seriously damage or destroy the dlgital electronics housed within the high- 

voltage terminal. All electronics outside of the terminal are optically isolated from the rest of the 

system, addng an addtional level of passive protection. S d a r l y ,  critical gate valves in the beam line 

cannot be opened unless required settings for the vacuum pumps meet specific condtions. 

A.2.1 Electronic Interlocks (Integrated into the Control System) 

A number of software interlocks have been developed to protect the accelerator against an 

uninformed user or to prevent a transient operating change from damagng the accelerator. 



1) "Accel Enable," which allows the user to adjust the terminal voltage, cannot be activated or 

increased above zero value if the pressure value in the Tank exceeds the user specified 

pressure fault value. If the measured Tank pressure exceeds that value during operation, the 

terminal value is irnmedately set to "zero" and deactivated. 

2) Any decrease in terminal voltage can be made, but increases in terminal voltage may only be 

performed incrementally, so as not to overload the power supply. 

3) The usual value for Tank threshold pressure is 5x10-5 torr - more stringent values may be 

set, but as it is not safe to run at values above 5x10-5 torr a warning message d be shown 

(error message: "Error! Number is too large. Tank thresh. press. must be <= 5E-5 T."). 

Any change d also result in an alert of 'Warning. Tank threshold pressure has been 

changed." 

4) The AutoOpen function on the "Gas Enable" controls is interlocked to cut out if gas 

pressure in the Tank exceeds 1x10-6 torr. When it cuts out, the warning message "Tank 

pressure has exceeded 1E-6 Torr. Suspendng AutoOpen.. ." is &splayed. 

The Vacuum system for the LABA microbeam is the most extensively interlocked, as in many cases a 

single valve manipulation could create a very unsafe operating state. 

1) V l  valve: V1 may always be changed to "closed," however, in order to open it Differential 

Pumping must be enabled and V2 and V3 must be closed. 

2) V2 valve: V2 may always be changed to "closed," however, in order to be opened the pressure 

in the roughing line must be less than 1.2 torr. 

3) V3 valve: V3 may always be changed to "closed," however, in order to be opened the pressure 

in the roughing line must be less than 0.5 torr. 



4) V6 valve: V6 may always be changed to "closed," however, in order to be opened, turbopump 1 

must be on, V7 must be closed (to prevent sudden pressure load going back to Tank), V2 must 

be open (or else resulting backpressure may damage turbopump). Apparently turning 

Differential Pumping on will open it on the .prg fde, but I haven't seen that (perhaps it is just a 

requirement) 

5 )  V7 valve: V7 may always be changed to "closed," however, in order to be opened the pressure 

in the foreline must be less than 2.0~10-3 torr. 

The only software interlocks implemented at this level pertain to the controls for the bendmg magnet 

power supply. As sudden increases in current may damage the bendmg magnet coils (due to the 

threat of significant inductive heating) any increase in current made in small incremental steps. 

A.2.2 Physical Interlocks 

In addition to the range of interlocks integrated duectly into the control system, a number of physical 

interlocks have been added to protect the accelerator and bendmg magnet hardware. 

The accelerator terminal power supply, located outside of the accelerator vessel, consists of a high 

voltage driver and a generating voltage meter (GVM). The GVM checks the high voltage driver 

voltage a p n s t  the voltage specified by the operator, which would otherwise steady increase. As 

precise voltage control is necessary for the intended experimental applications of the rnicrobeam, and 

excessively high voltages (>900 kV for the LABA Microbeam Accelerator) could damage the 

accelerator terminal electronics and the high voltage driver, the driver power supply is interlocked to 

a fuse box that will not allow it to be turned on without the GVM activated to modulate it. The fuse 

box is located underneath the accelerator tank, as shown in Figure A.9. 



Figure A.9 Fuse box that prevents terminal power supply from being activated without the GVM
voltage regulator engaged.

The bending magnet power supply is passively interlocked in by its voltage regulation and by a fuse

system. Voltage regulation is performed by a circuit that prevents the control voltage from the

OptoElectronics (capable of ranging from 0-5V) to exceed a voltage of 50 mV to the control inputs

of the bending magnet power supply. This prevents the power supply from applying excessive

current to the magnetic coils of the bending magnet. Additionally, because excessive current can

cause heating in the magnetic coils sufficient to overwhelm the cooling system, the circuit is tied to a
30A fuse.
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Appendix B. LABA Electronics 

A range of NIM-compatible electronics were avadable for use in LABA Microbeam applications. 

Component Type Model 
Detectors 

Preamplifer 

Table B.l Electronics used in the LABA Microbeam. 

2 Hamamatsu R7400U series photomultiplier (PMT) tubes 
using a Bicron BC-400 scindlating plastic 
1 Shcon Surface Barrier (SSB) Detector 

2 Hamamatsu C5781 Socket Assemblies, attached to a +/- 15 V 

High Voltage Power Supply 

Amplifier 

TCSA 

TAC 
Coincidence Analyzer 

Counter 
Computer Interface 

Detectors (Scindlatine Material): For use with the PMT-based detectors, the scindlating material is 

an organic plastic with a well-characterized energy to light conversion. In the case of Bicron BC-400, 

the rise time is -0.9 nS and the decay time is - 2.4 nS. 

power supply 
1 Ortec 142IH Preamplifier 

2 Canberra 3105 HV power supplies (1-5000 V) 
1 big Harshaw NV-25A HV power supply (0-2000 V) 
1 small Canberra 3102 HV power supply (1 -1 000 V) 

1 Ortec 471 Spectroscopy Amplifier 
1 Aptec 6300 Spectroscopy Amplifier 

1 Ortec 575 Amplifier 
1 Canberra 81 6 Amplifier 

2 Canberra 2037A Edge/Crossover Timing Single Channel 
Analyzers 

1 Ortec 553 TSCA 
1 Ortec 566 Time-to-Amplitude Converter 

1 Canberra 2040 Coincidence Analyzer 
1 Ortec 770 Counter 
1 Canberra 871 5ADC 

Pream~lifier: The output of the photomultiplier tube (PMT) is a charge pulse proportional to the 

number of detected light particles generated by the scindlating material in response to the energy 

deposited by the incident particles. The preamplifier is used to convert this charge pulse to a voltage 

pulse using a capacitor (V = Q/C). The pulse rise time is dependent upon the scintillation decay 

time (Bicron BC-400, -2.4 nS) and on the collection and txansit time characteristics of the PMT for 

scindlation detectors; for the SSB detector it is more specifically dependent on the rise time in the 

semiconductor. 

Amplifier: The amplifier amplifies the pulse height, and may be used for shaping the pulse to 

optimize energy or time resolution. 



Single Channel Ana er (SCA): The SCA produces a logic output pulse indicating the presence of a 

h e a r  input pulse within the range determined by the "lower E" and "upper E" settings (differential 

mode) or merely exceeding the "lower E" setting (integral mode). The logic output pulse generated 

by the SCA retains a definite time relationship to the measured input linear pulse. 

Time to Amplitude Converter CI'AC): This instrument u&zes the fast negative logc outputs of the 

SCAs as inputs. The TAC output is proportional to the time interval between the start input (from 

one SCA) and the stop input (from the other SCA). If these two signals are unrelated to each other, 

the time difference between them can take on any value and the TAC output can be any pulse 

height. All true coincident events bear a specific temporal relationship, generating a specific pulse 

height on the TAC output. This pulse height may be used to identify all true coincident events. 

Additionally, the width of the TAC pulse-height distribution indicates the time resolution of the 

sys tem. 

Coincidence Analvzer (CAI: The CA produces a logic output pulse when leading edges of all of the 

enabled logic inputs occur within the set resolving time defined by the CA. The output signal may 

be registered on a Counter or output hect ly to an ADC in order to be displayed on a CPU. 

Counter: A simple scalar that counts the number of logic pulses received from an SCA. 

Multi-Channel Analvzer IMCAl- The MCA sorts individual pulses into bins (channels) according to 

their pulse height. The voltage span of the output (0 to 5 V) is divided into 8192 energy bins of 

equal width, and an input signal is displayed as an energy spectrum with the number of counts at 

each energy subdivision sorted into the relevant bin. Calibration to a known source is required to 

determine the energy per channel. Once this is known, the width of relevant peaks may be used to 

measure of the energy resolution of the system. 



Appendix C. Calculations for Deflector and Bending Magnet

C.1 Deflector Calculations

The following is a supplement for the description of the deflector characterization in Chapter 3,

Section 3.2.1.2. The LABA Microbeam deflectors are each -0.15 m in length, the diameter of the

beam tube is -0.012 m, and the total distance between the deflector and the beginning of the

bending magnet is •1 m. The direction of the beam is defined as "z," and "x" and "y" are defined as

the horizontal transverse and vertical transverse directions, respectively. This arrangement is shown

in Figure C.1.

Diaimter1)ianw ktcr

Gate Valve -

Figure C.1 A diagrammatic representation of the LABA x/y electrostatic deflector. The beam tube
diameter and deflection length are labeled. (Courtey Andrew Dart, Pyramid Technical Consultants)

Following the methods of Larson at the Brookhaven National Laboratory, s s a reasonable estimate for

the y-displacement necessary to "dump" the charged-particle beam on the beam tube wall prior to

entering the bending magnet based on the geometry of the LABA Microbeam beamline would be

ydeflect = 0.006 m at 1 m, placing the termination of the beam beyond the quadrupole triplet and

before the bending magnet. Moreover, the beam should be deflected vertically "up," which results in

the bending magnet "overdeflecting" the beam, rather than creating a situation where the bending

magnet may accidentally compensate for the electrostatic deflection and "undeflect" the beam. The

deflection in the y-direction, ydeflect, is given by Equation C.1:
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Equation C.l 

where a = deflection angle (sterahans) 

e = length of deflection field (-0.15 m) 

z = h f t  length before terminating (-1.0 m) 

Solving for a yields Equation C.2: 

Equation C.2 

Electrostatic deflection in a given direction is produced when the charged-particle beam interacts 

with an electric field E. Defining the orientation of the beamline as "2," and "x" and "y" as the 

horizontal transverse and vertical transverse directions, respectively, let: 

E, = electric field in the vertical Q direction 

vy = vertical component of particle velocity 

Then the rate of change in particle momentum may be described by Equation C.3: 

Equation C.3 

where e = qp = charge of a proton (1.6022 x 10-1"). 

Assuming that the vertical transverse component of the particle momentum prior to entering the 

deflector is negligible and integrating Equation C.3 with respect to time yields Equation C.4: 

py = l e ~ , d t  = eEyt (where py0 = 0) Equation C.4 

The vertical transverse component of the particle may also be defined in terms of the particle mass 

and velocity by Equation C.5: 

PY = mpvy 

Where mp = mass of a proton (1.6726 x 10-27 kg) 

Equation C.5 



Combining Equations C.4 and C.5 yields Equation C.6: 

Integrating v, over time for a relativistic particle yields Equation C.7: 

and for a relativistic particle, 

Substituting Equation C.8 into Equation C.7 results in Equation C.9, 

Given that 

Equation C.6 

Equation C.7 

Equation C.8 

Equation C.9 

Equation C.10 

for small angles a, defining y as ydcfhc, and inserting Equation C.9 into Equation C.10 results in 

Equation C.ll, 

Equation C.ll 

For 750 KeV protons, 



e 1.6xl0-'9

= 6.65x10 -7

ymo82C 2  (1.0008)(1.6726x 10-27 )(0.03998)2 (2.998x 108)2

a = 6.65x0 - 7 EX

E =
6.65x10-'7 Equation C.12

5.6x10 -3
E= .65x 7(0.15 ) 5.6x0 4 V/ = 5 6 0 Vc m6.65x10 7 (0.15) /m cm

For a 1.2 cm plate gap,

V = Eyd = (560)(1.2) = 670V Equation C.13

A general equation for the deflector voltage required to completely deflect the charged-particle beam
generated by the LABA Microbeam accelerator is given in Equation C.14:

V = Eyd = tnof 2C2 d
eA Equation C.14

A plot of the relationship between the particle energy and the deflection voltage required to
completely terminate the beam is provided in Figure C.2.
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Figure C.2 The relationslup between the particle energy and the deflection voltage required to 
completely terminate the beam using the LABA Microbeam deflection system. 

C.2 Bending Magnet Calculations 

The following is a supplement for the description of the bendmg magnet characterization in Chapter 

3, Section 3.2.3.2. In order to characterize the bending magnet, a relationship between proton 

energy and magnetic field was needed. Equations C.15 - C.23 were used to arrive at the required 

relationship, Equation C.24. Equation C.15 first defines the Lorentzian force, Fr, experienced by a 

charged particle moving in the magnetic field of strength B. 

Equation C.15 

where q = magnitude of particle charge (Coulombs) 

v = component of particle velocity perpendicular to magnetic field (m/s) 

B = magnetic field (Tesla) 

For circular motion, v x B simplifies to the product vB. Applying Newton's First Law of Motion to 

this particle results in Equation C.16. 

Equation C.16 

where m = particle mass (kg) 

a = particle acceleration (m/s2) = v2/r for uniform circular motion 

v = tangential velocity of particle (m/s) 

r = radius of curvature (m) 

If Equation C.15 is then equated with Equation C.16, Equation C.17 may be written: 

Solving for momentum results in Equation C.18: 

q B r = m v = p  

where p = particle's momentum (kgrm/s) 

Equation C.17 

Equation C.18 



The kinetic energy of a non-relativistic particle can be written in the form of Equation C.19: 

Equation C.19 

Again, solving for momentum of the particle in terms of kinetic energy results in Equation C.20: 

p = mv = 4 2 m ~ ,  

where El, = lunetic energy of the particle (J) 

Equation C.20 

If Equation C.20 is equated with Equation C.18, the magnetic field required to produce circular 

motion can be written in terms of the particle's kinetic energy. 

Equation C.21 

Expandng Eli in Equation C.21 with respect to the accelerated protons produced by the LABA 

accelerator results in Equation C.22: 

Equation C.22 

where R= ra&us of curvature of bending magnet (0.280 m) 

qp = charge of a proton (1.6022 x 10-19 C) 

mp = mass of a proton (1.6726 x 10-27 kg) 

V,, = accelerator terminal voltage OI) 

Equation C.22 provides a relationship between magnetic field strength and the kinetic energy of the 

proton. However, missing is a factor relating the benlng magnet current to the strength of the 

resulting magnetic field. A plot of magnet current vs. central magnetic field, as &splayed in Figure 

C.3, supplies this last relationship. From the figure, a slope of 0.2812 kG/A can be inferred. Thus, 

the needed relationship between magnet current and magnetic field is calculated to be 35.56 A/Tesla. 

Combining this value with Equation C.22 results in the relationship between proton energy and 

magnet current shown in Equation C.23: 



BendingMagnetCurrent(A) = [ - d2..u.v,.)m 35.56 %esia Equation C.23 
Rq, 
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Figure C.3 Relationshp between magnet current and the resulting magnetic field (provided by 
Pyramid Technical Consultants) 

Using this relationshp, experimental characterization of the bending magnet subsystem (composed 

of the bending magnet itself, the bending magnet power supply, and the control system) was then 

performed by a series of experiments in which protons of various energies were passed through the 

bending magnet, and the magnet current was adjusted via the CPU until the proton beam was 

centered on the quartz window placed in the target position within the experimental endstation. The 

setup for quartz window irradiation was shown above in Chapter 3, Section 3.1.1.2, Figure 3.8, and 

Figures C.4a and b below show the irradiation of the quartz window with the beam properly 

centered. 



a.

Figures C.4 a) Closeup view of the quartz window with room lights on, b) Image of the centered
beamspot on the quartz window with the room lights off.

Once the beam was centered on the quartz window, thus indicating that the correct magnetic field
had been produced, the CPU magnet current was recorded for that proton energy along with the
voltage applied across the programming terminals of the magnet power supply. The measured
programming voltages were used to calculate the actual bending magnet currents, which were
compared to those requested by the CPU. The results of this experiment are displayed graphically in
Figure C.5. The magnetic field, and thus the magnet current, should vary as (proton energy)1/2.
Therefore, the relationship in Figure C.5 only appears linear due to the small range of proton

energies plotted.
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Figure C.5 Plot of bendmg magnet current vs. proton energy required for a 90' bend (verified by 
quartz window irradiation). Error bars represent the standard deviation of three sets of experimental 

measurements. 

Magnet currents calculated by Equation C.23 were compared to the experimental magnet currents 

that produced a beam spot on the quartz window, and a correction ratio of 1.061 was calculated for 

750 keV protons and could be a result of a number of different sources of error (possibly the 35.57 

A/Tesla slope determined from Figure C.3). The 1.061 correction ratio at 750 keV appears 

consistent over the range of proton energies most likely to be used for radiobiological studes, so it 

was incorporated into Equation C.23 to correct the calculated magnet currents. Equation C.24 is 

the result (37.74 A/Tesla = 35.57 A/Tesla * 1.061). 

BendingMagnetCurrent( A) = [ - ,/-I 3 7.74 A/TeSIa Equation C.24 
R'lp 



Appendix D. Biological Protocols 

D.l Tissue Culture 

Wherever "normal growth medium" is referred to, the standard formula used for cells cultured for 

use with the LABA Wcrobeam is Dulbecco's Modification of Eagle's Medium (DMEM) with 4.5 

pg/ml glucose (Mediatech CellGro, Herndon, VA USA), supplemented with 10% fetal bovine serum 

(FBS) (Sigma-Aldnch Co., St. Louis, MO USA), 10 pg/ml streptomycin and 10 pg/ml penicillin 

(Mediatech CellGro, Herndon, VA USA), and lOmM HEPES Buffer (Hyclone, Logan, UT USA). 

D.2. Cell Dish Preparation and Cell Plating 

Cell dish preparation: 

The stainless steel dishes machined by Machine Technology (Beverly, MA USA) were cleaned 

thoroughly with hot (60") 200 proof ethanol. 

The bottom surfaces of the stainless steel dishes were sprayed with 3M SprayMount adhesive 

(Type 6065; 3M, St. Paul MN USA), allowed to dry for about 30 seconds, and then pressed on 

1.4 um mylar. 

After 30 seconds, the extraneous mylar was cut away with a scalpel, and the glued mylar was 

smoothed and stretched taut against the stainless steel dish. 

The stainless steel dishes were placed in small plastic cell culture dishes and s tedzed with UV 

for a minimum of 2 hours. 

0.5 ml of a 0.0l0/0 solution of poly-1-lysine (Electron Microscopy Sciences, Fort Washington PA 

USA) in 1X phosphate-buffered s a h e  (PBS) was added to each dish, and the treated stainless 

steel &shes were incubated for 30 min at 37°C. 

The 0.01% poly-1-lysine solution was then aspirated, and the dishes were dned at room 

temperature for 2 hours. 

Treated dishes were then stored at 4°C overnight (they may be stored for up to 1 week). 

Prior to plating cells on the treated &shes, they are warmed to 37°C. 

Cell plating: 

1. Cells are trypsinized and resuspended in normal growth medium 

2. 0.1 ml of cell suspension is added to each dish. 



3. Dishes are incubated for 8-12 hours. 

4. Medium is aspirated, and new medium is added (with or without Hoechst 33258 and/or DCHF) 

a. If Hoechst 33258 and/or DCHF are added (generally to a final operating concentration of 

50 nM), incubate for 30 min at 370C, then wash 2x with 1X PBS and add new medum. 

b. If lindane is to be added, (generally to a final operating concentration of 50 nM), incubate 

for 30 min at 370C prior to irradation. 

5. Irradate as desired. 

D.3 Reactive Oxygen Species Assay 

The compound known as 6-carboxy-2',7'-dichlorodhydrofluorescein &acetate, d(acetoxymethy1 

ester) (carboxy-H2DCF-DA) may be used to label the production of reactive oxygen species (oxygen 

radcals, superoxide ions, and peroxides, for example). 

D.3.1 Reagents 

6-carboxy-2',7'-dchlorodhydrofluorescein &acetate, d(acetoxymethy1 ester) (Invitrogen Co., 

Carlsbad CA USA; Molecular Probes Catalog #C2938) 

Dirnethyl Sulfoxide (DMSO), (ATCC Manassas VA USA; Catalog #4-X) 

Normal growth medum (LABA) 

D.3.2 Methodology 

Aliquot ROS dye into smaller glass vials w/ rubber stoppers (makes 300 p1 of concentrated 

ROS dye solution in DMSO): 

1. Add 1.5 ml of anhydrous DMSO to 5 mg (MW 675.43) of C2938 to tube. 

2. Vortex thoroughly. 

3. Aliquot 150 yl of the resulting ROS dye solution into each of 10 glass vials. 

4. Add an addtional 105 yl of anyhydrous DMSO to each vial. Place a rubber stopper on each vial. 

Removing oxygen from vial: 

5. Attach needle to argon source. 

6. Insert one needle into the rubber stopper for ventilation. 

7. Insert argon stream into vial for -30 seconds. 



8. Remove the needle, and wrap the stopper in pa ra fh .  

9. Place vials into secondary jar, f d  jar with argon, and then wrap jar with parafilm. 

10. Store at -20°C. 

Using ROS dye: 

11. Dilute 300 p1 of ROS dye in 9.7 ml of normal growth medium to make 74 pM solution. 

12. Remove medium from cells and wash the cells lx  with 1X PBS. 

13. Dilute the ROS dye in normal growth medium to a final concentation of 5 pM. 

14. Add 1 rnl of of 5 pM ROS dye solution to each well. 

15. Incubate at 37°C for 30 min. 

16. Aspirate dye solution and wash 2x with 1X PBS. 

17. Add 0.5-1.0 rnl normal growth medium to wells. 

D.4 Phosphorylation of Histone H2A.X Assay 

The chromosomal structural protein identified as histone H2A.X becomes phosphorylated if in the 

proximity of a DNA double-strand break. This protein is a 14 kDa ubiquitous member of the H2A 

histone family that contains an evolutionarily conserved Serine/Glutamine motif at the protein C- 

terminus in eukaryotes. Serine 139 within this motif becomes rapidly phosphorylated (on the order 

of d s e c o n d s )  in the presence of a DNA double-strand break to yield a form known as y-H2A.X, 

whlch may be detected using standard immunocytochernical techniques. 

D.4.1 Reagents 

100% Methanol 

l?Ao Formaldehyde in TBS: For each dish ddute 300 yl 37% formaldehyde solution (formalin) in 

lml 1X TBS. This solution must be prepared fresh. Discard unused portion following assay 

completion. 

1X TBS: Dilute 2.5 ml20X tris-buffered saline (TBS) (Upstate Catalog #20-190) with 47.5 ml sterde 

water to create a working solution of 1X TBS. Store at room temperature. 

IX TBS/T (Wash Buffer): Dilute 125 p1 20% Tween.-20 (v/v) (Upstate Catalog #20-246) in 600 

ml 1X TBS to create a worlung solution of 1X TE3S with 0.05% Tween.-20 (v/v). Store at room 

temperature. 



Blocking Buffer: For each dish ddute 1 ml 10% BSA in TBS (Upstate Catalog #20-191B) with 2.3 

ml of 1X TBS to make a working solution of 3% BSA in TBS. This solution is stable for several days 

at 4°C. Discard unused portion following assay completion. 

Primary Antibody Solution: Prepare 0.5 ml/dish of 7.5 pg/ml of Primary Antibody by duting 3.75 

pl/dish anti-phospho histone H2A.X (Upstate Catalog #05-636) in 0.5 ml/dish Bloclung Buffer. 

Vortex the solution to ensure antibody is evenly du ted  in the solution. Discard unused portion 

following assay completion. Store at 4°C. 

Secondary Antibody Solution (Fluorescein): Prepare 0.5 rnl/dish of 7.5 pg/ml of Primary 

Antibody by dduting 3.75 pl/dish of Goat Anti-Mouse IgG Fluorescein Conjugate (Upstate Catalog 

#12-506) in 0.5 ml Blocking Buffer. Vortex the solution to ensure antibody is evenly d u t e d  in the 

solution. Discard unused portion following assay completion. Store at 4°C. 

D.4.2 Methodology 

Fixation: Fixing of the cells should be done as soon as the irradiation is completed, or dependmg on 

the desired time point of damage resolution. 

Aspirate media from the dishes, leaving approximately 10 p1 of media. Avoid touching the 

bottom of the dish and/or removing/disturbing cells. 

Wash 2x with 1x PBS at room temperature. 

Immerse in 100% methanol on ice for 20 minutes. 

Aspirate excess methanol and store at 4°C if not staining immediately. 

If staining immediately, add 500 pl/dish of 1% formaldehyde in TBS. Add solution slowly to 

ensure cells are not dislodged from the dishes. Let stand for 5 minutes at room temperature. 

Aspirate formaldehyde solution and add 500 pl/dish Wash Buffer. Let stand for 1 minute at 

room temperature. 

Aspirate wash buffer. 

Add 500 pl/dish Blocking Agent (3% BSA in TBS) and incubate for 1 hour at 37°C or overnight 

at 4°C. 

Addition of Primary and Secondary Antibodies: 

1. Aspirate blocking agent. 

2. Rinse the dishes once with 500 pl/dish of Wash Buffer. 

3. Aspirate Wash Buffer. 

4. Add 250 $/dish of Primary Antibody Solution and incubate for 1 hour at 37°C. 



5. Aspirate Primary Antibody. 

6. Rinse the dishes once with 500 $/dish of Wash Buffer. 

7. Aspirate Wash Buffer. 

8. Wash cells 3-5 times with 500 pl/&sh Wash Buffer for -3 minutes each with gentle agitation. 

Aspirate Wash Buffer in between washes. 

9. Add 250 pl/dish of Secondary Antibody solution and incubate for 1 hour at room temperature 

or 30 rnin at 37°C. 

Fluorescence Detection: 

1. Aspirate Secondary Antibody solution. 

2. Rinse dishes once with 500 pl/dish Wash Buffer. 

3. Aspirate Wash Buffer. 

4. Wash dishes 3-5 times with 500 pl/&sh Wash Buffer for -3 minutes with gentle agitation. 

Aspirate Wash Buffer after each wash. 

5. Image. (refer to Appendix E, Section E.2.1) 

6. Seal slides and store at 4°C. 

D.5 Localization of DNA Damage Repair Protein hMrell Assay 

Mre-11 (of which hMrell is the form found in humans), is one of many proteins that have been 

identified as having a role in the repair of radiation induced DNA damage. Specifically, Mrell is an 

endonuclease of single-stranded DNA and an exonuclease of double-stranded DNA, fachtating 

DNA repair. Mrell is associated with the repair process known as Non-Homologous End Joining 

(NHEJ), which is the primary means by which mammalian cells may repair double strand DNA 

breaks. In this process, Mrell's 3' to 5' exonuclease is uthzed - other proteins involved include 

XRCC4/5/6/7, Rad50 (which stimulates Mrell exonuclease), and NBSl (which interacts duectly 

with both Rad50 and Mrell). 

D.5.1 Reagents 

Triton (permeabilization) Buffer: using distilled water as a base, prepare a solution of O.SO/o Triton 

X-100, 50 mM NaCl (GFW 58.4), 3 mM MgC4 (GFW 95.2 ), 20 mM HEPES Buffer, 300 pM 

Sucrose (GFW 342.3); final pH = 7.4. 



Blocking Solution: prepare a solution of 10°/o fetal bovine serum (FBS) in 1X PBS or 2% bovine 

serum albumin (BSA) in 1X PBS. 

Wash Buffer: prepare a 5% FBS, 0.1% Triton X-100 in a base of 1X PBS. 

Primary (anti hMrell) Antibody Solution: prepare a 35 pl hMiell/ml solution ( E m  

Biosciences, CA USA; Catalog #PC388) with 1% BSA and 0.1% Triton X-100 in a base of 1X PBS. 

Secondary (FITC-conjugate) Antibody Solution: prepare a solution of Goat Anti-Rabbit IgG, H 

& L Chain Specific antibody in 1:80 or 1:60 Ab/suspension ratio - usu. 15 p1 Ab for 900 pl 

suspenstion ( E N D  Biosciences, Catalog #401311), with 5% FBS and 0.1% Triton X-100 in a base of 

1X PBS. 

D.5.2 Methodology 

Fixation: 

1. Wash 2x with lx  PBS, room temperature. 

2. Immerse in 100% methanol on ice for 20 minutes. 

3. Aspirate excess methanol and store at 4°C. 

Staining: 

1. Permeabhze cells for 5min on ice w/ Triton Buffer. 

2. Rinse 2x with lx  PBS on ice. 

3. Incubate in blocking solution for 1 h at room temperature, or 30min at 37°C. 

4. Rinse 2x with lx  PBS on ice. 

5. Incubate cells with hMrell buffer for >2h at 37°C. 

6. Wash 3x for 5 min each with wash buffer. 

7. Incubate with secondary (FITC-conjugate) antibody for 40min at 37°C. 

8. Wash 3-5x for 5min with 1X PBS. 

9. Image. (refer to Appendix E, Section E.2.1) 

10. Seal slides and store at 4°C. 

D.6 Live/Dead Assay 

This is a binary chemical stain technique that uses a combination of Calcein acetoxymethyl (Calcein 

AM) and Ethidium homodimer-1. (Invitrogen Co., Carlsbad CA USA) Calcein AM is absorbed into 



cells, cleaved by cytosolic esterases, and then becomes epifluorescent; the Ethidium homodmer is 

only able to permeate dead cells, where it concentrates and binds to DNA, becoming fluorescent. 

Thus, the Calcein AM stain is highly specific for living cells, while the Ethidum homodmer is highly 

specific for dead cells. 

D.6.1 Reagents 

LIVE/DEAD Viabhty/Cytotoxicity Kit 

(Invitrogen Co., Carlsbad CA USA; Molecular Probes Catalog #L3224) 

Calcein acetoxymethyl (AM), lmg/ml 1mM solution in anhydrous DMSO (a/e 494/517 nm) 

(Invitrogen Co., Carlsbad CA USA; Molecular Probes Catalog #C3099) 

Ethdium h o m o h e r - 1 ,  1 mg (a/e 528/617 nm) (Invitrogen Co., Carlsbad CA USA; Molecular 

Probes Catalog #El  169) 

D.6.2 Methodology 

If you buy the Invitrogen kit, simply use the kections provided. Otherwise, general use protocols 

for Calcein AM and Ethidrum homodmer staining follow: 

Calcein AM Dye preparation: 

1. Aliquot 10 ul of 1 mM Calcein AM solution into 10 ml normal growth medrum to make 1 uM 

Calcein AM solution. 

Cell preparation: 

1. Culture cells in confluent or subconfluent monolayer. 

2. Aspirate cell medium and wash w/ l x  PBS. 

Cell Treatment/Assay: 

1. Add 500 ul of luM Calcein AM solution to washed cell culture dish. 

2. Incubate treated cells for 30min at 37C. 

3. Image. (refer to Appendix E, Section E.2.1) 

4. Irradiate as needed for experiment. 

5. Image. (refer to Appendix E, Section E.2.1) 



Ethidium Dye preparation: 

1. Mix 35 pg of Ethidrum homoduner-1 into 10 ml normal growth medrum to make 1 pM 

Ethichum solution in medium. 

Cell preparation: 

1. Culture cells in concluent or subconfluent monolayer. 

2. Aspirate cell medium and wash w/ lx  PBS. 

Cell Treatment/Assay: 

1. Add 500 ul of 1 pM Ethidium solution to washed cell culture dish. 

2. Incubate treated cells for 30 min at 37°C. 

3. Image. (refer to Appendix E, Section E.2.1) 

4. Irradiate as needed for experiment. 

5. Image. (refer to Appendix E, Section E.2.1) 



Appendix E. Image Analysis 

E.l Microsoft Photo Editor Image Manipulation and Measurement Techniques 

Microsoft Photo E l t o r  was used for several minor adjustments to acquired images, primardy 

rotation, cropping, and color adjustments. In the latterrnost case, color adjustment was a simple 

subtraction process in which an image of a "green" stain was stripped of its red and blue 

components, while an image of a "blue" stain was stripped of its red and green components. 

Exact Pixel to Micron conversion values were determined by measuring the pixel &stances between 

like points on the graticle standard, and applying the resulting pixe1:micron ratio to biological assay 

images taken under identical magnification conditions 

E.2 MATLAB Image Processing Techniques 

E.2.1 Image Acquisition and Processing 

This process assumes that epifluorescent images are acquired using a SPOT camera and a Zeiss 

Axioplan 2 microscope, using the UV light source at 50% intensity. All exposure times and gain 

values should be kept identical (generally a 200 msec exposure with a gain of 2). While the full-chip 

image dunensions are 1600 pixels (width) by 1200 pixels (height), cropping 100-1 50 pixels from each 

side makes it significantly easier to focus the image in UV light. Addtionally, this correction d 

minimize optical aberrations that result in darkening at the image corners. Both the "Flatfield 

Correction" and the "Chip Defect Correction" options provided in the SPOT software are also used 

for image acquisition. 

The image processing using MATLAB for a charged-particle microslit bradation is as follows: 

4. Acquire an image with the microscope (in 8-bit grayscale TIFF format) 

5. Rotate images so the fluorescent strip is vertical 

6. Crop the image so we're left with the fluorescent band 

7. Run the MATLAB script that will read the image and generate the image profde 

The MATLAB script processing scheme is to convert the 8-bit grayscale TIFF image into a matrix 

where each pixel is an entry a grayscale value rangng from 0 [black] to 255 [white]. The script scans 



the image, converts it into a matrix value, averages the grayscale values of each column of pixels in 

the matrix, and then plots the average values. 

E.2.2 Primary Modules 

The basic image post-processing module is image-pr0cessing.m. This function loads the TIFF file, 

converts it into a grayscale value matrix, and then averages the column values in the matrix. The 

output of this function is number stream that is equivalent to the average pixel intensity profile of the 

image. The number of entries of this vector equals to the width (in pixels) of the analyzed image. 

(more details in the commented header of the script) 

function imgprofile=imageprocessing(filename) 
% 'imgprofile' is the grayscale profile of the image that is processed 
% 'filename' is the name of the file where the grayscale image is 
% this function will average the grayscale pixel values along the vertical 
% the result will be a one-dimensional vector - the profile of the image 
% 
% Note: grayscale TIF images are a matrix with each pixel 
% being an entry from O[black] to 2551whitel. This function will 
% only process 8bit grayscale TIF images 

% Check if the given file exists 
f id=0; 
[f id,messagel =fopen (filename- ) ; 
if fid==-1 

disp (message) ; 
end 
fclose(fid) ; 

% read the image and the make: 
% IMG - the grayscale values matrix 
% map - the image map, a three column matrix (not of interest to us) 

[IMG, map]=imread(filename) ; 

% find the dimensions of the image 
[img-height, img-width] =size (IMG) ; 

% take the average of each column to create the profile 
for i=l:img-width 

imgprofile(i)=mean(IMG(: ,i)) ; 
end 

% this is the end of the file 

The next module is poly-fit.m. It takes the average pixel intensity profile (the output of 

"image-processing.m") and makes a polynomial fit to the data. For most complex images, MATLAB 

will give the warning message: "Polynomial is badly conditioned. Remove repeated data points or ...". 



The user specifies at the beginning what degree polynomial to fit the data to. For a single fluorescent 

stripe induced by charged-particle microslit irradiation, a degree polynomial value rangng from 5-10 

wdl result in a relatively accurate fit. However, if more than one stripe is present in the image, a 40th 

or 60th degree polynomial fitting wdl most likely be necessary. (more details in the commented 

header of the script) 

function [polynom, coef f 1 =poly-f it (data-set , degree) ; 
% this function performs polynomial fitting of a data set 
% the function will find a polynomial of 'degree1 (integer number) 
% Ipolynom' is the evaluated polynom at every pixel/point of the set 
% 'coeffl is the set of coefficients that describe the polynomial, MATLAB way 

% find the size of the data set 
N=length (data-set) ; 

% fit a polynomial of 'degree1 to the data set 
coeff=polyfit(l:N, data-set,degree); 

% evaluate the polynomial at every point (i.e. pixel in the image) 
polynom=polyval (coeff, 1 :N) ; 

% this is the end of the function 

The MATLAB script single-pr0file.m uses the previous two modules ("image-processing.m" and 

"poly-fit.m") to plot both the profile of an image and its polynomial fit. The script wdl ask for the 

filename (file has to be in the same folder as the script) and the polynomial degree for fitting. It is 

useful for a quick analysis of the image and highlighting general features. To run the script requires 

the user to place the files image-processing.m, poly-fit.m, single-profile.m, and the aligned and 

cropped TIFF image for analysis in the same folder. Running MATLAB in that folder, the user 

enters "single-profile" in the MATLAB window to run the script. The script wdl ask for the 

filename and the polynomial degree. (more detds in the commented header of the script) 

% This script analyzes a single image profile 

% set the fitting polynomial degree, 5-9 are good values 
poly_degree=40; 

% get the filename first 
filename=input(lEnter the image filename: ','sl); 
poly-degree=input(IEnter the degree of polynomial for fitting: I) ; 
%filename=Iimgl.tif1; 



% process the images and get their raw profile 
profile=imagegrocessing(filename); 

% get the fitting polynomials 
[poly, coef f I =poly-f it (profile, poly-degree) ; 

hl=f igure; 
plot(profile, 'bt) ; 
hold on; 
plot (poly, 'kt ) ; 
hold off ; 
legend( 'Raw Profilet , ' Poly-Fit ' ) ; 
ylabel ( 'Grayscale Value [0-black, 255-white] ) ; 
xlabel('Pixe1 Position [pixels] ' 1 ;  
title(['Averaged Grayscale Profile, ',num2str(poly-degree) ,'th Degree ~oly- it; 
t,t\newline Image File: t,filename,t ; ' I )  

% retrieve the width as a function of height from the top of the curve 
% [h,wl =width-analysis (poly, 60, 500, 100) ; 

% change the direction of the vectors to make the plot unerstandable 
% plot the width of the curve as a function of distance from the peak 
% also change the vertical coordinate (height) so measurements start from 
% the peak 
% 
% M=length(h) ; 
% for i=l:M 
% h-flip(i)=h(M-i+l) ; 
% w-flip(i)=w(M-i+l) ; 
% end 
% 
% % adjust the vertical coordinate 
% top=h (MI ; 
% h-flip=-(h-flip-top); 
% 
% h2=f igure; 
% pl~t(h-flip,w-flip,~b~); 
% legend ( Width ) ; 
% ylabel ( Curve Width [pixels] ) ; 
% xlabel ('Distance from the curve peak [pixels] I) ; 
% title( ['Polynomial fit curve width as a function of distance from the peak, 
1,num2str(poly-degree),'th Degree Poly-Fit; t,t\newlinet,filename,';'l) ; 
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