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EXPERIMENTALIANAl,YTICAL PREDICTIVE MODELS

OF DAMPED STRUCTURAL DYNAMICS

by

Etienne Balmes

Submitted to the Department of Aeronautics and Astronautics
on May 5, 1993 in partial fulfillment of the requi::ements for the

Degree of Doctor in Philosophy at the Massachusetts Institute of Tecnnology

Abstract

Traditional analytical design and validation tools, such as the finite element method, do
not generally allow an accurate representation of damping mechanisms. Identified
experimental models accurately mcx:lel the true system properties, but existing methods do
not provide efficient ways to separately identify the contributions of the mass/stiffness
distribution and those of damping mechanisms. The new solutions developed in this
research resolve these difficulties and show how experimental and analytical results can be
combined to create high-fidelity predictive models of damped structural dynamics.

A new algorithm for the identification of scaled complex modes from frequency domain
experimental data is shown to be effective for the analysis of tests with large nunlbers of
sensors and structures with high modal densities, local modes and significant effects of
non-proportional damping. It is then shown that the enforcement of a properness condition
on the identified complex modes allows an accurate detennination of nonnal modes and of
a non-proportional damping matrix. The application of the method on the case of the
MIT/SERe interferometer testbed leads to the first experimental characterization of noo­
proportional dampiug.

Parameters of initial FE models are usually inaccurate and the system test data, used to
determine experimental models, can also be used to update these parameters. A new
classification of FE update methcxls is proposed and inherent limitations of such procedures
are analyzed. For this analysis the case of the interferometer testbed and a new FE update
algorithm, based on the use of truncated modal models and the comparison of measured
and predicted transfer functions, are used.

The creation of high accuracy predictive models by a combined use of experimental
dam:ped 110nnal mode models and updated undamped FE models is then discussed. Using
such models of the interferometer testbed, the a(:curacy of predictions for arbitrary
actuator/sensor architectures after known mass, damping or stiffness modifications, and the
quality of parametric descriptions of model error are evaluated.
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NOMENCLATURE

An effort was made to comply with the proposed standard notation of the International
Modal Analysis Conference (IMAC) a'vailable in Ref. [liel].

b
T ,,.

i/>j h, "'; b
c

Ct/Jj 1 C'I'j

AM, AC, AK

L1/1, L1r, L\.Q

E

F

l/J

tPT
r
1J
H(s)
H(m)
A,o

1
M,C,K

N

NA

Ns

NT

P
f)

q

s
Rj =CYlj 'I''fb
T j =c<Plp'fb

actuator input shape matrix (location, directjon, calibration)

modal controllability rnatrix (of the jlh nonnal / complex mode)

sensor output shape matIix (location, direction, calibration)

modal observability matrix (of thejlh Donnal / complex Inode)

additive modifications of the mass, damping and stiffness matrices

additive modifications of the modal mass, damping and stiffness matrices
correction matrix for high frequency modes

correction matrix for low frequency modes

real or nonnal mode of the undamped system

truncated set of low frequency nonnal modes (eventually augmented)

non-diagonal modal damping matrix

complex mode modal states

transfer function matrix

frequency response function matrix

complex pole

mass, damping and stiffness matrices

number of clegrees of freedom of the full finite element model
number of actuators

number of sensors

number of modes in a truncated mcxla! model

nonnal mode pseudo-modal st!1tes

complex i~~<XIe of first order symmetric structural model

FE degree of freedom states

Laplace variable
residue matrix of the jlh complex mode

residue matrix of the Jlh nonnal mode (ONLY useful for proportionally

damped systems)

actuator input

diagonal modal stiffness matrix (modal frequencies squar~d)

complex mode of damped system

sensor output

unit delay operator

identified quan1ty
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STANDARD ABBREVIATIONS

CMIF

DOF(s)

FD

FE

00
IT

logLS

MAC
MllVIO

Re,lm

RMS

SISO

ill

complex mode indicator function

degree(s) of freedom

frequency domain

finite element

input / output

MIT/SERe interferometer testbed

logarithmic least squares cost function (see section 3.1.3)

modal assurance criterion (see section 4.1.2)

multi-input, multi-ouput

real part, imaginary part

root-olean-square

single-input, single-output

time domain
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Cliapter I

Introduction

1.1. MOTIVATION

The use of control loops to improve the dynamic characteristics of structures has

recently found a number of applications in many different fields. This development,

answering an increasing demand !or tailored dynamic environments for sensitive

instruments, requires at different design and validation stages the availability of high­

accuracy structural dynamic models [ball]. The present research introduces a complete

fTamework (see Figure 1.1) allowing the creation of high-fidelity predictive models of

structural dynamics, with an original foc~us on the representation of damping, the use of

reduced models, and the combination of experimental and analytical predictions.

The broad objective of high-fidelity structural modeling is achieved through a

simultaneous use of two descriptions in terms of local component properties and of global

system response.

Local component properties are usually rnodeled by finite elements, whose parameters

(called design parameters) are derived from detailed descriptions of the geometry and

physical properties of structural components. These local nl0dels are then assembled into a

finite element model, which can be used to make predictions of system response for any

sensor/actuator architecture as well as for modified system configurations.

For accurate predictions, elements must qualitatively give a physically significant

representation of the component behavior within the full frequency range of interest for the

system, and they must quantitatively use design parameters that reproduce the actual

component properties. Usually for initial FE models, a number of design pararlJeters are

not very accurate, so system t~st results are often used to estimate design parameters with

higher accuracy..

Once the system is built, global system tests provide measurements of the system

properties as seen through a particular actuator/sensor architecture. In the low frequency

range, the response can be described in tenns of complex mode contributions, which can

be estimated (in a process called identification) using test data. Modes of true systems are

10



complex because the system is damped. On the other hand, FE model predictions are

generally undamped. To combine these two types of models, it is necessary to

experimentally determine the system normal modes (which characterize the mass and

stiffness propertjes) and modal damping matrix (which characterizes the dissipation

mechanisms).

Physical components and
physical parameters - Elements and

Design parameters

Finite element model

Identification
Damped.· "

System test -~
Design
parameter
estimation

Analytical · · .. ...
"TrtdainhAd · · · · · · · · · · ·
Y .• : ~::: \':::: .::: .•

~

~

. . . .. ...... ..,..
Analytic
normal mode model

__ Hybrid model (damped and
~----+--_--:::iIIt

- augmented nonnal mode mdl.)
Experimental
nonnal mode model

Complex mode model /
. ---L-----"I

I

Predictions·
Damped

Predictions of the
damped response

Figure 1.1.: Proposed methodology for the creation of predictive models of 000­

proportionally damped structures.

Identified nonnal mode models can be very accurate, but they can only be used to

predict the effects of closing loops using the tested actuators and sensors. FE models allow

many types of predictions, but are less accurate than identified models and do not in general

allow a good representation of damping.

The objectives of this research will thus be to introduce new methods needed to

accurately identify experimental normal mode models, to show how initial FE models can

be updated using system test results, and to introduce models that combine the accurate but

incomplete experimental models with the less accurate but detailed FE models to obtain

high-fidelity and yet versatile predictions.
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1.2. CONTRIBUTIONS

Experimental parametric models are often identified from system test results. Existing

identification methods [full, alII, ewi1, lju 1, lev 1] are generally based on mathematical

formulations of the problem which do not allov/ a user-guided iterative refinement of the

models. Using broadband test data, the new methodology presented in this work aileviates

these limitations and leads to extremely accurate identified models characterizing all the

dynamics in the test bandwidth with no need for additional computational modes. It is

further shown that the method correctly identifies complex modes of systems with high

modal densities, local modes, and heavy non-proportional damping coupling.

To accurately represent damped structural dynamics, a clear distinction must be made

between normal and complex modes. The relation between the two types of modes has

been often studied, but results have remained of limited applicability [scsI]. A complete

analysis of Donnal and complex mode properties is presented, and it is shown that the

approximation of the identified complex modes by proper normallnodes (corresponding to

the truncated modal damping matrix) leads to very accurate normal mode nlodels, even in

cases with significant effects of non-proportional damping. The experimental results,

obtained for the Interferometer Testbed (IT), mark the frrst experimental characterization of

non-proportional damping.

Nonnal modes can also be predicted with a higher spatial resolution using finite element

models. Parameters of initial FE models are however often inaccurate, so system test

results have often been used to improve the estimation of different paralneters [cae1, roy I,

linI, berl, levI]. FE update methodologies using direct comparisons of measured and

predicted transfer functions have recently been introduced to alleviate difficulties of

comparing inaccurate FE and identified parametric models. The present work introduces a

new update algorithm using reduced predictive models and the log-least-squares cost

function. Using this algorithm as an example, an analysis is done of inherent limitations of

parameter updating procedures (not all parameters are "identifiable"; sOlne parameters

cannot be updated simultaneously).

Analytical and experimental nonnal mode models can be combined to form hybrid

models allowing the prediction of the damped structural dynamics for arbitrary

sensor/actuator architectures even after known modifications of the system mass, damping,

and stiffness properties. The creation, use, and validity of such models is analyzed.

Finally, a parametric description of model error based on these nonnal nlode models is

discussed, qualitatively for a simple two mode example, and quantitatively for the

interferometer testbed model. This description leads to an original discussion of the

12



possibilities and limitations of parametric descriptions of model errors for real structural

systems.

1.3. OUTLINE

Issues linked to different parametric representations of structural dynamic models are

detailed in Chapter II. Properties of linear Inodels of structural dynamics seen through a

sensor/actuator architecture are discussed. The spectral decomposition of the response into

Donnal and complex modes is reviewed. Finally, minimal representations of the system

properties (dynamic modes, asymptotic contributions, dissipation) in a givell low

frequency bandwidth are addressed.

Experimental structural dynamic models can be identified from low frequency tests on

existing systems. However, existing identification methods do not provide practical ways

of handling difficulties linked to high modal densities and accurate damping modeling, so

original solutions for the identification of parametric models are introduced in Chapter III.

Using the minimal representations of Chapter II, a new algorithm is developed to identify

the complex mode residues of the system. A method to obtain scaled complex mcxleshapes

from the identified residue matrices is introduced. Then, in order to obtain a separate

identification of mass/stiffness and damping properties, a new algorithm is introduced

leading to identified models using the normal mode parametrization. Finally, errors linked

to the model identification procedures are discussed.

Initial errors are often made on the values of FE model design parameters. Although

component tests are clearly the most appropriate to correct these errors, it is often practical

to use instead system test results in the form of Donnal modes or transfer functions. An

analysis of the possibilities and limitations of such parameter updates is done in Chapter

IV, using in particular an original algorithm based on the comparison of measured and

predicted frequency response functions.

Finally, the creation of small but accurate predictive models (called hybrid since they

combine experimental and FE models) is discussed in Chapter V. For non-tested

sensor/actuator configurations, and for modifications of the mass, damping and stiffness

properties, the accuracy of predictions made with such models is analyzed. These models

also allow a simple description of the uncertainty in the system dynamics which is detailed.

The relevance and effectiveness of the present work is demonstrated using the

MIT/SERe Interferometer Testbed (see the description in appendix) as a real experimental

13



case history. The applicati.ons of the proposed methods are done using a set of experimental

measurements of the dynamic response of the interferometer testbed to external ex""ltation at

6 different shaker locations and 28 accelerometers distributed on the truss structure (see

Figure 7.3 in the appendix).

In Chapter III, complex and nonna! mode models of the testbed are identified, and their

accuracy is evaluated. In Chapter IV are discussed the creation, refinement, and parametric

update of the FE model of the interferometer testbed. Finally, in Chapter V, hybrid

experirrlentaVanalytical models of the testbed are introduced. Their ability to predict non­

tested sensor/actuator configurations as well as the response after mass, stiffness, or

damping modifications is analyzed, and a description of uncertainty for these models is

discussed.

14



(2.1 )

Cliapter II

Linear Models of Structural Dynamics

From a theoretical point of vie\v, this chapter reviews and justifies different

representations of linear models as well as underlying physical assumptions that will be

used for throughout this report. Most of the points made have been previously considered

by different authors, so that the objective this chapter is only to provide a complete and

consistent treatment of all the aspects relevant to this research.

In section 2.1, assuming that exact (potentially infinite dimensional) descriptions of

structural dynamics exist, physical assumptions implied in such models are first

reviewed. Then, two forms of spectral decomposition of the dynamic response, using

complex and normal modes respectively, are introduced and their properties detailed.

In section 2.2, experimental constraints are considered and finite dimensional models

representing the response of the system in a restricted low frequency bandwidth are

introduced. The model truncation process relating the ideal full order model to a minilllal

low order model for the considered bandwidth is detailed. Corrections for the effects of

truncated dynamics are introduced. Finally t the validity of the representation of

dissipation by a truncated viscous damping model is addressed.

2.1. IDEAL LINEAR MODELS FOR STRUCTURAL DYNAMICS

2.1.1. FUNDAMENTAL ASSUMJYfIONS

In the present work, it is assumed that the low frequency response of the structure can

be accurately represented by linear time-invariant models of the fonn

Mij +Cq + Kq = bu

y=cq

where u is the vector of inputs, y is a vector of displacement measurements, M, C, and K

are respectively the mass, damping, and stiffness matrices of the system in the arbitrary

set of coordinates q (the model is taken of order N which can be infinite for a continuous

model). Outputs proportional to rate take the fOIT!l yvc1. =cq, which has not been shown

15



for clarity purposes. M is the system mass matrix in the coordinate system q,

corresponding to a system kinetic energy of the form U =tilTMil. Similarly K is the

system stiffness matrix in the coordinate system q, corresponding to a system strain

energy of the fonr! T = tqTKq.

The actuator input shape matrix b and the sensor output shape matrix c are introduced

here as a compact but complete notation allowing a characterization of the actuator and

sensor properties. In the simplest case, a unit force input at a degree of freedom qI, the

input shape matrix is

b= 1 ..-1. (2.2)

However, most actuators have inputs that are not in the direction of the initial model

nOFs, that couple several nOFs, and that are not properly scaled (e.g. an active strut

introduces a relative force input between to points in a direction that usually does not

Inatch the DOF directions and may use a voltage for u even though the product bu must

be a force). Thus, for a system with NA actuators b is a N by NA matrix whose columns

contain the location, direction and scaling information of the force patterns applied on

each of the DOFs q for unit inputs in each of the actuators.

Similarly, for a system with Ns sensors, C is a Ns by N matrix whose rows contain the

location, direction and scaling infonnation linked to each output. A more compact

notation, using an index to indicate which of the DOFs q is measured (i.e. y = q,), is

often used by other authors, but becomes cumbersome if sensor measurements are linear

combinations of the response at different DOFs with arbitrary calibration coefficients

(e.g. y in Volts for q in Inches).

A further motivation to use both input b and output c shape matrices is to explicitly

show the duality of these two quantities (which is well known for control problems). In

particular, if an actuator and a sensor are collocated and dual (e.g. force to collocated

translation, moment to collocated rotation) their input and output shape matrices are

transpose of each other (c = bT
) (provided that M t C, and K are mass, damping, and

stiffness matrices of the system and that consistent calibration coefficients are used). This

property, which clearly does not depend on a particular choice of coordinates q, will be

used in the modal coordinate system to uniquely define scaled estimates of the system

modal controllability and observability matrices.

16



In the model (2.1), the sensors/actuators are implicitly taken to have no dynamics and

the system matrices are assumed to be symmetric positive definite. These two

assumptions, motivated below, will be used throughout this work.

Time: delays and other actuator/sensor dynamics should be characterized

independently of the structural modeling process and appended to the model.

Furthennore, the effect of such dynamics should be removed from the experimental data

used as they are usually not considered to be part of the structural system described by

(2.1). For control design however, it will generally be necessary to append those

dynamics to the model.

Displacement or velocity actuators have dynamics (zeros) coming from the fact that

the force input to the structure depends not only on the prescribed displacement, but also

on the corresponding velocity and acceleration (see Ref. [girl] for example).

Furthermore, even the exact system equations (2.1) then depend on a particular actuator

architecture, so that the use of a unique model for predictions in different configurations

becomes a very difficult problem that will not be considered in the present work.

For most structural systems, symmetric equations of motion (M, C, and K symnletric)

can ~e derived (e.g. [mei 1]). Particular cases, such as aeroelaSlicity (where external

aerodynamic forces lead to an asymmetric stiffness [bis1]) or rotating machinery with

gyroscopic damping (antisymmetric damping matrix), will not be considered since this

would only obscure the analysis.

Finally, the system matrices will be assumed to be positive definite because of the

following physical properties: 1) all DOF have inertia, thus for non-zero motion the

systems kinetic energy is strictly positive, so that the mass matrix must be positive

definite, 2) for any forced harmonic motion the system does not create energy, so that the

damping matrix C must be positive semi-definite, 3) as the kinetic energy, the strain

energy is always positive, so that the stiffness matrix K must be positive semi-definite (it

may be positive semi-definite if rigid body modes exist).

2.1.2. COMPLEX MODES

For linear models, it is well known that the system response can be represented as a

summation of uncoupled modal contributions (this is usually called a spectral

decomposition). Without particular assumptions on the system damping matrix C, the

modes of the system (2.1) are complex and can be found as follows. The set of equations

(2.1) can be represented as a first order symmetric system

17



[~ ~I:]+[~ -:I:]=[~Ju
y=[c 0][:]

(2.3)

(2.4)

To this representation of the system equations is associated the eigenvalue problem

[~ ~]8A +[~ _:]0=0,
where fJ is the 2N by 2N Inatrix of eigenvectors and A is the diagonal matrix of 2N

eigenvalues (poles of the damped system). It can be easily shown that the eigenvectors (J

have the specific form

(2.5)

(2.6)

where 2N complex modes 1jIcome in complex-conjugate pairs for the symmetric systems

considered here (for the rest of this work it will thus be implicitly assumed that

lJ'[N+l ...2N] = lI'P' ..N] and A[N+/...2N] = AIl...N])· Although it has not been proved in general

that a full set of complex modes exist, this will be assumed here (except to treat cases

with rigid body modes for which only the nonnal modes are defined).

The fact, that the complex modes are solution of the eigenvalue problem (2.4),

implies two orthogonality conditions on the complex modeshapes

eT
[~ ~]o= '1fTC'If +A VlTM'If + '1fTM'lfA =/l

8T [K 0 lJe = v:T
iT(V! - AlilTMV'A = -/lAo -M

(2.7)

where J1 is a diagonal matrix of modal scaling coefficients which are non-physic~l

quantities depending uniquely on the way the eigenvectors 'II are scaled.

Throughout the rest of this work it will be assumed that the modes are scaled so tllat

J..l=l (identiry) as this simplifies notations. However, it should be noted that

/lj = Aj - Aj =±i2mj~1- ,2 is another tfuditional scaling for the complex modes, which

tends to lnaximize the real part of the complex modes and, in the case of proportionally

damped structures, leads to a particular matrix of complex modes '" = [l/J l/J], where the t/J

are the mass nonnalized nonnal modes (see section 2.1.3).
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Finally, although the direction of a complex mode in tIle complex vector space is

unchanged for different scaling conditions, the geometrical appearance of the real and

imaginary parts of the complex mode depend on the phase implied by the scaling

condition [sesI].

The complex modes lead to a spectral decomposition of the system equations:

provided that the scaling condition (2.6) (with Jl=/) is verified, one can use conlplex

mode states 11 defined by q= 817 to rewrite the system equations (2.3) in the frequency

domain as

[I]s11-[A]11=[ 'liT A'IITf~]u

y=[c O][;Is~]
(2.8)

(2.9)

where the modal states 1] are uncoupled (A is diagonal), so that the transfer function

Inatrix H(s) from the input to a displacement output can be written as a simple sum over

all the modes

2N Tb
H(s) =L c'IIi'lli .

j=l s- Aj

In this representation, c'IIi is the j'Is mode modal observability matrix, 'liTb is the j'''

mode modal controllability matrix, and the contribution of each mode depends on their

product (the residue matrix Rj = c1I'j'l'Tb). For non-symmetric systems, left and right

complex modes are defined. The modal observability is then c'II: and the modal

controllability 'IIfb, but the fonn of (2.9) is unchanged.

The scaling J1=1 of the complex modes led to the expression (2.9) where the residue

matrix for each of the modes is given by RJ = c'IIi'llTb. Conversely for a measured

residue matrix RJ such that (2.9) can be used to generate the estimated transfer function,

c'IIi 'IITb = RJ is an estimate of the product of the modal observabilities and

controllabilities corresponding to complex modes scaled by J1=I. Thus, scaling the

complex modes with the analytical condition (2.6) (with J.l=l) and the enforcement, for b

and C known, of the fonnal equality Ri = c'IIi 'IITb are equivalent. This property will lead

to the possibility of scaling experimentally identified complex modes in section 3.2.3.
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2.1.3. NORMAL MODES

Although this is not realizable in practice, one can consider the undamped system

associated with (2.1) (i.e. set C to zero). As for the damped system which had complex

modes, the dynamics of this hypothetical undamped second order systenl can be

decomposed spectrally on a basis of normal modes defined by the eigenvalue problem

-Mt/JD. + Kt/J = O. (2.10)

where t/J is the N by N matrix of normal modes, and D the diagonal matrix of N nonnal

mode frequencies.

The fact that the nonnal modes are solution of the eigenvalue problem (2.10), implies

that the normal rrJodes verify tV/O orthogonality conditions with respect to the mass and

the stiffness

(2.11 )

(2.12)

where J1 is a diagonal matrix of modal masses (which are non-physical quantities)

depending uniquely on the way the eigenvectors t/J are scaled. Throughout this work it will

be asswned that the modes are mass normalized so that Jl=I.

Using normal mode states p defined by q=t/Jp (where the nonnal modes f/> are

assumed mass normalized), the system equations (2.1) can be rewritten as

Ip + rjJ + (},p = tPTbu

)' = ct/Jp

or, in the usual first order form,

[:]=[-~ ~rI~]+[~~b}
y =[c~ 0][;]

(2.13)

where Q is the diagonal matrix of squared undamped frequencies (.0 = t/JTKt/J) and r is

the normal mode damping matrix projected on the mass normalized normal modes t/J

(r = t/JTCl/J), ci/J is the nornlal mode observability matrix and l/J1'b the modal

controllability matrix. Note that the identity matrix, r, and Q are respectively the mass,

damping, and stiffness ITJatrices in the generalized coordinate system p (nonnal nlode

coordinates).

Pf\)portional or modal damping is a usual assumption made for lightly damped

structures (see section 2.2.3 for more details), which mathematically corresponds to
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(2.14)

having a diagonal damping matrix r. Using the pole damping ratio 'j and natural

frequency wi' one has for a proportionally damped system flu :::: wf and r jj :::: 2'jwj' In

this case, the system equations (2.12) are decoupled, leading to a spectral decomposition

of the damped system response by pairs of poles

N tit ",1 j

() =~ C'f'j'f'jU
Hs .LJ2 2

j=J S +2'liJj S +w j

where all the parameters except the damping ratios ~ only depend on the mass and

stiffness distribution and can thus be predicted accurately with an undamped (FE) model.

Note that, as was the case for the complex modes, the use of the nonnal mode residue

matrix Rj :::: ct/J jt/J;b in (2.10) is a necessary and sufficient condition for the nonnal modes

to be mass nonnalized «2.11) verified with J1= 1).

In a number of cases the representation of damping by a diagonal ris not accurate, so

that a non-proportional damping model must be used (ris then a full but positive definite

matrix). However, even for a non-proportionally damped system, the normal mode

frequencies D, modal controllability t/J Tband obseIVability ct/J matrices remain physical

properties of the ideally undamped system and can thus be predicted by FE models.

A major problem for accurate predictions in cases with significant non-proportional

damping is the determination of normal mode properties (D, r, l/JTband cl/J) from a set

of finite bandwidth experimental rlleasurements. True normal and complex modes depend

on the continuous infinite system, but the damping is measured experimentally for a

restricted set of modes. The restriction of the damping model to a truncated set of normal

modes will be discussed in section 2.2.3 and based on this assumption, a new method for

the detennination of nonnal modes from identified complex modes) leading to the first

experinlental characterization of non-proportional damping, will be introduced in Chapter

III.

2.2. FINITE DIMENSIONAL MINIMAL MODELS OF CONTINUOUS Sl'RUCTURES

Structures are non-linear, time-varying, and infinite dimensional systems. However, it

will be assumed here (and it is usually true) that they are weakly non-linear, vary little

and slowly with time. Under these assunlptions, there theoretically exists an infinite

linear time-invariant model of the form (2.1) representing the system very accurately.

For analytical models, all physical assamptions are valid for lilnited frequency ranges

(or equivalently for long enough wavelengths). Thus the response can only be accurately
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represented for finite bandwidths. Continuous infinite models are more likely to have

large bandwidths, but systems such as real space structures are too complex to be

represented in detail with continuous models, so that in practice th~ bandwidth limitations

are very similar whatever the model used (discretized finite or continuous infinite).

Experimentally, the sensor/actuator architecture limits the number of points at which

the modeshapes can be known .. Furthermore, sensor and actuator dynamics (as well as the

sampling frequency for digital systems) limit the frequency range were the measured

response corresponds to the physical response being modeled. Overall, experimental

models are generally less limited than analytical models in frequency, but more limited in

spatial resolution. These properties motivated the introduction of hybrid experimental/

analytical models in Chapter V, which retain the accuracy of experimental models, but

increase the spatial resolution by combining experimental and analytical modeshapes.

Thus only approximate models, valid over a finite bandwidth, can be obtained. ~he

spectral decomposition into complex modes (2.9) or normal modes (2.12) allows to

distinguish the frequency ranges of dynamic contributions as the largest fraction of the

modal response is in a narrow (for lightly damped structures) frequency band near the

modal resonance. The analysis presented below will focus on nonnal modes, as the case

of complex modes is mostly useful for the identification of experimental models which is

addressed in Chapter III. (Truncated complex mode models will be detailed in section

3.1.2).

t1S will be shown in Chapters IV and V, some of high frequency modes of a nlodel,

even if they are inaccurate, are useful for predictions of the response for multi­

configuration systems. However, the meaning of these modes is linked to a particular

modeling approach, their properties are not direct estimates of physical properties which

should clearly be invariant, and an accurate use of these contributions can usually only be

achieved for allalytical models where their relation to the model is known.

It was seen in section 2.1.3 that nonnal mode coordinates were physical properties of

the system, the objective of this section will thus be to describe the minimal set of

physical parameters linked to the nonnal mode coordinates that characterize the response

of the systerll in a finite bandwidth.

2.2.1. TRUNCATED NORMAL MODE MODELS

To characterize the response of a single configuration system in a given model

frequency range, one considers the spectral decomposition of the system dynamics into

independent modal contributions assuming1t first proportional damping as done in

(2.14). The S180 frequency response of a generic lightly damped structural system is
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plotted in Figure 2.1. It is clear that only the two modes with poles in the nlodel

frequency range have significant dynamic contributions (the truncated modeJ which only

keeps these two modes accurately captures the re~onances in the model bandwidth). For

other nlodes, only the asymptotic contributions (constant for high frequency modes and

roll-off for low frequency modes) have a noticeable effect. When these asymptotic terms

are added to correct the truncated model, the complete transfer function including zeros is

well predicted in the model bandwidth.

P.J.gh frequency range

modelTrunca

~odelfrequencyrange

\
lc.
l·.
\'"I'·

\ .
--~ ~.::; ~ ~~.-

\ l" ~ '---.. ......
. ..\ ..J :::-: :::..... . , ~ , ' :", :-:-.-:-: ~--...,~.~ '~:..c:.::,:,.' :~: :.,.0-0'-
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I Low frequency ass-ymptote '... ,.'..

~

Figure 2.1; Finite bandwidtll structural models: the physical parameters (inlportant
factors) are modes in the bandwidth and asymptotic contributions of
modes in the low and high frequency ranges.

The generalization of this example leads to the creation of truncated nlodal models as

follows. For a proportionally damped system, the contributions of the different nlodes are

uncoupled as in (2.14). In the frequency range of the model, the physical characteristics

of the system are the nonnal modes tPr (whose frequencies are within the model

frequency range), and the asymptotic stiffness E and mass F correction tenns (which will

be detailed in section 2.2.2). These properties are fully described by the truncated normal

mode model

(S2I +srIT +QIT )Pr =t/>Jbu
F

y = clPrPr + E + 2
s

(2.15)

23



For a non-proportionally damped system the same truncation can clearly be applied,

but it will only be accurate if the effects induced by off-diagonal tenns in r (which

couple the retained modes tPT and the truncated modes) are negligible. For the

interferometer testbed, it v/ill be shown in section 3.3 that this is a good assumption even

for a system with significant effects of non-proportional damping.

TrUllcated modal models of the form (2.15) are accurate representations of the

Il1PUt/Output response of the system in a given configuration (where a unique set of

modes is defined). Furthermore, all their terms have a significant influence on the

modeled response in the considered frequency range, the model is thus minilnal in the

sense that any smaller model would not describe all the resonances in the response.

For a given sensor/actuator architecture, one could further reduce the model size, if

some modes do not have a significant impact on the I/O response. Such reductions have

been considered, in the low frequency range both for control design (e.g. [you 1, gre1])

and for structural dynamics (e.g. [morl]), and at higher frequencies using energy

propagation arguments (e.g. [Iyol, nefl]). However, when using such methods it is

important to assess the exact validity of the model for its final purpose. Considering a

controlled structure application for example, a mode with a small open-loop contribution

may lead to a closed-loop instability [skel] so that stability must be checked with a model

(such as those considered in this work) containing all the dynamics within the control

bandwidth. (Note that such a check is not a full proof of stability as high frequency

dynamics can also be destabilized).

Finally, the propelties of the truncated modal model correspond to physical properties

of the system. !lIT' r IT' tPJb, and ctP'f are respectively estimates of the frequency,

damping coupling coefficients, modal controllability, and modal observability of the

corresponding true nonnal modes. E, and F are correction matrices allowing the model to

have accurate static stiffness and mass properties respectively.

2.2.2. ASYMPTO'fIC CORRECTIONS FOR FINITE BANDWIDTH MODELS

A direct truncation of modes that are out of the model bandwidth neglects the effects

of these modes in the bandwidth and results in a somewhat incorrect prediction of the

system static stiffness (truncation of high frequency modes) and mass (truncation of low

frequenc)' modes). It is thus generally useful to add a stiffness and a mass correction to a

truncatoo set of nonnal modes.
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(2.16)

For a simpler presentation of the problem, it will at first be assumed that truncated

high frequency modes are proportionally damped so tllat from (2.14) the displacement

contribution of any of these modes takes the form

ctPjt/JJb

The dynamic contribution of high frequency modes in the model bandwidth tends to a

constant (for s«mj one has S2 +2'mj s + rot ... rot). This approximation can be used for

all the high frequency modes in (2.14) leading to a model that is extremely accurate at

low frequencies (in the model bandwidth), but does not have the dynamics of the

truncated modes

(2.17)

The correction for high frequency modes is known in different fonns to researchers

using linear dynamic systems. For component mode synthesis problems (e.g. [cra3]), it is

introduced as "static" modes used to complement the set of modes kept in the model.

This leads to the physical interpretation of the asymptotic correction as modeling the

exact static response. In fact, as shown in more detail in Ref. [baI5], the static correction

can be expressed as a function of the true system stiffness as follows

~ {Cl/J .t/J!b} -1 ~ {ct/J .l/J!b}~ ) ) =cK b - ~ ) )
je{~cated } mJ je{rcuincd} roJ

highfR'q. modes

(2.18)

where the correction for high frequency modes appears clearly as the true static response

(cK-1b) less the static contribution of retained (non-high frequency) modes. The right

hand expression of the static correction in (2.18) should be used in practical FE

applications where only the normal modes of the considered frequency band are known

accurately but the static response can be computed through a solution of the static FE

problenl which is usually constructed to be very accurate.

For control applications, the static correction has been used for model reduction

purposes. As high frequency dynamics are truncated from the model it was found that the

asymptotic low frequency contribution of the truncated modes has a significant influence

on the response (particularly on the location of zeros) so that a correction is needed. The

so-called static correction is classically introduced as a constant feedthrough term (the

constant in (2.18)), which leads to several problems:
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- having a constant feedthrough tenn at all frequencies generates problems with many

control synthesis methods which do not allow such a tenn

- the constant feedthrough does not verify the physical property that the response

rolls-off at high frequencies (which is why control synthesis methods have;

problems)

- a constant feedthrough term has no correction for the velocity which introduces

significant errors for controlled structures where velocity feedback is used [bal5].

An original solution [baI5] to these problems is to use a "correction" mode with

critical damping and an arbitrary cut-off frequency me (in practice cut-off frequencies a

decade above the model bandwidth are appropriate). The dynamics of the correction

mode are chosen so that one cle3.rly has the same low frequency behavior for

displacement

(2.19)

but a correction term for velocity measurements Yvcl. proportional to it is now naturally

defined as shown in th(~ following state-space model

-2mc

[:] = _-Q-_O---+-_-r--
l

- [~]+

o I o
o
-u
tfJTb

1

(2.20)

The displacement correction is important for the nonnal mode properties (undamped

system) and can be essential for good predictions in cases with large stiffness

modifications. For the same reasons, the velocity correction becomes important when

accurate damping models are sought and significant modifications of the local dissipation

properties are considered (i.e. the addition of a local damper which in terms of modeling

introduces a significant amount of rate feedback).

In MIMO cases, a different correction mode must be used for each input. Such an

increase is perfectly acceptable for control purposes but Inay be too large when the
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control input is used to represent a modification of the structure (see section 4.3.3 which

describes the correction introduced using the FE perspective).

The analysis has been presented for modes with proportional damping. From (2.18)

where the correction is seen as " correc(ed static response, it is clear that the asymptotic

contribution of high frequency modes only depends on the system stiffness so that the

results remain applicable even for a non-proportionally damped system. However noo­

proportional damping may induce a coupling of low and high frequency normal modes

which will be addressed in section 2.2.3.

For prediction purposes it is also natural to consider the full shape of the correction

mode as a mode appended to the set of kept normal modes. To each actuator can be

related a correction modeshape

tPc = (K-J
- L {f/).(p! / m~})b'

. {kept normal modes,} } } J
J e other sulie mod~

(2.21)

(2.22)

which is defined as the static response to the actuator, less the contributions of retained

nonnal modes. This shape is known at all the finite element DOFs q and using the FE

shape functions at all the points linked to the underlying continuous model. For an

augmented matrix of modes tPT =[tPKeptNonnalModcs tPcOfTeClionModcs] the equations for the

truncated nonnal mode model (2.15) become

(S2J1. +srIT +D IT )PT =tPJbu
y = cl/JTPT

where the mass matrix J1 is still diagonal as the ~orrection modes are constructed in (2.21)

to be mass-orthogonalized among themselves and mass-orthogonal to the retained nonnal

modes, nIT is a block diagonal matrix (one can easily show that correction modes as

defined by (2.21) are also stiffness-orthogonal to the nonnal modes), the asymptotic teon

E present in (2.15) has been incorporated in the dynamic correction modes. The sub-bloc

of nIT corresponding to the static modes, can have arbitrary" high frequency dynalnics

(e.g. a diagonal bloc with correction mode frequencies liJ; as initially proposed in this

section, or the projected stiffness matrix t/J~Kt/Jc as used in component mode synthesis

methods).

In some cases low frequency modes may also be truncated. The rigid mass properties

of the system are then inaccurately modeled, so that a correction can be useful. In the

model bandwidth, one has for these modess»mj so that S2 +2~(J)js +mJ ". S2. The total

contribution of the low frequency modes can thus be approximated by
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(2.23)

Using this approximation, the response of the different low frequency modes can be

represented using a rigid body (frequency at zero) correction mode per actuator, leading

to a corrected model which in the state-space takes the fonn

010

[:]= _Q 0 -r I [;]+ ~~b u

001

[
YdisP.] =
Yvcl.

(2.24)

For more details, including practical considerations on how to compute such

corrections for cases where only some Donnal modes are estimated, see reference [baI5].

Except for component mode synthesis problems, such corrections are seldom useful

for predictions using analytical models, since low frequency modes are usually known

and retained in the truncatea model. Their necessity, however, is clear for identification

purposes, when tests of suspended structures do not include the low frequency range

where the resonances of suspension modes are located.

2.2.3. REPRESENTATION OF DISSIPATION BY THE VISCOUS DAMPING MODEL

Dissipation in structures comes from several different sources (e.g. structural

damping, friction, viscous damping) with different frequency and spatial characteristics.

Dissipation and its frequency dependence has been well characterized for sinlple

elements like bars of different materials (e.g. Ref. [ber5]), and it was even shown that the

models obtained remain valid even for extremely low levels of vibration (e.g. Ref. [tin1]).

But for complex systems like satellites, a number of uncharacterized phenomena (joint

friction and free-play, bond dissipation, cable slackening, etc.) are generally the. source of

the system damping. Thus, an accurate local model of dissipation would use several types

of representation for the different phenomena, would be non-linear, albeit weakly so, and

could not in general be. obtained for complex systems as most of the dissipation sources

in such systems are not characterized.
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The only practical solution is thus to represent the averaged contributions of all the

dissipation mechanisms by a simplified and usually linear model. In the present work, the

linear viscous damping model (rate dependent dissipation) used in the previous sections

will be considered. As the viscous damping model is a simplified representation of more

complex phenomena, it can only be validated by an assessment of how well the

phenomena observed in the system tests are represented.

The viscous damping model is linear, it can thus only represent weakly non-linear

dissipation mechanisms. Practically, this implies for experiments, that frequency response

functions should not depend on the way they are tested. For example, if sine-sweep and

broadband frequency response function estimation tests (see section 3.1.1.) give \videly

different results, the measured response is non-linear (provided the te j are correctly

done) and the validity of the viscous damping model is dubious. 1"he present work is

restricted to cases such as the IT for which this property is verified.

It is convenient to consider the viscous damping matrix in normal mode coordinates

(called r in this work), and a usual simplification of the damping representation is to

assume that the matrix r is diagonal. This assumption called proportional or modal

damping can be seen in many different ways.

An early description of proportional damping can be attributed to Lord Rayleigh

[ray!], who showed that damping was proportional if the damping matrix was a linear

combination of the mass and stiffness matrices. This description can be extended by

describing C as a linear combination of the mass and stiffness matrices at different

powers

c= I(caMa +cpKP).
a,/3

(2.25)

A proof of the equivalence between (2..25) and the fact that ris diagonal can be found

in [caul]. Other mathematical descriptions linked to the commutation properties of the

system matrices can also be used (see Ref. [lial]).

The definition (2.25) leads to the physical interpretation of proportional damping as

evenly distributed damping: if, at all points, dissipation is proportional to the local strain

or kinetic energy, (2.25) will be true and a proportional damping model will be accurate.

Conversely, (2.25) will not be true for a system with a few local dampers and a non­

proportional damping model will be needed.
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Although the proportional viscous damping model is very useful for many lightly

damped structures, it is sometimes not aCC1Jrate enough to represent test results well. It is

then useful (and usually sufficieut) to use a non-proportionally damped model with r
being a full (but positive semi-definite) matrix.

The positive-definiteness of the damping matrix, expected physically and

corresponding mathematically to the fact that the model will predict energy dissipation

for any forced motion (as clearly expected from a passive system), limits the possible

extent of the effects of non-proportional damping. In fact, as shown in the example

treated in section 5.2.2 or in Ref. [par2], damping levels around 1% and modal densities

with modal separation of less than 10% are needed to for the apparition of phenomena

that cannot be well represented by a proportionally damped model.

A usual characterization of non-proportionally damped systems is that the residlles of

their complex modes are not in- or out-of-phase, a property which can be shown for the

proportional damping case as follows.

As indicated in section 2.1.2, a particular set ytof 2N vectors of dimension N is the set

of complex eigenvectors of the system if it verifies the two orthogonality conditions (2.6)

and (2.7). For a proportionally damped system, V' =[l/J i/J] (remember that there are 2N

complex modes V' and N normal modes tP (assumed mass nonnalized») verifies

[VIT AVlTJ[~ ~I;]=[~TC~ ~TC~]+A[~TM~ ~TM~]+[~TM~ ~TM~]A

[r rl+A[I 1]+[1 I]A =A-A = '. ±i2mj~1-~: (2.26)

and

(2.27)

so that it is the matrix of the complex eigenvectors of the full order model. This

eigenvector matrix however corresponds to the scaling coefficients J1 = A - A instead of

J1 = I (assumed throughout this work). This particular fonn of the complex mode matrix

11', where the normal modes are repeated twice, allows (for proportionally damped

systenlS only) to ignore the distinction between normal and complex modes.

Using the fonn '" = [i/J l/J] the complex modes are real, so that all the residues are in

phase or out-off phase. When a system is tested :he complex modal observability cV' is

identified. From (2.26)-(2.27), the complex modes are, for proportionally danlped
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systems, equal to t/Jj modulo a complex scaling coefficie~.it. For any scaling, the complex

modal observabilities are thus on a line and by a usual abuse of language they are called

real. If the observabilities are not on a line (by the same abuse of language they are then

called complex) and the system is non-proportionally damped. Different other difficulties

linked to "complex" modes of non-proportionally damped systems must be addressed as

will be done in section 3.3.

Another way to characterize proportional damping is to consider the transfer function

expression linked to the complex residue. For the symmetric real problems considered

here, the complex modes come in complex-conjugate pairs. Taking the modal transfer

function description (2.9) and grouping the complex-conjugate tenns leads to

(2.28)

where Aj = Re(cljljljlJb) and Bj = Im(cV/jljlJb).

Comparing this expression with the transfer function expression (2.14), one can

characterize proportional damping as the fact that the tenns Aj are 0 or, in other words,

that the different modal velocities Pi roll-off independently as s tends to infinity (the

system is described as a series of independent second order systems).

As the viscous damping model is a simplification of more complex phenomena, there

is no reason to assume that it should be defined for all the model forms. In particular if

the modal damping matrix rIT of the truncated nonnal mode model (2.15) allows accurate

predictions of system response, there is no need and in practice it is not possible to define

the non-truncated matrix. Such a truncation is of course more restrictive than using a full

matrix, so that there may exist cases where the model bandwidth needs to be extended to

account for the actual phase distribution of the complex modal observabilities. But in

practice, as shown in section 3.3, the use of a truncated non-proportional damping matrix

is a very effective extension of the proportional damping assumption.

2.3. CONCLUSIONS

The assulnptions used for this research, on the dynamics of the system and properties

of the actuators and sensors, were reviewed. Analytical properties of complex and nOnTial

modes were detailed. Addressing the real case of models valid over a restricted
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bandwidth, the validity of truncated nonnal mode models was discussed. The nlass and

stiffness corrections for lo\v- and high-frequency truncated mo':\es were detailed. Finally

the use of a truncated non-proportional nlodal damping matrix was introduced as an

efficient way to obtain an accurate linearized representation of the complex phenomena

leading to the overall system damping.
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Cliapter III

Identification of Experimental Parametric
Models

The most accurate models of the dynamic response are generally obtained through tests of

the actual system. The estimation of parametric models (state-space models or other

equivalent models detailed in section 3.1.2) from measured test data with no or little a priori

knowledge of the system is a well studied problem usually called identification. Existing

identification algorithms do not take full advantage of the specific properties of lightly

damped structures and thus often do not achieve the high accuracy expected in this work.

New solutions are proposed in this chapter, which have been successfully applied to

analyze different experimental tests, including those from the Interferometer Testbed (IT),

which will be used here as a .iupporting example.

Data
Time/frequency domain
Filtering, averaging
Bandwidth

V
Cost function Algorithm
Time/frequency Direct
domain --?'- OptinUzationstra~gy ~
Quadratic, Log. Minimality
Weighting Reparametrization

t
Parametrization
Polynomial
State-space
Modal

Identified
Model

Figure 3.1: The general process of parametric model identification from test data.

As shown in Figure 3.1, identification methods can be seen as directed optimization

algorithms, which are differentiated by the use of different treatments of data (applied to
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minimize the effects of noise and high frequency dynamics), model paranletrizations, cost

fUllctions (measuring the difference between the data and the corresponding model

predictions)~ and optimization algorithm (leading to a set of paranleters). In section 3.1,

following the categories outlined in Figure 3.1, a complete review is done of the different

options characterizing identification algorithms.

In section 3.2, a new identification algorithm based on the modal parametrization i~

detailed. This algorithm optimizes a initial guess of the pole structure detennined through

other identification algorithms and corrected by the user, so that results are often

significantly more accurate than those of other methods. Implementation issues are

discussed and the algorithm is shown to be very cost effective for the simultaneous

treatment of multiple transfer function~. New solutions to treat problems of model

minimality and determine scaled estimates of the complex modal observability and

controllability matrices are introduced. In the case of the IT, the algorithm is shown to

allow the accurate identification of all the dynamics in the 20-60 Hz frequency range, even

though mode 9 is localized to one of the truss legs, modes 6 and 7 are extremely close in

frequency, and the effects of non-proportional damping are significant.

Accurate identifications of non-proportionally damped systems imply the use of

complex modes. However, only normal modes are predicted by FE analyses. Thus, for

problems where a link with the FE predictions is wanted, it is necessary to define an

efficient procedure to estimate normal modes from complex modes. However, existing

methods (reviewed in section 3.3) have been of limited accuracy when applied to cases

with significant contrib-utions of non-proportional damping (most of today's mechanical

systems). It is shown in section 3.3 that the complex modes of a non-proportionally

dampe.d truncated normal mode model verify a properness condition and that this condition

is sufficient for the existence of an exact transfonnation between the complex and nonnal

mode parametrizations. A new algorithm is then derived to detennine, in both cases with as

many and more se,nsors than modes, the set of proper complex modes closest to the

measured modes. From these proper modes, the truncated normal mode model can then be

determined with no further approximation. For the case of the IT, the overall procedure is

shown to be very accurate and to only introduce small distortions from the identified

complex mode model. The results presented mark the first successful experimental

characterization of non-proportional damping (previous results only considered simple two­

mode systems).

Finally, results of identification algorithms are sensitive to noise in the measured

frequency response functions. In section 3.4, existing methods for the evaluation of this

sensitivity are reviewed and extended to the new complex mode identification algorithm.
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Applications to the IT case lead to the conclusion that identification errors obtained with the

proposed idelltification algorithm are smaller than the experimental variations of the system

between different tests.

3.1. A CI.,ASSIFICATION OF IDENTIFICATION METHODS

Identification is t.he process of determining a pardIlletric model matching the measured

response of a system. Researchers in two fields, controls and structural dynamics, have

devised a number of somewhat overlapping algorithms (see the reviews in Refs. [full,

alII, ewil, ljul, levI] and the partial list in table 3.1). As was shown in Figure 3.1, four

elements (data, parametrization, cost function, and algorithm) determine the identified

models. Rather than describing the attributes of the different existing identification

methods, the followillg sections will review the possible choices within these four

categories.

Table 3.1: A partial list of usual identification algorithms in the Time (TO) and
Frequency (FD) Domains.

Parametrization Data / Cost fet. Algorithm

Nonnal mode, Maximize in-phase Force appropriation [ott1]

pole response

Complex mode, FD Quadratic Peak picking, MDOF residue fits [ewil]

pole Complex mode identification [bal3]

Spanos [spall

FD Log quadratic Jacques [jac!]

State space model TO quadratic System realization [hob1]

Ibrahim Time Domain [pap1]

Eigensystem Realization Algorithm [jual]

Polyreference [croll

Extended Kalman Filter (e.g. [karl])

FD quadratic Polyreference [zan!]

Polynomial TO quadratic Polynomial (ARMAX, DE, etc.) [ljul]

FD quadratic Orthogonal polynomials [rie I]

Reduced systenl ~n quadratic error Direct system parameter identification [leuI, era1]

matrices
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3.1.1. EXPEF~IMENTAL DA T A

Time-domai11 (TO) data are the only actually measured data. Limitations applicable to

time domain data come from the resolutiol1 of sensors in space (all sensors have minimum

and maximum measurable amplitudes) and frequency (sensors have bandlimited ranges

where their output can be related to the quantity of interest). For digital systems the

frequency band is also limited by aliasing, so that ftltered bandlimited data must be used.

The major disadvantage of TD data is that an explicit treatment of noises is often

necessary. Many traditional system identification methods (e.g. ARMAX [ljul], Extended

Kalman Filters [karl]) assume a filtered white noise model (or more recently a worst case

detenninistic noise) which is estimated at the same time as the system model. For structures

in a clean environment, another usually quite efficient approach uses the assumption that

noises are uncorrelated from the inputs used to excite the system. Although under this

assumption some algorithms are asymptotically insensitive to the measurement noise, it is

in general useful to do a non-parametric identification removing components that are

uncorrelated to tile inputs from the measured outputs. Such correlated measures of the

response (pseudo-ID data) are fundamentally equivalent to the use of frequency domain

(FD) data (they are related to frequency response functions through the Fourier transform).

For linear time-invariant systems, the response can be described in the frequency

domain (FD) using frequency response functions (the FD equivalent of ilnpulse response

functions). Frequency response functions, which are estimated through a process of 000­

parametric identification, describe the response of the noise-free linear system to any type

of excitation. In the FD, system and noise characteristics are thus readily separated into a

set of frequency response functions and a noise spectrum (which is quite often also

estinlated [lju1]).

Sine-sweeps [ewil, ljul] are probably the oldest non-parametric identification

procedures. They consist of a measurelnent at different frequencies of the steady state

response to sinusoidal excitation. If the system is linear and the noise is not correlated with

the input, they allow unbiased estimates of points of the frequency response functions. For

non-linear systems, they allow a determination of the amplitude dependence of the

frequency response (valid frequency domain information for non-linear structures is

usually obtained using sine-sweeps). Although very popular for structural dynamic testing

and considered more accurate (particularly for the measurement of danlping properties),

sine-sweeps have the main drawback of implying extremel)' long acquisition times if tnany

frequency points are to be tested.

For other inputs with a larger spectrum (e.g. impact, pseudo-random), many frequency

response function estimators have been developed (see Refs. [ewi1, lju 1, cob 1, alI2]),
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which allow the ffifasurement of frequency response functions with extremely low bias and

variance. Averaging and windowing are often successfully used to reduce the estimate

variwlce, at the cost of an increase in its bias, which should be well understood for a proper

test. Tests with simultaneous multiple inputs are possible and lead to more consistent sets

of data, which linearize and average the structural response in a sense that should be further

investigated.

The validity of non-parametric identification depends of the statistical assumption that

inputs and noises are uncorrelated (which, as shown in Ref. [ljul], allows the unbiased

estimation of frequency response functions for open-loop systems). This statistical

assumption, which is usually met for the systems of interest here, is clearly nluch less

restrictive than parametric noise models usually limited to small dimensions, so that the use

of FD (or pseudo.....m derived from FD) data seems much more appropriate for the

structural dynamic applications considered here.

A last advantage of FD data for the application at hand is that it allows an accurate

truncation of high frequency dynamics. Contributions of poles can, for lightly damped

structures, be very well approximated by asymptotes even at frequencies close to the pole

resonance. The use of FD frequency response function estimates in restricted frequency

bands thus allows the identification of all the modes of interest, while approximating the

contributions of other modes by simple asymptotes. (Note that the same effect can be

obtained in the TO when using pseudo TD data generated by the inverse Fourier

transform).

For the present work it will be assumed, as is generally done for structural dynamic

applications, that estimates of the continuous tilDe frequency response functions can be

derived from test data at a finite number of frequencies OJ. If the data acquisition is done

digitally, discrete frequency response functions (based on the z-transform rather than the

Laplace transform) may be available, but can be transformed to estimates in the Laplace

domain as discussed in Ref. [fral].

3.1,,2. PARAMETRIZATIONS

Several categories of models are considered for parametric identification, and have led

to techniques that can usually be developed in both the time and the frequency domain.

Polynomial or rational fraction models where among the first used for systetn

identification. They have been applied both in the time domain (leading to the well known

ARMAX, OE, etc. models detailed in Ref. [ljul]), and in the frequency domain (e.g. the

Rational Fraction Polynomial method [riel, shill which uses polynomial orthogonalization
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techniques to obtain better numerical conditioning). A general fonn of these models is for

SISO discrete 1D systems [ljul]

A(z)y(t) =B(z) u(t) + C(z) e(t) (3.1)
~(z) l)(z)

wtlere the input is u, the output y, the white noise disturbance e (to be used for TD

identification), and five possible polynomials are considered: A, B, F (corresponding to the

system response) and C, D (shaping the noise input). For MIMO problems, matrix

polynomials can be used (Ref. [ric2], etc.), but it may then be difficult to guarantee the

minimality of the model.

Polynomials tend to be badly numerically conditioned if many poles are used and if the

frequency range of poles or zeros is very large (the case of interest here). It is thus

sometimes more appropriate to use a pole/zero deconlpositi.on (products of 1st order

polynomials)

Y(S)=c (s-zJ)...(s-z)) u(s)
(s - AJ ) ••• (s - ANT)

(3.2)

where the overall gain is given by G, the zeros by the Zj and the poles by the ~i.

The use of the polynomial parametrization implies a choice of polynomial orders. This

choice introduces problems of definition for the identified parameters. For example, some

the model poles correspond to estimates of the system poles, but others (called

computational poles) allow a better agreement with the measured data (the meaning of the

modes associated with such poles is unclear and these modes probably deteriorate the

accuracy of estinlates of true modes).

The polynomial parametrizations (3.1 )-(3.2) are not very appropriate for MIMO

problems since the uniqueness conditions on poles, modal controllabilities and

observabilities are difficult to relate to conditions on the polynonlials linked to each SISO

transfer function. All these difficulties are however easily treated when using MIMO state­

space models of the fonn

x= Ax+Bu

y=Cx+Du
(3.3)

General state-space models are used in the system realization theory, first introduced by

Ho and Kalnlan [hobl]. Based on similar considerations, the Ibrahim Time Domain (ITO)

method [papl, pap2], the Polyreference method [cro2, croll, the Eigensystem Realization

Algorithm (ERA) Dual] and several other variants were developed and are still actively

used and refined.
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(3.4)

In an effort to identify the nonnal mode models, a restriction of the general state space

form (3.3) was introduced and led to reduced system matrix approaches (see Refs. [copl,

leu!, cra!, lee!, cra2l) which assume a second order parametrization of the model

xs2 =-CTxs - Krx +bu

)'=CX

for the identification. These methods assume a knowledge of the input u and of the state

response (acceleration, rate and displacement) so they have been generally applied in the

frequency domain (where the state response is given by xs2
, xs and x) and restricted to

cases with more sensors than modes, where c and x can be easily defined from measured

frequency response functions. As will be seen for the interferometer in section 3.3.4, these

methods tend to have difficulties in identifying damping contributions. The use of FD data

in these approaches allows truncating high frequency resonances, but asymptotic tenns are

difficult to introduce.

Free parameters for these methods are choices of sensors or generalized sensors and

input frequency weightings. The results can give satisfactory estimates of frequencies and

modeshapes but are often quite inaccurate for the damping representation.

The general polynomial and state-space fonns do not easily allow the specification of

further knowledge of the system and thus iterative refinements of the nlodels. Frequency

weightings or shaped TO inputs (the only tools generally available to improve results

judged unsatisfactory) do not give a direct mechanism for eliminating computational modes

or specifying true modes that are not init.ially identified (e.g. local modes). These

limitations are hcwever alleviated if a physical paranletrization (pole/complex mode or

pole/zero) is useo, since different parameters can tllen be improved independently.

In the polynomial fOlm (3.2), one can clearly remove or specify a pole or a zero. But,

as mentioned above, the polynomial fonn is not appropriate to deal with MIMO problems,

so the pole/complex mode parametrization has been studied in more detail for the present

work.

The complex mode parametrization is a particular reprtsentation (without restriction) of

the state-space models (3.3), corresponding to choosing modal states for x (which leads to

a diagonal A matrix). For structures, this parametrization corresponds to the cOInplex mode

model introduced in section 2.1.2, whose response in the FD can be written as

2N Tb
H(s) =IC'I'i'l'i . (3.5)

j=J S - Aj
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Because real structures have an infinity of modes, the only possible objective is to

create a model keeping the tenns having significant contributions in the test bandwidth (the

frequency range where the estimated frequency response functions are used). For lightly

damped structures, only the modes in the test bandwidth (indices between n, and n2) have

significant dynamic contributions. The contribution of other modes can be extremely well

represented by asymptotic tenns (introduced in section 2.2.2): constants for poles above

the measured bandwidth (since S-Aj ,:; Aj for those poles) and terms in lIs for modes below

(since S-Aj ;::;; s for those poles). This simple analysis leads to a first complex mode model

parametrization

(3.6)

(3.7)

(3.8)

where Rj is the complex residue matrix associated with a given pole (it is the experimental

equivalent of the analytical c'IIj 'IITb) and the complex terms E and F are respectively

correct for the asymptotic behavior of high frequency and low frequency poles (including

negative imaginary poles).

Since the tenns of this model are the only ones having a significant influence on the

frequency response) they are the o·nly ones that can be identified accurately. However, for

the real systems considered hereJ the residue matrices of complex-conjugate poles are

complex-conjugate matrices. Thus, even though the test only contains positive frequencies,

one can introduce a symmetric pole pattern which is physically known to exist. This

consideration leads to a second complex mode model parametrization

~{R. R:} F FHI(s)=£.J ~+ _1. +E+-1+--f,
j=l S Aj s It j S S

that describes the contributions of complex-conjugate pairs of poles, corrects for the high

frequency modes with the real static correction matrix E, and for the low frequency modes

with two contributions described by the real matrices FJ and F2 (see motivation below).

Regrouping the contributions of the complex-conjugate poles as in (3.7), one can

express the model in teffils of real valued quantities

~{ T~s+T. }HI(s) =£.J 2 2 1( J 2 •
j s +2 Wj+lOj

where T; =Re(Rj ) and Tj =- Re(Rj )(mj + Im(Rj)~1- 1;2 mj • Note that the direct link

between the residue matrices and the complex modes is lost in this form (used among
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others by Spanos [spall and Gilpin [gill]), which is thus less appropriate for the analysis

of physical properties of the system.

From (3.8) it appears that the asymptotic high-frequency contribution linked to r; is in

1/s and the contribution linked to Tj is in 1/s2 . This motivated the two correction ITlatrices

FJ and F2 used in the modal parametrization (3.7). Note also that a correction of the fonn Es

could be illtroduced to account for effects of the r; matrices of high frequency modes.

For structural dynamic applications, the assumption of proportional damping is very

useful since complex and normal modes are then exactly proportional. In the fonn (3.8),

the proportional damping assurnption corresponds to T; =0 (see section 2.2.3), which

leads to a real mode parametrization

(3.9)

This parametrization corresponds to a (nonnal mode)j(pair of complex-conjugate poles)

parametrization (since theoretically Tj = ctP/pJb. see section 2.1.3). However. the

enforcement of this paranletrization, consistent with the assumption of proportional

damping, does not exactly estimate the normal rnodes for non-proportionally damped

systems (see the example in section 3.3.4).

Finally, the modal parametrization is also the underlying basis of the force

appropriation method, which should be mentioned as one of the oldest identification

methods for structures. This method, which tunes r~lative amplitudes and phases of

multiple s!nusoidal inputs to excite the resonance of a single mode, was first introduced in

Ref. [lew!] and has since been widely developed (e.g. Refs. [breI, nie!, will]). 1t is still

widely used in industry through highly automated testing packages. Modal damping must

often be assumed, because the appropriation of phase differences other than l)O or 1800 at

different excitation locations can be exu-emely long.

3.1.3. COST FUNCT~ONS

Cost functions are measures of the difference between the model prediction and the

data. Identification algorithms have the objective of minimizing the preAliction error as

measured by the cost function which thus plays a key role in the result of any method.

In the time domaiil, most algorithms use cost functions on the prediction en"Of, such as

IIYM-Y111= L I(YMjA;(t)-YljA;(t)t·
j e {measured sensor location}

ke{muqJ!Cd actuator )(gtion}

le{ meallurcd time point}
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or norms on the Hankel matrix (which for some problems is equivalent to the use of

(3.10». For more details on time domain cost functions, see Ref. [ljul] for example.

In the frequency domain, experimental frequency response iunctions are estimated at a

discrete number of frequency points (e.g. the test frequencies of a sine-sweep or the

frequencies associated with a finite lengtil matrix of time domain measurements (see Ref.

[ljul]»). Because the comparisons between experimental and modeled frequency responses

can only be made for a finite number of points, any norm could be used (and they are all

eq'uivalent in the limit of perfect data). In practice however, two factors determine the

choice of a given norm: the easiness of use, and the sensitivity to the measurement noise

and to variations of the estimated parameters.

Because of its useful mathematical propenies (it leads to least-squares problems), the

quadratic cost function

Jq~dntic = L I(HMjA;(W,)- H/jA;(W,)t
je{measured sensor location}

ke{ meuured actuator location}

Ie {meamrcd frequency point}

(3.11 )

is often used as a measure of the difference between the estimated and predicted frequency

response functions. (In the limit, as the frequency response is known at all points, this cost

function corresponds to the square of the H2 nonn).

Least-squares problems derived from the use of the quadratic cost function allow fast

computations, but better mathematical properties can be obtained using other nonns. In

panicular, the logarithm (the complex log or, with less accuracy, the log magnitude) of the

frequency response function can be used in a Log Least Squares (logLS) cost function

JLog Least Sq~n"A = L I(Log HMjA; (W, ) - Log H/jA; (W, ))r
j e {measured Salsor locatioo }

le{measurcd actuator l<r.,ltion}

le{measured frequency point}

(3.12)

To highlight the properties of the logLS cost function, a one DOF example is

considered

H(s) = R
S2 +2'ms+w2

with nominally the non-dimensional parameters R=1, ro---= 1, ~=O.O 1.
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Figure 3.2: Artificially nonnalized (-) quadratic (3.11) and (---) logLS (3.12) costs
for varying estimated a) normalized frequency, b) damping rat.io,
c) nonnalized residue, the other parameters being nominal.

Figure 3.2 shows the quadratic (3.11) and logl"S costs (3.12) corresponding to errors

on the three parameters (pole frequeccy, damping and residue) for a frequency response

function estimate with 1000 experimental frequencies linearly spaced between 0 and 2. It

can be seen that both the quadratic and logLS cost functions have local minimums at tIle

nominal values. However, the quadratic cost decreases for an estimated frequency above

1.07, so for a large initial error on the pole frequency the nlinimization would probably not

converge. For identification such errors are unrealistic, so the quadratic cost is sufficient

(and will be used for the new identification algorithm proposed in this chapter), but initial

FE modal frequency errors are often quite large, therefore the logLS cost (3.12) is indicated

for FE update procedures (it will be used in Chapter IV).

Both cost functions are locally convex with respect to all the parameters near the

minimum, but for inaccurate frequencies, the quadratic cost is convex in a region of

approximately ±2% (around the nominal frequency), versus ±15% for the logLS cost.
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Practically, this means that minimization algorithms will converge much more easily using

the logLS cost.

From this analysis and that of further test cases with more modes, the logLS cost can

be shown to have better properties than the quadratic cost on several points:

- It is a strictly decreasing function of the inaccurate parameters in much larger regions

around the minimum.

- It is locally convex in much larger regions which will help minimization algorithms.

- It is inherently more sensitive to zeros (anti-resonances) and thus to mode shape

errors. This property might be a major motivation for the use of the logLS cost to

identify models for control design purposes.

- As obselVed in Ref. [arrl], problems of local minimums for insufficient frequency

spacing are solved.

For a given cost function and identification algorichm, the input content can often be

tailored, thus giving a powerful but of difficult use tool to improve results I In the TD this

possibility is implicit in the fact that the cost functions measure the discrepancy between

measured and predicted outputs, for an input that can be designed by the user (e.g. Ref.

[hunl]). In the FD, changing the input corresponds to multiplying the frequency response

functions by a frequency weighting corresponding to the input spectrum. For example, a

weighted quadratic cost function will take the fonn

lWhcighledwstSqua= = L Iw(O,m,)(HMjl;(m,)-H,jl;(m,)t,
j e {measured Ialsor location}

ke {measured ae.tuator location}

le{measured frequency point}

(3.14)

where the weighting W may depend on both frequency and the identified model parameters

(J. Such weightings are essential to some algorithms, such as those based on the ARX

model structure [ljul], but are usually not necessary for the new algorithm presented in

section 3.2.

3.1.4. RESOLUTION ALGORITHMS

Resolution algorithms (see a partial list in Table 3.1) are usually constrained by the

ability to obtain a useful solution to the minimization problem in a reasonable tilne.

A number of identification algorithms use particular fonnulations of the minimization

problem allowing direct or fast resolutions of the problem. Tllis is the case in particular of

algorithms based on the polynomial parametrization (3.1) (ARMAX, DE, orthogonal

polynomials, etc.) and the quadratic cost functions in the TD or FD.
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System realization algorithms (lrm, ERA, Polyreference, etc.), based on the general

state-space parametrization, use operator norms on the Hankel matrix and find a direct, but

sub-optimal, solution to the minimization problem.

These algorithms are \.lsually called "black-box" identification algorithms since their

solution is only based on mathematical properties of the stated problem. In the present case,

two essential properties can be assumed, thus leading to more appropriate algorithms:

- The type and length of inputs used in experiments are not limited, and levels of noise

present are small compared to the achieved levels of response, so estimates of

frequency response functions can be obtained with high levels of accuracy (meaning

low bias and variance of the estimate). In other words, noise is not a problem.

- Structures are inherently stable systems with, in general, imaginary dynamics (poles

with less than 10% percent damping), so a good model truncation can be achieved by

using frequency response functions in a limited frequency range.

From the second property, the modal parametrization detailed in section 3.1.2 allows

minimal descriptions of the actual system dynamics and thus the identification of the

physical properties of the system (the poles, complex mode observabilities and

controllabilities).

The most easily obtained infonnation on the system response is the location of the poles

whose frequencies can generally be graphically picked with high accuracy using one or

several measured frequency response functions or mode indica:ur functions combining the

response of several frequency response functions (e.g. Ref. [wi12]). Such visual

comparisons of measured and estimated frequency response functions usually allow the

user to detennine a number of errors in identified models. Using the traditional "black-box"

algorithm, tllese errors are corrected on an ad-lwc basis (by using sub-frequency ranges to

improve resuits for particular modes, by introducing frequency weightings, by removing

computational poles, etc.), but the results obtained have no guarantee of accuracy.

To properly use this easily available knowledge of the system pole structure, the

identification algorithm must be iterative and use an initial model where the pole frequencies

appear explicitly. Such an algorithm is introduced in the next section and shown to give

accurate models for structures with high modal densities, local modes, and significant

effects of non-proportional damping.
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3.2. A NEW IDENTIFICATION ALGORITHM BASED ON THE COMPLEX MODE

PARAMETRIZATION

This section addresses in more detail the implementation of the algorithm developed as

part of this work. (Like all the results of the present work, this algorithm is implemented in

a Toolbox for Matlab [baI2]). The main characteristics of the algorithm are:

- frequency domain data, which allow the treatrnent of measurement noises through

non-parametric identification and the identification of all the modes of a particular

bandwidth as well as the truncation of other modes through the use of the estimated

frequency response function in that band.

- the complex mode parametrization (3.6), which is consistent with the objective of

identifying all the modes of the considered bandwidth. (The parametrizations (3.7)

and (3.9) are also implemented in [bal2]).

- an iterative update of an initial guess of the pole structure (while simultaneously

estimating the corresponding residues), which allows the use and in general the

improvement of the results of other ill algorithms.

- the quadratic cost function (3.11) without weighting, which allows a cost-efficient

and yet extremely accurate algorithm.

Implementation details of the basic algorithm are discussed in section 3.2.1. The

solutions of the basic ~lgorithm are not minimal MIMO models, so new methods to

determine the modal multiplicity, as well as scaled estimates of the complex mode

controllabilities and observabilities, are introduced in sections 3.2.2 and 3.2.3. The

efficiency of the overall procedure is demonstrated in section 3.2.4, using experimental

data taken on the IT. Finally for reference, the problem of reparametrization into a real

parameter state space model is addressed in section 3.2.5.

3.2.1. IMPI~EMENTATION OF THE COMPLEX MODE IDENTIFICATION

ALGORITHl\-1

For any of the modal parametrizations (3.6)-(3.9), the transfer function depends

linearly on the residues and asymptotic correction tenns (matrix Rj for each of the cOl!lplex

modes of the model, and matrices E and F for the correction terms). For the rest of this

section, the elements of these matrices will be stored in the matrix R=[Rj,E,Ff of

dimensions NT+2 by Ns *N". For a system with NT poles, the first NT rows of R contain

the residue matrix associateJ with the NT poles. 1'he last two rows contain the correction

matrices. For MIMO systems, an arbitrary storage scheme such as storing the columns
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sequentially (i.e. \.R11 , R21 ,' ·,R12 ,R22 ,'· ·1) is used to make the link between the row storage

in R and ttle Ns by NA matrix form defined in the parametrizations (3.6)-(3.9).

A pole contribution matrix 11>(Il j) is defined as follows. The first N T columns of

11>(Ilj) are equal to ]/(s -Il j) evaluated at the measured frequency points s={jill,} for

each of the NT poles Ap The last two columns correspond to the asymptotic contributions: a

column of ones for the stiffness correction E and a column equal to {]/jill,} for the mass

correction F. (See Ref. [bal2] for more details if necessary).

The frequency response functions predicted by a model of the form (3.6) (a similar

expression would hold for (3.7) and (3.9» are the product of the matrices t1> and R defined

above

[Ill l{. }=[t Rj +E+ F] =[ ] ,],4] [Rj,E, F]T =cP(Aj)R (3.15)
)01, •_ S - A. S S - A, . S

)-nl) s={jQ),} } s={jro,}

The identified model is the model which minimizes, near an initial model, the chosen

cost function (here the quadratic cost function (3.11». Even with a good initial model, a

simultaneous minimization on the poles and residues is difficult, computationally intensive,

and unreliable. Therefore, doing the minimization in two steps is proposed here.

Using the expression (3.15) of the predicted frequency responses, the minimization of

quadratic cost function (3.11) leads to the following linear least-squares problem for the

matrix R

(3.16)

which, for a given set of poles, is solved as the first step of the proposed method (for the

identification/optimization, the residues are solutions of (3.16) and not free parameters).

The use of the least-squares problem (3.16) to determine residues for a given set of

poles has been proposed independently by several authors (the interpretation using a

maximum likelihood error criterion in [jeol] is worth noting). Hov/ever, such evaluations

are only accurate if the poles are accurate.

To improve the results obtained with the initial set of poles, the method proposed here

considers the poles as free parameters and searches (second step) for the Inininlum of the

cost function (3.11) for sets of poles near the initial guess. During the search the residues

are defined as solutions of the least-squares problenl (3.16).

The least squares problem (3.16) has, for any given set of poles Ai' a closed foml

solution
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(
T )-1 TR= cP 4> cP H},,(s) (3. J7)

(3.18)

(3.19)

which can be used directly, although better numerical conditioning can be obtained with

different algorithms designed to solve least-squares problems (see Ref. [law 1]). From

(3.16) and (3.17), the cost] can be rewritten as

J = trace((HJ - HMf (HJ - HM)) =trace( H~(l- <p(<pT<prJ <pTf HM)

From (3.18), a closed-form expression of the gradient of the cost J with respect to free

parameters (J (here the free parameters are the, frequency and damping ratio of each of the

estimated poles) can be obtained as follows. Using e =HI - HM , the partial derivative of J

with respect to (J is

dJ = eT de + deT e =2eT de = 2HT (/_ 4J(\l'TcP)-l tPT)(_ d<P R _ <p dR) =
de dO de dB M dO dB

dJ =2(H _ H )T dtP. RdO J M dO

To update the poles, any optimization algorithm would be appropriate, but it appears in

practice that the sign of the cost function gradient for a given pole frequency (aJlam) or

damping ratio (aI/dt;) does not depend on the error made on other parameters (the damping

ratio or the frequency of the same pole and the parameters of other poles). Therefore, from

the sign of the gradient one can detennine whether or not each of the parameters is over- (If

under-estimated. By using a limited initial step size for each parameter, and decreasing the

step of each parameter every time it passes over its optimum, one obtains a very efficient

path to a local optimum, which was found to be satisfactory in almost all the cases treated.

(For more details see [baI2]).

This approach, which takes advantage of specific decoupled properties of the problen},

has proven to be extremely.effective on several actual data sets (reducing computation times

by orders of magnitude when compared to other optitnization strategies). However, it does

not come with any mathematical guarantee of convergence, so that in some cases more

traditional optimization algorithms might be more appropriate. Traditional optimization

rnethods would however be much more computationally expensive and may not converge

because the cost function used is only convex for very small errors (see section 3.1.3).

The user freedom in this algorithm is related to the choice of the initial guess for the

model poles. This choice restrains the optimization by only allowing solut: '1S near the

guess. This property allows the identification of all the modes in the bandwidth where the
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frequency response functions are estimated and, if another identification method is used to

provide the initial guess, the elimination of all computational modes.

The simplest (and usually sufficient) way to provide an initial guess of the poles is to

graphically pick pole frequencies (which correspond to resonances (peaks) for the lightly

damped systems considered here) and to use a realistic but non-measured damping ratio

(e.g. 1%). After a few iterations, it is usually possible to remove poles that do not converge

since they do not correspond to actual poles of the systenl, and to add poles that may have

been overlooked in the initial guess (such as poles of local modes with only a significant

contribution in a few frequency response functions, or very close poles of structures with

high modal densities).

Finally, accurate results were obtained using the present method without frequency

weightings (used in many traditional methods to enhance the sensitivity of the cost function

to parts of the frequency response which are of interest). However, in particular cases,

such as a structure with a rapid roll-off of the measured frequency response functions, the

method might not obtain accurate results if used without frequency weightings.

3.2.2. PROBLEMS OF MINIMALITY FOR MIMO TESTS

tThe residue matrix of a single mode is a dyad (product of the modal obselVabilities cljI

and controllabilities vJb ). Therefore the pole multiplicity in a model is equal to the rank of

the residue matrix. For MIMO tests, the models identified through the approach introduced

in section 3.2.1 are not minimal (in the sense that they use poles with multiplicities higher

than 1 even if the pole is isolated). Ways to enforce it minimality as a post-treatnlent of tile

identified model will be detailed in this section.

Using the formal analytical description of the response in terms of complex modes

(detailed in section 2.1.2), the modal obselVability takes the form cVJj (a column vector with

an element for each sensor) and the controllabilit), takes the form VJjTb (a row vector with an

element for each actuator). For example, the residue nlatrix of a single mode in a system

with 2 actuators and 3 sensors will have the fonn

Rjll Rjl2 clV'j

R.= Rj21 Rj22 = c2V'j [ V'TbJ V'Tb2 ] •J

Rj3l Ri32 C3 'IIi

(3.20)

Note that ~ and V'iT use the same vector because structures are symmetric systems. In

the general case, these vectors would be the distinct right and left eigenvectors of the

system equations.
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The residue matrix Rj ill (3.20) is clearly of rank 1 since it is the product of a column

vector by a row vector (in mathematics, such a matrix is called a dyad). Furthennore, from

(3.20) it is clear that the contribution of a single complex mode is always a dyadic residue

matrix (unless the mode is uncontrollable or unobselVable in which case the residue matrix

is equal to zero).

For truly multiple poles, the denominators (S-A j ) of the modal contributions in the

spectral decomposition (3.5) are equal. The dyads associated with each pole can thus be

summed to fonn a single residue matrix

R. =CIIF. I/r:b+cJlr. Jlr:b+... (3.21)
J T' JI T 11 T Jz T J2

This residue matrix has the same rank as the modal multiplicity if:

- the residue matrices corresponding to the different modes sharing the same pole

location are not proportional to each other and

- the number of sensors and actuators is larger than the modal multiplicity (a residue

matrix has NA columns and Ns rows, so that its maximum rank is the minimum of

NA and Ns ).

The results of identification algorithms give an estimate of the residue matrix Rj •

However, many algorithms (including the one proposed here) do not constrain the rank of

the residue matrices, so that in MIMO problems the identified residue matrices are of rank

higher than 1. (Obviously, in SISO, MISO, or SIMO problems the residue matrix has one

dimension equal to 1 so that it is necessarily of rank 1).

As seen in (3.21), residue matrices of a rank higher than 1 correspond to the existence

of rnultiple modes having identical poles. To obtain minimal models (models which do

not use more modes than there actually exist) one must detennine whether there are

effectively multiple modes and, if not, use dyadic residue matrices. The singular value

decomposition of the residue matrix gives a decomposition into dyads of decreasing

magnitude

(3.22)

If a mode is not multiple, identification errors will often result in a full rank residue

matrix. However for small identification errors, the contribution of the true mode dyad

C'I'j VIrb will be most important, and other tenns will be small. By definition, the first dyad

of the singular value decomposition is such that the matrix norm of other dyads is nlinimal.

In the case of a single mode, the dyadic residue matrix

- TRj = UJl1JVJ (3.23)
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is a thus the best possible dyadic (therefore leading to a minimal model) estimate of the true

residue matrix c'I'j'l'Tb (where "best" means that the matrix nonn of the residual Rj - Rj ,
which is given by the second singular value (12' is minimal). The ratio of the first two

singular values 0"/0", is equal to the ratio matrix nonns IIRj - Rjll~IRjll, which gives a

measure of how close to a minimal MIMO model the initial estilnate of the residue matrix

was (see the application to the IT in section 3.2.4).

True modal multiplicity is 8:l extremely rare phenomenon, which happens for perfectly

symmetric or uncoupled structures, and even then the multiplicity is rarely larger than 2

(see Ref. [bat5]). However, it was shc)wn in Ref. [ba16], that for damping levels sach that

the mode half-power bandwidths ('j(J)j) are significantly larger than the frequency

separation between two modes «(J)}-(J);>, it may not be possible to distinguish poles that are

not truly multiple. Therefore, almost perfectly symmetric structures may have poles so

close to each other that the identification algorithm will not be able to distinguish them. In

such cases, as many dyads as the medal multiplicity should be kept (e.g. for a double mode
- T TRj =UJaJV} +U2(12V2 ).

In a well devised test, the ffio<lal subspace (see Ref. [baI6]) should span the spatial

input and output subspaces, so that all the singular values of the true residue matrix are

relatively large. Under this condition, usually achieved with a regular distribution of

actuators and sensors, the matrix nonn of the residual Rj - Rj (given by the first singular

value not kept in the minimal residue matrix .'kj> O'J for a double mode) should be small

compared to the singular values kept in Rj • This condition can be used to detennine the

effective modal multiplicity from experimental results, although a clear drop in the singular

values is needed for good confidence in the analysis.

Note that the results, applied here accurately on the residue matrix, can also be seen

using the singular value decomposition of the frequency response matrix (called the

Multivariate Complex Mode Indicator Function [wiI2] in the structures community). Near

an isolated modal resonance, the: frequency response functions are nearly proportional to

the residue matrix. The ratio of the singular values at the peak therefore corresponds to the

ratio of the singular values of the residue matrix, so the same conclusions as to the

multiplicity of the mode can be rnade. However, if several closely spaced modes contribute

to the peak, the test on frequency response function singular values may be misleading.

Theoretically, it is possible for a multiple pole to not correspond to nlultiple

modeshapes (non-diagonal Jordan form). The system equations of proportionally damped

systems can always be diagonalized (as the system matrices are symmetric and the mass

matrix is positive-definite) and there is no reason to think that the introduction of 000­

proportional damping could lead to a non-diagonal Jordan form for the first order system
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(3.25)

equations. Rigid-body modes are the only exception (known to the author) where the

complex residue matrices introduced in the parametrizations (3-5)-(3.7) cannot be used.

And even in that case where the contributions of these modes take the form F/s2
, the

present analysis can be applied on the real-valued F matrix rather than on the usual complex

residue matrix Rj (assuming that the rigid-body motion can be accurately measured).

3.2.3. DE'rERMINATION OF SCALED COMPLEX MODAL OnSERVABILITY

AND CONTROLLABILITY MATRICES

To estimate normal modes and for other prediction purposes, it is necessary to

determine estimates of the modal controllability and observability scaled in a way that is

independent from a particular test, thus independently defining the influence of actuators

and sensors. These scaled quantities are obtained using the residues of collocated transfer

functions, as will be detailed in this section.

.A useful property of dyads is that both the directions of input and output are known.

Thus, for a single mode j, the singular vectors U1 and V1T (defined in the decolnposition

(3.23) of the minimal residue nlatrix in the previous section) are respectively unsealed

estimates of the modal observability c'IIi and controllability 'II;b (which respectively

characterize the way the cornplex mode IJIj is seen at the sensor and actuator locations).

The relative infonnation for sensors or actuators (Le. CI'IIi /C2 'IIi or 'IIfbI/ 'II;b2 ) is

invariant for any scaling and can thus be used directly, but one is interested in uniquely

defining the scaled corr.plex modal observability c'IIi and controllability'll;b. Since the

relative information is invariant, the problem is to find one scaled component of the

observability and controllability. The properly scaled components for other sensors or

actuators will then derived from the identified relative quantities (i.e. c1 V'j /C2 'IIi or

'II;bd 'II;b2 ) •

For a collocated transfer function (i.e. such that c=bT
, for example: a transfer function

from force input to displacement at the same point and in the same direction) the modal

controllability and observability are by definition equal. Imposing cI1I'} = 1I'}Tb I at the

considered collocated location I defines a scaling coefficient for each mode j

ai =~(Rit =~VJI(JIVJI =c,'IIi = 'II;b, (3.24)

leading to scaled estimates of the modal observabilities (C'IIi)I and controllabilities (V';b)I

( )
a· ( T) ('(. T

c'IIi I = VI VI and 'IIi b I =VI VI
11 11
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An important fact introduced in section 2.1.2 was that the application of this scaling

condition is strictly equivalellt to the analytical scaling condition (2.6) with J.l=! and,

ideally, is independent of which collocated transfer function is used for the scaling.

Many tests are done with more than one collocated transfer function. In such cases the

problem is over-constrained (since the scaling implied by different collocated transfer

functions may be inconsistent). A way to resolve the additional constraints must be found,

such as choosing a particular collocated transfer function to do the scaling, or using an

algorithm, yet to be defined, to find an averaged scaling compatible with all the collocation

constraints.

For multiple modes, modeshapes are not uniquely defined. The directions are now

subspace directions (UJ and U2 span the saIne subspace as c'I'i, and c'I'iz; for more details

see Ref. [baI6]). But) ( Jtside the fact that it is more difficult to compare multidimensional

subspaces, results are the same as for the single mode case.

Finally, these results, developed for complex modes, can be easily extended to nonnal

modes if the nonnal mode residue matrix Tj =ctPlPJb is identified. (For example, when

the structure is proportionally damped so that the parametrization (3.9) can be used

accurately for the identification).

3.2.4. RESULTS OF ApPLICATION TO THE INTERFEROMETER TESTBED

MODAL TEST DATA

To demonstrate the efficiency of the methods proposed in this section, the results of the

modal test of the IT (see the testbed description in section 7.1) are used. All the theoretical

results of this work are implemented numerically in a Toolbox for Matlah [ba12], with

which the results presented here were obtained.

The first identification step is to detennine a complex nlode model. (~onsidering the 20­

60 Hz range for the IT, initial estimated pole frequencies were determined by graphically

indicating the peaks of the measured frequency response functions, and assuming 1% pole

damping. The 28 measured frequency response functions were used to identify the

complex mode model corresponding to each of the 6 tested shaker locations (see the

description of the modal test in section 7.2). After some iterations, the results obtained

were extremely satisfactory, and showed that the algorithm is particularly well suited to

treat multiple measurements simultaneously.

Most of the frequency response functions are extremely well identified, so only

problems will be noted. Figure 3.3 shows an example of a bad fit (the worst fit of the 28

frequency response functions treated simultaneously for the shaker on leg I). The only

minor problem in this frequency response function is that the non-minimum phase zero at
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47 Hz is predicted to be too lightly damped and minimum-phase (when the true zero is

more damped and non-minimum phase). Note that at these frequencies the frequency

response function is 40 dB lower than the respon.se peaks for the modes at 36 Hz, so in

terms of predictions this error is extremely smalL Furthermore, if such errors had a

significant effect (e.g. for a particular closed loop system), one could easily modify the

zero location for this transfer function using the parametrization (3.2) with poles and zeros.

Transfer function 18-80----~-- ---r-----.,._I----r-I----.,.----.,....-

656055504540353025

-100
4,)

~ -120
.~

~
~ -140

-160

-180 "'--__-'--_----a__~_---L__~_ ____'___~_ _____L..__ _'"

20

656055504540

Frequency

Transfer function 18

3530

500

0

0

~ -500
~

-1000

-1500
20 25

Frequency

Figure 3.3: Bad fit of a frequency response function for the modal test of the IT. (-_..)
measurement, (-) fit (complex mode model, witll symmetric pole
pattern, low and high frequency asymptotic correction tenns)

Major difficulties in the 20-60 Hz frequency range, which could not be acclArately

identified with traditional identification algorithms, but were correctly resolved using the

proposed method are:
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- the mode at 45 Hz, which is a mode mostly localized to leg IV (see Figure 7.3 for the

leg numbering scheme) and thus tends to have very low levels of response (as in the

frequency response function shown in Figure 3.3)

- the sllspension modes at 45.1 Hz and 53 Hz (only appearing as small magnitude

excursions in Figure 3.3) which make the identification more difficult

- the two modes at 36.1 Hz (2.6 % damping) and 36.5 Hz (0.7 % damping), which are

very close and heavily coupled by non-proportional damping.

The motivation for the independent identification of each physical test (shaker location)

was that coupling with the shaker might modify the dynamics significantly. Table 3.2 gives

the averaged pole estimates for the six independent identifications and the corresponding

sample standard deviations on both frequencies and damping ratios (as percent deviations

of the nominal value). The small variations from test to test clearly indicate both that the test

was surprisingly well done and that the identification algorithm is very efficient.

Table J.2: Mean pole locations and standard deviations for the 6 identified models (6
shaker locations).

Mean frequency

in Hz

- .1""m = 6.L.ltJ;

24.816
26.005
28.199
29.645
34.331
36.126
36.490
37.912
44.187
53.845

Frequency sta.ndard

deviation in % of (ij

0"6) =~t'IJ (J)i - (J))2

0.05
0.04
0.06
0.20
0.15
0.19
0.07
0.04
0.08
0.05

Mean dwnping mtio

0.0031
0.0054
0.0051
0.0113
0.0144
0.0281
0.0059
0.0089
0.0219
0.0064

Damping ratio std.

deviation in % of ,

C1{ =~tL(Ci - ,r
16.9
6.5
10.5
7.4
7.0
11.6
7.8
5.8
8.0
5.0

The next step was to verify that the identified complex modes were consistent from test

to test, thus improving confidence in both the identification proce.dure and the quality of the

test that led to the identified data. For this, the collocated residues of each test were used to

scale the complex modal obsen'abilities and controllabilities as shown in section 3.2.3. For

six different tests (shaker located on legs I to VI), the 28 terms of the identified scaled

observabilities of the 7th complex mode are shown in Figure 3.4. Clearly, for this mode,

the complete identification was very efficient since the variations from test to test of these
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complex modeshape estimates are sinall (the corresponding terms linked by dotted lines are

clustered).

For other modes, the agreement of one of the six models is sometimes less clear.

However, it can be verified that the variations seen are mostly related to the scaling

condition. This points to the obvious fact that modeshape scaling is very sensitive to

identification errors on the collocated residues and to experimental errors linked to an

impetfect measurement of the force input and its collocated displacement (which lead to the

frequency response function estimate).
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Figure 3.4: Comparison of identified scaled complex modal observabilities cV'7 of the
7th mode for the six tests (dotted lines link corresponding estimates for the
different tests).

Since such inconsistencies between the results of differGnt SIMO tests of the sanle

structure are very likely, multiple SIMO tests, like those c,one for the IT are very useful.

Multiple SIMa tests provide redundant information on the complex mode observabilities,

which can help to define a better overall model of the true system through the creation of a

MIMO model (using the approach described in section 3.2.2 for example).
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Such a oetermination, of a unique modal observability matrix from those identified in

the 6 different tests, was done for the IT. The ability to scale the results properly was

however lost as the modal test did not maintain a sensor at all six shaker locations for the

different tests (only the current shaker location was instrumented). Table 3.3 shows the

ratios to the first singular value for the MIMO interferometer testbed model (6 shakers, 27

sensors; the collocated accelerometer measurement is not included for the reason mentioned

above). Even if the agreements for the scaled residues are not all as good as those shown

for mode 7 in Figure 3.4, it clearly appears in this table that the identified complex modes

obtained for the different tests are fairly consistent. All the ratios ~ICYJ are smaller than 0.1,

which means that the matrix nonn of the difference between the minimal residue matrix Rj

(with only one modeshape) and the full residue matrix Rj (with 6 modeshapes) is less than

a tenth of the matrix norm of Rr Furthennore, the other ratios of singular values (a3!aJ,

etc.) do not drop very fast, as expected in a case where the modes are not multiple and the

errors have no physical meaning.

Table 3.3: Combination of the 6 SIMO identification tests. Mean pole locations and
ratios to the first singular value.

Mode frequency Mode damping C11!CJ'1 aiGI G4!CJ'l erial GrJCJ'1

24.814 0.0027 0.0250 0.0139 0.0047 0.0032 0.0018
26.010 0.0051 0.0209 0.0120 0.0070 0.0045 0.0038
28.190 0.0055 0.0184 0.0074 0.0044 0.0041 0.0015
29.672 0.0123 0.0918 0.0414 0.0249 0.0113 0.0050
34.258 0.0152 0.0894 0.0247 0.0175 0.0079 0.0043
36.185 0.0312 0.0922 0.0470 0.0212 0.0156 0.0092
36.496 0.0062 0.0521 0.0175 0.0081 0.0045 0.0022
37.915 0.0095 0.0256 0.0136 0.0089 0.0066 0.0036
44.174 0.0240 0.0632 0.0262 0.0189 0.0100 0.0060

Finally, the only remaining problem with the IT test is to determine the origin of the

small inconsistencies seen between different tests. They could be linked to both system

variations during the experiments and identification errors for the different tests. A further

analysis will be made in section 3.4 to show that most of the discrepancies are probably of

experimental origin (as the shaker was moved from test to test, the coupling of the structure

with the shaker mass and stiffness introduced some variations of the system response

between the different tests, which probably account for most of the observed discrepancies

between different estimated modal observabilities).
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3.2.5. TRANSFORMATION TO THE REAL PARAMETER STA1'E-SPACE

FORM

For control design purposes on the tested system configuration, the complex mode

model is generally sufficient (there is no need to refer to the underlying second order

properties of the system as will be done in section 3.3). One is however interested in a

parametrization with real parameters which will be detailed here.

As shown in section 3.2.2, the residue matrix can be decolnposed into a dyad fonned

of a column vector (C'I'J), (the modal observability), and a row vector ('I'Jb)/ (the modal

controllability). From these two matrices can be derived the Band C matrices of a real

parameter state-space description of the system with a bloc diagonal A matrix

(~)=(_~2 -2~I:)+(:Ju

y=[C/ C21(:)
(3.26)

(3.27)

where .Q is the diagonal matrix with the pole magnitudes (not the itr.aginary parts) a!ld -7.12

is the diagonal matrix with the real parts of the poles.

To obtain a general expression of the matrices B I , 8 2, CI , and C2, let us consider the

transfer function linked to a single pole. The system matrix linked to this pole is

(_~2 -2~CO)
whose left and right eigenvectors (not scaled) associated with the eigenvalue

-'co +iCO~1- ,2 =A are respectively

with the nonn

[-A 1] and (~l (3.28)

(3.29)

(3.30)

From these vectors one can easily prove that the complex dyadic residue matrix

RJ=c'I'JVJJb (see section 3.2.2) associated with the single mode system

Y ( S -1 )-/(8/)
u =[C/ C2l co2 s+2'm B

2

verifies the following matrix equation
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(3.31)

(3.32)

Clearly, this equation does not uniquely define ell e21 B}, and 8 2 • Without any other

constraint (such as the collocation constraint introduced in section 3.2.3), one can only say

that for an arbitrary constant a the solution verifies

aC'I'i = (C1 + AC2)

a-J(A-A) 'l'Tb=(-ABJ+B2 )

A sensible, but arbitrary choice is to use a=1, which leads to the following

transfonnation between the modal obselVabilities and controllabilities, and the real valued

matrices ell e21 B}, and 8 2

(3.33)

(3.34)

From this transformation, it clearly appears that in a MIMO case both a 8 J and a C2

teml exist (unless a particular choice of a allows making one of theIn zero, an option which

always exists for SIMO problems using a=(A - A) 'l'Tb for example). In the modal

contribution, the tenns are thus mixed as follows

y _ C...s+Cp _ (CJBJ+C2B2 )s+(2,mcJBJ-olC2B/ +C/B2 )

U - S2 +2'ms+w2
- S2 +2'ms+m2

The matrices C v and C p (usec:l in different Refs. [kall, gill, spa1]) descri be the

combined effects Df the complex-conjugate pair of modes. The relation between the rank of

these two matrices and the tnodal multiplicity is unclear, and should be investigated for a

proper use of such a parametrization. (The parametrization proposed in this chapter

describes each mode separately, so that the mode multiplicity can be deduced from the

dyadic decomposition of the residue matrix as described in section 3.2.2).

3.3. IDENTIFICATION OF NORMAL MODES FROM COMPLEX MODES

Because most finite elenlent models are undamped, comparisons between the finite

element predictions and experimental modes can only be done using "experimental" normal

modes. Since nonr11 modes are the modes of the ideal undamped system which cannot be

tested, true modes are always complex and normal modes are idealizations whose
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determination involves more assumptions on the system response. However, since this

parametrization is essential for the use of undamped structural models, numerous methods

have been created to estimate nonnal modes from identified complex tnodes, uBing different

assumptions that have proven to be too constraining for many real structures (see the

review in Ref. [sesI]).

After a review of existing results in section 3.3.1, a new approach will be detailed. The

weak assumption is made that the non-proportional damping only couples the identified

nlodes (as frrst done in section 2.2.1) Of, in other words, that the dissipation of the low

frequency Donnal modes depends on the states of other low frequency Donnal modes, but

not on the states of higher frequency modes. In section 3.3.2, it is shown that the

verification of a properness condition by the complex modes is sufficient for the existence

of an exact transfonnation (detailed in the section) bet\veen the complex and nonnal mode

parametrizations. Recognizing that identified poles are generally much more accurate than

identified modeshapes, a new algorithm is derived in section 3.3.2 to determine, in both

cases with as many and more sensors than modes, the set of proper complex modes closest

to the measured modes. From these proper modes, the truncated normal mode model can

then be detennined with no further approximation. Finally in section 3.3.4, results from the

IT modal test are analyzed, showing the method to be very accurate and marking the first

successful experimental characterization of non-proportional damping (previous results

only considered simple two-mode systems).

3.3.1. REVIEW OF EXISTING WORK

For the estimation of nonnal modes from identified complex modes, early approaches

considered the nonn of the complex modal observability, and adjusted its sign to optimize

the resulting modeshape

(3.35)

As seen in section 2.1.2, this approach is exact for a proportionally damped system,

but it gives poor results for systems with even relatively small effects of non-proportional

damping (see Ref. [ibrl] for example). An extension of this approach uses a projection of

the identified complex modes into a subspace of real modes

(3.36)

where (Ct/>jtD is the matrix of identified nonnal modes, and T is a complex valued

transformation matrix. References [sesI, zhal, imrl] detail different ways of detennining

the transfonnation Inatrix T, but none of the methods have been sufficiently accurate for
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(3.37)

systems with even low effects of non-proportional damping (when the phase dispersion

("complexity") of the identified modeshapes is non-negligible). The new approach

presented llere gives a particular transfonnation T and estimated nonnal mode observability

(ctPJ) ID' which is shown to be exact because proper complex modes are used (see section

3.3.2).

Several Direct System Parameter Identification (DSPI) techniques have used a reduced

second order system parametrization [M-1C M-1K] (which can be transformed to the

normal mode fonn) and data obtained, experimentally [leu!, crall or analytically with the

experimental complex mode model [wei2] (sometimes augmented witll high frequency

analytical modes [ibrl, ibr2]). Although such approaches are tempting, successful

identifications of non-proportional damping have only been reported for extremely simple

structures. The identified pole locations are often inaccurate (e.g. unstable poles at inexact

frequencies). Furthermore, it is difficult to enforce the identification of mostly local modes

and to remove computational poles from the estimation process. Also, the contributions of

modes outside the bandwidth are not accounted for.

Finally, the work of Natke [natI] is often mentioned (although not as being more

efficient than other traditional methods) and the ongoing work by Alvin and Park [alvl,

alv2, parI] seems to contain the elements for an efficient solution. However, the

identification results used by these authors do not have the accuracy obtained with the

method proposed in section 3.2, so the validity of their method could not be demonstrated

for experimental results.

3.3.2. THE PROPERNESS CONDITION AND THE EXACT

TRANSFORMATION BETWEEN COMPLEX AND NORMAL MODES

As normal modes are idealizations, their determination is necessarily linked to

assumptions. Here it \viII be assumed that non-proportional damping does not couple low

and high frequency nonnal modes. As seen in section 2.2.1, the response of the system

can thus be accurately described by a truncated Donna! mode model of the fonn

(S2J +srIT + QIT )PT =tPJbu
y = ctPrPr + E

To this model are associated complex modes VlTj which are uncoupled from the effects

of out-off band modes (whose effects are approximated by the E term; see section 2.2.2 for

more details) and which can be used to describe, as in section 2.1.2, the transfer function

from a force input u to a velocity measurement Yvel
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(3.38)

It is well known that for a structllral system, force commands acceleration and not

velocity_ The velocity roll-off at high frequencies is thus a propern~ss condition that is

clearly verified by the normal mode states Pj in (3.37) and must thus also be verified by the

transfer function using the complex mode description in (3.38), which implies that

2NT s(c'l''l' V'~.b) 2NT

li~L J J =L(cyt'lJyt~b)=O. (3.39)
8..... j=l s -Itj j=l

Note that the E tenn is omitted in (3.39). This is where the assumption of uncoupling

with higher frequency normal modes appears.

Equation (3.39) must be verified for all band c, so that

(3.40)

As seen in section 2.1.2, 'II has dimensions N by 2N, so that the matrIx equation (3.40)

has many other solutions than the trivial 11' =O. l'he matrix equation (3.40) is a set of

constraint') on all the complex modes of the truncated model (the indexj is summed over all

these modes) applicable independently at any degree of freedom (in (3.39) the matrices b

and c are arbitrary).

The novelty of the proposed approach is to recognize,that the properness condition

(3.40) is sufficient for the existence of an exact transformation, between complex and

Donnal modeSt which will be detailed now.

In a non-modal coordinate system, the second order dynamics of the truncated modal

model (3.37) are described by "truncated" mass M T' damping Cr, and damping K T

matrices. It was seen in section 2.1.2, that the corresponding complex modeshapes 'l'-r' if

scaled using collocation constraints (see section 3.2.3), verified two orthogonality

conditions

(3.41)

Simple algebraic manipulations of the two orthogonality conditions in (3.41) lead to

two inverse orthogonality conditions

[
Cr Mr]-l = [ 0 Mil] =8 OT =[ 'liT V'~ V'rAT V'~] (3.42)
MT 0 M:/ -Mi1CTM:/ T T ytTATyt~ ytTA~yt~
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(3.43)

where it can be easily verified that the properness condition (3.40) is indeed a necessary

and sufficient condition for the system to be second order (the sub-blocs, that are zero in

the two algebraic left hand expressions of (3.42)-(3.43), are effectively equal zero in the

two experimental right hand expressions if and only if 'liT y'~ =0).

From equations (3.42) and (3.43), one obtains the following simple expressions for

Mr , CT, and KT

(3.44)

which can be easily transfonned to the normal ITiode coordinates PT of (3.37), by solving

the undamrJed reduced eigenvalue problem -MrtPr!2T + KTtPT =0 as was done for the full

system considered in section 2.1.3.

This last transformation may however lead to some problems if the identified matrices

do not verify the expected conditions of positive definiteness. It is known from physical

principles that the mass, damping and stiffness matrices of structural systems are positive

definite (see section 2.1.1). Therefore, the truncated matrices as well as their inverses

should be positive definite. Based on the inverse orthogonality conditions (3.42)-(3.43),

the positive definiteness of the truncated system matrices is clearly equivalent to the three

conditions

(3.45)

corresponding respectively to the positive definiteness of the identified mass, damping, and

stiffness matrices (the stiffness and danlping matrices can only be semi-definite for systems

with rigid body modes, to which this transfonnation does not apply).

If the identified mass and stiffness are positive definite, normal modes can be

detennined with, in general, a good accuracy. If not, any of several problems may have

occurred: the complex modes may not have been well identified, they may hav(~ been

improperly scaled, the complex modes used may not be proper (see section 3.3.3) or, even

though it was never found to be the case, the assumption of nonnal mode decQupling [roln

higher frequency modes may not be good enougll (so that the proper complex n10des

determined by the method proposed in section 3.3.3 are not good approximations of the

identified complex modes).

The positive definiteness of the damping nlatrix is less of a problem, since for the

lightly dalnped structures considered here, extremely small errors may make the damping

matrix non-positive-definite and yet result only in minor differences in the predicted
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response. For the case of the IT, this can be seen as the fact that the identified damping

matrices for the 6 different tests lead to damping matrices which are in good agreement for

the important tenns (diagonal and significant non-proportional damping coupling tenns) but

have larger differences for other small off-diagonal tenns (see section 5.2.3).

Finally, an important property that must be verified is the invariance of the

transfonnation through a change of coordinates. For a new set of eigenvectors '"N = T",o it

is easy to verify that all the system matrices are multiplied on tIle left by T -T and on the right

by T -1 so that the overall input-output properties are unchanged. In practice however, the

properness condition must be enforced as will be shown in section 3.3.3, so that a

coordinate transformation T may influence different transfer functions in a selective way.

3.3.3. OPTIMAL ApPROXIMATION OF THE IDEN"fIFIED COMPLEX MODES

BY PROPER COMPLEX MODES.

The scaled estimates of the modal observabilities (c"'/) I and controllabilities (",Tb)1
allow the definition of a complex mode at the degrees of freedom of the chosen sensors and

actuators. If the degrees of freedom measured by the sensors c1 to eNs are arbitrarily chosen

to be the model "physical degrees of freedom" qr, one thus has a scaled estimate of the

complex modeshape 'l'TI =(c"'lt (note that the finite element degrees of freedom are

usually not such that this is true, which initially motivated the introduction of the input

shape matrix c in section 2.1.1).

As a first step, it will be assumed that there are as many sensors as modes (so that

'l'T =(cljI)/ is a Nr by 2Nr matrix). The transfonnation (3.44) between complex and

Donnal modes is only exact if the properness condition (3.40) is verified. Since such is

usually not the case, an algorithm will be derived to determine a good but proper

approximation of the identified modes "'T-

The objective of this algorithm is to find the smallest correction L! lI' to the measured

eigenvector VlT' that will lead to a set of proper modes verifying (3.40). For this,

L.1",;.1'1'i/' which is a quadratic nonn of .1'1', will be minimized under the constraint that

iiFr = "'T + L1 '" must meet the properness condition iiFr Vi~ =o.
This constrained minimization problem can be solved using a matrix of complex

Lagrange multipliers 8 = OR + i81
• Following the standard mathematical procedure, the

Lagrangian cost function H is derived

H ={:t:.1",Z.1 'I'il + t:, 0i7 ( "'j~ "':, -1jIf, "'J,)+~o~("'i~ "'J, + ",:, ",:,)} (3.48)
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(3.49)

and one seeks LtV' = argmin(li). At the minimum, the derivatives of H with respect to the

components of Llytmust be zero

iJ:~: = Alii: +~(O;~ +0:)111: + ~(O:' + 0~)111~ =0

a~~1 =AlII~ - }2(0;: + O:)"'~ +I(O{, +0;) "': =0
ij' ,

This necessary conditior. of optimum with respect to ltV' can be rewritten in a more

compact matrix fonn as

(3.50)

where 8 =OR + i8/ . Combining (3.50) with its complex-conjugate one obtains

Alii =(I - oSft (08111T - SijiT) or ii1T = '1fT + Alii =(I - OSf}(lilT - Siji) (3.51)

Using the expression of ii1T in (3.51) to rewrite the properness condition leads to

(3.51a)

Multiplying equation (3.51) by (I - 08)011 the left and its transpose on the right leads

to the following algebraic Riccati equation

T ~ T -T ~ ~ -T ~ 01I'r'l'r "- uV'r 'l'r - 'l'T "'r () + uVtT Y'T (J =

Riccati equations have rnultiple solutions, so it is difficult to ascertain that a particular

choice is the best "global" minimum. Here it will be shown that the real-valued positive­

definite solution 0, chosen in control theory as the steady-state solution of an optimal

regulation problem for a linear time-invariant system (see Ref. [macl]), is appropriate.

A necessary and sufficient condition for the solution to be a minimum is that the matrix

of second order derivatives of H be positive definite. The second order derivatives of H

(Hessian) are the following

a2H a2H R a2H I
R R = ey,(ellA: + o~). I ~ = ey,(e. - 0.). and tt, t = ey,(alIA:) (3.53)

aLi V'uvat1 VIkJ aL1 V'u~at1 kl aL1 u~aL1 'I'!J

where evl is the delta operator (equal to 1 if v=/ and equal to 0 otherwise). Thus, in matrix

fonn, the condition of positive definiteness of the second order derivatives is

(3.54)
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If the optimal control solution for 8 (the real-valued positive-definite solution) is used

when solving the. Riccati equation (3.52), 8 is real, so that the condition (3.54) is the

equivalent to I + 8 > 0 and I - ~ > o. The first condition is clearly verified for a positive

definite o. The second implies that eigenvalues of 8 must be of nonn less than 1. No proof

that this is necessarily true was found, but all the cases treated verified this condition.

A good but proper approximation of the identified complex nlodes 'tf/r is thus defined by

(3.51), where 0 is taken to be the real-valued positive-definite solution of the Riccati

equation (3.52). This solution has proven to be efficient in all the cases treated, but it might

still be interesting to study

- the effect of coordinate system choice in cases with both as many sensors as modes

and more sensors than modes: the properness could be enforced on "'T such that

(c1Jl)/ =crV'r for any possible coordinate transfonnation matrix cr. Different choices

for cT might lead to somewhat different results.

- the interest of other (non-positive-definite and/or non-real) solutions of the Riccati

equation.

- cases with less sensors than modes (see the work of Alvin and Park on this subject

[alv1]).

In many practical applications, the number NT of identified modes is often smaller than

the number Ns of sensors (in the Donnal mode fonn (3.37), the size of u the input or y the

output vectors are not. iimited). In such cases, the sensor/actuator degree of freedom

coordinate system qT has more degrees of freedom than modes in the system to be

identified, which implies that these degrees of freedom are not independent. (Using the

comparison to a finite element model with N DOFs, it is possible to define any number of

sensors (Ns can be larger than N) defined as constant linear combinations of the FE DOFs

(y=cq».

For the idelltification problem in cases where there are more sensors than modes, one

must thus define a reduced set of NT generalized "physical" coordinates qr' with kllown

input and output shape matrices (cT and bT) to pass from the measurement coordinates to

the generalized coordinates qr. These generalized coordinates should be such that the

product of the input shape matrix cr and complex modeshape matrix VIr is a good

approximation (retaining most of both the magnitude and phase information) of the

identified complex mode observability matrix

(3.46)
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A method, found to be efficient for all the cases treated in this research, is to choose Cr

so as to obtain the best possible approximation of M-l. For this, the expression of the

reduced mass (3.44) is used as follows

(c'll)1'/1 (c'll)~ =cT'IITA 'II~cJ =cTM-JcJ (3.47)

In (3.47), M-l is of rank NT. Using for Cr the frrst NT eigenvectors of the eigenvalue

decomposition of (c'll)/ A (c'll)~ thus results in a good approximation of M-l. It is useful

to note that since the matrix (c '11)/ A (c'II)~ is symmetric, the singular values of this matrix

are the absolute values of the eigenvalues. Using the eigenvalues rather than the singular

values allows one to verify that the main connibution (the tenns that are kept) are indeed

positive definite, and such that a positive definite (nass matrix will be obtained in the

transfonnation (3.44).

Having detennined CT, the best set of NT complex eigenvectors Y'rcan be found by a

least-squares fit derived from (3.46). Finally, using a proper approximation of lfIT' the

transfonnation can be done as for the case with Ns = NT. For all the cases considered on

the IT, these choices for cr and 1JIT were appropriate since they led to nonnal mode models

that accurately matched the measured frequency response functions.

One might be tempted to use the approximation of M-l in (3.47) and similar

expressions for K-l and C rather than filtd a proper approximation of the complex modes

frrst, this is however usually gives p<X>r results, since such approximations do not conserve

poles which are very well known and sho'uld thus not be modified. In fact, the principal

advantage of the proposed method may be that it does not modify the location of tIle

identified poles.

3.3.4. A~PLICATIONS TO THE INTERFEROMETER TESTBED MODAL TEST

The fust 9 modes of the IT are relatively well separated from higher frequencies (mode

9 is at 44.2 Hz and mode 10 at 53.8 Hz). Furthennore, these modes are well correlated

with the finite element results so that comparison!; can be easily made. It was therefore

decided, for the examples of this section, to identify the nonnal modes corresponding to the

first 9 flexible modes of the IT.

A frrst problem is to evaluate the differences between the identified complex modes and

their proper approximations introduced in section 3.3.3. Using the modal test of leg V with

28 sensors, proper complex modeshapes 'itT were computed, and Figure 3.5 compares the

identified complex modal observabilities C1jI6 for mode 6, the proper complex modal

observabilities CVt6' and for reference the complex modal observabilities CtjJ6 that would

exist for a proportionally damped structure.
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Clearly, the proper approximation of the complex mode maintains the strong phase

infonnation present in the modal obseIVabilities (the phase dispersion is higher than 30° for

mode 6). In comparison, the complex mode of the proportionally damped model is a bad

approximation, because all its observabilities are forced to be either in-phase or out-of­

phase (on the -450 line here, because of the scaling condition 11Sed).
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Figure 3.5: Comparison of comp!cn residues C1jf6 for the 6th mode: (+) non-proper
complex mode, (0) non-proportiondlly damped normal mode model, (x)
nonnal mode model constrained to be proportionally damped. Dotted lines
link corresponding proper and non-proper complex residues.

The influence of proportional damping is particularly important for mode 6 because it is

strongly coupled with mode 7, which is very close in frequency (see more details in section

5.2.3). For other modes, which are less coupled by damping, the residues tend to be much

closer to the line of the proportionally damped model (phase dispersion between 4° for

mode 2 and 25° for nlode 9, versus 33° for mode 6) so that the error linked to the use of a

proportional damping assumption is smaller.

Frequency response functions provide another usual way to visualize the model

accuracy. Figure 3.6 compares in a small frequency range the measured frequency

response function (leg IV, sensor 1) with the predictions of three different models.
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The non-proportionally damped normal mode model identified using the new methods

introduced in sections 3.2 and 3.3 matches the measurement bolll in phase and magnitude.

The Direct Sys~emParameter Identification model (method proposed by Craig [era1]) is

clearly not accurate, even though a significant effort was made to find the frequency

weighting giving the best results. As shown in the frequency response function, this model

does not properly capture the two modes at 36.1 Hz and 36.5 Hz and, in the parametric.

model, it has a clearly inexact representation of damping (some poles of t.he DSPI model

are unstable).

Finally, the proportionally damped model obtained by setting to zero the off-djagonal

terms of the identified rmakes significant errors both in magnitude (close to Iv dB) and

phase (close to 30°).
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Figure 3.6: Frequency response function predictions: (-) measurement, (---) normal
mode model, (._.) direct system parameter identification (best estinlate
found), (.....) nonnal mode model constrained to be proportionally
damped.

The frequency band shown, with the very close and coupled modes 6 and 7, is

particularly difficult to identify, and only the new normal mode identification method gave

appropriate results. In many other cases, traditional approaches are efficient, but their
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results can generally be improved by using an optimization similar to that considered in

section 3.2.
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Figure 3.7: Comparison of the 27 scaled Donnal mode ob~elVabilitiesctPj of modes 6
through 9 as identified from the 6 different tests.

Another useful evaluation of the identification accuracy is to compare norn1al

modeshapes. The scaled nonnal mode modal observabilities ctPj at the 27 non-collocated

sensors (for the 6 tests) are compared in Figure 3.7 for modes 6 through 9. The overall

agreement between the different tests is clear, but so'.ne difficulties are worth mentioning.

The estimated modeshapes of modes 6 and 9 for leg I (solid lines in the figure) depart

significantly from the other estimates. This can be related to the fact that the test on leg I

does not excite these two modes very well, so their identification can be expected to be less

accurate, particularly for the scaling (the collocated residues for these two modes are very

small, so errors that would otherwise be insignificant can have a large impact). Note also

that many of the residues of mode 9 are small which can be seen as due to the fact that this

mode is mostly localized to leg IV.
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Finally, the parametrization (3.9) allowing the direct identification of real modes was

introduced in section 3.1. The identification algorithm derived from .'his parametrization

implicitly assumes proportional damping, but has the advantage, over the approach

introduced in section 3.3, of being a direct normal mode identification metho<t In Figure

3.8, the normal mode residues ct/>lPJb obtained for leg II through this identificatIOn

method are compared with those obtained through the non-proportionally damped

identification method. Clearly, except for mode 9, the agreement is relatively good (even

tllOUgh not as good as the consistency of the non-proportionally damped models obtained

using the 6 tests). 1"his was expected since the proportional damping assumption is, in

most cases) a good assumption.
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Figure 3.8: Comparison of nonnal modes residues ct/>jt/>Jb for the identified non­
proportionally damped normal mode mode1, and for the "real" mode
identified mcxlel.

This model is, however, not accurate enough to define scaled estimates of the nonnal

modeshapes. The parametrization (3.9) does not guarantee and does not always yield

positive collocated normal mode residues (since for a collocated transfer function c,tPj and
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tPJb, are equal, the residue c,tPjtPJb, should be positive). When a collocated residue is

negative, the corresponding mode cannot be scaled so that another test is necessary. This

hard limitation on the use of the real mode parametrization probably comes from the

constraints implied by the use of a proportionally damped model, but might also indicate

that the transfer function thought to be collocated is actually not exactly collocated.

3.4. EVALUATION OF THE IDENTIFICATION ERROR

A last point of interest for the validation of the proposed identification method is an

evaluation of how much error in the estimated parameters can result from the identification

process. Under the assumption that the structure is linear and that there exists an accurate

truncated linear model of one of the parametric forms detailed in this chapter for the

considered frequency range, which ensures the validity of the identification approach, this

section evaluates the sensitivity of identified parameters to errors in the measured frequency

response functions.

A partial review of existing work on this subject is done in section 3.4.1. Since the

proposed complex mode identification algorithm gives optimal results, a sensitivity of the

identified results with respect to error in the measured frequency response functions can be

obtained as detailed in section 3.4.2. However, the practical evaluation of the sensitivities

is quite complicated, so that, in practice, only partial information is available. An example

drawn frorn the IT case is detailed in section 3.4.3, allowing some conclusions on the IT

models and the applicability of sensitivity approaches.

3.4.1. PARTIAL ASSESSl\1Ei'lT OF EXISTING WORK

In references [jua2, Ion 1], luang gives a good analysis of the limitations of the ERA

algorithm, which could be generalized to other "black-box" identification algorithms.

These algorithms identify major dynamic contributions in the measured input/output

response. If, as done in Ref. Uua2], a measure can be obtained for the identification

criterion of the level of contribution linked to noise in the measured response (after non­

parametric ideutification in general), one can expect that all identified dynamics with a

smaller impact on the response will be excessively dependent on the measurement error.

This argument may, however, be invalid if the measurement error and the identified

quantity contribute to the system response in very distinct ways. For example, the response

of a local nlode may be small~ but, if the mode resonance is in a frequency region with low

noise levels, it can be accurately estimated. This argument gives another reason to prefer,
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as proposed in this chapter, an identification through a directed optimization, which allows

use of this type of physical kIlowledge that is available for lightly damped structures.

A second argument, developed in Ref. fjua2] and used in indusnial applications [lmsl],

is linked to the fact that many algorithms use "computational" modes that do not represent

physical properties of the true system but help creating a model. The properties of the true

modes (which do represent the physical system characteristics) should clearly be

independent from the number of computational modes. The consistency of the estimated

properties for different numbers of computational modes can thus be used as a good

indication of their accuracy. The present work applies to the large class of structures, such

as the IT, for which a model of the same rank as the underlyillg physical system can be

detennined (which thus has no computational modes). It was sho\vn that efficient model

identification is possible under these conditions.

A third argumellt developed in Ref. [Ion1] uses the direct mathematical expression of

the ERA identified model as a function of the measured data.. Assuming that this expression

is differentiable and can thus be linearized around the nominal solution, statistics on the

measurement data can be related to statistics on the predicted parameters using Bayes

theorem. The linearization corresponds to the traditional engineering method of sensitivity

analysis and the estimated statistical properties of the m.easured data define a characteristic

perturbation, which will allow the detennination of a characteristic error.

This type of approach can be applied to most identification methods and will be

developed for the complex mode identification algorithm in the next section. It should be

noted, however, that such analyses only give a measure of the error within the

identification procedure, and not of the actual prediction error for the true physical

parameters.

3.4.2. VARIANCE OF THE ESTIMATED PARAMETERS IN THE COMPL.:X

MODE IDENTIFICATION METHOD.

The exact dependence of identified parameters with respect to the data is obviously

extremel), non-linear, so statistics on the measurements cannot be exactly translated into

statistics on the identified parameters. However, an approximation can be made using a

linearization of the relation (measurement data)~(identifiedparameters). Assuming that the

linearization is valid, estimated bias and variance of the measurement points can then be

propagated into bias and variance estimates for the identified parameters.

In the case of the method proposed in section 3.2, the identified parameters are the

solution of an unconstrained minimization problem (the user-given constraints on the pole

structure force convergence to an appropriate local mininlum, but are never met at the
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chosen local minimum). For parameters solution of a minimization problem, the

linearization of the relation (measurement data)~(identifiedparameters) can be done as

follows. For a cost function J, parameters p and a data vector x, the parameters locally

minimize the cost function, so that

JJ(p(x),x) =o.
dp

(3.55)

Furthermore, the parameters depend Olt the data vector x in such way that (3.55)

remains true for any variation of x. Therefore, the derivative of (3.55) with respect to x is

also equal to 0

d JJ(p(x),x) = J2J(p(x),x) + J2J(p(x),x) dp = O.

dx dp dXdp iJp2 ax (3.56)

This relation provides the expected local linear relationship between p and x in the

general case of identified parameters solution of an unconstrained minimization. For each

specific identification algorithm, the problem is now to find a practical algorithm to

detennine (3.56).

Using the complex mode identification algorithm proposed here, the relationship for the

residues is easily obtained. Considering a SISO case (clearly MIMO cases are for this

probleIn independent SISO problerr.~),one has from (3.15)-(3.17):

(t)~ ~~ =~ {cPT(-HM + cPR)} =

= {cPTcP ;)R _ cpT JHM + cPT ;)cp R+ JcpT (cPR- H
M

)} =0 (3.57)
ax ax ax ax

which leads to

(3.58)

where two parts can be distinguished. As expected (since R is the solution of a quadratic

minimization problem), the first part is a direct dependence on the error in the measured

data (aHM / dx) which takes the same form as the dependence (3.17) of the estimated

residues on the data HM• However, the second part appears because the error made on the

estimated poles introduce variations in ep (shown here as diP/ax) which indirectly

introduce errors in the estimated residues.
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If an unbiased frequency response function estimator is used, the variance of the

measured frequency response function points is usually estimated in the form of a

coherence spectrum 1((co,) (defined in Ref. [lju1] Chapter 6 for example), which is used to

define an approximate diagonal covariance matrix LM for the elements of /-1 AI. For each

measured frequency point, the corresponding diagonal element of LM is given by

(3.59)

Using the frequency response covariance matrix I M, the variance of the residues R

linked to the direct dependence on the measured frequency response function HM is simply

(3.60)

However, the overall estimation error also depends on the second part of (3.58). This

indirect dependence is linked to the fact that errors in HM induce errors in the pole

estimation, so the computed base responses ep used to solve the linear least-squares

probleln are inaccurate, which in tum leads to indirect errors on the residues.

Using (3.56) to determine the exact dependence of the pole estimates on errors in HM

does not seem feasible for non-trivially simple problems. One must thus somewhat

arbitrarily decide what realistic bounds on these errors are. With such estimates, the

accuracy evaluation can be completed by estimating the effect of pole location error on the

identified residues. Since this last step can only be done on a case by case basis, such an

analysis will be done for the IT case in the next section.

3.4.3. ApPLICATION TO THE INTERFEROMETER TESTBED CASE.

The first difficulty is detennining a bound on the pole variations that might be linked to

noise in the measured data. Using the proposed identification method, iteratio:ls on the pole

frequencies are never stopped before the relative step sizes are below 0.005 %, and

iterations on damping ratios for relative step sizes are below 1%. In the case of the IT,

where the measured data has very little noise, these numbers are probably good bounds for

the actual error made on the estimated poles.

On the other hand, the results of different tests of the structure led to sample standard

deviations as large as 0.2 % for the frequencies and 10 % (of the nominal value) for the

damping ratios (see Table 3.2). With the accuracy achieved in the identification, there are

good reasons to think that these variations are not linked to identification error but to small

changes in the system (coupling with the shaker which was located in a different position

for each test might easily explain variations of that order, particularly for the frequencies).
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However, to be more conservative in the evaluation of the uncertainty on residues, these

unrealistically large values will be used initially.
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Figure 3.9: Estimated residues and corresponding uncertainty bound for
a) an uncertainty of 0.2% in the estimated frequencies
b) an uncertainty of 10% in the estimated damping ratios
c) the estimated variance of the measured frequency response function

Allowing variations of 0.2% and 10% on the pole frequency and damping ratios, the

possible variations on the residues were computed using (3.58) (the validity of (3.58) was

also verified for a few cases). In these results) an error on all the residues is linked to each

of the pole variations, which rapidly leads to an untractable number of uncertainties. As a

practical solution for this difficulty, a quadratic norm of the different contributions was

used to detennine a conservative over-bound of the error.
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Figure 3.9 shows the application of this procedure on the estimated residues of the

transfer function from shaker I to sensor 1. Both the contributions linked to noise in the

frequency response function and uncertainty in the estimated pole damping ratio are clearly

negligible. Even for ten times higher levels of noise, the direct error on the measured

parameters would be small compared to the indirect contribution linked to pole estimation

error. The facts that the contributions linked to the damping estimation errors are small and

that damping is difficult to measure are strongly related. Errors in measured damping that

may seem significant in tenus of parameters, do not imply large variations in the prediction

(much smaller than those linked to mass and stiffness contributions), and thus do not

induce large indirect errors on the residues.

In Figure 3.9, the contributions of errors in the estimated pole frequencies is quite

large. However, the levels of uncertainty assurned (0.2 % from best estimated frequency)

are based on the variations of these frequencies between different tests, and are quite

unrealistic bounds for the actual error made for any given test (0.01 % would be more

appropriate). For any given test, the uncertainty ranges on the residues should thus be

about ten times smaller than shown in Figure 3.9, which would then be negligible (except

for modes 6 and 9). It \vas seen in Figure 3.7 that, for the test on leg 1 considered here, the

modes 6 and 9 are not well identified. The present sensitivity analysis thus confinns the

conclusion made previously, that the test with the shaker on leg I does not allow a very

accurate identification of these two modes.

The analysis of the five other tests leads to the conclusion that the identification error

for the complex residues is very small for a case such as the IT, where the noise levels are

very small. This however only rrleans that the complex residue identification algorithm is

insensitive to the considered noise levels.

As seen in previous sections, the results show larger variations from test to test,

indicating that the system invariance should be questioned. Furthermore, several non­

optimal steps lead to the final MIMO normal mode model. For each SIMO test, the

estimation of scaled complex modal observabilities cVJj is very sensitive to even small

errors on the residues of the collocated transfer function. The transformation to the Donnal

mode model relies on the enforcement of the properness condition which introduces some

errors. Therefore, although the complex residues are extremely well identified, the MIMO

normal mode model may not be as accurate. (A further discussion of this point is made in

Chapter V, where hybrid analytical/experimental models are introduced),
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3.5. CONCLUSIONS

A classification of identification metho·ls has been proposed and the existing

approaches relative to the categories of this classification have been reviewed. The use of

bandlimited frequency domain data was motivated for the identification of structural

dynamic models. Different fonns of the truncated nonnal mode model parametrization have

been discussed and were used. The properties of the quadratic and log-least-squares cost

functions have be;en discussed and led to the conclusion that the quadratic cost was

appropriate for identification and the log-least-squares cost for FE nlooel updates.

New solutions were proposed to obtain accurate scaled estimates of complex mode

modal observabilities and controllabilities. A new algorithm for the identification of poles

and complex mode residues was introduced. This algorithm identifies the residues while

iteratively updating an estimate of the pole structure, which allows using and geneTHlly

improving significantly th~ results of other algorithms. A procedure to detennine minimal

models from full-rank non-minimal residue matrices was discussed. Finally, using the

minimal nlodel description, the scaling of the modal observabilities and controllabilities

based on collocation constraints was discussed. The accuracy of the proposed approach

was demonstrated for the interferometer testbed.

It was shown that the complex modes of truncated nonnal mode models are proper, and

that this property is sufficient for the existence of an exact transformation between complex

and nonnal modes (which was detailed). A new algorithm was proposed to find proper

approximations of identified complex modes, thus allowing an accurate identification of the

normal modes and of the non-proportional modal damping matrix. The application of this

new methodology to the case of the interferometer testbed, led to the first experimental

characterization of non-proportional damping, thus demonstrating the breakthrough made

with the introduction of the proposed algorithm.

Finally the effects of errors in the measured frequency responses on the identification

results were discussed and shown to be extremely small, thus giving another confinnation

of validity of the proposed methodology.
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Cliapter 10/

Finite Element Model Update

Finite element models allow predictions that cannot be done with experimental models (see

the allplications ill Chapter V). However, for these predictions to be accurate, it is

necessary to obtain FE models with relatively minor errors. Initial FE models usually differ

significantly from the actual system so that they must be improved, as will be detailed in

this chapter.

As shown in Cilapter I, finite element models are created using the measured properties

of systenl components. In many cases the properties of some components are not well

known or are arbitrarily simplified in the modeling process. Such simplifications lead to

two types of errors:

- Analytical limitations inherent in the elements may lead to a model that could not

accurately represent the system behavior (the model is not physically significant). For

example, if a component has local dynamics at low frequencies (e.g. the science

plates of the Interferometer Testbed (IT) have strong local bending motion above 60

Hz), the model must include enough DOFs on that component to accurately represent

the local dynamics.

- Design parameter errors linked to faulty measurements of component properties or to

incorrect modeling assumptions may lead to inaccurate predictions, even if the model

allows a correct representation of the low frequency dynamics (i.e. the model is

physically significant). For example, struts in truss structures are usually represented

by connected beam elements. In reaiity joints make the connection, and the stiffness

properties of these joints must be incorporated as a correction to the properties

(design parameters) of the element representing the strut.

Analytical limitations only have a significant impact if the incorrectly represented

component has a large influence on the response in the frequency range of interest. It is a

prerequisite for a meaningful model update to detertrJlne and correct all the analytical

limitations that may influence the respons~ in the frequency range of interest.

As most FE convergence studies have been done for particular (and USually simple)

systems, few systematic tools exist to demonstrate the analytical validity of most models.

However, as shown in Ref. [haJ5], anaJyticallimitations are often linked to the inability of
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a given element to represent wavelengths characteristic of the system motion in the model

frequency range. Thus, a comparison of characteristic wavelengths with the element

lengths at the highest frequency of interest [ba15] Of, similarly, a comparison of the first

intelnal elemellt resonance with the highest frequency of interest (as done in Ref. [bou 1] to

validate a Guyan condensation), might give starting points for the development of such

analysis tools which will not be addressed here.

Under the necessary (for the validation of any parametric update) assumption that the

model elements do not impose analytical limitations on the predictions, algorithms to

estimate (update) with high accuracy the values of certain design parameters (E, A, p, etc.

of different elements) will be analyzed in this Chapter. Well devised component tests allow

both verification of the analytic validity of the component model and accurate updating of

specific design parameters, so whenever possible such tests should be used first.

Data
Modal: identified,
reduced,expanded
I/O: filtered, averaged,
bandlimited

~
Cost Function AlgorithmModal: geometric, Directenergy, etc. ~ Optimization strategy ~I/O: TD, FD,
lin-LS, log-LS Uniqueness

t
Parametrization
Choice of update
parameters
Reduced evaluation
model

Updated
FE model

Figure 4.1 : A general characterization of parameter updating procedures.

When all possible efforts have been made to ascertain the validity of the conlponent

models and to estimate their design parameters (as when integrated into the system), global

system tests provide a way to evaluate the model accuracy, and thus to update some of its

parameters. As for all parameter estimation procedures, four main components (shown in

Figure 4.1) characterize different algorithms:

- the measured data (and the process used to obtain it)

- the cost function used to compare predictions and measurements
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- the choice of parameters to be updated and the reduced model used for predictions

- the algorithm used to determine the parameters values which will optimize the model

prediction.

Most choices within this matrix have been already investigated, so that any new work

can OIlly lead to incremental improvements. Rather than doing a linear survey of existing

algorithms which would only repeat the work of others (e.g. refs. [cael, royl, linI, bert,

levI]), this chapter addresses the different points of the proposed classification, reviewing

existing as well as innovative solutions and using the IT case as an exarnple.

For evaluations of the model accuracy, both identified normal mode data (see section

3.3) and I/O response data (see section 3.1.1) can be used, as will be detailed in the review

section 4.1. Local element design parameter values cannot always be identified from a

global system test, so that a sensitivity analysis (introduced in section 4.2) is necessary

prior to any FE model update. Computer limitations do not allow the repeated use of full

FE models during an iterative update pro~edure, so reduced order predictive models

(introduced and analyzed in section 4.3) are used, allowing orders of magnitude decreases

in computation time. A particular FE update algorithm, differentiated from existing work by

the use of the logLS cost function. and of reduced predictive models (introduced in section

4.3), was developed as part of this research (sec Ref. [baI4]). The history of the IT finite

element update and this update algorithm are used in section 4.4 to highlight fundamental

limitations of FE update algorithms based on the comparison of global system properties.

4.1. DATA AND COST FUNCTIONS FOR FE UPDATE PROCEDURES

For procedures linked to undamped FE models, two tnain types of data can be used,

Analytical normal modes are easily accessible from the FE model, but experimental

Donnal modes are only indirectly identified from Ineasured data (as shown in Chapter III).

Furthermore, experimental measurements of the nonna} modes are only partial (the modal

observabilities and controllabilities are measured) so that further analysis tools (reduction or

expansion; reviewed in section 4.1.1) are needed to obtain "compatible" experimental and

analytical modes. For compatible modeshape estimates, many criteria have been defined

(see the review in section 4.1.2) using geometric and energ}' considerations.

Input/Output data are easily available from experiments (usually in the form of

frequency response functions) with a higher degree of accuracy than modal data.

Furthennore, many measures of model agreeJnent have been defined for this type of data

(see section 3.1.3) and can be readily used. In fact, the only significant diffi~ulty
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(addressed in section 4.1.3) is now linked to the analytical model, which must contain a

representation of damping (that was not needed for criteria based on nonnal modes).

4.1.1. COMPATIBILITY OF IDENTIFIED AND FE NORMAL MODE

INFORMATION

The frrst obvious problem in using experimental modal data is that the identification

results provide estimates of normal modes at sensor and actuator locations (the nlodal

observability matrix. (c tP )1 and the modal controllability matrix (tPTb)/)' and the FE model

estimates of modeshapes tP at all the FE DOFs q. For many applications it is necessary to

have an estimate of the experimental modeshape at all the FE DOFs, so that different

methods to attain this objective have been devised and will be reviewed here.

To retain the natural decomposition of components into I~lements (and thus the link

(physical component parameter)f-+(element design p"jam~~ter», the initial FE model

generally must be defined using more DOFs than available sensors. Historically, the first

approach has been to reduce the active FE DOFs to the available sensors (in order to obtain

a model where cl/J =t/J). In the structures community such approaches are known as

condensation methods, but in a control-oriented approach this would be seen as a model

reduction procedure with an imposed choice of states.

TIle principle underlying the different condensation methods is to partition the full order

model into active DOFs q;,. corresponding to sensors and dependent DOFs qD that will not

be measured, and to assume that a constant linear relationship exists between the dynamic

states of the dependent DOFs and the states of the active OOFs

(4.1)

Assuming that the motion of the dependent DOFs verifies (4.1), the system equations

can be rewritten as

{s2(M,y +MADT +TTMoA +TTMooT} +(K,y +KADT +TTKoA +TTKooT)}qA =(bA+TTbo}u
(4.2)

Y=(cA +COT)qA

where the dynawjcs of the full order model are fully described using the active DOFs qA. It

is then usually assumed that external forces are only applied on active DOFs and that

sensors are only placed on the same nOFs. Thus dependent DOFs have no influence on the

input (bD = 0 so that bA +TTbD =b,A.) or the output (CD = 0 so that y =q,..).
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The first, and probably the most robust, condensation method is the Guyan reduction

(or static condensation) which assumes that the dependent OOFs behave quasistatically (Le.

qD =0 and tiD =0). This assumption can easily be shown to correspond to the following

linear relationship between the active and dependent DOFs

qD =Tq", =-K~~KDAqA (4.3)

Several variations of this initial solution have been introduced (see Refs. [oca 1, fre 1,

oca2, paz}, oca3]), which give better results than the Guyan reduction in a number of

cases, but in a way tha.t is difficult to characterize.

Overall, condensation methods are extremely useful for model reeuction purposes but

they have major limitations:

- They tend to be sensitive to model error and to lose the spatial information linked to

errors [hej 1].

- They are fundamentally limited in frequency by the first mode of the dependent DOF

set. The assumption (4.1) of linear dependence of the dependent DOFs becomes very

inaccurate above the frequent;y of the first fixed-interface mode (mode of the

dependent DOFs with fixed active DOFs, see Refs. [gorl, boul]). (Note that it is

possible to define condensations for other "non-low" frequency bands [ardl], but this

is not of interest for the present research).

- Unlike the truncation approach (introduced in Chapter II), which acknowledges the

existence of low frequency asymptotic contributions of high frequency modes (and

can thus use the exact low frequency modes), condensation methods use a proper

second order model (thus implying that the modes of the model are somewhat inexact

in order to incorporate the effects of high frequency modes).

The second approach introduced to reconcile measurements with the finite element

model is to combine experimental and analytical predictions to define modeshapes at all the

DOFs of the full order FE model.

To obtain this expansion, some methods (e.g. refs. [hejl, ber2]) assume that a constant

linear relationship (described by the N by NT m:~trix n exists between the known modal

observability matrix (ct/J) I and the modeshape expanded to the full set of OOFs

t/>E% = [T](ct/') I (4.4)

The assumptions used for condensation are then used to define the matrix T. For

example, assuming that the unmeasured nOFs behave quasistatically (as done for the

Guyan reduction) leads to the so-called "static expansionH
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(4.5)

Because they use the same assumptions, these approaches have the same fundamental

frequency limitations as condensation methods.

The other expansion methods are essentially geometric. A basic result of perturbation

theory is that small variations in the system can only introduce large recombinations of

modes that are close to each other in frequency [baI6]. Therefore, assuming that the

identified system can be represented by a small perturbation to the initial FE model, the true

modeshapes at the FE DOFs are, with a small approximation, a linear combination of the

modeshapes of the initial FE model tPTnu: ~ tPFEOA.

(In the usual case, all actuators have a collocated sensor, so that all the information is

contained in the modal observabilities. To simplify notations, this will be assumed in the

rest of this work.)

The basic objective of the geometric expansion methods is to obtain expanded modes

l/JE~ = tPFEOA which match the measurements (the identified modal observability (ct/J)/
matrix) as closely as possible, or in other words, to minimize a nonn of

(4.6)

The simplest solution is to define A as the solution of the least squares problem

associated to the minimization of (4.6)

A =argmin{trace((c¢PEoA - (C¢)/)T (C¢PEOA - (c¢)/ ))} (4.7)

which corresponds to the use a pseudo inverse of the FE modal observability matrix

(A = (c¢PEof(c¢)/).
For cases with as many sensors as modes, the minimization problem (4.7) leads to the

use of the true inverse (c¢PEof/ and the modal observabilities of the expanded modes

match the measured modal observabilities (ct/J)/ exactly. This, however, may not be

appropriate since there are identification errors in (ct/J)/. In fact, for an accurate initial

model where pail; ng of moues has been achieved, the jlh expanded mode should be

relatively close to the corresponding prediction of the modeshape (tPEXj ~ tPFEOj). Therefore,

the transfonnation matrix A should introduce a "smoothing" of the measured modeshape so

that the expanded modeshape is closer to the analytical prediction. This trade-off between

matching the identified modal obseIVability and introducing "smoothing" (to account for the

inaccuracy of identification and the relative accuracy of the FE prediction) has been

formalized in Ref. [roy2], but reintroduces the need to "pair" analytical and experimental
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modes. Finally, other possible choices for the transformation matrix A have been

introduced (e.g. refs. [oca2, kaml, smi2]) allowing the addition of further constraints (on

the mass orthogonality of expanded mcx:les in particular).

It should he noted that modeshape expansion does not change the scaling of the

measured modal observabilities. Therefore, for the true mass and stiffness matrices, the

expanded modeshapes will be mass orthononna! and stiffness orthogonal (the equivalence

between the equality of collocated modal observabilities and controllabilities and the mass

and stiffness orthogonality conditions was discussed in section 2.1.3).

In the present work, the litnitations of condensation methods are considered to be too

stringent, so that these methods are not used. The geometric expansion to the full FE DOF

size, using the least squares solution (4.7) for the matrix A, with more sensors than modes

(so that A is a pseudo-inverse which introduces some smoothing of the measured

modeshapes), will be used in Chapter V to create hybrid analytical/experimental predictive

models.

4.1.2. COMPARISON CRITERIA USING NORMAL MODES

Several criteria, which will be reviewed here, have been developed to evaluate the

agreernent be~een identified and analytical nonnal modes. The use of these criteria implies

that the experimental and analytical modeshapes are known at the same points «(cq,)J and

CFEt/JFE should be known) and in some cases that all the DOFs are measured (y=q so that

cl/>=t/J, which can be obtained using the methods proposed in section 4.1.1).

The first and obvious comparison can be ITlade on the modal frequencies, using, for

example, a quadratic nonn

error = I,IW/D - Wpe!2.
identified modal frequencies

(4.8)

The main difficulty with such criteria is that they imply the possibility of "pairing"

measured and predicted modes, a process which may be quite difficult for models with

large errors and systems with high modal densities (which tend tn become the usual case).

In a second step, analytical and experimental predictions of nonnal modeshapes are

compared. The Modal Assurance Criterion (MAC) [ellNi 1] is probably the most used

(mainly because of its simplicity) criterion on modeshapes. For the identified modal

obseIVabilities (cq,)/j of the ph mode at the sensors I, and the analytical obseIVabilities

c,tPA;(product of the output shape functions cl corresponding to the sensors I by the k'h

analytical modeshape tPJJ the MAC is defined as
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I((CtP )IjC,tPl)
MAC~=~~I~~~~~~

I (C,tPl)2 L ((CtP )Ijr
I I

(4.9)

which gives a measure of how the jth experimental and kfh analytical modal observabilities

are correlated. If the modeshapes (and thus the modal observabililies) are equal, the

diagonal terms (j=k) are equal to 1 (perfect correlation). Furthermore, off-diagonal terms

will be close to zero for a well-designed modal test (it would clearly be bad practice to have

two modes with the same or very correlated modal obseIVability matrice~).

The MAC meaSllres the shape correlation without any reference to sCaling (because of

the denominator in (4.9)); this makes the MAC easy to use but also limits its applicability

(since the modeshape scaling governs the influence of a given mode on the overall system

response, a proper scaling is necessary when comparing the relative influence of different

modes). In other terms, the MAC is not a norm (two vectors can be perfectly correlated and

yet different), so care must be taken in interpreting results.

When a proper scaling is defined, it is useful to evaluate at each sensor location how

well the different identified and predicted modeshapes are correlated. This can be done

using the COordinate Modal Assurance Criterion (COMAC) defined in Ref. [lie2].

When possible, it is more accurate to directly compare the scaled modal observabilities

at the points where they are measured, using, for example, a quadratic nonn

error =L\(CtP)1j - c,tPl. (4.10)
I,j

The problem in such an error measure is that it implies a proper scaling of the identifIed

modes and the pairing of identified and predicted modes (as did the criterion (4.8) on the

frequencies). Solutions to alleviate the need to pair modes have been proposed, but they

come at the cost of more complex procedures which will not be considered here.

Cost functions combining nonus on the modal frequencies and scaled observabilities

(e.g. a weighted sum of the criteria (4.8) and (4.10» give a complete characterization of

accuracy with which the undamped I/O characteristics of the system are modeled. If the

errors in both (4.8) and (4.10) are equal to zero, the nonnal modes (both frequency and

scaled shape) are predicted exactly. Assuming that the danlping is properly modeled,

discrepancies hetween I/O measurements and predictions are thu~ limited tu unmodeled

dynamics and noises. Criteria which do not consider modeshape scaling (such as the fvIAC)

give no guarantee on the agreement of the overall system response.
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Conversely, direct comparisons of predicted and measured transfer functions

(addressed in section 4.1.3) are criteria measuring both the error on modal frequencies and

scaled modeshapes. Their use implies a proper model of damping and often neglects effects

of noises and unmodeled dynamics, but alleviates the difficulties linked to the identification

of experimental modes and to the pairing of modes.

A second category of criteria assume that the full modeshapes are measured (this either

implies that the system matrices have been reduced or that the modeshapes have been

expanded) and are based on the orthogonality conditions introduced in Chapter II

(4.11)

A measure of the model quality can be obtained by using mixed experimental and

analytical modeshapes and seeing how well the equalities (4.11) are verified. For example,

one should have

(4.12)

These measures or variants of them have been used to define update algorithms.

Although modeshape scaling is implicitly considered, some problems should be noted:

- The tWO conditior.s must be verified simultaneously to prove the equality of the

measured and predicted modeshapes (the mass orthogonality, often used by itself,

has little more value than the MAC, and is much more difficult to use).

- In real systems, all the modes are not identif~ed. Since the reduction is often not

accurate enough, there is a clear problem of model truncation. l'he partial

orthogonality conditions that can be computed only guarantee the agreement of

frequency response measurements and predictions if the validity of the expanded

modeshapes can be proved.

A useful interpretation of the orthogonality conditions relates to the so-called modal

energies [roy3]. In the modal coordinate system of identified nonnal modes, the identified

modal mass and stiffness are diagonal. (Assuming that the modes have been scaled using a

collocation constraint; the modal mass rnatrix is the identity and the stiffness is the diagonal

matrix of frequencies squared. See section 2.2.3). The FE modal mass and stiffness

matrices can also be expressed in the coordinate system associated with the expanded

modeshapes t/JE%

(4.13)

and the terms of the mass J1.s and stiffness ils can be seen as kinetic and strain energies

associated to the FE model modes in the true nonnal nlode coordinate system. If the FE
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modes are accurate estimates of the true modes, J1s is close to the identity matrix and Ds to

the diagonal matrix of squared normal mode frequencies. An updated model should thus

match this condition better than the initial model.

4.1.3. USE OF CRITERIA BASED ON INPUT/OUTPUT RESPONSE

All the difficulties linked to the use of modes (identification, mode pairing, etc.) can be

circumvented by directly comparing the measured and predicted I/O response (usually but

not necessarily under the form of transfer functions). However, when using direct

comparisons with measurement data (time or frequency domain), damping must be

represented since it has a significant impact on the predicted response. Three main

approaches have been considered:

- A proportional damping representation with measured damping ratios (if mode

pairing is possible and experimental values for the pole damping ratios are available)

or a uniform estimated damping ratio (i.e. 1% for all poles).

- As proposed by Ref. [ibr3], a damping proportional to element mass or stiffness

matrices of elements

c = :L,(rJ.M• + r2.K.)
SE {suuctural element}

(4.14)

which has the inconvenience of using many parameters ris that are hard to identify (as

the influence of any such parameters on the response is extremely small, one cannot

expect to find a unique mapping between measurements and the parameters ris)'

- A non-proportional modal damping model. This would be the truncated noo­

proportionally damped nonnal mode model introduced in section 2.2.3, identified in

section 3.3: and used in the hybrid models of Chapter 5. The reader should refer to

these sections for more details on this damping representation. (The present research

introduces the first successful experimental identification of a non-diagonal modal

damping matrix, this type of model was thus never used previously).

With a damped model defined, the I/O response can be predicted and compared with the

measurement data using different criteria reviewed in sections 3.1.1 an(l 3.1.3.

4.2. CHOICE OF PARAMETERS TO BE UPDATED

The final objective of this research is to use test results in a given system configuration

to create models which allow accurate predictions of the system response for another I/O
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architecture or for a modified system. This objective is achieved in part by obtaining an

accurate description of local component mass and stiffness properties, which can then be

used to predict the effects of local changes.

A perfect match of a restricted set of measured I/O responses does not necessarily imply

that the local element properties are well described. Therefore, to correctly identify or

update (which is the same thing, except that one calls update cases where an initial estimate

is available) a given parameter, one must be able to: frrst differentiate its influence from the

expected residual model error, and second ensure that the correction is not needed because

of the inaccuracy of another parameter (see example in section 4.4).

Section 4.2.1 briefly reviews three areas (component tests, check of analytical validity,

check of "identifiability") which must be addressed to obtain correct update of local model

properties. In section 4.2.2, these different points are detailed for the IT case.

4.2.1. DEFINITION OF THE PARAMETRIC ERROR STRUCTURE

Design parameters of the FE model represent the propertie£ of physical components

described by different elements. They can be direct physical parameters (i.e. properties of a

beam modeled as a beam element), but often are the result of a condensation of several

physical parameters (properties of a beam + joint assembly represented as a beam element

without joint).

When carefully done, component tests are very useful in determining design parameters

(especially when they differ from physical parameters). For example, for a beam/joint

component represented as a single beam element, a test of the component will give a

measure of the overall stiffness which should be used as the element stiffness. The validity

of such tests clearly depends on a proper relation between the design parameters (properties

of the element or model of subsystem tested) and the parameters measured in the tcst

(boundary conditions are extremely important). However for a valid test, the update is

extremely reliable and the investment in testing is usually worthwhile if accurate and

physically significant models of the structure are to be created. (Uses of such component or

subsystem tests are documented in refs. [ba15, bal4] for the MIT/SERe interferometer

testbed, and refs. [carl, red!] for the lPL Micro-Precision Interferometer Testbed).

Parameter updates based on the comparison of global system test results can only be

validated if all the errors that may exist in the FE model have been characterized. These

errors can be linked to inaccurate parameters (the element is appropriate but does not use

the right parameters) but also to insufficient model refinement (the type or the frequency
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range of the element does not allow an accurate representation of the structural dynamics

[bal5] so the model should be refined).

A prerequisite, for a meaningful update of the element design parameters, is the

correction of all non-parametric model errors (i.e. analytical model limitations and user

input errors related to the system geonletry, the mass disttibution, the stiffness distribution,

etc.). This requirement can only be achieved if the analyst and the test engineer work 1n

close cooperation to detennine whether the assumptions made in the model are indeed valid

for tile considered system (or set of systems) and to eliminate discrepancies between the

actual system and its description in the model (geometry, etc.).

When the model is constructed with a good knowledge of the actual system properties

(for many reasons this knowledge is not always a\'ailable), the precision with which

different design parameters are known should be evaluated to allow a proper use of the

system test data. To obtain good results with an update methodology, most parameters

should be well known and a few should need to be updated.

The second step to validate a model update is to demonstrate the ability to uniquely

detennine the incorrect parameters. In practice, residual model errors are significant, so the

only parameters that can be updated are those that have an influence on the tested response

larger than the residual error. The sensitivity of the update cost function to a nominal

parameter change (defined trough an assessment of the uncertainty on the parameter) gives

a measure of the parameter influen(~eon the response, and thus an idea of which parameters

can be estimated with accuracy.

To update parameters with low impact on a given test, other tests must be performed, in

a different frequency range, using different sensors, or using a subcomponent. For

example, the first modes of the IT are thousands of time less sensitive to the mass of a plate

attachments than to their stiffness, therefore extremely small changes in the stiffness have

more influence on the response than large changes in the mass. Therefore, one cannot

known the stiffness well enough to distinguish the effect of a mass change from a stiffness

change in a global system response.

However, since the residual error is obviously unknown, it is difficult to prove which

parameters can actually be estimated. Indicative measures of the "identifiability" (such as

sensitivities of the update cost function) must thus be used instead.

The geometric energy distribution for different modes is also a useful indicator of the

model sensitivity to parameter changes. The influence of a stiffness change on a given

mode is roughly proportional to the ratio of the strain energy in the mismodeled element to

the total strain energy. High strain regions in the model frequency range are thus the
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regions where stiffness errors will have a significant influence. Similarly, mass errors will

only have a significant influen~e in regions of high density of kinetic energy. (However,

masses can be well measured, so that effects of residual errors on the mass are usually

smaller than that of errors on the stiffness).

Finally, a number of papers (e.g. refs. [lin2, ber3, berI, lie3]) address the problem of

identifying the geometric location of a modification made to a known structure; clearly, the

work of these authors should be used for the problem at hand.

4.2.2. ApPLICATION TO THE INTERFEROMETER TESTBED CASE

This section describes the application to the IT of the three steps outlined in the

previous section (component test, check of analytical validity, check of "identifiability").

To allow the creation of better models, the axial stiffness of struts and joints used to

bujld the IT truss were frrst characterized using a component tester. There were difficulties

in devising a test to measure the design parameter used in the model, which in the present

case is the axial stiffness of the component (ball joint, connection screws, tube strut)

represented as a single beam element. However, once this design parameter was accurately

measured by testing the full component (11.2 N/Jlrn for the short struts and 7.77 N/Jlrn for

the long struts), the agreement between the system test of the nak~ truss and the model

prediction was extremely good up to around 140 Hz [baI4] (the number of suspension

modes above that frequency does not allow a good analysis of the data). As is well

documented for the IPL Micro-precision Interferometer testbed [carl], SllCh a good

agreement can in fact be expected for most truss structures up to the range of local strut

bending modes (above 200 Hz for the IT).

For the model upd&te of the completed IT, it was thus known that the only significant

errors would be located on the new added components (i.e. science plates, see section 7.1).

As schematically shown in Figure 4.2, the model for each of the science plates is

constituted of 25 plate elements used to represent the large support plate, 4 beam elements

used to represent the U-shaped connectors linking the plate with the truss, and 4 beam

elements to represent the support of the cat-eye tnirror which itself is represented as a

concentrated mass/inertia. The geometry and the different masses were carefully measured

and used in the model (with an error for the overall plate mass which was later updated, see

section 4.4 which shows that this was a case where two parameters could not be updated

simultaneously).
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Ivlirror

Figure 4.2: Sketch of the FE representation of the science plates. (See a picture of a
science plate in section 7.1).

As a first step, meant to eliminate analytical limitations, the mesh size for the plate

models was refined until a further refinement did not produce significant modification of

the component modes below 100 Hz. For pinned boundary conditions (free rotations but

fixed translations) at the attachment points to the truss, the first plate modes were found at

50.5 Hz. From the initial model, three refinements of the plate model were necessary to

obtain an apparent convergence of tile component model.

For the cat-eye model using beams and a concentrated mass, a more detailed model

with plate elements and a more accurate mass distribution did produce significant changes,

so that the 4-beam nlodel was considered a physically significant representation of the

actual system.

These tests do not provide a complete characterization of the plate assemblies, which

might have included a better validation of the cat-eye assembly mtxlel, and/or a dynamic

component test allowing a better characterization of the individu,d plates. However, for

purposes of the present work, the overall model physical signifi.cance was considered

sufficient to allow a meaningful paralnetric model update.

A number of parameters in the model could not be measured with high accuracy and

were considered for the different updates. However, to simplify the presentation, only five

of the most important will be presented here as possible model errors

- three stiffness errors for the plate/truss links: the longitudinal (along the leg) bending,

the transverse bending and axial stiffness.

- two mass en'ors: the concentrated mass of the mirror assembly and a distributed mass

error for the main plate.
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The three link stiffness coefficients were knowli to be inaccurate since there was no

simple way to evaluate good values for the design parameters (any value between 5.0 10-12

and 10-10 m4 for the beam element bending section inertia, and between 10-6 and iO·-4 m2

for the element section area seemed realistic). The two mass coefficients were introduced

when it became apparent that the residual discrepancy after update of the link stiffness

could not be related to a stiffness error, thus casting ~ ~oubt on the mass model (which is

easier to measure and is thus usually more accurate). Such an error could not be rigorously

bounded even though a mass decrease or a total testbed mass increase of more than 5 kg

seemed unlikely.

To evaluate the "identifiability" of these different parameters, the amount of change

linked to what seemed realistic variations was computed using the cost function on modal

frequeacies (4.8) and the logLS cost function (3.12) based on transfer functions used for

the new update method that will be detailed in section 4.4.

Table 4.1: Sensiti'l:ity of the update cost functions (error measured between the initial
and modified models) to a standard change in parameters to be updated.

Paranleter Initial Value and Change in modal Change in logLS

standard change frequency cost cost

Link!} 2 10-11 m4 (+100%) 18.00 514.80
Link/2 10. 11 m4 (-1-100%) 131.60 2734.21
Link A 10-5 m2 (+100%) 0.90 0.70

Mirror mass 2.224 Kg (+500 g) 10.26 3816.10
Distributed plate mass 0.970 K~ (+500 ~) 7.46 3437.50

From Table 4.1, the sensitivity of the system response to the link axial stiffness (link

A) is clearly so low that only unrealistically large variations of the parameter would lead to

modifications of the system response that could be distinguished [rom the residual model

error. "fhis parameter thus cannot be identified from the considered test. Both the link

bending stiffnesses (link /} and [2)' however, produce effects that are significant enough to

be used (see details in section 4.4).

The two ma£s changes are given as the addition of 500g (but one is a concentrated mass

at the mirror location and the other a mass distributed on the edge of the plates). The

sensitivity is very large so that they are "identifiable" perturbations~However their effects

on the global system response are almost identical, so that the two modifications cannot in

fact be distinguished in tenns of the measured response in the modal test (see more details

in section 4.4).
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(4.15)

4.3. REDUCED ORDER PREDICTIVE MODELS

The last necessary element to create a practical update algorithm is the ability to easily

predict the quantities needed for the error criterion (i.e. modal frequencies and shapes or

transfer functions from existing actuators to existing sensors) for the different values of the·

design parameters. Of course, as in Chapter II, one is only interested in low frequency

response predictions were the system is tested, but :he dependence of this low frequency

response must be properly characterized for significant variations of design parameters.

Conceptually the full FE model could be used as a predictive model, but in reality this

would be excessively expensive (realistic models are large tend to grow faster than

computer capabilities, so that this problem will not disappear in the near future).

Furthennore, it is not necessary to recompute the low frequency nonnal modes of the large

model, since one is interested for update purposes in evaluating the response of a model

that is relatively close to the nominal solution. Perturbation analysis and model reduction

are two main approaches used to obtain inexpensive (in terms of needed computations)

reduced predictive models.

A first difficulty, detailed in section 4.3.1, is to detennine a reduced description of the

modifications which will be used by the predictive models. Then perturbation or sensitivity

approaches (reviewed in section 4.3.2) use a linearization of the relation

(response)~(designparameter) to predict the effects of small changes. FE rnodel

condensation methods have sometimes been used to obtain reduced models, but, as pointed

out in section 4.1.1 where they were reviewed, these methods are often inappropriate for

the complex structural systems considered here. Finally, model truncation as shown in

section 2.2 provides a way to obtain reduced models of the low frequency response. Using

a Ritz analysis, as shown in section 4.3.3, the initial ttuncated solution of the full model

ca~.' be reanalyzed to obtain predictions with higher accuracy than with perturbation

approaches. Furthennore, static modes can also be used to improve results of reanalyzed

mudels. Finally, a review of the accuracy obtained with the perturbation and reanalysis

methods is done in section 4.3.4 for the IT.

4.3.1. DESCRIPTION OF SYSTEM MODIFICATIONS

The influence of design paranleters on the full system matrices of the model is non­

linear in general. However, changes to the full order FE matrices linked to the change L1p

of a design parameter p can be represented as additive corrections

M(p+L1p) ~ M(p)+ a; (L1p)Ma• ,

K(p+L1p) ... K(p)+f3;(L1p)Kpl •
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(4.16)

(4.17)

where Mai an~ KPi are normalized incremental mass and stiffness matrices representing a

unit change of the scalar coefficients ai(t¥J) and (3;(A!J). Fer some parameters, such as the

material density p or Young's Modulus E, the matrices M and K depend linearly on the

parameter. In such cases, one can directly use a;(t1p)=L1p and f3i(t1P)==L1p. For others,

such as the plate thickness, the dependence is more non-linear and must be integrated in

non-linear functions ai(L1[J) and f3i(L1[J), with sometimes the need to define more than one

additive matrix for tIle same parameter (Le. define a Mal and M a2 ). The non-linear terms

ai(L1p) and fJi(L1P) can then be linearized around a nominal value, but t.his is not always

necessary.

The description using additive corrections is fundamentally equivalent to the direct use

of design parameters. However, it allows easier fOImulations of the update problem in

many cases (e.g. [ber3, ibr3l, or the commercial package of INTESPACE [roy4, roy3]).

(For more details on the additive correction description see Ref. [roy3]).

Writing the mass, damping, and stiffness modifications linked to all the modified

design parameters as single mass AM, damping L1C, and stiffness L\K modification

matrices, the modified FE model equations (2.1) become

(M + L1M)q + (C + L1C)q + (K + L1K)q =bit

y=cq

The basic assumption, for predictions done with reduced models, is that response of

the modified system can still be accurately represented using the projection on the low

frequency modes (model truncation) which was valid in the initial configuration. Thus

using the same approach as for the normal mode models in section 2.2, the modified

systems equations (4.16) are projected onto a truncated set of real vectors tPr (low

frequency nonnal modes and static correction modes)

(I + L1/l)jj +(r+ L1r)p + (D + L.1!1)p = tfJTbu

y=c¢p

where .1J1 =l/J;t1MtPT' L1r =tPJt1Cl/JT' and L1.Q =l/J~L1KtPl~. Note that if all the modes are

kept in tPT' equations (4.16) and (4.17) describe exactly the same response in different

coordinate systems (FE DOf~s q versus normal mode states p).

The use of the truncated modal model representation (4.17) solves all the difficulties

lirUced to predictions. The truncated damping representation, which is the only one available

(see section 2.2.3) can be used. The model being reduced can be handled by available

computers. Correction modes can be added in cases where more accuracy is needed (see

section 4.3.3). Furthermore, as will be shown in section 5.1, identified quantities can be
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used to create a hybrid experimentaVanalytical model allowing better predictions of the

system response.

4.3.2. PERTURB,\TION AND SENSITIVlTY ANALYZES

The traditional engineering solution to evaluate the response of a system after small

modifications is to use perturbation analysis (which, in practice, can only use the set l/Jr of

computed low frequency normal modes; no extension has been published to extend the

method and use correction modes). The basis of this approach is to consider that although

the relation between the low frequency response (normal modes tfJr, modal frequencies Dr
and modal damping matrix rr) and the modifications (AM, Lie, and L1K) is clearly non­

linear, it can be accurately linearized for small changes (a nth order expansion is obviously

possible, although even the second order is rarely used).

The basic perturbation theory for nonnal modes (see also references [elrl, kim!, ba15])

assumes that the modifications on the nonnal mode frequencies and modeshapes take the

fonn

Djj = mf =c:ofo + 11m:

tPTj = tPTjO +2: cjA;tPn
k.Fj

(4.18)

which, for small modifications (AM, .dC, and L1K), leads to the approximations (see any of

the above mentioned references)

D jj = mf =mfo +(-mfotP~L!MtPTj + tP~L!KtPTj) =mfo +(-DjjoL!/l jj + L!Djj )

~ -m~otPiA:L!MtP'l' + tP~L!KtP'l' ~ -D"oL!/lkj + L!Dkj (4.19)
tPTj = tPTjO +~ } 2 } 2 J tPTI:. =¢TjO +~ n 2 2 tPTA:

Ic_j (f)jO - lJ)kO k-i (f)jO - rotO

In the equations (4.19), the notations of the projected system (4.17) are useG

intentionally to highlight a major point, usually omitted in presentations of perturbation

theory. In practice, the set of modes kept for the perturbation analysis is always truncated

(l/Jr), so that the penurbation analysis is an approximation of the projected equations (4.17)

and thus only indirectly approximates the full systems equation (4.16). (The direct use of

the projected equations (4.17), which will be considered in section 4.3.3, is thus more

accurate).

Note that the matrix expressions of the perturbation results (right hand terms in (4.19»

clearly show that the diagonal terms of the perturbation matrices 11J1 and L1.Q correspond to

changes in the eigenvalues and the off-diagonal tenns to changes in the eigenvectors.
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(4.20)

(4.21)

A first major limitation of the perturbation analysis is that the expressions (4.19) for the

modified normal modes are singular for multiple eigenvalues. Different ways to alleviate

this difficulty for multiple poles have been introduced. (e.g. Ref. [shall), but the problem

then becomes that for high modal densities, small changes may lead to multiple poles (see

the analysis in Ref. [trill). If the initial system does not have nlultiple poles, multiple pole

perturbation analysis cannot be applied, so the range of validity of the perturbation analysis

becomes extremely small.

Other limitations are that the expression (4.19) does not allow modification of the

damping and does not predict th~ effects of the modifications on the damped response.

These restrictions could be alleviated using perturbation methods for complex modes and

could even be extended to non-symmetric systems (for which only parts of the present

research apply), but this would lead to a number of distinct procedures, so that it is simpler

to use the unique reanalysis approach (proposed in the next section).

For system modifications that are linearly dependent on a parameter e (i.e.

L1M =eM} and 11K =eK1), the expressions (4.19) provide estimates of the derivatives of

modal frequencies and modeshapes with respect to the parameter e

a(J)~ ( 2 T T) ( )a; = -mjot/>TjMlt/>TJ + t/>TjK1t/>Tj = -DjjoL1Jljj + ADjj

at/>Tj =~ -WfOt/>:JkMlt/>Tj + t/>:JkKlt/>TJ A =~ -DjjoL1Jlkj + L1Dkj A
:l £..J 2 2 't'TJ: /...i 2 2 't'Tk
uE kFj W jO - (J)/r.O J:~j mjO - (J)k,O

Such derivatives, traditionally called sensitivities, provide a linearization of the relation

(e)~«(J), tfJ) which can be used for incremental predictions, as follows

2 _ 2 awf(O.(e)- w.o+e-
J J de

(}l/J'l'
4'7" (e) = tPr'o +e-1

J 1 de

Unless the sensitivities are recomputed after each step on e, such predictions arc

equivalent to the perturbation theory.

When a sensitivity analysis is used for a model update procedure, the relation between

modes and design parameters is linearized, which often simplifies the problem fonnulation

and allows direct solutions. Sensitivity approaches were thus used in the early work of

Collins, et al. [colI], 0f in more recent commercial packages such as CORDS [flal, fla2,

fla3] or SSn) [hasI]. (For further references see the review done by Levine [levll).
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Higher order (or even exact [elrl] but non-linear) perturbation theories have been

deveioped. But the advantage of simplicity is lost and the results remain approximations of

the reduced system model (4.17), with no possibility for appending correction modes to

kept nonnal modes. For :lccuracy, it thus seems more efficient to use the reduced model

(4.17) di:ectly in the reanalysis approach presented in the flext section. However, even

with these limitations, sensiti\lity analyses do provide an easily available linearization of the

effects of mass and stiffness modifications. A linearization is a major advantage for the

implenlentation of many algorithms, so that the results presented here oc their extension are

and will remain useful.

4.3.3. REDUCED MODEL REANALYSIS

Near a givell sj'stem configuration (Le. for a restricted range of possible design

parameter values), one can define global shape functions that allow an accurate description

of the dynamics. In general such an approach is called a Ritz analysis, but when the shape

functions used are normal modes of the initial configuration, the approach is often called

reanalysis. Using a truncated set of nonnal modes to reanalyze the system response leads to

the reduced model (4.17).

For small Inodifications, the low frequency nonnal modeshapes usually fonn a good

basis o£ Ritz vectors (this is why the sensitivity analyses are valid in a number of cases).

However, if the system (and thus the modes) changes significantly, the predictive validity

of the reanalysis model becomes less obvious, and one may have to include more

information (other Ritz vectors and static correction modes in particular as will be detai!~d

later) which does not modify the predictions in the initial configuration, but increases the

range of possible modifications where the model predictions are accurate.

The need to use more Ritz vectors than the set of nonnal modes of the systenl in its

initial configuration is clearly shown by FE models. The number of base vectors in a FE

model is driven by the need to obtain models that represent the local behavior accurately for

large ranges of the design parameters. This spatial discretization leads to a higher number

of predicted modes, most of which are inaccurate [ben1] (and thus have no more value than

Ritz vectors), but are needed to guarantee that the low frequency nonnal mode predictions

remain accurate for large ranges of possible local design parameter values.

The difference between the perturbation and the reanalysis approaches (.;an be

interpreted physically as the fact that the perturbation theory tries to follow the tnodal

coordinates (determine the new modal states p corresponding to nonnal modes of the

modified system) where the reanalysis uses the modal states Po of the nominal model with
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(4.22)

non-diagonal projected modifications. From the reanalysis model (4.17), ne\\' modal

coordinates can be computed by solving the associated reduced order eigenvalue problem.

The perturbation approach uses a first order approximation to evaluate this eigenvalue

solution and is thus always less accurate. It is often much less accurate for problems with

high nlodal densities where the definition of modal coordinates is very sensitive to small

perturbations (see the example in section 4.3.4).

P~nother advantage of the reanalysis approach (and of Ritz analyses in general) is that

the introduction of correction modes becomes natural. The addition of more nonnal modes

outside the actual bandwidth of interest is the first obvious extension, but static modes (first

defined in section 2.2.2 for I/O systems) are also useful. To define static correction modes

for FE models, the definition of inputs must be clarified. "fhe modified system equations

(4.16) linked to design parameters updates can be rewritten as

Mq +Cil + Kq =-t1Mij - L1Cq - L1Kq +bu

y=cq

where the mass, damping and stiffness modifications appear respectively as acceleration,

velocity, and displacement feedback. In many cases, the correction matrices LiM, L1C, and

AK span a subspace defining a set of inputs described by a matrix Fu. The static input

modes corresponding to Fu are used as in section 2.2.2 to generate static correction modes

(4.23)

In general, the corrections are localized so that the matrix Fu is of small dimensions. In

some cases) however, the number of static modes tPs can lead to models with too many

states for fast computations of the reduced model response and to numerical conditioning

problems for the orthogonalization of tbe static modes with respect to each other (usually

done using a Shmidt orthogonalization). Both restrictions can be alleviated using a mass­

orthogonal singular value decomposition and keeping only the modes with the largest

singular values as static correction modes.

The eigenvalues 1:'s and eigenvectors lJ's of l/JJ Mt/Js are the mass-orthogonal singular

values and right singular vectors of tPs. The associated left singular vectors that can be used

as static mode corrections in the reanalysis are

(4.24)

where only the vectors corresponding to large singular values LSj} are kept. In this research,

the impro'/ement in numerical conditioning was the main motivation for the use of these
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principal modes (rather than the traditional static correction modes). Other advantages in

terms of model reduction would need to be further characterized, but this will not be

considered here.

Finally it should be noted that the reanalysis approach is fully compatible and very

similar in motivation to Component Mode Synthesis methods [cra3] in whi<;h low

frequency normal modes and additional correction modes of different components of a

system are liilked to obtain a full system model.

4.3.4. ApPLICATIONS TO THE INTERFEROMETER TESTBED

As an example for evaluating the validity of perturbation and reanalysis approaches for

FE updates, the variations of the system response in the 20-60 Hz band linked to changes

of the bending stiffness model of the scie'1ce-plate/truss links will be analyzed for the IT.

Since an initial estimate for these design parameters is very difficult to obtain, an update

would let them vary over a large range. However, the rate of change of the modal

frequencies only becoIlles significant for a section inertia below 10-10 m4, so that the

parameter ranges I J E [2 10-11 , 2 10-10] m4 and /2 E [10-11 , 10-10] m4 are considered here

and the low values (IJ = 2 10-11 m4, /2 =10-11 m4) are used to create the initial solution

(whose modes are the Ritz vectors for the reduced model (4.17».

The relative errors in the prediction of the change in modal frequencies are shown

(Figure 4.3) for the first nine flexible modes of the structure.

The perturbation approach gives obviously inaccurate results for the large parameter

range considered here. (It becomes significantly worse than the reanalysis prediction for

stiffness increases of more than 25 %, and the expected change (corresponding to the first

point shown in the figure) is of the order of a 250% increase.)
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Figure 4.3: Error relative to the full order FEM solution made for the prediction of the
first nine modal frequencies of the IT as a function of the link bending
stiffness. Result~ of (x) the perturbation approach \vith 25 modes, (0) the
reanalysis approach with 25 normal modes, (+) the reanalysis approach
with 65 nOffilal mones, (....) the reanalysis approach with 25 normal
modes and 50 principal components of static correction modes.

The model reanalysis using 25 modes does always better than the perturbation analysis

but not significantly better for some modes (mode 2 in particular). These results can be

significantly improved by using a larger number of dynamic modes (see in the figl1re that

much better results are obtained 1~1r all 9 modes using 65 normal modes of the initial

model). The increase of cOlnputational cost is usually not a problem for FE update

procedures, but might become one for robust control synthesis problems (where it is often

desirable to limit the model size, but where parametric variations tend to be smaller so that

small truncated models would probably be accurate enough).
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In the present, case the modification is distributed (the stiffness of 12 links located in

different areas of the structure is modified) so that the addition of static correction modes

only improves the global results if more than 50 correction modes (principal components of

the 72 static modes initially defined for the problem as shown in section 4.3.2) are kept.

Using 25 nonnal modes and 50 correction modes, the predictions of the reanalysis tnodel

are however significantly better than those of the 65 nonnal mode model, which shows that

in many cases the static modes can be more useful for accurate predictions than extending

the model bandwidth by adding more dynamic modes.

This fIrst analysis was related to pole predictions, but modeshape predictions are also

important. The method developed in this work (see section 4.4) uses frequency response

comparisons, so the modeshape accuracy evaluation was first done with frequency

response functions. Figure 4.4 plots predictions of the frequency response corresponding

to the shaker V accelerometer 1 transfer fu~ction for the first point shown in figure 4.3

(link bending stiffness increased by 250%).

The pelturbation analysis is clearly not appropriate for this case since the error made on

the transfer function prediction is extremely large. Furthennore, conditioning problems,

which force a limitation of the number of modes kept, appear very rapidly. for the case

considered here, only 20 modes could be kept before obviously inaccurate modes were

obtained above the model bandwidth.

The reanalysis with 25 modes is much more accurate, although the predicted

frequencies are still somewhat inexact (the peaks are shifted to the right). For paratlleter

variations smaller than this case, the 25 mode reanalysis model would be accurate enough

for most purposes. However, if the increased computational time is not a problem (it is

usually not), the 65 nlode reanalysis model can be used and gives results that significantly

reduce this already small error (see the improvement in figure 4.4).

In the plot, the errors on frequencies, which shift the transfer function estimate, are

more easily spotted. The small errors made in the modeshapes (seen as errors in the peak

heights) should however be noted too. This visu,,! predominance of the frequency error

does in fact translate into a higher influence of modal frequency errors for cotnparison

criteria based on transf~r functions.
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Figure 4.4: Transfer function predictions for a link bending stiffness increased by
250% (-) Full FE solution, (._.) 65 mode reanalysis, (---) 25 mode
reanalysis, (....) perturbation analysis.

The comparison of a sillgle frequency response function does not however provide a

good idea of the overall quality of predictive models. Using the 28 transfer function

predictions corresponding to the modal test made for the IT, the overall error can be

measured using any of the criteria detailed in section 3.1.3. For example, using the logLS

cost function with the 28 transfer functions of a test with the shaker on leg V, the prediction

error is: 5 10+3 using the 65 mode reanalysin model, 1.8 10+4 using the 25 mode

reanalysis model, and 5.6 10+4 using the sensitivity analysis (versus a residual error

between the best FE model of the IT and the experiment of 1.3 10+4).

The 65 mode reanalysis model is the only one having a prediction error below the

residual FE model error for a link stiffness increase of the considered order (250 %). It

would thus probably be the only one appropriate for accurate predictions. lIowever, in

practice, this type of reduced model limitation is circumvented by recomputing the full finite
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element sollltion, after the detennination of a set of updated design parameters or when the

update algorithm calls for excessively large parameter changes.

4.4. ApPLICATION OF THE (REANALYSIS/LOGLS) FE UPDATE ALGORITHM

TO THE CASE OF THE INTERFEROMETER TES1'BED.

In the course of this research a particular update algorithm was developed and coded in

the Matlab Toolbox [bal2]. Its main characteristics are the use of:

- A set of measured frequency response functions to characterize the actual system

response.

- The Log-Least-Squares cost function (3.11) (introduced in section 3.1.3) to evaluate

the model accuracy by comparing measured and predicted frequency response

functions.

- The additive matrix representation of the effect of design parameter changes,

introduced in section 4.2, as a parametrization for the update model.

- The reallalysis approach, introduced in section 4.3, to evaluate frequency response

functions for different values of the updated design parameters.

- A standard simplex algorithm, after a rapid estimation of the optimum location based

on a maximum descent algorithm, for the minimization of the logLS cost.

Outside the fact that criteria based on transfer functions are easier to use than modal

criteria (see section 4.1.3), the proposed algorithm are probably essentially circumstantial.

In fact, it is the opinion of the author that, in practice, the choice of parameters to be

updated is an issue of much greater importance than the choices made to create a given

update algorithm. Therefore, the analysis presented here will thus not focus on

demonstrating the advantages of the chosen Inethod, but will rather use the history of the IT

FE model update to highlight difficulties linked to the update of particular design

parameters. In particular, it will be shown that the incomplete update of only some of the

inexact properties may lead to inexact results, that different parameters sometimes cannot be

updated simultaneously, and that the effects of the damping model were negligible for the

update of the IT with the proposed algorithm.

In Figure 4.5, the comparison of a measured frequency response function (actuator V

sensor 1) with predictions of different versions of the ffi model shows that the application

of the proposed approach did lead to significant improvements of the IT model by the
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~uccessive correction of the plate/truss link stiffness and of the mass distributed around the

science plates.

A frrst step leading to the "initial" FE model (dotted line in Figure 4.5) was to refine the

analytical models of the plates. It was then assumed, as usually done, that the mass

distribution was correctly represented. A sensitivity analysis of the response to

modifications of design parameters led to the conclusion that the only improperly

characterized parameters, with enough influence to account for variations of modal

frequencies of several percent (initial errors in modal frequencies varied between 1% and

5% for modes belo ..v 60 Hz), were the bending stiffness of the beam elements used to

represent the plate/truss links (see section 4.2.2).
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Figure 4.5: Comparison of transfer functions (shaker V sensor 1): (--) measurement,
(....) initial FE model, (---) FE model with updated link stiffness, (---) FE
model with updated plate mass and link stiffness.

The section inertia of these links, initially assumed to be very stiff (IJ = /2 = lO~10 m4),

was thus updated. As apparent in Figure 4.5, for a lower stiffness (I} =/2 = 1O~ 11 m4
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shown as a dot-dash line), all the modes except the frrst four give very good estimates of

the modal frequencies.

The actual optimum of the minimization of the logLS cost function for the 28 transfer

functions of the test on leg V was obtained for /} =/2 = 8 10-12 m4, but was rejected

because Df physical considerations. A nllmber of local plate modes (mostly linked to local

vibrations of the plate which couple with the rest of the truss) exist above 50 Hz, but a

section inertia at 8 10-12 m4 1ed to almost twice the actual number of modes. This (as well

as the frequencies of the 9th and lOth modes (at 44.2 and 53.8 Hz) predicted too low) was

corrected by using the value I = 10-11 m4•

7
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Figure 4.6: Map of cost values as function of mirror and distributed plate mass
changes.

Since the agreement was still unsatisfactory, but could not be related to a stiffness

error, the mass distribution was questioned. Assuming a simple concentrated mass error at

the mirror locations, the update algorithm was used and it converged to an elTor of 1.05 kg

at each of the mirrors. The mass of the different elements constituting the plates could be

carefully measured, so it was soon found that an error of approximately 920 g had been

106



made in modeling the mass of the support plate. (A number of wires, attachments, etc., and

a significant portion of the plate surface located outside the points of attachment (and thus

with little contribution to the overall stiffness) had been omitted).

The error detennined through the component test (measure of v.feights) was not the

error found during the update. (fhe true error was a mass distributed on the support plates,

rather than concentrated at the mirror). This highlights the general problem of

demonstrating the uniqueness of the solution for FE update methods.

The uniqueness problem can be easily seen when considering maps of the update costs

as functions of the updated parameters. In tIle present case, a map of the overall update

cost, as function of the two design parameters (mirror and distributed masses), was

computed and is shown in Figure 4.6. From this map, it appears that the cost remains

extremely close to its actual minimum on a line of constant total mass. Thus the considered

test cannot distinguish where the mass error is located (at the mirror or on the plate), and a

reliable solution can only come from a component test establishing at least one of the

masses correctly.

The last update done for the IT model was to do a second update of the link stiffness,

which had been made too soft in an effort to compensate for the rnass error. More work

could be done particularly to update the model of the fourth vertex (see appendix) and the

detail of the cat-eye mirror mounts. The properties of those components could not be

updated using global system data in the 20-60 Hz range, since they do not have a sufficient

influence on the response. These studies were not perfonned, because the predictions of

the current updated model were found to be sufficiently accurate for the creation of hybrid

experimentaVanalytical nlodels (see Chapter V, and section 5.1 for a better evaluation of

the actual agreement) and because no further testbed design phase required greater

accuracy.

A last important question in evaluating the usefulness of the presented FE updating

methodology is the sensitivity to the damping model. The underlying assumption for

updates based on comparisons of frequency response functions is that the effects of

damping models are decoupJed from mass and stiffness effects. This property was easily

shown for simple 1 or 2 DOF systelTIs such as the example presented in section 5.2.2. In

general however, this assumption could not be motivated by more rigorous arguments than

noting that the damping matrix r influences the system response without changing the

nonnal modes (so that the errors in damping lead to fundamentally different discrepancies

between measurement and model which should not significantly deteriorate the predictions

of the mass/stiffness distribution).
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For the IT update, a proportional damping model with measured damping ratios for the

poles in the 20-60 Hz band and 1% damping for other modes was generally used. For the

leg V shaker, the discrepancy between the predictions of this model and that of one with an

identified non-proportional damping m~aix were of 1.5 10+3 (as measured by the logLS

cost), whicll is significant when compared to sensitivities to other parameters (shown in

Table 4.1).

Two tests showed that this discrepancy had no eff~ct on the update results. The

optimunl link bending stiffness updates were computed for two different models (the first

using tl.1odal damping, the second an identified non-proportional damping model). As

expected, the two results for the link update were identical (to the accuracy of the

optimization, i.e. approximately 1% optimal change). Using analytically generated

frequency response from a nominal but non-proportionally damped model, an update of the

different parameters considered (bending link stiffness, plate mass, etc.) was performed

using a proportionally damped model. Again, as expected, the update procedure indicated

that no parameter change was needed.

4.5. CONCLUSIONS

A classification of FE update procedures was proposed using four categories: data

used, criterion used to evaluate the agreement between model and data, parametrization of

the model, and algorithm used for the update. The compatibility of experimental and

analytical modeshape predictions was discussed, reviewing in particular methods of

experinlental modeshape expansion. Criteria based on modes were reviewed, and the need

for a damping representation was discussed for criteria based on I/O response data. l'he

procedure leading to the choice of parameters to be updated was discussed and detailed for

the IT case, showing in particular that not all paratneters can be updated. The underlying

principles of perturbation and reanalysis approaches were analyzed, and applications to the

IT case showed that the normal mode model reanalysis leads to the Inost accurate

predictions. The use of static correction modes in the reanalysis approach has been

discussed. The update of the IT model using a new algorithnl, based on the nlinimization of

the logLS cost function and the use of reanalyzed models, was detailed. Finally, the

uniqueness and validity of the update results and the influence damping were discussed for

the IT case.
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Cliapter 0/

Experimental/Analytical Predictive Models

The experimental models identified in Chapter III are limited to the tested actuator/sensor

and system configuration, so that the only predictions that can be made are those linked to

these loops (e.g. closing feedback loops using the test sensors and actuators). Analytical

FE models allow all the predictions of interest, but lack the accuracy of identification

results. This chapter will focus on combining the advantages of these two approaches to

create hybrid experimentaVanalytical models.

The reanalysis approach, presented in section 4.3.3, showed that truncated rnodal

models could be used to accurately predict the response of non-tested system

configurations (i.e. modification of sensor/actuator architecture, addition of damping

treatments, modification of the mass and stiffness properties). However, most of these

predictions can not be obtained with experimental models, because the modeshapes are

only known at the tested sensor and actuator locations. To resolve this limitation, it is

proposed to use experimental normal modeshapes that are expanded using the solution of

the undamped FE model (section 4.1.1). In section 5.1, the creation of such models is

detailed, and experimental and analytical evaluations of the accuracy obtained are discussed

for the Interferometer Testbed (IT).

The truncated normal mode models also allow a good description of the model

uncertainty, capturing in particular the effects on non-proportional damping and high modal

densities. This description is analyzed in section 5.2, using a two-mode example for a

qualitative analysis and the case of the Interferometer Testbed (IT) for quantitative results.

5.1. EXPERIMENTAL/ANALYTICAL PREDICTIVE MODELS

The construction of hybrid (i.e. using both experimental and analytical results)

predictive models is first introduced in section 5.1.1. Then, to demonstrate the validity of

the approach, analytical (in section 5.1.2) and experimental (in section 5.1.3) examples

derived from the IT case are detailed.
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5.1.1. CONSTRUCTION OF EXPERIMENTAL/ANALYTICAL PREDICTIVE

MODELS

After the finite element model update (see Chapter IV), it is known that the agreement

of modal frequencies and normal shapes is relatively good (although non-negligible errors

remain). It thus becomes useful to do a final "complete update" of the analytical nonnal

mode model much in the way that complete matrix corrections where first introduced for

finite element update problems (see Refs. [wei!, ber2, ber4, ber6, kabl, barIl, etc.). This

update is done on the damping representation, the nonnal mode frequencies, and the

nonnal modeshapes.

As discussed in section 2.2.3 and demonstrated in section 3.3, the truncated non­

proportional viscous damping matrix allows an accurate representation of complex damping

mechanisms at a system level. For an undamped analytical nonnal mode model, one can

therefore construct a damping model by simply using the estimated damping r from a

global system test. This estimate can be constructed:

- assuming proportional damping and using the damping ratios of estimated poles (ris

then diagonal with each term of the form 2 'Wj where ~ is the damping ratio of the

pole) or

- using a full identified damping matrix r without the assumption of proportional

damping. (Note that a significant contribution of this research is to allow the

identification of a non-proportional damping matrix as seen in section 3.3).

For modes that are not (or not accurately) measured, but need to be kept for predictions

(such as the static correction modes and other dynamic modes), arbitrary values such as the

mean damping ratio of the measured poles can be used effectively. As discussed in section

2.2.3, the damping coupling terms (non-proportional damping) with the accurate dynamic

modes of the model should be set to zero, since their effects cannot be properly

characterized and are generally small enough to be neglected.

The second step uses measured modal frequencies instead of the less accurate analytical

values. As for the damping, the unmeasured modal frequencies (or those that cannot be

correlated with the expeliment) are kept unchanged.

The third and final step addresses the modeshapes. One could obviously use the

analytic modeshapes, but slightly better predictions can be made using the expanded

modeshapes introduced in section 4.1.1.
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These update steps lead to a truncated modal model of the fonn

Ijj + reP + !2cP = tPcTbcu

y = CctPcP
(5.1 )

which uses:

- an experilnental modal stiffness matrix De (diagonal), which has the measured nonnal

frequencies squared for the modes in the model bandwidth and other somewhat

arbitrary frequellcies for other appended modes needed for predictions.

- an experimental modal damping matrix Tc : either the diagonal matrix 2 '(JJj (with

measured pole damping ratios) if proportional damping is assumed, or the identified

full matrix. Somewhat arbitrary terms for correction modes (average damping ratio

for additional dynamic modes, or critical damping for static modes).

- a set of expanded modeshapes tPc (mixed experimentaVanalytical) defined at all the FE

DOFs corresponding to the identified Donnal modes and the other coITection modes.

- analytic input and output shape matrices (cc and be) derived from the FE geometry

and actuator/sensor calibration.

With the model (5.1), the response of untested loops can be predicted by defining the

corresponding analytical input be and output Ce shape matrices (see the example in section

5.1.2)~

The system matrices have been implicitly updated by using experimental values, so that

more accurate results are expected than with the nominal model. Since the updated full

order model is not known, modifications of the mass, damping, and stiffness properties

cannot be incorporated directly. However, their effects can be predicted using a model

reanalysis (first introduced in section 4.3.3) as follows.

For system modifications t1M, L1C, L1K described in the initial full order FE DOF

system, reduced mass t1J1=t/J~L1M</Je' damping L1r=t/J~L!ct/Jc' and stiffness

L1.Q = tP~fjKtPc modifications are defined and can be added to the reduced system

equations (5.1) to obtain a prediction of the modified systenl response (see the exampl~s in

section 5.1.2)

(I + 11J1)ji +(rc + L1r)p + (Dc + L1.Q)p = tPeTbcu

y =cctPcP
(5.2)

which can be used in this form or transfonned to the new Inodal coordinates of the

modified system (model of the fonn (5.1».
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The set of expanded modeshapes l/Jc can be complemented by adding other purely

analytical modeshapes (modes beyond the experimental model bandwidth for example). A

limitation however appears if static correction modr~ are needed. As presented in section

2.2.2, static correction modes correspond to the residual static response after subtraction of

the static effects of retained dynamic modes. Static correction modes for a hybrid model

should thus be the residual static response after subtraction of the effects of the true

modeshapes (rather than the analytical ones), and practical ways of obtaining such vectors

could be the object of further research (it will be shown in section 5.1.3, that a direct use of

the analytical static correction mode may not lead to accurate results).

5.1.2. THEORETICAL EVALUATION OF THE HYBRID MODEL VALIDITY

Non-tested sensor actuator architectures, mass/stiffness modifications, and damping

augmentation modifications are changes to the system that should be predicted by a hybrid

model. To demonstrate the ability of hybrid models to make such predictions with no

interference from other errors, a hybrid was created using an early version of the IT FE

model (before the mass and stiffness update) as the analytic model and the frequencies and

modal obselvabilities (at the 27 non-collocated sensors of the modal test) of the updated FE

model as the pseudo-experimental part.

This hybrid model uses

- the exact proportional damping model

- the exact modal frequencies (of the recent FE model)

- modeshapes geometrically expanded (equation (4.7) in section 4.1.1) with the full

modeshapes of the old FE model and thr exact modal observabilities (of the recent FE

model).

A frrst evaluation of the hybrid model quality is linked to the accuracy of the expanded

modeshapes. To analyze this accuracy, the modal controllabilities for the shaker locat.ion on

leg V were predicted using the expanded modeshapes. As shown in Figure 5.1, the hybrid

model predictions of the modal controllabiliti~s(based on the expanded modet;hapes) are

almost indistinguishable from the true controllabilities. In fact, the overall open-loop model

agreement is extremely good (using the usual 10gLS cost function on the 28 transfer

functions of the modal test, the error made by the hybrid model is 0.5 10+3 versus 8.8 1()t3

for the initial FE model).

As the accuracy of initial modeshapes used for the expansion can generally not be

ascertained without a very accurate FE model, the refinement and parametric update of FE

models was discussed in Chapter IV. However, if before the update residual modeshape
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errors made in the FE model are mostly related to frequencies, the hybrid model predictions

using the modeshapes of a somewhat inaccurate model will still be accurate. For the case of

the IT, it can thus be velified that the hybrid models using different versions of the FE

model (initial, with update link stiffness, with llpdated plate mass and link stiffness) are

almost identical.
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Figure 5.1: Comparison of the frrst 9 nlodal controllabilities t/JJb for the leg V shaker
location. (-) "true" FE model, (---) initial FE model, (._.) hybrid model.

For many controlled structures applications, one adds to the base structure danlping

treatments (such as the Honeywell D-strut used for the IT) whose effects must be predicted

accurately for a good design of the damping treatment. A simple description of the D-strut

can be obtained using displacement and velocity feedback (see Ref. [and 1]). For a

measurement y of the relative axial extension of a standard stnlt, the effect of the D-strut

can be described as a relative force feedback of the fonn

(5.3)

(5.4)

where for the present case kp=-6.8 10+6 (which corresponds to the fact that the D-strut is

less stiff than the regular struts), and kv=1.9 10+5 (which models the dissipation in the

D-strut).

The prediction of the response for the hybrid model thus takes the fonn

/f +[r c - tPcTbcskvccstPc ]f +[Qc - tPcTbcskpccstPc ]r =tPcTbcu

Y=cctPcr
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where bes is the input shape function for the relative axial force input and CCs the output

shape function for the relative displacement measurement at the considered 1000ation (note

that bel =c~).

In the analysis presented below, two cases will be considered: kp=O and kv=1.9 10+5 to

consider in the damping properties (damping augmentation) kp =-11.2 10+6 and ky=O, to

consider a change in the stiffness properties (broken strut).

For each case two series of hybrid models are considered: with just 26 modes and 26

modes + a static correction mode (addtd to obtain a statically correct model for the axial

relative force input on the strut). For the t,'IO series of models (26 and 26+1 modes), partial

updates are also considered to detennine the influence of different parameters. The different

columns of Tables 5.1 and 5.2, thus correspond to the pure FE model, a model with

updated modal observabilities and controllabilities (derived from expanded modeshapes

rather than FE modeshapes), a model with the FE modeshapes but updated frequencies, a

model with expanded modeshapes and updated frequencies but a reduced damping matrix

computed using the FE modeshapes, and finally the fully update hybrid presented in

section 5.1.1.

As a frrst case, velocity feedback (damping modification) is considered assuming kp=O

and ky=1.9 10+5. (Strut 601 just behind plate B (see the appendix) was used, because it is

a high strain location where the damping effects are maximized)

Table 5.1: Damping modification. Measures of overall accuracy (logLS cost) for FE
and hybrid models with combinations of updated modal observabilities
clfJ, controllabilities l/JTb, frequencies .oc, and damping perturbation L1rc.

Cont.
Pert.

10+3

10+3

Type of model FE model Obs. Cont. Freq. Obs. Cont. Obs.
Freq. Freq.

26 flexible modes 9.41 10+3 7.01 10+3 2.94 10+3 0.70 10+3 0.61

26 flex. + 1 static 9.44 10+3 7.00 10+3 2.90 10+3 0.09 10+3 0.65

As shown in Table 5.1, predictions show an extremely significant improvement for

both series of models as more elements of the hybrid model are updated. A reduction of the

logLS cost by a factor of 2 would already imply a very significant reduction of the model

error and a factor of 15 is obtained for the fully updated hybrid model. Furthennore, the

partial update of only some of the nlodel properties also improves the predictions, although

not as much as the complete update used to generate the hybrid model proposed in section

5.1.1.
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As a second case, displacement feedback (stiffness modification) is considered

assuming kp =-11.2 10+6 and kv=O (which corresponds to a broken strut). (The results

shown assume that strut 143 on leg IV (see the appendix) has no stiffness, but do not

introduce a damping modification). (This stiffness modification is representative of the

analysis of the position feedback teon in (5.3), but the need to use a static mode is smaller

for the D-strut stiffness decrease, so that a broken strut was preferred for this example).

Table 5.2: Broken strut. Measures of overall accuracy (logLS cost) for FE and
hybrid models with combinations of updated modal observabilities ctfJ,
controllabilities l/JTb, frequencies De, and stiffness perturbation Mlc.

Type of model FE model Obs. Cont. Freq. Obs. Cont. Obs. Cont.
Freq. Freq. Pert.

26 flexible modes 1.52 10+4 1.47 10+4 1.05 10+4 1.06 10+4 0.95 10+4

26 flex. + 1 static 1.25 10+4 1.21 10+4 1.40 10+4 1.04 10+4 1.27 10+4

In Table 5.2, the first series of predictions for models created using 26 flexible modes

(of the inaccurate FE model) shows that the error can be somewhat reduced by using the

proposed hybrid model (or even by only updating some of the properties). The relatively

large error obtained for the full hybrid model can be easily explained by the fact a static

correction mode (see sections 2.2.2 and 4.3.3) is necessary to correctly predict the

response after a large stiffness modification such as a broken strut (in particular the

predicted modal frequencies remain too high without a static correction mode).

The construction of the hybrid model, introduced in section 5.1, does not provide a

proper way of defining static correction modes, since the corresponding complete stiffness

matrix is unknown. The second line of Table 5.2 assumes that the static correction mode

generated from the FE model can also be used with expanded experimental Inodeshapes,

and the poor results obtained clearly show that this is not a valid option. Without further

developments that could be the object of further research, the hybrid models introduced

here are therefore limited to tnodifications that do not necessitate the use of static

corrections.

5.1.3. PREDICTIONS FOR THE TEST CONFIGURATION OF THE

INTERFEROMETER TESTBED

For predictions using a hybrid experinlental/analytical model, the important analytical

quantity is the accuracy of the FE modeshape predictions. The modeshape accuracy can

only be verified a posteriori from identification results. For the best FE model, the modal

obsetvabilities, at the 28 sensor locations of the IT modal test, are compared in Figure 5.2
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with an average of the identified modal observabilities. The figure clearly indicates a

relatively g<X>d initial agreement between the prediction and the measurement.
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Figure 5.2: For modes j = {]... 9}, comparison of the scaled nornlal nlode
observabilities cl/Jj (in meters, y-axis in the figures) at the 28 sensors of
the modal test (x-axis in the figures). (-) mean identified. (---) best FE
model.

As shown in figure 5.3, the expanded modeshapes of the hybrid model, which

combine these FE modeshapes and the measured obselVabilities, lead 1-3 relative errors that

are significantly lower than those done by the FE model. (The mean value for 28 sensors

and 9 modes of Cf/JFI~/(Cf/J)/ is three times higher than the mean value of Cf/JE>:/(Cf/J)/).
Furthermore, the errors made by the hybrid modeshapes are for most sensors below the

levels of variation between the different identification results.
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The improvement of the predictions (when using expanded modeshapes rather than the

FE modeshapes) conles from the fact that the FE modeshapes span the correct subspace but

tend to be combination of the true modes, a problem which is corrected using the

experimental modeshape expansion. For example, modes 6 and 7 are extremely close in

frequerlcy (36.1 and 36.5 Hz), so that small FE modeling errors lead relatively large errors

clearly apparent in Figure 5.2. These errors are due to a significant recombination of the

two true modes and a rotation by 22° within the constant subspace of the two initial modes

(see Ref. [baI6]) reduces the mean error Inade on the observabilities by a factor of 3

(leading to errors similar to those seen for the other modes). (This large effect of a small

error in a structure with a high modal density is analyzed for a simple two-mode example in

section 5.2.2).
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A first use of a hybrid model is to predict the response of the same system but for a

different sensor/actuator configuration. To demonstrate the ability of the IT hybrid model to

make such predictions, an hybrid model was created without using the leg V test. With this

hybrid model, the unteste-d nlodal controllabilities tPTb linked to the test on leg V were

computed and the frequency response functions vt' that test were generated. (It was chosen

to predict the response of one of the tests to allow a comparison with test data).

As an example of the accuracy achieved, Figure 5.4 shows how this prediction

correctly captures the system response near modes 6 and 7. Clearly, the hybrid model

matches both the magnitude and phase extremely well, even though the underlying FE

model is much less accurate and non-proportional damping has a significant influence on

this part of the transfer function.
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Figure 5.4: Comparison of leg 'I accelerometer 1 transfer functions. (-) Measured,
(---) hybrid model, (-_.) proportionally damped hybrid model, (....) FE
model.

The comparison of a single transfer function does not however ascertain the overall

validity at all possible nleasurement points. As an average measure of the prediction

accuracy at different points of the structure, the logLS cost function (3.11) and the mean

error of RMS prediction (average of the difference between the predicted and the

corresponding nleasured RMS responses) for 1200 points linearly spaced in the 20-50 Hz
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frequency band and the 28 measured transfer functions were computed and are shown in

Table 5.3.

Table 5.3: Measures of overall accuracy for different predictive models.

Type of model logLS cost Mean error of
RMS rediction

Hybrid model

Hybrid model, proportionally damped

Finite element model, proportionally damped

Identified nonna! mode model, non-prop. damped

1.35 10+3

1.68 10+3

2.41 10+3

1.87 10+3

0.7 %

11.7 %

17.1 %

0.5 %

From Table 5.3, it clearly appears that the use of the hybrid model instead of the FE

model significantly improves the accuracy of predictions as measured by the two different

cost functions. Furthermore, the use of a non-proportional damping model plays an

important role, particularly for predictions of RMS responses (which are critical for many

studies such as damper placenlents [and2]).

The RMS responses are extremely well predicted by the identified normal mode model,

which is not surprising as this model is identified using a quadratic criterion on the transfer

functions which is strongly related to the RMS prediction. The logLS error for the

identified Donnal mode model, however, is worse than that made with the hybrid models.

The improvement obtained with hybrid models can easily be related to the fact that they

incorporate FE predictions for higher frequency modes (particularly mode 10 at 54 Hz)

which have a significant impact on the log magnitude of the transfer function above 40 Hz

but little on the RMS, since the amplitudes are very small in the 40-50 Hz region.

As will be shown in section 5.2.2, partial reassemblies of the testbed have led to a

significant evolution of the system dynamics after the complete modal test used in this

work. Predictions of tested structural modifications (e.g. addition of D-struts, removal of a

strut) were thus not very accurate, but the quality of agreement for analytical tests, such as

those presented in section 5.1.2, indicate that this was mostly due to the evolution of the

testbed dynamics.

5.2. ERROR AND UNCERTAINTY

Uncertainty is an estimated measure or bound on how much error can exist in a

prediction of the response. As seen in Chaplers III and IV, measures of model error are

defined trough choices in two main areas: the measured data and the cost function used to
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compare data and predictions. Thus, to different choices of data and cost functions

correspond different definitions of the model uncertainty, which rrJay or may not be

appropriate for other purposes, such as robust controller synthesis.

The predictions of the models considered here should not, even for a perfect model,

reproduce direct time domain measurements on the real system. Noise characteristics, high

frequency dynamics, non-linearities, and time-varying parameters have not been included

in the models and should thus appear as prediction errors.

Noises and high frequency unmodeled dynamics can be easily treated using a transfer

function representation of the system response. For the structural systems considered here,

where noise levels are low, an almost noise-free estimate of the frequency domain response

can be obtained under the realistic assumption that noises and inputs are uncorrelated (see

section 3.1.1). High frequency unmodeled dynamics can be addressed in more detail using

the methods developed for control applications [ath 1], or can be simply truncated by

considering frequency response functions in the frequency range of the model. (Note that

this truncation also applies to additional model dynamics (such as static correction modes)

used to obtain predictions over a larger parametric range, ~ee section 4.3).

Non-linearities and parametric time-variations cannot be properly treated, since transfer

functions are only defined for linear time-invariant systems. The identification and

linearization of time-varying weakly non-linear systems using linear frequency response

function estimators and linear identification techniques is an interesting subject (see [ozgl]

for example), but too broad for the scope of the present work.

Assuming that the representation of the system by transfer functions is valid and that

the important properties of the system are captured by a comparison in the bandwidth

where the model is accurate, a description of parametric model uncertainty based on the

hybrid model form (5.1)-(5.2) will be introduced in section 5.2.1. In section 5.2.2, using a

simple two-mode example, the proposed description of uncertainty will be shown to

efficiently capture effects seen in structures willl non-proportional damping and high modal

densities. Finally in section 5.2.3, a quantitative evaluation of uncertainty in the IT model

will be discussed.

5.2.1. CHOICE OF A PARAMETRIZATION TO DESCRIBE UNCERTAINTY

Errors can be described in any parametrization, since exact transfolmations exist

between different parametrizations. However, uncertainties describe sets of models within

which the actual system is "guaranteed" to be (or "likely" to be for statistical descriptions of
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(5.5)

the set). Simple descriptions of sets in a given parametrization do not usually translate into

sinlple descriptions for other parametrizations. Thus, as uncertainty descriptions are only

useful if they are simple, it is important to determine a description that is both simple and

does not introduce to much conservatism.

The truncated normal mode fonn, or the equivalent h}'brid model fann (5.1)-(5.2), lead

to a natural description of uncertainty, in the following form

(l)jj +(rc + .1r)jJ+ (Dc + .1D)p =(¢/bc +.1b)u

y =(cctPc + Ltc)p

where uncertainties can appear as parameter en·ors on the truncated nlodal damping Llr,
stiffness ltD, controllabilities t1b, and observabilities Ac. The parametrization of

uncertainty (5.5) is appropriate for different reasons.

First, as shown in section 2.2. t truncated normal mode models are minimal

representations of the system properties in the considered bandwidth. Clearly, some

parameters of an over-parametrized model could be arbitrarily uncertain, since they do not

represent physical and measurable properties of the system. (This, in particular, is a good

reason not to use FE design parameters to describe uncertainties, since some design

parameters may have little or no influence on the system response in the frequency range

where the FE model is meaningful).

Second, the nonnal mode description appropriately distinguishes the contributions of

the mass and stiffness distribution (which can be established with high accuracy), frotn

those of damping mechanisms (fully described by the modal damping matrix D, which are

difficult to measure and are thus quite uncertain.

The third and perhaps the most important reason is that, for an appropriate definition of

the states p in the parametrization (5.5), small modifications of the system only result in

small parameter changes, Of, in other words, that small errors can be represented by small

uncertainties. The proper choice of states is still an open issue, but the following comments

can be done.

If, as done in perturbation analyzes (see section 4.3), the states p are chosen to be the

Donnal mode states of the true system, by definition of these states .1.0 would be diagonaL

This choice clearly minimizes the nunlber of uncertain parameters but can induce

unnecessarily large uncertainties in the modal controllability .&1, and modal obseIVability

Lie. This large sensitivity of the system normal modes to small system changes has been

well studied as a phenomenon called localization (e.g. [lev2, chell), which can be shown

[ba16] to appear for any pair of modes that are close in frequency when compared to the
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perturbations. An example will be treated in section 5.2.2 and the importance of this

phenornena for the IT will be shown in section 5.2.3.

The unnecessary sensitivity of the modal observability and controllability matrices

obtained with perturbation analyses can theoretically be avoided using a fixed definition for

the states p (however, work is needed to define how this could be done to account for

experimental errors). In this case, uncertainties or modifications on the system dynamics

appear as uncertainties (L1r and L1.Q) in the modal damping and stiffness matrices, and

uncertainties in the sensor actuator architecture as uncertainties (L1b and L1c) on the modal

controllability and observability matrices. Small uncertainties on the system dissipation will

be represented as small L1rmatrices. Small uncertainties on the mass and stiffness errors as

small but generally full L1Q matrices (note that uncertainties on the mass will also generate

uncertainties on the b and c matrices). Small uncertainties in the sensor/actuator architecture

will be represented as small L1b and L1c matrices.

5.2.2. QUALITATIVE EFFECTS OF ERROR. A TWO-MODE EXAMPLI~.

The advantage of using the proposed description of uncertainty (5.5) is that it gives a

good understanding of how small modifications of the system can lead to large uncertainty

descriptions in some parametrizations. The following two-mode example will be used to

highlight these properties

PI 0 0 1 Pl 0

P2 0 0 1 P2 0
= + U

PI -1 -0.04 PI 1

P2 -1.21 -0.022 P2 1 (5.6)

Yl 1 1

[:JY2 = 2 -1

Y3 -2 0

The nominal system (5.6) has two proportionally damped modes with frequencies at 1

and 1.1, and respectively 2% and 1% damping. The single actuator excites both modes in

the same way, and three sensors measure the response at three different locations.

A first point of interest is the analysis Glf the influence of non-proportional damping.

The following example will show how for a system with constant poles and complex

modes, significant \/ariations can be obtaine<l of the complex modes, the damping of zeros

and the overall RIviS response. To demonstrate this influence the damping coefficient rJ2

was defined as an uncertainty coupling the two-modes of the nominally proportionally
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damped model (5.6). To obtain a clearer analysis of the results, it was arbitrarily chosen to

introduce four other uncertain parame~ers 8~, 8I;, onl , and 8~

PJ 0 0 1 PI 0

P2 0 0 1 P2 0
= + 1 UPl -1+o{11 -0.04+ or. T I2 Pl

P2 -1.21+8Q2 r J2 -0.022+ or} P2 1 (5.7)

Yl 1 1

[:JY2 = 2 -1

Y3 -2 0

which were modified so as to keep the location of the system poles invariant. In this case,

one thus has a perfect knowledge of the nonnal modes and the system poles, but imperfect

knowledge of the spatial distribution of damping mechanisms (which appears as the

possibility of non-proportional damping).

Figure 5.5 summarizes the different ways of looking at the possible system responses

for different levels of non-proportional damping (i.e. values of the coupling coefficient

TI2 ). For passive structures, a physical constraint is that the matrix r be positive definite,

so that the possible variations of ~2 are limited to the interval T I2 E [-0.3, 0.3] .

In Figure 5.5a is shown the collocated transfer function YI/U in the extreme possible

cases. The proportional damping case appears as an average between two extreme cases

where non-proportional damping minimizes dissipation in the structure leading to an

undamped zero, or maximizes dissipation leading to a significantly damped zero.

The nonnal modes are invariant by construction of the example. The scaled complex

mode observabilities, shown in Figure 5.5b, indicate that non-proportional damping results

ill phase and magnitude variations from the line of observabilities found in the

proportionally damped case (0) (where the complex modes are proportional to the nonnal

modes as seen in section 2.1.3).

As shown in Figure 5.5c, keeping poles invariant does lead to variations of the nonnal

mode frequencies but these are very slnall (less than 0.1 % variation on the frequency (not

the frequency squared»). Note, however, that variations of identified pole frequencies of

the order of 0.2% were found to have non-negligible effects on the identification process

for the IT case (see section 3.4). It may thus be important to distinguish pole and normal

mode frequencies for systems with significant non-proportional damping levels.

Finally, non-proportional damping can induce large variations in the RMS response of

different transfer functions (in Figure 5.5d for the collocated transfer function y//u, the

predicted RMS can 'vary by almost 10%).
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Figure 5.5: Variations linked to non-proportional damping, for a case with constant
poles and constant Donnal modes.
a) Collocated transfer function Yl/U for (-) maximum dissipation, (---)
proportional damping, (....) minimum dissipation.
b) Complex residues eVlj for (+) maximum dissipation, (0) proportional
damping, (x) minimum dissipation.
c) Relative variations of the nonnal mode frequencies (-) ~onJ/1 and
(---) ~On2/1.
d) Variations of RMS for the collocated transfer function Yl/U.

Other studies of non-proportional damping (e.g. [par2, bowl]) have shown that the

influence of non-proportional damping increases with damping (and modal density which

will not be shown here). To demonstrate this trend for the two-mode example considered

here, the maximum variations in the collocated transfer function Yl/U were computed for

increasing levels of damping. Using the damping ratio'of the first pole as a parameter, the

following damping matrix was used:

[
-2'-(1) + or} r 12 ]

r = Tn -2(2')(1.1) +or}
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where ~2 was free to vary within the range where ris positive definite, and for each value

of , the coefficients 8~, 8I; were adjusted to keep the pole constants.
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Figure 5.6: Possible RMS difference relative to the proportional damping level (Le.
T 12 = 0) linked to non-proportional damping for a systetD with constant
normal modes as a function of the average pole damping (see definition of
the damping matrix as a function of 'in (5.8».

As shown in Figure 5.6, the maximum possible il1fluence of non-proportional damping

increases almost exponentially with the damping level. As the pole damping increases, the

possible interval where r J2 is such that r is positive definite also increases, so that the

difference between the possible extreme cases becomes more important. Thus, for dalnping

levels of some poles near 2%, the proportional damping estimate can be far from a

conservative measure of the actual dissipation in the system.

It must be noted that these results somewhat depend on the chosen transfer function. As

appeared in Figure 5.5a., non-proportional damping mostly influences the damping of

zeros, and the overall influence of zeros on the RMS response is strongly dependent on the

sensor and actuator locations in the structure. The accuracy of a proportional dalnping

model will thus depend on the considered sensor/actuator architecture, on the damping

levels, and to a certain extent on the frequency content of inputs used.
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A second case of interest is the analysis of small errors in the undaillped system

dynanrics. The following example will demonstrate that the definition of the states is a key

to obtain non-eonselVative descriptions of uncertainty in the model form (5.5).

In this example, stiffness errors were represented in a model of the fonn (5.5) as an

error matrix L1.Q added to the nomin&lly diagonal modal stiffness Irlatri:~. A first type of

error represented by a AQ matrix is simply linked to modal frequent ies and induce

modifications of the system response which are generally well understood (shift of the

resonance and of the zeros to some extent). A second type of error is the apparition of

coupling tenns between states modeled as uncoupled (off-diagonal tenns in the matrix &2).

This type of coupling was considered for the two-mode example of this s~ction, leading to

the following model:

p/ 0 0 1 PI 0

P1. 0 0 1 P2 0
= + U

PI -l+oDJ 8il2J -TI -r12 JJJ 1

P2 8DJ2 -1.21+8Q2 -rJ2 -r2 P2 1 (5.9)

Yl 1 1

[;JY2 = 2 -1

YJ -2 0

where the coupling is described by the coefficient of2J2 , the two coefficients 8[21' D~ are

adjusted so as to keep the mode frequencies invariant, and the damping matrix ris adjusted

to obtain a proportionally dan1ped system for all values of on.
A coupling tenn of the order of 0.1 times the diagonal tenn is considered small for most

structural dynamic applications (orthogonality conditions (4.13) etc.), so the example was

treated for 8ilJ2 E [-0.1,0.1]. Different perspectives on the response predicted by the

uncertain model are shown in Figure 5.7.

The magnitude and phase of the non-collocated transfer function Y2/U (shown in

Figure 5.7a and 5.7b) indicate that what would be considered small errors in the stiffness

lead to significant variations of the response as measured by this sensor. Magnitude

changes are important because there is a pole/zero flip (the order of the zero and the second

pole changes, see Figure 5.7c), and phase errors are close to 1800 because the. zero

becomes non-minimum phase, and the pole and zero flip.

The normal modeshapes are also very sensitive to these small modifications of the

system stiffness properties. As shown in Figure 5.7d, the observabilities of mode 2 have

both large variations and sign changes. The invariant property in this case is the overall

observability and controllability of the subspace spanned by the two modes, as clearly
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apparent in the system equations (5.9), where the modal controllability and observability

matrices are kept unchanged. If the states of the Inodel (5.5) were chosen to be the true

modal states, the modeshape variations would need to be completely included in the L1b and

Ac matrices, which would then be unnecessarily large (and introduce conservatism if the

variations are assumed independent). The uncertainty description (5.9) using constant

states and a AD mattix, appropriately shows that the actual system IJrOperties are not

subject to large variations.
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A simple parametric analysis for two mode system would show that large effects of

small off-diagonal tenns become significant if the off-diagonal tenns are of the order of the

difference between the corresponding diagonal terms (Ll'oij Bound =I'ou - 'oiil). The

importance of an appropriate choice of state in the parametrization (5.5) therefore increases

with the modal density.

HONever, it can be shown [ba16] that for sufficient modal overlap (half power

bandwidth of each pole larger than the frequency separation of the two poles) the transfer

functions would in fact become insensitive to the error made on the stiffness. "fherefore,

above a certain modal density (which depends on the level of damping) the average

characteristics of the transfer function can be well known and the choice of states stops

being an issue.

5.2.3. QUANTITATIVE EVALUATION OF MODEL UNCERTAINTY FOR THE

INTERFEROMETER TESTBED

As pointed out in section 3.4, the only available method to evaluate uncertainty is to

determine the variations of parameters obtained for different tests of the same system.

Clearly such studies are only meaningful if the estimation process is unbiased, a strong

condition that must generally be assumed.

Noise models provide a measure of the uncertainty in the measured data, which can be

used to generate parametric uncertainty models. For the case of the IT, such studies done in

section 3.4 led to the conclusion that uncertainties in the data of a given test had less

influence than inconsistencies observed for different tests.

The experimentally identified elements used to construct hybrid models are the nonnal

mode observabilities, frequencies, and damping matrices, so that uncertainty in the hybrid

model depend on uncertainty in these parameters, and to a lesser extent on errors in the FE

model. Assuming that the variations from test to test, of these measured parameters, are

representative of the maximal variations, the sample means and variances can be used as a

description of the uncertain model set. This section, as a final validation of the IT model,

presents an evaluation of these variations (for the IT case).

To evaluate the variations in modal observabilities (L1c), the means and variances of

these terms were computed at the 27 non-collocated sensors of the modal test. Figure 5.8

shows as solid lines the standard deviations for the identified modal observabilities (as

fractions of the absolute value of the mean modal observabilities). Most of the identified

observabilities have a standard deviation that is no greater that 10% of their mean value,
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and it can be verified that most of the large standard deviations correspond to small mean

values (which are inherently difficult to identify).
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Figure 5.8: Consistency of the modal test, for modes j ={]... 9}. (-) sample
standard deviation of the identified modal ohservabilities ctP-LJy-axis,
plotted as a fraction of the amplitude of the mean observability ctPj ) at the
27 non-collocated sensor locations (x-axis). (---) relative error tnade by
the FE model «(CtPFEj - ctPj)/ctPj ).

For the IT, a 10% uncertainty level for each of the terms of the normal mode modal

obseIVability and controllability matrices thus seems to be a reasonable estimate of the level

of errors that can be expected from identification. The FE model has a much larger error

(shown as ttle dashed lines in Figure 5.8), but the hybrid model (constructed with the mean

of the identified observability matrices) has an error to the mean observability that is) for

most sensors and modes, below the sample standard deviation. This thus gives a strong

confidence in the validity of the hybrid model.
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Uncertainties in the modal stiffness matrix (L1.Q matrix) come from bot\l errors in the

modal frequencies and interaction between close modes (see the example treated in section

5.2.2). As expected, inconsistencies in the identified normal mode frequencies are identical

(almost) to inconsistencies on the pole frequencies shown in Table 3.2 (very low error

levels, below 0.2%). Realistic estimates for the off-diagonal terms of Lin are difficult to

detennine, since these tenus depend on the non-uniquely defined choice of states (which

also induces errors the modal obseIVability and controllability matrices).

No generally applicable solution was found to determine these terms, so that only a

measure of the error LtD made by the FE model could be used. This measure was obtained

by cOlnputing the stiffness orthogonality condition (4.13) for a set of modes expanded so

that the mass orthogonality condition remains verified (application of tile expansion fonnula

(4.7) with a unitary pseudo-inverse as first proposed in Ref. ismi1]). Effects are important

for off-diagonal terms of the order of the difference between two diagonal terms

(.1.o;j Bound =I.ou - .0jj I), so that results of the stiffness orthogonality computation are

sllown in Table 5.3 as fractions of this bound (thus giving non-ninlensional evaluation of

the pmdllleter influence).

Table 5.4: Evaluation of FE model stiffness error off-diagonal terms, as percentage
of the reference levels of significant impact (A.oij Bound = I.ou - .0jj I).

12.8 2.3 0.5 1.1 0.4 1.0 0.6 1.0
12.8 5.8 2.4 1.5 0.2 0.5 1.0 0.6

2.3 5.8 5.9 1.6 0.2 0.2 2.4 4.4
0.5 2.4 5.9 2.2 1.6 5.2 1.1 1.7
1.1 1.5 1.6 2.2 7.0 3.6 1.4 0.7
0.4 0.2 0.2 1.6 7.0 16.2 14.3 3.7
1.0 0.5 0.2 5.2 3.6 16.2 13.7 1.7
0.6 1.0 2.4 1.1 1.4 14.3 13.7 2.2
1.0 0.6 4.4 1.7 0.7 3.7 1.7 2.2

The coupling between modes 1-2, 6-7,7-8, 6-8 are significant, but these are better

indications that the modes of the FE model are linear combinations of the corresponding

true modes, than that the model is inconsistent between the different tests. However, a

conseIVative uncertainty model would ktep tenns that are at least a few percent of the

diagonal values. So that in practice, significant effects should be expected for diagonal

tenns of the modal stiffness matrix separated by a few percent (e.g. between modes 6 and

7).
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A last point of interest is to evaluate the accuracy of the non-proportional damping

matrix estimation (L1rmatrix). Table 5.4 summarizes the main trends that can be derivw

from the analysis of the 6 identification results.

Table 5.4: Consistency of the experimentally identified modal damping matrices r
for the frrst 9 modes of the interferometer testbed.

Mean damping matrix

0.98 -0.02 -0.04 -0.39 0.66 -0.14 0.20 -1.00 -0.87
-0.02 1.76 0.13 0.66 0.06 -0.49 -0.85 -1.05 -0.00
-0.04 0.13 1.80 -0.06 -0.24 0.13 0.75 1.39 2.13
-0.39 0.66 -0.06 4.68 1.10 -1.08 -0.39 -1.78 2.46
0.66 0.06 -0.24 1.10 6.07 -1.69 0.64 -2.00 -1.41

-0.14 -0.49 0.13 -1.08 -1.69 11.66 -3.14 4.11 0.97
0.20 -0.85 0.75 -0.39 0.64 ,,3.14 3.54 -0.61 -0.12

-1.00 -1.05 1.39 -1.78 -2.00 4.11 -0.61 4.56 1.07
-0.87 -0.00 2.13 2.46 -1.41 0.97 -0.12 1.07 12.72

Standard deviation/Mean value in % (tenns smaller than 100%)

17.58
6.99 96.78

10.12
-

56.78
96.78 27.48

7.88 37.54 63.18
37.54 12.57 12.88 27.56

12.88 12.20 34.03
56.78 63.18 27.56 34.03 9.94 71.64

71.64 11.16

% of positive definiteness bound ( rij Bound == ~riirjj )

1.4 2.6 18.1 27.3 4.0 10.9 47.5 24.6
1.4 7.1 23.0 1.9 10.8 34.0 37.0 0.0
2.6 7.1 2.0 7.3 2.9 29.8 48.6 44.6

18.1 23.0 2.0 20.6 14.6 9.5 38.6 31.9
27.3 1.9 7.3 20.6 20.1 13.8 38.1 16.1
4.0 10.8 2.9 14.6 20.1 48.8 56.3 8.0

10.9 34.0 29.8 9.5 13.8 48.8 15.1 1.8
47.5 37.0 48.6 38.6 38.1 56.3 15.1 14.0
24.6 0.0 44.6 31.9 16.1 8.0 1.8 14.0

The standard deviations show that only a few of the off-diagonal terms are consistently

identified, but not furprisingly the well-identified tenns are those with a large mean value,

and particularly the coupling terms between modes 5-6, 6-7, 6-8, and 7-8 (which clearly
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Measurement in
1993

shows that non-proportional dar.oping is an important effect for this group of modes).

Significantly better consistency would be obtained by eliminating the worst tenn of the six

tests for each element of T, but a justification for the elimination of these tenns (such as a

large sensitivity to measurement noise in the identification process) would be .. teeded and is

.'1ot yet available.

The importance of the well-identified non-proportional damping coupling terms can

also be seen in the fact that these terms are significant fractions of the largest possible

values (the values of off-diagonal terms are limited to rij Bound = ~Yurjj • as it is known that

the damping lnatrix must be positive definite). (Note that the bound argument has no value

for not well-identified tenns).

From these results, an appropriate damping uncertainty model LiTcould have standard

deviations of 20 % for the diagonal terms and 20% of the ~rUrjj bound value for the off­

diagonal tenns (although this is much harder to justify).

For a final validation of this analysis, 12 transfer functions of the modal test on leg V

were remeasured one year, and many partial truss reassemblies, after the initial modal test.

As shown in Figure 5.9 for one of the transfer functions, the evolution of the structural

response was quite significant. To get a better global characterization of this e~volution, the

two tests were compared using three cost functions (see results in Table 5.~\, where for

reference the errors made using the hybrid model are also shown). Using the quadratic cost

and the accuracy of RMS predictions, the evolution of the testbed response seems

significantly larger than the errors made by the hybrid model in the initial case. Using

logLS cost function, which is much more sensitive to errors made on low amplitude

regions of the transfer functions than the other two measures, emphasizes errors on the

zeros by the hybrid model so that the evolution of the testbed seems slightly less important.

Table 5.4: Global measures of error for the hybrid model and corresponding
evolution of the testbed between 1991 and 1993.

Error measure using 12 transfer functions in the Hybrid model
20-60 Hz ran e

logLS cost

mean error in prediction of RMS

quadratic error

3.8 10+2

0.3 %

0.3 10-8

3.3 10+2

13.0 %

3.1 10-8

The data of the 1993 test are much more limited than that of the full modal test, so the

accuracy achieved for the identified modei is not as good. But a rapid assessment of the

evolution of the system characteristics gives an average evolution of the pole locations near
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0.2% (versus a maximum of 0.2% for the initial modal test), an average evolution of

modeshapes of the order of 20 % (versus a conservative estimate of 10% for the modal

test), and an evoluti():l of pole damping ratios around 20 % (versus less than 10% for the

modal test). No reliable estimate of non-proportional damping coefficients could be

obtained as the amount of data available was insufficient.
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Figure 5.9: Consistency of the modal test. Comparison of a transfer function (leg V
sensor?) measured in (-) January 1993 and (---) December 1991

5.3. CONCLUSI('NS

It was shown that hybrid experilnentaVanalytical models can be created using expanded

experimental modeshapes combined with experimental modal frequencies and an

experimental non-proportional damping matrix. These models allow predictions of the

response for arbitrary sensor/actuator architectures, and, through a model reanalysis, the
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prediction of the system response after mass, damping, and stiffness modifications which

can be described in the full order FE coordinate system. Purely analytical normal modes

can be appended to these models with good accuracy, but solutions to introduce static

corrections are still needed. The validity of hybrid model predictions was demonstrated

using analytical and experimental examples derived from the IT case.

The description of uncertainty in parametric models was addressed. It \vas shown that

the normal mode model fonn used for the hybrid models is a good parametrization to

describe uncertainty. The extent of the maximum effects of non-proportional damping were

aJlalyze.d, and it was shown that the freedom in defining the model states can lead to

unnecessarily conservative descriptions of uncertainty, particularly for structures with high

modal densities. Finally, as a validation of the IT model, the variations of identified

parameters for different tests have been discussed.
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Chapter 0/1

Conclusions and Recommendations

6.1. SUMMARY

.An integrated methodology for the creation of high accuracy predictive olodels has been

presented and demonstrated by application to the case of the MIT/SERe interferometer

testbed. The creation of such models implies the simultaneous use of experimental and

analytical models, which must first be created independently and then combi.ned a.s hybrid

experimentaVanalytical models.

For lightly damped structures with high modal densities, the complex mode

parametrization must be used to obtain accurate identification results. After the enforcelnent

of the model properness condition, complex mode models can be reparametrized as norrnal

mode models which allow the separate analysis of undamped dynanlics (mass and stiffness

effects) and of non-proportional damping mechanisms.

Analytical FE models are created using a detailed description of the local component

properties and refined to obtain physically significant representations of the local properties

(i.e. models with no analytical limitations). Even for physically significant models, initial

r"E models are generally inaccurate, so the parameters of the model must be updated. The

best update method uses component tests, but it is often easier to update paralneters using

comparisons of the global model agreement (which can be characterized using identified

modal models or by direct comparison with measured responses). Comparisons of global

system responses do not generally allow the identification all the model parameters, so care

must be taken to update only parameters whose influence can be differentiated from

expected residual errors and from contributions of other unknown parameters.

Combining experimental and analytical results into small hybrid models, better

predictions than those obtained with FE models can be made of arbitrary untested

sensor/actuator configurations, for the nonnnal systenl or after known modifications of the

mass, damping and stiffness properties. Model uncertainty can also be characteri;led both

qualitatively and quantitatively using these models, which appropriately capture the effects

of non-proportional damping and high modal density.
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6.2. CONTRIBUTIONS

New methods have been introduced to identify scaled complex mode modal

obseIVability and controllability matrices. A ne'w algorithm allows a cost-effective and very

accurate identification of complex mode poles and residue matrices. The algorithm

efficiently handles MIMO tests with large nUlnbers of sensors as well as structures with

high modal densities and local modes. The algorithm optimizes solutions found by other

methods and generally allows significant improvements of the models. A new method,

based on the singular value decomposition of the identified residue matrix, leads to a

detennination of the modal multiplicity and to accurate scaled estimates of the modal

observability and cOlltrollability matrices.

A new method has been introduced to identify non-proportionally damped nonnal mode

models from complex mode models. The assumption of a truncated non-proportional

modal damping matrix was shown to correspond to a properness condition on the complex

modeshapes. An algorithm to enforce this conclition on the complex modes was proposed

and the then exact transformation between the complex and normal mode parametrizations

was detailed. The application of this method to the case of the interferometer testbed led to

the frrst experimental characterization of non-proportional damping for a relatively complex

structure and demonstrated the effectiveness of the new methods proposed to identify both

complex and nornlal modes.

A new classification of FE modeling methods was made, clearly indicating how choices

at different levels lead to a given update algorithm. A particular algorithnl, combining the

advantages of comparing frequency response:s with the log-least-squares cost and using

reduced order predictive modal models, was introduced. The history of its use for tIle

update of the inter ferometer testbed model was detailed, and allowed an analysis of inherent

limitations of all FE update procedures.

It was then shown how experimental and analytical models can be combined to create

extremely accurate predictive models. These models incorporate the very accurate

experimental description of non-proportional damping and modal frequencies and use

identified modal observabilities to define updated full order modeshapes. Because the

modeshapes are defined at all the FE degrees of freedom, these models can be used to

predict, with much better accuracy than the FE model, the system response at untested

sensors or actuators after arbitrary (but known) mass, damping, or stiffness modifications.

The validity of the approach was demonstrated with experitnental and analytical examples

on the interferometer testbed.
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Finally, the description of error in the proposed models was discussed. Effects of

errors in the damping, and mass/stiffness models \vere analyzed qualitatively for a two

mode example, showing in particular the lilnits of non-proportional damping effects and the

influence of modal density. Then, for the intetferometer testbed, a quantitative evaluation of

the tnodel error was made and led to the conclusion that variations in time of the testbed

properties were of the same order or even greater than errors made with the best model.

6.3. RECOMMENDATIONS

The present work was limited to linear time-invariant symmetric systems. The

extension to asymmetric systems (e.g. systems with aeroelastic coupling or gyroscopic

damping) could be easily done, although the existence of distinct left and right complex

modes (modal controllabilities and observabilities) would lead to rnore stringent

requirements in terms of number of actuators for the identification of experimental models.

The identification and modeling of weak non-linearities should also be further addressed

considering non-linear models of non-linear components (see Refs. [masI, webl, karl]) or

using linear tools to obtain equivalent linear models (see ref. [ozgl]).

The new identification rnethodology proposed in this work should be extended. The

use of other types of data and other criteria should be considered (as done by Jacques fjacl]

using the logLS cost function or Liu using time domain data). Other optimization

algorithrns, using more efficiently the computed gradient infonnation, could be considered

for the few cases where the proposed approach does not give satisfactory results. Finally, a

model optimization in the normal mode fonn could be useful to improve some results.

Using the sensitivit}, approach developed in section 3.4, this optimization would also

provide a better evaluation of the sensitivity of identified parameters (in the nonnal mode

parametrization) to measurement noise and consequently a better analysis of the quality of

results.

Multiple SIMO tests lead to multiple measurenlents of all the parameters (modal

obsezvabilities, frequencies, and non-diagonal nonnal mode damping matrix) which can be

used to obtain both better averaged properties and estimates of uncertainty linked to the

identification process. Truly MIMO tests, which were not possible here for purely material

reasons, would allow even more accurate rrleasurements by reducing the inconsistencies

generally present between different SIMO tests. Using MIMO frequency response function

estimators (e.g. ref. [cobl]) providing completely consistent estimates of the MIMO

transfer function matrix, all the eJements of the parametric nlodal model (poles, complex
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modal observabilities and controllabilities) would have to be adjusted for at least as many

transf~r functions as actuators, which should provide much more accurate models.

In the case of the interferometer testbed, uncertainties in the model parameters depend

more on the variation~of the system from test to test than on noise in the measurement. As

sinlilar properties could be expected for most structures, approaches using noise models to

determine parametric uncertainty (see section 3.4) rnay thus only be appropriate to

detemline the accuracy of a given identification procedure, but not for other purposes such

as robust control desigll.

The description of uncertainty defined in this work was chosen because it allows

representatioll of small physical changes by small uncertainties. The choice of the model

states, however, appeared as an important factor, particularly for structures with high

modal densities (since the size of effects on modes and transfer functiGns depends on the

relative size of the physical modifications and the modal frequency separation).

Furthennore, the number of uncertain parameters introrluced is too large to be practically

used by current robust controller synthesis methods (see the reviews done ~efs. [howl,

hagl]). It would thus be more efficient to define measures of the closed-loop robustness

directing the selection dominant parametric uncertainties for which controllers would be

specifically designed.

Theoretically, the determination of a non-proportional damping matrix allows a

characterization of the spatial distribution of damping mechanisms. It shoF.•ld be

investigated whether such studies can be practically done with sufficient precision, but a

spatial characterization of damping, particularly if extended to cases with gyroscopic

damping, could have many analysis and design applications.

For the generation of accurate FE models, the present work has highlighted the

importance of accurate local models4 The tools available for analyses of the influence of

local parameters on the global system response exist, but are quite cumbersonle to usc. An

effort should be made to create FE codes allowing such analyses more easily. The update

of local model parameters using system tests is used because the data is available (such

tests are perfonned to validate the FE models and usually show discrepancies which the

user tries to correct). The method presented alleviates the difficulties linked to "pailing"

inaccurate modes and allows efficient computations through the use of the reanalysis

approach. Little work was done on determining the most appropriate optimization strategy.

However, this would only become a major limitation if simultaneous update of large

nlImbers of parameters was envisioned, which is clearly not realistic since the uniqueness

fLnd thus the validity of the solution can currently only be demonstrated for cases with few

parameters.
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Ylppendif(

The MITjSERC Intetferometer Testbed

7.1. TESTBED DESCRIPTION

The Interferometer Testbed (IT) (see ref. [blat]) is an int~gral part of SERe's research

program in Controlled Structure rrechnology (CST). This 3.5 meter testbed shown in

Figure 7.1 was designed to capture the essential configuration, physics and performance

metric of an actual high precision observatory spacecraft. The testbed serves as a focus for

a research program on the different phases of controlled structural system design, and

provides a versatile environment for the demonstration and comparison of active and

passive CST developments. In particular, the relevance and effectiveness of the methods

developed in this research was demonstrated using experimental data measured on the IT.

The 3.5 meter naked tetrahedral truss structure was first tested, and the modeling

problems linked to this configuration of the system have been previously addressed in

references [bal5, ba14]. The present work considers the phase B testbed, where the four

science plates supporting the laser metrology system for the optical tetrahedron have been

added. In Figure 7.1, the so-called "fourth" verte~~ (see Figure 7.3 for component names)

supporting the laser source and other measurement optics is in the center (back). 'The three

other vertices of the optical tetrahedron (called science plates A-C) are placed a.. different

positions along the span of the truss legs non-adjacent to the fourth vertex.

The fourth vertex bucket initially contributed significant dynamics around 130 Hz, but

these where pushed at higher frequencies by the addition of two stiffeners, so that the

flexibility of the fourth vertex is not relevant to the presented study of modes in the 20-60

Hz band (the inertia is very important but could be accurately measured).

The science plates are 6.3 mm thick aluminum plates. They are linked to the truss by U­

shaped aluminum elements screwed to the plate and the truss ball joints (three of the screws

are clearly visible in the figure). On the main pJate, the mirror assembly (on the right) is

composed of a back plate, stiffened by two "legs" (made of the aluminum tubes used for

the basic truss), which supports a three axis active cat-eye mirror rrlount (two the

piezoelectric stacks between white plastic screws are visible in the figure) and a triax

accelerometer block (on the back of the plate).
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The mass of the science plates is a significant fraction of the total testbed mass

(approximately 4 % each) and modes in the 20-60 Hz range are very sensitive to errors in

the mass estimate (see section 4.4). The stiffness of in particular the main plate and the

links plate/uuss also have a strong influence on the response.

Figure 7.1: The MIT/SERe interferometer testbed.
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Figure 7.2: Science plate C of the interferonleter testbed.

~rhe present \v()rk uses experinlental data froIll a lll()(jal test perft)rnlCd f)(l the rl'. An

extc:rnal ~hakc:r, suspended froIll a crane s() as to ()btain very }()w shaker rCS()(lanCCS and

linked to the truss by a flexible stinger, was used to test the resp()l1sc. Six tests were

perfOrnlC(j with the shaker placed on each ()f the truss legs (indicat~d as A in l'l'igure 7.3).

As part ()f the fll(xlal tcst, the resp()IlSC ()f 27 acceler0l11etcrs distributed ()11 the tfUSS

(inJil:atC() as • in r:igure 7.3), (he force input, and the col!tx:ated accelcrati()n (at the slinger

aHachnlcnt point to the truss) \vcre rneasurcd. "fhe sanle 27 accCler()111ctcrs were used f(u'

the 6 tests, which allowed, as presellted in this thesis, a gC)()(j correlati()fl ()f the identified

1l1fxlcshapes for the different tests (see (~hapter V).

'rhe rneaSUfcnlents \Vcre ()btained using br()adband inputs, but it was verified t'()r a few

frequency reSp()(lSe functi()lls, that a sine sweep ()nly resulted in 111irH>f changes.
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Figure 7.3: Configuration of the MIT/SERe interferometer testbed modal test.
• accelerometer locations, A shaker locations. Leg numbering scheme
and science plate names.

7.3. ABOUT TIlE FINITE ELEMENT MODEL

The FE model of the IT truss uses one beam element per strut with axial stiffness

adjusted to represent both the joint and the actual strut stiffness. As discussed in Refs.

[bal5, ba14], the axial stiffness used (7.77 N.'Jlrn for the short struts and 11.2 N/Jlrn for the

long sttuts) were derived from independent component tests including the actual joint

flexibility. The test/model agreement for the naked truss was found to be extremely good

with less than 2% error in the frequency prediction for all the modes up to 150 Hz.

The different science components (fourth vertex, three science plates, disturbance

source) were modeled separately with 3 node (18 DOF) plate elements, beam elements to

represent different instruments and concentrated mass/inertia where needed.

Different models are available on SERe's computer network in the directory

/home2/illterfladina. The subdirectory /plates contains
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- commented .m files with the descriptions (geometry, mass distribution, fonnatted

input for the ADINA finite element code [adil]) of all the components added to the

bare truss model (fourth vertex, three science plates, disturbance source).

- component models ADINA input name.in and output name.out files for verification

of the local models.

After a verification of the validity of the component models (check that the low

frequency modes are not significantly modified by a mesh refinement of the model), the

component models and the truss model were linked using beam elements to connect the

truss and component attachment points.

The latest model is interS (the .in file contains the ADINA input, the .out the ASCII

output, the .mat the frequencies and modeshapes in MATLAB fonnat, the _mx.mat the

skyline mass and stiffness matrices, the _mxi.mat the decomposition of the stiffness matrix

for uses in static response computations).

Bet\veen inter4 and inter5 the masses of the science plate were corrected and the link

stiffness were adjusted (see section 4.4 for details on this update). inter40 is a version of

inter4 with the initial (very stiff) link stiffness.

The input files are conlmented, so that any other information can be easily obtained

when scanning the file. For uses of the FE model for predictions of the response, control

design, etc., the Toolbox [haI2] for MATLAB developed as part of this research provides a

complete set of routines.
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