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Abstract

Traditional analytical design and validation tools, such as the finite element method, do
not generally allow an accurate representation of damping mechanisms. Identified
experimental models accurately model the true system properties, but existing methods do
not provide efficient ways to separately identify the contributions of the mass/stiffness
distribution and those of damping mechanisms. The new solutions developed in this
research resolve these difficulties and show how experimental and analytical results can be
combined to create high-fidelity predictive models of damped structural dynamics.

A new algorithm for the identification of scaled complex modes from frequency domain
experimental data is shown to be effective for the analysis of tests with large numbers of
sensors and structures with high modal densities, local modes and significant effects of
non-proportional damping. It is then shown that the enforcement of a properness condition
on the identified complex modes allows an accurate determination of normal modes and of
a non-proportional damping matrix. The application of the method on the case of the
MIT/SERC interferometer testbed leads to the first experimental characterization of non-
proportional damping.

Parameters of initial FE models are usually inaccurate and the system test data, used to
determine experimental models, can also be used to update these parameters. A new
classification of FE update methods is proposed and inherent limitations of such procedures
are analyzed. For this analysis the case of the interferometer testbed and a new FE update
algorithm, based on the use of truncated modal models and the comparison of measured
and predicted transfer functions, are used.

The creation of high accuracy predictive models by a combined use of experimental
damped normal mode models and updated undamped FE models is then discussed. Using
such models of the interferometer testbed, the accuracy of predictions for arbitrary
actuator/sensor architectures after known mass, damping or stiffness modifications, and the
quality of parametric descriptions of model error are evaluated.
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NOMENCLATURE

An effort was made to comply with the proposed standard notation of the International
Modal Analysis Conference (IMAC) available in Ref. [liel].

b actuator input shape matrix (location, direction, calibration)
¢7b, yib  modal controllability matrix (of the j** normal / complex mode)
c sensor output shape matrix (location, direction, calibration)
co;, cy; modal observability mairix (of the j normal / complex mode)

AM, AC, AK additive modifications of the mass, damping and stiffness matrices
Au, AT, A2 additive modifications of the modal mass, damping and stiffness matrices

E correction matrix for high trequency modes

F correction matrix for low frequency modes

¢ real or normal mode of the undamped system

or truncated set of low frequency normal modes (eventually augmented)
r non-diagonal modal damping matrix

n complex mode modal states

H(s) transfer function matrix

H(w) frequency response function matrix

A; complex pole

M,C. K mass, damping and stiffness matrices

N number of degrees of freedom of the full finite element model
Ny number of actuators

Ng number of sensors

Nt number of modes in a truncated modal model

D normal mode pseudo-modal states

6 complex i.:ode of first order symmetric structural model

q FE degree of freedom states

s Laplace variable

R, =cy; y/fb residue matrix of the j*# complex mode
T,=c¢ ,¢/.Tb residue matrix of the j** normal mode (ONLY useful for proportionally
damped systems)

7 actuator input

Q diagonal modal stiffness matrix (modal frequencies squared)
v complex mode of damped system

y sensor output

z! unit delay operator

(), identified quantity



STANDARD ABBREVIATIONS

CMIF
DOEF(s)
FD

Re, Im
RMS
SISO

complex mode indicator function

degree(s) of freedom

frequency domain

finite element

input / output

MIT/SERC interferometer testbed
logarithmic least squares cost function (see section 3.1.3)
modal assurance criterion (see section 4.1.2)
multi-input, multi-ouput

real part, imaginary part

root-mean-square

single-input, single-output

time domain



Chapter I

Introduction

1.1. MOTIVATION

The use of control loops to improve the dynamic characteristics of structures has
recently found a number of applications in many different fields. This development,
answering an increasing demand for tailored dynamic environments for sensitive
instruments, requires at different design and validation stages the availability of high-
accuracy structural dynamic models [ball]. The present research introduces a complete
framework (see Figure 1.1) allowing the creation of high-fidelity predictive models of
structural dynamics, with an original focus on the representation of damping, the use of
reduced models, and the combination of experimental and analytical predictions.

The broad objective of high-fidelity structural modeling is achieved through a
simultaneous use of two descriptions in terms of local component properties and of global
system response.

Local component properties are usually modeled by finite elements, whose parameters
(called design parameters) are derived from detailed descriptions of the geometry and
physical properties of structural components. These local models are then assembled into a
finite element model, which can be used to make predictions of system response for any
sensor/actuator architecture as well as for modified system configurations.

For accurate predictions, elements must qualitatively give a physically significant
representation of the component behavior within the full frequency range of interest for the
system, and they must quantitatively use design parameters that reproduce the actual
component properties. Usually for initial FE models, a number of design paranieters are
not very accurate, so system tcst results are often used to estimate design parameters with
higher accuracy.

Once the system is built, global system tests provide measurements of the system
properties as seen through a particular actuator/sensor architecture. In the low frequency
range, the response can be described in terms of complex mode contributions, which can
be estimated (in a process called identification) using test data. Modes of true systems are
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complex because the system is damped. On the other hand, FE model predictions are
generally undamped. To combine these two types of models, it is necessary to
experimentally determine the system normal modes (which characterize the mass and
stiffness properties) and modal damping matrix (which characterizes the dissipation

mechanisms).
Physical components and Elements and
physical parameters Design parameters
Idenﬁﬁcaﬁon k 1 ‘ : Analyucal P
R Utddamped © | ... 01000
Damped | | G
. =31
System test Design Finite element model
parameter [
estimaﬁon ---------------------
Analytic
Complex mode model normal mode model
v
Experimental _|Hybrid model (damped and
normal mode model augmented normal mode mdl.)
Predictions Predictions of the
Damped damped response

Figure 1.1.: Proposed methodology for the creation of predictive models of non-
proportionally damped structures.

Identified normal mode models can be very accurate, but they can only be used to
predict the effects of closing loops using the tested actuators and sensors. FE models aliow
many types of predictions, but are less accurate than identified models and do not in general
allow a good representation of damping.

The objectives of this research will thus be to introduce new methods needed to
accurately identify experimental normal mode models, to show how initial FE models can
be updated using system test results, and to introduce models that combine the accurate but
incomplete experimental models with the less accurate but detailed FE models to obtain
high-fidelity and yet versatile predictions.

11



1.2. CONTRIBUTIONS

Experimental parametric models are often identified from system test results. Existing
identification methods [full, alll, ewil, ljul, levl] are generally based on mathematical
formulations of the problem which do not allow a user-guided iterative refinement of the
models. Using broadband test data, the new methodology presented in this work aileviates
these limitations and leads to extremely accurate identified models characterizing all the
dynamics in the test bandwidth with no need for additional computational modes. It is
further shown that the method correctly identifies complex modes of systems with high
modal densities, local modes, and heavy non-proportional damping coupling.

To accurately represent damped structural dynamics, a clear distinction must be made
between normal and complex modes. The relation between the two types of modes has
been often studied, but results have remained of limited applicability [ses1]. A complete
analysis of normal and complex mode properties is presented, and it is shown that the
approximation of the identified complex modes by proper normal modes (corresponding to
the truncated modal damping matrix) leads to very accurate normal mode models, even in
cases with significant effects of non-proportional damping. The experimental results,
obtained for the Inierferometer Testbed (IT), mark the first experimental characterization of
non-proportional damping.

Normal modes can also be predicted with a higher spatial resoluticn using finite element
models. Parameters of initial FE models are however often inaccurate, so system test
results have often been used to improve the estimation of different parameters [cael, royl,
linl, berl, levl]. FE update methodologies using direct comparisons of measured and
predicted transfer functions have recently been introduced to alleviate difficulties of
comparing inaccurate FE and identified parametric models. The present work introduces a
new update algorithm using reduced predictive models and the log-least-squares cost
function. Using this algorithm as an example, an analysis is done of inherent limitations of
parameter updating procedures (not all parameters are “identifiable”; some parameters
cannot be updated simultaneously).

Analytical and experimental normal mode models can be combined to form hybrid
models allowing the prediction of the damped structural dynamics for arbitrary
sensor/actuator architectures even after known modifications of the system mass, damping,
and stiffness properties. The creatinn, use, and validity of such models is analyzed.
Finally, a parametric description of model error based on these normal mode models is
discussed, qualitatively for a simple two mode example, and quantitatively for the
interferometer testbed model. This description leads to an original discussion of the

12



possibilities and limitations of parametric descriptions of model errors for real structural
systems.

1.3. OUTLINE

Issues linked to different parametric representations of structural dynamic models are
detailed in Chapter II. Properties of linear inodels of structural dynamics seen through a
sensor/actuator architecture are discussed. The spectral decomposition of the response into
normal and complex modes is reviewed. Finally, minimal representations of the system
properties (dynamic modes, asymptotic contributions, dissipation) in a given low
frequency bandwidth are addressed.

Experimental structural dynamic models can be identified from low frequency tests on
existing systems. However, existing identification methods do not provide practical ways
of handling difficulties linked to high modal densities and accurate damping modeling, so
original solutions for the identification of parametric models are introduced in Chapter III.
Using the minimal representations of Chapter II, a new algorithm is developed to identify
the complex mode residues of the system. A method to obtain scaled complex modeshapes
from the identified residue matrices is introduced. Then, in order to obtain a separate
identification of mass/stiffness and damping properties, a new algorithm is introduced
leading to identified models using the normal mode parametrization. Finally, errors linked
to the model identification procedures are discussed.

Initial errors are often made on the values of FE model design parameters. Although
component tests are clearly the most appropriate to correct these errors, it is often practical
to use instead system test results in the form of normal modes or transfer functions. An
analysis of the possibilities and limitations of such parameter updates is done in Chapter
IV, using in particular an original algorithm based on the comparison of measured and
predicted frequency response functions.

Finally, the creation of small but accurate predictive models (called hybrid since they
combine experimental and FE models) is discussed in Chapter V. For non-tested
sensor/actuator configurations, and for modifications of the mass, damping and stiffness
properties, the accuracy of predictions made with such models is analyzed. These models
also allow a simple description of the uncertainty in the system dynamics which is detailed.

The relevance and effectiveness of the present work is demonstrated using the
MIT/SERC Interferometer Testbed (see the description in appendix) as a real experimental

13



case history. The applications of the proposed methods are done using a set of experimental
measurements of the dynamic response of the interferometer testbed to external excitation at
6 different shaker locations and 28 accelerometers distributed on the truss structure (see
Figure 7.3 in the appendix).

In Chapter III, complex and normal mode models of the testbed are identified, and their
accuracy is evaluated. In Chapter IV are discussed the creation, refinement, and parametric
update of the FE model of the interferometer testbed. Finally, in Chapter V, hybrid
experimental/analytical models of the testbed are introduced. Their ability to predict non-
tested sensor/actuator configurations as well as the response after mass, stiffness, or
damping modifications is analyzed, and a description of uncertainty for these models is
discussed.

14



Chapter I1

Linear Models of Structural Dynamics

From a theoretical point of view, this chapter reviews and justifies different
representations of linear models as well as underlying physical assumptions that will be
used for throughout this report. Most of the points made have been previously considered
by different authors, so that the objective this chapter is only to provide a complete and
consistent treatment of all the aspects relevant to this research.

In section 2.1, assuming that exact (potentially infinite dimensional) descriptions of
structural dynamics exist, physical assumptions implied in such models are first
reviewed. Then, two forms of spectral decomposition of the dynamic response, using
complex and normal modes respectively, are introduced and their properties detailed.

In section 2.2, experimental constraints are considered and finite dimensional models
representing the response of the system in a restricted low frequency bandwidth are
introduced. The model truncation process relating the ideal full order model to a minimal
low order model for the considered bandwidth is detailed. Corrections for the effects of
truncated dynamics are introduced. Finally, the validity of the representation of
dissipation by a truncated viscous damping model is addressed.

2.1. IDEAL LINEAR MODELS FOR STRUCTURAL DYNAMICS

2.1.1. FUNDAMENTAL ASSUMPTIONS

In the present work, it is assumed that the low frequency response of the structure can
be accurately represented by linear time-invariant models of the form

MG+Cq+Kq=bu
y=cq

(2.1)

where u is the vector of inputs, y is a vector of displacement measurements, M, C, and K
are respectively the mass, damping, and stiffness matrices of the system in the arbitrary
set of coordinates g (the model is taken of order N which can be infinite for a continuous
model). Outputs proportional to rate take the form y,,, = c¢q, which has not been shown
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for clarity purposes. M is the system mass matrix in the coordinate system gq,
corresponding to a system kinetic energy of the form U =44¢"Mq. Similarly K is the
system stiffness matrix in the coordinate system g, corresponding to a system strain
energy of the form T = 44" Kq.

The actuator input shape matrix b and the sensor output shape matrix c are introduced
here as a compact but complete notation allowing a characterization of the actuator and
sensor properties. In the simplest case, a unit force input at a degree of freedom g, the
input shape matrix is

b=|1}1. (2.2)

However, most actuators have inputs that are not in the direction of the initial model
DOFs, that couple several DOFs, and that are not properly scaled (e.g. an active strut
introduces a relative force input between to points in a direction that usually does not
match the DOF directions and may use a voltage for u even though the product bu must
be a force). Thus, for a system with N4 actuators b is a N by N4 matrix whose columns
contain the location, direction and scaling information of the force patterns applied on
each of the DOFs ¢ for unit inputs in each of the actuators.

Similarly, for a system with Ng sensors, ¢ is a Ng by N matrix whose rows contain the
location, direction and scaling information linked to each output. A more compact
notation, using an index to indicate which of the DOFs ¢q is measured (i.e. y=g¢,), is
often used by other authors, but becomes cumbersome if sensor measurements are linear
combinations of the response at different DOFs with arbitrary calibration coefficients
(e.g. y in Volts for g in Inches).

A further motivation to use both input b and output ¢ shape matrices is to explicitly
show the duality of these two quantities (which is well known for control problems). In
particular, if an actuator and a sensor are collocated and dual (e.g. force to collocated
translation, moment to collocated rotation) their input and output shape matrices are
transpose of each other (¢ =b") (provided that M, C, and K are mass, damping, and
stiffness matrices of the system and that consistent calibration coefficients are used). This
property, which clearly does not depend on a particular choice of coordinates g, will be
used in the modal coordinate system to uniquely define scaled estimates of the system
modal controllability and observability matrices.

16



In the model (2.1), the sensors/actuators are implicitly taken to have no dynamics and
the system matrices are assumed to be symmetric positive definite. These two
assumptions, motivated below, will be used throughout this work.

Time delays and other actuator/sensor dynamics should be characterized
independently of the structural modeling process and appended to the model.
Furthermore, the effect of such dynamics should be removed from the experimental data
used as they are usually not considered to be part of the structural system described by
(2.1). For control design however, it will generally be necessary to append those
dynamics to the model.

Displacement or velocity actuators have dynamics (zeros) coming from the fact that
the force input to the structure depends not only on the prescribed displacement, but also
on the corresponding velocity and acceleration (see Ref. [girl] for example).
Furthermore, even the exact system equations (2.1) then depend on a particular actuator
architecture, so that the use of a unique model for predictions in different configurations
becomes a very difficult problem that will not be considered in the present work.

For most structural systems, symmetric equations of motion (M, C, and K symmetric)
can be derived (e.g. [meil]). Particular cases, such as aeroelasticity (where external
aerodynamic forces lead to an asymmetric stiffness [bis1]) or rotating machinery with
gyroscopic damping (antisymmetric damping matrix), will not be considered since this
would only obscure the analysis.

Finally, the system matrices will be assumed to be positive definite because of the
following physical properties: 1) all DOF have inertia, thus for non-zero motion the
systems kinetic energy is strictly positive, so that the mass matrix must be positive
definite, 2) for any forced harmonic motion the system does not create energy, so that the
damping matrix C must be positive semi-definite, 3) as the kinetic energy, the strain
energy is always positive, so that the stiffness matrix K must be positive semi-definite (it
may be positive semi-definite if rigid body modes exist).

2.1.2. COMPLEX MODES

For linear models, it is well known that the system response can be represented as a
summation of uncoupled modal contributions (this is usually called a spectral
decomposition). Without particular assumptions on the system damping mairix C, the
modes of the system (2.1) are complex and can be found as follows. The set of equations
(2.1) can be represented as a first order symmetric system

17



e oJalo ulal-lok

y=[c 0][?]

q

(2.3)

To this representation of the system equations is associated the eigenvalue problem

C Moad® Olep 2.4
M ool o -m|°™% (24)

where 0 is the 2N by 2N matrix of eigenvectors and A is the diagonal matrix of 2N
eigenvalues (poles of the damped system). It can be easily shown that the eigenvectors 6

v A
[6]= with A=| - | @.5)
y, )'ZN

where 2N complex modes y come in complex-conjugate pairs for the symmetric systems
considered here (for the rest of this work it will thus be implicitly assumed that

have the specific form

Vineron) = l'//'[ 1-N] and 2,““ 12N = ;1—[ ,_“N]). Although it has not been proved in general
that a full set of complex modes exist, this will be assumed here (except to treat cases
with rigid body modes for which only the normal modes are defined).

The fact, that the complex modes are solution of the eigenvalue problem (2.4),
implies two orthogonality conditions on the complex modeshapes

T cM T T T
0 M 0 0=y Cy+Ay My+y MyA=pu (2.6)
A5 00, & r
6 0 —M_|u= Vv Ky—Ay MyA =—uA 2.7

where u is a diagonal matrix of modal scaling coefficients which are non-physical
quantities depending uniquely on the way the eigenvectors y are scaled.

Throughout the rest of this work it will be assumed that the modes are scaled so that
u=I (identity) as this simplifies notations. However, it should be noted that
M;=A; - /'T, =xi2w;1- ¢? is another truditional scaling for the complex modes, which
tends to maximize the real part of the complex modes and, in the case of proportionally
damped structures, leads to a particular matrix of complex modes y =[¢ ¢], where the ¢
are the mass normalized normal modes {see section 2.1.3).
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Finally, although the direction of a complex mode in the complex vector space is
unchanged for different scaling conditions, the geometrical appearance of the real and
imaginary parts of the complex mode depend on the phase implied by the scaling
condition [ses1].

The complex modes lead to a spectral decomposition of the system equations:
provided that the scaling condition (2.6) (with u=I) is verified, one can use complex
mode states 7 defined by g=6n to rewrite the system equations (2.3) in the frequency
domain as

sn=[aln=[v" av7] ol

r=te o}y o)

where the modal states 77 are uncoupled (A is diagonal), so that the transfer function

(2.8)

matrix H(s) from the input to a displacement output can be written as a simple sum over
all the modes
T
H(s)= ﬁw . (2.9)
=1 s=4,

In this representation, cy; is the j* mode modal observability matrix, wfb is the j*
mode modal controllability matrix, and the contribution of each mode depends on their
product (the residue matrix R; = cy; v/ij). For non-symmetric systems, left and right
complex modes are defined. The modal observability is then cwf and the modal
controllability y;b, but the form of (2.9) is unchanged.

The scaling u=I of the complex modes led to the expression (2.9) where the residue
matrix for each of the modes is given by R, =Cl,llj|/Iij. Conversely for a measured
residue matrix ﬁj such that (2.9) can be used to generate the estimated transfer function,
cy, l//fb= l~i’j is an estimate of the product of the modal observabilities and
controllabilities corresponding to complex modes scaled by u=I. Thus, scaling the
complex modes with the analytical condition (2.6) (with u=I) and the enforcement, for b
and ¢ known, of the formal equality R, = cy; erb are equivalent. This property will lead
to the possibility of scaling experimentally identified complex modes in section 3.2.3.
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2.1.3. NORMAL MODES

Although this is not realizable in practice, one can consider the undamped system
associated with (2.1) (i.e. set C to zero). As for the damped system which had complex
modes, the dynamics of this hypothetical undamped second order system can be
decomposed spectrally on a basis of normal modes defined by the eigenvalue problem

-MpQ+ K¢ =0. (2.10)

where ¢ is the N by N matrix of normal modes, and €2 the diagonal matrix of N normal
mode frequencies.

The fact that the normal modes are solution of the eigenvalue problem (2.10), implies
that the normal modes verify tv.o orthogonality conditions with respect to the mass and
the stiffness

¢"™M¢p=p and K¢ = uQ 2.11)

where pu is a diagonal matrix of modal masses (which are non-physical quantities)
depending uniquely on the way the eigenvectors ¢ are scaled. Throughout this work it will
be assumed that the modes are mass normalized so that u=I.

Using normal mode states p defined by g=¢p (where the normal modes ¢ are
assumed mass normalized), the system equations (2.1) can be rewritten as

Ip+Tp+Qp=¢"bu
y=cép

(2.12)

or, in the usual first order form,

Pl Tk
y=[cs 0][2]

where Q is the diagonal matrix of squared undamped frequencies (£2 = ¢"'K¢) and I'is

(2.13)

the normal mode damping matrix projected on the mass normalized normal modes ¢
(F'=¢"C¢), c¢ is the normal mode observability matrix and ¢7h the modal
controllability matrix. Note that the identity matrix, I', and £2 are respectively the mass,
damping, and stiffness matrices in the generalized coordinate system p (normal mode
coordinates).

Proportional or modal damping is a usual assumption made for lightly damped
structures (see section 2.2.3 for more details), which mathematically corresponds to
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having a diagonal damping matrix I". Using the pole damping ratio {; and natural
frequency wj, one has for a proportionally damped system £, = w;‘ and I'; = 20 ;j0;. In
this case, the system equations (2.12) are decoupled, leading to a spectral decomposition
of the damped system response by pairs of poles

H(s)= Y 00t (2.14)

2 2
s +2{w;s + ;

j=1

where all the parameters except the damping ratios C; only depend on the mass and
stiffness distribution and can thus be predicted accurately with an undamped (FE) model.

Note that, as was the case for the complex modes, the use of the normal mode residue
matrix R; =c¢ jq),.’b in (2.10) is a necessary and sufficient condition for the normal modes
to be mass normalized ((2.11) verified with u=1).

In a number of cases the representation of damping by a diagonal I'is not accurate, so
that a non-proportional damping model must be used (I"is then a full but positive definite
matrix). However, even for a non-proportionally damped system, the normal mode
frequencies £2, modal controllability ¢"b and observability c¢ matrices remain physical
properties of the ideally undamped system and can thus be predicied by FE models.

A major problem for accurate predictions in cases with significant non-proportional
damping is the determination of normal mode properties (£2, I', ¢"b and c¢) from a set
of finite bandwidth experimental measurements. True normal and complex modes depend
on the continuous infinite system, but the damping is measured experimentally for a
restricted set of modes. The restriction of the damping model to a truncated set of normal
modes will be discussed in section 2.2.3 and based on this assumption, a new method for
the determination of normal modes from identified complex modes, leading to the first
experimental characterization of non-proportional damping, will be introduced in Chapter
III.

2.2, FINITE DIMENSIONAL MINIMAL MODELS OF CONTINUOUS STRUCTURES

Structures are non-linear, time-varying, and infinite dimensional systems. However, it
will be assumed here (and it is usually true) that they are weakly non-linear, vary little
and slowly with time. Under these assumptions, there theoretically exists an infinite
linear time-invariant model of the form (2.1) representing the system very accurately.

For analytical models, all physical assamptions are valid for limited frequency ranges

(or equivalently for long enough wavelengths). Thus the response can only be accurately
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represented for finite bandwidths. Continuous infinite models are more likely to have
large bandwidths, but systems such as real space structures are t00 complex to be
represented in detail with continuous models, so that in practice the bandwidth limitations
are very similar whatever the model used (discretized finite oz continuous infinite).

Experimentally, the sensor/actuator architecture limiis the number of points at which
the modeshapes can be known. Furthermore, sensor and actuator dynamics (as well as the
sampling frequency for digital systems) limit the frequency range were the measured
response corresponds to the physical response being modeled. Overall, experimental
models are generally less limited than aralytical models in frequency, but more limited in
spatial resolution. These properties motivated the introduction of hybrid experimental/
analytical models in Chapter V, which retain the accuracy of experimental models, but
increase the spatial resolution by combining experimental and analytical modeshapes.

Thus only approximate models, valid over a finite bandwidth, can be obtained. The
spectral decomposition into complex modes (2.9) or normal modes (2.12) allows to
distinguish the frequency ranges of dynamic contributions as the largest fraction of the
modal response is in a narrow (for lightly damped structures) frequency band near the
modal resonance. The analysis presented below will focus on normal modes, as the case
of complex modes is mostly useful for the identification of experimental models which is
addressed in Chapter III. (Truncated complex mode models will be detailed in section
3.1.2).

As will be shown in Chapters IV and V, some of high frequency modes of a model,
even if they are inaccurate, are useful for predictions of the response for multi-
configuration systems. However, the meaning of these modes is linked to a particular
modeling approach, their properties are not direct estimates of physical properties which
should clearly be invariant, and an accurate use of these contributions can usually only be
achieved for analytical models where their relation to the model is known.

It was seen in section 2.1.3 that normal mode coordinates were physical properties of
the system, the objective of this section will thus be to describe the minimal set of
physical parameters linked to the normal mode coordinates that characterize the response
of the system in a finite bandwidth.

2.2.1. TRUNCATED NOEMAL MODE MODELS

To characterize the response of a single configuration system in a given model
frequency range, one considers the spectral decomposition of the system dynamics into
independent modal contributions assuming at first proportional damping as done in
(2.14). The SISO frequency response of a generic lightly damped siructural system is
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plotted in Figure 2.1. It is clear that only the two modes with poles in the model
frequency range have significant dynamic contributions (the truncated mode! which only
keeps these two modes accurately captures the resonances in the model bandwidth). For
other modes, only the asymptotic contributions (constant for high frequency modes and
roll-off for low frequency modes) have a noticeable effect. When these asymptotic terms
are added to correct the truncated model, the complete transfer function including zeros is
well predicted in the model bandwidth.

T T T

k Low freq.

T T
High frequency range

-t B

v T
Model frequency range

4
\

Truncated model

e s e
==

Low frequency assymptote o -

l
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Figure 2.1: Finite bandwidth structural models: the physical parameters (important
factors) are modes in the bandwidth and asymptotic contributions of
modes in the low and high frequency ranges.

The generalization of this example leads to the creation of truncated modal models as
follows. For a proportionally damped system, the contributions of the different modes are
uncoupled as in (2.14). In the frequency range of the model, the physical characteristics
of the system are the normal modes ¢, (whose frequencies are within the model
frequency range), and the asymptotic stiffness £ and mass F correction terms (which will
be detailed in section 2.2.2). These properties are fully described by the truncated normal
mode model

(s°1 + 5Ty + 277 )py = $1bu

F (2.15)
y=c¢rp; +E+-;—2—
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For a non-proportionally damped system the same truncation can clearly be applied,
but it will only be accurate if the effects induced by off-diagonal terms in I (which
couple the retained modes ¢, and the truncated modes) are negligible. For the
interferometer testbed, it will be shown in section 3.3 that this is a good assumption even

for a system with significant effects of non-proportional damping.

Truncated modal models of the form (2.15) are accurate representations of the
Input/Output response of the system in a given configuration (where a unique set of
modes is defined). Furthermore, all their terms have a significant influence on the
modeled response in the considered frequency range, the model is thus minimal in the
sense that any smaller model would not describe all the resonances in the response.

For a given sensor/actuator architecture, one could further reduce the model size, if
some modes do not have a significant impact on the 1/O response. Such reductions have
been considered, in the low frequency range both for control design (e.g. [youl, grel])
and for structural dynamics (e.g. [morl]), and at higher frequencies using energy
propagation arguments (e.g. [lyol, nefl]). However, when using such methods it is
important to assess the exact validity of the model for its final purpose. Considering a
controlled structure application for example, a mode with a small open-loop contribution
may lead to a closed-loop instability [skel] so that stability must be checked with a model
(such as those considered in this work) containing all the dynamics within the control
bandwidth. (Note that such a check is not a full proof of stability as high frequency
dynamics can also be destabilized).

Finally, the properties of the truncated modal model correspond to physical properties
of the system. Qp, Iy, ¢TTb, and c¢, are respectively estimates of the frequency,
damping coupling coefficients, modal controllability, and modal observability of the
corresponding true normal modes. E, and F are correction matrices allowing the model to

have accurate static stiffness and mass properties respectively.
2.2.2. ASYMPTOTIC CORRECTIONS FOR FINITE BANDWIDTH MODELS

A direct truncation of modes that are out of the model bandwidth neglects the effects
of these modes in the bandwidth and results in a somewhat incorrect prediction of the
system static stiffness (truncation of high frequency modes) and mass (truncation of low
frequency modes). It is thus generally useful to add a stiffness and a mass correction to a
truncated set of normal modes.
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For a simpler presentation of the problem, it will at first be assumed that truncated
high frequency modes are proportionally damped so that from (2.14) the displacement
contribution of any of these modes takes the form

cop7b

. 2.16
s +2os+ ol (2.16)

The dynamic contribution of high frequency modes in the model bandwidth tends to a
constant (for s«; one has s> +2{w ;s + @’ = 7). This approximation can be used for
all the high frequency modes in (2.14) leading to a model that is extremely accurate at
low frequencies (in the model bandwidth), but does not have the dynamics of the

truncated modes
Hs)= Y { 00,5 }+ {—““”""’frb} 2.17)
24+ 2tw, 2 ot 2 '
je{:;g:mic} v Cw’s+w’ je{highf:g.} @]

The correction for high frequency modes is known in different forms to researchers
using linear dynamic systems. For component mode synthesis problems (e.g. {cra3]), it is
introduced as “static” modes used to complement the set of modes kept in the model.
This leads to the physical interpretation of the asymptotic correction as modeling the
exact static response. In fact, as shown in more detail in Ref. [bal5], the static correction
can be expressed as a function of the true system stiffness as follows

{2 }{—C‘P(’;)q;jb}:cl(“b— {Z }{———c‘pc’ﬁ"b} (2.18)

high freq. modes

where the correction for high frequency modes appears clearly as the true static response
(cK™'b) less the static contribution of retained (non-high frequency) modes. The right
hand expression of the static correction in (2.18) should be used in practical FE
applications where only the normal modes of the considered frequency band are known
accurately but the static response can be computed through a solution of the static FE
problem which is usually constructed to be very accurate.

For control applications, the static correction has been used for model reduction
purposes. As high frequency dynamics are truncated from the model it was found that the
asymptotic low frequency contribution of the truncated modes has a significant influence
on the response (particularly on the location of zeros) so that a correction is needed. The
so-called static correction is classically introduced as a constant feedthrough term (the
constant in (2.18)), which leads to several problems:
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- having a constant feedthrough term at all frequencies generates problems with many
control synthesis methods which do not allow such a term
- the constant feedthrough does not verify the physical property that the response
rolls-off at high frequencies (which is why control synthesis methods have
problems)
- a constant feedthrough term has no correction for the velocity which introduces
significant errors for controlled structures where velocity feedback is used [bal5].
An original solution [bal5] to these problems is to use a “correction” mode with
critical damping and an arbitrary cut-off frequency @, (in practice cut-off frequencies a
decade above the model bandwidth are appropriate). The dynamics of the correction
mode are chosen so that one clearly has the same low frequency behavior for

displacement
> { <4,4;b } O > {_c¢,.¢f b (2.19)
-t w? s +20 s+ o~ o> | '
ie{hu?@fg.} ! ¢ ¢ fe{m flr::} !

but a correction term for velocity measurements yy.), proportional to # is now naturally
defined as shown in the following state-space model

0 I 0
Pl 0 I |[[p N 0
= —lu
plo|-2 |- el7|e%
~0!| o, 1|
[ ] 22
p wf{K"— > {60! /wf}]b 0 &0
I:ydixp.:l _ je{dyn. mode}
= \
Y d 1y co w’c K - Z{¢,¢}"/a)f.} b
i je{dyn. mode} J |

The displacement correction is important for the normal mode properties (undamped

system) and can be essential for good predictions in cases with large stiffness
modifications. For the same reasons, the velocity correction becomes important when
accurate damping models are sought and significant modifications of the local dissipation
properties are considered (i.e. the addition of a local damper which in terms of modeling
introduces a significant amount of rate feedback).

In MIMO cases, a different correction mode must be used for each input. Such an
increase is perfectly acceptable for control purposes but may be too large when the
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control input is used to represent a modification of the structure (see section 4.3.3 which
describes the correction introduced using the FE perspective).

The analysis has been presented for modes with proportional damping. From (2.18)
where the correction is seen as a correceed static response, it is clear that the asymptotic
contribution of high frequency modes only depends on the system stiffness so that the
results remain applicable even for a non-proportionally damped system. However non-
proportional damping may induce a coupling of low and high frequency normal modes
which will be addressed in section 2.2.3.

For prediction purposes it is also natural to consider the full shape of the correction
mode as a mode appended to the set of kept normal modes. To each actuator can be
related a correction modeshape

¢C = K-I B ; {kcplnm;mlmoda {¢I¢l7‘/wf} b, (2.21)
€{ other static modes

which is defined as the static response to the actuator, less the contributions of retained
normal modes. This shape is known at all the finite element DOFs g and using the FE
shape functions at all the points linked to the underlying continuous model. For an

augmented matrix of modes ¢T=[¢an,. I Modes P Correcti Modu] the equations for the
truncated normal mode model (2.15) become

(s’ + sy + Qp )y = G7bu
y=cérpr

(2.22)

where the mass matrix u is still diagonal as the <orrection modes are constructed in (2.21)
to be mass-orthogonalized among themselves and mass-orthogonal to the retained normal
modes, 2., is a block diagonal matrix (one can easily show that correction modes as
defined by (2.21) are also stiffness-orthogonal to the normal modes), the asymptotic term
E present in (2.15) has been incorporated in the dynamic correction modes. The sub-bloc
of €2, corresponding to the static modes, can have arbitrary high frequency dynamics
(e.g. a diagonal bloc with correction mode frequencies @? as initially proposed in this
section, or the projected stiffness matrix ¢~K@. as used in component mode synthesis
methods).

In some cases low frequency modes may also be truncated. The rigid mass properties
of the system are then inaccurately modeled, so that a correction can be useful. In the
model bandwidth, one has for these modess»®; so that s* + 2{w;s + @] =~ s*. The total
contribution of the low frequency modes can thus be approximated by
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B s d Sheoan) =
’E{uunuled / !
Using this approximation, the response of the different low frequency modes can be
represented using a rigid body (frequency at zero) correction mode per actuator, leading

to a corrected model which in the state-space takes the form

cp Y {co,4b}
[ydi.p.]= i#{uncuci] p]
St L0|c¢ > {co,076} |7

je{low freq.

0 (2.24)

truncated

For more details, including practical considerations on how to compute such
corrections for cases where only some normal modes are estimated, see reference [bal5].

Except for component mode synthesis problems, such corrections are seldom useful
for predictions using analytical models, since low frequency modes are usually known
and retained in the truncatea model. Their necessity, however, is clear for identification
purposes, when tests of suspended structures do not include the low frequency range
where the resonances of suspension modes are located.

2.2.3. REPRESENTATION OF DISSIPATION BY THE VISCOUS DAMPING MODEL

Dissipation in structures comes from several different sources (e.g. structural
damping, friction, viscous damping) with different frequency and spatial characteristics.
Dissipation and its frequency dependence has been well characterized for simple
elements like bars of different materials (e.g. Ref. [ber5]), and it was even shown that the
models obtained remain valid even for extremely low levels of vibration (e.g. Ref. {tin1]).
But for complex systems like satellites, a number of uncharacterized phenomena (joint
friction and free-play, bond dissipation, cable slackening, etc.) are generally the source of
the system damping. Thus, an accurate local model of dissipation would use several types
of representation for the different phenomena, would be non-linear, albeit weakly so, and
could not in general be obtained for complex systems as most of the dissipation sources
in such systems are not characterized.
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The only practical solution is thus to represent the averaged contributions of all the
dissipation mechanisms by a simplified and usually linear model. In the present work, the
linear viscous damping model (rate dependent dissipation) used in the previous sections
will be considered. As the viscous damping model is a simplified representation of more
complex phenomena, it can only be validated by an assessment of how well the
phenomena observed in the system tests are represented.

The viscous damping model is linear, it can thus only represent weakly non-linear
dissipation mechanisms. Practically, this implies for experiments, that frequency response
functions should not depend on the way they are tested. For example, if sine-sweep and
broadband frequency response function estimation tests (see section 3.1.1.) give widely
different results, the measured response is non-linear (provided the te s are correctly
done) and the validity of the viscous damping model is dubious. The present work is
restricted to cases such as the IT for which this property is verified.

It is convenient to consider the viscous damping matrix in normal mode coordinates
(called I' in this work), and a usual simplification of the damping representation is to
assume that the matrix I is diagonal. This assumption called proportional or modal
damping can be seen in many different ways.

An early description of proportional damping can be attributed to Lord Rayleigh
[rayl], who showed that damping was proportional if the damping matrix was a linear
combination of the mass and stiffness matrices. This description can be extended by
describing C as a linear combination of the mass and stiffness matrices at different

powers

C=Y (cM* +c,K?). (2.25)
a.p

A proof of the equivalence between (2.25) and the fact that I''is diagonal can be found
in [caul]. Other mathematical descriptions linked to the commutation properties of the
system matrices can also be used (see Ref. [lial]).

The definition (2.25) leads to the physical interpretation of proportional damping as
evenly distributed damping: if, at all points, dissipation is proportional to the local strain
or kinetic energy, (2.25) will be true and a proportional damping model will be accurate.
Conversely, (2.25) will not be true for a system with a few local dampers and a non-

proportional damping model will be needed.

29



Although the proportional viscous damping model is very useful for many lightly
damped structures, it is sometimes not accurate enough to represent test results well. It is
then useful (and usually sufficient) to use a non-proportionally damped model with I”
being a full (but positive semi-definite) matrix.

The positive-definiteness of the damping matrix, expected physically and
corresponding mathematically to the fact that the model will predict energy dissipation
for any forced motion (as clearly expected from a passive system), limits the possible
extent of the effects of non-proportional damping. In fact, as shown in the example
treated in section 5.2.2 or in Ref. [par2], damping levels around 1% and modal densities
with modal separation of less than 10% are needed to for the apparition of phenomena
that cannot be well represented by a proportionally damped model.

A usual characterization of non-proportionally damped systems is that the residues of
their complex modes are not in- or out-of-phase, a property which can be shown for the
proportional damping case as follows.

As indicated in section 2.1.2, a particular set y of 2N vectors of dimension N is the set
of complex eigenvectors of the system if it verifies the two orthogonality conditions (2.6)
and (2.7). For a proportionally damped system, y = [¢ ¢] (remember that there are 2N
complex modes y and N normal modes ¢ (assumed mass normalized)) verifies

r ~AC M w] [¢7Co (0" M¢ ™Mo
v v ][M 0__vm_"[ ¢TC¢]+A_ ¢’M¢]+[ ¢’M¢]A

r o[ _ .
[ r]m 1+[ I]A=A—A= +i2w,1- ¢ (2.26)
and
1K O] v —
[v' AvrT}[O _M][WA]=—-A(A—A) @27

so that it is the matrix of the complex eigenvectors of the full order model. This
eigenvector matrix iiowever corresponds to the scaling coefficients u = A — A instead of
u =1 (assumed throughout this work). This particular form of the complex mode matrix
v, where the normal modes are repeated twice, allows (for proportionally damped
systems only) to ignore the distinction between normal and complex modes.

Using the form y =[¢ ¢] the complex modes are real, so that all the residues are in
phase or out-off phase. When a system is tested the complex modal observability cy is
identified. From (2.26)-(2.27), the complex modes are, for proportionally damped
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systems, equal to ¢; modulo a complex scaling coefficie:it. For any scaling, the complex
modal observabilities are thus on a line and by a usual abuse of language they are called
real. If the observabilities are not on a line (by the same abuse of language they are then
called complex) and the system is non-proportionally damped. Different other difficulties
linked to “complex” modes of non-proportionally damped systems must be addressed as
will be done in section 3.3.

Another way to characterize proportional damping is to consider the transfer function
expression linked to the complex residue. For the symmetric real problems considered
here, the complex modes come in complex-conjugate pairs. Taking the modal transfer
function description (2.9) and grouping the complex-conjugate terms leads to

SA; +(ijAj -, I—C’Bj)

2.28
st +20w;s + 0F (2.28)

H(s)= 22

where A, = Rc(cv/j v/fb) and B, = Im(cy/j u/fb).

Comparing this expression with the transfer function expression (2.14), one can
characterize proportional damping as the fact that the terms A; are 0 or, in other words,
that the different modal velocities p; roll-off independently as s tends to infinity (the
system is described as a series of independent second order systems).

As the viscous damping model is a simplification of more complex phenomena, there
is no reason to assume that it should be defined for all the model forms. In particular if
the modal damping matrix I';; of the truncated normal mode model (2.15) allows accurate
predictions of system response, there is no need and in practice it is not possible to define
the non-truncated matrix. Such a truncation is of course more restrictive than using a full
matrix, so that there may exist cases where the model bandwidth needs to be extended to
account for the actual phase distribution of the complex modal observabilities. But in
practice, as shown in section 3.3, the use of a truncated non-proportional damping matrix
is a very effective extension of the proportional damping assumption.

2.3. CONCLUSIONS

The assumptions used for this research, on the dynamics of the system and properties
of the actuators and sensors, were rcviewed. Analytical properties of complex and normal
modes were detailed. Addressing the real case of models valid over a restricted

31



bandwidth, the validity of truncated normal mode models was discussed. The mass and

stiffness corrections for Jow- and high-frequency truncated modes were detailed. Finally
the use of a truncated non-proportional modal damping matrix was introduced as an

efficient way to obtain an accurate linearized representation of the complex phenomena
leading to the overall system damping.
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Chapter 111

Identification of Experimental Parametric

Models

The most accurate models of the dynamic response are generally obtained through tests of
the actual sysiem. The estimation of parametric models (state-space models or other
equivalent models detailed in section 3.1.2) from measured test data with no or little a priori
knowledge of the system is a well studied problem usually called identification. Existing
identification algorithms do not take full advantage of the specific properties of lightly
damped structures and thus often do not achieve the high accuracy expected in this work.

New solutions are proposed in this chapter, which have been successfully applied to
analyze different experimental tests, including those from the Interferometer Testbed (IT),

which will be used here as a supporting example.
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Figure 3.1: The general process of parametric model identification from test data.

As shown in Figure 3.1, identification methods can be seen as directed optimization
algorithms, which are differentiated by the use of different treatments of data (applied to
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minimize the effects of noise and high frequency dynamics), model paranietrizations, cost
functions (measuring the difference between the data and the corresponding model
predictions), and optimization algorithm (leading to a set of parameters). In section 3.1,
following the categories outlined in Figure 3.1, a complete review is done of the different
options characterizing identification algorithms.

In section 3.2, a new identification algorithm based on the modal parametrization is
detailed. This algorithm optimizes a initial guess of the pole structure determined through
other identification algorithms and corrected by the user, so that results are often
significantly more accurate than those of other methods. Implementation issues are
discussed and the algorithm is shown to be very cost effective for the simultaneous
treatment of multiple transfer functions. New solutions to treat problems of model
minimality and determine scaled estimates of the complex modal observability and
controllability matrices are introduced. In the case of the IT, the algorithm is shown to
allow the accurate identification of all the dynamics in the 20-60 Hz frequency range, even
though mode 9 is localized to one of the truss legs, modes 6 and 7 are extremely close in
frequency, and the effects of non-proportional damping are significant.

Accurate identifications of non-proportionally damped systems imply the use of
complex modes. However, only normal modes are predicted by FE analyses. Thus, for
problems where a link with the FE predictions is wanted, it is necessary to define an
efficient procedure to estimate normal modes from complex modes. However, existing
methods (reviewed in section 3.3) have been of limited accuracy when applied to cases
with significant contribations of non-proportional damping (most of today’s mechanical
systems). It is shown in section 3.3 that the complex modes of a non-proportionally
damped truncated normal mode model verify a properness condition and that this condition
is sufficient for the existence of an exact transformation between the complex and normal
mode parametrizations. A new algorithm is then derived to determine, in both cases with as
many and more sensors than modes, the set of proper complex modes closest to the
measured modes. From these proper modes, the truncated normal mode model can then be
determined with no further approximation. For the case of the IT, the overall procedure is
shown to be very accurate and to only introduce small distortions from the identified
complex mode model. The results presented mark the first successful experimental
characterization of non-proportional damping (previous results only considered simple two-
mode systems).

Finally, results of identification algorithms are sensitive to noise in the measured
frequency response functions. In section 3.4, existing methods for the evaluation of this
sensitivity are reviewed and extended to the new complex mode identification algorithm.
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Applications to the IT case lead to the conclusion that identification errors obtained with the
proposed identification algorithm are smaller than the experimental variations of the system
between different tests.

3.1. A CLASSIFICATION OF IDENTIFICATION METHODS

Identification is the process of determining a parametric model matching the measured
response of a system. Researchers in two fields, controls and structural dynamics, have
devised a number of somewhat overlapping algorithms (see the reviews in Refs. [full,
alll, ewil, ljul, levl] and the partial list in table 3.1). As was shown in Figure 3.1, four
elements (data, parametrization, cost function, and algorithm) determine the identified
models. Rather than describing the attributes of the different existing identification
methods, the following sections will review the possible choices within these four

categories.
Table 3.1: A partial list of usual identification algorithms in the Time (TD) and
Frequency (FD) Domains.
Parametrization Data / Cost fct. Algorithm
Normal mode, Maximize in-phase | Force appropriation [ott1]
pole response
Complex mode, | FD Quadratic Peak picking, MDOF residue fits [ewil]
pole Complex mode identification [bal3}
Spanos [spal]
FD Log quadratic | Jacques [jac1]
State space model | TD quadratic System realization [hobl]
Ibrahim Time Domain [pap1]
Eigensystem Realization Algorithm [jual]
Polyreference [crol]
Extended Kalman Filter (e.g. [kar1])
FD quadratic Polyreference [zanl]
Polynomial TD quadratic Polynomial (ARMAX, OE, etc.) [ljul]
FD quadratic Orthogonal polynomials [ric1]
Reduced system | FD quadratic error | Direct system parameter identification [leul, cral]
matrices
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3.1.1. EXPERIMENTAL DATA

Time-domain (TD) data are the only actually measured data. Limitations applicable to
time domain data come from the resolution of sensors in space (all sensors have minimum
and maximum measurable amplitudes) and frequency (sensors have bandlimited ranges
where their output can be related to the quantity of interest). For digital systems the
frequency band is also limited by aliasing, so that filtered bandlimited data must be used.

The major disadvantage of TD data is that an explicit treatment of noises is often
necessary. Many traditional system identification methods (e.g. ARMAX [ljul], Extended
Kalman Filters [kar1]) assume a filtered white noise model (or more recently a worst case
deterministic noise) which is estimated at the same time as the system model. For structures
in a clean environment, another usually quite efficient approach uses the assumption that
noises are uncorrelated from the inputs used to excite the system. Although under this
assumption some algorithms are asymptotically insensitive to the measurement noise, it is
in general useful to do a non-parametric identification removing components that are
uncorrelated to the inputs from the measured outputs. Such correlated measures of the
response (pseudo-TD data) are fundamentally equivalent to the use of frequency domain
(FD) data (they are related to frequency response functions through the Fourier transform).

For linear time-invariant systems, the response can be described in the frequency
domain (FD) using frequency response functions (the FD equivalent of impulse response
functions). Frequency response functions, which are estimated through a process of non-
parametric identification, describe the response of the noise-free linear system to any type
of excitation. In the FD, system and noise characteristics are thus readily separated into a
set of frequency response functions and a noise spectrum (which is quite often also
cstimated [ljul]).

Sine-sweeps [ewil, ljul] are probably the oldest non-parametric identification
procedures. They consist of a measurement at different frequencies of the steady state
response to sinusoidal excitation. If the system is linear and the noise is not correlated with
the input, they allow unbiased estimates of points of the frequency response functions. For
non-linear systems, they allow a determination of the amplitude dependence of the
frequency response (valid frequency domain information for non-linear structures is
usually obtained using sine-sweeps). Although very popular for structural dynamic testing
and considered more accurate (particularly for the measurement of damping properties),
sine-sweeps have the main drawback of implying extremely long acquisition times if many
frequency points are to be tested.

For other inputs with a larger spectrum (e.g. impact, pseudo-random), many frequency
response function estimators have been developed (see Refs. [ewil, ljul, cobl, all2}]),
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which allow the measurement of frequency response functions with extremely low bias and
variance. Averaging and windowing are often successfully used to reduce the estimate
variance, at the cost of an increase in its bias, which should be well understood for a proper
test. Tests with simultaneous multiple inputs are possible and lead to more consistent sets
of data, which linearize and average the structural response in a sense that should be further
investigated.

The validity of non-parametric identification depends of the statistical assumption that
inputs and noises are uncorrelated (which, as shown in Ref. [ljul], allows the unbiased
estimation of frequency response functions for open-loop systems). This statistical
assumption, which is usually met for the systems of interest here, is clearly much less
restrictive than parametric noise models usually limited to small dimensions, so that the use
of FD (or pseudo-TD derived from FD) data seems much more appropriate for the
structural dynamic applications considered here.

A last advantage of FD data for the application at hand is that it allows an accurate
truncation of high frequency dynamics. Contributions of poles can, for lightly damped
structures, be very well approximated by asymptotes even at frequencies close to the pole
resonance. The use of FD frequency response function estimates in restricted frequency
bands thus allows the identification of all the modes of interest, while approximating the
contributions of other modes by simple asymptotes. (Note that the same effect can be
obtained in the TD when using pseudo TD data generated by the inverse Fourier
transform).

For the present work it will be assumed, as is generally done for structural dynamic
applications, that estimates of the continuous time frequency response functions can be
derived from test data at a finite number of frequencies w. If the data acquisition is done
digitally, discrete frequency response functions (based on the z-transform rather than the
Laplace transform) may be available, but can be transformed to estimates in the Laplace
domain as discussed in Ref. [fral].

3.1.2. PARAMETRIZATIONS

Several categories of models are considered for parametric identification, and have led
to techniques that can usually be developed in both the time and the frequency domain.

Polynomial or rational fraction models where among the first used for system
identification. They have been applied both in the time domain (leading to the well known
ARMAX, OE, etc. models detailed in Ref. [ljul]), and in the frequency domain (e.g. the
Rational Fraction Polynomial method [ric1, shil] which uses polynomial orthogonalization
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techniques to obtain better numerical conditioning). A general form of these models is for
SISO discrete TD systems [ljul]

A0 =7 0+ 5

e(t) (3.1)

where the input is u, the output y, the white noise disturbance e (to be used for TD
identification), and five possible polynomials are considered: A, B, F (corresponding to the
system response) and C, D (shaping the noise input). For MIMO problems, matrix
polynomials can be used (Ref. [ric2], etc.), but it may then be difficult to guarantee the
minimality of the model.

Polynomials tend to be badly numerically conditioned if many poles are used and if the
frequency range of poles or zeros is very large (the case of interest here). It is thus
sometimes more appropriate to use a pole/zero decomposition (products of 15t order
polynomials)

(s— z,)...(s—- z )
(s— A,)...(s - ﬂ,,j,,r)u(s) (3.2)

where the overall gain is given by G, the zeros by the z; and the poles by the 4.
The use of the polynomial parametrization implies a choice of polynomial orders. This

¥(s)=C

choice introduces problems of definition for the identified parameters. For example, some
the model poles correspond to estimates of the system poles, but others (called
computational polcs) allow a better agreement with the measured data (the meaning of the
modes associated with such poles is unclear and these modes probably deteriorate tie
accuracy of estimates of true modes).

The polynomial parametrizations (3.1)-(3.2) are not very appropriate for MIMO
problems since the uniqueness conditions on poles, modal controllabilities and
observabilities are difficult to relate to conditions on the polynomials linked to each SISO
transfer function. All these difficulties are however easily treated when using MIMO state-
space models of the form

x = Ax+Bu

3.3
y=Cx+Du (3.3)

General state-space models are used in the system realization theory, first introduced by
Ho and Kalman [hob1]. Based on similar considerations, the Ibrahim Time Domain (ITD)
method [pap1, pap2], the Polyreference method [cro2, crol], the Eigensystem Realization
Algorithm (ERA) [jual] and several other variants were developed and are still actively
used and refined.
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In an effort to identify the normal mode models, a restriction of the general state space
form (3.3) was introduced and led to reduced system matrix approaches (see Refs. [copl,

leul, cral, leel, cra2]) which assume a second order parametrization of the model
xs* =—Cpxs — K,x +bu (3.4)
y=cx

for the identification. These methods assume a knowledge of the input u and of the state
response (acceleration, rate and displacement) so they have been generally applied in the
frequency domain (where the state response is given by xs?, xs and x) and restricted to
cases with more sensors than modes, where ¢ and x can be easily defined from measured
frequency response functions. As will be seen for the interferometer in section 3.3.4, these
methods tend to have difficulties in identifying damping contributions. The use of FD data
in these approaches allows truncating high frequency resonances, but asymptotic terms are

difficult to introduce.
Free parameters for these methods are choices of sensors or generalized sensors and
input frequency weightings. The results can give satisfactory estimates of frequencies and

modeshapes but are often quite inaccurate for the damping representation.

The general polynomial and state-space forms do not easily allow the specification of
further knowledge of the system and thus iterative refinements of the models. Frequency
weightings or shaped TD inputs (the only tools generally available to improve results
judged unsatisfactory) do not give a direct mechanism for eliminating computational modes
or specifying true modes that are not initially identified (e.g. local modes). These
limitations are hcwever alleviated if a physical parametrization (pole/complex mode or
pole/zero) is usec, since different parameters can then be improved independently.

In the polynomial form (3.2), one can clearly remove or specify a pole or a zero. But,
as mentioned above, the polynomial form is not appropriate to deal with MIMO problems,
so the pole/complex mode parametrization has been studied in more detail for the present
work.

The complex mode parametrization is a particular representation (without restriction) of
the state-space models (3.3), corresponding to choosing modal states for x (which leads to
a diagonal A matrix). For structures, this parametrization corresponds to the complex mode
model introduced in section 2.1.2, whose response in the FD can be written as

2N ) .Tb
Ho)= Y, L (3.5)
=1 j
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Because real structures have an infinity of modes, the only possible objective is to
create a model keeping the terms having significant contributions in the test bandwidth (the
frequency range where the estimated frequency response functions are used). For lightly
damped structures, only the modes in the test bandwidth (indices between n; and n,) have
significant dynamic contributions. The contribution of other modes can be extremely well
represented by asymptotic terms (introduced in section 2.2.2): constants for poles above
the measured bandwidth (since s-4; = 4; for those poles) and terms in //s for modes below
(since s-4; = s for those poles). This simple analysis leads to a first complex mode model

parametrization

H,(s)= Z -+ E+E- (3.6)
j= "ls
where R; is the complex residue matrix associated with a given pole (it is the experimental
equivalent of the analytical cl//jl//fb) and the complex terms E and F are respectively
correct for the asymptotic behavior of high frequency and low frequency poles (including
negative imaginary poles).

Since the terms of this model are the only ones having a significant influence on the
frequency response, they are the only ones that can be identified accurately. However, for
the real systems considered here, the residue matrices of complex-conjugate poles are
complex-conjugate matrices. Thus, even though the test only contains positive frequencies,
one can introduce a symmetric pole pattern which is physically known to exist. This
consideration leads to a second complex mode model parametrization

H,(s)= 2{ Rl }»+E+F Fz, (3.7)
5= j

! ss

that describes the contributions of complex-conjugate pairs of poles, corrects for the high
frequency modes with the real static correction matrix £, and for the low frequency modes
with two contributions described by the real matrices F, and F, (see motivation below).

Regrouping the contributions of the complex-conjugate poles as in (3.7), one can
express the model in terms of real valued quantities

Tis+T,
H,(s)=2{2 It }
= 5 +2w,+ o’

where T} =Re(R,) and T, =-Re(R;){w; +Im(R, /-’ w,. Note that the direct link

J
between the residue matrices and the complex modes is lost in this form (used among

(3.8)
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others by Spanos [spal] and Gilpin [gil1]), which is thus less appropriate for the analysis
of physical properties of the system.

From (3.8) it appears that the asymptotic high-frequency contribution linked to 77 is in
Ifs and the contribution linked to 7; is in 1/s* . This motivated the two correction matrices
F; and F,used in the modal parametrization (3.7). Note also that a correction of the form Es
could be introduced to account for effects of the T matrices of high frequency modes.

For structural dynamic applications, the assumption of proportional damping is very
useful since complex and normal modes are then exactly proportional. In the form (3.8),
the proportional damping assurnption corresponds to 7/ =0 (see section 2.2.3), which
leads to a real mode parametrization

F
H,(s)= z{s +ZCw o7 }+E+?, (3.9)

J=m

This parametrization corresponds to a (normal mode)/(pair of complex-conjugate poles)
parametrization (since theoretically T, = c¢j¢ij, see section 2.1.3). However, the
enforcement of this parametrization, consistent with the assumption of proportional
damping, does not exactly estimate the normal modes for non-proportionally damped
systems (see the example in section 3.3.4).

Finally, the modal parametrization is also the underlying basis of the force
appropriation method, which should be mentioned as one of the oldest identification
methods for structures. This method, which tunes relative amplitudes and phases of
multiple sinusoidal inputs to excite the resonance of a single mode, was first introduced in
Ref. [lew1] and has since been widely developed (e.g. Refs. [brel, niel, will]). It is still
widely used in industry through highly automated testing packages. Modal damping must
often be assumed, because the appropriation of phase differences other than (° or 180° at
different excitation locations can be extremely long.

3.1.3. COST FUNCTIONS

Cost functions are measures of the difference between the model prediction and the
data. Identification algorithms have the objective of minimizing the prediction error as
measured by the cost function which thus plays a key role in the result of any method.

In the time domain, most algorithms use cost functions on the prediction error, such as

e =il = 2 ' l(yMjk(t) - yljk(t))lz ’ (3.10)

je{mecasured sensor location}
ke{measured actuator location}
te{measurcd time paint}

41



or norms on the Hankel matrix (which for some problems is equivalent to the use of
(3.10)). For more details on time domain cost functions, see Ref. [ljul] for example.

In the frequency domain, experimental frequency response runctions are estimated at a
discrete number of frequency points (e.g. the test frequencies of a sine-sweep or the
frequencies associated with a finite length matrix of time domain measurements (see Ref.
[ljul])). Because the comparisons betwcen experimental and modeled frequency responses
can only be made for a finite number of points, any norm could be used (and they are all
equivalent in the limit of perfect data). In practice however, two factors determine the
choice of a given norm: the easiness of use, and the sensitivity to the measurement noise
and to variations of the estimated parameters.

Because of its useful mathematical properties (it leads to least-squares problems), the
quadratic cost function

S quadraic = 2 I(H wie(@)— Hy (@, ))r (3.11)
je{measured sensor location}
ke{measured actuator location }
le{measured frequency point}
is often used as a measure of the difference between the estimated and predicted frequency
response functions. (In the limit, as the frequency response is known at all points, this cost
function corresponds to the square of the H, norm).

Least-squares problems derived from the use of the quadratic cost function allow fast
computations, but better mathematical properties can be obtained using other norms. In
particular, the logarithm (the complex log or, with less accuracy, the log magnitude) of the
frequency response function can be used in a Log Least Squares (logLS) cost function

S ¥ (Log Hygu(@,) - Log (@) (3.12)
j€&{measured sensor location}

ke{measured actuator location}
le{measured frequency point }

To highlight the properties of the logLS cost function, a one DOF example is
considered

R
s2 + 2L ws + w?

H(s)= (3.13)

with nominally the non-dimensional parameters R=1, w=1, {=0.01.
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Figure 3.2: Artificially normalized (—) quadratic (3.11) and {(---) logLS (3.12) costs
for varying estimated a) normalized frequency, b) damping ratio,
¢) normalized residue, the other parameters being nominal.

Figure 3.2 shows the quadratic (3.11) and logL.S costs (3.12) corresponding to errors
on the three parameters (pole frequercy, damping and residue) for a frequency response
function estimate with 1000 experimental frequencies linearly spaced between O and 2. It
can be seen that both the quadratic and logLS cost functions have local minimums at the
nominal values. However, the quadratic cost decreases for an estimated frequency above
1.07, so for a large initial error on the pole frequency the minimization would probably not
converge. For identification such errors are unrealistic, so the quadratic cost is sufficient
(and will be used for the new identification algorithm proposed in this chapter), but initial
FE modal frequency errors are often quite large, therefore the logLS cost (3.12) is indicated
for FE update procedures (it will be used in Chapter IV).

Both cost functions are locally convex with respect to all the parameters near the
minimum, but for inaccurate frequencies, the quadratic cost is convex in a region of
approximately 2% (around the nominal frequency), versus £15% for the logLS cost.
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Practically, this means that minimization algorithms will converge much more easily using
the logLS cost.

From this analysis and that of further test cases with more modes, the logLS cost can

be shown to have better properties than the quadratic cost on several points:

- It is a strictly decreasing function of the inaccurate parameters in much larger regions
around the minimum.

- Itis locally convex in much larger regions which will help minimization algorithms.

- It is inherently more sensitive to zeros (anti-resonances) and thus to mode shape
errors. This property might be a major motivation for the use of the logLS cost to
identify models for control design purposes.

- As observed in Ref. [arrl], problems of local minimums for insufficient frequency
spacing are solved.

For a given cost function and identification algorichm, the input content can often be
tailored, thus giving a powerful but of difficult use tool to improve results. In the TD this
possibility is implicit in the fact that the cost functions measure the discrepancy between
measured and predicted outputs, for an input that can be designed by the user (e.g. Ref.
[hun1]). In the FD, changing the input corresponds to multiplying the frequency response
functions by a frequency weighting corresponding to the input spectrum. For example, a
weighted quadratic cost function will take the form

2
T mcighid Lean Squares = je{mmémmm} W(6,0,)(Hyge (@)~ Hye(a))| (3.14)
ke{m d actuator location}

le{measured frequency point}

where the weighting W may depend on both frequency and the identified model parameters
6. Such weightings are essential to some algorithms, such as those based on the ARX
model structure [ljul], but are usually not necessary for the new algorithm presented in
section 3.2.

3.1.4. RESOLUTION ALGORITHMS

Resolution algorithms (see a partial list in Table 3.1) are usually constrained by the
ability to obtain a useful solution to the minimization problem in a reasonable time.

A number of identification algorithms use particular formulations of the minimization
problem allowing direct or fast resolutions of the problem. This is the case in particular of
algorithms based on the polynomial parametrization (3.1) (ARMAX, OE, orthogonal
polynomials, etc.) and the quadratic cost functions in the TD or FD.



System realization algorithms (ITD, ERA, Polyreference, etc.), based on the general
state-space parametrization, use operator norms on the Hankel matrix and find a direct, but
sub-optimal, solution to the minimization problem.

These algorithms are usually called “black-box” identification algorithms since their
solution is only based on mathematical properties of the stated problem. In the present case,
two essential properties can be assumed, thus leading to more appropriate algorithms:

- The type and length of inputs used in experiments are not limited, and levels of noise
present are small compared to the achieved levels of response, so estimates of
frequency response functions can be obtained with high levels of accuracy (meaning
low bias and variance of the estimate). In other words, noise is not a problem.

- Structures are inherently stable systems with, in general, imaginary dynamics (poles
with less than 10% percent damping), so a good model truncation can be achieved by
using frequency response functions in a limited frequency range.

From the second property, the modal parametrization detailed in section 3.1.2 allows
minimal descriptions of the actual system dynamics and thus the identification of the
physical properties of the system (the poles, complex mode observabilities and
controllabilities).

The most easily obtained infermation on the system response is the location of the poles
whose frequencies can generally be graphically picked with high accuracy using one or
several measured frequency response functions or mode indica‘or functions combining the
response of several frequency response functions (e.g. Ref. [wil2]). Such visual
comparisons of measured and estimated frequency response functions usually allow the
user to determine a number of errors in identified models. Using the traditional “black-box”
algorithm, these errors are corrected on an ad-hoc basis (by using sub-frequency ranges to
improve resuits for particular modes, by introducing frequency weightings, by removing
computational poles, etc.), but the results obtained have no guarantee of accuracy.

To properly use this easily available knowledge of the system pole structure, the
identification algorithm must be iterative and use an initial model where the pole frequencies
appear explicitly. Such an algorithm is introduced in the next section and shown to give
accurate models for structures with high modal densities, local modes, and significant
effects of non-proportional damping.
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3.2. A NEW IDENTIFICATION ALGORITHM BASED ON THE COMPLEX MODE
PARAMETRIZATION

This section addresses in more detail the implementation of the algorithm developed as
part of this work. (Like all the results of the present work, this algorithm is implemented in
a Toolbox for Matlab [bal2]). The main characteristics of the algorithm are:

- frequency domain data, which allow the treatment of measurement noises through
non-parametric identification and the identification of all the modes of a particular
bandwidth as well as the truncation of other modes through the use of the estimated
frequency response function in that band.

- the complex mode parametrization (3.6), which is consistent with the objective of
identifying all the modes of the considered bandwidth. (The parametrizations (3.7)
and (3.9) are also implemented in [bal2]).

- an iterative update of an initial guess of the pole structure (while simultaneously
estimating the corresponding residues), which allows the use and in general the
improvement of the results of other ID algorithms.

- the quadratic cost function (3.11) without weighting, which allows a cost-efficient
and yet extremely accurate algorithm.

Implementation details of the basic algorithm are discussed in section 3.2.1. The
solutions of the basic z2lgorithm are not minimal MIMO models, so new methods to
determine the modal multiplicity, as well as scaled estimates of the complex mode
controllabilities and observabilities, are intrcduced in sections 3.2.2 and 3.2.3. The
efficiency of the overall procedure is demonstrated in section 3.2.4, using experimental
data taken on the IT. Finally for reference, the problem of reparametrization into a real
parameter state space model is addressed in section 3.2.5.

3.2.1. IMPLEMENTATION OF THE COMPLEX MODE IDENTIFICATION
ALGORITHM

For any of the modal parametrizations (3.6)-(3.9), the transfer functicn depends
linearly on the residues and asymptotic correction terms (matrix R; for each of the complex
modes of the model, and matrices E and F for the correction terms). For the rest of this
section, the elements of these matrices will be stored in the matrix R = [RJ,E,F ]T of
dimensions N;+2 by N; * N,. For a system with N, poles, the first N, rows of R contain
the residue matrix associated with the N, poles. The last two rows contain the correction
matrices. For MIMO systems, an arbitrary storage scheme such as storing the columns
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sequentially (i.e. [R wRaps s R Ryse -]) is used to make the link between the row storage
in R and the N, by N, matrix form defined in the parametrizations (3.6)-(3.9).

A pole contribution matrix d)(}{ j) is defined as follows. The first N, columns of
db(l j) are equal to I/ (s -1 j) evaluated at the measured frequency points s = { ja,} for
each of the Ny poles A, The last two columns correspond to the asymptotic contributions: a
column of ones for the stiffness correction E and a column equal to {I/j®,} for the mass
correction F. (See Ref. [bal2] for more details if necessary).

The frequency response functions predicted by a model of the form (3.6) (a similar
expression would hold for (3.7) and (3.9)) are the product of the matrices @ and R defined
above

ny R'
s={ jay, } s={jo, }

j=m ST A § j

The identified model is the model which minimizes, near an initial model, the chosen
cost function (here the quadratic cost function (3.11)). Even with a good initial model, a
simultaneous minimization on the poles and residues is difficult, computationally intensive,
and unreliable. Therefore, doing the minimization in two steps is proposed here.

Using the expression (3.15) of the predicted frequency responses, the minimization of
quadratic cost function (3.11) leads to the following linear least-squares problem for the
matrix R

R = argmin{trace((H, - OR) (H,, - oR))} (3.16)

which, for a given set of poles, is solved as the first step of the proposed method (for the
identification/optimization, the residues are solutions of (3.16) and not free parameters).

The use of the least-squares problem (3.16) to determine residues for a given set of
poles has been proposed independently by several authors (the interpretation using a
maximum likelihood error criterion in [jeol] is worth noting). However, such evaluations
are only accurate if the poles are accurate.

To improve the results obtained with the initial set of poles, the method proposed here
considers the poles as free parameters and searches (second step) for the minimum of the
cost function (3.11) for sets of poles near the initial guess. During the search the residues
are defined as solutions of the least-squares problem (3.16).

The least squares problem (3.16) has, for any given set of poles 4, a closed form
solution
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R=(®"®)" ®"H,(s) (3.17)

which can be used directly, although better numerical conditioning can be obtained with
different algorithms designed to solve least-squares problems (see Ref. [law1]). From
(3.16) and (3.17), the cost J can be rewritten as

J = wace((H, — Hy,)' (H, - Hy)) = trace(H{,(I ~ oo )" a>’)2 HM) (3.18)

From (3.18), a closed-form expression of the gradient of the cost J with respect to free
parameters 6 (here the free parameters are the. frequency and damping ratio of each of the
estimated poles) can be obtained as follows. Using € = H, — H,,, the partial derivative of J
with respect to @is

a] .de o€ r O€ r - T( oD aR)

G _ T2 % 2™ o[- (DT D) D7) - TR L | =

2 £ 20 057 20 u(1-o(@") o) 26 )" 4510
aJ T 0P '
X oH, -H,) =R
39 (l M) ao

To update the poles, any optimization algorithm would be appropriate, but it appears in
practice that the sign of the cost function gradient for a given pole frequency (dJ/dw) or
damping ratio (//d¢) does not depend on the error made on other parameters (the damping
ratio or the frequency of the same pole and the parameters of other poles). Therefore, from
the sign of the gradient one can determine whether or not each of the parameters is over- or
under-estimated. By using a limited initial step size for each parameter, and decreasing the
step of each parameter every time it passes over its optimum, one obtains a very efficient
path to a local optimum, which was found to be satisfactory in almost all the cases treated.
(For more details see [bal2]).

This approach, which takes advantage of specific decoupled properties of the problem,
has proven to be extremely effective on several actual data sets (reducing computation times
by orders of magnitude when compared to other optimization strategies). However, it does
not come with any mathematical guarantee of convergence, so that in some cases more
traditional optimization algorithms might be more appropriate. Traditional optimization
methods would however be much more computationally expensive and may not converge
because the cost function used is only convex for very small errors (see section 3.1.3).

The user freedom in this algorithm is related to the choice of the initial guess for the

model poles. This choice restrains the optimization by only allowing solut’ ns near the
guess. This property allows the identification of all the modes in the bandwidth where the
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frequency response functions are estimated and, if another identification method is used to
provide the initial guess, the elimination of all computational modes.

The simplest (and usually sufficient) way to provide an initial guess of the poles is to
graphically pick pole frequencies (which correspond to resonances (peaks) for the lightly
damped systems considered here) and to use a realistic but non-measured damping ratio
(e.g. 1%). After a few iterations, it is usually possible to remove poles that do not converge
since they do not correspond to actual poles of the system, and to add poles that may have
been overlooked in the initial guess (such as poles of local modes with only a significant
contribution in a few frequency response functions, or very close poles of structures with
high modal densities).

Finally, accurate results were obtained using the present method without frequency
weightings (used in many traditional methods to enhance the sensitivity of the cost function
to parts of the frequency response which are of interest). However, in particular cases,
such as a structure with a rapid roll-off of the measured frequency response functions, the
method might not obtain accurate results if used without frequency weightings.

3.2.2. PROBLEMS OF MINIMALITY FOR MIMO TESTS

The residue matrix of a single mode is a dyad (product of the modal observabilities cy
and controllabilities y'b ). Therefore the pole multiplicity in a model is equal to the rank of
the residue matrix. For MIMO tests, the models identified through the approach introduced
in section 3.2.1 are not minimal (in the sense that they use poles with multiplicities higher
than 1 even if the pole is isolated). Ways to enforce it minimality as a post-treatment of the
identified model will be detailed in this section.

Using the formal analytical description of the response in terms of complex modes
(detailed in section 2.1.2), the modal observability takes the form cy; (a column vector with
an element for each sensor) and the controllability takes the form y;'b (a row vector with an
element for each actuator). For example, the residue matrix of a single mode in a system
with 2 actuators and 3 sensors will have the form

R, R, aY;
R, =\Ry, Ry, |=| v, [w]b, wib,]. (3.20)
R;; R, C3VY;
Note that y; and l,t/jT use the same vector because structures are symmetric systems. In

the general case, these vectors would be the distinct right and left eigenvectors of the
system equations.
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The residue matrix R; in (3.20) is clearly of rank 1 since it is the product of a column
vector by a row vector (in mathematics, such a matrix is called a dyad). Furthermore, from
(3.20) it is clear that the contribution of a single complex mode is always a dyadic residue
matrix (unless the mode is uncontrollable or unobservable in which case the residue matrix
is equal to zero).

For truly multiple poles, the denominators (s—4;) of the modal contributions in the
spectral decomposition (3.5) are equal. The dyads associated with each pole can thus be
summed to form a single residue matrix

R, =cy, wb+cy, vy, b+... (3.21)

This residue matrix has the same rank as the modal multiplicity if:

- the residue matrices corresponding to the different modes sharing the same pole
location are not proportional to each other and

- the number of sensors and actuators is larger than the modal multiplicity (a residue
matrix has N, columns and Ny rows, so that its maximum rank is the minimum of
N, and Ng).

The results of identification algorithms give an estimate of the residue matrix R;.
However, many algorithms (including the one proposed here) do not constrain the rank of
the residue matrices, so that in MIMO problems the identified residue matrices are of rank
higher than 1. (Obviously, in SISO, MISO, or SIMO problems the residue matrix has one
dimension equal to 1 so that it is necessarily of rank 1).

As seen in (3.21), residue matrices of a rank higher than 1 correspond to the existence
of multiple modes having identical poles. To obtain minimal models (models which do
not use more modes than there actually exist) one must determine whether there are
effectively multiple modes and, if not, use dyadic residue matrices. The singular value
decomposition of the residue matrix gives a decomposition into dyads of decreasing
magnitude

R, =U,0,V[ +U,0,V; +... (3.22)

If a mode is not multiple, identification errors will often result in a full rank residue
matrix. However for small identification errors, the contribution of the true mode dyad
cy; wfb will be most important, and other terms will be small. By definition, the first dyad
of the singular value decomposition is such that the matrix norm of other dyads is minimal.
In the case of a single mode, the dyadic residue matrix

R =UoV/ (3.23)
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is a thus the best possible dyadic (therefore leading to a minimal model) estimate of the true
residue matrix cy/; wfb (where “best” means that the matrix norm of the residual Rj -R;,
which is given by the second singular value ©,, is minimal). The ratio of the first two
singular values 0,/0, is equal to the ratio matrix norms "R, - lel AIR,.", which gives a
measure of how close to a minimal MIMO model the initial estimate of the residue matrix
was (see the application to the IT in section 3.2.4).

True modal multiplicity is an extremely rare phenomenon, which happens for perfectly
symmetric or uncoupled structures, and even then the multiplicity is rarely larger than 2
(see Ref. [balS]). However, it was shown in Ref. [bal6], that for damping levels such that
the mode half-power bandwidths ({;w;) are significantly larger than the frequency
separation between two modes (w,-@,), it may not be possible to distinguish polcs that are
not truly multiple. Therefore, almost perfectly symmetric structures may have poles so
close to each other that the identification algorithm will not be able to distinguish them. In
such cases, as many dyads as the mcdal multiplicity should be kept (e.g. for a double mode
R, =U,0V] +U,0,V]).

In a well devised test, the modal subspace (see Ref. [bal6]) should span the spatial
input and output subspaces, so that all the singular values of the true residue matrix are
relatively large. Under this condition, usually achieved with a regular distribution of
actuators and sensors, the matrix norm of the residual f?l — R; (given by the first singular
value not kept in the minimal residue matrix .i?/., o, for a double mode) should be small
compared to the singular values kept in Rj. This condition can be used to determine the
effective modal multiplicity from experimental results, although a clear drop in the singular
values is needed for good confidence in the analysis.

Note that the results, applied here accurately on the residue matrix, can also be seen
using the singular value decomposition of the frequency response matrix (called the
Multivariate Complex Mode Indicator Function [wil2] in the structures community). Near
an isolated modal resonance, the frequency response functions are nearly proportional to
the residue matrix. The ratio of the singular values at the peak therefore corresponds to the
ratio of the singular values of the residue matrix, so the same conclusions as to the
multiplicity of the mode can be made. However, if several closely spaced modes contribute
to the peak, the test on frequency response function singular values may be misleading.

Theoretically, it is possible for a multiple pole to not correspond to multiple
modeshapes (non-diagonal Jordan form). The system equations of proportionally damped
systems can always be diagonalized (as the system matrices are symmetric and the mass
matrix is positive-definite) and there is no reason to think that the introduction of non-
proportional damping could lead to a non-diagonal Jordan form for the first order system
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equations. Rigid-body modes are the only exception (known to the author) where the
complex residue matrices introduced in the parametrizations (3-5)-(3.7) cannot be used.
And even in that case where the contributions of these modes take the form F/s?, the
present analysis can be applied on the real-valued F matrix rather than on the usual complex
residue matrix R; (assuming that the rigid-body motion can be accurately measured).

3.2.3. DETERMINATION OF SCALED COMPLEX MODAL OBSERVABILITY
AND CONTROLLABILITY MATRICES

To estimate normal modes and for other prediction purposes, it is necessary to
determine estimates of the modal controllability and observability scaled in a way that is
independent from a particular test, thus independently defining the influence of actuators
and sensors. These scaled quantities are obtained using the residues of collocated transfer
functions, as will be detailed in this section.

A useful property of dyads is that both the directions of input and output are known.
Thus, for a single mode j, the singular vectors U, and V,” (defined in the decomposition
(3.23) of the minimal residue matrix in the previous section) are respectively unscaled
estimates of the modal observability cy; and controllability l//fb (which respectively
characterize the way the complex mode y; is seen at the sensor and actuator locations).

The relative information for sensors or actuators (i.e. ¢,y;/c,; or yb,[yib,) is
invariant for any scaling and can thus be used directly, but one is interested in uniquely
defining the scaled complex mo-al observability cy; and controllability erb_ Since the
relative information is invariant, the problem is to find one scaled component of the
observability and controllability. The properly scaled components for other sensors or
actuators will then derived from the identified relative quantities (i.e. ¢,y,/c,y; or
yib/vib,).

For a collocated transfer function (i.e. such that c=b", for example: a transfer function
from force input to displacement at the same point and in the same direction) the modal
controllability and observability are by definition equal. Imposing c¢;y; = y;'b | at the
considered collocated location / defines a scaling coefficient for each mode j

@; = (kf)u =\UuoVy =cy; = yjb, (3.24)

leading to scaled estimates of the modal observabilities (cy/,.)l and controllabilities (y/ij)l
04

(CW’)’=%U’ and (wjb)l=v—lflv,f (3.25)
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An important fact introduced in section 2.1.2 was that the application of this scaling
condition is strictly equivalent to the analytical scaling condition (2.6) with u=I and,
ideally, is independent of which collocated transfer function is used for the scaling.

Many tests are done with more than one collocated transfer function. In such cases the
problem is over-constrained (since the scaling implied by different collocated transfer
functions may be inconsistent). A way to resolve the additional constraints must be found,
such as choosing a particular collocated transfer function to do the scaling, or using an
algorithm, yet to be defined, to find an averaged scaling compatible with all the collocation
constraints.

For multiple modes, modeshapes are not uniquely defined. The directions are now
subspace directions (U, and U, span the same subspace as cy; and cy/; ; for more details
see Ref. [bal6]). But, ¢ itside the fact that it is more difficult to compare muitidimensional
subspaces, results are the same as for the single mode case.

Finally, these results, developed for complex modes, can be easily extended to normal
modes if the normal mode residue matrix T; = c¢ I.¢I.Tb is identified. (For example, when
the structure is proportionally damped so that the parametrization (3.9) can be used
accurately for the identification).

3.2.4. RESULTS OF APPLICATION TO THE INTERFEROMETER TESTBED
MODAL TEST DATA

To demonstrate the efficiency of the methods proposed in this section, the results of the
modal test of the IT (see the testbed description in section 7.1) are used. All the theoretical
results of this work are implemented numerically in a Toolbox for Matlab [bal2], with
which the results presented here were obtained.

The first identification step is to determine a complex mode model. Considering the 20-
60 Hz range for the IT, initial estimated pole frequencies were determined by graphically
indicating the peaks of the measured frequency response functions, and assuming 1% pole
damping. The 28 measured frequency response functions were used to identify the
complex mode model corresponding to each of the 6 tested shaker locations (see the
description of the modal test in section 7.2). After some iterations, the results obtained
were extremely satisfactory, and showed that the algorithm is particularly well suited to
treat multiple measurements simultaneously.

Most of the frequency response functions are extremely well identified, so only
problems will be noted. Figure 3.3 shows an example of a bad fit (the worst fit of the 28
frequency response functions treated simultaneously for the shaker on leg I). The only
minor problem in this frequency response function is that the non-minimum phase zero at
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47 Hz is predicted to be too lightly damped and minimum-phase (when the true zero is
more damped and non-minimum phase). Note that at these frequencies the frequency
response function is 40 dB lower than the response peaks for the modes at 36 Hz, so in
terms of predictions this error is extremely small. Furthermore, if such errors had a
significant effect (e.g. for a particular closed loop system), one could easily modify the
zero location for this transfer function using the parametrization (3.2) with poles and zeros.

Transfer functipn 18

"80 T T T

Amplitude

-1 80 1 1 1 1 L 1 1 1
20 25 30 35 40 45 50 55 60 65
Frequency
500 . ' ' Trans'fer functipn 18 , ' '

Phase

_1500 1 1 ) 1 Il 1 1 1
20 25 30 35 40 45 50 55 60 65

Frequency

Figure 3.3: Bad fit of a frequency response function for the modal test of the IT. (---)
measurement, (—) fit (complex mode model, with symmetric pole
pattern, low and high frequency asymptotic correction terms)

Major difficulties in the 20-60 Hz frequency range, which could not be accurately
identified with traditional identification algorithms, but were correctly resolved using the
proposed method are:
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- the mode at 45 Hz, which is a mode mostly localized to leg IV (see Figure 7.3 for the
leg numbering scheme) and thus tends to have very low levels of response (as in the
frequency respons= function shown in Figure 3.3)

- the suspension modes at 45.1 Hz and 53 Hz (only appearing as small magnitude
excursions in Figure 3.3) which make the identification more difficult

- the two modes at 36.1 Hz (2.6 % damping) and 36.5 Hz (0.7 % damping), which are
very close and heavily coupled by non-proportional damping.

The motivation for the independent identification of each physical test (shaker location)
was that coupling with the shaker might modify the dynamics significantly. Table 3.2 gives
the averaged pole estimates for the six independent identifications and the corresponding
sample standard deviations on both frequencies and damping ratios (as percent deviations
of the nominal value). The small variations from test to test clearly indicate both that the test
was surprisingly well done and that the identification algorithm is very efficient.

Table 3.2: Mean pole locations and standard deviations for the 6 identified models (6
shaker locations).

Mean frequency Frequency standard | Mean damping ratio | Damping ratio std.
in Hz deviation in % of @ deviation in % of {
=% , —\2 7 — —\2
G=320  |o,=\3(0-8) | =4XL o, =+3(5-T)

24.816 0.05 0.0031 16.9
26.005 0.04 0.0054 6.5
28.199 0.06 0.0051 10.5
29.645 0.20 0.0113 7.4
34.331 0.15 0.0144 7.0
36.126 0.19 0.0281 11.6
36.490 0.07 0.0059 7.8
37.912 0.04 0.0089 5.8
44.187 0.08 0.0219 8.0
53.845 0.05 0.0064 5.0

The next step was to verify that the identified complex modes were consistent from test
to test, thus improving confidence in both the identification procedure and the quality of the
test that led to the identified data. For this, the collocated residues of each test were used to
scale the complex modal observabilities and controllabilities as shown in section 3.2.3. For
six different tests (shaker located on legs I to VI), the 28 terms of the identified scaled
observabilities of the 7th complex mode are shown in Figure 3.4. Clearly, for this mode,
the complete identification was very efficient since the variations from test to test of these
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complex modeshape estimates are small (the corresponding terms linked by dotted lines are
clustered).

For other modes, the agreement of one of the six models is sometimes less clear.
Howecver, it can be verified that the variations seen are mostly related to the scaling
condition. This points to the obvious fact that modeshape scaling is very sensitive to
identification errors on the collocated residues and to experimental errors linked to an
imperfect measurement of the force input and its collocated displacement (which lead to the
frequency response function estimate).
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Figure 3.4: Comparison of identified scaled complex modal observabilities cy; of the
7th mode for the six tests (dotted lines link corresponding estimates for the
different tests).

Since such inconsistencies between the results of different SIMO tests of the same
structure are very likely, multiple SIMO tests, like those done for the IT are very useful.
Multiple SIMO tests provide redundant information on the complex mode observabilities,
which can help to define a better overall model of the true system through the creation of a
MIMO model (using the approach described in section 3.2.2 for example).
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Such a determination, of a unique modal observability matrix from those identified in
the 6 different tests, was done for the IT. The ability to scale the results properly was
however lost as the modal test did not maintain a s=nsor at all six shaker locations for the
different tests (only the current shaker location was instrumented). Table 3.3 shows the
ratios to the first singular value for the MIMO interferometer testbed model (6 shakers, 27
sensors; the collocated accelerometer measurement is not included for the reason mentioned
above). Even if the agreements for the scaled residues are not all as good as those shown
for mode 7 in Figure 3.4, it clearly appears in this table that the identified complex modes
obtained for the different tests are fairly consistent. All the ratios 0,/0; are smaller than 0.1,
which means that the matrix norm of the difference between the minimal residue matrix R ’
(with only one modeshape) and the full residue matrix R, (with 6 modeshapes) is less than
a tenth of the matrix norm of R;. Furthermore, the other ratios of singular values (0;/0,,
etc.) do not diop very fast, as expected in a case where the modes are not multiple and the
errors have no physical meaning.

Table 3.3: Combination of the 6 SIMO identification tests. Mean pole locations and
ratios to the first singular value.

Mode frequency | Mode damping | 020} 030 040] 050} 060}
24.814 0.0027 0.0250 | 0.0139 | 0.0047 | 0.0032 | 0.0018
26.010 0.0051 0.0209 | 0.0120 | 0.0070 | 0.0045 | 0.0038
28.190 0.0055 0.0184 | 0.0074 | 0.0044 | 0.0041 0.0015
29.672 0.0123 0.0918 | 0.0414 | 0.0249 | 0.0113 | 0.0050
34.258 0.0152 0.0894 | 0.0247 | 0.0175 | 0.0079 | 0.0043
36.185 0.0312 0.0922 | 0.0470 | 0.0212 | 0.0156 | 0.0092
36.496 0.0062 0.0521 0.0175 | 0.0081 0.0045 | 0.0022
37.915 0.0095 0.0256 | 0.0136 | 0.0089 | 0.0066 | 0.0036
44,174 0.0240 0.0632 | 0.0262 | 0.0189 | 0.0100 | 0.0060

Finally, the only remaining problem with the IT test is to determine the origin of the
small inconsistencies seen between different tests. They could be linked to both system
variations during the experiments and identification errors for the different tests. A further
analysis will be made in section 3.4 to show that most of the discrepancies are probably of
experimental origin (as the shaker was moved from test to test, the coupling of the structure
with the shaker mass and stiffness introduced some variations of the system response
between the different tests, which probably account for most of the observed discrepancies
between different estimated modal observabilities).
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3.2.5. TRANSFORMATION TO THE REAL PARAMETER STATE-SPACE
FORM

For control design purposes on the tested system configuration, the complex mode
model is generally sufficient (there is no need to refer to the underlying second order
properties of the system as will be done in section 3.3). One is however interested in a
parametrization with real parameters which will be detailed here.

As shown in section 3.2.2, the residue matrix can be decomposed into a dyad formed
of a column vector (cwj)’ (the modal observability), and a row vector (wfb)l (the modal
controllability). From these two matrices can be derived the B and C matrices of a real
parameter state-space description of the system with a bloc diagonal A matrix

(2] za] )k
=l cl]

where £2is the diagonal matrix with the pole magnitudes (not the imaginary parts) and -ZQ
is the diagonal matrix with the real parts of the poles.

To obtain a general expression of the matrices B,, B,, C;, and C,, let us consider the
transfer function linked to a single pole. The system matrix linked to this pole is

o ! 3.27
e _qu] (3.27)

whose left and right eigenvectors (not scaled) associated with the eigenvalue

~{w+iw1-{* = A are respectively

[-2 1] and [/,IL] (3.28)

(3.26)

with the norm
— 1 _
[—/1 1][ /1] =A-1 =2iwI- L. (3.29)

From these vectors one can easily prove that the complex dyadic residue matrix
= CWLY; b (see section 3.2.2) associated with the single mode system

__[ 2][w Hz{w]—l[i'] (3.30)

verifies the following matrix equation
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(A -7) cy,w[b=(C,+AC,)(-1B, +B,). (3.31)

Clearly, this equation does not uniquely define C,, C,, B,, and B,. Without any other
constraint (such as the collocation constraint introduced in section 3.2.3), one can only say
that for an arbitrary constant a the solution verifies

acy; =(C, +1C,)

a—l(l —_ 2__) W‘Tb = (_IB’ + Bz) (332)

A sensible, but arbitrary choice is to use a=1, which leads to the following
transformation between the modal observabilities and controllabilities, and the real valued
matrices C,, C,, B;, and B,

[c,]___[z ~{w “l[Re(cw‘.)}_ 1 [m\/T_? ;w][ae(cw,,)}

Cz 0w I—Ci’_ Im(CW‘.) - ) I_Cz 0 ] Im(Cl[/‘.)
B1_,l 1 0 Tre(wB)

From this transformation, it clearly appears that in a MIMO case both a B, and a C,

term exist (unless a particular cheice of a allows making one of them zero, an option which

always exists for SIMO problems using a= (l -1 ) v'b for example). In the modal

s

contribution, the terms are thus mixed as follows

y__ Cs+C,  (CB,+C,B,))s+(2(wC,B, ~ 0’C,B, +C,B,)
u

= = 3.34
s?+2lws + * s + 2L ws + @’ (5-39)

The matrices C, and C, (used in different Refs. [kall, gill, spal]) describe the
combined effects of the complex-conjugate pair of modes. The relation between the rank of
these two matrices and the modal multiplicity is unclear, and should be investigated for a
proper use of such a parametrization. (The parametrization proposed in this chapter
describes each mode separately, so that the mode multiplicity can be deduced from the
dyadic decomposition of the residue matrix as described in section 3.2.2).

3.3. IDENTIFICATION OF NORMAL MODES FROM COMPLEX MODES

Because most finite element models are nndamped, comparisons between the finite
element predictions and experimental modes can only be done using “experimental” normal
modes. Since norrr 1l modes are the modes of the ideal undamped system which cannot be
tested, true modes are always complex and normal modes are idealizations whose
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determination involves more assumptions on the system response. However, since this
parametrization is essential for the use of undamped structural models, numerous methods
have been created to estimate normal modes from identified complex modes, using different
assumptions that have proven to be too constraining for many real structures (see the
review in Ref. [sesl]).

After a review of existing results in section 3.3.1, a new approach will be detailed. The
weak assumption is made that the non-proportional damping only couples the identified
modes (as first done in section 2.2.1) or, in other words, that the dissipation of the low
frequency normal modes depends on the states of other low frequency normal modes, but
not on the states of higher frequency modes. In section 3.3.2, it is shown that the
verification of a properness condition by the complex modes is sufficient for the existence
of an exact transformation (detailed in the section) between the complex and normal mode
parametrizations. Recognizing that identified poles are generally much more accurate than
identified modeshapes, a new algorithm is derived in section 3.3.2 to determine, in both
cases with as many and more sensors than modes, the set of proper complex modes closest
to the measured modes. From these proper modes, the truncated normal mode model can
then be determined with no further approximation. Finally in section 3.3.4, results from the
IT modal test are analyzed, showing the method to be very accurate and marking the first
successful experimental characterization of non-proportional damping (previous results
only considered simple two-mode systems).

3.3.1. REVIEW OF EXISTING WORK

For the estimation of normal modes from identified complex modes, early approaches
considered the norm of the complex modal observability, and adjusted its sign to optimize
the resulting modeshape

cp; =y, (3.35)

As seen in section 2.1.2, this approach is exact for a proportionally damped system,
but it gives poor results for systems with even relatively small effects of non-proportional
damping (see Ref. [ibr1] for example). An extension of this approach uses a projection of
the identified complex modes into a subspace of real modes

cy=(co),T (3.36)

where (c¢j)m is the matrix of identified normal modes, and T is a complex valued
transformation matrix. References [sesl, zhal, imr1] detail different ways of determining
the transformation matrix T, but none of the methods have been sufficiently accurate for



systems with even low effects of non-proportional damping (when the phase dispersion
(“complexity”) of the identified modeshapes is non-negligible). The new approach
presented here gives a particular transformation T and estimated normal mode observability
(cd) f)m’ which is shown to be exact because proper complex modes are used (see section
3.3.2).

Several Direct System Parameter Identification (DSPI) techniques have used a reduced
second order system parametrization [M 'c MK ] (which can be transformed to the
normal mode form) and data obtained, experimentally [leul, cral] or analytically with the
experimental complex mode model [wei2] (sometimes augmented with high frequency
analytical modcs [ibrl, ibr2]). Although such approaches are tempting, successful
identifications of non-proportional damping have only been reported for extremely simple
structures. The identified pole locations are often inaccurate (e.g. unstable poles at inexact
frequencies). Furthermore, it is difficult to enforce the identification of mostly local modes
and to remove computational poles from the estimation process. Also, the contributions of
modes outside the bandwidth are not accounted for.

Finally, the work of Natke [natl] is often mentioned (although not as being more
efficient than other traditional methods) and the ongoing work by Alvin and Park [alvl,
alv2, parl] seems to contain the elements for an efficient solution. However, the
identification results used by these authors do not have the accuracy obtained with the
method proposed in section 3.2, so the validity of their method could not be demonstrated
for experimental results.

3.3.2. THE PROPERNESS CONDITION AND THE EXACT
TRANSFORMATION BETWEEN COMPLEX AND NORMAL MODES

As normal modes are idealizations, their determination is necessarily linked to
assumptions. Here it will be assumed that non-proportional damping does not couple low
and high frequency normal modes. As seen in section 2.2.1, the response of the system
can thus be accurately described by a truncated normal mode model of the form

(s°1 + 5Ty + Qpy)py = $7bu
y=c¢rpr +E

(3.37)

To this model are associated complex modes y;; which are uncoupled from the effects
of out-off band modes (whose effects are approximated by the E term; see section 2.2.2 for
more details) and which can be used to describe, as in section 2.1.2, the transfer function
from a force input u to a velocity measurement y,;
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2Ny

Y= 3 s ¥, ""’"’T’ +E . (3.38)
j=1

It is well known that for a structural system, force commands acceleration and not
velocity. The velocity roll-off at high frequencies is thus a properness condition that is
clearly verified by the normal mode states p; in (3.37) and must thus also be verified by the
transfer function using the complex mode description in (3.38), which implies that

1 2Ny
limy ——7-7 7 slevnVih) ""’"’” ) Z(CWT,W;,b)=0. (3.39)
.t—»-»l ! =1
Note that the E term is omitted in (3.39). This is where the assumption of uncoupling

with higher frequency normal modes appears.
Equation (3.39) must be verified for all b and c, so that

2N,

21 Vi '/’:2' = WTW; =0. (3.40)
i=
As seen in section 2.1.2, y has dimensions N by 2N, so that the matrix equation (3.40)
has many other solutions than the trivial y = 0. The matrix equation (3.40) is a set of
constraints on all the complex modes of the truncated model (the index j is summed over all
these modes) applicable independently at any degree of freedom (in (3.39) the matrices b
and c are arbitrary).

The novelty of the proposed approach is to recognize that the properness condition
(3.40) is sufficient for the existence of an exact transformation, between complex and
normal modes, which will be detailed now.

In a non-modal coordinate system, the second order dynamics of the truncated modal
model (3.37) are described by “truncated” mass M,, damping C,, and damping K,
matrices. It was seen in section 2.1.2, that the corresponding complex modeshapes y/,, if
scaled using collocation constraints (see section 3.2.3), verified two orthogonality

conditions
G M K, 0 v
T T - T — T
6 [ 0 ]OT—-I and 9,[ 0 - ]9 —-A; where [6;]= [WTAT]. (3.41)

Simple algebraic manipulations of the two orthogonality conditions in (3.41) lead to
two inverse orthogonality conditions

G M T [0 M N_o o [ va¥T Ay (3.42)
M, 0| " |M-MIcM?| T v A wT w ARy '
T T r Gy YeAeWy YeAr Yy
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K 0 ~1 -1 -1, T T
[ oT M ] =[Kg _;_I}=—61A;'0$ =-["’TAT 'f’ . "'/T‘"/T ,,] (3.43)
T T Ve¥r YrAr Yy

where it can be easily verified that the properness condition (3.40) is indeed a necessary
and sufficient condition for the system to be second order (the sub-blocs, that are zero in
the two algebraic left hand expressions of (3.42)-(3.43), are effectively equal zero in the
two experimental right hand expressions if and only if y,y; =0).

From equations (3.42) and (3.43), one obtains the following simple expressions for

Mq, Cr, and Ky

M; = (WTAT V’;)—l’ Cr =—Mpy ALy M;, and K; = —( WTA;’V’;)_I (3.44)
which can be easily transformed to the normal mode coordinates p, of (3.37), by solving
the undamped reduced eigenvalue problem —M, 9,2, + K¢, =0 as was done for the full
system considered in section 2.1.3.

This last transformation may however lead to some problems if the identified matrices
do not verify the expected conditions of positive definiteness. It is known from physical
principles that the mass, damping and stiffness matrices of structural systems are positive
definite (see section 2.1.1). Therefore, the truncated matrices as well as their inverses
should be positive definite. Based on the inverse orthogonality conditions (3.42)-(3.43),
the positive definiteness of the truncated system matrices is clearly equivalent to the three
conditions

WrAr s >0, WALyl <0, and y, A7yl <0 (3.45)

corresponding respectively to the positive definiteness of the identified mass, damping, and
stiffness matrices (the stiffness and damping matrices can only be semi-definite for systems
with rigid body modes, to which this transformation does not apply).

If the identified mass and stiffness are positive definite, normal modes can be
determined with, in general, a good accuracy. If not, any of several problems may have
occurred: the complex modes may not have been well identified, they may have been
improperly scaled, the complex modes used may not be proper (see section 3.3.3) or, even
though it was never found to be the case, the assumption of normal mode decoupling from
higher frequency modes may not be good enough (so that the proper complex modes
determined by the method proposed in section 3.3.3 are not good approximations of the
identified complex modes).

The positive definiteness of the damping matrix is less of a problem, since for the
lightly damped structures considered here, extremely small errors may make the damping
matrix non-positive-definite and yet result only in minor differences in the predicted
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response. For the case of the IT, this can be seen as the fact that the identified damping
matrices for the 6 different tests lead to damping matrices which are in good agreement for
the important terms (diagonal and significant non-proportional damping coupling terms) but
have larger differences for other small off-diagonal terms (see section 5.2.3).

Finally, an important property that must be verified is the invariance of the
transformation through a change of coordinates. For a new set of eigenvectors y =Ty, it
is easy to verify that all the system matrices are multiplied on the left by T "and on the right
by T "/ 50 that the overall input-output properties are unchanged. In practice however, the
properness condition must be enforced as will be shown in section 3.3.3, so that a
coordinate transformation T may influence different transfer functions in a selective way.

3.3.3. OPTIMAL APPROXIMATION OF THE IDENTIFIED COMPLEX MODES
BY PROPER COMPLEX MODES.

The scaled estimates of the modal observabilities (cwj)l and controllabilities (V’,‘Tb),
allow the definition of a complex mode at the degrees of freedom of the chosen sensors and
actuators. If the degrees of freedom measured by the sensors ¢, to c,, are arbitrarily chosen
to be the model “physical degrees of freedom” q,, one thus has a scaled estimate of the
complex modeshape y, = (Cl//j)l (note that the finite element degrees of freedom are
usually not such that this is true, which initially motivated the introduction of the input
shape matrix ¢ in section 2.1.1).

As a first step, it will be assumed that there are as many sensors as modes (so that
Yp = (cl;/) , 1 a Ny by 2N matrix). The transformation (3.44) between complex and
normal modes is only exact if the properness condition (3.40) is verified. Since such is
usually not the case, an algorithm will be derived to determine a good but proper
approximation of the identified modes .

The objective of this algorithm is to find the smallest correction Ay to the measured
eigenvector ., that will lead to a set of proper modes verifying (3.40). For this,
ZAW;.A ¥,;» which is a quadratic norm of Ay, will be minimized under the constraint that
hy
¥r = W, + Ay must meet the properness condition W, /f =0.
This constrained minimization problem can be solved using a matrix of complex
Lagrange multipliers § = 8% +i6’. Following the standard mathematical procedure, the

Lagrangian cost function H is derived

H= {Z Ay Aw+ 3 81 (wiwh - viwi)+ Y. 8 (vi v + viv )} (3.48)
L)
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and one seeks Ay =argmin(H). At the minimum, the derivatives of H with respect to the
components of Ay must be zero

H
_""ajw“ = Ayl + 3(85+ 1)+ (51 + 8w =
(3.49)
JH
a7 =44 S0+ 80)vi + 361+ 81)v] =
!

This necessary condition of optimum with respect to Ay can be rewritten in a more
compact matrix form as

Ay +6(¥, + Ay, )=0, (3.50)
where & = 8% +i6’. Combining (3.50) with its complex-conjugate one obtains
Ay=(1-68) (65y,~6W;) or Wr=y,+Ay=(1-85) (y;~6%) (3.51)
Using the expression of ¥, in (3.51) to rewrite the properness condition leads to
Vs = (I 56) (WT—W)(!/I.,—W)T(1~5—5-)—T =0. (3.51a)

Multiplying equation (3.51) by (l - 86 )on the left and its transpose on the right leads
to the following algebraic Riccati equation

Vg - W yr — W W 6+ 8V, W6 =0 (3.52)

Riccati equations have multiple solutions, so it is difficult to ascertain that a particular
choice is the best “global” minimum. Here it will be shown that the real-valued positive-
definite solution &, chosen in control theory as the steady-state solution of an optimal
regulation problem for a linear time-invariant system (see Ref. [macl]), is appropriate.

A necessary and sufficient condition for the solution to be a minimum is that the matrix
of second order derivatives of H be positive definite. The second order derivatives of H
(Hessian) are the following

o’H

—_— *H O*H
BAV[‘I‘:&AWS :eyl(e,,& +5,i), —_—— =, ( 6R) _____=ev‘(6:k) (353)

2Ay! dAw,, oAy? oAy,

where e, is the delta operator (equal to 1 if v=/ and equal to 0 otherwise). Thus, in matrix
form, the condition of positive definiteness of the second order derivatives is

1+8% &
[6, 1_5R]>o (3.54)
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If the optimal control solution for & (the real-valued positive-definite solution) is used
when solving the Riccati equation (3.52), 9§ is real, so that the condition (3.54) is the
equivalent to /+ 6 >0 and /-6 > 0. The first condition is clearly verified for a positive
definite 8. The second implies that eigenvalues of 8 must be of norm less than 1. No proof
that this is necessarily true was found, but all the cases treated verified this condition.

A good but proper approximation of the identified complex modes y is thus defined by
(3.51), where 4 is taken to be the real-valued positive-definite solution of the Riccati
equation (3.52). This solution has proven to be efficient in all the cases treated, but it might
still be interesting to study

- the effect of coordinate system choice in cases with both as many sensors as modes

and more sensors than modes: the properness could be enforced on ;. such that
(cw), = ¢;y; for any possible coordinate transformation matrix c;. Different choices
for ¢, might lead to somewhat different results.

- the interest of other (non-positive-definite and/or non-real) solutions of the Riccati

equation.

- cases with less sensors than modes (see the work of Alvin and Park on this subject

[alvl]).

In many practical applications, the number N, of identified modes is often smaller than
the number N of sensors (in the normal mode form (3.37), the size of u the input or y the
output vectors are not. limited). In such cases, the sensor/actuator degree of freedom
coordinate system ¢, has more degrees of freedom than modes in the system to be
identified, which implies that these degrees of freedom are not independent. (Using the
compariscn to a finite element model with N DOFs, it is possible to define any number of
sensors (N, can be larger than N) defined as constant linear combinations of the FE DOFs
(0r=cq)).

For the identification problem in cases where there are more sensors than modes, one
must thus define a reduced set of N, generalized “physical” coordinates g, with known
input and output shape matrices (¢, and b;) to pass from the measurement coordinates to
the generalized coordinates q,. These generalized coordinates should be such that the
product of the input shape matrix ¢, and complex modeshape matrix y; is a good
approximation (retaining most of both the magnitude and phase information) of the
identified complex mode observability matrix

cr¥r =(cy), (3.46)
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A method, found to be efficient for all the cases treated in this research, is to choose ¢;
so as to obtain the best possible approximation of M-!. For this, the expression of the
reduced mass (3.44) is used as follows

(cw), Alew); = cryrAplct =, Mc] (3.47)

In (3.47), M-! is of rank N7. Using for ¢y the first Ny eigenvectors of the eigenvalue
decomposition of (cy), A(cy); thus results in a good approximation of M-!. It is useful
to note that since the matrix (cy), A{c y/)f is symmetric, the singular values of this matrix
are the absolute values of the eigenvalues. Using the eigenvalues rather than the singular
values allows one to verify that the main contribution (the terms that are kept) are indeed
positive definite, and such that a positive definite mass matrix will be obtained in the
transformation (3.44).

Having determined cr, the best set of Ny complex eigenvectors y,.can be found by a
least-squares fit derived from (3.46). Finally, using a proper approximation of y/, the
transformation can be done as for the case with N, = N,. For all the cases considered on
the IT, these choices for ¢; and y, were appropriate since they led to normal mode models
that accurately matched the measured frequency response functions.

One might be tempted to use the approximation of M-/ in (3.47) and similar
expressions for K-/ and C rather than fiud a proper approximation of the complex modes
first, this is however usually gives poor results, since such approximations do not conserve
poles which are very well known and should thus not be modified. In fact, the principal
advantage of the proposed method may be that it does not modify the location of the

identified poles.
3.3.4. AFPLICATIONS TO THE INTERFEROMETER TESTBED MODAL TEST

The first 9 modes of the IT are relatively well separated from higher frequencies (mode
9 is at 44.2 Hz and mode 10 at 53.8 Hz). Furthermore, these modes are well correlated
with the finite element results so that comparisong can be easily made. It was therefore
decided, for the examples of this section, to identify the normal modes corresponding to the
first 9 flexible modes of the IT.

A first problem is to evaluate the differences between the identified complex modes and
their proper approximations introduced in section 3.3.3. Using the modal test of leg V with
28 sensors, proper complex modeshapes ¥, were computed, and Figure 3.5 compares the
identified complex modal observabilities ¢y, for mode 6, the proper complex modal
observabilities ¢y, and for reference the complex modal observabilities ¢y, that would
exist for a proportionally damped structure.
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Clearly, the proper approximation of the complex mode maintains the strong phase
information present in the modal observabilities (the phase dispersion is higher than 30° for
mode 6). In comparison, the complex mode of the proportionally damped model is a bad
approximation, because all its observabilities are forced to be either in-phase or out-of-
phase (on the -45° line here, because of the scaling condition used).
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Figure 3.5: Comparison of comglcx residues ¢y for the 6th mode: (+) non-proper
complex mode, (0) non-proportionally damped normal mode model, (x)
normal mode model constrained to be proportionally damped. Dotted lines
link corresponding proper and non-proper complex residues.

The influence of proportional damping is particularly important for mode 6 because it is
strongly coupled with mode 7, which is very close in frequency (see more details in section
5.2.3). For other modes, which are less coupled by damping, the residues tend to be much
closer to the line of the proportionally damped model (phase dispersion between 4° for
mode 2 and 25° for mode 9, versus 33° for mode 6) so that the error linked to the use of a
proportional damping assumption is smaller.

Frequency response functions provide another usual way to visualize the model
accuracy. Figure 5.6 compares in a small frequency range the measured frequency
response function (leg IV, sensor 1) with the predictions of three different models.
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The non-proportionally damped normal mode model identified using the new methods
introduced in sections 3.2 and 3.3 matches the measurement both in phase and magnitude.

The Direct Sysiem Parameter Identification model (method proposed by Craig [cral]) is
clearly not accurate, even though a significant effort was made to find the frequency
weighting giving the best results. As shown in the frequency response function, this model
does not properly capture the two modes at 36.1 Hz and 36.5 Hz and, in the parametric
model, it has a clearly inexact representation of damping (some poles of the DSPI model
are unstable).

Finally, the proportionally damped model obtained by setting to zero the off-diagonal
terms of the identified I" makes significant errors both in magnitude (close to 10 dB) and
phase (close to 30°).
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Figure 3.6: Frequency response function predictions: (—) measurement, (---) normal
mode model, (-—-) direct system parameter identification (best estimate
found), () normal mode model constrained to be proportionally
damped.

The frequency band shown, with the very close and coupled modes 6 and 7, is
particularly difficult to identify, and only the new normal mode identification method gave
appropriate results. In many other cases, traditional approaches are efficient, but their

69



results can generally be improved by using an optimization similar to that considered in

section 3.2.
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Figure 3.7: Comparison of the 27 scaled normal mode observabilities c¢; of modes 6
through 9 as identified from the 6 different tests.

Another useful evaluation of the identification accuracy is to compare normal
modeshapes. The scaled normal mode modal observabilities c¢; at the 27 non-collacated
sensors (for the 6 tests) are compared in Figure 3.7 for modes 6 through 9. The overall
agreement between the different tests is clear, but some difficulties are worth mentioning.
The estimated modeshapes of modes 6 and 9 for leg I (solid lines in the figure) depart
significantly from the other estimates. This can be related to the fact that the test on leg I
does not excite these two modes very well, so their identification can be expected to be less
accurate, particularly for the scaling (the collocated residues for these two modes are very
small, so errors that would otherwise be insignificant can have a large impact). Note also
that many of the residues of mode 9 are small which can be seen as due to the fact that this
mode is mostly localized to leg IV.
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Finally, the parametrization (3.9) allowing the direct identification of real modes was
introduced in section 3.1. The identification algorithm derived from 'his parametrization
implicitly assumes proportional damping, but has the advantage, over the approach
introduced in section 3.3, of being a direct normal mode identification method. In Figure
3.8, the normal mode residues c¢j¢ij obtained for leg II through this identification
method are compared with those obtained through the non-proportionally damped
identification method. Clearly, except for mode 9, the agreement is relatively good (even
though not as good as the consistency of the non-proportionally damped models obtained
using the 6 tests). This was expected since the proportional damping assumption is, in
most cases, a good assumption.
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Figure 3.8: Comparison of normal modes residues c¢j¢fb for the identified non-

proportionally damped normal mode model, and for the “real” mode
identified model.

This model is, however, not accurate enough to define scaled estimates of the normal
modeshapes. The parametrization (3.9) does not guarantee and does not always yield
positive collocated normal mode residues (since for a collocated transfer function ¢,¢; and
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¢fb, are equal, the residue c,¢j¢jrb, should be positive). When a collocated residue is
negative, the corresponding mode cannot be scaled so that another test is necessary. This
hard limitation on the use of the real mode parametrization probably comes from the
constraints implied by the use of a proportionally damped model, but might also indicate
that the transfer function thought to be collocated is actually not exactly collocated.

3.4. EVALUATION OF THE IDENTIFICATION ERROR

A last point of interest for the validation of the proposed identification method is an
evaluation of how much error in the estimated parameters can result from the identification
process. Under the assumption that the structure is linear and that there exists an accurate
truncated linear model of one of the parametric forms detailed in this chapter for the
considered frequency range, which ensures the validity of the identification approach, this
section evaluates the sensitivity of identified parameters to errors in the measured frequency
response functions.

A partial review of existing work on this subject is done in section 3.4.1. Since the
proposed complex mode identification algorithm gives optimal results, a sensitivity of the
identified results with respect to error in the measured frequency response functions can be
obtained as detailed in section 3.4.2. However, the practical evaluation of the sensitivities
is quite complicated, so that, in practice, only partial information is available. An example
drawn from the IT case is detailed in section 3.4.3, allowing some conclusions on the IT
models and the applicability of sensitivity approaches.

3.4.1. PARTIAL ASSESSMENT OF EXISTING WORK

In references [jua2, lonl], Juang gives a good analysis of the limitations of the ERA
algorithm, which could be generalized to other “black-box” identification algorithms.

These algorithms identify major dynamic contributions in the measured input/output
response. If, as done in Ref. [jua2], a measure can be obtained for the identification
criterion of the level of centribution linked to noise in the measured response (after non-
parametric ideutification in general), one can expect that all identified dynamics with a
smaller impact on the response will be excessively dependent on the measurement error.
This argument may, however, be invalid if the measurement error and the identified
quantity centribute to the system response in very distinct ways. For example, the response
of a local mode may be small, but, if the mode resonatice is in a frequency region with low

noise levels, it can be accurately estimated. This argument gives another reason to prefer,
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as proposed in this chapter, an identification through a directed optimization, which allows
use of this type of physical knowledge that is availab!e for lightly damped structures.

A second argument, developed in Ref. [jua2] and used in industrial applications [Ims1],
is linked to the fact that many algorithms use “computational” modes that do not represent
physical properties of the true system but help creating a model. The properties of the true
modes (which do represent the physical system characteristics) should clearly be
independent from the number of computational modes. The consistency of the estimated
properties for different numbers of computational modes can thus be used as a good
indication of their accuracy. The present work applies to the large class of structures, such
as the IT, for which a model of the same rank as the underlying physical system can be
determined (which thus has no computational modes). It was shown that efficient model
identification is possible under these conditions.

A third argument developed in Ref. [lon1] uses the direct mathematical expression of
the ERA identified model as a function of the measured data. Assuming that this expression
is differentiable and can thus be linearized around the nomiral solution, statistics on the
measurement data can be related to statistics on the predicted parameters using Bayes
theorem. The linearization corresponds to the traditional engineering method of sensitivity
analysis and the estimated statistical properties of the measured data define a characteristic
perturbation, which will allow the determination of a characteristic error.

This type of approach can be applied to most identification methods and will be
developed for the complex mode identification algorithm in the next section. It should be
noted, however, that such analyses only give a measure of the error within the
identification procedure, and not of the actual prediction error for the true physical
parameters.

3.4.2. VARIANCE OF THE ESTIMATED PARAMETERS IN THE COMPLEX
MODE IDENTIFICATION METHOD.

The exact dependence of identified parameters with respect to the data is obviously
extremely non-linear, so statistics on the measurements cannot be exactly translated into
statistics on the identified parameters. However, an approximation can be made using a
linearization of the relation (measurement data)e<>(identified parameters). Assuming that the
linearization is valid, estimated bias and variance of the measurement points can then be
propagated into bias and variance estimates for the identified parameters.

In the case of the method proposed in section 3.2, the identified parameters are the
solution of an unconstrained minimization problem (the user-given constraints on the pole
structure force convergence to an appropriate local minimum, but are never met at the
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chosen local minimum). For parameters solution of a minimization problem, the
linearization of the relation (measurement data)<>(identified parameters) can be done as
follows. For a cost function J, parameters p and a data vector x, the parameters locally
minimize the cost function, so that

dJ(p(x),x) _
-—-———ap 0.

Furthermore, the parameters depend on the data vector x in such way that (3.55)
remains true for any variation of x. Therefore, the derivative of (3.55) with respect to x is
also equal to 0

d al(p(x),x) _ PJ(p(x)x) M (p(x)x)p _ ,
dc  p dxdp op* o«

This relation provides the expected local linear relationship between p and x in the
general case of identified parameters solution of an unconstrained minimization. For each
specific identification algorithm, the problem is now to find a practical algorithm to
determine (3.56).

Using the complex mode identification algorithm proposed here, the relationship for the
residues is easily obtained. Consideriag a SISO case (clearly MIMO cases are for this
problem independent SISO problemns), one has from (3.15)-(3.17):

(3 );xjé dx{th(—HM+d>R }=

{¢,¢3R ot Hu , o7 9P oD”

(3.55)

=0. (3.56)

2R
o EW o

(<1>R-H,,,)} =0 (3.57)

which leads to
JoR oH,, oD obT
D T M T —R+ dR-H ) )
" >{( (o S '-f))} 659

where two parts can be distinguished. As expected (since R is the solution of a quadratic
minimization problem), the first part is a direct dependence on the error in the measured
data (JH,,/dx) which takes the same form as the dependence (3.17) of the estimated
residues on the data H,,. However, the second part appears because the error made on the
estimated poles introduce variations in @ (shown here as d®/dx) which indirectly
introduce errors in the estimated residues.
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If an unbiased frequency response function estimator is used, the variance of the
measured frequency response function points is usually estimated in the form of a
coherence spectrum k{¢,) (defined in Ref. [ljul] Chapter 6 for example), which is used to
define an approximate diagonal covariance matrix Xy for the elements of H,,. For each
measured frequency point, the corresponding diagonal element of 2, is given by

Oy = H(@) (1= (@) (3.59)

Using the frequency response covariance matrix 2, the variance of the residues R
linked to the direct dependence on the measured frequency response function H,, is simply

I, =(070) o7z, 0(07) . (3.60)

However, the overall estimation error also depends on the second part of (3.58). This
indirect dependence is linked to the fact that errors in H,, induce errors in the pole
estimation, so the computed base responses @ used to solve the linear least-squares
problem are inaccurate, which in turn leads to indirect errors on the residues.

Using (3.56) to determine the exact dependence of the pole estimates on errors in H,,
does not seem feasible for non-trivially simple problems. One must thus somewhat
arbitrarily decide what realistic bounds on these errors are. With such estimates, the
accuracy evaluation can be completed by estimating the effect of pole location error on the
identified residues. Since this last step can only be done on a case by case basis, such an
analysis will be done for the IT case in the next section.

3.4.3. APPLICATION TO THE INTERFEROMETER TESTBED CASE.

The first difficulty is determining a bound on the pole variations that might be linked to
noise in the measured data. Using the proposed identification method, iterations on the pole
frequencies are never stopped before the relative step sizes are below 0.005 %, and
iterations on damping ratios for relative step sizes are below 1%. In the case of the IT,
where the measured data has very little noise, these numbers are probably good bounds for
the actual error made on the estimated poles.

On the other hand, the results of different tests of the structure led to sample standard
deviations as large as 0.2 % for the frequencies and 10 % (of the nominal value) for the
damping ratios (see Table 3.2). With the accuracy achieved in the identification, there are
good reasons to think that these variations are not linked to identification error but to small
changes in the system (coupling with the shaker which was located in a different position
for each test might easily explain variations of that order, particularly for the frequencies).
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However, to be more conservative in the evaluation of the uncertainty on residues, these
unrealistically large values will be used initially.
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Figure 3.9: Estimated residues and corresponding uncertainty bound for
a) an uncertainty of 0.2% in the estimated frequencies
b) an uncertainty of 10% in the estimated damping ratios
c) the estimated variance of the measured frequency response function

Allowing variations of 0.2% and 10% on the pole frequency and damping ratios, the
possible variations on the residues were computed using (3.58) (the validity of (3.58) was
also verified for a few cases). In these results, an error on all the residues is linked to each
of the pole variations, which rapidly leads to an untractable number of uncertainties. As a
practical solution for this difficulty, a quadratic norm of the different contributions was
used to determine a conservative over-bound of the error.
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Figure 3.9 shows the application of this procedure on the estimated residues of the
transfer function from shaker I to sensor 1. Both the contributions linked to noise in the
frequency response function and uncertainty in the estimated pole damping ratio are clearly
negligible. Even for ten times higher levels of noise, the direct error on the measured
parameters would be small compared to the indirect contribution linked to pole estimation
error. The facts that the contributions linked to the damping estimation errors are small and
that damping is difficult to measure are strongly related. Errors in measured damping that
may seem significant in terms of parameters, do not imply large variations in the prediction
(much smaller than those linked to mass and stiffness contributions), and thus do not
induce large indirect errors on the residues.

In Figure 3.9, the contributions of errors in the estimated pole frequencies is quite
large. However, the levels of uncertainty assurned (0.2 % from best estimated frequency)
are based on the variations of these frequencies between different tests, and are quite
unrealistic bounds for the actual error made for any given test (0.01 % would be more
appropriate). For any given test, the uncertainty ranges on the residues should thus be
about ten times smaller than shown in Figure 3.9, which would then be negligible (except
for modes 6 and 9). It was seen in Figure 3.7 that, for the test on leg 1 considered here, the
modes 6 and 9 are not well identified. The present sensitivity analysis thus confirms the
conclusion made previously, that the test with the shaker on leg I does not allow a very
accurate identification of these two modes.

The analysis of the five other tests leads to the conclusion that the identification error
for the complex residues is very small for a case such as the IT, where the noise levels are
very small. This however only means that the complex residue identification algorithm is
insensitive to the considered noise levels.

At seen in previous sections, the results show larger variations from test to test,
indicating that the system invariance should be questioned. Furthermore, several non-
optimal steps lead to the final MIMO normal mode model. For each SIMO test, the
estimation of scaled complex modal observabilities cy; is very sensitive to even small
errors on the residues of the collocated transfer function. The transformation to the normal
mode model relies on the enforcement of the properness condition which introduces some
errors. Therefore, although the complex residues are extremely well identified, the MIMO
normal mode model may not be as accurate. (A further discussion of this point is made in
Chapter V, where hybrid analytical/experimental models are introduced).
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3.5. CONCLUSIONS

A classification of identification methods has been proposed and the existing
approaches relative to the categories of this classification have been reviewed. The use of
bandlimited frequency domain data was motivated for the identification of structural
dynamic models. Different forms of the truncated normal mode model parametrization have
been discussed and were used. The properties of the quadratic and log-least-squares cost
functions have been discussed and led to the conclusion that the quadratic cost was
appropriate for identification and the log-least-squares cost for FE model updates.

New solutions were proposed to obtain accurate scaled estimates of complex mode
modal observabilities and controllabilities. A new algorithm for the identification of poles
and complex mode residues was introduced. This algorithm identifies the residues while
iteratively updating an estimate of the pole structure, which allows using and generally
improving significantly the results of other algorithms. A procedure to determine minimal
models from full-rank non-minimal residue matrices was discussed. Finally, using the
minimal model description, the scaling of the modal observabilities and controllabilities
based on collocation constraints was discussed. The accuracy of the proposed approach
was demonstrated for the interferometer testbed.

It was shown that the complex modes of truncated normal mode models are proper, and
that this property is sufficient for the existence of an exact transformation between complex
and normal modes (which was detailed). A new algorithm was proposed to find proper
approximations of identified complex modes, thus allowing an accurate identification of the
normal modes and of the non-proportional modal damping matrix. The application of this
new methodology to the case of the interferometer testbed, led to the first experimental
characterization of non-proportional damping, thus demonstrating the breakthrough made
with the introduction of the proposed algorithm.

Finally the effects of errors in the measured frequency responses on the identification
results were discussed and shown to be extremely small, thus giving another confirmation
of validity of the proposed methodology.
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Chapter I'V

Finite Element Model Update

Finite element models allow predictions that cannot be done with experimental models (see
the applications in Chapter V). However, for these predictions to be accurate, it is
necessary to obtain FE models with relatively minor errors. Initial FE models usually differ
significantly from the actual system so that they must be improved, as will be detailed in
this chapter.

As shown in Chapter I, finite element models are created using the measured properties
of system components. In many cases the properties of some components are not well
known or are arbitrarily simplified in the modeling process. Such simplifications lead to
two types of errors:

- Analytical limitations inherent in the elements may lead to a model that could not
accurately represent the system behavior (the model is not physically significant). For
example, if a component has local dynamics at low frequencies (e.g. the science
plates of the Interferometer Testbed (IT) have strong local bending motion above 60
Hz), the model must include enough DOFs on that component to accurately represent
the local dynamics.

- Design parameter errors linked to faulty measurements of component properties or to
incorrect modeling assumptions may lead to inaccurate predictions, even if the model
allows a correct representation of the low frequency dynamics (i.e. the model is
physically significant). For example, struts in truss structures are usually represented
by connected beam elements. In reality joints make the connection, and the stiffness
properties of these joints must be incorporated as a correction to the properties
(design parameters) of the element representing the strut.

Analytical limitations only have a significant impact if the incorrectly represented
component has a large influence on the response in the frequency range of interest. It is a
prerequisite for a meaningful model update to deterirune and correct all the analytical
limitations that may influence the response in the frequency range of interest.

As most FE convergence studies have been done for particular (and usually simple)
systems, few systematic tools exist to demonstrate the analytical validity of most models.
However, as shown in Ref. [bal5], analytical limitations are often linked to the inability of
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a given element to represent wavelengths characteristic of the system motion in the model
frequency range. Thus, a comparison of characteristic wavelengths with the element
lengths at the highest frequency of interest [bal5] or, similarly, a comparison of the first
inteinal element resonance with the highest frequency of interest (as done in Ref. [boul] to
validate a Guyan condensation), might give starting points for the development of such
analysis tools which will not be addressed here.

Under the necessary (for the validation of any parametric update) assumption that the
model elements do not impose analytical limitations on the predictions, algorithms to
estimate (update) with high accuracy the values of certain design parameters (E, A, p, etc.
of different elements) will be analyzed in this Chapter. Well devised component tests allow
both verification of the analytic validity of the component model and accurate updating of
specific design parameters, so whenever possible such tests should be used first.

Data

Modal: identified,
reduced, expanded
I/O: filtered, averaged,
bandlimited

\

Cost Function .

Modal: geometric, EA!gont‘lthm Updated
?%:T%egb Optimization strategy [~ FE model
lin-LS, log-LS Uniqueness

\

Parametrization
Choice of update
parameters
Reduced evaluation
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Figure 4.1: A general characterization of parameter updating procedures.

When all possible efforts have been made to ascertain the validity of the component
models and to estimate their design parameters (as when integrated into the system), global
system tests provide a way to evaluate the model accuracy, and thus to update some of its
parameters. As for all parameter estimation procedures, four main components (shown in
Figure 4.1) characterize different algorithms:

- the measured data (and the process used to obtain it)

- the cost function used to compare predictions and measurements
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- the choice of parameters to be updated and the reduced model used for predictions

- the algorithm used to determine the parameters values which will optimize the model

prediction.

Most choices within this matrix have been already investigated, so that any new work
can only lead to incremental improvements. Rather than doing a linear survey of existing
algorithms which would only repeat the work of others (e.g. refs. [cael, royl, linl, berl,
lev1]), this chapter addresses the different points of the proposed classification, reviewing
existing as well as innovative solutions and using the IT case as an exarnple.

For evaluations of the model accuracy, both identified normal mode data (see section
3.3) and I/O response data (see section 3.1.1) can be used, as will be detailed in the review
section 4.1. Local element design parameter values cannot always be identified from a
global system test, so that a sensitivity analysis (introduced in section 4.2) is necessary
prior to any FE model update. Computer limitations do not allow the repeated use of full
FE models during an iterative update procedure, so reduced order predictive models
(introduced and analyzed in section 4.3) are used, allowing orders of magnitude decreases
in computation time. A particular FE update algorithm, differentiated from existing work by
the use of the logLS cost function and of reduced predictive models (introduced in section
4.3), was developed as part of this research (sec Ref. [bal4]). The history of the IT finite
element update and this update algorithm are used in section 4.4 to highlight fundamental
limitations of FE update algcrithms based on the comparison of global system properties.

4.1. DATA AND COST FUNCTIONS FOR FE UPDATE PROCEDURES

For procedures linked to undamped FE models, two main types of data can be used.

Analytical normal modes are easily accessible from the FE model, but experimental
normal modes are only indirectly identified from measured data (as shown in Chapter III).
Furthermore, experimental measurements of the normal modes are only partial (the modal
observabilities and controllabilities are measured) so that further analysis tools (reduction or
expansion; reviewed in section 4.1.1) are needed to obtain “compatible” experimental and
analytical modes. For compatible modeshape estimates, many criteria have been defined
(see the review in section 4.1.2) using geometric and energy considerations.

Input/Output data are easily available from experiments (usually in the form of
frequency response functions) with a higher degree of accuracy than modal data.
Furthermore, many measures of model agreement have been defined for this type of data
(see section 3.1.3) and can be readily used. In fact, the only significant difficulty
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(addressed in section 4.1.3) is now linked to the analytical model, which must contain a
representation of damping (that was not needed for criteria based on normal modes).

4.1.1. COMPATIBILITY OF IDENTIFIED AND FE NORMAL MODE
INFORMATION

The first obvious problem in using experimental modal data is that the identification
results provide estimates of normal modes at sensor and actuator locations (the modal
observability matrix (c¢), and the modal controllability matrix {¢"b),), and the FE model
estimates of modeshapes ¢ at all the FE DOFs q. For many applications it is necessary to
have an estimate of the experimental modeshape at all the FE DOFs, so that different
methods to attain this objective have been devised and will be reviewed here.

To retain the natural decomposition of components into zlements (and thus the link
(physical component parameter)<>(element design parameter)), the initial FE model
generally must be defined using more DOFs than available sensors. Historically, the first
approach has been to reduce the active FE DOFs to the available sensors (in order to obtain
a model where c¢ = ¢). In the structures community such approaches are known as
condensation methods, but in a control-oriented approach this would be seen as a model
reduction procedure with an imposed choice of states.

The principle underlying the different condensation methods is to partition the full order
model into active DOFs g, corresponding to sensors and dependent DOFs g, that will not
be measured, and to assume that a constant linear relationship exists between the dynamic
states of the dependent DOFs and the states of the active DOFs

|44 | _ !
q—[%]— [T]q" @1

Assuming that the motion of the dependent DOFs verifies (4.1), the system equations
can be rewritten as

{2 (Myy+ MT +T My + T M T)+ (K + KT +T7K py + TR, T) g, = (b, +T7b, Ju @

y=(c,+¢oT)q,
where the dynamics of the full order model are fully described using the active DOFs g,. It
is then usually assumed that external forces are only applied on active DOFs and that
sensors are only placed on the same DOFs. Thus dependent DOFs have no influence on the
input (b, = 0 so that b, +T"b, = b,) or the output (¢, =0 so that y = q,,).
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The first, and probably the most robust, condensation method is the Guyan reduction
(or static condensation) which assumes that the dependent DOFs behave quasistatically (i.e.

g, =0 and g, = 0). This assumption can easily be shown to correspond to the following
linear relationship between the active and dependent DOFs

4@ =Tq,= _KB;)KDAqA (4.3)

Several variations of this initial soiution have been introduced (see Refs. [ocal, frel,
oca2, pazl, oca3]), which give better results than the Guyan reduction in a number of
cases, but in a way that is difficult to characterize.

Overall, condensation methods are extremely useful for model recuction purposes but
they have major limitations:

- They tend to be sensitive to model error and to lose the spatial information linked to

errors [hejl].

- They are fundamentally limited in frequency by the first mode of the dependent DOF
set. The assumption (4.1) of linear dependence of the dependent DOFs becomes very
inaccurate above the frequency of the first fixed-interface mode (mode of the
dependent DOFs with fixed active DOFs, see Refs. [gorl, boul]). (Note that it is
possible to define condensations for other “non-low” frequency bands [ard1], but this
is not of interest for the present research).

- Unlike the truncation approach (introduced in Chapter II), which acknowledges the
existence of low frequency asymptotic contributions of high frequency modes (and
can thus use the exact low frequency modes), condensation methods use a proper
second order model (thus implying that the modes of the model are somewhat inexact
in order to incorporate the effects of high frequency modes).

The second approach introduced to reconcile measurements with the finite element
model is to combine experimental and analytical predictions to define modeshapes at all the
DOF:s of the full order FE model.

To obtain this expansion, some methods (e.g. refs. [hejl, ber2]) assume that a constant
linear relationship (described by the N by N, mutrix T) exists between the known modal
observability matrix (c¢), and the modeshape expanded to the full set of DOFs

Oe. =[T](co), (4.4)

The assumptions used for condensation are then used to define the matrix T. For
example, assuming that the unmeasured DOFs behave quasistatically (as done for the
Guyan reduction) leads to the so-called “static expansion”

83



Pe, = [T]¢A = —f Pu- (4.5)
[—KDDKDA]

Because they use the same assumptions, these approaches have the same fundamental
frequency limitations as condensation methods.

The other expansion methods are essentially geometric. A basic result of perturbation
theory is that small variations in the system can only introduce large recombinations of
modes that are close to each other in frequency [bal6]. Therefore, assuming that the
identified system can be represented by a small perturbation to the initial FE model, the true
modeshapes at the FE DOFs are, with a small approximation, a linear combination of the
modeshapes of the initial FE model ¢,,,, = ¢z;,A.

(In the usual case, all actuators have a collocated sensor, so that all the information is
contained in the modal observabilities. To simplify notations, this will be assumed in the
rest of this work.)

The basic objective of the geometric expansion methods is to obtain expanded modes
@, = ProA which match the measurements (the identified modal observability (c¢),
matrix) as closely as possible, or in other words, to minimize a norm of

(c#e. = (c9),) = (ctreod —(co),)- (4.6)

The simplest solution is to define A as the solution of the least squares problem
associated to the minimization of (4.6)

A=arg min{trace((cd)moA —(co) ,)T(C¢FEOA —(co) ,))} 4.7)

which corresponds to the use a pseudo inverse of the FE modal observability matrix
(A=(cBreo) (c8))-

For cases with as many sensors as modes, the minimization problem (4.7) leads to the
use of the true inverse (c¢m,)-’ and the modal observabilities of the expanded modes
match the measured modal observabilities (c¢), exactly. This, however, may not be
appropriate since there are identification errors in (c¢)l. In fact, for an accurate initial
model where pairing of modes has been achieved, the j‘h expanded mode should be
relatively close to the corresponding prediction of the modeshape (@g,; = @rz;). Therefore,
the transformation matrix A should introduce a “smoothing” of the measured modeshape so
that the expanded modeshape is cioser to the analytical prediction. This trade-off between
matching the identified modal observability and introducing “smoothing” (to account for the
inaccuracy of identification and the relative accuracy of the FE prediction) has been
formalized in Ref. [roy2], but reintroduces the need to “pair” analytical and experimental
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modes. Finally, other possible choices for the transformation matrix A have been
introduced (e.g. refs. [oca2, kam1, smi2]) allowing the addition of further constraints (on
the mass orthogonality of expanded modes in particular).

It should be noted that modeshape expansion does not change the scaling of the
measured modal observabilities. Therefore, for the true mass and stiffness matrices, the
expanded modeshapes will be mass orthonormal and stiffness orthogonal (the equivalence
between the equality of collocated modal observabilities and controllabilities and the mass
and stiffness orthogonality conditions was discussed in section 2.1.3).

In the present work, the limitations of condensation methods are considered to be too
stringent, so that these methods are not used. The geometric expansion to the full FE DOF
size, using the least squares sclution (4.7) for the matrix A, with more sensors than modes
(so that A is a pseudo-inverse which introduces some smoothing of the measured
modeshapes), will be used in Chapter V to create hybrid analytical/experimental predictive
models.

4.1.2. COMPARISON CRITERIA USING NORMAL MODES

Several criteria, which will be reviewed here, have been developed to evaluate the
agreement between identified and analytical normal modes. The use of these criteria implies
that the experimental and analytical modeshapes are known at the same points ((c¢), and
crgPre Should be known) and in some cases that all the DOFs are measured (y=q so that
c¢=¢, which can be obtained using the methods proposed in section 4.1.1).

The first and obvious comparison can be made on the modal frequencies, using, for
example, a quadratic norm

error = Y |wp, - wFE|2. (4.8)
identified modal frequencics

The main difficulty with such criteria is that they imply the possibility of “pairing”
measured and predicted modes, a process which may be quite difficult for models with
large errors and systems with high modal densities (which tend to become the usual case).

In a second step, analytical and experimental predictions of normal modeshapes are
compared. The Modal Assurance Criterion (MAC) [ewil] is probably the most used
(mainly because of its simplicity) criterion on modeshapes. For the identified modal
observabilities (c¢),, of the j* mode at the sensors /, and the analytical observabilities
c,9, (product of the output shape functions ¢; corresponding to the sensors / by the k*#

analytical modeshape ¢,) the MAC is defined as
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Z((C‘P)q cl¢k)
\jz Cl¢k C¢ ,,)

which gives a measure of how the jt experimental and &** analytical modal observabilities
are correlated. If the modeshapes (and thus the modal observabilities) are equal, the
diagonal terms (j=k) are equal to / (perfect correlation). Furthermore, off-diagonal terms
will be close to zero for a well-designed modal test (it would clearly be bad practice to have
two modes with the same or very correlated modal observability matrices).

4.9)

The MAC measures the shape correlation without any refercncce to scaling (because of
the denominator in (4.9)); this makes the MAC easy to use but also limits its applicability
(since the modeshape scaling governs the influence of a given mode on the overall system
response, a proper scaling is necessary when comparing the relative influence of different
modes). In other terms, the MAC is not a norm (two vectors can be perfectly correlated and
yet different), so care must be taken in interpreting results.

When a proper scaling is defined, it is useful to evaluate at each sensor location how
well the different identified and predicted modeshapes are correlated. This car be done
using the COordinate Modal Assurance Criterion (COMAC) defined in Ref. [lie2].

When possible, it is more accurate to directly compare the scaled modal observabilities
at the points where they are measured, using, for example, a quadratic norm

error = zl(cd)),j - (:,t,bjl2 . (4.10)
Lj

The problem in such an error measure is that it implies a proper scaling of the identified
modes and the pairing of identified and predicted modes (as did the criterion (4.8) on the
frequencies). Solutions to alleviate the need to pair modes have been proposed, but they
come at the cost of more complex procedures which will not be considered here.

Cost functions combining norms on the modal frequencies and scaled observabilities
(e.g. a weighted sum of the criteria (4.8) and (4.10)) give a complete characterization of
accuracy with which the undamped 17O characteristics of the system are modeled. If the
errors in both (4.8) and (4.10) are equal to zero, the normal modes (both frequency and
scaled shape) are predicted exactly. Assuming that the damping is properly modeled,
discrepancies between I/O measurements and predictions are thus limited to unmodeled
dynamics and noises. Criteria which do not consider modeshape scaling (such as the MAC)
give no guarantee on the agreement of the overall system response.
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Conversely, direct comparisons of predicted and measured transfer functions
(addressed in section 4.1.3) are criteria measuring both the error on modal frequencies and
scaled modeshapes. Their use implies a proper model of damping and often neglects effects
of noises and unmodeled dynamics, but alleviates the difficulties linked to the identification
of experimental modes and to the pairing of modes.

A second category of criteria assume that the full modeshapes are measured (this either
implies that the system matrices have been reduced or that the modeshapes have been
expanded) and are based on the orthogonality conditions introduced in Chapter Il

¢"Mp=1 and ¢'K¢p=20Q. 4.11)

A measure of the model quality can be obtained by using mixed experimental and
analytical modeshapes and seeing how well the equalities (4.11) are verified. For example,
one should have

GreMpsdpp =1 and  @p Ky = Q. (4.12)

These measures or variants of them have been used to define update algorithms.
Although modeshape scaling is implicitly considered, some problems should be noted:

- The iwo conditiors must be verified simultaneously to prove the equality of the
measured and predicted modeshapes (the mass orthogonality, often used by itself,
has little more value than the MAC, and is much more difficult to use).

- In real systems, all the modes are not identified. Since the reduction is often not
accurate enough, there is a clear problem of model truncation. The partial
orthogonality conditions that can be computed only guarantee the agreement of
frequency response measurements and predictions if the validity of the expanded
modeshapes can be proved.

A useful interpretation of the orthogonality conditions relates to the so-called modal
energies [roy3]. In the modal coordinate system of identified normal modes, the identified
modal mass and stiffness are diagonal. (Assuming that the modes have been scaled using a
collocation constraint; the modal mass matrix is the identity and the stiffness is the diagonal
matrix of frequencies squared. See section 2.2.3). The FE modal mass and stiffness
matrices can also be expressed in the coordinate system associated with the expanded
modeshapes ¢,

#S = ¢;M¢Ex and QS = ¢Z".KK¢EI’ (4- 1 3)

and the terms of the mass y; and stiffness £2; can be seen as kinetic and strain energies
associated to the FE model modes in the true normal mode coordinate system. If the FE
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modes are accurate estimates of the true modes, g is close to the identity matrix and £ to
the diagonal matrix of squared normal mode frequencies. An updated model should thus
match this condition better than the initial model.

4.1.3. USE OF CRITERIA BASED ON INPUT/OUTPUT RESPONSE

All the difficulties linked to the use of modes (identification, mode pairing, etc.) can be
circumvented by directly comparing the measured and predicted I/O response (usually but
not necessarily under the form of transfer functions). However, when using direct
comparisons with measurement data (time or frequency domain), damping must be
represented since it has a significant impact on the predicted response. Three main
approaches have been considered:

- A proportional damping representation with measured damping ratios (if mode
pairing is possible and experimental values for the pole damping ratios are available)
or a uniform estimated damping ratio (i.e. 1% for all poles).

- As proposed by Ref. [ibr3], a damping proportional to element mass or stiffness
matrices of elements

C= Z(YI:M: + 72.K:) (4.14)
se{sructural clement}
which has the inconvenience of using many parameters 7, that are hard to identify (as
the influence of any such parameters on the response is extremely small, one cannot
expect to find a unique mapping between measurements and the parameters ¥;,).

- A non-proportional modal damping model. This would be the truncated non-
proportionally damped normal mode model introduced in section 2.2.3, identified in
section 3.3, and used in the hybrid models of Chapter 5. The reader should refer to
these sections for more details on this damping representation. (The present research
introduces the first successful experimental identification of a non-diagonal modal
damping matrix, this type of model was thus never used previously).

With a damped model defined, the I/O response can be predicted and compared with the
measurement data using different criteria reviewed in sections 3.1.1 and 3.1.3.

4.2. CHOICE OF PARAMETERS TO BE UPDATED

The final objective of this research is to use test results in a given system configuration
to create models which allow accurate predictions of the system response for another I/O
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architecture or for a modified system. This objective is achieved in part by obtaining an
accurate description of local component mass and stiffness properties, which can then be
used to predict the effects of local changes.

A perfect match of a restricted set of measured I/O responses does not necessarily imply
that the local element properties are well described. Therefore, to correctly identify or
update (which is the same thing, except that one calls update cases where an initial estimate
is available) a given parameter, one must be able to: first differentiate its influence from the
expected residual model error, and second ensure that the correction is not needed because
of the inaccuracy of another parameter (see example in section 4.4).

Section 4.2.1 briefly reviews three areas (component tests, check of analytical validity,
check of “identifiability”’) which must be addressed to obtain correct update of local model
properties. In section 4.2.2, these different points are detailed for the IT case.

4.2.1. DEFINITION OF THE PARAMETRIC ERROR STRUCTURE

Design parameters of the FE model represent the properties of physical components
described by different elements. They can be direct physical parameters (i.e. properties of a
beam modeled as a beam element), but often are the result of a condensation of several
physical parameters (properties of a beam + joint assembly represented as a beam element
without joint).

When carefully done, component tests are very useful in determining design parameters
(especially when they differ from physical parameters). For example, for a beam/joint
component represented as a single beam element, a test of the component will give a
measure of the overall stiffness which should be used as the element stiffness. The validity
of such tests clearly depends on a proper relation between the design parameters (properties
of the element or model of subsystem tested) and the parameters measured in the test
(boundary conditions are extremely important). However for a valid test, the update is
extremely reliable and the investment in testing is usually worthwhile if accurate and
physically significant models of the structure are to be created. (Uses of such component or
subsystem tests are documented in refs. [bal5, bal4] for the MIT/SERC interferometer
testbed, and refs. [carl, red1] for the JPL Micro-Precision Interferometer Testbed).

Parameter updates based on the comparison of global system test results can only be
validated if all the errors that may exist in the FE model have been characterized. These
errors can be linked to inaccurate parameters (the element is appropriate but does not use
the right parameters) but aiso to insufficient model refinement (the type or the frequency
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range of the element does not allow an accurate representation of the structural dynamics
[bal5] so the model should be refined).

A prerequisite, for a meaningful update of the element design parameters, is the
correction of all non-parametric model errors (i.e. analytical model limitations and user
input errors related to the system geometry, the mass distribution, the stiffness disiribution,
etc.). This requirement can only be achieved if the analyst and the test engineer work in
close cooperation to determine whether the assumptions made in the model are indeed valid
for the considered system (or set of systems) and to eliminate discrepancies between the
actual system and its description in the model (geometry, etc.).

When the model is constructed with a good knowledge of the actual system properties
(for many reasons this knowledge is not always available), the precision with which
different design parameters are known should be evaluated to allow a proper use of the
system test data. To obtain good results with an update methodology, most parameters
should be well known and a few should need to be updated.

The second step to validate a model update is to demonstrate the ability to uniquely
determine the incorrect parameters. In practice, residual model errors are significant, so the
only parameters that can be updated are those that have an influence on the tested response
larger than the residual error. The sensitivity of the update cost function to a nominal
parameter change (defined trough an assessment of the uncertainty on the parameter) gives
a measure of the parameter influence on the response, and thus an idea of which parameters
can be estimated with accuracy.

To update parameters with low impact on a given test, other tests must be performed, in
a different frequency range, using different sensors, or using a subcomponent. For
example, the first modes cf the IT are thousands of time less sensitive to the mass of a plate
attachments than to their stiffness, therefore extremely small changes in the stiffness have
more influence on the response than large changes in the mass. Therefore, one cannot
known the stiffness well enough to distinguish the effect of a mass change from a stiffness
change in a global system response.

However, since the residual error is obviously unknown, it is difficult to prove which
parameters can actually be estimated. Indicative measures of the “identifiability” (such as
sensitivities of the update cost function) must thus be used instead.

The geometric energy distribution for different modes is also a useful indicator of the
model sensitivity to parameter changes. The influence of a stiffness change on a given
mode is roughly proportional to the ratio of the strain energy in the mismodeled element to
the total strain energy. High strain regions in the model frequency range are thus the
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regions where stiffness errors will have a significant influence. Similarly, mass errors will
only have a significant influence in regions of high density of kinetic energy. (However,
masses can be well measured, so that effects of residual errors on the mass are usually
smaller than that of errors on the stiffness).

Finally, a number of papers (e.g. refs. [lin2, ber3, berl, lie3]) address the problem of
identifying the geometric location of a modification made to a known structure; clearly, the
work of these authors should be used for the problem at hand.

4.2.2. APPLICATION TO THE INTERFEROMETER TESTBED CASE

This section describes the application to the IT of the three steps outlined in the
previous section (component test, check of analytical validity, check of “identifiability”).

To allow the creation of better models, the axial stiffness of struts and joints used to
build the IT truss were first characterized using a component tester. There were difficulties
in devising a test to measure the design parameter used in the model, which in the present
case is the axial stiffness of the component (ball joint, connection screws, tube strut)
represented as a single beam element. However, once this design parameter was accurately
measured by testing the full component (11.2 N/um for the short struts and 7.77 N/um for
the long struts), the agreement between the system test of the naked truss and the model
prediction was extremely good up to around 140 Hz [bal4] (the number of suspension
modes above that frequency does not allow a good analysis of the data). As is well
documented for the JPL Micro-precision Interferometer testbed [carl], such a good
agreement can in fact be expected for most truss structures up to the range of local strut
bending modes (above 200 Hz for the IT).

For the model update of the completed IT, it was thus known that the only significant
errors would be located on the new added components (i.e. science plates, see section 7.1).
As schematically shown in Figure 4.2, the model for each of the science plates is
constituted of 25 plate elements used to represent the large support plate, 4 beam elements
used to represent the U-shaped connectors linking the plate with the truss, and 4 beam
elements to represent the support of the cat-eye inirror which itself is represented as a
concentrated mass/inertia. The geometry and the different masses were carefully measured
and used in the model (with an error for the overall plate mass which was later updated, see
section 4.4 which shows that this was a case where two parameters could not be updated
simultaneously).
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Figure 4.2: Sketch of the FE representation of the science plates. (See a picture of a
science plate in section 7.1).

As a first step, meant to eliminate analytical limitations, the mesh size for the plate
models was refined until a further refinement did not produce significant modification of
the component modes below 100 Hz. For pinned boundary conditions (free rotations but
fixed translations) at the attachment points to the truss, the first plate modes were found at
50.5 Hz. From the initial model, three refinements of the plate model were necessary to
obtain an apparent convergence of the component model.

For the cat-eye model using beams and a concentrated mass, a more detailed model
with plate elements and a more accurate mass distribution did produce significant changes,
so that the 4-beam model was considered a physically significant representation of the
actual system.

These tests do not provide a complete characterization of the plate assemblies, which
might have included a better validation of the cat-eye assembly model, and/or a dynamic
component test allowing a better characterization of the individuzl plates. However, for
purposes of the present work, the overall model physical significance was considered
sufficient to allow a meaningful parametric model update.

A number of parameters in the model could not be measured with high accuracy and
were considered for the different updates. However, to simplify the presentation, only five
of the most important will be presented here as possible model errors

- three stiffness errors for the plate/truss links: the longitudinal (along the leg) bending,

the transverse bending and axial stiffness.

- two mass errors: the concentrated mass of the mirror assembly and a distributed mass

error for the main plate.
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The three link stiffness coefficients were knowi to be inaccurate since there was no
simple way to evaluate good values for the design parameters (any value between 5.0 10-12
and 10710 m4 for the beam element bending section inertia, and between 10-6 and 104 m2
for the element section area seemed realistic). The two mass coefficients were introduced
when it became apparent that the residual discrepancy after update of the link stiffness
could not be related to a stiffness error, thus casting & Zoubt on the mass model (which is
easier to measure and is thus usually more accurate). Such an error could not be rigorously
bounded even though a mass decrease or a total testbed mass increase of more than 5 kg
seemed unlikely.

To evaluate the “identifiability” of these different parameters, the amount of change
linked to what seemed realistic variations was computed using the cost function on modal
frequencies (4.8) and the logLS cost function (3.12) based on transfer functions used for
the new update method that will be detailed in section 4.4.

Table 4.1:  Sensitivity of the update cost functions (error measured between the initial
and modified models) to a standard change in parameters to be updated.

Parameter Initial Value and Change in modal Change in logL.S
standard change frequency cost cost
Link /, 2 1011 m4 (+100%) 18.00 514.80
Link I, 10-11 m* (+100%) 131.60 2734.21
Link A 10-5 m?2 (+100%) 0.90 0.70
Mirror mass 2.224 Kg (+500 g) 10.26 3816.10
Distributed plate mass | 0.970 Kg (+500 g) 7.46 3437.50

From Table 4.1, the sensitivity of the system response to the link axial stiffness (link
A) is clearly so low that only unrealistically large variations of the parameter would lead to
modifications of the system response that could be distinguished irom the residual model
error. This parameter thus cannot be identified from the considered test. Both the link
bending stiffnesses (link /, and 1,), however, produce effects that are significant enough to
be used (see details in section 4.4).

The two mass changes are given as the addition of 500g (but one is a concentrated mass
at the mirror location and the other a mass distributed on the edge of the plates). The
sensitivity is very large so that they are “identifiable” perturbations. However their effects
on the global system response are almost identical, so that the two modifications cannot in
fact be distinguished in terms of the measured response in the modal test (see more details
in section 4.4).
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4.3. REDUCED ORDER PREDICTIVE MODELS

The last necessary element to create a practical update algorithm is the ability to easily
predict the quantities needed for the error criterion (i.e. modal frequencies and shapes or
transfer functions from existing actuators to existing sensors) for the different values of the
design parameters. Of course, as in Chapter II, one is only interested in low frequency
response predictions were the system is tested, but the dependence of this low frequency
response must be properly characterized for significant variations of design parameters.

Conceptually the full FE model could be used as a predictive model, but in reality this
would be excessively expensive (realistic models are large tend to grow faster than
computer capabilities, so that this problem will not disappear in the near future).
Furthermore, it is not necessary to recompute the low frequency normal modes of the large
model, since one is interested for update purposes in evaluating the response of a model
that is relatively close to the nominal solution. Perturbation analysis and model reduction
are two main approaches used to obtain inexpensive (in terms of needed computations)
reduced predictive models.

A first difficulty, detailed in section 4.3.1, is to determine a reduced description of the
modifications which will be used by the predictive models. Then perturbation or sensitivity
approaches (reviewed in section 4.3.2) use a linearization of the relation
(response)<>(design parameter) to predict the effects of small changes. FE model
condensation methods have sometimes been used to obtain reduced models, but, as pointed
out in section 4.1.1 where they were reviewed, these methods are often inappropriate for
the complex structural systems considered here. Finally, model truncation as shown in
section 2.2 provides a way to obtain reduced models of the low frequency response. Using
a Ritz analysis, as shown in section 4.3.3, the initial truncated solution of the full model
ca.’ be reanalyzed to obtain predictions with higher accuracy than with perturbation
approaches. Furthermore, static modes can also be used to improve results of reanalyzed
rodels. Finally, a review of the accuracy obtained with the perturbation and reanalysis
methods is done in section 4.3.4 for the IT.

4.3.1. DESCRIPTION OF SYSTEM MODIFICATIONS

The influence of design parameters on the full system matrices of the model is non-
linear in general. However, changes to the full order FE matrices linked to the change Ap

of a design parameter p can be represented as additive corrections
M(p+ Ap) = M(p)+a'.(Ap)Ma‘, @15
K(p+4p) =~ K(p)+B,(4p)Kp,, '
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where M; and K g; are normalized incremental mass and stiffness matrices representing a
unit change of the scalar coefficients o;(4p) and B,(4p). Fcr some parameters, such as the
material density p or Young’s Modulus E, the matrices M and K depend linearly on the
parameter. In such cases, one can directly use a;(Ap)=Ap and B,(Ap)=Ap. For others,
such as the plate thickness, the dependence is more non-linear and must be integrated in
non-linear functions o;(4p) and SB{(Ap), with sometimes the need to define more than one
additive matrix for the same parameter (i.e. define a M; and M ;). The non-linear terms
o;(Ap) and B;(Ap) can then be linearized around a nominal value, but this is not always
necessary.

The description using additive corrections is fundamentally equivalent to the direct use
of design parameters. However, it allows easier formulations of the update problem in
many cases (e.g. [ber3, ibr3], or the commercial package of INTESPACE [roy4, roy3]).
(For more details on the additive correction description see Ref. [roy3]).

Writing the mass, damping, and stiffness modifications linked to all the modified
design parameters as single mass AM, damping AC, and stiffness AK modification
matrices, the modified FE model equations (2.1) become

(M+AM)G+(C+AC)g+(K + AK)q =bu
y=cq

(4.16)

The basic assumption, for predictions done with reduced models, is that response of
the modified system can still be accurately represented using the projection on the low
frequency modes (model truncation) which was valid in the initial configuration. Thus
using the same approach as for the normal mode models in section 2.2, the modified
systems equations (4.16) are projected onto a truncated set of real vectors ¢, (low
frequency normal modes and static correction modes)

(I+Ap)p+(r+ANp+(2+AQ)p=¢"bu

y=cép
where Au = ¢rAM@,, AT = ¢JAC@,, and AQ = ¢ AK ¢,.. Note that if all the modes are
kept in ¢,, equations (4.16) and (4.17) describe exactly the same response in different

(4.17)

coordinate systems (FE DOFs g versus normal mode states p).

The use of the truncated modal model representation (4.17) solves all the difficulties
linked to predictions. The truncated damping representation, which is the only one available
(see section 2.2.3) can be used. The model being reduced can be handled by available
computers. Correction modes can be added in cases where more accuracy is needed (see
section 4.3.3). Furthermore, as will be shown in section 5.1, identified quantities can be
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used to create a hybrid experimental/analytical model allowing better predictions of the
system response.

4.3.2. PERTURBATION AND SENSITIVITY ANALYZES

The traditional engineering solution to evaluate the response of a system after small
modifications is to use perturbation analysis (which, in practice, can only use the set ¢, of
computed low frequency normal modes; no extension has been published to extend the
method and use correction modes). The basis of this approach is to consider that although
the relation between the low frequency response (normal modes ¢r, modal frequencies Qr
and modal damping matrix I'7) and the modifications (AM, AC, and AK) is clearly non-
linear, it can be accurately linearized for small changes (a nth order expansion is obviously
possible, although even the second order is rarely used).

The basic perturbation theory for normal modes (see also references [elrl, kim1, bal5])
assumes that the modifications on the normal mode frequencies and modeshapes take the

form
= m? = 2 2
2, = 0j = wj, + Aw;

O = o + zcjk¢1'k

kej

(4.18)

which, for small modifications (AM, AC, and AK), leads to the approximations (see any of
the above mentioned references)

Q= 0} = wjy + (~jd7AMpr; + 974K 6y ) = 0}y +(-2;081,, + AQ;)

~-w? o5 AM ¢, + o7, AKdy, -Q. A, + AQ,, (4.19)
Oy = o+ 3~y =Gy + Y — L gy,

2 ) 2
k=) Wjp— Wy k=) Wjp— Wy

In the equations (4.19), the notations of the projected system (4.17) are usea
intentionally to highlight a major point, usually omitted in presentations of perturbation
theory. In practice, the set of modes kept for the perturbation analysis is always truncated
(¢, so that the perturbation analysis is an approximation of the projected equations (4.17)
and thus only indirectly approximates the full systems equation (4.16). (The direct use of
the projected equations (4.17), which will be considered in section 4.3.3, is thus more
accurate).

Note that the matrix expressions of the perturbation results (right hand terms in (4.19))
clearly show that the diagonal terms of the perturbation matrices Ay and AS2 correspond to
changes in the eigenvalues and the off-diagonal terms to changes in the eigenvectors.
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A first major limitation of the perturbation analysis is that the expressions (4.19) for the
modified normal modes are singular for multiple eigenvalues. Different ways to alleviate
this difficulty for multiple poles have been introduced (e.g. Ref. [shal]), but the problem
then becomes that for high modal densities, small changes may lead to multiple poles (see
the analysis in Ref. [tril]). If the initial system does not have multiple poles, multiple pole
perturbation analysis cannot be applied, so the range of validity of the perturbation analysis
becomes extremely small.

Other limitations are that the expression (4.19) does not allow modification of the
damping and does not predict the effects of the modifications on the damped response.
These restrictions could be alleviated using perturbation methods for complex modes and
could even be extended to non-symmetric systems (for which only parts of the present
research apply), but this would lead to a number of distinct procedures, so that it is simpler
to use the unique reanalysis approach (proposed in the next section).

For system modifications that are linearly dependent on a parameter £ (i.e.
AM = eM, and AK = €K ), the expressions (4.19) provide estimates of the derivatives of
modal frequencies and modeshapes with respect to the parameter €

a

dw*

= (~@Z,05M 0y, + LK 0,) = (~$2,001; + AL;)
(4.20)
a‘pTi — 2 —wlz'o‘PTTleq)T; + ¢17"kK1¢Tj b = 2 —£2,,A1,; + AL,
%’ i jo = Wy Y e "

Such derivatives, traditionally called sensitivities, provide a linearization of the relation

(€)>(w, ¢) which can be used for incremental predictions, as follows

2

wi(e)=wl, +€ 930:

9y
J€

(4.21)

¢17(8) = ¢Tjo +E€

Unless the sensitivities are recomputed after each step on &g, such predictions are
equivalent to the perturbation theory.

When a sensitivity analysis is used for a model update procedure, the relation between
modes and design parameters is linearized, which often simplifies the problem formulation
and allows direct solutions. Sensitivity approaches were thus used in the early work of
Collins, et al. [coll], er in more recent commercial packages such as CORDS [flal, fla2,
fla3] or SSID [has1]. (For further references see the review done by Levine [lev1]).
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Higher order (or even exact [elrl] but non-linear) perturbation theories have heen
deveioped. But the advantage of simplicity is lost and the results remain approximations of
the reduced system model (4.17), with no possibility for appending correction modes to
kept normal modes. For accuracy, it thus seems more efficient to use the reduced model
(4.17) directly in the reanalysis approach presented in the next section. However, even
with these limitations, sensitivity analyses do provide an easily available linearization of the
effects of mass and stiffness modifications. A linearization is a major advantage for the
implementation of many algorithms, so that the results presented here or their extension are
and will remain useful.

4.3.3. REDUCED MODEL REANALYSIS

Near a given system configuration (i.e. for a restricted range of possible design
parameter values), one can define global shape functions that allow an accurate description
of the dynamics. In general such an approach is called a Ritz analysis, but when the shape
functions used are normal modes of the initial configuration, the approach is often called
reanalysis. Using a truncated set of normal modes to reanalyze the system response leads to
the reduced model (4.17).

For small modifications, the low frequency normal modeshapes usually form a good
basis or Ritz vectors (this is why the sensitivity analyses are valid in a number of cases).
However, if the system (and thus the modes) changes significantly, the predictive validity
of the reanalysis model becomes less obvious, and one may have to include more
information (other Ritz vectors and static correction modes in particular as will be detailed
later) which does not modify the predictions in the initial configuration, but increases the
range of possible modifications where the model predictions are accurate.

The need to use more Ritz vectors than the set of normal modes of the system in its
initial configuration is clearly shown by FE models. The number of base vectors in a FE
model is driven by the need to obtain models that represent the local behavior accurately for
large ranges of the design parameters. This spatial discretization leads to a higher number
of predicted modes, most of which are inaccurate [benl1] (and thus have no more value than
Ritz vectors), but are needed to guarantee that the low frequency normal mode predictions
remain accurate for large ranges of possible local design parameter values.

The difference between the perturbation and the reanalysis approaches can be
interpreted physically as the fact that the perturbation theory tries to follow the modal
coordinates (determine the new modal states p corresponding to normal modes of the
modified system) where the reanalysis uses the modal states p, of the nominal model with
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non-diagonal projected modifications. From the reanalysis model (4.17), new modal
coordinates can be computed by solving the associated reduced order eigenvalue problem.
The perturbation approach uses a first order approximation to evaluate this eigenvalue
solution and is thus always less accurate. It is often much less accurate for problems with
high modal densities where the definition of modal coordinates is very sensitive to small
perturbations (see the example in section 4.3.4).

Another advantage of the reanalysis approach (and of Ritz analyses in general) is that
the introduction of correction modes becomes natural. The addition of more normal modes
outside the actual bandwidth of interest is the first obvious extension, but static modes (first
defined in section 2.2.2 for I/O systems) are also useful. To define static correction modes
for FE models, the definition of inputs must be clarified. The modified system equations
(4.16) linked to design parameters updates can be rewritten as

MG+ Cq+Kq=-AMG— ACG— AKq + bu
y=cq

(4.22)

where the mass, damping and stiffness modifications appear respectively as acceleration,
velocity, and displacement feedback. In many cases, the correction matrices AM, AC, and
AK span a subspace defining a set of inputs described by a matrix F . The static input
modes corresponding to F, are used as in section 2.2.2 to generate static correction modes

os=|k"- Y {s,0]/0}}|Fy. (4.23)
Jefisromil metes.|

In general, the corrections are localized so that the matrix F, is of small dimensions. In
some cases, however, the number of static modes ¢, can lead to models with too many
states for fast computations of the reduced model response and to numerical conditioning
problems for the orthogonalization of tie static modes with respect to each other (usually
done using a Shmidt orthogonalization). Both restrictions can be alleviated using a mass-
orthogonal singular value decomposition and keeping only the modes with the largest
singular values as static correction modes.

The eigenvalues Z ang eigenvectors ¥ of ¢ M@, are the mass-orthogonal singular
values and right singular vectors of ¢;. The associated left singular vectors that can be used
as static mode corrections in the reanalysis are

bsp = 05 ‘PSZE'/Z. (4.24)

where only the vectors corresponding to large singular values Z;

the improvement in numerical conditioning was the main motivation for the use of these

are kept. In this research,
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principal modes (rather than the traditional static correction modes). Other advantages in
terms of model reduction would need to be further characterized, but this will not be
considered here.

Finally it should be noted that the reanalysis approach is fully compatible and very
similar in motivation to Component Mode Synthesis methods [cra3] in which low
frequency normal modes and additional correction modes of different components of a
system are linked to obtain a full system model.

4.3.4. APPLICATIONS TO THE INTERFEROMETER TESTBED

As an example for evaluating the validity of perturbation and reanalysis approaches for
FE updates, the variations of the system response in the 20-60 Hz band linked to changes
of the bending stiffness model of the science-plate/truss links will be analyzed for the IT.
Since an initial estimate for these design parameters is very difficult to obtain, an update
would let them vary over a large range. However, the rate of change of the modal
frequencies only becomes significant for a section inertia below 16-10 m4, so that the
parameter ranges I, € [2 10-11,2 10-19] m#and 7, € [10-11, 10-10] m* are considered here
and the low values (/,= 2 10-11 m4, I, =10-11 m#) are used to create the initial solution
(whose modes are the Ritz vectors for the reduced model (4.17)).

The relative errors in the prediction of the change in modal frequencies are shown
(Figure 4.3) for the first nine flexible modes of the structure.

The perturbation approach gives obviously inaccurate results for the large parameter
range considered here. (It becomes significantly worse than the reanalysis prediction for
stiffness increases of more than 25 %, and the expected change (corresponding to the first
point shown in the figure) is of the order of a 250% increase.)
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Figure 4.3:

The model reanalysis using 25 modes does always better than the perturbation analysis
but not significantly better for some modes (mode 2 in particular). These results can be
significantly improved by using a larger number of dynamic modes (see in the figure that
much better results are obtained tor all 9 modes using 65 normal modes of the initial
model). The increase of computational cost is usually not a problem for FE update
procedures, but might become one for robust control synthesis problems (where it is often
desirable to limit the model size, but where parametric variations tend to be smaller so that
small truncated models would probably be accurate enough).
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modes and 50 principal components of static correction modes.
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In the present, case the modification is distributed (the stiffness of 12 links located in
different areas of the structure is modified) so that the addition of static correction modes
only improves the global results if more than 50 correction modes (principal components of
the 72 static modes initially defined for the problem as shown in section 4.3.2) are kept.
Using 25 normal modes and 50 correction modes, the predictions of the reanalysis model
are however significantly better than those of the 65 normal mode model, which shows that
in many cases the static modes can be more useful for accurate predictions than extending
*he model bandwidth by adding more dynamic modes.

This first analysis was related to pole predictions, but modeshape predictions are also
important. The method developed in this work (see section 4.4) uses frequency response
comparisons, so the modeshape accuracv evaluation was first done with frequency
response functions. Figure 4.4 plots predictions of the frequency response corresponding
to the shaker V accelerometer 1 transfer function for the first point shown in figure 4.3
(link bending stiffness increased by 250%).

The perturbation analysis is clearly not appropriate for this case since the error made on
the transfer function prediction is extremely large. Furthermore, conditioning problems,
which force a limitation of the number of modes kept, appear very rapidly. For the case
considered here, only 20 modes could be kept before obviously inaccurate modes were
obtained above the model bandwidth.

The reanalysis with 25 modes is much more accurate, although the predicted
frequencies are still somewhat inexact (the peaks are shifted to the right). For parameter
variations smaller than this case, the 25 mode reanalysis model would be accurate enough
for most purposes. However, if the increased computational time is not a problem (it is
usually not), the 65 mode reanalysis model can be used and gives resulis that significantly
reduce this already small error (see the improvement in figure 4.4).

In the plot, the errors on frequencies, which shift the transfer function estimate, are
more easily spotted. The small errors made in the modeshapes (seen as errors in the peak
heights) should however be noted too. This visua! predominance of the frequency error
does in fact translate into a higher influence of moda! frequency errors for comparison
criteria based on transfer functions.
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Figure 4.4: Transfer function predictions for a link bending stiffness increased by
250% (—) Full FE solution, (-—-) 65 mode reanalysis, (---) 25 mode

reanalysis, (-+) perturbation analysis.

The comparison of a single frequency response function does not however provide a
good idea of the overall quality of predictive models. Using the 28 transfer function
predictions corresponding to the modal test made for the IT, the overall error can be
measured using any of the criteria detailed in section 3.1.3. For example, using the logLS
cost function with the 28 wransfer functions of a test with the shaker on leg V, the prediction
error is: 5 10*3 using the 65 mode reanalysis model, 1.8 10+4 using the 25 mode
reanalysis model, and 5.6 10*4 using the sensitivity analysis (versus a residual error
between the best FE model of the IT and the experiment of 1.3 10+4),

The 65 mode reanalysis model is the only one having a prediction error below the
residual FE model error for a link stiffness increase of the considered order (250 %). It
would thus probably be the only one appropriate for accurate predictions. However, in
practice, this type of reduced model limitation is circumvented by recomputing the full finite
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element solution, after the determination of a set of updated design parameters or when the
update algorithm calls for excessively large parameter changes.

4.4. APPLICATION OF THE (REANALYSIS/LOGLS) FE UPDATE ALGORITHM
TO THE CASE OF THE INTERFEROMETER TESTBED.

In the course of this research a particular update algorithm was developed and coded in

the Matlab Toolbox [bal2]. Its main characteristics are the use of’

- A set of measured frequency response functions to characterize the actual system
response.

- The Log-Least-Squares cost function (3.11) (introduced in section 3.1.3) to evaluate
the model accuracy by comparing measured and predicted frequency response
functions.

- The additive matrix representation of the effect of design parameter changes,
introduced in section 4.2, as a parametrization for the update model.

- The reanalysis approach, introduced in section 4.3, to evaluate frequency response
functions for different values of the updated design parameters.

- A standard simplex algorithm, after a rapid estimation of the optimum location based
on a maximum descent algorithm, for the minimization of the logLS cost.

Outside the fact that criteria based on transfer functions are easier to use than modal
criteria (see section 4.1.3), the proposed algorithm are probably essentially circumstantial.
In fact, it is the opinion of the author that, in practice, the choice of parameters to be
updated is an issue of much greater importance than the choices made to create a given
update algorithm. Therefore, the analysis presented here will thus not focus on
demonstrating the advantages of the chosen method, but will rather use the history of the IT
FE model update to highlight difficulties linked to the update of particular design
parameters. In particular, it will be shown that the incomplete update of only some of the
inexact properties may lead to inexact results, that different parameters sometimes cannot be
updated simultaneously, and that the effects of the damping model were negligible for the
update of the IT with the proposed algorithm.

In Figure 4.5, the comparison of a measured frequency response function (actuator V

sensor 1) with predictions of different versions of the FE model shows that the application
of the proposed approach did lead to significant improvements of the IT model by the
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successive correction of the plate/truss link stiffness and of the mass distributed around the
science plates.

A first step leading to the “initial” FE model (dotted line in Figure 4.5) was to refine the
analytical models of the plates. It was then assumed, as usually done, that the mass
distribution was correctly represented. A sensitivity analysis of the response to
modifications of design parameters led to the conclusion that the only improperly
characterized parameters, with enough influence to account for variations of modal
frequencies of several percent (initial errors in modal frequencies varied between 1% and
5% for modes below 60 Hz), were the bending stiffness of the beam elements used to

represent the plate/truss links (see section 4.2.2).
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Figure 4.5: Comparison of transfer functions (shaker V sensor 1): (—) measurement,

(~-) initial FE model, (-—-) FE model with updated link stiffness, (---) FE
model with updated plate mass and link stiffness.

The section inertia of these links, initially assumed to be very stiff (/, =1, = 1019 m*%),
was thus updated. As apparent in Figure 4.5, for a lower stiffness (/, =/, = 10°"! m*
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shown as a dot-dash line), all the modes except the first four give very good estimates of
the modal frequencies.

The actual optimum of the minimization of the logLS cost function for the 28 transfer
functions of the test on leg V was obtained for I, =/, = 8 1012 m*, but was rejected
because of physical considerations. A number of local plate modes (mostly linked to local
vibrations of the plate which couple with the rest of the truss) exist above 50 Hz, but a
section inertia at 8 10712 m? led to almost twice the actual number of modes. This (as well
as the frequencies of the 9™ and 10™ modes (at 44.2 and 53.8 Hz) predicted too low) was
corrected by using the value 7 = 10°! m*.
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Figure 4.6: Map of cost values as function of mirror and distributed plate mass
changes.

Since the agreement was still unsatisfactory, but could not be related to a stiffness
error, the mass distribution was questioned. Assuming a simple concentrated mass error at
the mirror locations, the update algorithm was used and it converged to an error of 1.05 kg
at each of the mirrors. The mass of the different elements constituting the plates could be
carefully measured, so it was soon found that an error of approximately 920 g had been
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made in modeling the mass of the support plate. (A number of wires, attachments, etc., and
a significant portion of the plate surface located outside the points of attachment (and thus
with little contribution to the overall stiffness) had been omitted).

The error determined through the component test (measure of weights) was not the
error found during the update. (The true error was a mass distributed on the support plates,
rather than concentrated at the mirror). This highlights the general problem of
demonstrating the uniqueness of the solution for FE update methods.

The uniqueness problem can be easily seen when considering maps of the update costs
as functions of the updated parameters. In the present case, a map of the overall update
cost, as function of the two design parameters (mirror and distributed masses), was
computed and is shown in Figure 4.6. From this map, it appears that the cost remains
extremely close to its actual minimum on a line of constant total mass. Thus the considered
test cannot distinguish where the mass error is located (at the mirror or on the plate), and a
reliable solution can only come from a component test establishing at least one of the
masses correctly.

The last update done for the IT model was to do a second update of the link stiffness,
which had been made too soft in an effort to compensate for the mass error. More work
could be done particularly to update the model of the fourth vertex (see appendix) and the
detail of the cat-eye mirror mounts. The properties of those components could not be
updated using global system data in the 20-60 Hz range, since thcy do not have a sufficient
influence on the response. These studies were not performed, because the predictions of
the current updated model were found to be sufficiently accurate for the creation of hybrid
experimental/ analytical models (see Chapter V, and section 5.1 for a better evaluation of
the actual agreement) and because no further testbed design phase required greater
accuracy.

A last important question in evaluating the usefulness of the presented FE updating
methodology is the sensitivity to the damping model. The underlying assumption for
updates based on comparisons of frequency response functions is that the effects of
damping models are decoupled from mass and stiffness effects. This property was easily
shown for simple 1 or 2 DOF systems such as the example presented in section 5.2.2. In
general however, this assumption could not be motivated by more rigorous arguments than
noting that the damping matrix I" influences the system response without changing the
normal modes (so that the errors in damping lead to fundamentally different discrepancies
between measurement and model which should not significantly deteriorate the predictions
of the mass/stiffness distribution).
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For the IT update, a proportional damping model with measured damping ratios for the
poles in the 20-60 Hz band and 1% damping for other modes was generally used. For the
leg V shaker, the discrepancy between thie predictions of this model and that of one with an
identified non-proportional damping merix were of 1.5 103 (as measured by the logLS
cost), which is significant when compared to sensitivities to other parameters (shown in
Table 4.1).

Two tests showed that this discrepancy had no effect on the update results. The
optimum link bending stiffness updates were computed for two different models (the first
using modal damping, the second an identified non-proportional damping model). As
expected, the two results for the link update were identical (to the accuracy of the
optimization, i.e. approximately 1% optimal change). Using analvtically generated
frequency response from a nominal but non-proportionally damped model, an update of the
different parameters considered (bending link stiffness, plate mass, etc.) was performed
using a proportionally damped model. Again, as expected, the update procedure indicated
that no parameter change was needed.

4.5. CONCLUSIONS

A classification of FE update procedures was proposed using four categories: data
used, criterion used to evaluate the agreement between model and data, parametrization of
the model, and algorithm used for the update. The compatibility of experimental and
analytical modeshape predictions was discussed, reviewing in particular methods of
experimental modeshape expansion. Criteria based on modes were reviewed, and the need
for a damping representation was discussed for criteria based on I/O response data. The
procedure leading to the choice of parameters to be updated was discussed and detailed for
the IT case, showing in particular that not all parameters can be updated. The underlying
principles of perturbation and reanalysis approaches were analyzed, and applications to the
IT case showed that the normal mode model reanalysis leads to the most accurate
predictions. The use of static correction modes in the reanalysis approach has been
discussed. The update of the IT model using a new algorithm, based on the minimization of
the logLS cost function and the use of reanalyzed models, was detailed. Finally, the
uniqueness and validity of the update results and the influence damping were discussed for
the IT case.
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Chapter V

Experimental/Analytical Predictive Models

The experimental models identified in Chapter III are limited to the tested actuator/sensor
and system cenfiguration, so that the only predictions that can be made are those linked to
these loops (e.g. closing feedback loops using the test sensors and actuators). Analytical
FE models allow all the predictions of interest, but lack the accuracy of identification
results. This chapter will focus on combining the advantages of these two approaches to
create hybrid experimental/analytical models.

The reanalysis approach, presented in section 4.3.3, showed that truncated modal
models could be used to accurately predict the response of non-tested system
configurations (i.e. modification of sensor/actuator architecture, addition of damping
treatments, modification of the mass and stiffness properties). However, most of these
predictions can not be obtained with experimental models, because the modeshapes are
only known at the tested sensor and actuator locations. To resolve this limitation, it is
proposed to use experimental normal modeshapes that are expanded using the solution of
the undamped FE model (section 4.1.1). In section 5.1, the creation of such models is
detailed, and experimental and analytical evaluations of the accuracy obtaincd are discussed
for the Interferometer Testbed (IT).

The truncated normal mode models also allow a good description of the model
uncertainty, capturing in particular the effects on non-proportional damping and high modal
densities. This description is analyzed in section 5.2, using a two-mode example for a
qualitative analysis and the case of the Interferometer Testbed (IT) for quantitative results.

5.1. EXPERIMENTAL/ANALYTICAL PREDICTIVE MODELS

The construction of hybrid (i.e. using both experimental and analytical results)
predictive models is first introduced in section 5.1.1. Then, to demonstrate the validity of
the approach, analytical (in section 5.1.2) and experimental (in section 5.1.3) examples
derived from the IT case are detailed.
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5.1.1. CONSTRUCTION OF EXPERIMENTAL/ANALYTICAL PREDICTIVE
MOBDELS

After the finite element model update (see Chapter IV), it is known that the agreement
of modal frequencies and normal shapes is relatively good (although non-negligible errors
remain). It thus becomes useful to do a final “complete update” of the analytical normal
mode model much in the way that complete matrix corrections where first introduced for
finite element update problems (see Refs. [weil, ber2, ber4, ber6, kab1, barl], etc.). This
update is done on the damping representation, the normal mode frequencies, and the
normal modeshapes.

As discussed in section 2.2.3 and demonstrated in section 3.3, the truncated non-
proportional viscous damping matrix allows an accurate representation of complex damping
mechanisms at a system level. For an undamped analytical normal mode model, one can
therefore construct a damping model by simply using the estimated damping I" from a
global system test. This estimate can be constructed:

- assuming proportional damping and using the damping ratios of estimated poles (I"is
then diagonal with each term of the form 2{w; where ; is the damping ratio of the
pole) or

- using a full identified damping matrix I" without the assumption of proportional
damping. (Note that a significant contribution of this research is to allow the
identification of a non-proportional damping matrix as seen in section 3.3).

For modes that are not (or not accurately) measured, but need to be kept for predictions
(such as the static correction modes and other dynamic modes), arbitrary values such as the
mean damping ratio of the measured poles can be used effectively. As discussed in section
2.2.3, the damping coupling terms (non-proportional damping) with the accurate dynamic
modes of the model should be set to zero, since their effects cannot be properly
characterized and are generally small enough to be neglected.

The second step uses measured modal frequencies instead of the less accurate analytical
values. As for the damping, the unmeasured modal frequencies (or those that cannot be
correlated with the experiment) are kept unchanged.

The third and final step addresses the modeshapes. One could obviously use the
analytic modeshapes, but slightly better predictions can be made using the expanded
modeshapes introduced in section 4.1.1.
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These updatc steps lead to a truncated modal model of the form
Ip+Top+Qcp= ¢ bu

5.1
Y =CcPcP

which uses:

- an experimental modal stiffness matrix £ (diagonal), which has the measured normal
frequencies squared for the modes in the model bandwidth and other somewhat
arbitrary frequencies for other appended modes needed for predictions.

- an experimental modal damping matrix IT : either the diagonal matrix 2{aj; (with
measured pole damping ratios) if proportional damping is assumed, or the identified
full matrix. Somewhat arbitrary terms for correction modes (average damping ratio
for additional dynamic modes, or critical damping for static modes).

- a set of expanded modeshapes @ (mixed experimental/analytical) defined at all the FE
DOFs corresponding to the identified normal modes and the other correction modes.

- analytic input and output shape matrices (c. and b.) derived from the FE geometry
and actuator/sensor calibration.

With the model (5.1), the response of untested loops can be predicted by defining the
corresponding analytical input b and output ¢, shape matrices (see the example in section
5.1.2).

The system matrices have been implicitly updated by using experimental values, so that
more accurate results are expected than with the nominal model. Since the updated full
order model is not known, modifications of the mass, damping, and stiffness properties
cannot be incorporated directly. However, their effects can be predicted using a model
reanalysis (first introduced in section 4.3.3) as follows.

For system modifications AM, AC, AK described in the initial full order FE DOF
system, reduced mass Apu=@¢rAM¢., damping A =@.AC@., and stiffness
AQ = ¢ AK ¢, modifications are defined and can be added to the reduced system
equations (5.1) to obtain a prediction of the modified system response (see the examples in
section 5.1.2)

(I+Ap)p+(Te+ADN)p+ (2. + AQ)p = ¢, bou
y=cccp

(5.2)

which can be used in this form or transformed to the new modal coordinates of the
modified system (model of the form (5.1)).
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The set of expanded modeshapes ¢ can be complemented by adding other purely
analytical modeshapes (modes beyond the experimental model bandwidth for example). A
limitation however appears if static correction modes are needed. As presented in section
2.2.2, static correction modes correspond to the residual static response after subtraction of
the static effects of retained dynamic modes. Static correction modes for a hybrid model
should thus be the residual static response after subtraction of the effects of the true
modeshapes (rather than the analytical ones), and practical ways of obtaining such vectors
could be the object of further research (it will be shown in section 5.1.3, that a direct use of
the analytical static correction mode may not lead to accurate resuits).

5.1.2. THEORETICAL EVALUATION OF THE HYBRID MODEL VALIDITY

Non-tested sensor actuator architectures, mass/stiffness modifications, and damping
augmentation modifications are changes to the system that should be predicted by a hybrid
model. To demonstrate the ability of hybrid models to make such predictions with no
interference from other errors, a hybrid was created using an early version of the IT FE
model (before the mass and stiffness update) as the analytic model and the frequencies and
modal observabilities (at the 27 non-collocated sensors of the modal test) of the updated FE
model as the pseudo-experimental part.

This hybrid model uses

- the exact proportional damping model

- the exact modal frequencies (of the recent FE model)

- modeshapes geometrically expanded (equation (4.7) in section 4.1.1) with the full

modeshapes of the old FE model and the exact modal observabilities (of the recent FE
model).

A first evaluation of the hybrid model quality is linked to the accuracy of the expanded
modeshapes. To analyze this accuracy, the modal controllabilities for the shaker location on
leg V were predicted using the expanded modeshapes. As shown in Figure 5.1, the hybrid
model predictions of the modal controllabilities (based on the expanded modechapes) are
almost indistinguishable from the true controllabilities. In fact, the overall open-loop model
agreement is extremely good (using the usual logLS cost function on the 28 transfer
functions of the modal test, the error made by the hybrid model is 0.5 10+3 versus 8.8 10*?
for the initial FE model).

As the accuracy of initial modeshapes used for the expansion can generally not be
ascertained without a very accurate FE model, the refinement and parametric update of FE
models was discussed in Chapter IV. However, if before the update residual modeshape
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errors made in the FE model are mostly related to frequencies, the hybrid model predictions
using the modeshapes of a somewhat inaccurate model will still be accurate. For the case of
the IT, it can thus be verified that the hybrid models using different versions of the FE
model (initial, with update link stiffness, with updated plate mass and link stiffness) are
almost identical.

Controllability

[}
o
[S=Y

5
Mode #

Figure 5.1: Comparison of the first 9 modal controllabilities ¢,.Tb for the leg V shaker
location. (—) “true” FE model, (---) initial FE model, (-—-) hybrid model.

For many controlled structures applications, one adds to the base structure damping
treatments (such as the Honeywell D-strut used for the IT) whose effects must be predicted
accurately for a good design of the damping treatment. A simple description of the D-strut
can be obtained using displacement and velocity feedback (see Ref. [and1]). For a
measurement y of the relative axial extension of a standard strut, the effect of the D-strut
can be described as a relative force feedback of the form

F=—k,y - kpy (5.3)

where for the present case kp=-6.8 10*6 (which corresponds to the fact that the D-strut is
less stiff than the regular struts), and k,=1.9 10*5 (which models the dissipation in the
D-strut).

The prediction of the response for the hybrid model thus takes the form

I7 + [r c~ ¢c1bc:kvcc:¢c ]f + [-Qc - ¢crbcskpccs¢c ]" = ¢crbcu

Y =cCchcr

(5.4)
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where b, is the input shape function for the relative axial force input and cc, the output
shape function for the relative displacement measurement at the considered location (note
that b, = c,).

In the analysis presented below, two cases will be considered: k=0 and k,=1.9 10*5 to
consider in the damping properties (damping augmentation) k,=-11.2 10*6 and k,=0, to
consider a change in the stiffness properties (broken strut).

For each case two series of hybrid models are considered: with just 26 modes and 26
modes + a static correction mode (added to obtain a statically correct model for the axial
relative force input on the strut). For the two series of models (26 and 26+1 modes), partial
updates are also considered to determine the influence of different parameters. The different
columns of Tables 5.1 and 5.2, thus correspond to the pure FE model, a model with
updated modal observabilities and controllabilities (derived from expanded modeshapes
rather than FE modeshapes), a model with the FE modeshapes but updated frequencies, a
model with expanded modeshapes and updated frequencies but a reduced damping matrix
computed using the FE modeshapes, and finally the fully update hybrid presented in
section 5.1.1.

As a first case, velocity feedback (damping modification) is considered assuming k,=0
and k,=1.9 10*3. (Strut 601 just behind plate B (see the appendix) was used, because it is
a high strain location where the damping effects are maximized)

Table 5.1: Damping modification. Measures of overall accuracy (logLS cost) for FE
and hybrid models with combinaticns of updated modal observabilities
c¢, controllabilities ¢"b, frequencies £, and damping perturbation Al

Type of model ’ FE model l Obs. Cont. | Freq. Obs. Cont. | Qbs. Cont.

Freq. Freq. Pert.
26 flexible modes 9.41 103 | 7.01 10" | 2.94 10" | 0.70 10" | 0.61 10*°
26 flex. + 1 static 9.44 103 | 7.00 10" | 2.90 103 | 0.69 10" | 0.65 10*3

As shown in Table 5.1, predictions show an extremely significant improvement for
both series of models as more elements of the hybrid model are updated. A reduction of the
logLS cost by a factor of 2 would already imply a very significant reduction of the model
error and a factor of 15 is obtained for the fully updated hybrid model. Furthermore, the
partial update of only some of the model properties also improves the predictions, although
not as much as the complete update used to generate the hybrid model proposed in section
5.1.1.
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As a second case, displacement feedback (stiffness modification) is considered
assuming k,=-11.2 106 and k,=0 (which corresponds to a broken strut). (The results
shown assume that strut 7143 on leg IV (see the appendix) has no stiffness, but do not
introduce a damping modification). (This stiffness modification is representative of the
analysis of the position feedback term in (5.3), but the need to use a static mode is smaller
for the D-strut stiffness decrease, so that a broken strut was preferred for this example).

Table 5.2: Broken strut. Measures of overall accuracy (logLS cost) for FE and
hybrid models with combinations of updated modal observabilities c¢,
controllabilities ¢’b, frequencies £2., and stiffness perturbation A£2,..

Type of model FE model | Obs. Cont. | Freq. Obs. Cont. | Obs. Cont.

Freq. Freq. Pert.
26 flexible modes 1.52 10" | 1.47 10** | 1.05 10" | 1.06 10" | 0.95 10**
26 flex. + 1 static 1.25 10** | 1.21 10** | 1.40 10" | 1.04 10** | 1.27 10**

In Table 5.2, the first series of predictions for models created using 26 flexible modes
(of the inaccurate FE model) shows that the error can be somewhat reduced by using the
proposed hybrid model (or even by only updating some of the properties). The relatively
large error obtained for the full hybrid model can be easily explained by the fact a static
correction mode (see sections 2.2.2 and 4.3.3) is necessary to correctly predict the
response after a large stiffness modification such as a broken strut (in particular the
predicted modal frequencies remain too high without a static correction mode).

The construction of the hybrid model, introduced in section 5.1, does not provide a
proper way of defining static correction modes, since the corresponding complete stiffness
matrix is unknown. The second line of Table 5.2 assumes that the static correction mode
generated from the FE model can also be used with expanded experimental modeshapes,
and the poor results obtained clearly show that this is not a valid option. Without further
developments that could be the object of further research, the hybrid models introduced
here are therefore limited to modifications that do not necessitate the use of static
corrections.

5.1.3. PREDICTIONS FOR THE TEST CONFIGURATION OF THE
INTERFEROMETER TESTBED

For predictions using a hybrid experimental/analytical model, the important analytical
quantity is the accuracy of the FE modeshape predictions. The modeshape accuracy can
only be verified a posteriori from identification results. For the best FE model, the modal
observabilities, at the 28 sensor locations of the IT modal test, are compared in Figure 5.2
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with an average of the identified modal observabilities. The figure clearly indicates a
relatively good initial agreement between the prediction and the measurement.

Mode # 1 Mode # 2 Mode # 3
003 o1 o1
' 0.05
005 0
0.1 ‘ 0
015 01 0.05
10 20 10 20 10 20
Mode # 4 Mode # 5
0.1 o 0.05
0 ' 4 0
0 ‘ -0.05
01 0.1
0.1 0.15
10 20 10 20

0.1 0.1
0 0
-0.1 -0.1

10 20

Figure 5.2: For modes j={I--9}, comparison of the scaled normal mode
observabilities c¢¢; (in meters, y-axis in the figures) at the 28 sensors of
the modal test (x-axis in the figures). (—) mean identified. (---) best FE
model.

As shown in figure 5.3, the expanded modeshapes of the hybrid model, which
combine these FE modeshapes and the measured observabilities, lead to relative errors that
are significantly lower than those done by the FE model. (The mean value for 28 sensors
and 9 modes of c¢FE/ @, is three times higher than the mean value of c¢,, / (E}T) -
Furthermore, the errors made by the hybrid modeshapes are for most sensors below the
levels of variation between the different identification results.
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Figure 5.3: Average (for modes j={I---9}) percent error in modal observabilities at
the 27 sensor locations. (—) o, 0 /(c—q)_l,_sample standard deviation for
the 6 different ID results. (---S é¢FE/ (cg), for best FE model. (-—)
¢ /(c9), for hybrid model.

The improvement of the predictions (when using expanded modeshapes rather than the
FE modeshapes) comes from the fact that the FE modeshapes span the correct subspace but
tend to be combination of the true modes, a problem which is corrected using the
experimental modeshape expansion. For example, modes 6 and 7 are extremely close in
frequency (36.1 and 36.5 Hz), so that small FE modeling errors lead relatively large errors
clearly apparent in Figure 5.2. These errors are due to a significant recombination of the
two true modes and a rotation by 22° within the constant subspace of the two initial modes
(see Ref. [bal6]) reduces the mean error made on the observabilities by a facior of 3
(leading to errors similar to those seen for the other modes). (This large effect of a small
error in a structure with a high modal density is analyzed for a simple two-mode example in
section 5.2.2).
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A first use of a hybrid model is to predict the response of the same system but for a
different sensor/actuator configuration. To demonstrate the ability of the IT hybrid model to
make such predictions, an hybrid model was created without using the leg V test. With this
hybrid model, the untested modal controllabilities ¢b linked to the test on leg V were
computed and the frequency response functions oi that test were generated. (It was chosen
to predict the response of one of the tests to allow a comparison with test data).

As an example of the accuracy achieved, Figure 5.4 shows how this prediction
correctly captures the system response near modes 6 and 7. Clearly, the hybrid model
matches both the magnitude and phase extremely well, even though the underlying FE
model is much less accurate and non-proportional damping has a significant influence on
this part of the transfer function.

-90

Magqnitude (dB)

32 33 34 35 36 37 38 39 40 41 42
Frequency (Hz)

Phase

32 33 34 35 36 37 58 39 40 41 42
Frequency (liz)

Figure 5.4: Comparison of leg V accelerometer 1 transfer functions. (—) Measured,
(---) hybrid model, (-—-) proportionally damped hybrid model, (--) FE
model.

The comparison of a single transfer function does not however ascertain the overall
validity at all possible measurement points. As an average measure of the prediction
accuracy at different points of the structure, the logLS cost function (3.11) and the mean
error of RMS prediction (average of the difference between the predicted and the
corresponding measured RMS responses) for 1200 points linearly spaced in the 20-50 Hz
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frequency band and the 28 measured transfer functions were computed and are shown in
Table 5.3.

Table 5.3: Measures of overall accuracy for different predictive models.

Type of model logLS cost Mean error of
RMS prediction
Hybrid model 1.35 10* 0.7 %
Hybrid model, proportionally damped 1.68 10*3 11.7 %
Finite element model, proportionally damped 2.41 10%3 171 %
Identified normal mode model, non-prop. damped 1.87 103 0.5 %

From Table 5.3, it clearly appears that the use of the hybrid model instead of the FE
model significantly improves the accuracy of predictions as measured by the two different
cost functions. Furthermore, the use of a non-proportional damping model plays an
important role, particularly for predictions of RMS responses (which are critical for many
studies such as damper placements [and2]).

The RMS responses are extremely well predicted by the identified normal mode model,
which is not surprising as this model is identified using a quadratic criterion on the transfer
functions which is strongly related to the RMS prediction. The logLS error for the
identified normal mode model, however, is worse than that made with the hybrid models.
The improvement obtained with hybrid models can easily be related to the fact that they
incorporate FE predictions for higher frequency modes (particularly mode 10 at 54 Hz)
which have a significant impact on the log magnitude of the transfer function above 40 Hz
but little on the RMS, since the amplitudes are very small in the 40-50 Hz region.

As will be shown in section 5.2.2, partial reassemblies of the testbed have led to a
significant evolution of the system dynamics after the complete modal test used in this
work. Predictions of tested structural modifications (e.g. addition of D-struts, removal of a
strut) were thus not very accurate, but the quality of agreement for analytical tests, such as
those presented in section 5.1.2, indicate that this was mostly due to the evolution of the
testbed dynamics.

5.2. ERROR AND UNCERTAINTY

Uncertainty is an estimated measure or bound on how much error can exist in a
prediction of the response. As seen in Chaptiers III and IV, measures of model error are
defined trough choices in two main areas: the measured data and the cost function used to
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compare data and predictions. Thus, to different choices of data and cost functions
correspond different definitions of the model uncertainty, which may or may not be
appropriate for other purposes, such as robust controller synthesis.

The predictions of the models considered here should not, even for a perfect model,
reproduce direct time domain measurements on the real system. Noise characteristics, high
frequency dynamics, non-linearities, and time-varying parameters have not been included
in the models and should thus appear as prediction errors.

Noises and high frequency unmodeled dynamics can be easily treated using a transfer
function representation of the system response. For the structural systems considered here,
where noise levels are low, an almost noise-free estimate of the frequency domain response
can be obtained under the realistic assumption that noises and inputs are uncorrelated (see
section 3.1.1). High frequency unmodeled dynamics can be addressed in more detail using
the methods developed for control applications [ath1], or can be simply truncated by
considering frequency response functions in the frequency range of the model. (Note that
this truncation also applies to additional model dynamics (such as static correction modes)
used to obtain predictions over a larger parametric range, see section 4.3).

Non-linearities and parametric time-variations cannot be properly treated, since transfer
functions are only defined for linear time-invariant systems. The identification and
linearization of time-varying weakly non-linear systems using linear frequency response
function estimators and linear identification techniques is an interesting subject (see [0zgl]
for example), but too broad for the scope of the present work.

Assuming that the representation of the system by transfer functions is valid and that
the important properties of the system are captured by a comparison in the bandwidth
where the model is accurate, a description of parametric model uncertainty based on the
hybrid model form (5.1)-(5.2) will be introduced in section 5.2.1. In section 5.2.2, using a
simple two-mode example, the proposed description of uncertainty will be shown to
efficiently capture effects seen in structures with non-proportional damping and high modal
densities. Finally in section 5.2.3, a quantitative evaluation of uncertainty in the IT model
will be discussed.

5.2.1. CHOICE OF A PARAMETRIZATION TO DESCRIBE UNCERTAINTY

Errors can be described in any parametrization, since exact transformations exist
between different parametrizations. However, uncertainties describe sets of models within
which the actual system is “guaranteed” to be (or “likely” to be for statistical descriptions of

120



the set). Simple descriptions of sets in a given parametrization do not usually translate into
simple descriptions for other parametrizations. Thus, as uncertainty descriptions are only
useful if they are simple, it is important to determine a description that is both simple and
does not introduce to much conservatism.

The truncated normal mode form, or the equivalent hybrid model form (5.1)-(5.2), lead
to a natural description of uncertainty, in the following form

(Np+ (e +ADN)p+ (2 +AQ)p=(¢."be + Ab)u

(5.9)
y= (Cc¢c + AC)P

where uncertainties can appear as parameter errors cn the truncated modal damping AT,
stiffness AS2, controllabilities Ab, and observabilities Ac. The parametrization of
uncertainty (5.5) is appropriate for different reasons.

First, as shown in section 2.2., truncated normal mode models are minimal
representations of the system properties in the considered bandwidth. Clearly, some
parameters of an over-parametrized model could be arbitrarily uncertain, since they do not
represent physical and measurable properties of the system. (This, in particular, is a good
reason not to use FE design parameters to describe uncertainties, since some design
parameters may have little or no influence on the system response in the frequency range
where the FE model is meaningful).

Second, the normal mode description appropriately distinguishes the contributions of
the mass and stiffness distribution (which can be established with high accuracy), from
those of damping mechanisms (fully described by the modal damping matrix I'), which are
difficult to measure and are thus quite uncertain.

The third and perhaps the most important reason is that, for an appropriate definition of
the states p in the parametrization (5.5), small modifications of the system only result in
small parameter changes, or, in other words, that small errors can be represented by small
uncertainties. The proper choice of states is still an open issue, but the following comments
can be done.

If, as done in perturbation analyzes (see section 4.3), the states p are chosen to be the
normal mode states of the true system, by definition of these states AL2 would be diagonal.
This choice clearly minimizes the number of uncertain parameters but can induce
unnecessarily large uncertainties in the modal controllability Ab, and modal observability
Ac. This large sensitivity of the system normal modes to small system changes has been
well studied as a phenomenon called localization (e.g. [lev2, chel]), which can be shown
[bal6] to appear for any pair of modes that are close in frequency when compared to the
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perturbations. An example will be treated in section 5.2.2 and the importance of this
phenomena for the IT will be shown in section 5.2.3.

The unnecessary sensitivity of the modal observability and controllability matrices
obtained with perturbation analyses can theoretically be avoided using a fixed definition for
the states p (however, work is needed to define how this could be done to account for
experimental errors). In this case, uncertainties or modifications on the system dynamics
appear as uncertainties (AI" and AQ2) in the modal damping and stiffness matrices, and
uncertainties in the sensor actuator architecture as uncertainties (4b and Ac) on the modal
controllability and observability matrices. Small uncertainties on the system dissipation will
be represented as small A’ matrices. Small uncertainties on the mass and stiffness errors as
small but generally full A2 matrices (note that uncertainties on the mass will also generate
uncertainties on the b and ¢ matrices). Small uncertainties in the sensor/actuator architecture
will be represented as small Ab and Ac matrices.

5.2.2. QUALITATIVE EFFECTS OF ERROR. A TWO-MODE EXAMPLE.

The advantage of using the proposed description of uncertainty (5.5) is that it gives a
good understanding of how small modifications of the system can lead to large uncertainty
descriptions in some parametrizations. The following two-mode example will be used to
highlight these properties

1 0 0 1 pi| [0

p, 0 0 1 p; 0

P .|t u

17 -1 —0.04 P 1

D> -1.21 —0.022 p, 1 (5.6)

Y, 1 1
Y |=| 2 -1 l:pl:I
Y3 -2 0 &
The nominal system (5.6) has two proportionally damped modes with frequencies at /

and /.1, and respectively 2% and 1% damping. The single actuator excites both modes in
the same way, and three sensors measure the response at three different locations.

A first point of interest is the analysis of the influence of non-proportional damping.
The following example will show how for a system with constant poles and complex
modes, significant variations can be obtained of the complex modes, the damping of zeros
and the overall RMS response. To demonstrate this influence the damping coefficient I,
was defined as an uncertainty coupling the two-modes of the nominally proportionally
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damped model (5.6). To obtain a clearer analysis of the results, it was arbitrarily chosen to
introduce four other uncertain parameters 81, 613, 6€2,, and 62,

P, 0 0 1 p,1 [0
p|_|_ 0 0 1 p2| [0 y
p, | |-1+82, —0.04+ T, r, ol 11
P» -1.21+6Q, r, —0.022+ 6L, || p,| |1 (5.7)
¥, 1 1
ye|=| 2 -1 [” ]
¥, 20 P>

which were modified so as to keep the location of the system poles invariant. In this case,
one thus has a perfect knowledge of the normal modes and the system poles, but imperfect
knowledge of the spatial distribution of damping mechanisms (which appears as the
possibility of non-proportional damping).

Figure 5.5 summarizes the different ways of looking at the possible system responses
for different levels of non-proportional damping (i.e. values of the coupling coefficient
I'};). For passive structures, a physical constraint is that the matrix I" be positive definite,
so that the possible variations of I, are limited to the interval I'), €[-0.3,0.3].

In Figure 5.5a is shown the collocated transfer function y,/u in the extreme possible
cases. The proportional damping case appears as an average between two extreme cases
where non-proportional damping minimizes dissipation in the structure leading to an
undamped zero, or maximizes dissipation leading to a significantly damped zero.

The normal modes are invariant by construction of the example. The scaled complex
mode observabilities, shown in Figure 5.5b, indicate that non-proportional damping results
in phase and magnitude variations from the line of observabilities found in the
proportionally damped case (0) (where the complex modes are proportional to the normal
modes as seen in section 2.1.3).

As shown in Figure 5.5¢, keeping poles invariant does lead to variations of the normal
mode frequencies but these are very small (less than 0.1% variation on the frequency (not
the frequency squared)). Note, however, that variations of identified pole frequencies of
the order of 0.2% were found to have non-negligible effects on the identification process
for the IT case (see section 3.4). It may thus be important to distinguish pole and normal
mode frequencies for systems with significant non-proportional damping levels.

Finally, non-proportional damping can induce large variations in the RMS response of
different transfer functions (in Figure 5.5d for the collocated transfer function y,/u, the
predicted RMS can vary by almost 10%).
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Figure 5.5: Variations linked to non-proportional damping, for a case with constant

poles and constant normal modes.

a) Collocated transfer function y, /u for (—) maximum dissipation, (---)
proportional damping, () minimum dissipation.

b) Complex residues cy; for (+) maximum dissipation, (0) proportional
damping, (x) minimum dissipation.

c) Relative variations of the normal mode frequencies (—) 1/5.(2, /1 and
() /82, /1.

d) Variations of RMS for the collocated transfer function y, /u.

Other studies of non-proportional damping (e.g. [par2, bow1]) have shown that the
influence of non-proportional damping increases with damping (and modal density which
will not be shown here). To demonstrate this trend for the two-mode example considered
here, the maximum variations in the collocated transfer function y,/u were computed for
increasing levels of damping. Using the damping ratio { of the first pole as a parameter, the
following damping matrix was used:

Fe I:—ZC(I) +6r,

(5.8)
rlz

FIZ
—22¢)(1.1)+ 51‘,]
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where I'}, was free to vary within the range where I'is positive definite, and for each value
of { the coefficients 0I',, I, were adjusted to keep the pole constants.
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Figure 5.6: Possible RMS difference relative to the proportional damping level (i.e.
I',, =0) linked to non-proportional damping for a system with constant
normal modes as a function of the average pole damping (see definition of
the damping matrix as a function of {'in (5.8)).

As shown in Figure 5.6, the maximum possible influence of non-proportional damping
increases almost exponentially with the damping level. As the pole damping increases, the
possible interval where I'j, is such that I' is positive definite also increases, so that the
difference between the possible extreme cases becomes more important. Thus, for damping
levels of some poles near 2%, the proportional damping estimate can be far from a
conservative measure of the actual dissipation in the system.

It must be noted that these results somewhat depend on the chosen transfer function. As
appeared in Figure 5.5a., non-proportional damping mostly influences the damping of
zeros, and the overall influence of zeros on the RMS resporse is strongly dependent on the
sensor and actuator locations in the structure. The accuracy of a proportional damping
model will thus depend on the considered sensor/actuator architecture, on the damping
levels, and to a certain extent on the frequency content of inputs used.
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A second case of interest is the analysis of small errors in the undamped system
dynamics. The following example will demonstrate that the definition of the states is a key
to obtain non-conservative descriptions of uncertainty in the model form (5.5).

In this example, stiffness errors were represented in a model of the form (5.5) as an
error matrix AL added to the nominally diagonal modal stiffness matri:c. A first type of
error represented by a A€2 matrix is simply linked to modal frequencies and induce
modifications of the system response which are generally well understood (shift of the
resonance and of the zeros to some extent). A second type of error is the apparition of
coupling terms between states modeled as uncoupled (off-diagonal terms in the matrix 642).
This type of coupling was considered for the two-mode example of this section, leading to

the following model:

b 0 0 1 D, 0

p; 0 0 ' I\ p 0

. |= |t U

D -1+ 6%, 642, I, =I'p || p, 1

D 092, -121+6Q,|-I, -I, | p, 1 (5.9)
Y 11
e |=| 2 -1 [”]
Y3 -2 0 &

where the coupling is described by the coefficient 612,,, the two coefficients 6£2,, 6¢2, are
adjusted so as to keep the mode frequencies invariant, and the damping matrix I'is adjusted
to obtain a proportionally damped system for all values of &€2.

A coupling term of the order of 0.1 times the diagonal term is considered small for most
structural dynamic applications (orthogonality conditions (4.13) etc.), so the example was
treated for 842, € [-0.1,0.1]. Different perspectives on the response predicted by the
uncertain model are shown in Figure 5.7.

The magnitude and phase of the non-collocated transfer function y,/u (shown in
Figure 5.7a and 5.7b) indicate that what would be considered small errors in the stiffness
lead to significant variations of the response as measured by this sensor. Magnitude
changes are important because there is a pole/zero flip (the order of the zero and the second
pole changes, see Figure 5.7c), and phase errors are close to 180° because the zero
becomes non-minimum phase, and the pole and zero flip.

The normal modeshapes are also very sensitive to these small modifications of the
system stiffness properties. As shown in Figure 5.7d, the observabilities of mode 2 have
both large variations and sign changes. The invariant property in this case is the overall
observability and controllability of the subspace spanned by the two modes, as clearly
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apparent in the system equations (5.9), where the modal controllability and observability
matrices are kept unchanged. If the states of the model (5.5) were chosen to be the true
modal states, the modeshape variations would need to be completely included in the Ab and
Ac matrices, which would then be unnecessarily large (and introduce conservatism if the
variations are assumed independent). The uncertainty description (5.9) using constant
states and a A2 matrix, appropriately shows that the actual system properties are not
subject to large variations.
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Figure 5.7: Variations linked to a small stiffness error (with proportional damping)
a) Non-collocated transfer function magnitude y,/u for (—) 602,,=-0.1,
(---) 602,,=0, (-+) 6£2,,=0.1
b) Non-collocated transfer function phase y,/u for (—) 6£2,,=-0.1,
(---) 6£2,,=0, (-+) 822,,=0.1
¢) Locations of (+) poles and (0) zero for the non-collocated transfer
function y,/u
d) Normal mode observability at the three sensors for (x) 6£2,,=-0.1
(0) 6£2,,=0, (+) 62,,=0.1
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A simple parametric analysis for two mode system would show that large effects of
small off-diagonal terms become significant if the off-diagonal terms are of the order of the
=2, - ;). The
importance of an appropriate choice of state in the parametrization (5.5) therefore increases
with the modal density.

Ho wever, it can be shown [bal6] that for sufficient modal overlap (half power

difference between the corresponding diagonal terms (A€, ;.4

bandwidth of each pole larger than the frequency separation of the two poles) the transfer
functions would in fact become insensitive to the error made on the stiffness. Therefore,
above a certain modal density (which depends on the level of damping) the average
characteristics of the transfer function can be well known and the choice of states stops
being an issue.

5.2.3. QUANTITATIVE EVALUATION OF MODEL UNCERTAINTY FOR THE
INTERFEROMETER TESTBED

As pointed out in section 3.4, the only available method to evaluate uncertainty is to
determine the variations of parameters obtained for different tests of the same system.
Clearly such studies are only meaningful if the estimation process is unbiased, a strong
condition that must generally be assumed.

Noise models provide a measure of the uncertainty in the measured data, which can be
used to generate parametric uncertainty models. For the case of the IT, such studies done in
section 3.4 led to the conclusion that uncertainties in the data of a given test had less
influence than inconsistencies observed for different tests.

The experimentally identified elements used to construct hybrid models are the normal
mode observabilities, frequencies, and damping matrices, so that uncertainty in the hybrid
model depend on uncertainty in these parameters, and to a lesser extent on errors in the FE
model. Assuming that the variations from test to test, of these measured parameters, are
representative of the maximal variations, the sample means and variances can be used as a
description of the uncertain model set. This section, as a final validation of the IT model,
presents an evaluation of these variations (for the IT case).

To evaluate the variations in modal observabilities (Ac), the means and variances of
these terms were computed at the 27 non-collocated sensors of the modal test. Figure 5.8
shows as solid lines the standard deviations for the identified modal observabilities (as
fractions of the absolute value of the mean modal observabilities). Most of the identified
observabilities have a standard deviation that is no greater that 10% of their mean value,

128



and it can be verified that most of the large standard deviations correspond to small mean
values (which are inherently difficult to identify).
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Figure 5.8: Consistency of the modal test, for modes j={I---9}. (—) sample
standard deviation of the identified modal observabilities c¢; (y-axis,
plotted as a fraction of the amplitude of the mean observability c¢,) at the
27 non-collocated sensor locations (x-axis). (---) relative error made by
the FE model ((C‘ij - c¢j)/57¢;).

For the IT, a 10% uncertainty level for each of the terms of the normal mode modal
observability and controllability matrices thus seems to be a reasonable estimate of the level
of errors that can be expected from identification. The FE model has a much larger error
(shown as the dashed lines in Figure 5.8), but the hybrid model (constructed with the mean
of the identified observability matrices) has an error to the mean observability that is, for
most sensors and modes, below the sample standard deviation. This thus gives a strong
confidence in the validity of the hybrid model.
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Uncertainties in the modal stiffness matrix (A£2 matrix) come from both errors in the
modal frequencies and interaction between close modes (see the example treated in section
5.2.2). As expected, inconsistencies in the identified normal mode frequencies are identical
(almost) to inconsistencies on the pole frequencies shown in Table 3.2 (very low error
levels, below 0.2%). Realistic estimates for the off-diagonal terms of AS2 are difficult to
determine, since these terms depend on the non-uniquely defined choice of states (which
also induces errors the modal observability and controllability matrices).

No generally applicable solution was found to determine these terms, so that only a
measure of the error A2 made by the FE model could be used. This measure was obtained
by computing the stiffness orthogonality condition (4.13) for a set of modes expanded so
that the mass orthogonality condition remains verified (application of the expansion formula
(4.7) with a unitary pseudo-inverse as first proposed in Ref. {smil]). Effects are important
for off-diagonal terms of the order of the difference between two diagonal terms
(A-Qij Bound —
shown in Table 5.3 as fractions of this bound (thus giving non-dimensional evaluation of

(o —'Qﬁl)’ so that results of the stiffness orthogonality computation are

the parameter influence).

Table 5.4: Evaluation of FE model stiffness error off-diagonal terms, as percentage

of the reference levels of significant impact (A£2; g, = I.Q‘.‘. -0 ﬁl).
12.8 23 05 1.1 04 10 06 1.0
12.8 58 24 15 02 05 1.0 0.6
23 5.8 59 16 02 02 24 44
05 24 59 22 1.6 52 1.1 17
1.1 15 1.6 2.2 70 36 1.4 0.7
04 02 02 16 170 16.2 14.3 3.7
1.0 05 02 52 36 16.2 13.7 1.7
06 10 24 1.1 14 14.3 13.7 2.2
1.0 06 44 17 07 37 17 22

The coupling between modes 1-2, 6-7, 7-8, 6-8 are significant, but these are better
indications that the modes of the FE model are linear combinations of the corresponding
true modes, than that the model is inconsistent between the different tests. However, a
conservative uncertainty model would keep terms that are at least a few percent of the
diagonal values. So that in practice, significant effects should be expected for diagonal
terms of the modal stiffness matrix separated by a few percent (e.g. between modes 6 and
7).
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A last point of interest is to evaluate the accuracy of the non-proportional damping
matrix estimation (A’ matrix). Table 5.4 summarizes the main trends that can be derived
from the analysis of the 6 identification results.

Table 5.4: Consistency of the experimentally identified modal damping matrices I
for the first 9 modes of the interferometer testbed.

Mean damping matrix

0.98 -0.02| -0.04| -039| 0.66| -0.14] 0.20] -1.00] -0.87

-0.02| 1.76, 0.13] 0.66] 0.06| -049| -0.85| -1.05] -0.00
-0.04] 0.13| 1.80] -0.06] -0.24| 0.13] 0.75f 1.39] 2.13

-0.39] 0.66| -0.06| 4.68 1.10] -1.08] -0.39| -1.78] 2.46
0.66{ 0.06] -0.24] 1.10] 6.07| -1.69] 0.64| -2.00| -1.41

-0.14| -049]| 0.13] -1.08| -1.69| 11.66] -3.14| 4.11 0.97

0.20{ -0.85| 0.75] -0.39| 0.64| -3.14] 3.54| -0.61 -0.12
-1.00{ -1.05] 1.39] -1.78] -2.00| 4.11] -0.61] 4.56/ 1.07

-0.87| -0.00] 2.13| 246| -1.41]| 097 -0.12 1.07| 12.72

Standard deviation/Mean value in % (terms smaller than 100%)

17.58
6.99 96.78
10.12 56.78
96.78 27.48
7.88] 37.54 63.18
37.54] 12.57] 12.88| 27.56
12.88] 12.20] 34.03
56.78 62.18 | 27.56] 34.03] 9.94| 71.64
71.64| 11.16
% of positive definiteness bound (¥ you = 1/'y‘.‘.yﬁ )
1.4 2.6 | 18.1 | 273 4.0 | 109 | 47.5 | 24.6
1.4 7.1 | 23.0 1.9 | 10.8 | 34.0 | 37.0 0.0
2.6 7.1 2.0 7.3 29 | 29.8 | 48.6 | 44.6
18.1 | 23.0 2.0 20.6 | 14.6 9.5 | 386 | 319
21.3 1.9 7.3 |1 20.6 20.1 | 138 | 38.1 | 16.1
4.0 | 10.8 29 | 146 | 20.1 48.8 | 56.3 8.0
10.9 | 34.0 | 29.8 9.5 | 13.8 | 48.8 15.1 1.8
47.5 | 37.0 | 48.6 | 38.6 | 38.1 | 56.3 | 15.1 14.0
24.6 0.0 | 44.6 | 319 | 16.1 8.0 1.8 | 14.0

The standard deviations show that only a few of the off-diagonal terms are consistently
identified, but not surprisingly the well-identified terms are those with a large mean value,
and particularly the coupling terms between modes 5-6, 6-7, 6-8, and 7-8 (which clearly
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shows that non-proportional damping is an important effeci for this group of modes).
Significantly better consistency would be obtained by eliminating the worst term of the six
tests for each element of I, but a justification for the elimination of these terms (such as a
large sensitivity to measurement noise in the identification process) would be .ieeded and is
not yet available.

The importance of the well-identified non-proportional damping coupling terms can
also be seen in the fact that these terms are significant fractions of the largest possible
values (the values of off-diagonal terms are limited to ¥;; pous = m , as it is known that
the damping imatrix must be positive definite). (Note that the bound argument has no value
for not well-identified terms).

From these results, an appropriate damping uncertainty model AI" could have standard
deviations of 20 % for the diagonal terms and 20% of the /7,7, bound value for the off-
diagonal terms (although this is much harder to justify).

For a final validation of this analysis, 12 transfer functions of the modal test on leg V
were remeasured one year, and many partial truss reassemblies, after the initial modal test.
As shown in Figure 5.9 for one of the transfer functions, the evolution of the structural
response was quite significant. To get a better global characterization of this evolution, ths
two tests were compared using three cost functions (see results in Table 5.4, where for
reference the errors made using the hybrid model are also shown). Using the quadratic cost
and the accuracy of RMS predictions, the evolution of the testbed response seems
significantly larger than the errors made by the hybrid model in the initial case. Using
logLS cost function, which is much more sensitive to errors made on low amplitude
regions of the transfer functions than the other two measures, emphasizes errors on the
zeros by the hybrid model so that the evolution of the testbed seems slightly less important.

Table 5.4:  Global measures of error for the hybrid model and corresponding
evolution of the testbed between 1991 and 1993.

Error measure using 12 transfer functions in the Hybrid model | Measurement in
20-60 Hz range 1993

logLS cost 3.8 10+2 3.3 10+2
mean error in prediction of RMS 0.3 % 13.0 %
quadratic error 0.3 10-8 3.1108

The data of the 1993 test are much more limited than that of the full modal test, so the
accuracy achieved for the identified modeli is not as good. But a rapid assessment of the
evolution of the system characteristics gives an average evolution of the pole locations near
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0.2% (versus a maximum of 0.2% for the initial modal test), an average evolution of
modeshapes of the order of 20 % (versus a conservative estimate of 10% for the modal
test), and an evolution of pole damping ratios around 20 % (versus less than 10% for the
modal test). No reliable estimate of non-proportional damping coefficients could be
obtained as the amount of data available was insufficient.
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Frequency (Hz)
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0095 25 30 35 40 45 50 55 60
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Figure 5.9: Consistency of the modal test. Comparison of a transfer function (leg V
sensor 7) measured in (—) January 1993 and (---) December 1991

5.3. CONCLUSIONS

It was shown that hybrid experimental/analytical models can be created using expanded
experimental modeshapes combined with experimental modal frequencies and an
experimental non-proportional damping matrix. These models allow predictions of the
response for arbitrary sensor/actuator architectures, and, through a model reanalysis, the
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prediction of the system response after mass, damping, and stiffness modifications which
can be described in the full order FE coordinate system. Purely analytical normal modes
can be appended to these models with good accuracy, but solutions to introduce static
corrections are still needed. The validity of hybrid model predictions was demonstrated
using analytical and experimental examples derived from the IT case.

The description of uncertainty in parametric models was addressed. It was shown that
the normal mode model form used for the hybrid models is a good parametrization to
describe uncertainty. The extent of the maximum effects of non-proportional damping were
analyzed, and it was shown that the freedom in defining the model states can lead to
unnecessarily conservative descriptions of uncertainty, particularly for structures with high
modal densities. Finally, as a validation of the IT model, the variations of identified
parameters for different tests have been discussed.
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Chapter VI

Conclusions and Recommendations

6.1. SUMMARY

An integrated methodology for the creation of high accuracy predictive models has been
presented and demonstrated by application to the case of the MIT/SERC interferometer
testbed. The creation of such models implies the simultaneous use of experimental and
analytical models, which must first be created independently and then combined as hybrid
experimental/analytical models.

For lightly damped structures with high modal densities, the complex mode
parametrization must be used to obtain accurate identification results. After the enforcement
of the model properness condition, complex mode modeis can be reparametrized as norral
mode models which allow the separate analysis of undamped dynamics (mass and stiffness
effects) and of non-proportional damping mechanisms.

Analytical FE models are created using a detailed description of the local component
properties and refined to obtain physically significant representations of the local properties
(i.e. models with no analytical limitations). Even for physically significant models, initial
FE models are generally inaccurate, so the parameters of the model must be updated. The
best update method uses component tests, but it is often easier to update parameters using
comparisons of the global model agreement (which can be characterized using identified
modal models or by direct comparison with measured responses). Comparisons of global
system responses do not generally allow the identification all the model parameters, so care
must be taken to update only parameters whose influence can be differentiated from
expected residual errors and from contributions of other unknown parameters.

Combining experimental and analytical results into small hybrid models, better
predictions than those obtained with FE models can be made of arbitrary untested
sensor/actuator configurations, for the nominal system or after known modifications of the
mass, damping and stiffness properties. Model uncertainty can also be characterized both
qualitatively and quantitatively using these models, which appropriately capture the effects
of non-proportional damping and high modal density.
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6.2. CONTRIBUTIONS

New methods have been introduced to identify scaled complex mode modal
observability and controllability matrices. A new algorithm allows a cost-effective and very
accurate identification of complex mode poles and residue matrices. The algorithm
efficiently handles MIMO tests with large numbers of sensors as well as structures with
high modal densities and local modes. The algorithm optimizes solutions found by other
methods and generally allows significant improvements of the models. A new method,
based on the singular value decomposition of the identified residue matrix, leads to a
determination of the modal multiplicity and to accurate scaled estimates of the modal
observability and controllability matrices.

A new method has been introduced to identify non-proportionally damped normal mode
models from complex mode models. The assumption of a truncated non-proportional
modal damping matrix was shown to correspond to a properness condition on the complex
modeshapes. An algorithm to enforce this condition on the complex modes was proposed
and the then exact transformation between the complex and normal mode parametrizations
was detailed. The application of this method to the case of the interferometer testbed led to
the first experimental characterization of non-proportional damping for a relatively complex
structure and demonstrated the effectiveness of the new methods proposed to identify both
complex and normal modes.

A new classification of FE modeling methods was made, clearly indicating how choices
at different levels lead to a given update algorithm. A particular algorithm, combining the
advantages of comparing frequency responses with the log-least-squares cost and using
reduced order predictive modal models, was introduced. The history of its use for the
update of the inter ferometer testbed model was detailed, and allowed an analysis of inherent
limitations of all FE update procedures.

It was then shown how experimental and analytical models can be combined to create
extremely accurate predictive models. These models incorporate the very accurate
experimental description of non-proportional damping and modal frequencies and use
identified modal observabilities to define updated full order modeshapes. Because the
modeshapes are defined at all the FE degrees of freedom, these models can be used to
predict, with much better accuracy than the FE model, the system response at untested
sensors or actuators after arbitrary (but known) mass, damping, or stiffness modifications.
The validity of the approach was demonstrated with experimental and analytical examples
on the interferometer testbed.
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Finally, the description of error in the proposed models was discussed. Effects of
errors in the damping, and mass/stiffness models were analyzed qualitatively for a two
mode example, showing in particular the limits of non-proportional damping effects and the
influence of modal density. Then, for the interferometer testbed, a quantitative evaluation of
the model error was made and led to the conclusion that variations in time of the testbed

properties were of the same order or even greater than errors made with the best model.

6.3. RECOMMENDATIONS

The present work was limited to linear time-invariant symmetric systems. The
extension to asymmetric systems (e.g. systems with aeroelastic coupling or gyroscopic
damping) could be easily done, although the existence of distinct left and right complex
modes (modal controllabilities and observabilities) would lead to more stringent
requirements in terms of number of actuators for the identification of experimental models.
The identification and modeling of weak non-linearities should also be further addressed
considering non-linear models of non-linear components (see Refs. [mas1, webl, kar1]) or
using linear tools to obtain equivalent linear models (see ref. [ozg1]).

The new identification methodology proposed in this work should be extended. The
use of other types of data and other criteria should be considered (as done by Jacques [jac1]
using the logLS cost function or Liu using time domain data). Other optimization
algorithms, using more efficiently the computed gradient information, could be considered
for the few cases where the proposed approach does not give satisfactory results. Finally, a
model optimization in the normal mode form could be useful to improve some results.
Using the sensitivity approach developed in section 3.4, this optimization would also
provide a better evaluation of the sensitivity of identified parameters (in the normal mode
parametrization) to measurement noise and consequently a better analysis of the quality of
results.

Multiple SIMO tests lead to multiple measurements of all the parameters (modal
observabilities, frequencies, and non-diagonal normal mode damping matrix) which can be
used to obtain both better averaged properties and estimates of uncertainty linked to the
identification process. Truly MIMO tests, which were not possible here for purely material
reasons, would allow even more accurate measurements by reducing the inconsistencies
generally present between different SIMO tests. Using MIMO frequency response function
estimators (e.g. ref. [cobi1]) providing completely consistent estimates of the MIMO
transfer function matrix, all the elements of the parametric modal model (poles, complex
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modal observabilities and controllabilities) would have to be adjusted for at least as many
transfer functions as actuators, which should provide much more accurate models.

In the case of the interferometer testbed, uncertainties in the model parameters depend
more on the variations of the system from test to test than on noise in the measurement. As
similar properties could be expected for most structures, approaches using noise models to
determine parametric uncertainty (see section 3.4) may thus only be appropriate to
determine the accuracy of a given identification procedure, but not for other purposes such
as robust control design.

The description of uncertainty defined in this work was chosen because it allows
representation of small physical changes by small uncertainties. The choice of the model
states, however, appeared as an important factor, particularly for structures with high
modal densities (since the size of effects on modes and transfer functicns depends on the
relative size of the physical modifications and the modal frequency separation).
Furthermore, the number of uncertain parameters introduced is too large to be practically
used by current robust controller synthesis methods (see the reviews done efs. [howl,
hag1]). It would thus be more efficient to define measures of the closed-loop robustness
directing the selection dominant parametric uncertainties for which controllers would be
specifically designed.

Theoretically, the determination of a non-proportional damping matrix allows a
characterization of the spatial distribution of damping mechanisms. It should be
investigated whether such studies can be practically done with sufficient precision, but a
spatial characterization of damping, particularly if extended to cases with gyroscopic
damping, could have many analysis and design applications.

For the generation of accurate FE models, the present work has highlighted the
importance of accurate local models. The tools available for analyses of the influence of
local parameters on the global system response exist, but are quite cumbersome to use. An
effort should be made to create FE codes allowing such analyses more easily. The update
of local model parameters using system tests is used because the data is available (such
tests are performed to validate the FE models and usually show discrepancies which the
user tries to correct). The method presented alleviates the difficulties linked to “pairing”
inaccurate modes and allows efficieat computations through the use of the reanalysis
approach. Little work was done on determining the most appropriate optimization strategy.
However, this would only become a major limitation if simultaneous update of large
numbers of parameters was envisioned, which is clearly not realistic since the uniqueness
znd thus the validity of the solution can currently only be demonstrated for cases with few

parameters.
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Appendix
The MIT/SERC Interferometer Testbed

7.1. TESTBED DESCRIPTION

The Interferometer Testbed (IT) (see ref. [blal]) is an integral part of SERC’s research
program in Controlled Structure Technology (CST). This 3.5 meter testbed shown in
Figure 7.1 was designed to capture the essential configuration, physics and performance
metric of an actual high precision observatory spacecraft. The testbed serves as a focus for
a research program on the different phases of controlled structural system design, and
provides a versatile environment for the demonstration and comparison of active and
passive CST developments. In particular, the relevance and effectiveness of the methods
developed in this research was demonstrated using experimental data measured on the IT.

The 3.5 meter naked tetrahedral truss structure was first tested, and the modeling
problems linked to this configuration of the system have been previously addressed in
references [balS, bal4]. The present work considers the phase B testbed, where the four
science plates supporting the laser metrology system for the optical tetrahedron have been
added. In Figure 7.1, the so-called “fourth” vertex (see Figure 7.3 for component names)
supporting the laser source and other measurement optics is in the center (back). The three
other vertices of the optical tetrahedron (called science plates A-C) are placed a. different
positions along the span of the truss legs non-adjacent to the fourth vertex.

The fourth vertex bucket initially contributed significant dynamics around 130 Hz, but
these where pushed at higher frequencies by the addition of two stiffeners, so that the
flexibility of the fourth vertex is not relevant to the presented study of modes in the 20-60
Hz band (the inertia is very important but could be accurately measured).

The science plates are 6.3 mm thick aluminum plates. They are linked to the truss by U-
shaped aluminum elements screwed to the plate and the truss ball joints (three of the screws
are clearly visible in the figure). On the main plate, the mirror assembly (on the right) is
composed of a back plate, stiffened by two “legs” (made of the aluminum tubes used for
the basic truss), which supports a three axis active cat-eye mirror mount (two the
piezoelectric stacks between white plastic screws are visible in the figure) and a triax

accelerometer block (on the back of the plate).
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The mass of the science plates is a significant fraction of the total testbed mass
(approximately 4 % each) and modes in the 20-60 Hz range are very sensitive to errors in
the mass estimate (see section 4.4). The stiffness of in particular the main plate and the
links plate/truss also have a strong influence on the response.

Figure 7.1: The MIT/SERC interferometer testbed.
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Figure 7.2:  Science plate C of the interferometer testbed.

7.2. MODAL TEST OF THE INTERFEROMETER TESTBED

The present work uses experimental data from a modal test performed on the I'T. An
external shaker, suspended from a crane so as to obtain very low shaker resonances and
linked to the truss by a tlexible stinger, was used to test the response. Six tests were
performed with the shaker placed on each of the truss legs (indicated as & in Figure 7.3).
As part of the modal test, the response of 27 accelerometers distributed on the truss
(indicated as @ in Figure 7.3), the force input, and the collocated acceleration (at the stinger
attachment point to the truss) were measured. The same 27 accelerometers were used for
the 6 tests, which allowed, as presented in this thesis, a good correlation of the identified
modeshapes tor the different tests (see Chapter V).

The measurements were obtained using broadband inputs, but it was verified for a few

frequency response functions, that a sine sweep only resulted in minor changes.
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disturbance source

leg I plate A leg Il
leg VI

platc B
plate C_

leg IV : leg V

fourth vertex
leg1 S

Figure 7.3: Configuration of the MIT/SERC interferometer testbed modal test.
® accelerometer locations, A shaker locations. Leg numbering scheme
and science plate names.

7.3. ABOUT THE FINITE ELEMENT MODEL

The FE model of the IT truss uses one beam element per strut with axial stiffness
adjusted to represent both the joint and the actual strut stiffness. As discussed in Refs.
[bal5, bal4], the axial stiffness used (7.77 N/um for the short struts and 11.2 N/um for the
long struts) were derived from independent component tests including the actual joint
flexibility. The test/model agreement for the naked truss was found to be extremely good
with less than 2% error in the frequency prediction for all the modes up to 150 Hz.

The different science components (fourth vertex, three science plates, disturbance
source) were modeled separately with 3 node (18 DOF) plate elements, beam elements to
represent different instruments and concentrated mass/inertia where needed.

Different models are available on SERC’s computer network in the directory
lhome2/interfladina. The subdirectory /plates contains
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- commented .m files with the descriptions (geometry, mass distribution, formatted
input for the ADINA finite element code [adil]) of all the components added to the
bare truss model (fourth vertex, three science plates, disturbance source).

- component models ADINA input name.in and outputr name.out files for verification
of the local models.

After a verification of the validity of the component models (check that the low
frequency modes are not significantly modified by a mesh refinement of the model), the
component models and the truss model were linked using beam elements to connect the
truss and component attachment points.

The latest model is inter5 (the .in file contains the ADINA input, the .out the ASCII
output, the .mat the frequencies and modeshapes in MATLAB format, the _mx.mat the
skyline mass and stiffness matrices, the _mxi.mat the decomposition of the stiffness matrix
for uses in static response computations).

Between inter4 and inter5 the masses of the science plate were corrected and the link
stiffness were adjusted (see section 4.4 for details on this update). inter40 is a version of
inter4 with the initial (very stiff) link stiffness.

The input files are commented, so that any other information can be easily obtained
when scanning the file. For uses of the FE model for predictions of the response, control
design, etc., the Toolbox [bal2] for MATLAB developed as part of this research provides a
complete set of routines.
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