
AN INTERACTIVE DIGITAL IMAGE

PROCESSING SYSTEM

by

GEORGE FAWCETT JR.

Submitted in Partial Fulfillment

of the Requirements for the

Degree of Bachelor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January, 1975

Signature of Author.-
Department of Electrical Engineering, January 25, 1975

Certified by
Thesis Supervisor

Accepted by
Chairman, Departmental Committee on Theses

ARCHIVES

MAY 23 1975)
.r..~..~

AN INTERACTIVE DIGITAL IMAGE PROCESSING SYSTEM_ _ _ _ _ -_ _

by

George Fawcett Jr.

ABSTRACT

An interactive system for processing digital images has
been developed. The images are recorded on magnetic tape
with a two-disensional silicon vidicon photometer.
Distortion corrections and calibrations are described. The
Princeton 801 graphics terminal is presented as the major
I/O device of the system. A command language and an
interpreter for the language are developed. The interactive
environment is implemented on an IBM 360/65 computer system
with several modifications to the operating system.
Finally, an example of a terminal session showing the system
use is presented.

Thesis supervisor:
Thomas B. McCord
Associate Professor of Planetary Physics

2

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Tom McCord,

for his support throughout this project. orking for him for

the last three years has been a pleasurable experience.

There are several people who have helped during this work.

Harvey Baumel, who was the systems programmer at the LNS

computer when this work started, contributed uch of his

time to helping e understand the operating system and how

to modify it. Grant Snellen was instrumental in the initial

installation of the Princeton terminal and helped iron out

its bugs. I an deeply indebted to Paul Kinnucan who has

worked closely with me throughout the entire project. His

programming experience with the batch system and his

suggestions for implementation of the interactive system

were invaluable. Finally, a word of thanks must go to Larry

Petro who made the project possible when he started me

working at ITPAL in 1971.

3

TABLE OF CONTENTS

ABSTRACT 0.............. ... 2
ACKNOWLEDGEMENTS
LIST OF FIGURES

1. INTRODUCTION 0

2. BACKGROUND

2.1 IMAGE PROCESSING

2.2 EXISTING SOFTWARE..............

3. PRINCETON 801 TERMINAL.......

3.1 HARDWARE FEATURES..............

3.2 SOFTWARE SUPPORT

4. COMMAND LANGUAGE..................

4.1 COMMAND LANGUAGE PROCESSOR......

4.2 PROCESSOR ROUTINES... . .0- 0 .0

4.2.1 CONTROL ROUTINES......

4.2.2 PARAMETER PROCESSORS..

4.2.3 COMMON FUNCTIONS......

5. AVAILABLE COMMANDS

5.1 ACTIVE IMAGE FUNCTIONS......

5.2 DISK MAINTENENCE ROUTINES ...

5.3 OTHER COMMANDS

5.4 JUSTIFICATION FOR THE ACTIVE

6. SYSTEM STRUCTURE

6 . 1 IPROCS0

6.2 IMPLEMENTATION OF BREAK

6.3 CONTROL ROUTINE

. .

,. 00

. . .

. 0 .

0.0

a....

.. 0....

6000000

6000060

00....

.0...00

IMAGE.

.00.000

60006.00

.......000...00060660

.0000..

.......0000060

6006060

0006060

0000066

0966000

0066000.000.6000000

.00.0..

600060000000.........

6606000

0066066

0000000.0..66..600....

606000

006660

060606

660060

000000

000666

000000

000000

000060

006666

660006600660

.000.0..............-...

00.00.

.0066..*...*......

......

......

......

.... *.

......

.....

......

*.....

*......

......

4

0007

. . 9

0 9

00014

..018

..18

.. 19
.*20

...21

.*24

.6.28

... 28
06030

06.31

... 31

.. 34

.. 35

... 38
2 1LC

6.4 OTHER ROUTINES

6.5 EXAMPLE..

7. PERFORMANCE AND IMPROVEMENTS....

APPENDICES.

A. OPERATING SYSTEM MODIFICATIONS..

A.1 UNIT CONTROL BLOCK..........

A.2 ATTENTION INTERRUPT HANDLER.

A.3 PL/1 MULTITASKING...........

B. DISPLAY CAPABILITIES

6006o0060

... · · ·...

0006000

..... 40

.............. 41

.............. 50

... .000.0.. 51

.............. 59
* 0066006000.6.55

5

LIST OF FIGURES

1. FLOWCHART OF DISTORTION CALIBRATIONS 11

2. RELATIONSHIPS BEWTEEN COMMAND PROCESSOR ROUTINES22

3. RELATIONSHIPS BETWEEN ACTIVE IMAGE, PERMANENT FILE,

AND ACTIVE IAGE COMMANDS... 29

4. CONTROL STRUCTURE 37

6

CHAPTER 1

INTRODUCTION

A two dimensional silicon vidicon astronomical

photometer(*) has been developed at the M.I.T Planetary

Astronomy Labratory ({ITPAL). It has been in use at the

telescope since August, 1971, primarily for direct

photometric imaging through filters. The vidicon tube, the

heart of the system, consists of an array of photosensitive

silicon diodes. Photons are converted to charge carriers

that discharge the back-biased diodes. After exposure, an

electron beam recharges the diodes creating a current

through the target biasing circuit. This current is the

video signal which is amplified and recorded onto magnetic

tape in digital form.

The signal on tape is a digital image in the form of

intensity versus X-Y coordinates. The image must now be

subjected to distortion corrections, calibrations, and other

reductions, and then displayed in a video format. These

corrections require an image processing system of some sort.

An image processing system has been written that runs as a

(*) Thomas B. McCord and James A. Westphal,
"Two-Dimensional Silicon Vidicon Astronomical Photometer,"
APPLIED OPTICS, Vol. 11, arch 1972, pages 522-526.

Thomas B. McCord and Jeff Bosel, "Silicon Vidicon
Astronomy at MIT", proceedings of the symposium
"Astronomical Observations with Television-Type Sensors", U.
of B.C., Vancouver, May 15-17, 1973.

7

batch job at the LNS computer facility. However the batch

mode of operation is not suited to some of the image

processing done. Therefore, an interactive system was

developed.

This thesis is the result of the work the author has

put into developing the interactive system. The system will

be described and its peculiarities and shortcomings will be

presented. This thesis, like the system, is modular in

structure. Separate chapters are devoted to the major but

logically independent parts of the system. First, the

existing batch system will be presented as it it is

foundation for much of this work. Next, the Princeton

terminal will be described. The command language processor,

which must operate in real time, is described. The commands

themselves are presented next. Finally, the system

components are merged into the total system. There are two

chapters in the appendix. The modifications to the LNS

system to support the interactive system are discribed.

Also, the display capabilities of the Princeton terminal and

features not yet implemented are presented. It is hoped

that this thesis will be helpful to those using the system

and those who continue its developement.

8

CHAPTER 2

BACKGROUND

This chapter is intended as an introduction to the

image processing done at MITPAL and the work preceeding that

of the author. The image processing systems run on the

computer facility at the Labratory for Nuclear Sciences

(LNS) at M.I.T. The LS facility includes an IBM 360/65

computer with 512K bytes of core storage. Attached to the

360 through two selector channels are four 2311 mountable

disk drives, four dual density 2314 disk drives (system

resident), six 2400 tape drives, two 1403 printers, and a

2540 card read/punch. A Princeton 801 graphics terminal

(described in Chapter 3) was added for the interactive

system. The operating system currently running is MFT using

HASP for spooling input and output. There are two user

partitions, presently defined at 158K bytes and 220K bytes.

2. 1 IMAGE PROCESSING

Images are recorded by the Vidicon system as a series

of 12 bit integers. This allows intensity ranges from 0 to

4095. Initially, this format has to be converted to a

format suitable for the 360. Two formats are used, 16 bit

integers and 32 bit floating point numbers. The integer

format conserves space, while the floating point format

preserves precision during operations.

The images are stored on 2311 disk packs during

9

processing. Several disk packs are maintained allowing each

user to keep and operate on his own library of images. The

disk packs contain a directory with pointers to images and

free space, a descriptor segment on each image, and the

images themselves. The images are stored by rows, with each

block of data containg one or two rows, depending on the

format. The standard image consists of 250 - 256 point rows,

though this format is variable. Typically, a disk pack can

store 40 standard size images in floating point format, and

twice as many in integer format. The formats can be freely

intermixed on a disk pack.

The first operation in the image processing is moving

the image from the tape to the disk. The image is real from

the tape, assigned a name, and written onto the disk. The

user can supply up to 256 bytes of information on the image

for the descriptor segment. The image is now ready for

corrections and calibrations.

The first correction done is the subtraction of the

dark field. This is an image taken with the shutter closed.

It is subtracted to compensate for dc bias in the video

circuit and for filament back lighting. Next, a flat field

correction is done. A flat field is an image taken of a

uniformly illuminated field to determine irregularities in

the response of the target and transmission of the filters

across the field. After the dark field is subtracted from

the flat field, the flat field is divided into the data

frame. At this point, the data is converted from integer to

10

floating point format.

Typically, several images are taken of the same object

through different filters, producing images of different

colors. The images can then be ratioed to bring out color

features. The images can then be formatted and written onto

magnetic tape for the scan converter which produces

photographic hard copy. Further processing depends on the

particular data at hand.

I DATA I

J.. FRA 1

*

SUBTRACT
* *

I - I
DARA FIELD

_ _ _

$

I DARK I

I FIELD__
* *

*

I FLAT I
__F______

SUBTRACT
~ I

I FLAT FIELD I

I - I
_DARK FIELD

* DIVIDE*
* *

*

I CORRECTED I

1 DATA____

FIGURE 1

FLOWCHART OF DISTORTIO CALIBRATION S

11

2.2 EXISTING SOFTWARE

An image processing system has been written by Paul

Kinnucan at MITPAL which performs the processing described

above. It runs as a batch job at LNS. The system is a

"black box", usable by nonprogrammers. It reads control

statements from punched card input and performs the

indicated functions. Disk maintenence is done

automaticallly. The batch system, however, is lacking is

some areas. One example is computing image ratios. The

images to be divided must be taken at different times. The

object, therefore, will not appear exactly in the same

relative position on the images. A partial shift of one

image relative to the other must be done in order to perform

the ratio correctly. Finding the correct overlay often

takes several trials. On the batch system, one trial would

consist of running a job, producing a tape for the film

converter, and producing a photograph to see the results.

This is typically a 1/2 day to 1 day delay. If the results

could be seen immediately, then the user's efficiency would

be greatly increased. This long turn around time is the

primary motivation for the interactive system.

The interactive system is logically and physically an

extension of the batch system. The data reduction done is

similar to that of the batch system. In addition, results

can be displayed on the graphics terminal. The data formats

of the two systems are identical to allow the processing of

the same data under both systems. The initial work done on

12

the batch system was carried over into the development of

the interactive system. This includes the disk maintenence

routines and the logic of the image processing routines.

Several interesting new problems arise in the implementation

of the interactive system, however. A new I/O device, the

graphics terminal, must be controlled. Communication

between the user and the system is now done in real time.

The interactive environment itself, allowing the user full

control of the system at all times, must be implemented.

These problems have been dealt with successfully by the

author. The interactive system is presently in use,

although continual modifications and improvements are being

done. The remainder of this thesis describes the major

parts of the interactive system and their operation.

13

CHAPTER 3

PRINCETON 801 TERMINAL

3.1 HARDWARE FEATURES

The Princeton 801 terminal(*) is a state of the art

gray scale terminal featuring a Lithicon storage tube. Data

is written directly onto the storage tube as the display is

being refreshed. A separate set of hardware registers

maintains the cursor position. The cursor is not stored but

is generated directly onto the display. Internal logic

generates characters in three sizes, absolute and relative

vectors, and gray scale. The selective erase mode allows

erasing of any portion of the screen without affecting other

areas.

The internal character set of the Princeton 801 is

ASCII. In text mode, all printable ASCII characters are

displayed. The interpretation of the characters in other

modes depends on the mode. In the vector modes, the

characters are interpreted as coordinate positions or

offsets. In gray scale, characters correspond to intensity

levels. If a character is prefixed with the control

character, it is interpreted as a mode switching command.

The Princeton terminal is connected to the selector

channel via an IBM 2701 Data Adapter. The parallel interface

(*) Princeton Electronics Products, Inc., North
Brunswick, New Jersey.

allows data transmission rates limited only by the rate the

terminal can accept the data. This ranges from 3000

bytes/second for text to 50,000 bytes/second for gray scale

data.

.2 SOFTWARE SUPPORT

A set of basic level I/O routines had to be written for

the terminal because there is no IBM support for it. These

routines provide read and write capabilities, translation of

character codes, and error recovery. Control blocks for the

I/O Supervisor are created and channel programs are

constructed. The routines are written in the assembly

language but are callable by both FORTRAN and PL/1.

The write routine writes a variable length block of

data to the terminal. No checking is done on the data. The

routine is called with two parameters, the address of the

data to be written and the length. The PL/1 entry point

allows the use of varying length character strings.

Actually, the Dope Vector for the character string is passed

as the argument. The length of the string is contained in

the Dope Vector and thus only one parameter need be passed.

The /O Supervisor is called to initiate the write operation

and its completion is awaited. Control is then returned to

the calling program.

The read routine reads a line of input from the

terminal keyboard. The length of the line read is returned

to the calling program and the data is moved to an area

15

specified by the calling program. The PL/1 entry point also

uses varying length character strings. The input string is

monitored for three special characters. The erase character

key erases the last character and backs up the cursor one

position. It sends a back space character to the computer.

The back space is checked for and the read buffer pointer is

backed up one position to effectively erase the character in

the buffer. The delete key sends the delete character to

the computer. When it is read, the buffer is emptied and

the control code for the line erase function is sent to the

terminal. This erases the whole line on the terminal. The

carriage return is interpreted as the end of line delimiter.

When it is read, the read routine exits. Presently,

characters are read one at a time with a .1 second delay in

between. This software multiplexing is used because there

is no multiplexor channel on the computer. A buffer is

being built that will collect the input from the terminal

and send a whole line at a time to the computer. When this

is completed, the read routine will simply read the whole

line before it checks for the special characters.

A third routine reads the current cursor position from

the terminal. The routine sends the read cursor control

code to the terminal, causing the terminal to send the

encoded cursor position to the computer. The routine then

converts the encoded position to X-Y coordinates and returns

them to the calling program.

The translate routine will translate from EBCDIC to

16

ASCII, and vice versa, with an optional CAPS only in the

ASCII to EBCDIC direction. It accepts from the calling

program three parameters, the direction of translation, the

length of the data to be translated, and the address of the

data to be translated. The translated data replaces the

input data. Like the read and write routines, the PL/1 entry

point allows the use of varying length character strings.

In addition to the above routines, there is a routine

that performs an OPEN and CLOSE on the terminal data set.

This is a preliminary operation required by the I/O

Supervisor to construct control blocks and allocate the

device. Also, there is a supervisor call which initializes

the interrupt interface described later.

The I/O Supervisor requires that every I/O device have

an associated error routine in the SVC library. This

routine is loaded into the transient area whenever the

termination of an I/O event indicates that an error has

occurred. Error recovery for the Princeton 801 is limited

to the detection of the timeout condition during read. All

other errors must be caught by the terminal user and

corrected manually. This is because there is no way to

validate data read from or written to the terminal. Any

gross errors will be detected immediately and subtle errors,

though they go unnoticed, are probably unimportant.

Experience has been that errors are infrequent.

17

CHAPTER _4

COMMAND LANGUAGE

The command language used for the interactive system is

rather simple. The basic syntax is: <command>

<parameter_list> where command> is a legal command name and

<parameter_list> is zero or more parameters separated by

blanks. The syntak of the parameter list varies from

command to command and can assume almost any form.

Generally, a parameter is either an image name, a decimal

constant, or a keyword parameter. An image name is eight

characters long, padded on the right with blanks if

necessary. The first character must be alphabetic (A-Z) and

the other seven characters can be almost any other printable

character. Some characters are reserved for delimiters and

cannot be used. A keyword parameter has the form "keyword"

= "value". "keyword" is a predetermined character string

that must be entered exactly. "value" is a decimal

constant. Parameters may be recognized in two ways, either

by their positions in the parameter list (positional) or by

a keyword. Many commands require an image name a one

parameter and it must be first in the list. Other

parameters may be matrix coordinates and scaling factors,

though each command has its own particular requirements.

L.1 COMMAND LANGUAGE PROCESSOR

The command language processor converts a command and

18

its parameter list to an internal format to be used by the

rest of the system. A command is converted to its index in

the command table, a binary integer. The parameter list

varies from command to command and has no general format.

Each command has a separate routine to process its parameter

list. The language processor is called from the system's

main control routine each time it is ready to receive a new

command. The language processor reads a command from the

terminal, processes it, and returns to the main control

routine the command index and a pointer to the parameter

list constructed. Actually, the main control routine passes

to the language processor the address of an area in storage

where the parameter list is to be constructed.

The command processor operates directly on the input

string. The only preprocessing done is the deletion of

nonessential blanks. The input string is kept in a common

area available to all routines comprising the language

processor. As each parameter is processed, it is deleted

from the string and the string is recompressed. Additional

input from prompting is inserted at the beginning of the

string.

4.2 PROCESSOR ROU TI ES

There are three logical groupings of the command

processor routines. The first group contains the control

routines. These routines check for a legal command and call

the appropriate parameter processing routines. The second

19

group is the parameter processors. They are responsible for

creating a parameter list in the format suitable for the

particular command. Finally, there is a group of routines

that perform common functions. They include I/O routines

and string handling functions.

The command processing routines, as do the rest of the

system routines, follow naming conventions. All routines in

the command processor begin with the letter "Z.t, The

control routines and the common function routines have a

mnemonic following the "Z". The parameter processing

routines have as the rest of their name -the name of the

command they process or an abbreviation of that name.

4.2.1 CONTROL ROUTINES

The control routine for the command processor (Z7MDPRC)

receives initial control. It initializes the command string

(ZSTRING) by calling the I/O read routine (ZGET) to read a

command from the terminal. Next, the string is compressed

by a call to ZAP, the compress routine. If the length of

the string is now zero, there is no input from the terminal.

Control is returned to the main control task with a zero

command index, indicating that there is no command.

ZSTRING is now checked for a valid command. A "word"

of eight characters or less is extracted from the beginning

of the string. The first blank in the string indicates the

end of the word. The word is now compared to the entries in

the command table until a match is found or the table is

20

exhausted. If no match is found, an error message is sent

to the terminal and the command processor returns with a

zero command index.

If control reaches this point, a valid command has been

found. The word is deleted from the beginning of the string

and the string is recompressed. The director routine

(ZXCTL) is now called with the command index and the pointer

to the parameter area. ZXCTL has a table of entry points,

one for each parameter processor. This table is indexed by

the command index and the proper parameter processor is

selected. Control is passed to the parameter processor and

initial processing is completed.

4 2.2 PARAMETER PROCESSORS

The parameter processors (hereafter called Zprocs) are

as varied as the parameter lists they generate. However,

there are several general formats which represent 90% of the

presently implemented commands. Four formats will be

discussed here, as most commands fall into one of the four

categories. The commands not represented, though they

generate different parameter lists, operate similarly to the

ones discussed. Thus, most of the logic of parameter

processing will be presented.

The first group of commands is trivial in that they

take no parameters. These commands include LOGOFF, LISTD,

and PEND. The commands require no processing and the

routines simply make an immediate return. They are included

21

only to make the processing uniform. ZXCTL does not

necessarily know which commands do not need parameter

processing. Also, if these command re extended so that

they need parameters, there are provisions for including

processing.

I I
I ZCMDPRC I

* *

_ _ _ _ _

I …
I(**** ZGErNM I
I I …-
I

I

*
*

*

* 1

I ! L ZAP <*******
I ZXCTL I I ZSTRING I I

1__ _ I

* * I

* * I

I ZPROC *******************************>
L __1 1

I I
<****I ZGETKEY I

.1 i

I I
<**** ZGET I

I ZSEND I

I…- ---- I

FIGURE 2

RELATTONSHIPS BETWEEN COMMAND PROCESSOR ROUTINES

The next level of parameter processing is the commands

that require a single parameter, an image name. This group

includes PROCESS and SAVE. This name may describe an image

22

on the permanent file or may be a special "phantom" name

that indicates the active image. The active image is

described in Chapter 5. There is a common routine (ZGETNM)

that searches the input string for an image name. ZGETNM

performs all the error checking and prompting necessary to

get a valid image name. The Zproc calls ZGETNM to get the

image name. It is now finished and returns control to

ZCMDPRC.

The third level of commands include those that require

an image name along with several other parameters. These

commands include DISPLAY, SUBTRACT, DIVIDE, SCALE, FLAT,

TTOD, ADDC, SUBC, MULTC, DIVC, and STAT. The Zprocs use

ZGETNN to get the image name as above. In addition, they

must get the other parameters and supply default values for

omitted parameters. As mentioned above, parameters may be

positional or keyword. To avoid ambiguity, all positional

parameters must appear before the keyword parameters. When

the first keyword parameter is encountered, a flag is set to

indicate that any additional positional parameters

encountered are out of place. The user is prompted to enter

a keyword parameter to replace each out of place positional

parameter. A positional parameter is recognized by the

first character being numeric (0-9 and +-.). It is

converted to the proper data type and inserted into the

parameter list being constructed according to its position

(first, second, third, etc). Keyword parameters are

recognized by the first character being alphabetic. There

23

is another common routine, ZGETKEY, that separates the

keyword form the string. The keyword is checked against a

table of valid keywords for that command. If a match is

found, the value associated with the keyword is converted

and placed into the parameter list according to the keyword.

If the keyword is not found, it is in error and the user is

prompted to correct it. After all specified parameters are

processed, any that are omitted are given default values.

The Zprocs now return to the control routine.

The last category of Zprocs construct variable length

lists of image names. The list contains the number of names

as the first element. The commands that fit this category

are DELETE and AVERAGE. The input string is processed

identically for each name until the string is empty. ZGETNM

is used. After all names are processed, control is returned

to ZCMDPRC. This varying length parameter list can be

extended to include lists whose elements are more than a

single parameter, i.e., a variable length list of parameter

lists. The restriction here is that each member of the list

be identical. This in fact is done for CONTOUR.

4. 2 3 COMON FUNCTIONS

ZAP, the most commonly used function routine,

compresses ZSTRING and, optionally, deletes the first N

characters from the string, where N is a calling parameter.

ZAP first converts the first N characters to blanks. It

then proceeds to delete all nonessential blanks from the

24

string. A blank is considered nonessential if it is first

in the string, next to a blank, to the right of a left

parentheses, or left of a right parentheses. The only

exception to this rule is blanks inside of double "quotes".

These blanks are always kept. Each character is checked

from left to right and flags are set according to what

character is found. when a blank is found to be

nonessential, it is deleted by moving the remains of the

string left one position.

The command processor has two routines which perform

I/O to the terminal. They are interface routines to lower

level I/O routines. In addition, they perform processing

particular to the command processor. ZGET is used to get

input from the terminal. It calls PGET to get input from

the terminal. The input is inserted directly into the

beginning of ZSTRING. ZPUT sends a message to the terminal.

Presently, it is called with a message to be sent and links

directly to PSEND, a routine which controls the text area of

the terminal.

The use of ZGETNM has been described under the Zprocs.

When it is entered, it expects to find an image name as the

first element of the string. A parameter is passed to

ZGETNM which indicates whether or not the image name is

required. If the name is required and not found, the user

is prompted to enter it. If the name is optional and not

found, the "phantom" name is returned. ZGETNM proceeds as

follows. If the first character in the string is numeric,

25

there is no image name present and the proper action (above)

is taken. Next, the position of the first blank is found and

a "word" is extracted from the string. If this word

contains an equals sign, it is a keyword parameter. In this

case also, there is no image name and the appropriate action

is taken (above). Otherwise, the word is considered to be

an image name and is checked for validity. It must begin

with an alphabetic character and contain only legal

characters. If not, the user is prompted to correct it. If

an image name is to contain blanks or other illegal

characters, it must be enclosed in double "quotes". If the

"quotes" are present, they are removed and the name is

considered legal.

ZGETKEY is used to extract a keyword parameter from

ZSTRING. When it is entered, the string should consist only

of positional and keyword parameters. If the first character

in ZSTRING is numeric, the first element is a positional

parameter. In this case, ZGETKEY returns the null string as

the keyword and the calling Zproc must handle the positional

parameter. Otherwise, the parameter is considered a keyword

parameter. The keyword is extracted form the string and

returned to the calling Zproc. Also, it is deleted from its

associated string and the value is moved to the first

position. The Zproc may now convert the value according to

the keyword returned.

In addition to the above common functions, there is an

implicit function present in the form of a PL/1 ON UNIT.

26

This ON UNIT is entered whenever a conversion error is

raised during conversion from the character representation

of a decimal to the internal format. The ON UNIT sends an

error message to the terminal and prompts the user to

correct the illegal number. The input from the user replaces

the illegal number and the conversion is retried.

27

CHAPTER 5

AVAILABLE COMMANDS

There are four general categories of ommands available

on the interactive system. The first category is the

commands that perform functions on images. These include

SCALE, DIVIDE, SUBTRACT, FLAT, ADDC, SUBC, MULTC, and DIVC.

Next are informatory commands. These commands supply

information on images and the permanent file. Included are

LISTD, DISPLAY, and STAT. The third group of commands

control the contents of the disk files. These are PROCESS,

PEND, SAVE, DELETE, and TTOD. Finally, the LOGOFF and HELP

commands are used to control the terminal session. Not all

commands will be described in detail. However, the general

operation of each command will be presented in some form.

±.1_ ACTIVE IMAGE FUNCTIONS

The commands that perform functions on images all

operate on the "active" image. The active image is stored

on a separate temporary file capable of storing one standard

sized image. An image is made active by entering a PROCESS

command specifying the image by name. This command copies

the given image from the permanent file to the temporary

file and sets the active bit in the Active Image Control

Block (CAIB). After an image is made active, the functions

must use it as principle input. The functions that need two

images for input read the secondary input directly from the

28

permanent file, but the results are plased back into the

active image. In a sense, the active image corresponds to

the accumulator register on a computer and the permanent

file is its memory. The accumulator must first be loaded

from a storage location (PROCESS). Next, another storage

location may be subtracted from the accumulator with the

results replacing the contents of the accumulator

(SUBTRACT). Finally, the contents of the accumulator may be

stored into any memory location. The active image may also

be stored with the SAVE command.

I 1I
I ACTIVE I PROCESS I PERMANENT I
I I <************** I

I IMAGE I I IMAGE I

I FILE I SAVE 1 FILE I

* *

i 1
I ACTIVE IMAGE COMMANDS 1

FIGURE 3

RELATIONSHIPS BETWEEN ACTIVE IMAGE

PERMANENT FILE AND ACTIVE IMAGE COMMANDS
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

29

5.2 DISK MAINTENENCE ROUTINES

There are three commands used to control the contents

of the active image. These are PROCESS, SAVE, and PEND.

The PROCESS command was described above. The SAVE command

may be used to copy the active image back onto the permanent

file. The SAVE command may be entered with or without an

argument. If entered without an argument, the active image

is stored under its original name, thus replacing the

original image. Optionally, the SAVE command can be entered

with a new name to be assigned to the image. If the new

name already exists in the directory, the contents of that

image are replaced by the active image. Otherwise, the name

is entered into the directory, space is allocated for it,

and the new image is created. The PEND command is used to

return the active image to the inactive status. It will

prompt the user to save the image if it has been altered.

Otherwise, it sets the inactive bit in the CAIB and exits.

In addition, the DELETE command may be used to delete any

image from the image file and the TTOD command will restore

an image from a library tape to the permanent file.

The LISTD command provides the user with an edited

listing of the contents of the permanent file. Each image

on the file is listed by name along with several items of

information about the image. The amount of free space on

the disk is listed at the end.

30

1.3 OTHER COMMAANDS

The DISPLAY and STAT commands may operate either on the

active image or on any image on the permanent file. These

functions are "read only" in that they do not modify the

image. The phantom image name (mentioned in Chapter 4) is

used to distinguish between the active image and all other

images. If the phantom image name is passed to the routine,

it will use the active image for its input. Otherwise, it

will attempt to use an image on the permanent file for its

input. The DISPLAY command is used to display an image on

the terminal in gray scale. Display modes are discussed

more in the appendix. The STAT command provides the user

with pertanent statistics on any submatrix of any image.

To control the terminal session, the user has two

commands available. The LOGOFF command is used to end the

terminal session. The HELP command will provide the user

with information on how to use the system and enter

commands.

5.9 JUSTIFICATION FOR THE ACTIVE IMAGE

The active image mode of operation was motivated by

several considerations. The major consideration was in the

reduction of I/O wait time. If two images to be combined

are physically distant on the disk, the read/write heads

have to jump from imagel to image2 and bazk for each row of

the image. However, if the images are on distinct disk

drives, the heads can remain relatively stationary. The

31

cost of copying the image to the active image file and back

must be considered, though.

An average disk file will be 60% to 80% full during a

processing session. However, if images are continuously

being added and deleted, any particular image has equal

chance of occupying any slot on the disk. Therefore, we can

assume that, on the average, any two images will be spaced

1/2 disk pack away. Average seek time for an IBM 2311 isk

drive is 75 as and the average rotational delay is 12.5 as.

To combine two images on the same pack would require: a)

12.5 as rotational delay to access row1 of imagel, b) 75 ms

seek time to image2, c) 12.5 ms rotational delay to access

rowl of image2, d) 75 ms seek time back to imagel, and e)

12.5 as rotational delay to replace row1 with the combined

rows, for a total of 187.5 s delay for each row. If the

images are on separate packs, the times can be divided into

PROCESS time, combination time, and SAVE time. To copy the

image from the permanent file to the active image file

requires 12.5 ms rotational delay on each drive for each row

copied, or 25 ms per row. The SAVE time is identical. The

combining requires 37.5 ms delay time per row because each

row has to be read (25 s) and the result must be written

(12.5 s). This gives a total of 87.5 s delay time, or a

savings of 57%. This is a minimum savings. The usual

practice is to perform several functions on the active image

before saving it. This is an additional 150 ms savings per

row for each function performed. The actual real time

32

savings is more complicated to compute. The read time,

computation time, and overhead were ignored in the above

analysis. However, a simple estimate is to multiply the

savings per row by the number of rows (250) to give a

savings of 25 seconds. In actual practice, it takes

approximately 15 seconds to PROCESS or SAVE an image and 30

seconds to combine two images on the interactive system for

a total of 60 seconds. To combine two images on the batch

system takes approximately 90 seconds, so the estimate is

reasonable.

The second consideration in the active image philosophy

is maintaining consistency in the permanent file. It is

undesirable to have an inconsistent image in the file. An

image is considered inconsistent when a function has been

performed on a fraction (< 1) of it. Since the user may

interrupt the system at any time, this could create many

instances of inconsistent images. However, by making all

changes to the active image, most inconsistentcies can be

confined to it. Recovery is simple and involves only the

restoration of the active image from the permanent file.

The SAVE function, if interrupted, can still leave an

inconsistent image on the image file, but at least the user

will be aware of the possibility in this instance. The

system cannot be completely "idiot proof".

33

CHAPTER 6

SYSTEM STRUCTURE

The interactive system may be thought of as a

collection of processes and a control routine which

synchronizes their operation. There is a logical process

associated with each command implemented and one for the

language processor. Although only one logical process may

be active at any time, several tasks may be active in the

implementation of that process.

There is one routine per command that actually performs

the function of that command. These routines are the lowest

level routines in this discussion. They follow the naming

convention "A" followed by the name of the command they

implement, and will be called "Aprocs". Most of the logic

for the individual Aprocs was developed on the batch system

and will not be discussed here. One level higher than the

Aprocs are the Iprocs. They serve as interfaces between the

Aprocs and the control structure. They will be presented as

they are quite important in the implementation of the

interactive environment. At the highest level are the

control routines and control blocks used in maintaining the

system status. The control routines begin with '"C" and end

with a mnemonic describing their function. The control

blocks begin with "C", end with "B, and have a mnemonic in

the middle. The logic of the interactive system will be

developed from the ground up, beginning with the procs.

34

The implementation of the "break" function will be

discribed. The control routine will be presented along with

the user/system interface. Finally, a portion of a typical

session will be stepped through showing where the various

routines interact.

6.1 IPROCS

The Aprocs are designed to perform a particular

function without any knowledge of the interactive

environment. The environment is transparent to the Aprocs.

Under normal circumstances, an Aproc would be entered with a

parameter list, it would perform its function, and then

exit. However, operation under an interactive environment

is not quite so simple. First, there is the possibility of

obtaining parameters dynamically. One example is inputting

coordinates of a point in an image. If the coordinates are

known, the user may enter them with the command. The

alternative is to position the cursor to the desired point

on an image on the terminal display and have the system read

the coordinates from the terminal. In the latter case, the

coordinates are not known until the command is being

executed. The second deviation from normal operation

procedures is the "break" function. A break is when the

user wishes to terminate the currently active command and

regain control of the system. Some means of terminating an

active Aproc is necessary. The Iprocs were developed to aid

in the implementation of the break. In addition, some

35

checking is done on the legality of the parameters passed to

the Aproc and on the status of the system. Although ynamic

parameter processing is not implemented to a great extent at

the present, this function is a natural addition to the

Iprocs because of their structure and logical placement in

the control structure.

To implement a break, subtasking is used. Each

breakable function is attached as a subtask of the control

routine. When a break is indicated by the user, the subtask

is detached. This causes the operating system to abnormally

terminate the subtask and then release all resources

allocated to it. The necessity for subtasking will besome

apparent later. In PL/1 there is no explicit way to detach

an active subtask. However, there is an implicit way. A

return from a PL/1 proceedure, unlike most languages, is not

really a return but a call to a PL/1 library routine. This

routine frees all resources allocated to the proceedure. In

addition, it detaches all tasks attached in the proceedure.

The Iprocs are such proceedures. The main function of an

Iproc is to attach its corresponding Aproc and then wait for

either its normal completion or the occurrance of a break.

When either one of these events is satisfied, the Iproc

returns. If the Aproc has terminated normally, the return

is much like a normal return. The process is complete and

its resources are released. If the break occurs before the

Aproc has completed, it is detached and thus abnormally

terminated. In either case, control returns to the terminal

36

and the user may enter a new command. All functions that

can be initiated by a command are breakable. There is one

Iproc and one Aproc for each command. In addition, the

command language processor is breakable. It has no Iproc

but is attached by the control routine directly. However,

since it does "know" something about the interactive

environment, the need for an Iproc is not as great.

I
{ ************************

1 *
*

I
I IPROC

I _

_ _

1

I I I I I

I I I I N I1****>l PGET IC****l I I
I _________ I A 1
!I * I I l I
I****>1 PSEND t****>1 1
I 1 I i ...
I

I 1 I
I APROC ************ ******> 1

I$ * ~~~~~~~~~~~~~~~~~~ I
* I

I I

****>1 CONTROL I
I BLOCKS i

1 1__I

I I I
I UTILITY ROUTINES I
I AND I ******
I DISK MAINTENENCE I I

I- -__ I I

FIGURE 4

CONTROL STRUCTURE

37

I CONTROL

_ _ _ _ _ _ _ __, ~ I

6.2 IMPLEMENTATION OF BREAK

When a break is intended by the terimnal user, the

Iprocs detach their respective Aprocs to terminate them

(above). However, the reception of a break by the system is

a different story. The attention interrupt facility of the

terminal is used to initiate communication between the user

and the system. However, this communication may be either

for the purpose of entering a command or for break. Its

interpretation depends on the current state of the system.

The path of the attention interrupt from the terminal

through the operation system to the interactive system is

discussed fully in the appendix. For our purposes here, we

can assume that the operating system signals the interactive

system when the interrupt occurs. This is done by posting

the completion of an event associated with the terminal

interrupt. A task must be awaiting the completion of this

event in order for it to be meaningful. Thus, the use of

subtasks becomes necessary. While the interactive system is

processing a command, there must still be a task waiting for

an interrupt from the terminal. Otherwise, the user would

not be able to issue a break.

The interactive system has a rouinte (CPIC) whose sole

purpose is to monitor the terminal for an interrupt. When

initially attached, it sets up an event control block (ECB)

to be used by the operating system to post the occurrence of

the interrupt. It then waits for the interrupt to occur.

When the completion of the ECB is posted, CPIC "wakes up"

38

and handles it as described below. It then goes back into

wait until the next interrupt occurs.

As the interactive system is now set up, commands may

only be entered when the system is idle, i.e., not

processing a command. An interrupt issued while the system

is active is interpreted as a break. (*) There is a control

block, CPICB, used to maintain the status of the system

(active or idle). When CPIC wakes up, it checks the status

of the system. If the system is idle, CPIC posts the

completion of the WAKE_UP ECB in CPICB. rhis is to signal

whatever task that is waiting for terminal input (usually

the language processor) that the user is ready and to

continue processing. If the system is active, the BREAK ECB

is posted. Usually, an Iproc is waiting for the break. It

then detaches its Aproc to terminate the current command.

The active/idle flag in CPICB is set to "idle" by any

routine expecting input from the terminal. Before control

is returned to the waiting task, CPIC set the flag to

"active". Thus, the status of the system is always

available.

(*) It might be noted here that this is an unnecessary
restriction. The system was initially developed this way
because it is less complex. However, an extension to
overlapping processing with command entering may be
accomplished by creating another task for the language
processor so that commands may be entered while the system
is active. However, this raises questions of contention for
the terminal and makes the interpretation of a break more
complex.

39

6.3 CONTROL ROUTINE

The control routine (CONTROL) for the interactive system

is very simple. Basically, CONTROL executes in a loop,

accepting a command from the user and calling the

appropriate processor to execute it. The language processor

is attached as a task and CONTROL waits for it to return

with a processed command. Next, the command index and the

address of the parameter list are passed to CXCTL, the

director routine for the control task. XCTL transfers

control the the appropriate Iproc to initiate command

execution. CONTROL waits for the command to terminate,

either normally or abnormally, and then prepares for the

next command.

6.4 OTHER ROUTINES

There are two other routines used by the system to

control the terminal. These are PSEND and PGET. Although

they are I/O routines, they are presented here because of

their interface with the control structure. PGET in

particular is related to the above discussion. Its main

function is to read one of line of input from the terminal.

However, it first waits for the interrupt from the user.

Upon entry, PGET sets the "idle" flag in CPICB and then

waits for the WAKE_UP ECB to be posted. When PGET wakes up,

the user is ready to input data and the read is initiated.

PGET may be called from any task, and that task is suspended

until the user is ready. In this way, the other routines in

40

the system needing input from the terminal do not have to

set up the interrupt protocal. PSEND does not fall into the

above interrupt processing discussion, but it does have a

control function. The bottom third of the terminal display

is reserved for text communication between the user and the

interactive system. This is a limited space and must be

used conservatively. The cursor is rotated from top to

bottom as each new line is entered. The last 12 lines are

always visible. PSEND maintains a control block, CTEXTB,

that contains information on the size of the text area, the

current line position, and the coordinates of the lines. At

any point, PSEND may be called to output a line to the

terminal. The cursor is positioned to the proper line and

the line is sent. The next line position is erased s that

the user can see which is the current line. This frees the

other routines from worrying about where on the terminal the

line is to be written.

6.5 EXAMPLE

At this point, an example is in order. A portion of a

typical terminal session will be presented. e will start

with the initial job set up and then process an image. The

interactings of the various portions of the system will be

shown. This is by no means a complete description of the

total capabilities of the system. Rather, it is intended to

demonstrate each major portion of the system and how it

works.

41

The first thing that must be done before running the

interactive system is the computer operator's setup. The

disk pack must be mounted on a drive and the terminal

powered on. In this example, we will use the disk named

PAL3. The operator mounts the disk on the drive and enters

a command to the operating system to recongnize the

mounting. The terminal is now powered on (it is normally

off) and the job for the interactive system is read in

through the card reader. The job contains mostly JCL

describing the program and the data sets used. The load

module for the interactive system is on a library on the

permanent storage for the computer system.

When the job starts running, CONTROL receives control.

It must first perform some initialization for the

interactive system. First, it initializes the active image

file. The active image file is a temporary file that is

created each time the job is run and is deleted at the end

of the job. Next, the image file on PAL3 must be opened.

The directory for the file is read into core where it

resides during processing. Finally, CPIC is attached is a

task to monitor the terminal. The system is now ready to

receive commands from the user.

CONTROL now attaches the command language processor as a

task. ZCMDPRC sends a message to the terminal to indicate

to the user that it is now ready. The mssage usually is

"OK". ZCNDPRC calls ZGET which calls PGET to read a line of

input from the terminal. PGET sets the "idle" flag in PICB

42

and waits for WAKE_UP to be posted. The system is now in a

wait state. When the user is ready to enter a command, he

presses the BREAK key on the terminal. his key sends the

attention interrupt to the system. CPIt receives control

from the operating system by means of posting the ECB set up

by CPIC. CPIC must now determine what action is to be

taken. It checks the active/idle flag in CPICB and

discovers that the system is "idle". It posts the WAKE_UP

ECB and then returns to the wait state for the next

interrupt. When WAKE_UP is posted, control is returned to

PGET which reads input from the terminal. PGEr returns to

ZGET which places the input into the beginning of ZSrRING.

Since ZSTRING is initially empty, the input is the only data

in the string. ZCMDPRC now checks the string for a legal

command. It finds that the user has entered the command

"LISTD". The command index is set to 4 because LISTD is the

fourth command in the command table. The Zproc for LISTD is

called (ZLISTD) to process the parameter list. LISTD takes

no parameters so ZLISTD returns to ZCMDPRC. The command

processor is now complete and returns to CONTROL.

CONTROL has been waiting patiently for the completion of

either ZCMDPRC or the break ECB. Since the user did not

interrupt the system, ZCNDPRC returns with the processed

command. CONTROL checks the command index (4) and finds

that a legal command has been found. CXCTL is called which

in turn calls ILISTD, the Iproc for the LISTD command.

ILISTD attaches ALISTD and waits for it to complete. ALISTD

43

receives control and says, "Aha, the user wants to see what

images are in the directory." It then proceeds to list the

contents of the directory on the terminal display. When it

has finished, it returns to ILISTD, which cleans up and

returns to CONTROL. The system is now ready for the next

command.

The user sees that he has four images on the disk, named

DARK, FLAT, MOONRED, and MOONBLUE. These images represent

the dark field, the flat field, and two data frames taken of

the moon in the red and blue regions, respectively. The

user wants to calibrate the two data frames and compute

their ratio. The first thing he does is to subtract the

dark frame from the flat field. He does this by the

following sequence of commands.

PROCESS FLAT
SUBTRACT DARK
SAVE FLATD
PEND

Thus, a new image is created, called FLATD, which is the

result of subtracting the dark field from the flat field.

Each of the commands entered above is handled similarly to

the LISTD command above.

Next, the user must subtract the dark field from each of

the data frames and then remove the flat field. In this

example, we will assume that he first attacks MOONRED.

First, he enters a PROCESS MOONRED command to make the image

active. Next, he will enter SUBTRACT DARK. This will

create an image with the dark field correction. Now, for

44

pedigogical reasons, let's assume that he wants to later

look at the dark field corrected image. He might enter SAVE

REDDARK to save the image with a new name. Now, while the

dark field corrected image is still active, he would want to

remove the flat field. He might enter FLAT FLAT, which is

the command to flat field correct with image FLAT. However,

after he enters the command, he discovers that he wanted to

use image FLATD instead of FLAT. He now enters break to

interrupt the system.

In general, the language processor runs too fast for the

user to interrupt it before it completes processing. We can

therefore assume that the FLAT FLAT command has actually

started executing when the user realizes his mistake. When

the interrupt is issued by the user, AFLAT is removing the

flat field FLAT from the active image while IFLAT is waiting

for it to complete. CPIC receives control when the

interrupt is issued. It checks CPICB and realizes that the

system is "active". Therefore, it posts BREAK, the ECB to

indicate that the user wants to interrupt processing. IFLAT

is waiting for either BREAK or AFLAT to complete. When

BREAK is posted, IFLAT receives control and returns. This

causes AFLAT to be abnormally terminated and control is

returned to CONTROL. ZCMDPRC is called to prepare the next

command from the user. Since part of the active image has

been changed by the erroneous FLAT command, it must be

recreated. The user enters the PEND command to release the

active image without saving it. Since he has saved the dark

45

field corrected image, he does not have to recreate it. He

now enters PROCESS REDDARK and then the correct FLAT FLATD

commands. When the correct flat field has been removed, he

saves the active image with the SAVE REDDF command to reate

a new image with the dark and flat fields removed. With the

following sequence of commands, he can correct the MOONBLUE

image for distortions.

PROCESS OONBLUE
SUBTRACT DARK
SAVE BLUEDARK
FLAT FLATD
SAVE BLUEDF

At this point, the user has corrected his images for

distortions and saved them under new names. If these are the

only two images he wishes to work on, he might discard the

DARK and FLAT images. He can enter DELETE (DARK FLAT) to

delete the two images from the file and release their space.

Now, he may look at the images he has created and decide

what to do with them next. The DISPLAY command is entered

specifying the names of the images to be displayed and the

images are drawn on the terminal display. The user looks at

the images and decides that the blue image is shifted

approximately 14 points in the X direction and 37 points in

the Y direction with respect to the red image. To compute

the ratio of the two images, he must enter the DIVIDE

command with the overlay parameters. Since the BLUEDF image

is still active (the PEND command was not entered), he does

not have to enter a PROCESS command for it. He might enter

DIVIDE REDDF 14 37 to ratio the two images. Next, a DISPLAY

46

command is entered to display the active image, the new

ratio. The command language processor will pass the

"phantom" image name to ADISP because no name was entered

with the command. ADISP realizes that it must display the

active image and not look for the image on the image file.

When the ratio image is displayed, the user finds, much to

his surprise, that he has correctly guessed the overlay on

the first try. He saves the active image with a SAVE

RED/BLUE command to create an image named "RED/BLUE". He

enters a PEND command to delete the active image and decides

that such success must be shared with the other members of

MITPAL. The LOGOFF command is entered to terminate the

terminal session. The terminal is powered off, the disk is

dismounted, and the example session is complete.

47

CHAPTER 7

PERFORMANCE AND IMPROVEMENTS

The interactive system as described here has been in

operation since September, 1974. It is being used for the

reduction of images taken of Mars and the Moon. Most of the

current work is in the area of color ratios, as experience

with the batch system has made this the easiest to

implement. Future developments should extend the

capabilities of the system to include Fourier filtering and

creation of mosaics.

There are several needed improvements to the interactive

system. First, the scheduling of its operation is a

problem. The interactive system uses a full partition at

the LNS computer. Since there are only two partitions to

begin with, this is a heavy drain on available resources.

However, if the system could be made smaller with respect to

core usage, only a small partition would be necessary, and

there would be enough core left over to run two regular

partitions in addition to the interactive system. This

would mean less impact on normal operations and more

available time to run interactively.

Another needed improvement for the system is response

time. Processing times are on the order of 15 - 40 seconds

to perform image functions. Although the system is limited

by the speed of the disk drives for I/O time, there are

several areas where processing can be overlapped to improve

48

response. For example, with double buffering, an operation

could be performed on one row of an image while the next row

is being read in. Also, several functions could be

performed simultaneously, such as dark field and flat field

corrections. One row of an image could be read in, the dark

field subtracted, and then the flat field divided before the

results are written out. This means that the active image

is read and written only once instead of twice to perform

the two corrections, or a savings of 1/3 in I/O time.

The most needed improvement to the system is the display

capabilities. The possible terminal displays have not even

been explored as yet. Appendix B discusses several of the

improvements planned.

Other than the improvements mentioned, the interactive

system is working quite well. The basic frame work and

command language are fairly well developed and fixed in

structure. The improvements can be made within the present

structure. The author hopes the system will be useful in

MITPAL's image processing future.

49

APPENDICES

50

APPENDIX A

OPERATING SYSTEM MODIFICATIONS

Several modifications to the LNS operating system were

necessary to allow the use of the Princeton terminal and the

implementation of the interactive system. The addition of a

Unit Control Block (UCB) for the terminal was necessary for

the I/O Supervisor. An interrupt handling routine was added

to direct the processing of attention interrupts. The

ATTACH service routine and the GETMAIN service routine were

modified to allow the use of the multitasking facilities of

the PL/1 language on an MFT system. The addition of the UCB

is normally done during system generation (SYSGEN) and is

relatively uninteresting. The interrupt handler would not

be necessary except in the absense of a multiplexor channel.

The PL/1 fix could be helpful to users of other FT systems

who want to do multitasking.

1.1 UNIT CONTROL BLOCK

The UCB is an area of supervisor storage that contains

information on a particular I/O device. There is one UB for

every device on the system. The I/O Supervisor uses the

UCB's to schedule I/O operations, to handle I/O interrupts

and errors, and to allocate devices. The UCB contains

information on the present status of the device, both

logical (online/offline, allocated, ...) and physical

(ready, intervention required, not operational,...). It

51

also has pointers to routines to do error handling and

interruption processing. The UCB Lookup Table, another area

of supervisor storage, contains pointers to the UCB's. The

UCB Lookup Table is searched in a tree fashion, indexed by

the unit address. The UCB's and the UCB Lookup Table are

normally generated during SYSGEN. However, the one for the

Princeton terminal was done in a novel way.

When the current system was generated, an extra UCB was

added that was not being used. Since it was free, the

author decided to steal it for the Princeton terminal rather

than do another SYSGEN. The IBM service aid, IMASPZAP, was

used to change the unit type and unit address fields in the

UCB to reflect the Princeton terminal. Also, the UCB Lookup

Table was rearranged to swap the unit addresses. There are

several things to be said about changing the system without

doing a SYSGEN. What would appear to be a small change

might affect parts of the system least expected. The author

was not sure the above fix would work, but is was triad and

found to be successful. Later investigation discovered

under what circumstances such a fix would work.

There are two major areas of the operating system where

UCB's are used. They are device allocation and device

handling. The job schedular must translate the unit field

specified on a data definition statement to a particular

device on the system. This is done in one of three ways.

The most basic method is to specify absolute device

addresses. This allows only the specified unit to be

52

allocated. The second way is to specify an IBM device type,

such as 2314 disk or 1403 printer, etc. This method llows

any unit of this type to allocated. The most general method

is to specify a generic name, such as SYSDA, TAPE, etc.

Each method has its advantages and disadvantages, and are

handled differently. When absolute address is specified,

the allocation scheme is: does the address exist?, and, is

it available?. The other two methods are similar and

proceed as follows. The Device Name Table (DNT) is searched

for the specified name. If the name is found, it will have

an associated mask which, indirectly, specifies what devices

may be allocated to that name. The mask is then checked

against the unit type field in each UCB until a match is

found that can be allocated. The method presupposes the

existance to the DNT. This table is generated uring

SYSGEN. Once a device is allocated, it is handled

completely through the UCB and unit address. For device

handling, a UCB must exist and be pointed to by the UCB

Lookup Table. For allocation, either the unit must be

specified by address, or a corresponding name must exist in

the DNT. Therefore, the above mentioned fix will work under

the following circumstances. First, the UCB Lookup Tble

must be valid. The device can now be allocated by address

and handled correctly. Secondly, if a similar device

already exists, a name will exist in the DNT and the device

can be allocated by name. Thirdly, the DNT can be expanded

to include the new device name. All three of these methods

53

assume that there is an existing UCB or room in the I/O

Supervisor to insert one. If not, there is no alternative

but to do a SYSGEN. The author used an existing UCB and

absolute address allocation.

A.2 ATTENTION INTERRUPT HANDLER

The operator's console is handled in a special way.

Input and output go through the Master Schedular which is

responsible for operator/system communication. When the

operator wishes to enter a command, he presses the REQUEST

key on the console, which interrupts the system with the

attention condition. The attention interrupt is an

unsolicited interrupt. This means that it is not associated

with any system initiated action. There is a field in the

UCB which points to a routine to handle the attention

interrupt on devices capable of initiating it. Most devices

generate an attention interrupt when they go from the not

ready to the ready state. The standard procedure for this

action is to set the ready flag in the UCB and initiate any

I/O operation awaiting this device. The console is different

in the interpretation of the attention interrupt. This

interrupt is not to signal that the device is ready, but to

initiate communication with the Master Schedular. This

requires a pointer to a different attention interrupt

handler and the required routine to handle the interrupt.

The routine for the console signals the Master Schedular, by

means of the POST service routine, that the operator wants

54

to communicate. The Master Schedular, which has been in the

WAIT state, now "wakes up" and prepares to read the input

from the console. The interactive system operates in much

the same way. It waits until the user signals that he is

ready to enter a command. The user presses the BREAK key on

the terminal when he wishes to communicate. The terminal

sends the attention interrupt to the computer. The I/O

Supervisor must then pass control to the appropriate

attention interrupt handler. This routine was written by

the author and added to the I/O Supervisor. It has one main

function, to signal to the interactive system that user

wants to communicate. It does this in the same manner as

the console routine; it posts the waiting task to continue

processing. A Supervisor Call routine was also added to the

SYC library to aid in this communication and is called by

the interactive system when it begins operation. It sets up

an Event Control Block (ECB) to be used for the WAIt/POST

communication. In this manner, the interactive system does

not have to continually monitor the terminal for input. In

fact, this is not possible because there is no multiplexor

channel.

A.3 _PL/1 ULTITASKING

The third system modification involves the use of

the multitasking facilities of the PL/1 language on n MFT

system. In this context, multitasking means having more

than one active task under the same job step as opposed to

55

having concurrent job tasks. Some means of creating tasks

within a job is necessary. This is done by means of the

ATTACH service routine of the operating system. This is a

standard feature of MVT systems and is optional with n MFT

system. The PL/1 language allows the creation of subtasks

within the rules of the language. When tasking is specified

in a PL/1 procedure, a different version of the PL/1 storage

supervision library routine is linked with the program. This

routine handles all "automatic" storage and also the tasking

features such as ATTACH, WAIT, and POST. The multitasking

routine (IHETSAP) was written for an MVT environment, using

features of the storage supervision not available under MFT.

Since it was necessary to use subtasks in the interactive

system it was highly desirable to use the facilities of a

higher level language in doing so. The PL/1 library, or the

operating system, or both, had to be modified to allow the

use of this option.

IHETSAP assumes the MVT environment, and in particular,

the use of subpools in storage management. Subpools allow

the logical grouping of storage under a subpool number, both

within a single task, and between tasks. Two advantages of

the scheme are that storage gotten in small pieces can be

freed all at once, and that storage can be gotten and freed

on a task basis. IHETSAP uses the second feature, freeing

core when a subtask terminates. Although the library

routines keep track of most of the storage for each

procedure, they expect the operating system to free the

56

initial core gotten by first procedure within a task.

The MFT system with the subtasking option already has a

facility for freeing core on a task basis, though only to a

limited extent. This facility is limited to storage gotten

by the supervisor to create the subtask. A Gotten Queue

Element (GQE) is created to describe this storage. When the

subtask is terminated, storage described by GQE's for the

task is released by the supervisor. This processing was

extended to cover PL/1 subtasks also. The storage

supervision routine (GETMAIN) makes several checks to ecide

whether to create a GQE or not. These include: a) is this a

subtask?, and b) is the supervisor calling?. By adding one

more test, is PL/1 calling?, we will have simulated subpools

for the PL/1 environment. The only problem lies in

determining if PL/1 is calling or not. This was solved

through the ATTACH routine by specifying another calling

parameter. This parameter is to specify that PL/1 is doing

the attach. The ATTACH routine then flags a field in the

Task Control Block (TCB) for the task it creates. The TCB

is available to all supervisor routines, and in particular,

GETMAIN. It need only test this TCB flag to determine if

PL/1 is calling.

Thus we reluire three modifications to allow the use of

PL/1 multitasking. First, the library routine IHETSAP must

specify to the ATTACH routine that PL/1 is calling. Second,

the ATTACH routine must set the flag in the TCB. Finally,

GETMAIN must check this flag and create GQE's for the task.

57

The first modification requires only a IMASPZAP fix. The

second and third modifications require the addition of one

and four instructions, respectively, and the reassembly of

the ATTACH and GETMAIN routines. Anyone desiring to do

similar modifications may contact the author for details.

58

APPENDIX B

DISPLAY CAPABILITIES

The Princeton terminal display can be the most powerful

device on the interactive system. However, it is presently

the least developed. The author spent most of his time

developing the interactive environment and language

processor and little time was spent on developing the

display format. This appendix will outline the display

currently implemented and will present several alternatives

for development.

The current display is fixed in format. The lower third

of the screen is reserved for text messages. The upper

portion is divided into six equal sectors, each capable of

displaying one standard size image (256x250). The user may

specify, as a parameter to the DISPLAY command, the sector

in which the image is to be displayed. If the sector is not

specified, the one least recently used is re-used. If there

already is an image in the specified sector, it is erased

before the new image is displayed. When doing ratios, it is

convenient to have several images displayed simultaneously

to compare the results. However, the fixed format is not

readily extendable to other display functions.

There are several other displays that would be useful

with the interactive system. One would be enlarged images.

The resolution of the display is limited and not all

features of an image can be seen in the small size. It is

59

desirable to expand an image to a 512x510 size. Or, one

could expand a sub-matrix of an image to any desired size to

locate a feature more exactly.

Another desired capability would be partial rotation and

shifting of image segments on the display. Several images

could be combined to form a mosaic. Piecing together a

mosaic by hand is a long involved process. The images must

be produced on photographic paper with the same intensity

ranges, cut, and pasted onto a backing. On the interactive

system, each part of the mosaic could be scaled to fit the

remaining part and fitted into place in real time. When the

product is complete, it could be saved in digital form for

future use.

Finally, there are several displays in the form of

graphs instead of images that are useful to have. A contour

plot, having contours of equal intensity, is a useful

alternative to an image. Also, a histogram showing

intensity distributions across an image is useful for

statistical analysis.

Although each of these display modes is not hard to

implement in theory, some scheme is needed to control the

contents of the terminal display. Variable sized displays

require a flexible format on the terminal. The user must

retain ultimate control over the terminal contents, being

able to maintain any combination of displays concurrently.

The display routines must not overwrite displays that are to

be kept, and in particular, must not destroy portions of

60

several displays.

One possible solution to the display contention problem

is the development of a separate routine to control the

terminal contents. Although it still seem desirable to keep

the text area fixed, the upper portion of the screen should

be as variable as possible. Some form of allocation/release

of terminal areas could be implemented. Each routine could

make an allocation call to the control routine to obtain an

area to write its display. There could be some form of

default freeing of areas that are to be re-used. However,

the user would have to assume responsibility for freeing

contents that are to be retained. In this manner, there is

no limit on the types of display combinations possible.

61

