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Abstract

Non-linear dimensionality reduction methods are powerfultechniques to deal with
high-dimensional datasets. However, they often are susceptible to local minima
and perform poorly when initialized far from the global optimum, even when the
intrinsic dimensionality is known a priori. In this work we introduce a prior over
the dimensionality of the latent space, and simultaneouslyoptimize both the latent
space and its intrinsic dimensionality. Ad-hoc initialization schemes are unneces-
sary with our approach; we initialize the latent space to theobservation space and
automatically infer the latent dimensionality using an optimization scheme that
drops dimensions in a continuous fashion. We report resultsapplying our prior
to various tasks involving probabilistic non-linear dimensionality reduction, and
show that our method can outperform graph-based dimensionality reduction tech-
niques as well as previously suggested ad-hoc initialization strategies.

1 Introduction

Many real-world problems involve high dimensional datasets that are computationally challenging
to handle. In such cases it is desirable to reduce the dimensionality of the data while preserving
the original information in the data distribution, allowing for more efficient learning and inference.
Linear dimensionality reduction methods (e.g., PCA) are efficient but can miss important structure
in the data; graph-based techniques, e.g., LLE [7] and Isomap [9], capture non-linear dependencies
but require highly dense and homogeneously sampled manifolds for accurate modeling.

Non-linear dimensionality reduction techniques can be applied to more complex data, but generally
suffer from local minima. Choosing the dimensionality of the latent space is non-trivial, and existing
methods typically rely on cross-validation. Even when given the correct latent dimensionality, these
techniques often do not succeed in practice when initialized far from the global minimum [11].
Factors which contribute to this include the distortion introduced by the initialization and the non-
convexity of the optimization: when optimization is performed in a low dimensional space the model
may not have the requisite degrees of freedom to avoid local minima.

In this paper we develop a prior on the dimensionality of the set of latent coordinates, encouraging
low dimensional representations. OurRank Prior enforces a penalty on the non-sparsity of the sin-
gular values of the matrix of latent variables, and automatically discovers the latent space and its
dimensionality using a continuous optimization that dropsdimensions on the fly. By initializing the
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latent coordinates to the original space no distorsion is introduced; since we decrease the dimen-
sionality slowly (starting from a high-dimensional space)extra flexibility is gained which allows the
method to avoid local minima during optimization. To our knowledge, ours is the first non-linear di-
mensionality reduction technique that penalizes the latent space rank and simultaneously optimizes
the structure of the latent space as well as its intrinsic dimensionality.

We demonstrate the effectiveness of our approach when learning probabilistic latent variable mod-
els with the Gaussian Process Latent Variable Model (GPLVM)[5], a generalization of Probabilistic
PCA to the non-linear case that models the mapping from the latent space to the data space as a Gaus-
sian process. The GPLVM has proven successful in many applications, but initialization, knowledge
of the latent dimensionality, and/or additional prior knowledge were assumed (e.g., [2, 8, 11]). In-
corporating our prior with the GPLVM objective results in anoptimization problem that allows us
to discover the latent space and the intrinsic dimensionality of artificial and real datasets. We further
demostrate the effectiveness of our approach in tracking and classifying complex articulated human
body motions from video.

2 Background: Gaussian Process Latent Variable Models

Latent Variable Models (LVMs), e.g., Probabilistic PCA [10] or MDS, assume that the data has been
generated by some latent (unobserved) random variables that lie on or close to a low-dimensional
manifold. Probabilistic LVMs relate the latent variables to a set of observed variables via a proba-
bilistic mapping.

More formally, let Y = [y1, · · · , yN ]T be the set of observationsyi ∈ ℜD, and let X =
[x1, · · · , xN ]T be the set of latent variablesxi ∈ ℜQ, with Q ≪ D. Let y(d) = f(x) + η with
y(d) the d-th coordinate ofy, andη ∼ N (0, θ3) iid Gaussian noise. The Gaussian Process Latent
Variable Model (GPLVM) [5] places a Gaussian process prior over the space of mapping functions
f . Marginalizing over the functionsf and assuming conditional independence of the output dimen-
sions given the latent variables results in the GPLVM likelihood

p(Y|X) =

D
∏

d=1

N (Y(d)|0, K)

whereY(d) is thed-th column inY, andK is the covariance matrix, typically defined in terms

of a kernel function. Here we use an RBF + noise kernel,k(xi,xj) = θ1 exp
(

− ‖xi−xj‖22
2θ2

2

)

+

θ3δij , since it allows for a variety of smooth, non-linear mappings using only a limited number of
hyperparameters,Θ = {θ1, θ2, θ3}, whereθ1 is the RBF lengthscale,θ2 the kernel width, andθ3 the
observation noise. The latter contributes to a numericallystable inversion of the covarianceK .

Learning in the GPLVM is performed by maximizing the posterior p(X|Y) ∝ p(Y|X)p(X) with
respect to the latent variablesX and the kernel hyperparametersΘ. p(X) encodes prior knowledge
about the latent spaceX.

PCA and graph-based techniques are commonly used to initialize the latent space in GPLVM-based
dimensionality reduction; both offer closed-form solutions. However, PCA [6] cannot capture non-
linear dependencies , LLE [7] gives a good initializationonly if the data points are uniformly sam-
pled in the manifold, and Isomap [9] has difficulty with non-convex datasets [4]. Generally, when
initialized far from the true minimum, the GPLVM optimization can get stuck in local minima
[5, 11].

To avoid this problem different priors over the latent spacehave been developed. In [13] a prior
was introduced in the form of a Gaussian process over the dynamics in the latent space. This re-
sults in smoother manifolds but performs poorly when learning stylistic variations of a motion or
multiple motions [11]. Urtasun et al. [11] proposed a prior over the latent space, inspired by the
LLE cost function, that encourages smoothness and allows the introduction of prior knowledge, e.g.,
topological information about the manifold. However, suchprior knowledge is not commonly avail-
able, reducing considerably the applicability of their technique. In contrast, the method developed
below introduces a generic prior that requires no specific prior knowledge, directly penalizing the
dimensionality of the latent space to learn effective low-dimensional representations.
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Figure 1:Illustration of our Rank Prior with a GPLVM : The goal is to recover the 1D manifold in
a 2D space. The GPLVM gets stuck in local minima very early (upper row) since PCA initialization
does not capture non-linear dependencies, whereas our method decreases dimensionality gradually
and recovers the correct manifold (lower row).

3 Continuous Dimensionality Reduction via Rank Priors

We introduce a novel method for probabilistic non-linear manifold learning which avoids the initial
distortion induced by ad-hoc initialization. We initialize the latent space to the high-dimensional
observation space and define aRank Prior which favors latent spaces with low dimensionality.
Minimizing the dimensionality of the latent space is equivalent to minimizingL, the rank of the
Gram matrix of the rows of the unbiased matrixX̃

L = rank

(

1

N − 1
X̃

T
X̃
)

(1)

whereX̃ denotes the mean subtracted latent variablesX̃ = X − X andXij = 1
N

∑N
n=1 Xnj .

The cost function in Eq. (1) is discrete and thus difficult to minimize. Let the singular value de-
composition (SVD) ofX̃ be UΣVT , whereU and V are matrices containing the left and right
singular vectors, andΣ comprises the singular values{σ1(X̃), ..., σD(X̃)} on its diagonal. Then

X̃
T

X̃ = VΣ2VT , andL can be minimized by minimizing the number of non-zero singular values
of X̃.

We transform the discrete optimization criteria in Eq. (1) into a continuous one by introducing a
sparsity penalty on the singular values. In particular we introduce a prior of the form

p(X) =
1

Z
exp

(

−
D
∑

m=1

ϕ(σ̂m(X̃))

)

(2)

whereσ̂m(X̃) = 1√
N−1

σm(X̃), ϕ is a sparsity penalty function, andZ a normalization constant1.

One can consider different sparsity penalty functions. Theidentity functionϕ(σ̂) = σ̂ results in the
L1-norm since the singular values are always positive. Of particular interest to us are functions that
drive small singular values faster towards0 than larger ones. Examples of such functions are the
logarithmicϕ(σ̂) = α ln(1 + βσ̂2) and the sigmoidϕ(σ̂) = α(1 + exp(−β(σ̂ − γ)))−1 functions,
with α, β andγ constant parameters.

Minimizing the negative log posterior results in an optimization that reduces the dimensionality in a
continuous fashion:

min
X

[

D

2
ln |K(X, Θ)|+ D

2
tr(K (X, Θ)−1YYT ) +

D
∑

m=1

ϕ(σ̂m(X̃))

]

s.t. ∆E = 0 (3)

1Note the fact that this is an improper prior has no impact in the optimization since it acts as a constant
when minimizing the negative log posterior.
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Figure 2:Spectrum of a 30D motion database: (a) Evolution of the first ten singular values as a
function of the optimization iteration number for a logarithmic sparsity penalty function. (b) Spec-
trums learned after convergence by different sparsity penalty functions compared to the observation
space spectrum (red).

where∆E = |E(X̃) − E(Ỹ)| is the difference between the energies of the spectrum of themean
subtracted latent coordinatesX̃ and the mean subtracted observations,Ỹ = Y−Ȳ, with Ȳ the mean
of the observations. This constraint keeps the overall energy of the system constant. The energy of
the spectrum can be defined asE(X̃) =

∑D
m=1 σ̂2

m(X̃).

The derivative of the rank prior with respect to the latent coordinates can be expressed as

∂

∂Xij

D
∑

m=1

ϕ(σ̂m) =
1√

N − 1

D
∑

m=1

∂ϕ(σ̂m)

∂σ̂m

UimVjm , (4)

where ∂ϕ(σ̂m)
∂σ̂m

depends on the sparsity function. The derivatives of the first two terms in Eq. (3)
w.r.t. X andΘ are given in [5].

We use the SNOPT [1] non-linear constraint optimizer to minimize Eq. (3). After this optimization,
we choose the latent dimension to beQ = argmaxm

σ̂m

σ̂m+1+ǫ
, whereǫ ≪ 1, andσ̂1 ≥ σ̂2 · · · ≥

σ̂D. The final steps consist of applying PCA in the optimizedQ-dimensional space and optimizing
p(Y|X, Θ) with respect to the hyperparametersΘ. Note that the mapping is still non-linear since
PCA is performed in the latent space, not in the observation space, and simply rotates the data to
produce the most compactQ-dimensional representation.

Fig. 1 compares the GPLVM (initialized with PCA) with the result of optimizing Eq. (3) on a toy
example where a 1D manifold is embedded in 2D space. PCA provides a non-optimal initialization,
and the GPLVM gets trapped in local minima whereas our methodrecovers the correct structure.
Note that our final PCA projection rotates the latent space and results in a 1D manifold. In this
example, using spectral methods could lead to a successful initialization for the GPLVM. However,
for more complex datasets this is not necessarily the case ingeneral, as shown in Figs. 3 and 6.

Fig. 2 (a) depicts the evolution of the first ten singular values when optimizing Eq. (3) with a log-
arithmic sparsity penalty function for a motion database composed of 30D observations. Note how
our method drops dimensions as the optimization evolves (i.e., the smallest singular values drop to
zero within the first few iterations). A comparison of the spectrum of different sparsity penalty func-
tions is shown in Fig. 2 (b). The L1-norm results in a poor estimation of the dimensionality, while
the more aggressive sigmoid and logarithmic functions are able to recover the correct dimensionality
in this example. In the remainder of the paper we use the logarithmic function since it converges
faster than the L1-norm and has fewer parameters than the sigmoid.

4 Experimental results

In this section we demonstrate our approach in three different scenarios. We first compare our
method to graph-based techniques and GPLVM with different initializations in artificial data. We
illustrate our method’s ability to estimate the latent space dimensionality in complex synthetic data.
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Figure 3:Finding a 2D manifold in 3D space on a sparsely sampled swiss roll. Only a sparse,
noisy subset (depicted in black) of the full manifold is assumed to be known (a). (b) shows the
initialization (with neighborhood size k=6), GPLVM resultand 2D/3D reconstruction of the full
manifold (from top to bottom).

Finally we present an application of our technique to the challenging problem of tracking and clas-
sifying 3D articulated human body motion.

4.1 Experiment 1: Sparsely sampled swiss roll

The swiss roll is a widely used example of a 2D manifold which is embedded in a 3D space. Many
state-of-the-art graph-based techniques, which rely on local neighborhoods, can be used to unravel
it correctly if the data is homogenously sampled, the noise is small, and the neighborhood size
is selected appropriately. However, real data often violates these assumptions resulting in poor
performance.

We illustrate this problem by constructing a swiss roll which is sparsely sampled; only the black
points in Fig 3 (a) are available for training. The first row inFig. 3 (b) shows the result of ap-
plying PCA, Isomap, Laplacian Eigenmaps, LLE, LTSA and MVU (see [12] for a review on these
techniques). The second row depicts our technique and the result of optimizing the GPLVM with
different initializations. Finally the last two rows of Fig. 3 (b) show the test data (i.e., colored sam-
ples) reconstructed in the latent space and in the original space. Note that our method, unlike PCA,
graph-based techniques and the GPLVM with any of the initializations, is able to recover the correct
manifold.

We evaluate the performance of the different algorithms on this example computing a global and a
local measure of accuracy. Thereconstruction error is a global measure of the ability to general-
ize, and was obtained by first finding the latent coordinatesx∗ of the test datay∗ by maximizing
p(x∗|y∗, X, Y), and then computing the average mean prediction error1

Nt

∑

i ‖µ(x∗i ) − y∗i ‖2, with
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Reconstruction Error Relationship Error
mean stddev mean stddev

our method 0.0041 0.0107 0.0008 0.0013
PCA init 0.0845 0.1860 0.4232 0.1915
ISOMAP init (k=6) 0.3813 0.1794 0.0038 0.0120
ISOMAP init (k=9) 0.1720 0.8453 0.0011 0.0076
ISOMAP init (k=12) 0.3583 0.4221 0.0130 0.0035
ISOMAP init (k=15) 0.2350 0.2326 0.0731 0.0314
Laplacian init (k=6) 3.7027 2.6553 9.2735 2.5540
Laplacian init (k=9) 2.3136 1.3150 0.6426 8.1716
Laplacian init (k=12) 1.6038 0.2878 7.9784 1.5029
Laplacian init (k=15) 0.5561 2.0321 2.2400 0.0508
LLE init (k=6) 3.5514 2.1871 7.5591 1.4807
LLE init (k=9) 2.6175 2.5141 8.5485 1.4881
LLE init (k=12) 1.6235 1.1386 0.1058 0.1064
LLE init (k=15) 2.7300 4.5488 1.7820 8.9215
LTSA init (k=6) 2.6377 0.7273 1.2636 1.6498
LTSA init (k=9) 3.5149 3.8835 2.0575 2.4038
LTSA init (k=12) 2.1734 3.2099 2.3700 3.0718
LTSA init (k=15) 4.0950 3.6681 2.1819 4.5150
MVU init (k=6) 0.3783 0.5381 0.1238 0.0055
MVU init (k=9) 0.3383 0.3665 0.0491 0.0465
MVU init (k=12) 0.3228 0.3477 0.0672 0.0164
MVU init (k=15) 0.0706 0.2560 0.5856 2.8057

Figure 4: Quantitative performance on a synthetic sparse swiss roll example Reconstruction
and Relationship Error for the experiment in Fig. 3 averagedover 20 random partitions of the data.
(Left) 8 best dimensionality reduction techniques. (Right) More detailed results, including PCA and
graph-based methods with different neighborhood sizes.

Figure 5: Dimensionality estimation. (Top) Five 2D manifolds embedded in 3D. (Bottom) La-
tent spaces and intrinsic dimensionalitiesQ learned using our continous dimensionality reduction
method.

Nt the number of test data. Therelationship error, Rerror, measures how well local neighbor-
hoods are preserved and is defined asRerror =

∑Nt

i=1

∑

j∈ηi

(

Γi,j − Γ̄i,j

)2
, whereηi is the set of

neighbors of thei-th test data,Γi,j =
‖xi−xj‖2
‖yi−yj‖2 is the ratio between the distance in the latent space

and the distance in the observation space for two neighbors,andΓ̄i,j is the mean ratio in the local
neighborhood. Fig. 4 depicts these two error measures when performing the experiment in Fig. 3
averaged over 20 random partitions of the data. We use a localneighborhood of size 4 to compute
the relationship error in all experiments, and a logarithmic sparsity function withα = 10, β = 10,
andΘ = {0.5, 1.5, 0.01} . The hyperparameters were optimized for the GPLVM baselines. Note
that our method outperforms the baselines independent of the initialization used for the GPLVM.

4.2 Experiment 2: Discovering the correct dimensionality

We illustrate our method’s ability to discover the intrinsic dimensionality of the underlying manifold
in 5 complex synthetic examples. In Fig. 5 (a) a spiral with a wide separation between rings is
reduced to a 1D manifold. When the distance between the different rings decreases, the intrinsic
manifold dimensionality changes from 1D to 2D (see Fig. 5 (b)), since relationships between points
that have the same phase are considered. In Fig. 5 (c) the underlying 2D manifold from a cut-off
sphere sampled along longitudinal lines is discovered. Themanifold in Fig. 5 (d) is intrinsically 3D
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Figure 6: Learning different types of motion into one single 3D latentspace. Each type is
visualized with a different color (red = rolling, green = brooming, blue = milling). (a) depicts a
3D-GPLVM initialized to LLE, discontinuities are emphasized in black. (b,c) show the manifold
learned by our method along with the variance.

and thus cannot be reduced (as discovered by our method), while the manifold in Fig. 5(e) can be
reduced to 2D.

4.3 Experiment 3: Tracking and classification in the kitchendomain

An interesting real-world application of discovering low-dimensional structure in a high-
dimensional space is tracking and classifying human motionfrom video sequences. Tracking con-
sists of inferring the 3D locations of body joints from images. We use the kitchen dataset of [3], that
consists of images from 2D cameras and ground truth joint angles of 3 motion types (i.e., rolling,
milling, brooming) performed several times. We learned a single 3D latent space from 30D joint
angle observations of 2 trials for each of the 3 different motions (N = 1120 training examples).
Fig. 6 shows the result of learning such motions using (a) GPLVM initialized with LLE and (b) our
method. For both methods we used sparsification to speed up learning. Note that our method, un-
like the GPLVM initialized with LLE, is smooth (i.e., consecutive frames in time are close in latent
space), and separates well the different classes. As shown in the figure, smoothness implies lower re-
lationship error. To quantify the latter, we compute the Fisher score defined asFscore = tr

(

S−1
w Sb

)

,
whereSw is the within class matrix andSb is the between class matrix. Note that our method per-
forms significantly better than GPLVM in terms of the relationship error and the fisher score.

Fig. 7 depicts tracking and classification performance for the milling and rolling motions2 when
using the models depicted by Fig. 6. We used a particle filter tracking that operates in the low
dimensional space and models the dynamics with a first order Markov model. Our image likeli-
hood is based on low-level silhouette features. We labeled the data using 7 classes (rest, grasp pin,
rolling, grasp broom, brooming, grasp mill, milling) and used NN for classification. Our method
significantly outperforms the GPLVM with LLE initialization in both tracking accuracy and NN
classification performance when using both, one or two cameras. We observed that the milling mo-
tion is more ambiguous than the rolling motion and thus can betracked reliably only when using
two cameras, whereas one camera proved sufficient for the rolling motion.

5 Conclusion

In this paper we have presented a new method for non-linear dimensionality reduction that penalizes
high dimensional spaces and results in an optimization problem that continuously drops dimensions
while solving for the latent coordinates. Our method can discover the dimensionality of the latent
space and its intrinsic dimensionality, without the requirement of ad-hoc initialization. Our approach
has proven superior to PCA, graph-based and non-linear dimensionality reduction techniques in a
variety of synthetic and real-world databases in the task ofdimensionality reduction, tracking and
classifying articulated human motion. Our method is general and we believe it can be applied to any
dimensionality reduction technique that can be expressed as the minimization of a cost function that
is a function of the latent variables.

2No results are shown for brooming since no test data is available.
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Figure 7:Tracking and NN classification performancefor milling and rolling motions using our
method (red) and GPLVM initialized to LLE (blue) as a function of the number of particles used in
the particle filter.
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