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Abstract

Non-linear dimensionality reduction methods are powadahniques to deal with
high-dimensional datasets. However, they often are stistepo local minima
and perform poorly when initialized far from the global eptim, even when the
intrinsic dimensionality is known a priori. In this work wetroduce a prior over
the dimensionality of the latent space, and simultaneaystiynize both the latent
space and its intrinsic dimensionality. Ad-hoc initialibm schemes are unneces-
sary with our approach; we initialize the latent space toolheervation space and
automatically infer the latent dimensionality using animzation scheme that
drops dimensions in a continuous fashion. We report respltdying our prior
to various tasks involving probabilistic non-linear dinsamality reduction, and
show that our method can outperform graph-based dimerigijoreduction tech-
niques as well as previously suggested ad-hoc initiabpattrategies.

1 Introduction

Many real-world problems involve high dimensional datagbat are computationally challenging
to handle. In such cases it is desirable to reduce the dimeal#tly of the data while preserving
the original information in the data distribution, allowifior more efficient learning and inference.
Linear dimensionality reduction methods (e.g., PCA) afieieht but can miss important structure
in the data; graph-based techniques, e.g., LLE [7] and Ipd8lacapture non-linear dependencies
but require highly dense and homogeneously sampled meaifot accurate modeling.

Non-linear dimensionality reduction techniques can bdiagpo more complex data, but generally
suffer from local minima. Choosing the dimensionality of thtent space is non-trivial, and existing
methods typically rely on cross-validation. Even when gitlee correct latent dimensionality, these
techniques often do not succeed in practice when initidlize from the global minimum [11].
Factors which contribute to this include the distortiomaaiuced by the initialization and the non-
convexity of the optimization: when optimization is perfued in a low dimensional space the model
may not have the requisite degrees of freedom to avoid loaahma.

In this paper we develop a prior on the dimensionality of thteos latent coordinates, encouraging

low dimensional representations. CrRank Prior enforces a penalty on the non-sparsity of the sin-
gular values of the matrix of latent variables, and autocadlti discovers the latent space and its
dimensionality using a continuous optimization that drdjpsensions on the fly. By initializing the



latent coordinates to the original space no distorsiontiméuced; since we decrease the dimen-
sionality slowly (starting from a high-dimensional spaegira flexibility is gained which allows the
method to avoid local minima during optimization. To our iutedge, ours is the first non-linear di-
mensionality reduction technique that penalizes the taeace rank and simultaneously optimizes
the structure of the latent space as well as its intrinsicedisionality.

We demonstrate the effectiveness of our approach wheniegpnobabilistic latent variable mod-
els with the Gaussian Process Latent Variable Model (GPL{AY))a generalization of Probabilistic
PCA to the non-linear case that models the mapping from thatlapace to the data space as a Gaus-
sian process. The GPLVM has proven successful in many apiolits, but initialization, knowledge

of the latent dimensionality, and/or additional prior kiedge were assumed (e.g., [2, 8, 11]). In-
corporating our prior with the GPLVM objective results in aptimization problem that allows us
to discover the latent space and the intrinsic dimensignafliartificial and real datasets. We further
demostrate the effectiveness of our approach in trackidgkassifying complex articulated human
body motions from video.

2 Background: Gaussian Process Latent Variable Models

Latent Variable Models (LVMs), e.g., Probabilistic PCA [10 MDS, assume that the data has been
generated by some latent (unobserved) random variableBelen or close to a low-dimensional
manifold. Probabilistic LVMs relate the latent variablesat set of observed variables via a proba-
bilistic mapping.

More formally, letY = [y,,---,yy]? be the set of observations € RP, and letX =
[x1,---,xx]T be the set of latent variables € R, with Q < D. Lety( = f(x) + n with

y(@ the d-th coordinate of, andn ~ N(0, 63) iid Gaussian noise. The Gaussian Process Latent
Variable Model (GPLVM) [5] places a Gaussian process pria@rdhe space of mapping functions
f. Marginalizing over the functiong and assuming conditional independence of the output dimen-
sions given the latent variables results in the GPLVM likebd

D
p(Y1X) = T[T M (Y@]0,K)

d=1

whereY(? is the d-th column inY, andK is the covariance matrix, typically defined in terms
. — . 2
of a kernel function. Here we use an RBF + noise kerhek;,x;) = 61 exp (—%) +
2
030;5, since it allows for a variety of smooth, non-linear mapginging only a limited number of
hyperparameter§) = {61, 62, 05}, whered, is the RBF lengthscalé, the kernel width, ands the
observation noise. The latter contributes to a numeric#iple inversion of the covarianke

Learning in the GPLVM is performed by maximizing the posten(X|Y) o« p(Y|X)p(X) with
respect to the latent variabl& and the kernel hyperparametésp(X) encodes prior knowledge
about the latent spacé.

PCA and graph-based techniques are commonly used toistihle latent space in GPLVM-based
dimensionality reduction; both offer closed-form solato However, PCA [6] cannot capture non-
linear dependencies, LLE [7] gives a good initializatmnty if the data points are uniformly sam-

pled in the manifold, and Isomap [9] has difficulty with noorvex datasets [4]. Generally, when
initialized far from the true minimum, the GPLVM optimizati can get stuck in local minima

[5, 11].

To avoid this problem different priors over the latent sphaee been developed. In [13] a prior
was introduced in the form of a Gaussian process over thendigsan the latent space. This re-
sults in smoother manifolds but performs poorly when leagrstylistic variations of a motion or
multiple motions [11]. Urtasun et al. [11] proposed a prigenthe latent space, inspired by the
LLE cost function, that encourages smoothness and allosvsttoduction of prior knowledge, e.g.,
topological information about the manifold. However, spctor knowledge is not commonly avail-
able, reducing considerably the applicability of theirteigjue. In contrast, the method developed
below introduces a generic prior that requires no specifir finowledge, directly penalizing the
dimensionality of the latent space to learn effective lame&hsional representations.
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Figure 1:lllustration of our Rank Prior with a GPLVM : The goal is to recover the 1D manifold in
a 2D space. The GPLVM gets stuck in local minima very earlypérgow) since PCA initialization
does not capture non-linear dependencies, whereas ouodh@ditreases dimensionality gradually
and recovers the correct manifold (lower row).

3 Continuous Dimensionality Reduction via Rank Priors

We introduce a novel method for probabilistic non-lineanif@d learning which avoids the initial
distortion induced by ad-hoc initialization. We initiadizhe latent space to the high-dimensional
observation space and defineRank Prior which favors latent spaces with low dimensionality.
Minimizing the dimensionality of the latent space is eqléwd to minimizing£, the rank of the
Gram matrix of the rows of the unbiased matxix

1 o745
L =rank | ——=X X 1
ran (N—l ) (2)
whereX denotes the mean subtracted latent variakles X — X andX;; = + SN X

The cost function in Eq. (1) is discrete and thus difficult tmimize. Let the singular value de-
composition (SVD) ofX be UXVT, whereU andV are matrices containing the left and right
singular vectors, an& comprises the singular valués, (X),...,op(X)} on its diagonal. Then

)~<T~)~< = VX2V7T and£ can be minimized by minimizing the number of non-zero siaguhlues
of X.

We transform the discrete optimization criteria in Eq. (ifpia continuous one by introducing a
sparsity penalty on the singular values. In particular we introduce a prior of the form

D
pX) = - oxp ( > so(frmo?))) @

m=1

whereg,, (X) = ——=

VN-1
One can consider different sparsity penalty functions. ileatity functiony(6) = 6 results in the
L1-norm since the singular values are always positive. Ofiqadar interest to us are functions that
drive small singular values faster towar@shan larger ones. Examples of such functions are the
logarithmicy(6) = aIn(1 + 86?) and the sigmoitp(6) = a(1 + exp(—3(6 — ~)))~! functions,
with «, § and~ constant parameters.

om(X), ¢ is a sparsity penalty function, arfla normalization constaht

Minimizing the negative log posterior results in an optiatian that reduces the dimensionality in a
continuous fashion:

min 21n|K(X @)|—|—2t7‘(K(X 0)7lyy?) + f: (6m (X)) st.Ap=0 (3)
X 2 5 9 5 P Om L. E —

m=1

!Note the fact that this is an improper prior has no impact @ dptimization since it acts as a constant
when minimizing the negative log posterior.
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Figure 2: Spectrum of a 30D motion database(a) Evolution of the first ten singular values as a
function of the optimization iteration number for a loghritic sparsity penalty function. (b) Spec-

trums learned after convergence by different sparsity lpghanctions compared to the observation
space spectrum (red).

whereAg = |E(X) — )| is the difference between the energies of the spectrum aferen
subtracted latent coordmatlﬁsand the mean subtracted observatidhs; Y — Y, with Y the mean
of the observations. This constraint keeps the overallggnef the system constant. The energy of
the spectrum can be defined B§X) = mezl 62, (X).

The derivative of the rank prior with respect to the laterdrclinates can be expressed as

0 = . 9p(Gm)
37”.2%(%) *Z;l o

m=1

imVim » 4)

where ="’ 8“’("’" depends on the sparsity function. The derivatives of thetiirs terms in Eq. (3)
w.r.t. X and@ are givenin [5].

We use the SNOPT [1] non-linear constraint optimizer to miae Eq. (3). After this optimization,
we choose the latent dimension to Qe= argmax, &mif%, wheree < 1, andéy > 65--- >
6p. The final steps consist of applying PCA in the optimizgdiimensional space and optimizing
p(Y|X, ©) with respect to the hyperparamet€&rs Note that the mapping is still non-linear since
PCA is performed in the latent space, not in the observatiace, and simply rotates the data to
produce the most compa@tdimensional representation.

Fig. 1 compares the GPLVM (initialized with PCA) with the uétsof optimizing Eq. (3) on a toy
example where a 1D manifold is embedded in 2D space. PCAgeew non-optimal initialization,
and the GPLVM gets trapped in local minima whereas our methodvers the correct structure.
Note that our final PCA projection rotates the latent spackrasults in a 1D manifold. In this
example, using spectral methods could lead to a succeaéfalization for the GPLVM. However,
for more complex datasets this is not necessarily the cageriaral, as shown in Figs. 3 and 6.

Fig. 2 (a) depicts the evolution of the first ten singular eslwhen optimizing Eq. (3) with a log-
arithmic sparsity penalty function for a motion databasmposed of 30D observations. Note how
our method drops dimensions as the optimization evolves {he smallest singular values drop to
zero within the first few iterations). A comparison of the sjpem of different sparsity penalty func-
tions is shown in Fig. 2 (b). The L1-norm results in a poorreation of the dimensionality, while
the more aggressive sigmoid and logarithmic functions bieeta recover the correct dimensionality
in this example. In the remainder of the paper we use the ibgaic function since it converges
faster than the L1-norm and has fewer parameters than thoglg

4 Experimental results

In this section we demonstrate our approach in three diffeseenarios. We first compare our
method to graph-based techniques and GPLVM with diffeneitibiizations in artificial data. We
illustrate our method’s ability to estimate the latent spditnensionality in complex synthetic data.
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Figure 3:Finding a 2D manifold in 3D space on a sparsely sampled swisslt. Only a sparse,
noisy subset (depicted in black) of the full manifold is assd to be known (a). (b) shows the
initialization (with neighborhood size k=6), GPLVM resualhd 2D/3D reconstruction of the full
manifold (from top to bottom).

Finally we present an application of our technique to thdlehging problem of tracking and clas-
sifying 3D articulated human body motion.

4.1 Experiment 1: Sparsely sampled swiss roll

The swiss roll is a widely used example of a 2D manifold whikmbedded in a 3D space. Many
state-of-the-art graph-based techniques, which rely oal loeighborhoods, can be used to unravel
it correctly if the data is homogenously sampled, the nassemiall, and the neighborhood size
is selected appropriately. However, real data often wsldhese assumptions resulting in poor
performance.

We illustrate this problem by constructing a swiss roll whis sparsely sampled; only the black
points in Fig 3 (a) are available for training. The first rowRig. 3 (b) shows the result of ap-
plying PCA, Isomap, Laplacian Eigenmaps, LLE, LTSA and M\&é€ [12] for a review on these
techniques). The second row depicts our technique and Hudt iif optimizing the GPLVM with
different initializations. Finally the last two rows of Fi§ (b) show the test data (i.e., colored sam-
ples) reconstructed in the latent space and in the origpedes Note that our method, unlike PCA,
graph-based techniques and the GPLVM with any of the iiEti#ibns, is able to recover the correct
manifold.

We evaluate the performance of the different algorithmshiméxample computing a global and a
local measure of accuracy. Theconstruction error is a global measure of the ability to general-
ize, and was obtained by first finding the latent coordinatesf the test datg* by maximizing
p(x*|y*, X, Y), and then computing the average mean prediction qﬁcozz l|pe(XF) — yill2, with

5



Reconstruction Error Reconstruction Error Relationship Error

of 2 2 & mean stddev mean stddev
o 3 S ¥ our method 0.0041 0.0107 0.0008 0.0013
o & F PCA init 0.0845 0.1860 0.4232 0.1915
w8 & ISOMARP init (k=6) 0.3813 0.1794 0.0038 0.0120
o3| - ISOMARP init (k=9) 0.1720 0.8453 0.0011 0.0076

ISOMAP init (k=12) 0.3583 0.4221 0.0130 0.0035
ISOMAP init (k=15) 0.2350 0.2326 0.0731 0.0314
Laplacian init (k=6) 3.7027 2.6553 9.2735 2.5540
Laplacian init (k=9) 2.3136 1.3150 0.6426 8.1716
Laplacian init (k=12) 1.6038 0.2878 7.9784 1.5029

o1z s 4 s s 1 s s Laplacianinit (k=15) | 05561 | 2.0321 | 2.2400 | 0.0508
. LLE init (k=6) 35514 | 2.1871 | 7.5591 | 14807

o Relationship Error [LE init (k=9) 26175 | 25141 | 8.5485 | 14881
€838z 273 LLE init (k=12) 16235 | 11386 | 0.1058 | 0.1064
SR EE RS LLE init (k=15) 27300 | 45488 | 1.7820 | 89215
w3 222 d TTSA init (k=) 26377 | 07273 | 1.2636 | 1.6498
w & 70T l LTSA init (k=9) 35149 | 3.8835 | 2.0575 | 2.4038
=25 TTSA init (k=12) 21734 | 3.2000 | 2.3700 | 30718
TTSA init (k=15) 7.0050 | 3.6681 | 2.1810 | 45150
: MVU init (k=6) 0.3783 | 05381 | 0.1238 | 0.0055
o MVU init (k=9) 0.3383 0.3665 0.0491 | 0.0465
—+ + B MVU init (k=12) 03228 | 03477 | 0.0672 | 00164
e MVU init (k=15) 0.0706 | 0.2560 | 0.5856 | 2.8057

Figure 4: Quantitative performance on a synthetic sparse swiss rollxample Reconstruction
and Relationship Error for the experiment in Fig. 3 averagest 20 random patrtitions of the data.
(Left) 8 best dimensionality reduction techniques. (Ridhore detailed results, including PCA and
graph-based methods with different neighborhood sizes.

observation space

learned latent space

Figure 5: Dimensionality estimation. (Top) Five 2D manifolds embedded in 3D. (Bottom) La-
tent spaces and intrinsic dimensionalit@dearned using our continous dimensionality reduction
method.

N; the number of test data. Thelationship error, R, measures how well local neighbor-
hoods are preserved and is definedias.., = Zﬁvz‘l Yiem (Tij — fi,j)Q, wheren; is the set of
neighbors of the-th test datal’; ; = H is the ratio between the distance in the latent space
and the distance in the observation space for two neighbotf}; ; is the mean ratio in the local
neighborhood. Fig. 4 depicts these two error measures whdarming the experiment in Fig. 3
averaged over 20 random partitions of the data. We use anedgthborhood of size 4 to compute
the relationship error in all experiments, and a logarithsmarsity function withw = 10, 8 = 10,
and© = {0.5,1.5,0.01} . The hyperparameters were optimized for the GPLVM basglilNote
that our method outperforms the baselines independenednitialization used for the GPLVM.

4.2 Experiment 2: Discovering the correct dimensionality

We illustrate our method’s ability to discover the intringimensionality of the underlying manifold
in 5 complex synthetic examples. In Fig. 5 (a) a spiral withideaseparation between rings is
reduced to a 1D manifold. When the distance between theréliffeings decreases, the intrinsic
manifold dimensionality changes from 1D to 2D (see Fig. 5,&hce relationships between points
that have the same phase are considered. In Fig. 5 (c) thelyinde2D manifold from a cut-off
sphere sampled along longitudinal lines is discovered.ramifold in Fig. 5 (d) is intrinsically 3D
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Figure 6: Learning different types of motion into one single 3D latentspace. Each type is
visualized with a different color (red = rolling, green = bring, blue = milling). (a) depicts a
3D-GPLVM initialized to LLE, discontinuities are emphasikzin black. (b,c) show the manifold
learned by our method along with the variance.

and thus cannot be reduced (as discovered by our methodg, thkimanifold in Fig. 5(e) can be
reduced to 2D.

4.3 Experiment 3: Tracking and classification in the kitchendomain

An interesting real-world application of discovering laimensional structure in a high-
dimensional space is tracking and classifying human mdtmm video sequences. Tracking con-
sists of inferring the 3D locations of body joints from imag®&Ve use the kitchen dataset of [3], that
consists of images from 2D cameras and ground truth joinkeanaf 3 motion types (i.e., rolling,
milling, brooming) performed several times. We learnedrgle 3D latent space from 30D joint
angle observations of 2 trials for each of the 3 differentiomd (V = 1120 training examples).
Fig. 6 shows the result of learning such motions using (a)\@Pnitialized with LLE and (b) our
method. For both methods we used sparsification to speedauqirig. Note that our method, un-
like the GPLVM initialized with LLE, is smooth (i.e., consgtive frames in time are close in latent
space), and separates well the different classes. As simva figure, smoothness implies lower re-
lationship error. To quantify the latter, we compute thénErsscore defined d8.cor. = tr (S;,155),
wheres,, is the within class matrix and; is the between class matrix. Note that our method per-
forms significantly better than GPLVM in terms of the relatship error and the fisher score.

Fig. 7 depicts tracking and classification performance lier milling and rolling motionrswhen
using the models depicted by Fig. 6. We used a particle fifeaking that operates in the low
dimensional space and models the dynamics with a first ordekd model. Our image likeli-
hood is based on low-level silhouette features. We labdlediata using 7 classes (rest, grasp pin,
rolling, grasp broom, brooming, grasp mill, milling) andedsNN for classification. Our method
significantly outperforms the GPLVM with LLE initializatioin both tracking accuracy and NN
classification performance when using both, one or two camét/e observed that the milling mo-
tion is more ambiguous than the rolling motion and thus catrdeked reliably only when using
two cameras, whereas one camera proved sufficient for ttegahotion.

5 Conclusion

In this paper we have presented a new method for non-lingarionality reduction that penalizes
high dimensional spaces and results in an optimizationipnekthat continuously drops dimensions
while solving for the latent coordinates. Our method carcaier the dimensionality of the latent
space and its intrinsic dimensionality, without the regment of ad-hoc initialization. Our approach
has proven superior to PCA, graph-based and non-lineandiimeality reduction techniques in a
variety of synthetic and real-world databases in the tas#timensionality reduction, tracking and
classifying articulated human motion. Our method is gelreerd we believe it can be applied to any
dimensionality reduction technique that can be expresséukaminimization of a cost function that
is a function of the latent variables.

2No results are shown for brooming since no test data is dtaila



Tracking milling sequences Tracking rolling sequences

14 14
- - -GPLVM+LLE, 1 camera - - -GPLVM+LLE, 1 camera
12 — GPLVM+LLE, 2 cameras| 12t —— GPLVM+LLE, 2 cameras
- - -our method, 1 camera - - -our method, 1 camera
T 10 — our method, 2 cameras E 10t — our method, 2 cameras
O &)
S s S 5
i} i}
26 2 6
4 4
[=} [=]
15 IS4
s o4 s oA
2 2r
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Number of particles Number of particles
Classifying milling sequences Classifying rolling sequences
100 100
9 S
Z 80 - - < 80
oy = AN >
g g i
3 i 3 I
3 60 I/ 8 eor 1
< [ < I
c [ 3 c !
8 8 !
= = '
g 4 g o
2 - - -GPLVM+LLE, 1 camera 2 | - - -GPLVM+LLE, 1 camera
S 9o —— GPLVM+LLE, 2 cameras S 99 —— GPLVM+LLE, 2 cameras
(8] (@]
- - -our method, 1 camera - - -our method, 1 camera
——our method, 2 cameras ——our method, 2 cameras
0 . T T : : 0 . T T ; :
0 20 40 60 80 100 0 20 40 60 80 100
Number of particles Number of particles
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