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Abstract. The fourth-order ordinary differential spectral problem 
describing vertical eigenvibrations of a beam with two mechanical 
resonators attached to the ends is studied. This problem has positive simple 
eigenvalues and corresponding eigenfunctions. We define limit differential 
spectral problem and establish the convergence of the eigenvalues and 
eigenfunctions of the original spectral problem to the eigenvalues and 
eigenfunctions of the limit spectral problem as parameters of the attached 
resonators tending to infinity. The initial fourth-order ordinary differential 
spectral problem is approximated by the finite difference method. 
Theoretical error estimates for approximate eigenvalues and eigenfunctions 
are derived. Obtained theoretical results are illustrated by computations for 
model problem with constant coefficients. Theoretical and experimental 
results of this paper can be developed for the problems on eigenvibrations 
of complex mechanical constructions with systems of resonators. 

1 Introduction 

We investigate the vertical eigenvibrations of a beam of length .l  Denote by ( ),xρ  ( ),E x  

( )S x   and ( )J x  the density, the elasticity modulus of the beam material, the square of 

transversal cut of the beam and the inertia moment of the cut with respect to its horizontal 

axis at the point [0, ],x l∈Ω =  (0, ).lΩ =  Assume that the ends 0x =  and x l=  of the 

beam are elastically fixed by springs of stiffness ,K  also at points 0x =  and x l=  of the 
beam loads of mass M  are joined. Then the vertical deflection ( , )w x t  of the beam at a 

point x  at time t  satisfies the following system of partial differential equations 
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with coefficients ( ) ( ) ( ),p x J x E x=  ( ) ( ) ( ),r x S x xρ=  ,x∈Ω  0.t >   

The eigenvibrations of the beam-resonators mechanical system are described by the 
deflection ( , ) ( )sin( ),w x t u x tω=  ,x∈Ω  0,t >  with constant ω . The system of partial 

differential equations (1)–(4) leads to the parameter fourth-order ordinary differential 

spectral problem: find ( , )K Mλ λ=  and ,( ) ( ),K Mu x u x=  ,x∈Ω  satisfying the 

following equations  

( ) 0,  ,pu ru xλ′′ ′′ − = ∈Ω                                                     (5) 

(0) ( ) ( (0) (0)) ( ) (0) ( ( ) ( )) ( ) ( ) 0.u u l p u K M u p l u l K M u lλ λ′′ ′′ ′′ ′ ′′ ′= = + − = − − =       (6) 

The parameter spectral problem (5), (6), has positive simple eigenvalues and corresponding 
orthonormal eigenfunctions. In this paper, we study limit properties as K →∞  with fixed 
M  and as M →∞  with fixed K  of eigenvalues and eigenfunctions of the parameter 
spectral problem (5), (6). The original spectral problem (5), (6), is approximated by the 
finite difference mesh scheme. The theoretical errors estimates for approximate eigenvalues 
and eigenfunctions for this mesh scheme are established. 

Spectral approximations for compact operators are investigated in the papers [1–4]. 
Generalizations of spectral approximations for holomorphic Fredholm operator functions 
are derived in the papers [5, 6]. Preconditioned iterative methods for solving linear spectral 
problems are proposed and investigated in the papers [7–14]. Iterative methods for solving 
spectral problems with nonlinear parameter are proposed and investigated in the papers 
[15–26]. Numerical algorithm without saturation for solving problems of mathematical 
physics and mechanics were constructed and investigated in [27–38]. This paper develops 
and generalizes results of the papers [1–6]. 

2 Limit properties of the beam-resonators eigenvalue problem 

Introduce sufficiently smooth coefficients ( ),p x  ( ),r x  ,x∈Ω  and assume that there 

exist positive numbers ,iα  ,iβ  1,2,i =  satisfying the following conditions 

1 2( ) ,p xα α≤ ≤  1 2( ) ,r xβ β≤ ≤  .x∈Ω  We also introduce nonnegative numbers ,K  

,M  and the following bilinear forms 

0 0

( , ) d ,  ( , ) d ,  ( , ) (0) (0) ( ) ( ).
l l

a u v pu v x b u v ruv x c u v u v u l v l′′ ′′= = = +∫ ∫  

2

MATEC Web of Conferences 329, 03009 (2020) https://doi.org/10.1051/matecconf/202032903009
ICMTMTE 2020



 
 
 
 
 
 

2 2

2 2

(0, ) ( , )
0,   0,   0,

w t w l t t
x x

∂ ∂
= = >

∂ ∂
                                        (2) 

2 2

2 2

(0, ) (0, )
(0) (0, ) ,  0,

w t w tp Kw t M t
x x t

� �∂ ∂ ∂
− − = >� �� �∂ ∂ ∂� �

                            (3) 

2 2

2 2

( , ) ( , )
( ) ( , ) ,  0,

w l t w l tp l Kw l t M t
x x t

� �∂ ∂ ∂
− = >� �� �∂ ∂ ∂� �

                          (4) 

with coefficients ( ) ( ) ( ),p x J x E x=  ( ) ( ) ( ),r x S x xρ=  ,x∈Ω  0.t >   

The eigenvibrations of the beam-resonators mechanical system are described by the 
deflection ( , ) ( )sin( ),w x t u x tω=  ,x∈Ω  0,t >  with constant ω . The system of partial 

differential equations (1)–(4) leads to the parameter fourth-order ordinary differential 

spectral problem: find ( , )K Mλ λ=  and ,( ) ( ),K Mu x u x=  ,x∈Ω  satisfying the 

following equations  

( ) 0,  ,pu ru xλ′′ ′′ − = ∈Ω                                                     (5) 

(0) ( ) ( (0) (0)) ( ) (0) ( ( ) ( )) ( ) ( ) 0.u u l p u K M u p l u l K M u lλ λ′′ ′′ ′′ ′ ′′ ′= = + − = − − =       (6) 

The parameter spectral problem (5), (6), has positive simple eigenvalues and corresponding 
orthonormal eigenfunctions. In this paper, we study limit properties as K →∞  with fixed 
M  and as M →∞  with fixed K  of eigenvalues and eigenfunctions of the parameter 
spectral problem (5), (6). The original spectral problem (5), (6), is approximated by the 
finite difference mesh scheme. The theoretical errors estimates for approximate eigenvalues 
and eigenfunctions for this mesh scheme are established. 

Spectral approximations for compact operators are investigated in the papers [1–4]. 
Generalizations of spectral approximations for holomorphic Fredholm operator functions 
are derived in the papers [5, 6]. Preconditioned iterative methods for solving linear spectral 
problems are proposed and investigated in the papers [7–14]. Iterative methods for solving 
spectral problems with nonlinear parameter are proposed and investigated in the papers 
[15–26]. Numerical algorithm without saturation for solving problems of mathematical 
physics and mechanics were constructed and investigated in [27–38]. This paper develops 
and generalizes results of the papers [1–6]. 

2 Limit properties of the beam-resonators eigenvalue problem 

Introduce sufficiently smooth coefficients ( ),p x  ( ),r x  ,x∈Ω  and assume that there 

exist positive numbers ,iα  ,iβ  1,2,i =  satisfying the following conditions 

1 2( ) ,p xα α≤ ≤  1 2( ) ,r xβ β≤ ≤  .x∈Ω  We also introduce nonnegative numbers ,K  

,M  and the following bilinear forms 

0 0

( , ) d ,  ( , ) d ,  ( , ) (0) (0) ( ) ( ).
l l

a u v pu v x b u v ruv x c u v u v u l v l′′ ′′= = = +∫ ∫  

 
 
 
 
 
 

Problem (5), (6), has positive simple eigenvalues ( , ),m m K Mλ λ=  1,2,m =  and 

corresponding eigenfunctions , ,K M
m mu u=  1,2, ,m =  satisfying the following 

conditions 

( , ) ( , ) ,  ( , ) ( , ) ,m n m n m mn m n m n mna u u Kc u u b u u Mc u uλ δ δ+ = + =   

for , 1,2,m n =  

We introduce the limit spectral problem: find µ  and functions ( ),v x  ,x∈Ω  satisfying 

the following equations 

( ) 0,  ,pv rv xµ′′ ′′ + = ∈Ω                                                  (7) 

(0) ( ) (0) ( ) 0.v v l v v l′′ ′′= = = =                                             (8) 

The spectral problem (7), (8), has eigenvalues ,mµ  1,2,m =  and corresponding 

eigenfunctions ,mv  1,2,m =   

Theorem 1. The eigenvalues ( , ),m K Mλ  [0, ),M ∈ ∞  1,2, ,m =  with fixed ,K  are 

continuous and decreasing. The eigenvalues ( , ),m K Mλ  [0, ),K ∈ ∞  1,2, ,m =  with 

fixed ,M  are continuous and increasing. The properties of eigenfunctions are valid: 
, (0) 0,K M

mu ≠  , ( ) 0,K M
mu l ≠ 1,2,m =   

The results of this theorem follow from the papers [1–6]. 

If ( ),w x  ,x∈Ω is a continuous function, then we define the following norm 

|| || max | ( ) | .
x

w w x
∈Ω

=   

Theorem 2. The properties are valid: 1) if K  is fixed, then 2( )m mK,Mλ µ −→  as 

,M →∞  1( ) 0K,Mλ →  and 2 ( ) 0K,Mλ →  as ,M →∞  ,
2|| || 0K M

m mu v −− →  as 

;M →∞  2) if M  is fixed, then ( )m mK,Mλ µ→  as ,K →∞  ,|| || 0K M
m mu v− →  as 

.K →∞  
The proof of this theorem develops results from the papers [1–6].  

3 Numerical experiments 

Define ,jx jh=  0,1, , ,j N=  .h l N=  Set ( ) ( ),p x p x− =  ( ) ( ),p l x p l x+ = −  

,x∈Ω  and denote ( ),j jp p x=  ( ),j jr r x=  , 1( ) ,x j j jy y y h+= −  

, 1( ) .x j j jy y y h−= −  We approximate spectral problem (5), (6), by the following mesh 

scheme of finite difference method 

,( ) 0,  2,3, , 2,h
xx xx j j jpy r y j Nλ− = = −                                    (9) 

1 ,1 0 0 0 02

1 1 1 1
,

2
h

xxp y Ky r y My
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                                 (10) 
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Theorem 3. The finite difference spectral problem (9)–(13) has positive eigenvalues 

1 2 1,h h h
Nλ λ λ +< < <  and corresponding orthonormal eigenvectors 

( ) ( ) ( )( ) T
0 1( , , , ) ,m m mm

Ny y y y=  1,2, , 1,m N= +  satisfying the following relations 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

1 1
[ , ) ( , ] ,

2 2
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2 2
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for , 1,2, , 1,m n N= +  ( ) ( )
1 1 0,m my y− + =  ( ) ( )

1 1 0.m m
N Ny y− ++ =  

Theorem 4. The theoretical error estimates for approximate eigensolutions hold: 
2| | ,h

m m chλ λ− ≤  ( ) ( ) 2|| || ,m m
hy u ch− ≤  with a constant ( ),c c h≠  

( ) ( )( ) ( )

0,1, ,
|| || max | |,m mm m

h j jj N
u y u y

=
− = −  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
0 0[ , ) ( , ] 2 2 0,m m m mm m m m

N Nry u ry u My u My u+ + + >  ( ) ( ),m
m jju u x=  

0,1, , ,j N=  1 1.m N≤ < +  

The theoretical results of Theorems 3 and 4 can be established with using results from 
[1–6].  
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Fig. 1. Eigenvalues of the beam-resonators spectral problem. 

Figure 1 shows the experimental results for a model problem. To illustrate Theorems 1 

and 2, we solve the spectral problem (5), (6), for [0,2],M ∈  8[0,10 ],K ∈  and the 

following constant coefficients 1,p =  1,r =  ,x∈Ω  1.l =  We use the finite difference 

method (9)–(13) with 20.N =  Figure 1 shows the graphs of the eigenvalues 

( , ),m m K Mλ λ=  [0,10],M ∈  1 5,m≤ ≤  with fixed 8[0,10 ],K ∈  the eigenvalues 

,mµ  1 5,m≤ ≤  of the spectral problem (7), (8). We can see that the obtained numerical 

results are consistent with Theorems 1 and 2: for fixed ,K  2( )m mK,Mλ µ −→  as 

,M →∞  1,2,3,m =  1( ) 0K,Mλ →  and 2 ( ) 0K,Mλ →  as ,M →∞  for fixed ,M  

( )m mK,Mλ µ→  as ,K →∞  1 5.m≤ ≤  Theoretical and experimental results of this 

paper can be developed for the problems on eigenvibrations of complex mechanical 
constructions with systems of resonators. 
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