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Abstract

A novel adaptive optimal control paradigm is presented that is inspired by Hebbian
covariance learning, the celebrated biological synaptic process thought to underlie
learning and memory and other complex biological functions. The adaptation is
driven by the spontaneous fluctuations in the system input and output, the covari-
ance of which provides useful information about the changes in the system behavior.
Theoretical foundations for the paradigm are derived using Lyapunov theory. In nu-
merous computer simulations, the controller is shown to effectively optimize linear
and non-linear systems of arbitrary order in the presence of noise disturbances. The
on-line adaptation method is computationally simple to apply in comparison to other
optimal control schemes which may require complete parameter estimation. Further-
more, the learning algorithm is applicable to a wide class of real-world optimal control
problems.

This thesis also explores the plausibility that Hebbian covariance learning may
underlie respiratory control, satisfying certain physiological and neurobiological con-
straints. The respiratory system has been hypothesized to be regulated in an optimal
fashion by a specialized brainstem center. The positive results of these simulations
lend themselves to future inquiries into the computational functions of synaptic plas-
ticity in biological neurons and into the neuronal processes which may underlie res-
piratory control.

Thesis Supervisor: Dr. Chi-Sang Poon
Title: Harvard-MIT Division of Health Sciences and Technology
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Chapter 1

Introduction

Adaptiveness is an innate ability of many living organisms which must conform to

a wide range of environments. In this regard, biological systems must continually

undergo vast physiological adjustments in order to survive in ever changing climatic,

edaphic, or biotic conditions. In many instances, such as in sensory adaptation, these

modifications may occur automatically. Organisms in such cases do not require con-

scious thought processes to synthesize the appropriate response. This innate adaptive

ability suggests that there may exist fundamental neural mechanisms in the brain

which computationally give rise to adaptive solutions.

Adaptive optimal control is one advanced engineering control method that con-

tinually regulates a system to best suit its environment. Such optimizing systems are

generally needed when the system characteristics are changing and uncertain, and

when resources are costly and performance goals are high. The presence of adaptive

optimal behavior has long been recognized in certain organisms which are constrained

by limited resources vital for survival [29].

The first step in designing an optimal control system is relating qualitative system

goals to quantitative system measures, often in the form of a scalar performance index.

Secondly, for time-varying systems an adaptive controller is required to optimize

these performance measures in the face of uncertainties. Such an adaptive optimal

control design is the focus of this study in which a criterion function embodying some

scalar performance measure is extremized in an on-line fashion. Process control and



trajectory planning are just two instances where such an adaptive controller may be

useful. The class of problems of interest has no solution by conventional methods of

adaptive control, reinforcement learning or artificial neural networks.

In this thesis, we present a novel adaptive optimal control paradigm for such prob-

lems by analogy to some "intelligent" computational mechanisms which may exist in

certain brain structures. Following several illustrative examples, this control strategy

is applied to the respiratory system, a vital physiological system whose regulation of

homeostasis appears to be optimal across diverse conditions [30, 31].

Several forms of learning control have been proposed to model adaptation in the

higher brain. The "adaptive critic" method [5] is one such model that learns the

optimal action by means of a reinforcement signal. Similar neural reinforcement

learning models have been proposed to simulate certain animal behavior such as

maze navigation or other optimal path finding tasks [28]. Alternatively, model-based

learning paradigms construct internal models of the external environment in order to

adaptively formulate the control law. This type of adaptive control, similar to model-

reference adaptive control [11], has been applied to motor learning tasks [24, 40, 50]

where an internal model of the musculoskeletal system and external loads is thought

to be learned and stored in some brain regions such as the primary motor cortex or

the cerebellum.

Typically, adaptive learning models employ an extensive network of neurons whose

connections are modifiable by some form of synaptic plasticity. An important mech-

anism is Hebbian synaptic plasticity, first postulated by Hebb nearly 50 years ago

[20]. This neural mechanism has been linked to certain intelligent animal behaviors,

such as classical and instrumental conditioning [12], making it a particularly appeal-

ing substrate for computational inquires. Furthermore, Hebbian synapses have been

postulated to play a fundamental role in learning and memory in the hippocampus

and other brain structures [25, 46]. Over the past five decades, numerous incarnations

of Hebb's original learning rule have been proposed based on both theoretical and

experimental grounds [10].

Recently, Poon [32, 34] proposed a new role for Hebbian covariance learning in



homeostatic control of certain physiological functions, such as respiration. This respi-

ratory brainstem controller is hypothesized to continually minimize the total cost of

breathing (a function of the energy consumed by respiratory muscles and the chemical

imbalance in the arterial circulation) despite continual changes in physiological and

environmental states. In this respect, the respiratory regulator constitutes a brain

model of an adaptive optimal controller.

Inspired by the postulated role of Hebbian covariance learning in respiratory con-

trol, we propose in this thesis a generalized paradigm for self-tuning optimal control

employing certain Hebbian adaptation rules. The controller may be viewed as a

reinforcement learning system in which spontaneous, random perturbations in the

system states are used to advantage in probing the environment for surveillance. By

weighing the resulting feedback signals against the perturbations applied, the con-

troller effectively tunes the system to satisfy the control objective. More precisely, a

single synapse, representing the system feedback gain, is adaptively modified based

on the covariance between the controller output and the reinforcement signal as well

as the autovariance of the controller output. As the unknown environment changes,

the Hebbian controller continually conforms optimally to its new surroundings by

exploiting spontaneous fluctuations in the system.

We propose a theoretical framework for the Hebbian covariance learning paradigm

for dynamic optimal control and introduce the notion of long-term and near-term

objective functions. A general Hebbian adaptation rule is derived which is applicable

to a wide class of optimal control problems. In computer simulations of both linear

and non-linear systems, we show that the Hebbian covariance controller may adapt

optimally to its environment in a robust fashion despite the presence of uncertainties

and noise disturbances.

This thesis also assesses the role of Hebbian covariance learning in the dynamic

control of respiration. This notion was developed from the underling neural structure

of the brainstem and the physiological responses demonstrated by the respiratory sys-

tem. Computer simulations support this hypothesis and yield interesting predictions

concerning the behavior of the respiratory brainstem controller.



The newly discovered intrinsic optimization ability of Hebbian covariance synapses

is interesting from two standpoints. Firstly, it suggests a new computational role for

the Hebbian synapses in the brain. As well, certain testable hypotheses may be

drawn from the respiratory Hebbian covariance learning model. Secondly, this study

advances the efforts to reverse engineer the body's remarkable capability as a robust

and intelligent controller. Current engineering applications of this paradigm are being

investigated in hopes of yielding optimal learning systems.



Chapter 2

Hebbian Covariance Learning for

Adaptive Optimal Control

Hebbian adaptation is a common form of synaptic plasticity that is generally thought

to play an important role in many cognitive functions of the brain such as learning

and memory [7], vision [17, 44], motor control [22], and development [26, 54]. The

classical Hebbian model [20] postulated that the synaptic connections between two

neurons may be strengthened in time if the pre- and post-synaptic neural activity

coincide with each other within some short time interval:

dW
= k (x. y), (2.1)dt

where W is the synaptic weight; x and y represent the mean firing rate of the input

and output neurons, respectively; and k is an adaptation constant. This type of

associative synaptic modification, also called conjunctional Hebbian learning [10],

forms the basis for NMDA receptor mediated synaptic long-term potentiation (LTP)

[7, 9].
Despite its simplistic appeal, the classical Hebbian model of LTP has several theo-

retical limitations such as irreversible saturation by continued coactivity and random

runaway instability of the interacting neurons. To circumvent these difficulties, a

covariance Hebbian rule was formulated [38, 39] which allows both up and down



regulation of synaptic strength based on the degree of correlation between pre- and

post-synaptic activity. A simple form of the Hebbian covariance rule is given by the

following equation:
dWd = k6x . y, (2.2)

where 6x and 6y are respectively the temporal variations of the pre- and post-synaptic

activities about their mean values over a given time interval. Thus the synapse is

strengthened on average if 6x and by are positively correlated, weakened if negatively

correlated, and maintained at a constant average strength when changes are uncorre-

lated in time [38]. This Hebbian covariance algorithm describes synaptic LTP when

k > 0 and LTD (long-term depression) when k < 0. An important feature of the

above learning rule is that it responds to the changes in neural activity as opposed to

the mean activity. Such a synaptic adaptation rule has been demonstrated in various

systems including area 17 of the visual cortex [17], the CA1 region of the hippocampus

[46, 45] and certain neuromuscular junctions [14].

Although Eq. 2.2 satisfies many of the requirements for LTP and LTD, a synapse

of this form may still be saturated given a persistently excitatory or inhibitory con-

nection [1]. Several attempts have been made to include a decay term which would

prevent runaway instability or saturation. One such form is [32]:

=- k, 6x -by - k2 W g(6•, by; x, y), (2.3)
dt

where g(-) is some positive-definite function. In this formulation, the second term on

the right hand side acts as the decay term. Consequently, the rate of potentiation

will decrease with increasing W. Note that both terms on the right hand side are

generally associative (i.e. dependent on pre- and post-synaptic activity). By suitably

choosing the adaptation rates kI and k2, one may describe either long-term plasticity

or short-term plasticity.

To apply the above generalized Hebbian covariance rule to an adaptive control

paradigm, we first consider a learning system having input (x) and output (y) which

are connected in a closed loop via an external environment (Fig. 2-1). For simplicity
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Figure 2-1: The Hebbian adaptive paradigm as a reinforcement learning system.

we neglect any intermediate connections and any other inputs which may be inter-

posed between them. Assuming a linear input-output relationship in the learning

system, the mean activity of the input and output signals can be related to a first

approximation by the following equation:

y = Wx. (2.4)

Now suppose the output signal is spontaneously fluctuating around some mean

value. Such fluctuations (6y) in the output may occur, for example, as a result of

random variations of neurotransmitter release in the presynaptic terminals or pe-

riodic variations of activity in a pacemaker cell or an oscillatory network. It has

been suggested that persistent perturbations in learning systems may be beneficial

in preventing spurious equilibrium states [2]. In what follows, we show that such

spontaneous fluctuations in neural activity may provide a means of adaptive optimal

control.

Due to the closed-loop structure of the system, the fluctuations in the output signal
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SYSTEM
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of the learning system will result in corresponding fluctuations in the input (6x). The

ratio 6x/6y is then a measure of the gradient of the input-output relationship of the

environment. Hence, substitution of Eq. 2.4 into Eq. 2.3 results in a learning rule

which is a function of the fluctuations in the input and output as follows:

dW= k 6x . 6y - k2 - g(6x, ; x,y) . (2.5)
dt x

A Hebbian covariance learning algorithm of the form in Eq. 2.5 may function as a

neural optimizer. Thus, if changes in the output (6 y) produce favorable changes in

the input (6x), W will be potentiated. Due to the decay term, this potentiation will

be checked by the penalty associated with increases in the output. With a proper

choice of the function g(.), the adaptation may serve to optimize a specific objective

function of the learning system such that dW/dt = 0 at the optimal operating point.

2.1 Optimization in Static Systems

2.1.1 Theory

First consider the simple case in which the input-output relationship of the environ-

ment is given by a static, perhaps non-linear, continuously differentiable function:

x = f(y) (2.6)

dx (2
= f'(y). (2.7)dy

Suppose the goal of the learning system is to control the environment in some

optimal fashion. The problem is then to minimize, by adaptive adjustment of the

gain (i.e., synaptic weight W), a long-term objective function of the form:

J = J(x, y). (2.8)

For convenience of discussion, we will assume that J is continuous and has a unique



global minimum (i.e. lower bounded). A maximization problem may be formulated in

a similar fashion by reversing the sign of J. Note that in our formulation, J is generally

a function of both the input (x) and the output (y). This is in contrast to certain

adaptive control problems (such as adaptive stabilization or tracking problems) where

the objective function is dependent on the output signal only.

To obtain an adaptation rule that would minimize J, we first differentiate Eq. 2.8

with respect to W:
dJ J dx OJ dy

=+ (2.9)dW Ox dW Oy dW

Hence, using the chain rule we obtain the rate of change of the objective function

during adaptation as:

dJ dJ dW _[)J dx OJ dy dWV - V -d -[ - + . (2.10)dt dW dt Ox dy ay dW dt

From Eqs. 2.4, 2.6, and 2.7 we have:

dy x (2.11)dW 1 - Wf'(y)' (2.11)

where the term Wf' (y) in Eq. 2.11 is the loop gain of the feedback system linearized

about the output y. A necessary condition for stability of the feedback system is:

Wf'(y) < 1. (2.12)

Substitution of Eq. 2.11 into Eq. 2.10 yields:

dJ =J dx +J] x dW (2.13)
dt Ox dy Oy I - Wf'(y) dt

The objective function J will decrease continuously in time provided:

dJ
< 0, for all t, (2.14)dt ive semi-definite. Since J is lower bounded,-

i.e., the time rate of change of J is negative semi-definite. Since J is lower bounded,



Eq. 2.14 implies that J will converge to a limit as t -+ oc. Hence, from Eqs. 2.12-2.14

a sufficient condition that will guarantee the minimization of J is:

dW= -kox .- + (2.15)

where ko > 0 is a proportionality constant. Noting that dx/dy - 6x/6y, the above

equation may be rewritten as:

dW -kx - J x y + . 6y2/ , (2.16)
dt Ox [y dx

where k ko 6y2.

The convergence of J -- 0 may be guaranteed by Barbalat's Lemma [43]. Namely,

because J has a finite limit as t -+ oo, then if J is uniformly continuous, J(t) -+ 0 as

t --+ oo.

Equation 2.16 is a modified Hebbian covariance rule (compare with Eq. 2.5) which

effectively serves to optimize the objective function. There are two key components in

this adaptation rule. The first is the covariance term 6x6y which computes the gradi-

ent of the input-output relationship of the environment, accounting for the resultant

contribution of x to the objective function due to the fluctuations in y. In this formal-

ism, the signal x is the reinforcement signal which acts to reward the learning system

if the changes are beneficial. The second component, 6 y2, computes the autovariance

of the output y and hence evaluates y's changing contribution to the objective func-

tion due to its own fluctuations. This term is needed whenever the output variable is

included in the objective function. The adaptation reaches steady state (dW/dt = 0)

when these two terms balance each other. We illustrate the implementation of this

algorithm with the following examples.



2.1.2 Examples

Criterion Dependent on Output Only

Let J = -x2/2 and x = f(y) = 00 - (y - 01)2 where 00 and 01 are unknown positive

constants. Note that the environment system is static or 'memory-less'. We derive

the perturbation equation as:

6x 6y = -2 (y - 01) 6y 2. (2.17)

From Eq. 2.16 the adaptation rule that will minimize J is:

dt

Because X2 > 0 at all times, this term only affects the rate of the adaptation and thus

may be eliminated without affecting the optimal solution. The resulting adaptation

rule is identical to the conventional Hebbian covariance rule (Eq. 2.2) suggesting the

intrinsic optimizing ability of basic Hebbian covariance synapses. This adaptation

rule in conjunction with the perturbation equation (Eq. 2.17) verifies the optimal

solution x = 00, y = 01 and W = 01/00.

Criterion Dependent on Both Input and Output

The foregoing example optimizes an objective function that is dependent only on

the input to the controller, x. Many practical problems, however, are characterized

by the need to extremize the system based on some criterion that is a function of

both the input and the output. For instance, in designing a controller for a robotic

arm, one may have a desired minimum error yet be constrained by the total energy

consumption of the actuators. The design goal of such a problem could be stated as:

choose an action which minimizes the sum of the divergence from the minimal error

and the total energy expended. To illustrate, let us consider the same static system



as in Sect. 4.2.1 but with the following objective function:

S2 (2y)2J = J(x, y) = + (2.19)2 2

In this formulation, the first term reflects the departure of the system output from

zero and the second term is some measure of the input energy.

By applying Eq. 2.16, we obtain the following adaptation rule which would mini-

mize J:
dW = -k [6x 6y + 2 W 6y2] . (2.20)
dt

This equation is similar to the general Hebbian covariance rule with decay term (cf.

Eq. 2.3). In this example, the intrinsic optimization character of the general Hebbian

covariance rule is dramatic.

2.2 Optimization in Dynamic Systems

The optimization problem presented in Sect. 2.1 focuses on systems whose current

states are related by static relationships with no explicit dependence on time and no

'memory'. In such cases, the long-term objective J is satisfied simply by the proper

transformation of the static, steady-state relationship into a Hebbian covariance rule.

In most practical problems, however, the output and the input are governed by a

dynamical relationship. For example, such dynamics may arise from inherent slug-

gishness (e.g. slow time constants) or time delays. In these systems, the current

states which are sensed by the controller are not accurate indications of the steady-

state values. One approach to solving this problem [34] is to introduce a near-term

objective function, Q, which embodies the dynamic relations between the inputs and

outputs. With some suitable transformation between J and Q, the learning system

may make short-term decisions extremizing Q in the near-term and, hence, J in the

long-term.



2.2.1 Theory

To demonstrate the above general approach, we begin with a simple first-order dy-

namic environment of the form:

dx
7 = q(x, y) = f (y) - x. (2.21)dt

where 7 is a time constant and q(x, y) can be any non-linear function of the input and

output signals, whereby in the steady-state, x = f(y). (Note that this approach is

extendible to higher order systems [34].) To simplify the analysis, we first discretize

this equation, resulting in:

7 [x(n + I) - x(n)]((] = q(x(n),y(n)), (2.22)
T

where T is the time step of the integration and n is the time index.

Assuming random, uncorrelated noise in the controller output (6y(n)) and min-

imal recirculation of this output noise through the closed-loop system such that

6x(n)6y(n) = 0 on average, Eq. 2.22 becomes:

r76x(n + 1)6y(n) - Of(y(n)) y(n)2 (2.23)
T Oy(n)

after taking the partial derivatives and multiplying by the small perturbations where

all terms with 6x(n)6y(n) have been removed.

In cases where the foregoing assumptions do not hold (for instance, if the system

time constants are much slower than the period of the perturbations in y) all the co-

variance terms must be retained. Intuitively, the correlation 6x(n)6y(n) is significant

because both the current state, x(n), and the control signal, y(n), are correlated with

x(n - 1). In such cases, we replace 6x(n + 1) in Eq. 2.23 with 6x*(n + 1) defined as:

6x*(n + 1) = 6( 1)- -(T (x(n)y(n)) +1) 1 x(n)

= 6x(n+1)+ (T-1)6x(n), (2.24)



where all perturbation terms are now included. Note that two time steps of the state

(x(n) and x(n+ 1)) are incorporated in the perturbation equation (Eq. 2.24), thereby

accounting for the structure of the 1st-order closed-loop system. In general, for an nth

order system with closed-loop feedback, n+l1 time steps in the state will be needed

to form the augmented perturbation equation.

To formulate the near-term objective function Q, the dynamic variables x* (n + 1)

and y(n) must be related to the static variables x and y. We recall that in the static

problem, the perturbation equation is:

Of (y)6x6y = 6y2. (2.25)
Oy

By comparing Eqs. 2.23-2.25, the near-term objective is formed by substituting y(n)

and (-r/T)x*(n + 1) for y and x, respectively into Eq. 2.8 yielding:

Q = Q(x*(n + 1), y(n)). (2.26)

For instance, if J = (1/2)(x 2 + 4y 2) as in Sect. 2.1.2, the near-term function becomes

Q = (1/2)[(7/T)2x*(n + 1)2 + 4y(n)2]. This type of transformation applies to any

long-term objective J where the plant equations are defined in the form of Eq. 2.21.

Finally, the static Hebbian covariance rule (Eq. 2.16) is transformed into a dy-

namic one by substituting Q, x*(n + 1), and y(n) for J, x, and y, respectively:

8Q 8Q 8Q6W(n+l) = -kx*(n+l) O*(n + ) 6x*(n + 1) by(n) ) + + /O -62y.i, +n
Ox*(n + 1) [y (n) Ox* (n + 1)

(2.27)

This transformation, while not unique, illustrates one systematic method for mapping

long-term into near-term criterion functions.



2.2.2 Linear Examples

1st-Order Linear System

We present a 1st-order linear example to illustrate the algorithm and demonstrate

its performance, including its convergence and robustness properties. The dynamic

equation is as follows:
dxd- = o0 - ax + b (y - 01), (2.28)

where 0o, 01, a and b are all unknown, possibly slow time-varying parameters. In this

case, we choose to minimize the long-term objective function J = (1/2) (2 + y2 ).

Recognizing that the time constant, 7, is 1/a, one may substitute dynamic variables

into J(x, y) (cf. Eqs. 2.21 and 2.26) to derive the near-term objective function:

( 1 )2 x*(n 1)2  y(n) 2

a= (2 + 2 (2.29)

where from Eq. 2.24, x*(n + 1) is:

z*(n + 1) = x(n + 1) + (Ta - 1)x(n). (2.30)

From Eqs. 2.27 and 2.29, a stable adaptation rule is:

6W(n + 1) = -k x*(n + 1)y(n) + (Ta)2  1(n) y(n)2 . (2.31)

Setting this equation to zero, we obtain the steady-state solutions W = -b/a, y =

(b2 - b0o)/(b2 + a2) and x = y/W which minimize both Q and J.

In deriving this adaptation rule, it was assumed that all the parameters are un-

known and possibly time-varying. The adaptation rule, however, includes one un-

known quantity, Ta. The time step for the discretization, T, is given, so this poses

no barrier to the implementation of the adaptation rule. On the other hand, the

system parameter a, which is related to the time constant of the system, must be

known. This explicit dependence is a direct result of the transformation from the

long-term to the near-term objective function. There are several ways to deal with



this dependence (see the following section); for now we simply constrain this system

to have a known, though possibly time-varying parameter, a.

A simulation of this Hebbian covariance adaptation rule is shown in Fig. 2-

2. In this example, the parameter b is stepped from -0.5 to -0.75 at time=10 sec.

The asymptotic convergence to the new optimal values is demonstrated with and

without the augmented adaptation equations. With all the covariance terms included,

the system settles to the optimal steady states within 40 sec while the simplified

adaptation rule (without all the covariance terms) converges to the wrong optimum,

presumably due to a constant error associated with recirculation in the system. In

Fig. 2-3, the system response to square-wave variations in the unknown parameter b

is illustrated.

We examine the robustness of the Hebbian covariance adaptation rule by adding

uniform distributed noise to the state variable x. Simulations show that two adapta-

tion parameters, the adaptation rate, k, and the maximum perturbation amplitude,

Ay, control the rate of the asymptotic convergence as well as the fluctuations about

the optimum. As seen in Fig. 2-4, the Hebbian controller effectively optimizes the

system despite the added noise while k determines the rate of convergence and the

size of the fluctuations. In fact, the convergence can be made arbitrarily fast by in-

creasing k, but large k's also lead to increased sensitivity to noise disturbance. Hence,

a trade-off with respect to k exists between the convergence rate and the robustness

to noise perturbations. As seen in Fig. 2-5, a similar trade-off also exists with respect

to Ay.

2nd-Order Linear System

In the above example, the transformation from the long-term to the near-term cost

function requires knowledge of some system parameters, or at least some combination

of the parameters, in order to adapt to the optimal state. If these parameters are

unknown and/or change with time, they must be estimated on-line. We show one

such method in a 2nd-order linear system in which all the parameters are time-varying

and unknown.

|
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x*(n + 1) term. The horizontal dashed lines indicate the optimal steady-state solu-
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parameters 0o, 01, a and k are 70, 2, 1 and 0.4, respectively. Both simulations employ
perturbations in y of 0.1 maximum amplitude at every simulation time step (0.1 sec).
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the speed of convergence and the amount of fluctuations about the optimal state.
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Figure 2-5: Simulation of the 1st-order linear system with noise disturbance corrupt-
ing the reinforcement signal x. This figure illustrates the role of the perturbation
amplitude, Ay, on the rate of convergence and fluctuations about the optimal values
(dashed lines). Two different maximum perturbation amplitudes are used; the lighter
traces in each panel correspond to Ay = 2.0 and the darker to Ay = 0.1. All other
parameters are the same as defined in Fig. 2-2.
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Let the dynamic system be defined as follows:

xc = Ax+Bu+S

y = Cx (2.32)

with the following matrix definitions:

A = B= S = C = 0 1 (2.33)
c d 0 S2

In this formulation, we have two state variables (xl and x2), one feedback input (u)
and two external disturbances (S1 and S2). The feedback signal is given by u = Wy.

Assuming a long-term objective function, J = (1/2) (x2 + u2), and using the method

outlined in Eqs. 2.22-2.27, we derive the following near-term objective function:

( 1 2 (n+ 2)2 u2(n)(2.34)

Q = T2(ad - cb)) 2 + 2 (2.34)

and the corresponding Hebbian covariance adaptation rule:

6W(n + 2) = -k [6x(n + 2)6u(n) + T 4 (ad - cb) 2  e6u(n)2 (2.35)
ux(n + 2)

In the above equations, x*(n + 2) is defined as:

x*(n + 2) =x2(n + 2) + x 2(n + 1) [T(a + d) - 2] +

x 2(n) [T2(ad - cb) - T(a + d) + 1] . (2.36)

Solving Eq. 2.35 when 6W(n + 2) = 0, we find the optimal solutions to be u =

[c2(Sld + S 2b) + cS 2(ad - cb)]/[d(ad - cb) 2 + c2d] and W = c/(ad - cb).

To implement this adaptive paradigm, several system quantities must be given or

estimated. In particular, from Eqs. 2.35 and 2.36, two terms must be estimated: 1)

the determinant of the system (ad - cb) and 2) the trace (a + d). Note that while the

individual parameters a, b, and d are not identifiable, the determinant and the trace



can be estimated. We begin by deriving the following discrete relationship:

6~ 2 (n + 2) = e,6u(n) + 0 26x 2(n + 1) + e 36x2(n), (2.37)

where the parameters Oi define the determinant, the trace, and c in the following

ways:

AI -2 - 3 + trace(A) = 2 01 (2.38)T 2  T T2-

Thus, the goal is to estimate these three parameters on-line using a covariance esti-

mation rule. By applying the acclaimed MIT rule [3]:

dO de
dt = -Te O0  (2.39)

where y is the adaptation gain and e in the error in the predicted state, Eq. 2.37

yields the following Hebbian-like covariance estimation rules:

68 1(n + 2) = -1 [6~ 2 (n + 2)6u(n) - 6
2 (n + 2)6u(n)]

68 2(n + 2) = -'7y2 [i2(n + 2)6x 2 (n+ 1)- x2 (n + 2)6x2 (n + 1)]

68 3 (n + 2) = -73 [J2 2 (n + 2)6x 2 (n) - 6 2 (n + 2)6x 2(n)], (2.40)

where Oi are the estimated parameters; yi are the adaptation gains; and 62 2 (n + 2)

is the estimated variance in x 2 calculated from Eq. 2.37 and the current estimates

for Oi.

This adaptive system is simulated with and without random noise disturbance

added to the state variable x 2 . Figure 2-6 shows the convergence of both the sys-

tem states to the optimal solution and the parameter estimates to the actual model

parameters, Oi, in a disturbance-free environment.

After a step change in c at time=100 sec, the system's optimal state is changed.

Clearly, W is appropriately tuned by the adaptation so that the objective function,

J is minimized. Note that although the trace of the system has not yet converged,

the Hebbian covariance rule is still able to find the optimal operating states. With
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disturbance added in the environment (Fig. 2-7), the adaptive system is still able to

estimate the model parameters and move the system to the optimum.

2.2.3 Non-Linear Examples

Non-Linear System 1

Using the same steady-state objective function as in a prior static example (Sect.

2.1.2), J = - X2/2, the static relation x = f(y) is now replaced by the dynamic

non-linear equation:
dx

T dt= 00 - x - (y - 01)2, (2.41)

where 7 is a time constant.

To find the near-term objective function, we first rewrite Eq. 2.41 in discrete form

as:

T [x(n + 1) - x(n)] = Oo - x(n) - (y(n) - 01)2. (2.42)

Assuming random perturbations in the controller output y, Eq. 2.42 yields:

T

Tx*(n + 1)6y(n) = -2 (y(n) - 01) 6y(n)2, (2.43)

where x*(n + 1) = x(n + 1) + (T/7 - 1)x(n). Using the theory presented in Sect.

2.2.1, the following near-term objective function is found:

Q(n + 1) = - 2 (2.44)

Application of Eq. 2.27 yields the following near-term adaptation rule:

6W(n + 1) = k ( 2 (n 1)2 - 6x*(n + 1) -6y(n), (2.45)

which, in steady state, will satisfy the long-term objective function J. This is seen by

comparing Eqs. 2.18 and 2.45 and by noting that x(n + 1) = x(n) = x in the steady

state. Likewise, we find the same steady-state solutions as in the static case: x = 00,
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y = 01, and W = 01/00.

This non-linear adaptive system is simulated assuming that only 7 is known. In

Fig. 2-8, simultaneous step changes in 0o and 01 are made from 70-+80 and 2-+5,

respectively. The system adapts quickly to the new conditions to find the optimal

states (dashed lines).
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Figure 2-8: Simulation of the first dynamic non-linear system. Step changes in pa-
rameters 0o and 01 were made at time = 5 sec (from 70 to 80 and from 2 to 5,
respectively). The new optimal solution is indicated by the dashed lines. The adap-
tation gain, k, equals 0.025 and the maximum perturbation amplitude, Ay, equals
0.1.



Non-Linear System 2

In the above non-linear example the steady-state optimal solution was unique and

attainable if both parameters 01 and 02 are known. However, this may not always be

the case. For example consider the function x = f(y) = Oo/y + 01 and the objective

function J = (1/2)(x 2+y 2). A corresponding 1st-order non-linear differential equation

is:
dx

7 = -xy + 0ly + 00 , (2.46)
dt

where the time constant of the system is now 7/y. From the theory in Sect. 2.2.1,

the corresponding near-term objective function is derived as:

= (T)2 x*(n + 1)2 + y(n)2  (2.47)

where

x*(n + 1) = x (n) (T y 1 x(n). (2.48)

After deriving the adaptation rule using Eq. 2.27, we solve for the following steady-

state solutions:

y4 0001Y - 02 = 0 (2.49)

x - 301x3 + 30 2 - 03X - 02 = 0. (2.50)

Clearly there are multiple solutions satisfying these equations. As shown in Fig. 2-9,

two real-valued minima (one local and the other global minimum) exist for certain

values of 00 and 01. Simulation of this system (Fig. 2-10) illustrates that the local

minimum is found after the step changes in the parameters at time=50 sec. The Heb-

bian covariance system solves this complex minimization problem in a direct manner

without estimating the parameters 80 and 81. Although only the local minimum is

found, the global minimum in this case is an unstable solution due to the formation

of a positive eigenvalue when y < 0.
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Chapter 3

Hebbian Covariance Learning for

Optimal Respiratory Control

3.1 Background

3.1.1 The Brainstem Controller

Respiration in mammals is a vital autonomic system that maintains homeostasis de-

spite varying physiological and environmental conditions. The specialized brainstem

center underling neural respiratory control is not solely autonomous, for voluntary

control seizes command during speech, mastication and other behavioral tasks. Nev-

ertheless, the respiratory controller can function even when deprived of input from the

higher brain [49]. This brainstem controller continually regulates the blood pH and

blood-gas tensions by integrating various afferent inputs, including chemosensitive,

pulmonary stretch, and proprioceptive signals. As will be examined below, recent

studies have hypothesized that this brainstem controller may intelligently adapt to

different conditions whereby an optimal operating point is always maintained.

The respiratory control center is located throughout the medulla in discrete nu-

clei. Several specific regions have now gained consensus as being critical for setting

the rate and depth of respiration as well as maintaining a regular respiratory pat-

tern. Each neuronal group may generally be classified by their salient features: either



pattern generation/modulation centers, thereby comprising part of the central res-

piratory pattern generator (CRPG), or integrative/output centers. The CRPG is

essentially composed of inhibitory neuronal groups whose activity rhythmically alter-

nates with the inspiratory and expiratory cycles. Conversely, the close-loop behavior,

often studied separately from pattern generation, is controlled by distinct nuclei which

determine the total respiratory output.

The respiratory brainstem nuclei are primarily separated into the dorsal and ven-

tral groups. The dorsal respiratory group (DRG) located throughout the nucleus

tractus solitarius (NTS) is largely inspiratory related. Afferent inputs converge on

the NTS from peripheral and central chemoreceptors, somatic pain receptors, pul-

monary stretch receptors, and cortical and pontine centers. The DRG efferent output

projects contralaterally via the phrenic and intercostal motoneurons to drive inspi-

ration while other projections inhibit expiratory neurons of the ventral respiratory

group (VRG).

The VRG comprises several nuclei involved in both inspiration and expiration.

The nucleus ambiguus (NA) contains primarily inspiratory neurons while the nucleus

retro-ambigualis (NRA) is separated into a caudal expiratory region and a rostral

inspiratory region. The Botzinger's complex, the most rostral VRG nuclei, is solely

expiratory and has been shown to inhibit both inspiratory NTS and phrenic motoneu-

rons.

Mounting neurobiological evidence suggests that the neural mechanisms underling

respiratory regulation are not hard wired but may in fact contain modifiable synaptic

connections and even memory. Such synaptic modification is considered the primary

mechanism for learning and memory in invertebrates [23] and vertebrates [8]. Early

studies of respiratory memory focused on "afterdischarge" [41], a phenomena resulting

from peripheral nerve stimulation [19]. Such persistent nerve activity was thought to

result from a network of reverberating respiratory neurons [15].

Recently, however, short-term potentiation (STP) of respiratory drive has been

linked to synaptic plasticity [18, 51]. New evidence suggests that NMDA receptors

in the medulla may mediate STP [16] as well as long-term depression (LTD) [55].



The observed LTD is consistent with Hebbian covariance plasticity [10, 4] in which

the pairing of pre- and post-synaptic activity may augment or diminish the efficacy

of synaptic transmission. Hebbian covariance learning (see Section 2) is a neural

mechanism heavily studied in the hippocampus and is thought to underlie classical

associative and conditional learning [46].

The importance of NMDA receptors in respiratory control was confirmed vividly in

newborn mice whose NMDA receptors were abolished by NMDAR1 gene knockout.

Poon et al. (1994) showed that these neonate mice, healthy at birth, experienced

respiratory failure and death within the first day of life.

Various disorders of respiratory control exist including two forms of sleep apnea

which may lead to death. Perhaps most widely recognized, sudden infant death

syndrome (SIDS) is characterized by a sudden cessation of breath during sleep in

newborns. This phenomena may result from either a decreased central sensitivity to

CO 2 in the arterial circulation (Paco 2 ) or a decreased number of chemosensitive cells

[48]. Ondine's curse, however, typically occurs in adults during sleep. Patients with

this condition must voluntarily increase ventilation during bouts of apnea. Less crit-

ical respiratory control disorders include Cheyne-Stokes breathing in which periodic

increases and decreases in ventilation are caused by head injury or cardiac failure.

3.1.2 Respiratory Control Hypotheses

Traditionally, black-box reflex control theories [41] have dominated studies of home-

ostatic control, including respiration, due to their conformity with classical control

theories. However, recent evidence has weakened these feedback/feedforward mod-

els of respiration propelling researches to search for more intelligent brain control

strategies.

It is important to recognize how the classical respiratory control models fail in

explaining critical respiratory phenomena. Two phenomena are particularly illumi-

nating: exercise hyperpnea and the hypercapnic response to CO 2 inhalation. The

basic ventilatory responses to these conditions are shown in Fig. 3-1. The steady-

state exercise response is characterized by a large increase in the ventilation rate, VE,
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Figure 3-1: The dilemma of respiratory regulation. With increased metabolic CO 2
load during muscular exercise, arterial CO 2 tension (Paco 2 ) is regulated by the res-
piratory controller about a nearly constant operating point. Thus, homeostasis is
maintained by the respiratory controller which increases respiratory output (VE) in
the absence of any chemical feedback. With increased exogenous CO 2 load during
inhalation, respiratory output increases only with increased chemical feedback and
arterial homeostasis is abolished.
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and essentially no deviation in blood CO 2 levels (Paco2). This response effectively

counteracts the increased metabolic CO 2 load which results from muscular activity

(as well as maintaining proper blood pH levels). During exogenous CO 2 loading, the

response is substantially different. Namely, VE increases with the imbalance in Pao 2 ,

thus never restoring the quiescent Paco2 level. The slope of this curve is one measure

of chemoreceptor CO 2 sensitivity. What type of controller can explain these divergent

responses?

A classical theory for homeostasis asserts that set-points for biological parameters

determine the body's behavior. For respiration, this model predicts that the body

should maintain certain nominal states of blood gas concentrations. This model

suffices to explain the respiratory response to exercise if there is a high feedback gain.

However the set-point hypothesis fails to account for the hypercapnic response during

CO 2 inhalation. Furthermore, such high-gain feedback-loops are often unstable in

system with intrinsic time delays such as in respiration.

Reflexogenic models are another widely accepted theory for respiratory control.

These hypotheses maintain that a finite gain in the feedback is responsible for the

hypercapnic response during CO 2 inhalation. This is a reasonable assumption given

that the slope of the response would be determined by this finite gain. However, this

model fails to account for exercise hyperpnea. To overcome this dilemma, certain

feedforward exercise stimuli have been proposed. Unfortunately, no signal has yet

been confirmed [52].

Recent hypotheses entertain the notion that the respiratory controller may adapt

to varying conditions. Such premises extend Cannon's farsighted theories of the "wis-

dom of the body" [13], in which intelligent control is proposed to underlie autonomic

behavior. Various forms of adaptive control have been suggested to underlie home-

ostatic regulation [21, 37], however the neural mechanisms for such schemes remain

uncertain.

Alternatively, optimal respiratory control theories have gained recent attention in

explaining the body's apparent ability to maximize performance over varying physio-

logical and environmental conditions [30, 31]. This hypothesis suggests that the aim



of respiration is to minimize an implicit objective function which can be expressed

as the cost of the CO 2 divergence from a set-point and the energy consumed by the

mechanical act of breathing. Such an optimal control objective conforms to exercise

hyperpnea and hypercapnic respiratory responses [32, 34].

3.2 Theory

As discussed above, the respiratory system is responsible for maintaining chemical

homeostasis of the blood by controlling a mechanical musculoskeletal system. The

steady-state behavior of the chemical plant is described by the following nonlinear

relationship [33]:
K Vco

Paco 2 = Pi 2 + 2  (3.1)
VE

where Paco2 and Pico2 are the partial pressures of CO 2 in the arterial circulation

and in the inspired air, respectively, Vco 2 is the production rate of CO 2 due to body

metabolism, VE is the ventilation rate, and K is a constant.

Based on the theory of optimal respiratory regulation, the body is faced with

minimizing the cost of the aberrant blood gas composition as well as the energy due

to the motor act of breathing. Thus a long-term, physiological objective function J

may be defined as follows [30, 31, 36]:

J = Jc + Jm = [a(Paco, -)]2 + InVE, (3.2)

where J, is the chemical cost of respiration expressed as the squared deviation of the

CO 2 tension from the desired level, Jm represents the mechanical cost of breathing

expressed as a logarithmic function of the respiratory ventilation, and a and / are

sensitivity and threshold parameters for chemosensitivity, respectively.

The self-tuning Hebbian covariance learning system, as seen in Fig. 3-2, consists

of a chemoafferent sensory neuron which senses Paco2, an interneuron with a plastic

synaptic weight, W, and an output motoneuron which drives the respiratory muscles.

The interneuron input-output behavior is:



Figure 3-2: Self-tuning optimal regulator model of respiratory control using Hebbian
covariance learning. The controller gain is adaptively regulated by synaptic plasticity
in some respiratory interneuron (RN) which drives the motor neuron (MN). Synaptic
potentiation and depression are governed by a Hebbian covariance rule which com-
putes the optimal controller gain based upon correlated fluctuations in the motor
outflow and chemoafferent feedback. The plastic synapse is represented by the filled
circle, -*.
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VE= W Pc, (3.3)

where Pc is the chemoafferent neural output.

Because of the complex transformations between static, physiological events (Paco2)

and dynamic, neural events (Pc), a near-term neural objective function Q must be

formulated that, in the steady state, will lead to the same optimal solution as J. This

same transformation problem was illustrated in Section 2.2. The dynamic equations

for the nonlinear respiratory system may be expressed as:

dPa KVco2
VL = Pico 2 - P+ 2(3.4)

dt VE

and
dP,P7 = - P c + a[Pa -/3], (3.5)
dt

where VL and 7 are constants and Pa is the instantaneous arterial Paco2 (with Pa =

Paco2 in the steady state). Applying the dynamic theory presented in Sect. 2.2.1,

we discretize these equations in time, include the spontaneous perturbation in the

output (6VE(n)), and derive the resultant perturbation relationship:

( T 2 ) aK c2 (n)2, (3.6)

6Pc*(n + 2)6VE(n) (I) 2 V (3.6)7 VL VE (n)2

where the augmented term, Pe*(n + 2), is defined as follows:

P,*(n+2) = Pc(n+2)+ - + T - 2 Pc(n+1)+ - - - + 1 Pc(n). (3.7)17 VL VL 7 7

By comparing Eq. 3.6 to the following static perturbation equation:

P V KVCO26 *26PC6VE = Kc. 2 V' (3.8)

the near-term neural objective equation is derived as (c.f. Eq. 2.26):

(n + 2) = T2 Pc*(n+2)2+lnIVE(n)2. (3.9)

m



Finally the near-term adaptation rule which will minimize Eq. 3.9 is found by

applying Eq. 2.27:

6W(Wn + 2) = -k 6P*(n + 2)6V1E(n) + ± (-E(n) j  . (3.10)

To derive the steady-state near-term solution, we substitute Eq. 3.6 into Eq. 3.10,

set 6W(n + 2) = 0 and substitute into the dynamic equations noting that Pa(n + 1) =

Pa (n) = Paco2 at steady state. After some rearrangement, the following steady-state

respiratory response is found:

VE = a 2(Paco2 - P)K. Vco 2, (3.11)

where the optimal weight is W - aKVco2. Equation 3.11 is identical to the optimal

response corresponding to the physiological static objective function [34]. Thus this

dynamic Hebbian covariance learning model should be compatible with both critical

phenomena depicted in Fig. 3-1. Examination of Eq. 3.11 during exercise reveals

that metabolic increases of Vco2 directly leads to increases in VE. Thus no divergence

in Paco2 is experienced. During CO 2 inhalation, the response is less direct. Namely,

a divergence in blood CO 2 must develop in order for ventilation to increase.

3.3 Results

This section presents the simulations of the self-tuning Hebbian covariance controller

in the respiratory system. The results demonstrate the optimal behavior of the system

in various conditions (exercise and CO 2 inhalation) and compare these results to

known respiratory behavior. The robustness of the controller is also explored.

To simulate exercise we provide a step change in the metabolic load ( 0co2 ) from

rest conditions. By examination of Eq. 3.11, a step change in Vco 2 from 0.2 to 1.0

1/min (at 20 seconds) should produce a similar five fold increase in the ventilation

rate (VE), while Paco2 should remain at the control level (- 35 mmHg) in the steady



state. The controller increases ventilation by tuning the synaptic weight in the feed-

back loop until the optimal solution is attained. A typical simulation of the exercise

response is shown in Fig. 3-3 where the optimal steady states are illustrated by the

dashed line. The ventilation rate reaches roughly 95% of its optimal response within

3 minutes and continues to adapt asymptotically approaching the optimal solution.

Small spontaneous random fluctuations in the output (Ay=0.015 1/min applied at ev-

ery time step, tstep=0.05 sec) and the discrete adaptations in the synaptic weight are

not readily visible at this scale. For this simulation, the adaptation rate k was chosen

as 5 * 106, while time constants VL and 7 were chosen to be 40 and 0.1, respectively.

CO 2 inhalation was simulated by a step increase in the inspired air (Pico2). (The

"intelligence" of the controller lies partly in its ability to distinguish between the

two sources of CO 2 .) The optimal respiratory response is to increase ventilation in

response to the chemoafferent drive as illustrated by Eq. 3.11. As a result, the

synaptic weight should remain constant in the steady state and steady-state Paco2

should increase. After the step increase from 0 to 50 mmHg in Pico2 at 20 seconds,

the system responds to increased arterial CO 2 levels by increasing the ventilation rate

from 5 to roughly 28 1/min (Fig. 3-4). By assessing the input-output relationship of

the respiratory environment, after an initial increase, the synaptic weight optimally

adapts, returning to the control level. Once again, roughly 95% convergence is reached

in under 3 minutes. The simulation parameters are the same as in the previous

exercise simulation.

We demonstrate that the model performance closely mirrors the body's responses

to both exercise and exogenous CO 2 loading over a broad range of conditions. Fig-

ure 3-5 illustrates the optimal steady-state response of the model (cf. Fig. 3-1).

The exercise response demonstrates the body's tendency to increase ventilation and

maintain a nearly constant Paco2 operating point without any additional chemical

error feedback. On the other hand, during increased inspired CO2, respiratory output

increases with increased chemoafferent drive and homeostasis is abolished. Both of

these optimal responses are predicted by the steady-state solution of the near-term

Hebbian covariance learning rule (Eq. 3.11).
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Figure 3-3: Computer simulation of exercise hyperpnea. A step change in Vco 2 was
made from the quiescent level (0.2 1/min) to a moderate exercise state (1.0 1/min) at
time=20 sec. The dashed lines illustrate the optimal weights which minimize the long-
term criterion function. Random pulse perturbations were applied to the ventilation
output with a maximum amplitude of 0.015 1/min at every time step (0.05 sec). The
adaptation rate, k, was chosen to be 5*106, while time constants, VL and r, were
chosen to be 40 and 0.1, respectively. A maximum rate of change in W was set to
0.8 units/sec.
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Figure 3-4: Computer simulation of CO 2 inhalation. A step change in Pico2 was
made from 0 to 50 mmHg at time=20 sec. The dashed lines illustrate the optimal
weights which minimize the long-term criterion function. All the parameters were
kept the same as in Fig. 3-3.
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Figure 3-5: Optimal steady-state response of the self-tuning respiratory model under
varying degrees of exercise hyperpnea and increased exogenous CO 2. The results
closely resemble actual physiologic behavior shown in Fig. 3-1. The values for Vco 2
and Pico2 were varied between 0.2 and 1.8 1/min and between 0 and 65 mmHg,
respectively.
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The physiological ventilatory response to exercise is tri-phasic [52]. Phase I is

characterized by a rapid, almost instantaneous increase in the ventilation rate. Phase

II is a slowly increasing transient lasting 4-5 minutes until a plateau level is reached

(phase III). The previous exercise simulations employed a step change in V'co, how-

ever, the increase in metabolic CO 2 is likely more gradual in the body. This may be

simulated by a simple ramp increase in Vco 2 over a 60 sec period. Figure 3-6 shows

the ventilation rate increasing during exercise where trace 1 and 2 result from a step

change and a ramp change, respectively. Trace 3 represents the difference between

uJ

1 - - - - - - - - - - -

0 50 100 150 200 250 300 350

Time (sec)

Figure 3-6: These simulations represent the ventilation responses during exercise for
step (trace 1) and ramp (trace 2) changes in Vco2. Trace 3 is the difference between
the two responses and may represent an additional signal which may be available to
the brainstem controller.

400

il

q



traces 1 and 2. We note that trace 1 possesses a characteristic phase I exercise re-

sponse. To achieve such a rapid increase in ventilation during a ramp increase in Vco 2,

the Hebbian covariance learning model requires an additional drive proportional to

trace 3. This signal may be a learned response in the higher brain. Such a preemptive

signal may improve the dynamic output of the Hebbian covariance learning system

during the onset of exercise when 02 demands are especially high.

As shown by the examples in Sections 2.2.2 and 2.2.3, the Hebbian covariance

rules for optimization are robust to noise disturbances. We reexamine the robustness

properties in the respiratory model to understand how similar disturbances in the

body may result in changes in the physiological responses. Figure 3-7 illustrates the

role of the perturbation amplitude (Ay) in determining the exercise response during

random noise disturbance in Pc. Trace 1 corresponds to a ratio of 150/1 (perturbation

to disturbance amplitude). Trace 2 maintains the same Ay, but now the ratio of the

amplitudes has been increased by 3.3 by decreasing the disturbance amplitude. As

may be expected, the system is now more apt at reaching the proper steady-state

values. Trace 3 corresponds to increasing Ay by 20 times its value in trace 1 while

maintaining the same disturbance amplitude. Not only does the system adapt to the

optimal values, but convergence is achieved much faster. While there is substantial

differences in the rate of the weight adaptations, the changes in the signal to noise

ratio do not dramatically affect the ventilation rate output or the final operating cost.

This feature is due to the closed-loop feedback which keeps Pac02 near its quiescent

level.

As seen in Sect. 2.2.2, the adaptation gain, k, has a significant role in both the

speed of convergence and robustness to noise. Figure 3-8 illustrates this effect for

three different values of k during exercise. As the adaptation gain is increased, there

is a significant increase in the convergence rate. However, we also note an increase in

fluctuations about the optimal values as k increases. This trade-off also appears in

the examples of Section 2.2.2.
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Figure 3-7: These simulations illustrate the role of the perturbation amplitude, Ay,
in disturbance rejection. Trace 1 corresponds to a ratio of 150/1 (perturbation to dis-
turbance amplitude), trace 2 maintains the same Ay while decreasing the disturbance
amplitude by 3.5, and trace 3 increases Ay by 20 times that in trace 1.
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Figure 3-8: These simulations illustrate the role of the adaptation gain, k, in distur-
bance rejection. Trace 1, 2, and 3 correspond to increasing adaptation gains of 3*10 4,
3*105 and 3*106. The perturbation to disturbance amplitude ratio was 1667/1 in all
three traces.
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Chapter 4

Discussion

4.1 Hebbian Covariance Learning and Optimiza-

tion

The primary goal of adaptive optimal control is to continually extremize a scalar

performance measure of a system despite model uncertainties. If the objective func-

tion is expressed as a long-term or asymptotic criterion, the transient trajectory that

the system follows when approaching the optimum is not critical. In this respect,

the adaptive optimal control structure being considered here is similar to tracking

control problems, whose primary goal is to approach a given reference trajectory

asymptotically.

The adaptive optimal control paradigm we have presented uses Hebbian covari-

ance learning rules to optimize uncertain dynamic systems in an on-line manner. As

outlined in Section 3 Hebbian learning has a long and expansive history in behavioral

and neurobiological studies, yet its ability to optimize dynamic systems has never been

fully explored. The conceptual framework behind our paradigm was first proposed by

Poon (1993) to meet the physiological and neurobiological observations of respiratory

control. The adaptive optimal control paradigm is designed so that a single Hebbian

covariant synapse can tune the system feedback gain to continually extremize the

near-term objective function. The Hebbian covariance law in our paradigm compares

i



the variance in post-synaptic activity with the resulting variance in pre-synaptic activ-

ity. This relationship differs from conventional covariance laws which relate changes

in pre-synaptic input to the resulting changes in the post-synaptic output.

It has been hypothesized that the brain may employ various forms of adaptive

control in certain physiological systems. For example, in motor control [27, 24, 50], it

has been demonstrated that some form of adaptive control may underlie its behavior.

Furthermore, the notion of optimal brain behavior has been suggested in the cognitive

and behavioral domains where various computational models have emerged, such as

"adaptive critic" [5], temporal difference [47] and Q-learning [53] forms of reinforce-

ment learning. These learning models often incorporate Hebbian rules of adaptation

and embody the results of dynamic programming [6], a widely used method for opti-

mal path finding.

Our adaptive structure resembles a reinforcement learning system in that per-

turbations are invoked from the controller. In turn, the resulting signal from the

environment serves to positively reinforce a "beneficial" change and likewise inhibit

an "undesirable" change. Our paradigm, however, differs from other learning models

in several manners. First, the structure of the system is comparatively simple, re-

quiring only a single modifiable synapse. Second, some form of long-term memory is

generally not required. This feature results because, unlike other adaptive methods, a

complete model of the environment is typically unnecessary. Nevertheless, as demon-

strated in the 2nd-order linear example (Sect. 2.2.2), some knowledge of the system

dynamics may be required to form the adaptation law. Another major difference

is that our objective is steady-state (asymptotic) optimal regulation whereas gener-

ally reinforcement learning is concerned with dynamic optimization in the non-steady

state.

To implement the Hebbian covariance paradigm in dynamical systems, we have

presented a general method to transform a static, long-term objective function into

a dynamic, near-term form. In a biological context, the long-term objective may be

viewed as a physiological goal whereas the near-term objective is its transformation

into neural coordinates [34]. Thus time-dependent processes such as sluggishness,
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closed-loop recirculation, or time delays, may be accounted for in the neural, near-

term objective.

Through simulations, we have demonstrated that the Hebbian covariance paradigm

is a robust optimizer of both linear and non-linear environments. The systems sim-

ulated were up to 2nd-order, although the general theory is applicable to higher

dimensions. We also demonstrated the dilemmatic roles of both the adaptation gain

and perturbation amplitude in determining the rate of convergence and the sensi-

tivity to external disturbances. This behavior is reflected in a trade-off between the

robustness to noise and the convergence rate. Similar roles for these parameters have

been recognized in other adaptive systems where a balance must be sought between

the transient errors and the steady-state oscillations about the goals.

Several caveats should be noted. First, some systems may be highly damped,

thereby precluding the effect of high-frequency perturbations. To avoid aliasing in

the adaptation, the frequency of perturbations must remain within the system band-

width. As well, high-frequency perturbations, while being sufficiently rich to avoid

spurious optima, may excite unmodelled dynamics in certain unknown environments.

Although we did not demonstrate it explicitly, it should also be emphasized that

the paradigm does not reject static disturbances in the classical sense. Rather, such

disturbances are sensed as components in the environment thereby leading to new

optimal solutions.

4.2 Optimal Respiratory Control

The Hebbian covariance learning model of respiratory control conforms well to exist-

ing neurobiological and physiological data. Recent evidence suggests that synaptic

plasticity in the brainstem may participate in respiratory control [18, 51]. The ob-

served forms of plasticity (e.g. LTD [55]) are consistent with the proposed Hebbian

covariance learning rules. Evidence that NMDA mediated plasticity plays a signifi-

cant role in respiratory control is mounting [35]. A recent in-vivo study reports that

NMDA mediated synaptic plasticity may partake in habituation to vagal stimulation
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[42], a process previously considered solely reflexogenic in nature.

The Hebbian covariance learning model not only agrees with the growing neurobio-

logical data, it is also harmonious with the dilemmatic physiological responses to both

exercise and CO 2 inhalation. Previous studies have shown that these responses are

compatible with an optimal respiratory response [30, 31]. Poon (1996) first proposed

a model of self-tuning optimal respiratory control by Hebbian covariance learning,

where static and dynamic models were derived. The respiratory simulations here

provide additional evidence that a Hebbian covariance learning system can robustly

optimize the dynamic, nonlinear respiratory system.

The typical ventilatory response to exercise is recognized by a tri-phasic transient.

Ideally our simulations should agree with the transient response as well as the steady-

state optimal solution. The simulation results reveal that the transient response

contains phases I-III after a step change in metabolic CO 2 but not after a ramp

change. This discrepancy may suggest that an additional signal may be available to

the brainstem controller which our model is lacking. While the Hebbian covariance

learning paradigm is well suited for steady-state optimal solutions, it lags behind

any short-term dynamic requirements. For instance, at the onset of exercise, one

might imagine that the need for oxygen in the muscles is quite severe. Thus, the

dynamic optimal solution would call for a more rapid increase in ventilation than

would normally be provided. This type of short-term need could be incorporated in

the objective function by adding an additional term expressing the sudden expectation

of metabolic activity.

Several testable predictions may be made from the Hebbian covariance model of

respiratory control. First, while the model does not entertain any parameter esti-

mation, it does hinge on the explicit dynamic adaptation rule (Eq. 2.27.) The two

time constants of the dynamic equations appear in this equation, namely, VL and 7.

Therefore manipulation of these time constants could lead to interesting behavior.

The system may quickly adapt to the new parameters or may operate at entirely

different levels.

The model also requires precise knowledge of the inherent time delays in the
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system. One would expect that an increased circulatory time-delay would therefore

befuddle the reinforcement learning system. Adaptations to match the new closed-

loop structure would be needed to restore stability. This type of problem is related

to Cheyne-Stokes breathing in which weak cardiac output increases the time delay

between changes in pulmonary CO 2 tension and cerebral spinal fluid bathing the

chemoreceptor neurons [48]. The symptoms which these patients experience, namely

periodic increases and decreases in ventilation, may result from such abnormal time

delays.

4.3 Future Research

The Hebbian covariance learning structure we presented adapts based on the imme-

diate reinforcement signal from the environment. While this structure is suitable for

the many problems, there may be advantages to learning over longer time scales.

This approach may serve to improve robustness. Furthermore, it may be needed

in higher-order systems where fast sampling times may overlook meaningful changes

in the environment. Longer reinforcement windows may also be employed in res-

piratory system. It is conceivable that the system adapts using both spontaneous

perturbations as well as changes from single or multiple respiratory cycles. One may

hypothesize that different sensory time constants, such as in the peripheral and cen-

tral chemoreceptors, could serve to provide different integration windows useful for

adaptation.

Current engineering applications for this learning paradigm are under investiga-

tion. The simple adaptive structure of Hebbian covariance learning that uses sponta-

neous changes in the input and output may prove useful in systems whose conditions

are uncertain and when optimal solutions are desired. The scalar nature of the ob-

jective function allows additional criterion, such as tracking errors, to be easily added

to the objective function. Furthermore, we hope this paradigm can be extended

to meet dynamical constraints such as pole placement or other frequency response

characteristics.
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In conclusion, we have shown that Hebbian covariance learning may act as an ef-

fective computational tool subserving adaptive optimal control. This computational

paradigm is generally applicable to a wide class of optimal regulation problems. By

using computer simulations, we have also shown that the Hebbian covariance con-

troller is robust to both model uncertainties and noise disturbances. These theo-

retical results may set the stage for further experimental exploration into the novel

optimization role for Hebbian covariance learning in neural systems.



Appendix A

Example of a Simulation Script

This section illustrates an example script used in the simulation of the 1st-order linear

system (Sect. 2.2.2). The script was written for and run in MATLAB.

% TIME Variables
starttime=0;
sim_time=500;
stepsize=. 1;

% BASIC Variables
theta_0=70;
theta_1=2;
A=1;
B=-.5;
T=stepsize;
t=2;
k-ic=.4;

adapalways= 1;

max_dw=.005; %

usingsumx=1; %

% VARIATIONS STEP II
stepamp=2;
stephold=.1;
step seperation=stephold/T;

when =1, always adapting
otherwise waiting for change in "var"
set maximum rate of change for W

if =1, use xsum values instead of x

NPUTS to yl
step amplitude perturbation
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steps=0; % if =1, steps, otherwise impulses
noise_yes=l1; % if =1, noise input

% INTITIAL CONDITIONS
w_ic=-B/A;
yic=((B^2)*theta_l-B*theta_0)/((A^2)+(B^2));
xic= (1/A)* (theta_O+B* (yic-theta_l));

if noiseyes==l
disp('Generating Random Input')
noise at _n=rand ((sim _time/stepsize)+ 1,1 );
noisesign=rand( (sim_time/stepsize)+ 1,1);

end

% DISTURBANCES TO X
dist_yes=l1; % if =1, add disturbances
distamp=.001;
dist=dist amp.* (2. *rand ((sim_time/stepsize+2) ,1)-ones( (sim_time/step-size+ 2) ,1));

if simtime>-.1
disp('simulating...')

end

time=zeros(simtime/step size,1);
x=zeros (sim_time/step-size, 1);
y=zeros(sim_time/stepsize,1);
w=zeros(sim_time/stepsize, 1);
J=zeros(sim_time/stepsize, 1);
var=zeros (simtime/step _size,1);
dx=zeros (simtime/step size, 1);
dy=zeros (simtime/step .size, 1);
dw=zeros(simtime/step size, 1);
dx-sum=zeros (sim_time/stepsize, 1);
xsum=zeros(sim_time/step size, 1);
k=zeros(sim_time/stepsize, 1);
avg_dw=zeros(simtime/step-size,1);
extrainput=zeros(sim_time/step -size,1);

% STEP CHANGES
B-new=-.75;
A new=A;
Btime=10;
Atime=10;

x(1,1)=xic;



xsum(1,1)=xic;
y(1,1)=yic;
w(1,1)= wic;
J(1,1)=-((xic^2)+(yic^2))/2;
k(1,1)=k ic;
var(1,1)=0;
time(1,1)=start _time;
extrainput(1 ,1)=0;
sign=-l;
Bsign=1;
lastB=B_time;
n=0;

% START iterations
for current_time=time(1,1) :stepsize: sim_time+start_time,

n=n+l;
% Advance TIME

time(n+ 1,1) =time(n, 1)+stepsize;
% STEP inputs

if time(n+1,1)>=B_time
B=Bnew;

end
if time(n+1,1)>=A_time

A=A.new;
end

% Controlling Variable INPUT Disturbance
if noiseyes==0
if n==1

var(n+1,1)=var(n, 1)+sign*step_amp;
last=n;
sign=sign*(-1);

elseif n-last >=stepseperation
if steps==1

var(n+l1,1)=var(n,1)+(sign)*step_amp*2;
else

var(n+ 1,1)=var(n,1)+ (sign) *step_amp;
end
sign=sign*(-1);
last=n;

else
if steps==1

var(n+1,1)=var(n,1); % STEPS
else

var(n+1,1)=0; % IMPULSES
end



end
else % NOISE
if n==1

var(n+ 1,1)=noiseatn(n, 1)*sign ^ (round (noisesign (n, 1) + 1))*step_amp/2;
last=n;

elseif n-last>=stepseperation
var(n+1, 1) =noise_at n(n, 1)*sign^ (round(noisesign(n,1) +1))*step_amp;
last=n;

else
if steps==1

var(n+1,1)=var(n,1); % HOLDING VALUES (STEPS)
else

var(n+1,1)=0; % IMPULSES
end
end

end
% The governing EQUATIONS

if dist_yes== 1
x(n+1,1)=(T/t) * (theta+x(n, 1)*((t/T)-A)+B*(y(n)-theta_1))+dist(n+1,1);

else
x(n+1,1) = (T/t)*(theta_0+x(n,1)*((t/T)-A)+B*(y(n)-theta_1));

end;
y(n+1,1)=x(n,1)*w(n,1)+var(n+l,1);
J(n+1,1)=((x(n+1,1) ^ 2)+(y (n+1,1)^2))/2;

% Calculate Xsum for recirculation problems
if n==1

x_sum(n+1)=x(n+l1);
else

xsum(n+1)=x(n+1)+(((T*A)/t)-I)*x(n);

end;
% Calculate DELTAS

if n<=O
dx(n+1,1)=0;
dy(n+1,1)=0;

else
dx(n+1,1)=x(n+l,1)-x(n,1);
dy(n+1,1)=y(n+1,1)-y(n,1);

end
% Calculate dx sum

if n==1
dxsum(n+1)=dx(n+1);

else
dxsum(n+l)=dx(n+l)+(((T*A)/t)-l)*dx(n);

end
% Calcultate Delt- W



dw(n+1,1)=-k*((t/(T*A)) 2*dxsum(n+1,1)*dy(n,1)
+(y(n,1)/xsum (n,1))*(dy(n,1)*dy(n,1)));

% Set Max dw
if abs(dw(n+1))>max_dw

dw(n+1)=(abs(dw(n+1))/dw(n+1))*maxdw;
end

% CHANGE W if warranted
if n>2

if adapalways==1
w(n+1,1>)=dw(n+1,1)+w(n,1);

else
if n>3

if abs(var(n-1,1)-var(n-2,1))>O & abs(var(n-1,1)-var(n-3,1))>O
w(n+ 1,1) =dw(n+ 1,1)+w(n,1);

else
w(n+1,1)=w(n,1);
dw(n+1,1)=0;

end
else

if abs(var(n-1,1)-var(n-2,1))>0
w(n+1,1)=dw(n+1,1)+w(n,1);

else
w(n+1,1)=w(n,1);
dw(n+1,1)=0;

end
end

end
else

w(n+1,1)=w(n,1);
dw(n+1,1)=0;

end
% SATURATION of W

if -B/A<0
if w(n+1,1)>0

w(n+1,1)=-.O1;
end

else
if w(n+1,1)<0

w(n+l,1)=0.01;
end

end

w(n+1,1)=.98;
end
if w(n+1,1)<-1

m



w(n+1,1)=-.98;
end

end
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