
A Video Display System for an

Automatic Cue Generator

by

Matthew G. Sexton

S.B., Massachusetts Institute of Technology (1996)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1997

@ Massachusetts Institute of Technology 1997 All rights reserved.

1/
Author.

Department of Electrical Engineering and Computer Science

SFebruary 10, 1997

C ertified by
Louis D. Braida

Henry Ellis Warren Professor of Electrical Engineering

fl k _L _ý01
Thesis Supervisor

A ccepted by
Io Frederic R. Morgenthaler

Chairman, Departmental ommittee on Graduate Students
, F - EC!;' -,

MAR 2 11997

Eng

A Video Display System for an Automatic Cue Generator

by

Matthew G. Sexton

Submitted to the Department of Electrical Engineering and Computer Science
on February 10, 1997, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Deaf individuals who rely solely upon lipreading to understand the speech of others
encounter difficulties because not all phonemes can be distinguished just by viewing
the speaker's face. The system of Manual Cued Speech supplements lipreading by us-
ing the coded shape and position of the speaker's hand to disambiguate the phonemes
appearing on his lips. The Automatic Cue Generator is a computer based system be-
ing developed by the Sensory Communications Group for automatically determining
these cues from the speech waveform and presenting them to the lipreader.

This thesis describes the design and implementation of the video display system
for the Automatic Cue Generator. The display system is responsible for overlaying
a graphic image of a hand on the video image of a speaker given the cue sequence
determined by an automatic speech recognizer. A time delayed video image of the
speaker is used to accommodate the processing latency of the speech recognition. By
delaying the video input from a camera for a period of two seconds in its internal
buffer, the display system can synchronize the timing of the cue with the movement
of the speaker's lips. The video image is then displayed on a conventional television
monitor.

Thesis Supervisor: Louis D. Braida
Title: Henry Ellis Warren Professor of Electrical Engineering

Acknowledgments

I have had the great pleasure of collaborating on the Autocuerl project with Paul

Duchnowski and David Lum, from whom I have learned the many pleasures of swag-

gering about the lab while wielding baseball bats and canes. While I can't say that

these implements greatly advanced the progress of the project, they certainly made it

more enjoyable. Of course, I did regularly pepper the both of them with questions on

every aspect of the design of the system, and I am thankful for their great restraint

in providing answers and not banishing me from their offices.

There were many others who provided invaluable assistance in the development

of this thesis. In particular, Jeanie was always prepared to give me yet another

photocopy of her T-shirt to add to the multitude scattered throughout my office, none

of which I could ever seem to locate. And the whole seventh floor group certainly

helped maintain my sanity with the never ending schedule of skiing, movies, and beer

excursions.

Finally, I owe Lou Braida my sincere thanks. If it were not for his willingness

to offer a summer job to a passerby in an elevator, I would probably still be lost

somewhere in the stacks of MIT's libraries, cursing each book as I reshelved it. He

allowed me to pursue those projects that I found interesting, and even saw fit to

entrust me with this thesis. A large part of my career at MIT has been shaped by

his guidance and I am grateful.

1The rightful name of the project, and that by which I shall always refer to it-not the curmud-
geonly Automatic Cue Generator.

Contents

1 Introduction 8

1.1 Cued Speech 8

1.2 Automatic Cueing Systems 9

1.3 Automatic Cue Generator 10

1.4 ACG System Design 11

2 Video System Design 13

2.1 Hardware Architecture 14

2.1.1 Video Acquisition 16

2.1.2 Computer Interconnect 16

2.1.3 Peripheral Interconnect 16

2.1.4 Video Digitization and Video Formats 17

2.1.5 Host Interface 17

2.1.6 FIFO Delay and Overlay 18

2.1.7 D isplay . 18

2.1.8 NTSC Conversion 19

2.2 Software Architecture 19

3 Frame Grabber Kernel Module 21

3.1 Hardware Interface 21

3.2 Software Interface 22

3.3 interface.c 23

3.3.1 M emory Buffer 24

3.3.2 Interrupt Handling .

3.3.3 System Call Handlers

3.4 bt819.c

3.5 saa7192.c

3.6 icd2061a.c

3.7 fpga.c

3.8 saa7116.c

3.9 iic. c

4 Display Output

4.1 Display Card

4.1.1 Hardware Interface

4.1.2 Software Interface .

4.2 968. c

4.3 ti3026. c

4.4 NTSC Conversion

5 Control and Overlay

5.1 Real Time System Control

5.1.1 Synchronization ..

5.1.2 Fault Tolerance . .

5.2 Cue Overlay

5.3 Software Modules

5.3.1 acg.c

5.3.2 cue.c

5.3.3 timer.c

5.3.4 display.c......

5.3.5 grab.c

5.3.6 socket.c

5.3.7 terminal.c .

34

35

35

35

36

37

38

39

. 39

.... 39

. 40

. 4 1

. 4 2

. 4 2

.. 4 5

.. 46

.. 46

.. 47

. 48

6 Discussion 49

6.1 Base System Improvements 49

6.1.1 Video Hardware 49

6.1.2 Computer Synchronization 50

6.1.3 Real Time Scheduling 50

6.1.4 Graphical Interface 51

6.2 Cueing Improvements 51

6.2.1 Cue Presentation 52

6.2.2 Automatic Cue Positioning 52

Bibliography 53

List of Figures

2-1 Automatic Cue Generator

2-2 Video Display System

2-3 Circular Delay Buffer

2-4 Software Module Organization

3-1 Frame Grabber Hardware Block Diagram .

3-2 Frame Grabber Software Modules

4-1 Diamond Stealth Display Card

5-1 Display System Software Module Block Diagram .

5-2 Main Control Loop

. 14

... 15

. 18

. 20

. 22

. 23

Chapter 1

Introduction

For hearing impaired individuals who derive little benefit from hearing aids, commu-

nication using spoken language is frustrating at best [12]. Even if a deaf individual

successfully learns to speak, he or she still faces the difficult task of understand-

ing the speech of others using only the visible action of the face as a guide. This

difficulty arises from there often being several distinct speech elements that can be

associated with a single visual pattern on the face. The single visual pattern provides

no reliable way for the speechreader (lip-reader) to uniquely identify which of several

possible sounds was spoken, and so the speechreader must instead use word patterns

and contextual clues to help derive meaning. But even the most highly experienced

speechreaders typically can only follow half of what is said in a conversation. And

in the controlled experiments that are used to measure how much the speechreader

actually understands, performance is often even lower [29].

1.1 Cued Speech

To resolve the ambiguity inherent in speechreading alone, Orin Cornett at Gallaudet

University developed a "Manual Cued Speech" (MCS) system [8] in which the shape

of the speaker's hand and its position relative to his face provide supplementary

information about the phonemes in his speech. Phonemes are the basic linguistic units

of speech that are combined to form words. Sequential phonemes can be clustered

into consonant-vowel pairs that are partially described by the cues. Each hand shape

represents a group of consonants, one of which is the consonant of the phoneme pair.

A similar mapping is used for vowels, as indicated by the position of the hand. Each

group of consonants or vowels can have several members because the members of a

group are easily distinguished from one another by their appearance on the speaker's

face, and so can be represented by the same hand shape or position. Phonemes

that can not be distinguished visually are classified as a viseme [16], often called a

visual phoneme. The phonemes of a particular viseme group, such as /p,b,m/, are

placed into separate cue groups. Through the combination of speechreading and the

reception of cues, all phonemes can be distinguished.

Unfortunately, using Manual Cued Speech requires that the speaker constantly

move and reshape his hand as he speaks [20]. The hand produces eight shapes and

moves through five main hand positions. In addition, diphthongs are signified by the

movement of the hand between two of the main positions.

Experience has shown that few individuals other than family members undertake

the task of learning to produce MCS. Therefore, a system for automatically producing

the cues could be of great benefit for hearing impaired individuals. It would permit

them to effectively communicate with any speaker of their language, without the need

for a transliterator.

1.2 Automatic Cueing Systems

The implementation of an automatic system for cue generation has been considered

in the past. Such a system is generally based on an Automatic Speech Recognizer

(ASR) that uses the acoustic speech signal to determine which phoneme is being

produced. Once the recognition is completed, the cue is presented visually to the

deaf individual, to be used in conjunction with speechreading.

One attempt, from a group at Gallaudet University and the Research Triangle

Institute [29] attempted to produce a wearable device that would supplement the

speechreading of the live speaker. However, due to fundamental problems in several

aspects of the device, the Gallaudet-RTI group met with only limited success.

First, the recognizer had fairly poor performance. It detected only about two-

thirds of the phonemes in words, and of those, it accurately identified only 54 percent.

Second, the manner in which cues were displayed was different from that of MCS.

To meet the constraints of portability, a pair of seven-segment LEDs was used to

present cues. In addition, the composition of the cue groups themselves were changed

to better match the limitations of the recognizer.

Finally, the LED display was designed to be used as the cue receiver watched

the live speaker's face. Since the ASR did not recognize a phoneme until it had

been completely uttered, which is a limitation fundamental to any system, its output

followed the facial actions in time. Therefore, a presented cue was delayed with

respect to the lip movements to which it corresponded, and so the cue information

did not necessarily correspond to what was seen on the lips. The effects of the

desynchronization of the cue and lip movement information were investigated in a

separate study by Bratakos [4], which showed that if the cue data were delayed by

even 100 msec, the cue receiver would suffer significant reductions in his or her ability

to understand the speech.

1.3 Automatic Cue Generator

The Sensory Communications Group at MIT has sought to address many of these

problems in its realization of an Automatic Cue Generator (ACG). The ASR system,

using a Hidden Markov Modeling system based on a modified version the HTK Toolkit

of Entropic Labs [13], has achieved recognition rates of up to 80% for off-line process-

ing, and 70% in real-time. With sufficiently fast computation, it is anticipated that

the 80% mark will be achievable in real-time as well. Bratakos [4] has shown that cues

produced by a recognizer with 80% accuracy can provide a significant improvement

in speech reception relative to speechreading alone.

In order to resolve the problems encountered by the Gallaudet-RTI group with

the presentation of the cues, the cue receiver will watch a video image of the speaker

on a monitor, instead of watching the speaker himself. The use of video permits the

introduction a time delay into the video stream. By delaying the video image of the

speaker, sufficient time is allowed for the speech recognition to be performed, and the

cue and the speaker's image to be presented in synchrony. The delay fundamentally

must be at least the length of the longest frequently occurring consonant-vowel pair,

typically about three-quarters of a second. A delay of one to two seconds is used

in practice to allow for recognizer overhead, and should not be more that a minor

impediment to conversation. In a setting such as a classroom lecture, there should

be little effect at all.

Using a video image has the added benefit that the cues that form the basis of

the manual system can still be used. Through a video overlay process, pictures of

the various hand shapes can simply be drawn on the video image of the speaker

in the appropriate position in response to the output of the recognizer. Using the

natural cueing system will allow experienced cue receivers to use the automatic system

without any additional training.

1.4 ACG System Design

Several aspects of the design of the Automatic Cue Generator were constrained by the

availability of appropriate hardware and software platforms. The Automatic Speech

Recognition software package that provided the requisite performance was based upon

a modified version of the HTK Toolkit that ran on a DEC Alpha workstation under

the Digital Unix operating system. The HTK software running on the Alpha was, at

the time, the most readily available system that was stable and supported and could

provide real-time recognition with an acceptable level of accuracy. In an effort to

reserve the Alpha's computational power for the recognition proper, the audio capture

and preprocessing was performed on an Ariel DSP-96 Digital Signal Processing (DSP)

board [2]. The board digitized the incoming analog audio signal and parameterized

the speech waveform for recognition. The DSP-96 functioned as a plug-in peripheral

for an Intel processor based workstation running the Linux operating system. As this

DSP setup had been used in many other applications in the Sensory Communication

Group, it had a large body of development tools available [26, 18], and so could be

relatively quickly and easily incorporated into the system.

This document describes the design and implementation of the video display sys-

tem of the Automatic Cue Generator of the Sensory Communications Group. Tech-

nical descriptions of the project at both the hardware and software level are given.

In addition, recommended work for the future is discussed.

Chapter 2

Video System Design

As discussed in the preceding chapter, the video system had to meet several perfor-

mance criteria in order for the Automatic Cue Generator to properly synchronize the

cues with the facial movements of the speaker. The minimal video system had to

provide a fixed video delay of up to two seconds, and in response to directives from

the ASR, overlay on each video image a picture of a hand of a particular shape and

position. Unfortunately, there were no systems that performed a similar function

upon which it could be modeled. Application specific hardware systems only existed

for implementing one or two of the necessary tasks and were difficult to interface with

one another. A video delay line [23], for example, could provide the delay, but offered

no dynamic controllability and no access to the video frames before the end of the

delay period.

Therefore, a new system was designed, with a general purpose computer as the

platform on which all video handling and processing would take place. A large variety

of configurations and peripherals would be available to modify and augment the

system, more so than for a hardware system designed specifically for the display.

While a dedicated system might be more efficient, it would not be as flexible as a

programmable computer.

Figure 2-1 shows the role of the cue display system in the overall Automatic Cue

Generator design. A camera trained on the speaker provides input to the video and

audio preprocessing computers. The audio system digitizes and processes the audio

Cue Display Subsystem

TWORK

Figure 2-1: Automatic Cue Generator

waveform and sends its data over the network to the speech recognition computer.

Once the speech recognizer has identified a cue using that data, it sends the cue

information over the network to the cue display system. The display system uses

that information to overlay cues on the video frames that it has stored in its delay

buffer. The modified video is displayed on a television monitor.

2.1 Hardware Architecture

Both the input and output video images had to be in NTSC format [9] for com-

patibility with standard video hardware such as cameras, monitors, and recording

devices. In NTSC video, the standard format for North America, Japan, and much of

South America, 60 fields of video are transmitted per second; however, an individual

field of video does not represent an entire image. Instead, fields are generated by

interlaced scanning; fields contain either all even lines or all odd lines of an image.

Odd fields and even fields are alternately scanned and transmitted. Since consecutive

I

I

I

I
I

I

I
I

NTSC

Figure 2-2: Video Display System

fields can be combined, or 'de-interlaced,' to form complete images, NTSC signals

are also described as delivering 30 frames per second. This description is somewhat

inaccurate because displaying consecutive fields at the same time would introduce

unwanted motion artifacts and is not done in practice.

A block diagram of the video display system is presented in Figure 2-2, which

also shows the paths of video and network data flow. The use of a general purpose

computer required that the computer be outfitted with specialized hardware designed

for use with the high bandwidth traffic of continuous video streams. Essentially,

what the frame grabber and display card components do in combination with the

computer's standard hardware is to capture each video field in a digital format, store

it in memory for the delay period, and then reconvert it to an NTSC signal for display.

While a frame is in memory, the CPU receives a message about the cue from the ASR

computer over their network connection, and superimposes the appropriate cue on

the image.

2.1.1 Video Acquisition

Any standard video camera that produces an NTSC video signal can be used to

monitor the speaker. The Sony DCR-VX1000 Digital Video Camera Recorder [27]

was selected on the basis of its exceptional picture quality and its ability to record

images and sound on digital tape. The recordings could then be used at a later time

to recreate the speaker's visual and audio input to the system.

2.1.2 Computer Interconnect

The network connection was the standard 10 Mbps Ethernet cabling that served the

Sensory Communications Group for its general computing purposes. The rate of data

exchange between the three computers is sufficiently low that interference by other

network traffic is not a serious concern. The audio preprocessing system transmits

about 10 KB of data per second, and the ASR computer only sends about 100 bytes

per second.

2.1.3 Peripheral Interconnect

Since video sources can easily produce 35 MB of data per second, a high speed bus for

connecting various peripheral and system components was essential. Further, as can

be observed in Figure 2-2, each video datum travels on the bus twice, once on its way

into main memory, and a second time on its way from main memory to the display

card after the delay period. Thus, the bandwidth requirements for the hardware in a

particular video mode are doubled, as there are effectively two separate video streams

over the same bus.

The 32-bit wide Peripheral Connect Interface (PCI) bus [19] met this need for high

bandwidth, as it offered continuous data transfer rates of up to 120 MB/sec. Just as

important, peripherals using the PCI bus can use a very simple and powerful Direct

Memory Access (DMA) protocol to exchange blocks of memory with one another

and with main memory, without the need for intervention by the CPU. This feature

is essential in relieving the CPU of the burden of transferring data throughout the

system.

2.1.4 Video Digitization and Video Formats

In order for the computer to be able to accept a video signal as input, it must

first be converted into a digital format. Since no hardware existed for accessing the

digital data produced by the camera, a frame grabber performs the digitization for

the computer, by sampling an NTSC video signal into digital frames at a specified

resolution and color depth, and making them available on the system bus for transfer

to main memory. The maximum resolution typically supported by frame grabbers,

and the minimum necessary to preserve adequate image quality, is 640 horizontal

pixels by 480 vertical pixels.

The available color depth is defined by how many bits are used for each component

of the Red-Blue-Green coding of a pixel's color. There are two popular pixel formats

for encoding the color information. The 555 RGB format uses 5 bits for each color

component, and so a two byte word can hold the fifteen bits of video data for each

pixel. The 888 RGB format uses a four byte word' for its 24 bits of pixel data.

In a 640 by 480 image, these two formats require 600 KB and 1200 KB per frame,

respectively. And in a continuous video stream, more than 17 MB and 35 MB must

be transferred each second.

The Oculus TCi frame grabber from Coreco Inc. [7] provided the necessary res-

olution and both color depths. In addition, it was able to utilize the full bandwidth

of the PCI bus, independently transferring frames into memory at up to 120 MB/sec

through the use of its DMA controllers.

2.1.5 Host Interface

The 440FX PCI chip set provides the interface between the PCI bus, system memory,

and the Intel Pentium Pro processor CPU. As illustrated in Figure 2-2, the 440FX

accelerator and controller chips, labelled as "GLUE," allow for very high bandwidth

1The three bytes of data are padded with a null byte to enable pixel word alignment.

Figure 2-3: Circular Delay Buffer

access to memory through a 64-bit, 66 MHz host bus. Such high bandwidth permits

concurrent access to memory for image storage, modification, and retrieval.

2.1.6 FIFO Delay and Overlay

The two seconds of video delay is accomplished through the use of a circular buffer

in the computer's main memory, as shown in Figure 2-3. The buffer is sufficiently

large that it can hold the 60 frames, or 120 fields, in two seconds of video. A frame is

stored in a element of the buffer for the specified delay period, overlaid with a hand

shape, and removed for display. That element of the buffer then immediately receives

another frame for delay.

2.1.7 Display

A standard computer display card produces the analog video signal from the stream

of digital video data from the buffer in memory. A digital image is transferred into

the video card's on-board frame buffer memory, from which it is converted into a

VGA format [14] analog signal appropriate for display on a VGA computer monitor.

As different manufacturers' video cards were considered, it became apparent that

whichever card was chosen, it would be the most limiting factor in the performance

of the entire video display system. The card used, the Stealth 64 Video VRAM from

Diamond Multimedia Systems, Inc. [11], had no DMA controller, forcing the CPU to

perform all data transfers to the card. Furthermore, even though it had the fastest

bus interface available, the CPU could only transfer data into its display buffer at 33

MB/sec. Such a low transfer rate meant that 555 RGB was the best color depth that

could be supported, as the transfer of frames from memory to the display card would

even then take up more than half the PCI bus bandwidth.

Fortunately, the much faster transfer rate of the frame grabber enabled the CPU to

accomplish its transfer to the display card despite the disproportionately long transfer

time. The following calculations show the allocation of the bus over the course of one

second for a 640x480 video stream, with two bytes per pixel:

CPU to Display Card: (640 * 480 * 30 * 2)bytes * sec = .53sec

Frame Grabber to RAM: (640*480*30 * 2)bytes *+ I-se = .15sec

.68sec

The frame grabber is so fast that, in total, the bus is in use for only .68 seconds

of that one second period. Clearly, with only 68% of the bus bandwidth taken, the

functioning of the system is possible.

2.1.8 NTSC Conversion

An output video signal capable of being displayed on a standard television monitor

and recorded by a conventional VCR clearly adds desirable flexibility to the system.

Therefore, a scan converter from AITech International [1] is used to convert the VGA

signal into an NTSC signal. A scan converter is a stand-alone hardware product

and requires no programming or special hardware accommodations in the rest of the

system.

2.2 Software Architecture

User Space

Kernel Space

Figure 2-4: Software Module Organization

The flexibility of the hardware was significantly augmented by the use of the Linux

operating system, a freely distributed version of Unix. The source code of the Linux

kernel is publicly available, which with technical information on a particular piece of

hardware, permits the coding of a device driver for it. As neither Coreco nor Diamond

supplied Linux drivers for their products, this feature was essential for incorporating

their devices into the video display system.

Since Linux is a version of the Unix operating system, a very structured and well

defined environment existed for the development and integration of the controlling

software with the device drivers. Figure 2-4 shows the relationship between the several

software modules under Linux. At the top is the controlling software, which interacts

with the user, manages the hardware interfaces, and performs the overlay of cues

on the video images. The controlling software primarily relies upon the kernel level

device driver controlling the frame grabber, the user space driver for the display card,

and the kernel's network interface for communicating with the other computers of the

Automatic Cue Generating system. The details of the implementation of the software

modules are discussed in the succeeding chapters.

Chapter 3

Frame Grabber Kernel Module

The integration of the Oculus TCi frame grabber from Coreco Inc. into the video

display system for the Automatic Cue Generator required that a device driver be

written for it under the Linux operating system. This chapter provides a background

on the structure of the board and a description of the software module that was

written to control it.

3.1 Hardware Interface

The Oculus TCi frame grabber is a peripheral card for Intel x86 based computer

systems that plugs into an expansion slot on the PCI bus. It accepts an NTSC signal

for digitization and then uses its DMA controllers to transfer the image data into

main memory over the system PCI bus. As shown in Figure 3-1, the board also has

its own PCI bus, which connects to the system bus through a bridge chip. Because

the two buses can operate independently of one another, the frame grabber board has

the capability of transferring data to components attached to its secondary bus, such

as memory or processors, without affecting system bus activity. This feature is not

utilized in the display system because appropriate components are not available and

because the PCI bridge chip is incapable of supporting certain simultaneous transfers

Mv

S-- Control Line Path

Video Data Path

Figure 3-1: Frame Grabber Hardware Block Diagram

across it.1

The frame grabber interfaces with the PCI bus through the SAA7116 chip [21],

which is responsible for transferring the digital video frames into memory. The reg-

isters of the SAA7116 are mapped into the address space of the computer so that it

can be easily controlled by a program. The SAA7116 in turn controls several other

video hardware components through the Inter-Integrated Circuit (I2C) interface [15],

a two-line serial bus and protocol originally developed by Philips for the company's

television video chips. The Bt819 and the SAA7192A, which digitize and color adapt

the video, respectively, are both on the I2C bus, as is the Field Programmable Gate

Array (FPGA) that provides additional control over these hardware elements. The

ICD2061A is a programmable clock chip that provides timing information for the

SAA7192A.

3.2 Software Interface

The device driver for the Oculus TCi frame grabber was implemented as a loadable

module for the Linux 2.0.x kernel series [3]. Kernel modules can be dynamically

1The bridge chip does not arbitrate between a peripheral device and the CPU when both attempt
to transfer data over it. Instead, it terminates the data transfer of the device and grants unrestricted
access to the CPU.

ace

ace

rnel

Figure 3-2: Frame Grabber Software Modules

inserted into the running kernel, permitting quicker development and debugging be-

cause the system does not have to be rebooted with each revision. Within the kernel

module source code, related functions were grouped together into separate files, each

typically named for the hardware chip that they control. The calling hierarchy of

these software modules is shown in Figure 3-2. Each of the following sections dis-

cusses the functioning of an individual source file and documents in detail its external

functions.

3.3 interface.c

The standard Unix system calls by which a user program controls the frame grabber

through its special device file are implemented in routines defined in interface. c.

Under the direction of commands from the user program, these functions control

the hardware components and interact with the various kernel features for resource

acquisition and management.

3.3.1 Memory Buffer

The kernel module allocates the memory for the FIFO video delay buffer. As dis-

cussed in Subsection 2.1.6, the buffer is circular, so that its store and remove pointers

are incremented sequentially through all the elements and wrap from the end to the

beginning. The elements are indexed so that they may be easily referenced in com-

mands issued by the user program.

Each buffer element requires 600 KB of memory to store the 640 by 480 pixel

images at a 15 bit color depth. For use with the Oculus board's DMA controller, the

memory must be physically contiguous, but the kernel's standard contiguous memory

allocation function, kmalloc (), cannot allocate more than 128 KB. Therefore, Matt

Walsh's bigphysarea() function was patched into the kernel. This function reserves

a block of contiguous memory of a specified size at system boot-up, so that it cannot

be allocated by any other kernel routines.

Memory allocation is further complicated by another limitation of the board's

DMA controller (see the SAA7116 section below). Its range checking feature, which

detects if the frame grabber attempts to write to an address above the specified image

transfer window in memory, uses only 22 bits2 to specify the end of the DMA transfer

window; the upper 10 bits are taken from the register that specifies the start address

of the image frame. Because the upper 10 bits of the start and stop addresses are

the same, the image frame must not cross a 4 megabyte (222) address boundary in

memory. Therefore, in a 4 megabyte region of memory, the six frames that fully fit

use only 3.5 megabytes, resulting in a significant waste of memory. Thus, the 60

frames of buffer that implement a two second delay require the allocation of more

than 42 MB of memory, of which only 35 MB is actually used for video.

3.3.2 Interrupt Handling

After each video frame is transferred into memory, the Oculus board generates a

hardware interrupt, which is handled by a function in interface. c. In the interrupt

2 The SAA7116 data sheet states that 24 bits are used, but that claim was not born out in practice.

service routine (ISR), the address registers describing where the DMA controller will

store the next video frame are updated to point to the next element in the delay

buffer. The ISR also checks to see if the transfer of the captured video frame was

prematurely terminated due to the DMA controller having insufficient time on the

PCI bus. The DMA controller uses only a 1 KB FIFO to buffer the live digital data

from the PCI bus. If the FIFO fills before access to the bus is granted, image data is

lost and a field corruption flag is set. This flag's setting causes ioctl () to return an

error for the WAIT_FOR_FRAME command (see Subsection 3.3.3).

3.3.3 System Call Handlers

The system calls for controlling the frame grabber, open(), close(), and ioctl(),

are routed to the following three routines defined in the kernel module.

static int tciopen(struct inode *inode, struct file *file);

The system command openO passes control on to tci_open() in order to al-

locate system resources, such as memory and interrupts, for each module and

to call its initialization routine. The function tci_open also sets up a driver

information data structure that is stored between calls to record the state of

the device. One element of this structure, the tci_info structure, points to the

memory allocated for the other modules; its address is passed as an argument

in all calls to the other modules.

static void tci_release(struct inode *inode, struct file *file);

This routine, called by the system command close(), frees those resources

that have been acquired and ensures that the board is no longer capturing

video frames.

static int tciioctl(struct inode *inode, struct file *file, unsigned int

cmd, unsigned long arg);

The bulk of the interface with the user space program is accomplished through

the ioctl() command, which in turn calls tci_ioctl(). The arguments cmd

and arg are specified by the user program in the call to ioctl (), and determine

which function is performed and any additional parameters, respectively. A call

to ioctl() takes the form

ioctl(fd, cmd, arg)

The complete list of ioctl() cmd codes, which are defined in the header file

tci.h, are as follows:

TCIGET_BUFFER_ADDRESS Get the kernel address for the image frame in the
buffer that has index *arg, and store it in arg.

TCISET_PIXEL_STYLE Set the pixel style to be either RGB_555, RGB_888, or
YUV_555.

TCISET_H_CAPTURE Set the horizontal resolution of images to be captured to
be arg pixels.

TCISET_V_CAPTURE Set the vertical resolution of images to be captured to be
arg pixels. If the resolution is set to be no greater than 240 pixels, then
only the even fields of the video are used, with half the scaling as for using
both even and odd fields.

TCISETIDELAY Set the number of images in the video delay buffer to be arg.

TCIGRAB_ONE Grab one frame of video into memory, and copy it to the buffer
beginning at arg.

TCIGRAB_ALL Continuously grab video frames into the delay buffer.

TCIWAIT_FOR_FRAME While doing a continuous grab of video frames, block until
the current frame is completely captured, and return its buffer index in arg.

TCISTOPGRAB Stop grabbing video frames.

TCISET_COMPOSITEVIDEOY-ODE Set the system to digitize a composite video
source.

TCI SET_YC_VIDEOODE Set the system to digitize an S-Video source.

TCISETCAMERA_0 Choose camera input 0.

TCISET_CAMERA_1 Choose camera input 1.

TCISETCAMERA_2 Choose camera input 2.

3.4 bt819. c

The Bt819 Video Capture Processor [6, 5] performs the actual digitization of the

video signal and is able to vary a number of parameters for the captured image. All

parameters for a particular video mode must be set explicitly; the default values are

undefined. The macros mentioned in the descriptions are defined in the header file

bt819 .h.

void init_BT819_registers(struct tci_info *tci);

The Bt819 chip is reset into its default state.

void BT819_setvideomode(struct tci_info *tci, int format);

While the Bt819 can accept both NTSC and PAL signals, only NTSC is cur-

rently implemented as a format.

void BT819_set_camera(struct tci_info *tci, int camera);

The camera type is either YC for S-Video or COMPOSITE for composite.

void BT819_set-mux(struct tci_info *tci, int source);

The Bt819 has three different camera inputs, of which the first two are of inter-

est. Video source CAMERA_0 is used for composite video input and CAMERA_1 is

used for S-Video input.

void BT819_setKh_scale(struct tci_info *tci, int resolution, int format);

The horizontal resolution of a capture image will be resolution pixels. format

must be NTSC.

void BT819_set_vscale(struct tci_info *tci, int resolution, int format);

The vertical resolution of a capture image will be resolution pixels. format

must be NTSC.

void BT819_seth_crop(struct tci_info *tci, int start, int active, int format);

The image, after scaling as specified in BT819set_h_scale () will be cropped in

the horizontal direction from the image starting at pixel start and extending

for active pixels. format must be NTSC.

void BT819_set_v_crop(struct tci_info *tci, int start, int active, int format);

The image, after scaling as specified in BT819_setv_scale() will be cropped

in the vertical direction from the image starting at pixel start and extending

for active pixels. format must be NTSC.

3.5 saa7192. c

The SAA7192A Digital Color Space Converter [22] transforms the 16-bit YCrCb for-

mat digital data from the Bt819 into either a 24-bit RGB format or a 16-bit YUV

format. In this application the data is transformed into the RGB format for compat-

ibility with the display card. The Color Space Converter also provides multiplicative

Look-Up Tables (LUTs) for each color component in order to effect gamma correction.

This feature, however, is disabled (see Section 3.7).

void init_SAA7192_registers(struct tci_info *tci);

The video chip is initialized to RGB output mode.

void SAA7192_setmode(struct tci_info *tci, int mode);

For use with the Bt819 data, mode must be either F422_M or F422_NM. The

first enables the matrix that converts its input to RGB, and the second disables

it (for YUV output).

3.6 icd2061a.c

The SAA7192A Converter chip requires an external clocking signal to set the rate

at which it should acquire its data. Because images can be captured at different

horizontal resolutions, the rate at which the Bt819 produces valid data is variable,

and so the ICD2061A Dual Programmable Graphics Clock Generator [10] is used to

synchronize the two chips.

void init_ICD2061Aregisters(struct tci_info *tci);

The clock is set to NTSC_SQFREQ MHz, for use with full resolution images.

void ICD2061A_setclock(struct tci_info *tci, double freq);

The clock is set to produce a frequency of freq MHz. Typically, this value

is determined as a fraction of NTSC_SQ_FREQ, in which the multiplier of the

standard is equal to the ratio of the horizontal resolution to 640, i.e.:

freq = NTSC SQFREQ * horiz _resolution/640

3.7 fpga.c

A Field Programmable Gate Array (FPGA) contains several registers that are used

to program the clock chip and to provide additional input to the SAA7116.

void initFPGA_registers(struct tci_info *tci);

The FPGA is initialized to default values.

void FPGA_set_pixel_line_length(struct tci_info *tci, int length);

In order to do its DMA address calculations, the SAA7116 PCI interface chip

must know the length of each scan line in the image. This value is set by the

function to length, as measured in pixels.

void FPGA_set_lutuse(struct tciinfo *tci, BOOL use);

Whether or not the SAA7192 uses its color Look Up Tables (LUTs) to modify

the video signal is determined by the truth value of use.

3.8 saa7116. c

All interaction between the host computer and the TCi frame grabber is mediated by

the SAA7116 Digital Video to PCI Interface chip [21]. By mapping its registers into

the computer's address space, the SAA7116 provides the low level interface to the I2C

bus on which iic. c is built (see Section 3.9). This register mapping also provides ac-

cess to the DMA controllers for transferring captured video frames into memory. The

video frames that the SAA7116 receives from the SAA7192 are interlaced, meaning

that it receives separate even and odd fields. The SAA7116 is programmed to store

consecutive even and odd fields together in memory as complete images to permit

their easier overlay and manipulation.

void init_SAA7116_registers(struct tci_info *tci);

Prepare the SAA7116's data FIFO, initialize the I2C bus, and set up other

defaults.

void SAA7116_set_DMAE_address(struct tci_info *tci, unsigned int address);

Set the destination in memory of the even field to be address.

void SAA7116_setDMA_0_address(struct tci_info *tci, unsigned int address);

Set the destination in memory of the odd field to be address.

void SAA7116_setDMAE_end(struct tci_info *tci, unsigned int address);

Sets the highest address in memory to which the even field can be transferred

to be address.

void SAA7116_setDMA_0_end(struct tci_info *tci, unsigned int address);

Sets the highest address in memory to which the odd field can be transferred

to be address.

void SAA7116_set_DMAlEstride(struct tci_info *tci, unsigned int stride);

The transfer address is incremented by stride at the end of each line of the

even field.

void SAA7116_setDMA_0_stride(struct tci_info *tci, unsigned int stride);

The transfer address is incremented by stride at the end of each line of the

odd field.

void SAA7116_grabone_even(struct tci_info *tci);

Grab one even field of video into memory.

void SAA7116_grabone_odd(struct tci_info *tci);

Grab one odd field of video into memory.

void SAA7116_grabeven(struct tci_info *tci);

Continuously grab even fields of video into memory.

void SAA7116_grab_odd(struct tci_info *tci);

Continuously grab odd fields of video into memory.

void SAA7116_resetint (struct tci_info *tci);

Reset the interrupt generating circuitry after an interrupt has been received

to prepare for the next one.

int SAA7116_check_intE(struct tci_info *tci);

Return true if an interrupt was triggered for the end of the even field.

int SAA7116_checkint0O(struct tci_info *tci);

Return true if an interrupt was triggered for the end of the odd field.

int SAA7116_checkcorruptE(struct tciinfo *tci);

Return true if the even field transfer was aborted due to a FIFO overflow.

int SAA7116_check_corrupt_0(struct tciinfo *tci);

Return true if the odd field transfer was aborted due to a FIFO overflow.

void SAA7116_stopint(struct tci_info *tci);

Stop generating any interrupts.

void SAA7116_inteven(struct tci_info *tci);

Generate an interrupt at the end of a captured even field.

void SAA7116_intodd(struct tciinfo *tci);

Generate an interrupt at the end of a captured odd field.

void SAA7116_intstart(struct tci_info *tci);

Generate an interrupt at the beginning of all fields, captured or not.

void SAA7116_stopgrab(struct tciinfo *tci);

Stop transferring fields to memory.

void SAA7116_set_pixelmode(struct tciinfo *tci, int mode);

Set the pixel mode to be either RGB24pa, RGB16pa, or YUV16pa.

void SAA7116_putSDA(struct tci_info *tci, BOOL bit);

Set the SDA (data) line of the I2C bus to be bit.

void SAA7116_put_SCL(struct tci_info *tci, BOOL bit);

Set the SCL (clock) line of the I2C bus to be bit.

BOOL SAA7116_get_SDA(struct tci_info *tci);

Return the value on the SDA (data) line of the I2C bus.

BOOL SAA7116_getSCL(struct tci_info * tci);

Return the value on the SCL (clock) line of the I2C bus.

void SAA7116_raise_SDA(struct tciinfo

Set the value of the SDA (data) line of

void SAA7116_lowerSDA(struct tciinfo

Set the value of the SDA (data) line of

void SAA7116_raiseSCL(struct tciinfo

Set the value of the SCL (clock) line of

void SAA7116_lowerSCL(struct tci_info

Set the value of the SCL (clock) line of

*tci);

the 12C

*tci);

the I2C

*tci);

the 12C

*tci);

the I2C

bus to be one.

bus to be zero.

bus to be one.

bus to be zero.

3.9 iic.c

The I2C bus interface [15] is implemented on top of the functionality of the SAA7116

chip. The bus protocol is used to program the Bt819, SAA7192, and FPGA chips.

void I2Cread(struct tci_info *tci, unsigned char address, unsigned char

*bytes, int length);

An array of character sized data of length length is read from the device with

address address on the I2C bus and written to memory beginning at address

bytes.

void I2C_write(struct tciinfo *tci, unsigned char address, unsigned char

*bytes, int length);

An array of character sized data starting at bytes, and of length length, is

written to the device with address address on the I2C bus.

Mf\J

SVideo Data Path

- - - Clock Line Path

Figure 4-1: Diamond Stealth Display Card

The images that are produced through the overlay of the cues on the captured and

delayed video are presented for viewing by the cue receiver on a television monitor.

The conversion of those images from digital format in memory to an analog NTSC

signal is accomplished through the combination of a computer display card and a

VGA to NTSC scan converter.

Chapter 4

Display Output

........................... *

.....

4.1 Display Card

4.1.1 Hardware Interface

The Stealth 64 Video VRAM (Diamond Multimedia Systems) is a conventional VGA

computer display card. It transforms the digital image in its frame buffer into an

analog signal for display on a VGA computer monitor. As shown in Figure 4-1, there

are three main hardware components on the Stealth board. The first is the Vision968

Multimedia Accelerator chip [24, 25], which interfaces the board with the PCI bus and

provides the programming registers by which the various display modes are set. The

second is the two megabytes of video memory (VRAM), which is accessed through

the 968 and which stores an image for display. Finally, there is the RAMDAC (RAM

Digital to Analog Converter), a Texas Instruments TVP3026 [28] that converts the

image in VRAM into an analog signal. The TVP3026 reads the words of image data

sequentially from VRAM, looping back to the beginning at the end of the image. The

number of times the TVP3026 reads an entire image from memory each second is its

"refresh rate." In addition, the TVP3026 provides timing clocks for the 968.

4.1.2 Software Interface

Unlike the kernel module device driver for the Oculus TCi, the driver for the Diamond

Stealth was implemented as a user space library [17]. The driver does not use DMA or

interrupts and so requires no special functionality that is available only at the kernel

level. Two methodologies for programming the 968 chip are available: addressing

the I/O address space of the Intel x86, and mapping the registers of the 968 into

the normal address space of the computer. The second method is used, as it does

not require special I/O commands and is faster and more efficient. The 968, in

turn, provides access to the programming registers of the TVP3026. However, both

methods require that a calling process run with super-user permissions in order to

modify the relevant memory locations.

The display card programming is similar to that for video modes in X Windows,

except that special provisions are made for the display of continuous video. Because

the RAMDAC is almost always accessing the current image in memory, merely over-

writing the image with the next video frame would likely introduce errors into the

display as incomplete images are read for output. Therefore, two buffers are reserved

for video frames in the Diamond Stealth card's memory. While one buffer is being

used for the output, the other is being filled with the next frame. After the frame

transfer is complete, the roles of the two buffers are switched, with the recently filled

buffer now used for output and the other for the transfer.

The switch between the two buffers is made by reprogramming three Start Address

registers [24, pp 14(17), 17(16)], whose contents are concatenated to form the starting

address in the VRAM from which the image should be read. But because all three

cannot be modified in one atomic operation, and the registers are read only as the

RAMDAC cycles to the beginning of the image, an incorrect address could be read

and used for an entire image. Therefore, the beginning of the buffers in VRAM must

be aligned so that only one Start Address register need be changed to switch between

buffers. In this way, the change is effectively atomic.

The RAMDAC is configured for a refresh rate of 30 frames per second, so that

the rate at which images are written to VRAM is the same as the rate at which they

are read. Otherwise, the length of time for which a frame would be displayed could

vary.

4.2 968. c

All calls to functions controlling the display board include a videomode structure as

an argument. The elements of this structure, initialized by the user before the call

to setup_video_display(), determine the resolution of the new video mode and its

refresh rate.

int setup_video_display(struct video.mode *mode);

Put the display card into the video mode described in mode.

int cleanvideo_display(struct videomode *mode);

Restore the display board to it original state and free all resources.

int use_screen(struct videomode *mode, int screen);

Select the buffer in the display board's memory from which the display im-

age should be read. screen is an integer from 0 to n, with the upper limit

determined by the amount of memory and the video mode.

int draw_screen(struct video-mode *mode, void *image, int screen);

Copy image to the buffer in the display board's memory selected by screen.

4.3 ti3026. c

These functions control the TVP3026 RAMDAC, which is programmed indirectly

through registers on the 968. The TVP3026 provides the clocking signals for the

968's timing of memory access, pixel processing, and data transfer. It also reads pixel

data from the frame buffer and converts it to an analog format for display. These

functions are only called by the 968. c software module.

int tisaveregisters(void);

Save the current state of the programming registers.

int tirestore_registers(void);

Restore the saved state of the programming registers.

int ti_setup_clock(struct videomode *mode);

Program the internal phase lock loop so that the correct clocking signal is sent

to the 968.

int ti_setup_pixels(struct videomode *mode);

Setup the output circuitry for the appropriate conversion of pixels to analog

levels.

4.4 NTSC Conversion

The scan converter from AITech International that is used to transform the VGA

format output of the Diamond card into NTSC format video requires that the VGA

signal correspond to a 640 by 480 pixel image refreshed at 30 frames per second,

consistent with the video mode of the Diamond Stealth display card. Thus, no ad-

justments to the video display mode were necessary.

Chapter 5

Control and Overlay

A user program is responsible for the overall control of the video display system for

the Automatic Cue Generator. It manages the hardware drivers, communicates with

the Automatic Speech Recognition computer, and overlays the cues on the video

images. The display system's intended operation is somewhat unique for Linux, as

the user program has hard real time operating requirements without a very supportive

framework in the operating system. The ways in which the resultant difficulties were

addressed will be discussed, as well as the general structure of the control program.

5.1 Real Time System Control

The control of the video system posed many challenges because of the need to re-

spond in real time to a variety of events and to do so in coordination with two other

computers distributed across a network. No approach completely resolved all of the

issues, but the one that was adopted did provide a framework in which errors were

either tolerable or correctable.

5.1.1 Synchronization

The audio and video signals provided by the camera imaging the speaker are captured

and processed by two different computer systems. In order for the two systems to

be able to communicate with each other about their captured data, they must have

a common frame of reference for the timing of the camera data. For example, the

audio system must be able to inform the video system as to when in the video stream

a particular cue should be overlaid. Unfortunately, the two systems share no clock

that can assure proper synchronization of the audio and video data. Instead, during

system initialization, the ASR computer issues a message on the network to the

video and audio computers for each to start its timer. Typical network latencies for

data transmission are on the order of 10 milliseconds, which is sufficiently low that

noticeable timer skew errors are not introduced.

5.1.2 Fault Tolerance

Response to the interrupts generated by the frame grabber board is asynchronous

with respect to the rest of the system, and usually occurs immediately. In contrast,

the controlling user program that processes and displays the video data is subject to

the scheduling policies of the operating system. Linux does allow for a form of real

time scheduling, in which a user process has a higher priority than any other, but the

high priority user process must share CPU time with essential system processes. For

this reason, the control program may at times respond late to the input of video data

as it waits for its CPU time slice.

In addition, when the program does respond, it may find that the video data was

corrupted due to PCI bus conflict. The PCI bus and memory arbitration protocols

have no provisions for real time data transfer, and so competition with the display

card, network card, hard drive, and CPU may sometimes force the frame grabber to

lose data.

The control program must be prepared to detect and respond to both of these

conditions so that a cue is applied to the proper, error free, video frame.

5.2 Cue Overlay

The Automatic Speech Recognition computer processes the audio data to determine

the cues associated with the speech. The ASR transmits the information relevant to

the cues over the network so that the video display system can then overlay the cues

on the video stream. The cue message specifies which hand shape is to be displayed,

the position at which it is to be placed relative to the image of the speaker's face,

and the time in the video stream at which it should first be displayed.

The start time for the cue is with reference to the synchronization timer that each

computer started simultaneously, as described above. This time can then be matched

up with those times that are assigned to the video frames as they are digitized and

stored in the delay buffer. Since the time for a particular video frame is assigned at

the end of its capture, the cue overlaid on it is the one most recently received whose

start time does not exceed the frame time.

The position at which the cue is placed relative to the speaker's face is dictated by

the rules of Manual Cued Speech. However, the overlay routine must still locate the

position of the speaker's face within the video frame. To ease this process, the location

of the cue positions are marked on the video image by the user at the beginning of

a session, using a movable cursor, and the speaker is then requested to limit the

movements of his head to maintain the accuracy of the positioning.

To better simulate manual cueing, the overlay routine attempts to reproduce the

coarticulation present in the transition of the hand from cue position to cue position.

Previous experiments involving simulations of the present system [4] displayed the

cueing hand in a fixed position for the entire duration of the cue, with a discrete

change to the next position. To present a more realistic transition of the hand from

one cue position to the next, both the current and the next cue are considered in

the placement of the hand. After the hand has been displayed in the current cue

position for several frames, it follows a linearly interpolated path to the next cue

position, arriving at the start time for the next cue. The hand shape changes from

the current to the next shape halfway along the path between the two cue position.

USER INPUT

FRAME GRABBER

DRIVER

DISPLAY CARD

DRIVER

Figure 5-1: Display System Software Module Block Diagram

In this manner, the cue receiver can obtain information about the next cue before it

actually begins, as in manual cueing.

5.3 Software Modules

The source code of the control program for the video display system consists of

several software modules of delimited functionality. As shown in Figure 5-1, one

module, acg. c interacts with the user in order to direct the operation of the other

modules.

5.3.1 acg. c

The acg. c module first processes any argument flags on the command line, which

modify the behavior of the program. These options include:

-- help List the command line options.

-- delay DELAY Set the length of the delay buffer to be DELAY frames.

-- server SERVER Specify the name of the ASR computer to be SERVER.

-- composite Use a composite video source.

-- yc Use an S-Video source.

-- hres HRES Specify the horizontal resolution of the captured image to be HRES
pixels.

-- vres VRES Specify the vertical resolution of the captured image to be VRES pixels.

-- cue Overlay cues on the video image.

-- locate Manual specify the cue positions in the video image.

-- directory DIRECTORY Specify the directory in which the cue images are located
as DIRECTORY.

Initialization

Once the command line options have been parsed, a system call is made to request

real time scheduling priority. The initialization routines of each of the other modules

are called to set up the frame grabber, the display card, and the network interface.

At this point, the module prepares its own arrays for holding frame timing and error

data, and issues the call to begin the digitization of video.

Control Loop

The control module enters an infinite loop that handles all of the normal activities of

the display system; an abbreviated version of the loop is listed in Figure 5-2. At the

head of the loop is a call to grab_wait_forframe (), which regulates the timing of

the event loop. Ultimately, the call is processed by the frame grabber device driver,

which puts the process to sleep until another video frame has been captured. When

the frame grabber receives an interrupt signaling the end of the frame, it awakens

the process and calls the scheduler to run it. Normally, when the process restarts, it

overlays a cue on the oldest video frame in the buffer, transfers it to the video card

for display, and jumps to the beginning of the loop to wait for another cycle.

The loop must check for two error conditions. First, grab_wait_index() returns

an error if the captured frame was corrupted while being transferred on the PCI bus.

If so, the frame is marked as having an error, so that it will not be displayed after

for (;;) {
val = grab_wait_for_frame(&index_in);
index_out = (index_in + 2) % delay;

if (val < 0) {
grab_error[index_in] = TRUE;

} else {
grab_error[index_in] = FALSE;

}

times[index_in] = timer_get_time();

index_prev = (index_prev + 1) . delay;
while (index-prev != index_in) {

graberror[index_prev] = TRUE;
index-prev = (indexprev + 1) % delay;

}

if (grab_error[index_out]) {
continue;

}
grab_get_frame(index_out, &frame);

if (times[index_out])
cue_draw_cue(frame, times[index_out], cue_positions);

display_drawscreen(frame);

Figure 5-2: Main Control Loop

the delay period. Second, the process may not have been able to attend to each video

frame that has been captured since the last time through the loop. Either the process

may not have been scheduled in time after the end of capture, or the last cycle through

the loop may have taken more time than the capture of a video frame (due to another

process being scheduled during the loop). In either case, the grab_wait_for_frame()

returns information as to which buffer element was just stored, so that a comparison

can be made with its previous value to determine if the processing of any elements

was skipped. If so, all those skipped elements are marked as containing errors, since

their frames may have been corrupted in capture.

If the oldest frame is marked as corrupted, continue directs execution back to the

top of the loop; the frame currently displayed will remain for another cycle. Otherwise,

a pointer to the output buffer element is obtained from grabget_frame () and passed

on to the cue overlay routine cue_drawcue (). Also passed to the overlay routine is

the time stamp that was assigned to that video frame by timerget_time() after it

was captured. However, the call is not made if that time is 0, which means that the

frame was captured before the system clocks were synchronized. After this step, the

frame is sent for display by displaydraw_screen().

Exiting

The control program exits upon an unanticipated error condition, or on a signal from

the user. If first stops the capture of video frames, restores the normal computer

display, and then exits.

5.3.2 cue.c

The routines in this module store the cue specification received over the network

and overlay the images of cues on the video stream. Because the overlay is done

by the CPU, an algorithm was developed to reduce computation and memory access

cycles. In the conventional overlay of one image over another, a background color

distinguishes which pixels of the first image should be copied and which should not;

only pixels that are not of the background color are copied. While this method is

appropriate for arbitrary images, it is very inefficient when the images to be copied

can be processed ahead of time, as is the case for the cues.

The hand shape images are stored as graphics whose dimensions are the same

as the images that will be captured, with a black color denoting the background.

When a shape is first loaded, the image is scanned pixel by pixel in a manner similar

to run length encoding. Counters record the length of background and hand pixel

runs, so that only pixels corresponding to the hand need be stored in memory. When

the image is overlaid, the routine can use these counters to place the hand pixels in

the destination image without the need to filter out the background pixels. Using

this technique, the overlay requires the processing of up to twenty times fewer pixels,

resulting in significant time savings.

int cueinit(int h, int v, int p, char *dir);

Read the cue shape images from disk and prepare the linked list that holds

the cue information.

int cueaddcue(struct cue_datum *cue);

Add the cue information in the struct cue to the list of cues sent from the

ASR system.

int cue_drawcue(void *frame, int time, struct coordinate cue_positions []);

Overlay the appropriate cue on the video frame frame, whose capture end at

time. The array cue_positions [] specifies the cue positions in the video im-

age.

5.3.3 timer. c

The timer is used to synchronize data exchanged between the ASR computer and

the video display system. The timer increment is one one-hundredth of a second, the

fundamental length of time for the speech recognition system.

void timer_set_zero_time(void);

Set the origin of the timer to be the current time.

int timerget_time(void);

Return the time in hundredths of a second since the call to t imersetzero_time ()

or 0 if the call has not yet been made.

5.3.4 display. c

The display. c module manages interaction with the device driver for the display

card and the flipping of display pages for a non-flickering video display.

int display_init(int hres, int vres, int pixel);

Put the display card in the graphics mode of hres by vres pixels, with a color

depth specified by pixel.

int display_draw_screen(void *buffer);

Use video frame buffer as the next for display.

void display_end(void);

Restore the original state of the display.

5.3.5 grab. c

The grab.c module interfaces with the frame grabber device driver to control the

capture of video and to help manage the video delay buffer.

int grab_init(int hres, int vres, int pixel_size, char *camera, int del);

Initialize the frame grabber to capture images of hres by vres pixels at a color

depth of pixelsize from camera. The delay buffer is del frames long.

int grab_start_grab(void);

Begin the transfer of captured video into the delay buffer.

int grab_stop_grab(void);

Stop the transfer of captured video into the delay buffer.

int grab_wait_forframe(int *index);

Sleep until the frame currently being captured has been fully transferred into

memory; return its buffer index in index. Return EIO if the frame was cor-

rupted.

int grab_get_frame(int index, void **frame);

Return in frame the address in memory of the delay buffer element with index

index.

I

5.3.6 socket.c

During its initialization, socket . c sets up an asynchronous signal handler that is

called whenever the process receives data over the network. The signal handler parses

the message from the ASR computer and acts according to its command field. If it

is a GO command, the synchronization timer is started, and a reply is made with

a confirmation message. For a STOP message, the video system is shut down. A

message with a VDATA command contains cue data which is passed on to the cue

software module.

int sockettcp_init(char *server)

Setup the TCP socket for communicating with the ASR computer, and set

the process to receive the SIGIO signal from the socket.

int socket_tcpready(void);

Send a message to the ASR computer that the video system is prepared to

receive the GO message.

5.3.7 terminal.c

The video card used for the cueing display is also the one that is used for the display

of system graphics and text. terminal. c acquires control of the display from the

system and prevents any other process from manipulating the board and causing

errors. The module also reads the user input to position a cursor marking the cue

positions.

int terminalinit (void);

Change to the first unused virtual terminal and lock it. Put STDIN in non-

canonical mode.

int terminal_end(void);

Release the display to the system and restore the original state of STDIN.

char terminalget_char(void);

Return the most recent character from STDIN.

Chapter 6

Discussion

As has been mentioned in previous chapters, several aspects of the video display

system can still be improved. Problems specific the base system implementing the

video control and delay and to the cue overlay system are discussed below. Where

possible, solutions and paths of investigation are proposed.

6.1 Base System Improvements

In general, the video acquisition, display, and delay hardware met the minimal re-

quirements of the system. The modifications described below would serve to extend

the video system's abilities and to increase its operating robustness.

6.1.1 Video Hardware

As mentioned in Subsection 2.1.7, the display card was the hardware device with

the slowest and most primitive memory interface. If it had incorporated DMA con-

trollers, video images with greater color depth could be captured and transferred from

system memory to the card, without intervention by the CPU. Unfortunately, such

a modification is wholly dependent on the future availability of appropriate display

cards.

The memory address restriction of the frame grabber's DMA controller, discussed

in Subsection 3.3.1, requires an awkward and wasteful allocation of memory. This

feature can be disabled, but at the risk of corrupting other areas of system memory

if the DMA controllers are misprogrammed. The trade-offs between memory use and

reliability should be examined. In addition, the buffer allocation and management

routines presently in the frame grabber device driver should probably be moved into a

separate module, so that a more abstract interaction between the two can be realized.

6.1.2 Computer Synchronization

The method used to synchronize the start of the timers for the audio and video data

is susceptible to errors introduced by network delays. Any delay in the transmission

of the GO message from the ASR computer to the display computer increases the skew

between the timers. If the skew is a significant fraction of the time for which a video

frame is displayed, cues will be overlaid late in the video stream, providing incomplete

and possibly erroneous information to the cue receiver.

To correct the problem using the existing hardware setup (i.e. without introducing

a common clock source), the ASR computer should examine the round trip time for

sending the GO message and receiving a reply. If the total time is greater than a

threshold value, the synchronization process should be restarted. By repeating this

step as necessary, the clock skew can be guaranteed to be less than a specified value.

6.1.3 Real Time Scheduling

Although the control process is marked for real time execution by the scheduler,

it could be subject to delays incurred by page faults if pages of its memory are

swapped out while it is not running. System calls exist for locking pages of a process

into memory so that they will not be swapped out, which may speed the program's

response. Whether such a measure is necessary depends on the loading of the system

while the cue display task is being performed.

The control process currently is put to sleep after it finishes sending a frame for

display and is ready for the next incoming frame. Although the delay associated with

awakening the process is probably not significant, it should be examined in more

detail. The delay in fact may already be nearly irreducible. Even if the process were

to be modified so that it continuously runs and just polls the device driver, it would

still incur the overhead of the two context switches necessary for the system call. The

current scheme incurs the delay of only one context switch with the awakening of the

process.

6.1.4 Graphical Interface

The display system would be much more portable and user friendly if it could make

use of the X Window system. X Windows is a multi-platform graphical environment

that provides an abstract interface to the underlying display hardware. Using X would

make the cue display system less dependent on its maintainer's ability to program

a particular video card. Unfortunately, the conventional X system has neither an

efficient means of transferring large amounts of image data nor an acceptable way of

dealing with the display of video. If these difficulties could be overcome, the system

would be greatly improved.

6.2 Cueing Improvements

The complete cueing system was tested in real time with speakers and cue receivers

on three different occasions. Although the system did provide measurable benefit to

the cue receivers as compared to speechreading alone, its performance was severely

limited by the accuracy of the ASR system. In addition, the overlaid cues were

distracting to some of the subjects. Cue receivers were disturbed by the appearance

of the hands and the nature of the transitions between cue positions. These issues as

well as others relating to improvements in the cue display are discussed below.

6.2.1 Cue Presentation

There were several problems with the both the appearance and the movement of the

synthetic cues. First, the overlaid hand shapes did not always match well in skin tone

and size with the speaker's face. While they probably did not affect the cue receiver's

ability to understand the speaker, these discrepancies did reduce their comfort with

the system. Second, no provision was made for the "flick" of cued speech. To signify

consecutive identical cues in the side position of the manual system, the hand is flicked

forward by the speaker. But it is not clear how to simulate this movement in a 2-D

display. Third, the timing of the cueing for diphthongs was chosen on an ad hoc basis

and should be refined to more closely match human actions. Finally, the hand did

not transition smoothly from one cue shape to another. To model such movements

accurately would require either very sophisticated graphics rendering algorithms or

a comparatively large image data base. The extent to which such modeling would

benefit the cue receiver is unknown.

6.2.2 Automatic Cue Positioning

The current system requires that an operator manually specify the five cue positions

in the video image. While this procedure is acceptable for situations in which the

speaker's movements are restricted, it is clearly unsuitable for many settings. A

system for automatically tracking the location of the speaker would greatly augment

the utility of the Automatic Cue Generator.

Systems have already been implemented that track the location of face within

an image and follow an individual's movements throughout a room [30]. The main

research effort would be in developing an algorithm that can extract the exact location

of the cue positions based on a general positioning of the speaker's head. To ease

the addition of such algorithms to the control program, procedure hooks have been

included in the source code. They now call empty functions, but can be modified as

necessary.

Bibliography

[1] AITech International. PC/TV-1108 Digital Scan Converter User's Guide, 1995.

[2] Ariel Corporation. User's Manual for the DSP-96 DSP96002 Floating-Point

Attach Processor Board with Dual-Channel Analog I/O, April 1995.

[3] Michael Beck et al. Linux Kernel Internals. Addison-Wesley, 1996.

[4] Maroula Sarah Bratakos. The effect of imperfect cues on the reception of cued

speech. Master's thesis, Massachusetts Institute of Technology, 1995.

[5] Brooktree Corporation. Bt819 EVM.

[6] Brooktree Corporation. VideoStream Decoders.

[7] Coreco, Inc. User's Manual for Oculus TC1, 1995.

[8] R. Orin Cornett and Mary Elsie Daisey. The Cued Speech Resource Book: For

Parents of Deaf Children. National Cued Speech Association, 1992.

[9] Crimson Tech Reference Catalog. Reference Catalog, 1994.

[10] Cypress Semiconductor Corporation. ICD2061A: Dual Programmable Graphics

Clock Generator.

[11] Diamond Multimedia Systems, Inc. Stealth 64 Video VRAM User's Guide.

[12] Edward Dolnick. Deafness as culture. The Atlantic Monthly, September 1993.

[13] Entropic Research Laboratory, Inc. HTK: Hidden Markov Model Toolkit V1.5.

[14] Richard F. Ferraro. Programmer's Guide to the EGA, VGA, and Super VGA

Cards. Addison-Wesley, 1994.

[15] Vincent Himpe. I2C bus FAQ. Available at http://www.ping.be/ ping0751.

[16] Pamela J. Jackson. The theoretical minimal unit for visual speech perception:

Visemes and coarticulation. The Volta Review, September 1988.

[17] Hongjiu Lu. Elf: From the programmer's perspective. 1995.

[18] David S. Lum. Lab guide to using the DSP-96 board under linux. 1996.

[19] Hans-Peter Messmer. The Indispensable PC Hardware Book. Addison-Wesley,

1995.

[20] NCSA. Guidelines on the mechanics of cueing. Cued Speech Journal, V, 1994.

[21] Philips Semiconductors. SAA 7116: Digital Video to PCI Interface.

[22] Philips Semiconductors. SAA7192A: Digital Color Space Converter.

[23] Prime Image. Audio Video Delay.

[24] S3 Incorporated. Vision964 Graphics Accelerator.

[25] S3 Incorporated. Vision968 Multimedia Accelerator.

[26] Matthew G. Sexton. C language development on the DSP-96 DSP96002 floating-

point attached processor board. 1996.

[27] Sony Corporation. Digital Video Camera Recorder, 1995.

[28] Texas Instruments. TVP3026 Video Interface Palette: Data Manual, 1994.

[29] Rosalie M. Uchanski et al. Automatic speech recognition to aid the hearing

impaired: Prospects for the automatic generation of cued speech. Journal of

Rehabilitation Research and Development, 31(1), 1994.

[30] Jie Yang and Alex Waibel. Tracking human faces in real-time. Technical Report

CMU-CS-95-210, Carnegie Mellon University, Pittsburgh, PA 15213, November

1995.

