
Coordinate-Independent Computations

on Differential Equations

by

Kevin K. Lin

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 11, 1997

@ Massachusetts Institute of Technology 1997. All rights reserved.

Author ...
Department of Electrical Engineering and Computer Science

August 11, 1997

Certified by
Gerald Jay Sussman

Matsushita Professor of Electrical Engineering
Thesis Supervisor

Accepted by.............. " "
A. C. Smith

Chairman, Department Committee on GradbRte Theses

MA SACHUS IN TITUL
OF TECHNOLOGY

JUL 14 19q8

LIBRARIES

Coordinate-Independent Computations

on Differential Equations

by
Kevin K. Lin

Submitted to the Department of Electrical Engineering and Computer Science
on August 11, 1997, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This project investigates the computational representation of differentiable manifolds and
the use of such abstractions to help manage multiple coordinate systems on n-dimensional
spaces. This idea is applied to the accurate integration of ordinary differential equations
using multiple coordinate systems. An attempt is also made to apply this idea to the
numerical solution of linear partial differential equations, although in this case unexpected
difficulties arise even with the simplest equations.

Thesis Supervisor: Gerald Jay Sussman
Title: Matsushita Professor of Electrical Engineering

Acknowledgments

As is the case with any undertaking, there are far too many people to thank in relation to
this project. If I neglected anyone, it is purely out of failure of memory and I beg for their
forgiveness.

To begin, I would like to thank Norman K. Yeh and Mariya Minkova for proof-reading my
thesis proposal, and Tim McNerney for suggestions on how to present manifolds. Because
of them, the presentation is much better than the rambling mess that was my first draft.

To the folk at Switzerland, especially Daniel Coore and Jim McBride: Thanks for the
stimulating (and sometimes late-night) discussions on life, the universe, and everything.
Thanks are also due to Eric Grimson, Thanos Siapas, and Ken Yip for crucial references, to
Hardy Mayer and Michael Chechelnitsky for many helpful conversations on PDEs, and to
Rebecca Bisbee and Anne Hunter for making sure that all the important things got done.

Portions of this work was supported by the Barry M. Goldwater Foundation, without
whose help it would have been difficult to get this far.

I am forever indebted to my teachers throughout the years: To Mr. Reyerson at BCP,
and Professors Flanigan and Morris at SJSU, for introducing me to mathematics; to Pro-
fessors Munkres, Guillemin, and Wisdom for being such great teachers; and finally, to
Gerald Jay Sussman, who has helped shape my interests, guided my work, and above all
else encouraged me onward as I took the first faltering steps into a world of breathtaking
wonders.

To my family and all my friends: You have made a great difference, and I could not
have made it without you.

Still round the corner there may wait
A new road or a secret gate;
And though I oft have passed them by,
A day will come at last when I
Shall take the hidden paths that run
West of the Moon, East of the Sun.
-J. R. R. Tolkien

To Grandpa.

1908-1994

Contents

1 Introduction

2 Ordinary Differential Equations and Manifolds

2.1 A brief introduction to manifolds 14

2.1.1 The spherical pendulum 14

2.1.2 Differentiable manifolds 16

2.1.3 Some examples 18

2.1.4 Tangent vectors 21

2.1.5 Smooth maps and differentials 24

2.1.6 Tangent bundles 27

2.1.7 Making new manifolds 29

2.1.8 Boundaries 30

2.2 Vector fields and differential equations 31

2.2.1 Smooth vector fields 31

2.2.2 Flows generated by smooth vector fields 32

2.2.3 Manifolds and classical mechanics 34

2.3 Numerical experiments 38

2.3.1 The circle field 38

2.3.2 The spherical pendulum 40

2.3.3 Rigid body motion and coordinate singularities 45

2.4 Directions for future work 55

3 Linear partial differential equations

3.1 Partial differential operators on manifolds

3.2 Approaches to discretization
3.3 Finite differences on manifolds

3.3.1 Generating coefficients for irregular sample points

3.3.2 Solving linear algebraic equations

3.3.3 Numerical examples

3.4 Finite elements on manifolds

3.4.1 Integration on manifolds

3.4.2 More about boundaries

3.4.3 Computing with finite elements on manifolds . . .

3.4.4 Local finite-elements..................

3.4.5 Basic FEM algorithm on manifolds

3.4.6 Interpolation between charts

3.4.7 Some numerical results

3.4.8 The problem with interpolation

3.4.9 Other approaches to FEM on manifolds

3.5 Some comments on mesh generation

3.6 Directions for future work

3.6.1 Improvements to finite differences

3.6.2 Improvements to finite elements

3.6.3 Other methods

4 Problems with Time

4.1 The linear wave equation

4.2 Initial value problems and characteristics

4.2.1 Characteristic curves for a first-order equation . .

4.2.2 Characteristics for general equations

4.2.3 Variational principles revisited

4.2.4 Galerkin's method and the initial value problem

4.3 Variations on a theme of Lagrange

4.3.1 Modifying the action principle

4.3.2 Modifying the domain

4.4 Difficulties with the spacetime approach

4.4.1 Why the variations failed

4.4.2 Other problems

4.5 Directions for future work

A Background Material on Partial Differential Equations

A.1 Matrix inversion

A.1.1 Iterative methods and relaxation

A.1.2 Jacobi iteration.....................

A.1.3 Gauss-Seidel iteration

74

75

80

83

83

89

92

98

... . 101

106

... . 117

118

118

... . 119

.... 119

120

121

122

.. 123

124

.. 125

.. 127

.. 128

.. 128

.. 135

.. 140

.. 140

141

142

143

..... 143

. 143

..... 144

. 145

A.1.4 Overrelaxation 145

A.2 A brief introduction to finite elements

A.2.1 Introduction

A.2.2 Partial differential equations

A.2.3 The Rayleigh-Ritz Method

A.2.4 Galerkin's method

B Odds & Ends

B.1 Charts without a manifold

B.2 Integration of differential forms on oriented manifolds

B.2.1 Stokes's theorem

C Complete Program Listings

C.1 Computational manifolds

C.1.1 basis-imb.scm . . .

C.1.2 basis-poly.scm...

C.1.3 basis-real.scm . . .

C.1.4 boundary.scm...

C.1.5 bug.scm

C.1.6 charts.scm......

C.1.7 cotangent.scm...

C.1.8 fields.scm

C.1.9 hamilton.scm ...

C.1.10 imbedding.scm . .

C.1.11 job-ode.scm

C.1.12 job-pde.scm

C.1.13 lagrange.scm . . .

C.1.14 linear.scm

C.1.15 load-main.scm

C.1.16 load-ode.scm . . .

C.1.17 load-pde.scm . . .

C.1.18 lshared.scm

C.1.19 manifold.scm . ..

C.1.20 misc-math.scm . .

C.1.21 misc.scm......

C.1.22 ode-examples.scm

C.1.23 ode-fast.scm

C.1.24 ode.scm

. 145

. 145

.

.

.

146

148

153

155

155

156

157

158

158

158

160

162

163

167

167

169

173

179

179

180

181

182

184

187

187

188

189

192

197

197

199

203

204

..................

.

.

C.1.25 pde-aux.scm .

C.1.26 pde-charts.scm ..

C.1.27 pde-cmpgrd.scm

C.1.28 pde-collect.scm .

C.1.29 pde-collectl.scm

C.1.30 pde-collect2.scm

C.1.31 pde-collect3.scm

C.1.32 pde-collect4.scm

C.1.33 pde-config.scm ..

C.1.34 pde-debug.scm ..

C.1.35 pde-elements.scm .

C.1.36 pde-examples.scm

C.1.37 pde-gentest.scm..

C.1.38 pde-main.scm . . .

C.1.39 pde-mergers.scm

C.1.40 pde-nodes.scm ..

C.1.41 pde-ops.scm....

C.1.42 pde-test.scm . .

C.1.43 pde-thesis.scm

C.1.44 pde-thesisl.scm.

C.1.45 pde-thesis2.scm

C.1.46 pde-thesis3.scm

C.1.47 pde-thesis4.scm .

C.1.48 pde-tools.scm .. .

C.1.49 pde-works.scm ..

C.1.50 product.scm....

C.1.51 ranges.scm

C.1.52 richardson.scm ..

C.1.53 rigid-body.scm ..

C.1.54 rigid-compute.scm

C.1.55 rigid-errors.scm.

C.1.56 rigid-fields.scm ..

C.1.57 rigid-read.scm...

C.1.58 rigid-test.scm . .

C.1.59 rigid-too.scm .. .

C.1.60 rigid-tops.scm...

C.1.61 rigid.scm

...................... 209

. 210

...................... 213

. 219

...................... 220

...................... 220

.. 221

.. 221

.. 222

.. 222

... 232

. 233

... 235

. 236

... 244

. 249

... 251

... 252

.. 255

.. 256

.. 257

.. 258

. 258

. 259

. 263

. 265

... 267

.. 269

. 271

. 274

. 274

. 275

. 282

. 283

.. 284

.. 286

. 287

C.1.63 spaces.scm 298

C.1.64 stubs.scm 306

C.1.65 tangent.scm 307

C.1.66 vbundle.scm 312

C.2 Finite elements 314

C.2.1 2d-domains.scm 314

C.2.2 2d-examples.scm 323

C.2.3 2d-operators.scm 326

C.2.4 2d-poly-basis.scm 328

C.2.5 2d-real-basis.scm 333

C.2.6 2d-real-diff.scm 334

C.2.7 2d-trapezoid.scm 335

C.2.8 basis.scm 336

C.2.9 bent.scm 338

C.2.10 collect.scm 340

C.2.11 debug.scm 341

C.2.12 delaunay.scm 346

C.2.13 delaux.scm 349

C.2.14 dyntable.scm 351

C.2.15 edge.scm 352

C.2.16 fem .scm 356

C.2.17 job.scm 362

C.2.18 jobl.scm 362

C.2.19 load.scm 363

C.2.20 matlib.scm 363

C.2.21 nodes.scm 371

C.2.22 opalg.scm 372

C.2.23 operators.scm 373

C.2.24 relax.scm 374

C.2.25 sparse.scm 375

C.2.26 thesis.scm 378

C.2.27 thesisl.scm 379

C.2.28 util-too.scm 379

C.2.29 util.scm 381

C.3 Finite differences 382

C.3.1 farray.h 382

C.1.62 smooth.scm 293

C.3.2 gunk.h..............

C.3.3 matrix.h

C.3.4 random.h

C.3.5 stat.h

C.3.6 accum.c

C.3.7 approx.c

C.3.8 band.c..............

C.3.9 blud.c

C.3.10 check.c

C.3.11 circle.c

C.3.12 dot.c...............

C.3.13 estimate.c

C.3.14 farray.c

C.3.15 femcompact.c

C.3.16 femstats.c

C.3.17 fill.c

C.3.18 filt.c

C.3.19 grad.c

C.3.20 gsmat.c

C.3.21 gsort.c

C.3.22 gunk.c

C.3.23 gunk2mat.c

C.3.24 hilbert.c

C.3.25 improve.c

C.3.26 jacmat.c

C.3.27 list2grid.c

C.3.28 lud.c...............

C.3.29 maplegrid.c

C.3.30 matrix.c

C.3.31 migrate.c

C.3.32 mkbd.c

C.3.33 mkgrid.c

C.3.34 mksq.c...............

C.3.35 new2old.c

C.3.36 normeqs.c

C.3.37 nstat.c..............

C.3.38 old2new.c

382

384

384

385

385

388

395

396

402

404

406

411

413

414

415

416

417

419

420

423

425

432

434

435

439

442

443

446

447

453

456

460

461

465

466

475

475

C.3.40 peek.c 477

C.3.41 peekcoeff.c 480

C.3.42 poly.c 483

C.3.43 pot.c 489

C.3.44 random.c 489

C.3.45 relax.c 490

C.3.46 repos.c 493

C.3.47 reset_val.c 495

C.3.48 rref.c . 496

C.3.49 sam ple.c 497

C.3.50 scramble.c 501

C.3.51 slice.c . 502

C.3.52 spect.c 504

C.3.53 sqstat.c 506

C.3.54 stat.c 507

C.3.55 walk.c 509

C.3.39 order.c . 476

Chapter 1

Introduction

Partial differential equations1 arise naturally in a large variety of physical problems. Like or-

dinary differential equations, the majority of partial differential equations cannot be solved

analytically save in special cases. Thus, efficient and accurate numerical solutions of partial

differential equations are essential in many applications. However, unlike ordinary differen-

tial equations, the solution of even linear partial differential equations can be a non-trivial

task. There are no general methods that apply to all types of partial differential equations,

and it is often necessary to exploit special structures in the problem at hand.

This project explores the the numerical solution of partial differential equations using

coordinate-independent representations. This approach makes possible the use of whatever

coordinate system that happens to simplify the problem locally. As a result, we can exploit

the structure and locality of interaction inherent in many physical systems, which can

provide more accurate solutions as well as insights into the physical and mathematical

structure of problems. In addition, it may also help us reformulate such problems for

distributed computers. This project focuses on low-order linear equations in low dimensions

for which analytical solutions are available, so that we can check our numerical solutions.

The rest of this document is divided into three chapters and three appendices. The first

chapter develops the idea of differentiable manifolds and other basic concepts from modern

differential geometry, and applies these concepts directly to the representation and solution

of ordinary differential equations, particularly those arising from classical mechanics. Next,

partial differential equations are discussed; for simplicity, the discussion is restricted to

simple scalar linear equations, such as Laplace's equation over regions in the plane. Finally,

the coordinate-independent solution of equations involving time, such as the linear wave

equation, is investigated; in this context, the spacetime representation of equations (rather

than the traditional "space + time") seems most natural.

10ften referred to as PDEs for short, just as ordinary differential equations are ODEs.

While the manifold abstraction works beautifully with ordinary differential equations,

some unexpected difficulties arise when dealing with even the simplest partial differential

equations. Thus, most of the methods described herein, with one notable exception, actually

do not work all that well, and in some cases completely fail. Thus, there is much work to be

done. However, given the limited scope and time scale of this thesis project, not all possible

solutions to these problems can be adequately explored. It is hoped that these ideas can be

explored more fully in the future.

Appendix A includes relevant background material on partial differential equations.

In particular, it presents the numerical methods that form a basis for this project, as

well as some important geometric and analytical properties of partial differential equations.

Appendix B contains some material on the theory of manifolds that was not directly needed

in the thesis, while Appendix C contains complete program listings.

The entire document, including the material on abstract manifolds, suppose only a

strong background in linear algebra and advanced calculus; little familiarity with more

advanced mathematics is assumed. Also, it is helpful, though not necessary, to be acquainted

with classical mechanics in Chapter 2, and §4.3.1 presumes some acquaintance with the basic

concepts of relativity.

Finally, a note about the presentation: Throughout this document, programs imple-

menting the main ideas will be presented alongside the mathematics. This serves a few

different purposes: First, because this project is fundamentally about computational tech-

niques, it would not be complete without actual programs. Second, it is often the case that

seeing something presented in different ways aids in understanding, especially in subjects

involving a significant amount of abstraction. Furthermore, programming languages, by

their very nature, force one to be as careful with the details as with the main concepts,

something that math and physics texts sometimes neglect. The language chosen for this

project is Scheme, a dialect of Lisp. The choice is primarily based on the exceptional ease

and flexibility with which Scheme expresses mathematical concepts; good references for the

language are [9] and [2].

Chapter 2

Ordinary Differential Equations

and Manifolds

This chapter describes the computational representation of manifolds, as well as their use

in the formulation and numerical solution of ordinary differential equations. As motivat-

ing examples for the main definitions, problems in classical mechanics are presented using

the manifold formalism. In following chapters, some ideas for integrating linear partial

differential equations using multiple coordinate systems are treated.

For a good reference on advanced calculus as well as an elementary introduction to

manifolds, Munkres [21] is excellent. Also, Guillemin and Pollack give a beautifully lucid

exposition on the topology of manifolds [14]. A more technical and abstract treatment

is given in Warner [28], and the classic by Arnol'd [4] presents manifolds in the context

of classical mechanics-An approach followed closely in spirit (but only in spirit) in this

chapter.

2.1 A brief introduction to manifolds

This section introduces the basic notions using a physical example, which will be revisited

from time to time as new concepts are developed.

2.1.1 The spherical pendulum

A good starting point for the study of manifolds is a variation on the classical pendulum,

the spherical pendulum (see Figure 2-1): Suppose a point mass of mass m is connected to

a fixed point by a massless rod of length 1. Furthermore, suppose that the point mass is

allowed to move freely in any angle (not simply constrained to a vertical plane, as in the

usual pendulum), and that it is subject only to a uniform gravitational field of constant

Figure 2-1: The spherical pendulum.

magnitude g.

The equations of motion for this problem are easy to derive. However, instead of de-

riving the equations to analyze properties of the motion, let us focus on some of the more

fundamental issues in a complete mathematical description of the problem. As we will see,

this problem illustrates most of the basic ideas in the theory of manifolds.1

First, consider the problem of specifying the configuration of the system. What informa-

tion do we need to specify the position of the pendulum? Since the point mass is constrained

to move at a constant distance I from the fulcrum, the problem of specifying configurations

of the spherical pendulum is equivalent to the problem of locating points on a sphere.

In order to specify points on a sphere, there are a couple of alternatives. One natural idea

is to use the fact that the two-dimensional sphere sits inside three-dimensional Euclidean

space, and to use the coordinates of R3 to parametrize the sphere. Unfortunately, this

approach is natural only for the sphere, and there are many important abstract spaces

that cannot be easily visualized as subspaces of Euclidean space, such as the space of all

orientations of a rigid body (which will be discussed later). Furthermore, in numerical

integrations of ODEs, it will often happen that the trajectory "veers off" the sphere due to

round-off error, and the constraint that the point mass lies at a constant distance I from

the origin would no longer hold.

Another approach is to put coordinate systems on the sphere that require only two

parameters. Formally, these are differentiable one-to-one mappings that map subsets of the
sphere onto subsets of the plane and for which a differentiable inverse exists. This turns out

1The ordinary pendulum, often used to illustrate important physical concepts, is not complicated enough
geometrically to bring out the difficulties that manifolds were invented to handle.

to be a well-studied problem, since cartographers must deal with the fact that the surface of

the Earth is spherical (approximately) but maps are fiat (Euclidean). The usual examples

of map-making projections, such as the Mercator projection (cylindrical coordinates) or the

system of longitudes and latitudes (spherical coordinates) are all examples of coordinate

systems on the sphere. Note that there exists no two-parameter coordinate system that

covers all of the sphere in a continuous fashion, but for every point on the sphere, we can

always find a coordinate system that parametrizes a neighborhood of the point using a pair

of parameters, so that the parametrization matches the dimension of the space.

In addition, in cartography, there is a natural solution to the problem that no coordinate

system covers all of the Earth: We can simply use more than one map. We can simply

switch to another map when one map becomes nearly useless. All that is required is some

systematic way of figuring out when coordinates in two different maps are in fact the same

point on the sphere, so that one could switch between maps without getting lost. This

idea has been generalized beyond recognition to form the foundation of modern differential

geometry, and spaces covered by maps (usually called charts) that make the space look

"locally Euclidean" are called manifolds.

2.1.2 Differentiable manifolds

These ideas can be formulated mathematically as follows: Let M be a non-empty set of

points,2 and let n be some fixed positive integer. An n-dimensional chart on M is a triple

(U, V, q), where U is a subset of M, V an open subset of Rn, and 4 a one-to-one map of

U onto V (see Figure 2-2). 0 is a coordinate map, and a chart (U, V, q) is said to contain

a point p E M if U contains p. Given two charts C1 = (UI,Vi, 01) and C2 = (2, V2, 2),

suppose the intersection U1 n U2 is non-empty, and let Wi be the image ¢i(U1 n U2) for

i = 1, 2. We can then form a transition map, 02 o 0-11, which is a bijective mapping from

W1 to W2. Note that the inverse of this transition map is 41 o 4021, which is represented by

the same set of lines in Figure 2-2 with the arrows reversed. Now, if W1 and W2 are both

open subsets of Euclidean n-space, then it makes sense to talk about the differentiability of

the transition map 02 o 0-1, and the charts C1 and C2 are said to be compatible if W1 and

W2 are open and the corresponding transition map is smooth, i.e. has all orders of partial

derivatives. 3 A collection A of charts on M is called an atlas if all its charts are mutually

compatible, and if every point of M is contained in some chart in A. 4 M, together with an

2In theory, points in an abstract space need not necessarily be points in a Euclidean space. They can
also be classes of matrices or other abstract mathematical structures.

31In the present setting, the sets Wi are required to be open subsets of Vi (and hence of R"). An alternative
is to require the subsets Ui of the abstract space M to be open, but to define what that means requires some
knowledge of general topology (which is not assumed here).

4It is easy to check that compatibility of charts is transitive, that is, if C 1 and C2 are compatible charts,

Figure 2-2: The sphere with generic charts and a transition map.

atlas A, is called a differentiable manifold of dimension n.5

These formal definitions may take some time to absorb, but after some thought one

should see that all that this says is that M is completely covered by a collection of maps, so

that given any point p E M, we can find a chart that makes a neighborhood of p look like

an open subset of Euclidean n-space. Thus, the definition formalizes the idea of coordinate

systems on abstract spaces, and transition maps allow one to switch between coordinate

systems in a consistent way. This would, for example, allow us to define spheres in a

way that solves the problem of locating points: One simply specifies a chart and a point,

provided the appropriate charts have been constructed.

Implementation of manifolds in Scheme

The implementation of charts as computational objects is straightforward; it is accomplished

through the procedure make-simple-chart. Make-simple-chart expects five arguments:

and C2 and C3 are also compatible, then so are C1 and C3.
5Technically, manifolds are often required to be "second-countable Hausdorff spaces." This is a rather

technical condition and has no direct consequences for the material here.

Dim, the dimension of the chart; in-domain?, a procedure that takes a point as argument

and returns #t or #f depending on whether the given point is in the chart; in-range?, the

analogous procedure for coordinate vectors in the range of the coordinate map; coord-map,

a computational representation of the function 0 that maps points in the manifold to co-

ordinate vectors in Rn; and its inverse, inverse-map. The constructor simply packages up

these procedures and provides auxiliary procedures for accessing these methods.

Similarly, the procedure make-manifold constructs manifolds. It takes four arguments:

Dim, the dimension of the manifold; general-find-chart, a procedure that takes a point

p and a list of predicates, and returns a chart C containing p such that every predicate

in the list returns #t when called with C; f ind-minimizing-chart, which takes a point

p and a real-valued function f on charts, and returns the chart C that contains p and

minimizes f;6 and get-local-atlas, a function that takes a point p and returns the list

of all charts containing p. Note that, since lists in Scheme must necessarily be finite, this

means any atlas constructed this way is locally finite; that is, every point p is contained in

only finitely many charts. 7 However, the fact that everything is implemented procedurally

allows for the possibility that the atlas itself is potentially infinite. For convenience, there

is also a constructor charts->manifold which takes a finite list of charts and constructs

the procedures general-find-chart, etc., by searching through this finite list.

2.1.3 Some examples

One obvious class of examples of differentiable manifolds is the Euclidean space Rn. Here,

the atlas consists of a single chart, (Rn, R n , idRn), where idRn is the identity map on R n.

We can express this example in Scheme as follows:

(define (make-euclidean-space dim)

;; Just need one big happy chart:
(test v) = #t iff v is a real vector of length dim:

(let* ((test (make-euclidean-test dim))
(chart (make-simple-chart dim test test identity identity)))

(charts->manifold (list chart))))

Another example is the circle, where two charts are now required (see Figure 2-3):

Removing the point (1, 0) from the circle gives a smooth bijection between the rest of the

6For example, the function f can be a measure of how poorly the chart behaves at p, such as how close
the procedure 0 o 0-1 comes to being the identity map at p and so on. This can be useful in integrating
ODEs on manifolds.

7Note that this is only a restriction on our computational representations of manifolds, not on differ-
entiable manifolds in general. A manifold, in theory, can have an infinite number of charts covering a
given point. One should be careful to distinguish between differentiable manifolds, which are theoretical
constructs, and their computational representations.

Cha

Figure 2-3: The circle as a manifold.

circle and the interval (0, 27r), using the usual angular parametrization. Similarly, removing

the point (-1,0) gives a correspondence between the rest of the circle and the interval

(-Ir, 7r). These two charts suffice to cover the circle.

We can, in fact, generalize such coordinate systems to higher-dimensional spheres. In

dimensions higher than 1, though, no single choice of charts is completely natural. We

could use cylindrical coordinates or spherical coordinates or some other coordinate system.

Each choice has its advantage. However, it is not hard to see that we can always choose

enough charts to cover all of the sphere. Rather than implementing the circle described

above as a special case, here is some code that implements the n-dimensional sphere using

stereographic projection (see Figure 2-4):

;;; Make a chart for the sphere using stereographic projection:

(define (make-stereographic-chart dim pole-dim pole-dir)
(let* ((ubound 5)

(dim+1 (+ dim i))
(pole (vector:basis dim+1 pole-dim pole-dir)))

(letrec
((in-domain?

(let ((sphere? (make-imbedded-sphere-test dim)))

Figure 2-4: Stereographic projection.

(lambda (v)
(and (sphere? v)

(not (almost-equal? (vector:distance^2 v pole) 0))
(< (- (/ 4 (vector:magnitude^2 (vector:- v pole))) 1)

ubound)))))

(in-range?
(let ((euclidean? (make-euclidean-test dim)))

(lambda (v)
(and (euclidean? v)

(< (vector:magnitude^2 v) ubound)))))

(map
(lambda (x)

(let* ((d (vector:- x pole))
(y (vector:* (/ 2 (vector:magnitude^2 d)) d)))

(vector:drop-coord (vector:+ y pole) pole-dim))))

(inverse
(lambda (x)

(let* ((d (vector:- (vector:add-coord x pole-dim) pole))
(y (vector:* (/ 2 (vector:magnitude^2 d)) d)))

(vector:+ y pole)))))

(let ((chart (make-simple-chart dim in-domain? in-range? map inverse)))
(make-spherical-range chart (make-vector dim 0) (sqrt ubound))
chart))))

;;; Construct the sphere:

(define (make-sphere dim)
(charts->manifold (list (make-stereographic-chart dim 0 1.)

(make-stereographic-chart dim 0 -1.))))

Stereographic projection works as follows: Let i be an integer between 1 and n, and let

p be a vector of the form tei, where ei is the ith canonical basis vector of Rn . Then each

point q on the sphere is mapped to the plane {xi = 0} by defining x to be the point where

the straight line joining p and q intersects the plane. This creates a bijection between the

set Sn - {p} and the plane {xzi = 0}, which can be identified with R n - 1 by dropping the

ith coordinate. This defines a chart. The relevant formulae are easy to derive and are left

as an exercise for the reader. In the program above, the variable pole-dim represents the

Figure 2-5: A local tangent vector.

index i; it is the dimension singled out for defining the point p (which is the vector pole).

Pole-dir specifies whether p is +ei or -ei.

Notice that it took quite a bit of work to define such a simple manifold; the implemen-

tation of spherical coordinates is even more involved. However, the manifold abstraction

lets us separate the definition of the actual space from operations we would like to perform

on the abstract space, such as integrating a differential equation. It makes these tasks

completely independent of each other.

2.1.4 Tangent vectors

The manifold construction described above only provides a way for specifying positions of

the pendulum. In order to completely capture the dynamical state of the problem, we also

need a way to describe the velocity of the point mass.

Consider the evolution of the pendulum: As time goes on, the point mass traces a path

on its configuration space, the 2-sphere. We can describe the position at each instant t

by a 3-vector y(t) whose distance from the origin is the constant 1. The velocity is then

the derivative ý. Since the path is imbedded in the 2-sphere, (t) must be tangent to the

sphere itself. Conversely, if a vector v is tangent to the 2-sphere at some point p, then there

exists a smooth path -y lying entirely in the sphere such that y(t) = p and -(t) = v for

some t, so that every vector tangent to the 2-sphere describes the velocity of some possible

path of the pendulum. Velocities, then, are naturally described by vectors tangent to the

configuration manifold, and we can define velocities for arbitrary configuration spaces by

generalizing tangent vectors to manifolds.

We can arrive at a general definition of tangent vectors on manifolds as follows: First,

note that if we are given a chart C = (U, V, 0), then locally a tangent vector at p E U can

be represented by a vector v "anchored" to the coordinate vector x = O(p) in the chart (see

Figure 2-5). We call the object (C, p, v) a local tangent vector. Now, in order for tangent

vectors to be coordinate-independent, there must be a consistent way of transforming them

between charts, and locally they must always behave like the derivatives of paths. That

is, if C1, C2, and C3 are overlapping charts, and -y is a path on M, then there should be

locally-defined transformations Tij such that j o-y = Tij oa 07y, and such that the derivative

of qi o - in Ci is carried to the derivative of j o -y in Cj. This requires that applying T12

to some vector v, followed by T23, yields the same result as applying T13 directly. In view

of the chain rule, the transformation T ij must be the transformation represented by the

Jacobian matrix D(%j o q 1) of the transition map. Thus, we can say two local tangent

vectors (Cl,p, vi) and (C2 ,p,v 2) at p are equivalent if D(02 o 0 11)(x) . vl = v2, where

x = 01 (p). The tangent vector corresponding to a given local tangent vector (C, p, v) can

then be defined as the set of all local tangent vectors equivalent to (C, p, v). The space of

all tangent vectors at a given point p is the tangent space of M at p, denoted by TpM. The

union of all tangent spaces is denoted by TM and is called the tangent bundle.

This construction defines tangent vectors as equivalence classes. Now, each of these

equivalence classes, and hence each tangent vector, can be in fact a rather large set of local

tangent vectors.8 While this may seem too abstract to be useful, one should realize here

that any local tangent vector in the equivalence class can be used to represent the tangent

vector, and the important thing is that there is a consistent rule for transforming local

tangent vectors between charts. Similarly, the intrinsic structure of the manifold arises

from the way charts overlap, and whether or not the manifold happens to be a subspace

of Euclidean space is of secondary importance. In fact, as stated before, there are many

important examples of manifolds that are most naturally defined in ways that make them

hard to describe as subsets of Euclidean spaces, although in principle this can always be

done.9

One last remark: A manifold as we have defined it has an intrinsic notion of smoothness,

but has no intrinsic notions of distance or size. The property of smoothness is stronger than

that of continuity, but not as strong as having a metric for measuring the distance between

points. Thus, our constructions in this section have shown that the idea of tangent spaces

8In theory, these equivalence classes can potentially be uncountably infinite sets. However, the local

finiteness requirement in §2.1.2 forces such equivalence classes to be finite, and hence they are representable

computationally. These can still be rather large sets, though, if many charts cover a given point.
9 The result that every abstract n-manifold can be imbedded as a subspace of some Euclidean space RN

is known as the Whitney imbedding theorem. Whitney also showed that there always exists an imbedding

such that N < 2n. However, the proof of this theorem requires some rather complicated constructions and

hence such imbeddings almost never provide much insight into how one could visualize manifolds.

is really a property of the differentiable structure of the manifold (i.e. its atlas), and not

a metric property. A manifold where a particular metric is defined is called a Riemannian

manifold; the definition of such a metric relies on defining inner products in a smooth way

on the tangent spaces of a manifold, using the same methods that we have been using. They

are important in applications of differential geometry to physics, but will not be needed in

this chapter.

Tangent vectors in Scheme

The implementation of tangent vectors is easy. The constructor make-tangent simply

packages up the structures for defining a local tangent vector into a convenient Scheme

object:

(define (make-tangent chart p v)
;; p is the (abstract) point to which v is tangent, and v is the *coordinate
;; representation* of the tangent vector in the coordinates provided by the
;; given chart.
(vector 'tangent chart p v))

Though it is not necessary for later work, it is instructive to consider the tangent space

as a vector space. For example, how does one define addition on the tangent space TpM?

One can define vector addition for tangent vectors as follows:

;;; Add two tangent vectors:

(define (tangent:+ v w)
(let ((p (tangent:get-anchor v))

(q (tangent:get-anchor w)))
(if (equal? p q)

(let ((chart (tangent:get-chart v)))
(make-tangent chart

p
(vector:+ (tangent:get-coords v)

(chart:push-forward w chart))))
(error "Cannot add vectors tangent to different points."))))

;;; Push a tangent vector along a chart:

(define (chart:push-forward tv chart)
(let ((other (tangent:get-chart tv))

(v (tangent:get-coords tv)))
(if (eq? chart other)

v
(push-forward-in-coords
(chart:make-transition-map other chart)
(chart:point->coords (tangent:get-anchor tv) other)
v))))

(define (push-forward-in-coords f x v)
(((diff f) x) v))

The expression (chart:push-forward v chart) computes the image of the tangent

vector w under the transition map 0 2 o 011, and (((diff f) x) v) applies the Jacobian

matrix of f at x to the vector v. The procedure tangent:get-anchor extracts the point p,

which we call the anchor of the tangent vector, from the local tangent vector (C, p, v). Other

operations on tangent vectors can be defined in a similar fashion, and scalar multiplication

is even simpler:

(define (tangent* a v)
(make-tangent (tangent:get-chart v)

(tangent:get-anchor v)
(vector:* a (tangent:get-coords v))))

2.1.5 Smooth maps and differentials

Having defined differentiable manifolds, the next natural step is to see how of the usual

notions of the calculus carry over. For the sake of simplicity, only the concepts of differential

calculus are discussed in this section; a discussion of integration on manifolds would take

us too far afield and is thus postponed until the next chapter, where integration becomes a

necessary tool.

Recall that in the definition of tangent vectors, charts were used to make the manifold

look locally like Euclidean space, where tangent vectors are well-defined. We can define

differentiable functions analogously. Let M and N be two differentiable manifolds, and let

f be a function from M to N. Let p be any point of M and q = f(p) E N. Then f is

smooth or differentiable if for every chart (U, V, 0) containing p and every chart (U', V', f')

containing q, the function 0' o f o 0-1 mapping V to V' is smooth; that is, if 0' o f o -1,

as a mapping from one subset of an Euclidean space into another, has all orders of partial

derivatives. By extension, f is a real-valued smooth function on M if it is smooth as a

map from M into the manifold R, where R is given the canonical atlas {(R, R, idR)}, and

smoothness is defined as above. It is easy to verify that when M is R n, this definition of

smoothness is equivalent to the usual one.

Let us now consider the idea of derivatives. As we saw in the discussion of tangent

vectors in 2.1.4, derivatives of transition maps provide a natural way to transform tangent

vectors from one coordinate system to another. Generalizing this observation, we can say

that derivatives of smooth maps between manifolds should transport tangent vectors from

one tangent space to another. This is, in fact, not that different from the use of gradients

in vector calculus: The directional derivative of a real-valued function is the dot product

of its gradient and a unit vector in some given direction. Furthermore, if v is the value of

the gradient of a function at some point, and w is a vector, then mapping w by the linear

transformation A to the vector Aw while keeping v -w an invariant quantity requires that

v be mapped to vA - 1. Thus, coordinate representations of gradients actually change by a

transformation opposite that of vectors. This shows that derivatives evaluated at a given

point are not vectors, but are linear functionals. This is exactly the kind of duality captured

by the use of row and column vectors in elementary calculus.

More formally, let M and N be differentiable manifolds, and let f be a smooth function

from M to N. Let p be any point in M, and let q = f(p). Consider the map that takes a

local tangent vector (C,p, v), C = (U, V,), to (C',q, w), C' = (U', V', t), where

w = D(' o f o 4 - 1)((p)) -v. (2.1)

One can easily check that if two local tangent vectors represent the same tangent vector

in TpM, then their images under this map also represent the same tangent vector in TqN.

Thus, the mapping can be used to define a map dfp from the tangent space TpM to TqN.

Furthermore, one could see from the definition that the map is linear on local tangent

vectors in the same chart, and hence dfp is a linear transformation between tangent spaces

as well. The function df that assigns to each point p the linear transformation dfp is the

differential of f.

Note that, in this notation, the chain rule can be stated very simply:

d(g o f)p = dgq o dfp, (2.2)

where q = f(p). This simply restates the usual chain rule while making the role of the

differential as a mapping between tangent spaces explicit.

Computing differentials of smooth maps

The implementation of smooth maps is complicated by the implementation of differentia-

tion in Scheme.10 As a result, the constructor make-smooth-map takes four arguments: A

10The problem is that the differentiation of functions in our Scheme system depends not only on the values
of the function over its domain, but also on the procedures that compute the function. In particular, the
procedure to be differentiated must be a compsosition of elementary functions, such as sin, cos, and exp.
Difficulties arise, then, in situations where a smooth map is "differentiated twice."

More precisely, let M and N be differentiable manifolds, and let f be a smooth map from M to N. We
can define the function Tf from TM to TN by:

Tf(p, v) = (p, df, (v)), (2.3)
where we have used the short-hand (p, v) to denote a tangent vector v in TpM and its anchor p.

Since tangent vectors are computationally represented by local tangent vectors, the procedure that com-
putes Tf(p, v) needs to first find a chart of N containing f(p). When computing T f, the function must
choose a chart in the range of f before it could differentiate the transition function 0' o f o 0-1 (where 4 is
a coordinate map on M and 0' a coordinate map on N). Thus, the procedure computing Tf is no longer a
composition of primitive procedures because of this need to choose a chart in N, and the system encounters
errors when attempting to compute T(Tf) directly. One must therefore take care in forming transition
functions using smooth maps.

manifold, domain; another manifold, range; a procedure that actually computes the func-

tion, point-function; and a procedure that constructs transition maps, make-transition.

However, for most purposes, smooth maps can be constructed using make-simple-map,

which only needs the first three arguments and requires that point-function is a com-

position of primitive Scheme functions. Another procedure, make-real-map, is also pro-

vided for convenience; it packages a real-valued function on a manifold into a smooth-map

structure. Smooth maps cannot be called directly as functions, but may be applied using

apply-smooth-map.

Here are some examples that will become useful when we discuss Lagrangian mechanics:

;;; Euclidean 3-space...

(define R^3 (make-euclidean-space 3))

;;; And its tangent bundle.

(define TR^3 (make-tangent-bundle R'3))

;;; The Lagrangian for a particle traveling in a uniform graviational field.
;;; It's just the difference between the kinetic energy, 1/2*v('v2, and the
;;; potential energy, z, where v is the velocity and p = (x,y,z) is the
;;; position (in 3-space) of the point mass (assume m = 1 = 1).

(define falling-lagrangian
(make-real-map
TR^3 (lambda (p)

(- (* 1/2 (vector:magnitude^2 (tangent:get-coords p)))
(vector-third (tangent:get-anchor p))))))

;;; This restricts the Lagrangian above to the unit sphere, effectively forming
;;; a Lagrangian for the spherical pendulum.

(define S^2 (make-sphere 2))

Define the identity map from the 2-sphere into 3-space, then differentiate
;;; it to extend the function to the tangent bundle.

(define spherical-inclusion
(smooth-map:diff (make-simple-map S^2 R^3 identity)))

;;; This composition restricts the domain of the Lagrangian to the 2-sphere.

(define spherical-lagrangian
(smooth-map:compose falling-lagrangian spherical-inclusion))

Here's an example of how the function can be used:

The tangent bundle of the sphere is the state space of the spherical
pendulum:

(define TS'2 (make-tangent-bundle S^2))

;;; Define the south pole of the sphere.

(define p (vector 0 0 -1))
;Value: p

;;; Find a chart.

(define chart (manifold:find-chart S^2 p))
;Value: chart

;;; Make a tangent vector.

(define v (make-tangent chart p (vector 0 1)))
;Value: v

;;; Compute the Lagrangian. Note that, because Euclidean spaces are all
;;; constructed using a single procedure, elements of R^1 are actually vectors
;;; containing a single element, *not* real numbers (as is customary).

(apply-smooth-map spherical-lagrangian v)
;Value 61: *(1.5)

;;; Find a chart for the tangent vector itself in the tangent bundle.

(define another-chart (manifold:find-chart TS^2 v))
;Value: another-chart

;;; Make a tangent vector (this object lives in T(TS'2)).

(define v (make-tangent another-chart v (vector 0 0 1 0)))
;Value: v

;;; Apply the differential of the Lagrangian:

(define u (apply-smooth-map (smooth-map:diff spherical-lagrangian) w))
;Value: u

;;; u should be an object in TR. Its anchor is the value of the Lagrangian at
;;; v.

(tangent:get-anchor u)
;Value 67: #(1.5)

(tangent:get-coords u)
;Value 68: #(0.)

2.1.6 Tangent bundles

A useful thing to notice, at this point, is that the tangent bundle is itself a differentiable

manifold. More precisely, if M is an n-manifold, then TM is an 2n-dimensional manifold.

To see this, suppose C = (U, V, q) is a chart on M. Then we can define the chart TC =

(TU, V x R n , b), where TU (by an abuse of notation) denotes the union of the tangent

spaces TpM for which p E U, and is hence an open subset of TM, and 0 is the map defined

by:

0 (C,p, v) = (O(p), dp (v)), (2.4)

where (C, p, v) is a local tangent vector in C. The expression dbp (v) makes sense because

V is an open subset of Rn, and we can thus treat q as a smooth map between manifolds

and compute its differential. Furthermore, the tangent space of V is trivially equal to Rn

at each point, so the dimension of TM is twice the dimension of M. The chart TC is called

a tangent chart, and the tangent bundle TM is given the atlas consisting of the set of all

tangent charts.

Implementation in Scheme

The construction of tangent bundles builds on tangent vectors, and the most important

part is the construction of tangent charts:

;;; Construct a tangent chart:

(define (make-new-tangent-chart chart)

;; First, extract some useful information from CHART:

(let* ((dim (chart:dimension chart))
(2*dim (* 2 dim))

(in-M-domain? (chart:get-membership-test chart))
(in-M-range? (chart:get-range-test chart))

(M-map (chart:get-coord-map chart))
(M-inverse (chart:get-inverse-map chart))

(dim-vector? (make-euclidean-test dim))
(2*dim-vector? (make-euclidean-test 2*dim)))

(letrec
((in-domain?
(lambda (v)

(and (in-M-domain? (tangent:get-anchor v))
(dim-vector? (tangent:get-coords v)))))

(in-range?
(lambda (v)

(and (2*dim-vector? v)
(in-M-range? (vector-head v dim)))))

(coord-map
(lambda (v)
(vector-append (M-map (tangent:get-anchor v))

(chart:push-forward v chart))))

(inverse-map
(lambda (x)

(make-tangent chart
(M-inverse (vector-head x dim))
(vector-end x dim))))

(transition
(lambda (Tother)

(let* ((other (chart:get-base-chart Tother))
(f (chart:make-transition-map chart other)))

(lambda (x)
(let ((anchor (vector-head x dim))

(tangent (vector-end x dim)))
(vector-append (f anchor)

(push-forward-in-coords
f anchor tangent))))))))

(let ((new-chart (make-chart 2*dim in-domain? in-range?
coord-map inverse-map transition)))

;; Some auxiliary information:
(chart:install-extra new-chart 'base-chart (delay chart))
(chart:install-extra chart 'tangent-chart (delay new-chart))
new-chart))))

This procedure can then be used to construct tangent bundles.

2.1.7 Making new manifolds

As noted in the previous section, the tangent bundle of a manifold is also manifold. This

gives us a way to construct new manifolds out of old ones. In this section, we will take a

look at a few other ways of constructing new manifolds out of existing ones.

Product manifolds. First, consider two manifolds M and N. Let (U, V, €) be a chart on

M, and let (U', V', 0') be a chart on N. The product chart associated with the two charts

is the chart (U x U',V x V', 0 x f'), where U x U' is the Cartesian product {(x, y) : x E

U, y E U'}, V x V' is similarly defined, and b x 0' is the map taking (x, y) E U x U' to

(O(x), 0'(y)) E V x V'. The product manifold M x N, then, is the manifold whose space

is the Cartesian product of the spaces M and N, and whose atlas is given by the set of

all product charts. If the dimension of M is m and that of N is n, then the dimension of

M x N is m + n. For example, the Euclidean space R n , n > 1, may be constructed as

a product manifold R n - 1 x R, and the torus can be thought of as the product manifold

S' x S1 (where S n denotes the n-dimensional sphere, and hence S1 is the circle).

Cotangent bundles. Recall now that every vector space has a dual space of linear func-

tionals. Thus, to every tangent space T,M, we can find its dual vector space T*M. It turns

out that the union T*M of all dual spaces T*M is also a differentiable manifold, by using a

construction similar to that of the tangent bundle. The space T*M is called the cotangent

bundle of the manifold, and is just as important geometrically as the tangent bundle, if not

more so. In classical mechanics, the cotangent bundle of a configuration space is called its

phase space. Whereas the state space describes a system by its position and velocity, the

phase space describes a system by its position and generalized momentum.

The inverse function theorem. Finally, there is a method of constructing manifolds

that is very useful theoretically, but practically useless for computation: The inverse func-

tion theorem. Briefly, it states that if f is a smooth map from M into N, the dimension of N

is less than the dimension of M, and for some point q E N, every p E M such that f(p) = q

has a surjective differential dfp, then the inverse image f-l(q) = {p E M : f(p) = q} is a

smooth manifold. Furthermore, if the dimension of M is m and that of N is n, then the

dimension of this new manifold is m - n. For theoretical purposes, this is a very useful way

of constructing manifolds, especially for describing constraints in mechanical systems. For

example, the configuration space for a free particle is R 3 , and if one were to enforce the

constraint that the particle must stay at a constant distance I from the origin, this theorem

immediately tells us that the resulting space (the sphere, in this case) is a differentiable

manifold. However, the proof of this theorem involves some non-constructive arguments,

and hence it cannot be used directly for computation. The efficient computation of general

inverses of functions is, at the present, not possible.

Since most of these constructions (except the cotangent bundle) will not be used directly

in later sections, their implementation will not be discussed here. The cotangent bundle

will appear again when we discuss the Hamiltonian approach to mechanics.

2.1.8 Boundaries

Our definition of manifolds does not allow for spaces with boundaries. For example, notice

that the unit disc

{(x,y) E R 2 : x 2 + 2 1} (2.5)

is not a manifold by our definition, because the points (x, y) for which x2 + y2 = 1 (that is,

those lying on the boundary of the disc) do not have neighborhoods that "look like" open

subsets of R 2. However, it locally have the structure of an Euclidean half-space (see Figure

2-6). Since boundaries are often useful in applying partial differential equations to model

physical systems, this section takes a closer look at this concept.

In order to describe manifolds with boundaries, a new type of chart is necessary. First,

some definitions: Given an Euclidean space R n , let Rn be the half-space

R_ = {x E Rn : • > 0}, (2.6)

P x

Figure 2-6: A boundary chart.

where xn denotes the nth component of the n-vector x. A boundary chart, depicted in Figure

2-6, is then a triple (U, V, 0), where U is a subset of M, V is the (non-empty) intersection

of some open subset V' of R n with the half-space Rn+, and 0 is a bijection between U and

V. The usual definition of compatibility between charts still applies to boundary charts,
although what it means to be differentiable at the boundary {xn = 0} requires more careful

analysis (omitted here).

Now suppose M is an arbitrary set, and extend the definition of atlases to allow boundary

charts. A set M is a manifold with boundary if it has an atlas A with mutually compatible

charts and boundary charts. If a point p has the property that for some boundary chart

(U, V, 0), xn = 0, where x = 0(p), then p is said to lie on the boundary of the manifold M.11

The boundary of a manifold M is usually denoted by OM, and consists of the set of points

that lie on the boundary of some boundary chart. It is easy to verify that the boundary of

a manifold is itself a manifold without boundary.12

The computational implementation of boundaries is not used in the rest of this chapter,
so its discussion is postponed until it is needed in the next chapter on partial differential

equations and boundary value problems.

2.2 Vector fields and differential equations

2.2.1 Smooth vector fields

The tangent bundle construction actually facilitates the definition of smooth vector fields:

Let ir denote the projection map from TM into M, defined by:

"It is easy to verify that if p lies on the boundary according to one chart, then it must lie on the boundary
according to all the charts.

12Manifolds with boundaries introduce some problems into the theory. For example, the class of differen-
tiable manifolds with boundary is not closed under the product manifold construction: Consider the unit
interval I = [0,1]. It is a differentiable manifold with boundary, and yet the product manifold I x I is not a
differentiable manifold with boundary-Transition maps will fail to be smooth at the corners of the square.

r(p, v) = p. (2.7)

That is, the projection map 7r extracts the "anchor" of the tangent vector, much like the

procedure tangent: get-anchor. A smooth vector field on M is then a smooth map v from

M into TM, such that for every point p E M, the equation 7r(v(p)) = p holds.

It is easy to verify that, over each chart, a smooth vector field as defined here corresponds

to what one usually means by a smooth vector field. Thus, the usual local existence and

uniquness theorems apply. This abstraction lets one define systems of first-order ordinary

differential equations, and higher-order equations are typically handled by using the tangent

bundle construction. A second-order equation, for example, can be thought of as a vector

field on the tangent bundle, and so on. This is why mathematical descriptions of mechanics

problems involve vector fields (first-order equations) on tangent or cotangent bundles of

manifolds.

2.2.2 Flows generated by smooth vector fields

How can we integrate ODEs on manifolds? Since within each chart (U, V, 4), the manifold

"looks like" Euclidean space, the obvious thing to try is to use the coordinate map ¢ to

"push" vector field onto the Euclidean subspace V. More precisely, suppose we are given

a tangent vector that is represented by the local tangent vector (C',p, v'), and wish to

map this local tangent vector over to the chart in which we are integrating the equations,

C = (U, V, q). Then we can simply apply the Jacobian of the transition map, to obtain

(C,p, v), where v is defined by:

v = D(¢ o 0'-1)(0'(p)) -v'. (2.8)

This consistently transforms the local tangent vector to the other chart. Thus, a smooth

vector field on M can always be turned into a local vector field on the open subset V of

Euclidean n-space, for which there exist numerous methods of integration.

The computational implementation of ODE integrators on manifolds, however, requires

that we consider a few more issues. For example, for the sake of flexibility and efficiency,

it is easier to implement vector fields directly as procedures which return local vector fields

when given a chart, rather than a procedure that actually returns a local tangent vector

representation of some tangent vector every time whenever it is given a point on the man-

ifold. This is because, in some situations, it may be easier for procedures that compute

vector fields to use internal representations that are not in the form of local tangent vec-

tors. If the procedure must convert its internal representation to a local tangent vector,

"hart 2

Figure 2-7: When should the ODE integrator switch charts?

as the integrator requires, it might as well directly convert it to the current chart. This

structure gives procedures this flexibility, as will be demonstrated in later examples.

A more serious issue is that of switching between charts (see Figure 2-7): As the integra-

tor moves along in one chart, taking discrete steps forward in time, it will eventually step

off the chart. One solution is to always watch where the next step "lands" before actually

committing to it, and to switch charts if the next step is outside the current chart. This

approach has the problem that when switching charts, one needs to keep track of which

charts have already been visited so that the integrator does not enter an infinite loop, idly

switching from one chart to another without making progress. However, this introduces

quite a bit of complexity into the integrator, and did not seem to be the best design for a

first attempt.

There is, in fact, a more elegant solution to the problem of switching charts: Simply

evolve the trajectory in all possible charts! This solution requires that the atlas be locally

finite--For every point p, there must be only finitely many charts in A that contain p. This

is not an overly restrictive requirement, and in general it is easy for the user to control the

amount of overlap between charts when constructing them, so that there is not too much

overhead in the multiple evaluation. This is the strategy finally chosen, and the main idea

is expressed in the code below: 13

;;; This is a simple description of the integration algorithm for ODEs on
;;; manifolds:

(define (v.field->flow manifold make-local-field next-step error-est)

;; Integrate the ODE starting at pO, with time index running from tO to tl:

13This is not the final version of code used, but expresses the main ideas.

(lambda (pO tO ti)
(let loop ((p pO) (t tO))

(if (<= t ti)

;; Compute the possible next steps, then choose the one that
;; minimizes the error estimator, ERROR-EST.

(let* ((charts (manifold:get-local-atlas manifold p))
(pl (minimize-function-over-list

(compose error-est integrator:get-new-x)
(map (lambda (chart)

(next-step (chart:point->coords p chart)
(make-local-field chart)))

charts)
charts)))

;; If the local integrator can step forward in at least one chart,
;; then we can continue:

(if pl
(loop (integrator:get-new-x pl) (+ t (integrator:get-dt pl)))
(error "Ran out of charts!")))))))

Notice a few things about this code: First, it takes four arguments: Manifold is just the

domain of the ODE; make-local-field is the local vector field constructor, as described

before; next-step is a local ODE integrator, a procedure that knows nothing about the

manifold but can numerically solve a given ODE in Euclidean coordinates to produce a new

coordinate vector; and error-est, a function for estimating the local numerical error.

Notice, first, that the integrator has no built-in notions of step size. It simply relies

on the local integrator to supply both a new step and a step size. This facilitates the

use of variable-step-size integrators, which can be more efficient and numerically robust.

Second, it requires an error estimator that helps it choose from among the guesses supplied

by the different charts. This is an advantage of this method: Because of truncation and

round-off errors, numerical computations are not actually coordinate-independent. Thus,

this integrator allows local error analysis, which improves accuracy greatly, especially in the

presence of coordinate singularities (discussed in §2.3.3).

2.2.3 Manifolds and classical mechanics

There are several reasons why the manifold abstraction is especially suited to dealing with

ordinary differential equations. First, notice that a classical n-particle system is described by

the configuration space R3 n , since each particle has three coordinates. Nontrivial manifolds

arise in classical mechanics from constraints, such as the constraint that a point mass lies

at a constant distance I from the origin (which yields the spherical pendulum). Now,

as noted in §2.1.1, in the traditional approach of modeling the manifold as a subset of

a larger Euclidean space and integrating the ODEs in the larger space, trajectories can

sometimes go off the manifold because of the accumulation of round-off and truncation

errors. Thus, physical constraints are not enforced faithfully in this classical approach,
whereas the manifold abstraction helps minimize this kind of error. Second, in generating

local vector fields, it is useful to have explicit formulas. It is rather tedious, in general, to

derive differential equations that describe complex physical systems in different coordinate

systems. However, in classical mechanics, one could always use variational methods to

derive the equations of motion in different coordinate systems with the aid of computer

algebra, which is often easier than transforming second-order equations between coordinate

systems. 14

Furthermore, in classical mechanical systems, the error-est function above can be

implemented rather easily: Instead of checking the local numerical properties of the chart,
one can exploit the existence of conserved quantities, such as energy and momentum. This

has the advantage that these quantities are often easy to compute, and systems in classical

mechanics usually have a sufficient number of such conserved quantities that one could

simply check their deviations from initial values as time marches forward to determine how

well the integrator is doing.15

14Variational (or Lagrangian) mechanics differs from Newtonian mechanics in the following way: Instead
of describing how systems change from moment to moment, as did Newton, one looks at the space of all
possible paths through the configuration space that begin at some initial point xl at some time tl and ends
up in some place x2 at some time t2 . To every such possible path y, one assigns to it a number (called the
action) S(y). Then the path actually taken by a particle is the one that is a stationary point (in a sense that
can be made mathematically precise) of the action S. This is known as the principle of least action because
for many cases, S is actually minimized by the real path y. S(y) is generally computed as the integral of
some function L, called the Lagrangian, along paths; Hamilton's principle of least action then states that
the "correct" Lagrangian for many situations is the difference between kinetic and potential energies.

Since the principle of least action is formulated in terms of integrals of real-valued functions over time
intervals, it is coordinate-independent. Furthermore, one can derive the equations of motion in terms of the
Lagrangian:

D(&OL o y) = aL o y, (2.9)

where Oi denotes differentiation with respect to the velocity part of the Lagrangian, 0, denotes differentiation
with respect to the position part of the Lagrangian, and D is the operator that differentiates real-valued
functions of one real variable (in this case time). Equation (2.9) is known as the Euler-Lagrange equation,
and gives a system of second-order equations that determine the stationary path. It can be deduced by
using the same technique as in the derivation of Equation (4.19).

This provides an easy way to change coordinate systems: Simply substitute the new coordinates into
the Lagrangian, simplify the resulting expression, and derive the Euler-Lagrange equations for the new
coordinate system. For more information on this topic, see Arnol'd [4].

15It is also possible to enforce the conservation laws as constraints, so that one integrates the equations of
motion on submanifolds of the state space. While this would ensure that the conservation laws are satisfied
exactly (up to round-off error), it also makes checking the accuracy of solutions a little harder-Because the
conservation laws were "used up" as constraints, one would now need to perform numerical error analysis
to estimate the accuracy of the numerical integration.

Lagrangian mechanics

Although it is extremely inefficient, one can in fact implement Lagrangian mechanics directly

using our Scheme system:

The Lagrangian should be a smooth map from the tangent bundle of some

;;; manifold into the real line.

;; This is very slow, as every evaluation of the field involves a matrix

;;; inversion. Which is why Hamiltonians are *better*, even for comuptational

;;; purposes!

(define (lagrangian->v.field L)

(let ((TM (smooth-map:get-domain L))

(R (smooth-map:get-range L)))

(lambda (p)

(let ((U

(if (tangent? p)

(make-tangent-chart (tangent:get-chart p))

(manifold:find-best-chart TM p))))

(let ((f (smooth-map:make-transition

L U (car (manifold:get-finite-atlas R))))

(x (chart:point->coords p U)))

(let ((v (vector-tail x (/ (vector-length x) 2))))

(let ((E-L (euler-lagrange-in-coords f x)))

(let ((A (car E-L))

(B (cadr E-L))

(c (caddr E-L)))

(let ((accel (matrix:solve-linear-system

A

(vector:+ (apply-linear-transformation B v) c))))
(make-tangent U p (vector-append v accel)))))))))))

;; Derive the Euler-Lagrange equations for f at x (in coordinates) in the form

;; A*xdotdot = B*xdot + c.

(define (euler-lagrange-in-coords f x)

(let* ((n (/ (vector-length x) 2))

(A (make-matrix n n))

(B (make-matrix n n))

(c (make-vector n 0)))

(do ((i n (+ i 1))

(p 0 (+ p 1)))
((>= p n))

;; First, compute the hessian of f with respect to the velocity part of

;; the independent variable:

(matrix-set! A p p (vector-first (((pdiff i) ((pdiff i) f)) x)))

(do ((j (+ i 1) (+ j 1))

(q (+ p 1) (+ q 1)))
((>= q n))

(let ((val (vector-first (((pdiff j) ((pdiff i) f)) x))))

(matrix-set! A p q val)

(matrix-set! A q p val)))

;; Next, compute the rest of the terms involving the partials of the
;; Lagrangian with respect to the positions (note the minus sign):

(do ((j 0 (+ j 1)))
((>= j n))

(let ((val (- (vector-first (((pdiff j) ((pdiff i) f)) x)))))
(matrix-set! B p j val)))

;; And then there's the term due to the derivative of the Lagrangian with
;; respect to the position variables:

(vector-set! c p (vector-first (((pdiff p) f) x))))

(list A B c)))

;;; In many mechanics problems, it's natural to check conservation laws:

(define (check-vector-conservation-law quantity ref-point)
(let ((ref (quantity ref-point)))

(lambda (chart tangent)
(vector:distance (quantity (tangent:get-anchor tangent)) ref))))

The cost of inverting the matrix (when matrix: solve-linear-system is called) makes

this a prohibitively slow way to compute vector fields, but it does work.

Hamiltonian mechanics

A slightly more efficient form of automatically generating vector fields is provided by the

Hamiltonian point of view. 16 It can be implemented much more directly:

;;; The Hamiltonian should be a smooth map from the cotangent bundle of some
;;; manifold into the real line.

(define (hamiltonian->v.field H)
(let ((T*M (smooth-map:get-domain H))

(R (smooth-map:get-range H)))
(lambda (p)

(let ((U (manifold:find-best-chart T*M p)))
(make-tangent U p

(hamilton-in-coords
(smooth-map:make-transition

1 6 The Hamiltonian formulation describes mechanics using position and momenta, instead of position and
velocity. The space of states here is the cotangent bundle of the configuration space, not its tangent bundle.
And, finally, the dynamics is described by the Hamiltonian, which is a function that in many cases agrees with
the energy function. As with Lagrangian mechanics, Hamiltonian mechanics also lets us change coordinates
easily; the analogous equations of motion for a given Hamiltonian H are:

p = OqH,q = -qH, (2.10)

where q denotes position, p denotes momentum, and 0, and Oq denote the corresponding differential oper-
ators. These are Hamilton's equations. Notice that they are antisymmetric, and do not require a matrix
inversion to isolate the highest-order derivatives.

H U (car (manifold:get-finite-atlas R)))
(chart:point->coords p U)))))))

;;; Derive Hamilton's equations for f at x (in coordinates):

(define (hamilton-in-coords f x)
(let* ((2n (vector-length x))

(v (make-vector 2n))
(n (/ 2n 2)))

(do ((i n (+ i 1))
(j 0 (+ j 1)))

((>= j n) v)

(vector-set! v i (- (vector-first (((pdiff j) f) x))))
(vector-set! v j (vector-first (((pdiff i) f) x))))))

However, this is still rather inefficient due to the evaluation of the partial derivatives.

In the numerical experiments that follow, the appropriate vector fields are pre-computed

for each chart in the relevant manifold.

2.3 Numerical experiments

Finally, this section presents the results of three numerical experiments.

2.3.1 The circle field

The first example is a simple integration around a circle. The vector field simply consists of

unit vectors going counter-clockwise around the circle, and the trajectories of this system

of equations are simply unit-velocity curves around the circle:

y(0) = (cos(O - 80), sin(- o80)), (2.11)

where the phase shift 80 comes from the initial condition.

This can be implemented easily as follows:

;;; First, construct the circle:

(define circle (make-sphere 1))

;;; Here's a trivial vector field on the circle:

(define (circle-field p)
(let ((x (vector-ref p 0))

(y (vector-ref p 1)))

;; IMBEDDING->TANGENT takes an imbedded tangent vector to the tangent
;; bundle of the given (imbedded) manifold.

(imbedding->tangent circle p (vector (- y) x))))

;;; Integrate the ODE:

(define circle-path
(v.field->flow circle

(v.field->local-field-maker circle-field)
(make-rk4-integrator (* 2 pi le-3))
;; LOCAL-DISTORTION checks the numerical error in the current
;; chart.
local-distortion))

;; The real answer (with no phase shift):

(define (real-circ t)
(vector (cos t) (sin t)))

;;; Here is a test run: After 2*pi seconds, the path should end up where it
;;; started. Let's compare the results of using the manifold and using the
;;; tranditional approach:

(define result (circle-path (vector 1 0) (* 2 pi)))
;Value: result

;; RESULT is a list of pairs of the form (time-index position), sorted in
;; *descending* order by time index. Thus, (CAAR RESULT) returns the final

;;; time index, and (CADAR RESULT) returns the final position.

;;; The difference in time index:

(abs (- (caar result) (* 2 pi)))
;Value: 1.127986593019159e-13

;;; The difference in position:

(vector:distance (cadar result) (vector 1 0))
;Value: 4.447015332496363e-14

;;; Here is the more tranditional approach: Simply embed the circle in the
;;; plane, and integrate in two real variables (and hope the trajectory

actually stays on the circle):

(define (traditional-circle-field p)
(let ((x (vector-ref p 0))

(y (vector-ref p I)))
(vector (- y) x))

;Value: traditional-circle-field

(define traditional-result
(let ((next-step (make-rk4-integrator (* 2pi le-3))))

(let loop ((t 0) (x (vector 1 0)) (result '()))
(if (<= t 2pi)

(let* ((new (next-step x traditional-circle-field (lambda () #f)))
(dt (integrator:get-dt new))

(new-x (integrator:get-nev-x new)))

(loop (+ t dt) new-x (cons (list t x) result)))

result))))

;Value: traditional-result

;;; The error in time index is the same:

(abs (- (caar traditional-result) 2pi))

;Value: 1.127986593019159e-13

;;; The error in position is actually larger: This is because, as stated

;;; before, the traditional method allows the trajectory to veer off the

;;; circle, whereas the manifold approach enforces the constraint strictly.

(vector:distance (cadar traditional-result) (vector 1 0))
;Value: 8.16059276567945e-11

Notice that the manifold approach actually produced a more accurate "walk" around

the circle!

2.3.2 The spherical pendulum

The next example is the one we started out with: The spherical pendulum. As opposed

to our previous example, this one actually comes from a physical problem. Furthermore,

this particular problem can be understood analytically, so that the motion generated by the

integrator can be checked closely for consistency with the actual physical situation.

For this integration, the integration is done on the phase space (the cotangent bundle

of the sphere). The vector field could very well have been generated using the following

Hamiltonian:

;;; The phase space:

(define T*R^3 (make-cotangent-bundle R'3))

;;; The Hamiltonian for a point mass in a uniform gravitational field:

(define falling-hamiltonian
(make-real-map
T*R^3 (lambda (p)

(+ (* 1/2 (vector:magnitude^2 (cotangent:get-coords p)))
(vector-third (cotangent:get-anchor p))))))

;;; Define the Hamiltonian:

(define T*S^2 (make-cotangent-bundle S'2))

(define spherical-inclusion*
(let* ((chart (car (manifold:get-finite-atlas R-3)))

(f (lambda (v)
(apply make-cotangent

(cons chart (cotangent->imbedding S'2 v))))))
(make-simple-map T*S^2 T*R^3 f)))

(define spherical-hamiltonian
(smooth-map:compose falling-hamiltonian spherical-inclusion*))

;;; We can even generate the vector field from the Hamiltonian directly:

(define spherical-field
(hamiltonian->v.field spherical-hamiltonian))

(define spherical-init
(imbedding->cotangent S-2 (vector 1 0 0) (vector 0 1 .5)))

(define spherical-path
(v.field->flow T*S^2

(v.field->local-field-maker spherical-field)
(make-rk4-integrator le-3)
(check-vector-conservation-law
(smooth-map:get-point-function spherical-hamiltonian)
spherical-init)))

;;; Try to integrate a few time steps:

(define result
(show-time
(lambda ()

(spherical-path spherical-init .01))))
process time: 122020 (95550 RUN + 26470 GC); real time: 135198
;Value: result

(/ 135198 1000. 60) ;; 135198 msec. = 2.25 minutes.
;Value: 2.2533000000000003

(length result)
;Value: 10

(for-each
(compose write-line

(smooth-map:get-point-function spherical-hamiltonian)
cadr)

result)
#(.6250000000009046)
#(.6250000000008399)
#(.6250000000008247)
#(.6250000000008603)
#(.6249999999981802)
#(.6249999999053644)
#(.6249999999049425)
#(.6249999999039165)
#(.6249999999048136)
#(.625)
;No value

As seen above, this approach produces reasonable answers: For a short integration,

the Hamiltonian (which equals energy, in this case) is conserved, as expected. However,

this approach is very inefficient. Instead, one could derive Hamilton's equations for this

Hamiltonian over some atlas of the 2-sphere, and carry these local vector fields to other

charts.

(define make-spherical-pendulum
(let* ((Ci (make-cotangent-chart (make-spherical-chart 2 '(2 0 1) 0)))

(C2 (make-cotangent-chart (make-spherical-chart 2 '(1 0 2) pi)))
(T*S^2 (charts->manifold (list Ci C2))))

(lambda (g mass length)
(let ((ki (/ (* mass (square length))))

(k2 (* mass g length)))
(lambda (p)

(let* ((chart (manifold:find-best-chart T*S^2 p))
(x (chart:point->coords p chart))
(phi (vector-ref x 0))
(theta (vector-ref x 1))
(pphi (vector-ref x 2))
(ptheta (vector-ref x 3)))

(make-tangent chart
p
(if (eq? chart Cl)

(vector (* kh pphi)
(* (/ khi (square (sin phi))) ptheta)
(+ (* khi (square ptheta)

(/ (* (square (sin phi))
(tan phi))))

(* k2 (sin phi)))
0)

(vector (* khi pphi)
(* (/ khi (square (sin phi))) ptheta)
(+ (* khi (square ptheta)

(/ (* (square (sin phi))
(tan phi))))

(* k2 (cos phi) (sin theta)))
(* k2 (sin phi) (cos theta)))))))))))

This way of defining vector fields requires a bit more work, and tends to produce rather

unreadable programs. However, it is sufficiently fast to generate some real data. The local

integrator used is a simple 4th-order Runge-Kutta with a fixed step size of 1 x 10- 3, and

the constants are normalized so that 1 = g = m = 1. The initial condition, in these units,

is q = (1, 0, 0), p = (0, 1, 0.5).

Figure 2-8 shows the relative error in energy conservation, and Figure 2-9 shows the

relative error in angular momentum conservation.

Notice that in the code for the integration, check-vector-conservation-law was only

asked to minimize the error in energy conservation. Hence, in Figure 2-8, the relative

error in energy conservation has been kept rather constant. However, the error in angular

momentum makes a few large jumps, probably at the occasions when the integrator decides

to switch charts. This indicates that in order to obtain the most accuracy, perhaps one

3

2

-1

-2

-3

-13x1

0 0.5 1 1.5 2
time index x 104

Figure 2-8: Relative error in energy conservation for the spherical pendulum.

I I

14

12

10

8

6

4

2

0

x 1013

0 0.5 1 1.5 2
time index x 104

Figure 2-9: Relative error in angular momentum conservation for the spherical pendulum.

-4

0.8

0.6

0.4

E 0.2

E
N -0.2

-0.4

-0.6

-0.8

-1
-I-

-1 -0.5 0 0.5
z coordinate

Figure 2-10: A contour of the reduced Hamiltonian for the spherical pendulum.

should try to minimize the error in a number of conservation laws. This is what is done

with the example of rigid body motion.

Finally, Figure 2-10 shows more evidence that this integrator has found the correct

solution: Since angular momentum is conserved for the spherical pendulum, we know that

the angular motion (about the vertical axis) of the pendulum may be decoupled from its

vertical motion, and the system may be reduced to one with a lower degree of freedom. In

this figure, the z vs. Pz plot shows that the trajectory of the reduced system is a closed curve.

This is because energy is also conserved in the reduced system, and hence trajectories of

the reduced system must follow equipotential curves of the reduced Hamiltonian.

2.3.3 Rigid body motion and coordinate singularities

Our last example, and the most important, is rigid body motion. Its importance stems

from the fact that, although the vector fields describing its motion are perfectly smooth,

the coordinate systems traditionally used to describe it contain coordinate singularities, so

that usual integrations of rigid body motion can produce inaccuracies near those coordinate

singularities.

.4

Figure 2-11: Euler angles for a rigid body.

Furthermore, the configuration space for the rotational motion of rigid bodies is the

space of all orientations of a rigid body, or equivalently the space of all rotation matrices

in three dimensions. 17 The manifold structure of this space is rather abstract, and since it

is really a 3-manifold imbedded in the 9-dimensional space of all 3 x 3 matrices, we can no

longer rely on our geometric intuition to approach this problem. This is one of the most

important examples of an abstract manifold.

Traditionally, orientations of rigid bodies are described by Euler angles, depicted in Fig-

ure 2-11. As hinted at earlier, this coordinate system has the problem that the coordinates

"blow up" (the Jacobian of the coordinate map becomes singular) when the rigid body is

standing vertically, as a bit of analysis will show. This is known as a coordinate singularity

because the singularity is part of the coordinate system, not a feature of the dynamics.

The traditional approach to this problem is to work entirely in Euler angles. This

works well so long as the trajectory does not come near the coordinate singularity. But

when it does, the singularity can have a serious effect on numerical accuracy, which is

often reflected in fluctuations in the conserved quantities. In this example, the results of

a numerical integration of rigid body motion is presented using the traditional and the

17This space is commonly denoted as SOs, the special orthogonal group. It is an example of a Lie group,
which are manifolds that also happen to be groups, and where the group operations are smooth as maps on
manifolds.

L.

0

a)

10-14

0 2000 4000 6000 8000 10000
time index

Figure 2-12: Relative error in energy conservation for rigid body motion in Euler angles.

manifold method. The principal moments of inertia of the rigid body are 1, v2, and 2,

with mass set to m = 1. The initial conditions, in Euler angles, are 0 = 0, 0 = 1, 0 = 0,

= -0.01, 6 = -0.1, and b = -0.01; these initial conditions have been chosen to take

the trajectory close to the coordinate singularity in Euler angles, so that the effects of the

singularity on conserved quantities can be observed. The integration was performed using

a time step of 0.01, for 100.0 time units (which equals 10,000 time steps). The integration

in Euler angles used a Bulirsch-Stoer integrator, which the manifold integrator also used as

its local integrator.

Figure 2-12 shows the relative error in energy conservation for a trajectory that comes

relatively near the singularity. Figure 2-13 shows the analogous plot for the manifold

method.

In Figure 2-12, the maximum absolute value is 8.43194301271212 x 10-14, and the

corresponding average is 2.6428202894715013 x 10-14. In contrast, in Figure 2-13, the

maximum absolute value of the error is 1.394387463191693 x 10- 14 , and the average absolute

value of the error is 4.31070783106112 x 10- ' 5 . Thus, the manifold approach actually

conserves energy better: In terms of relative error, it outperforms the traditional approach

2000 4000 6000 8000 10000
time index

Figure 2-13: Relative error in energy conservation for rigid body motion using the manifold
approach.

x 10- 14
I

0.5

2 0
cio

2 -0.5

-1

-15.
0

,4

0

cis

X 10-14

0 2000 4000 6000 8000 10000
time index

Figure 2-14: Relative error in conserving the x component of the angular momen-
tum for rigid body motion using Euler angles. The maximum absolute value of the
error is 4.163336342344337 x 10-14, while the average absolute value of the error is
1.9975479603751012 x 10-14.

by about six times.

Note that in Figure 2-12, the curve has a rather sharp peak at time index 4000. That is

a consequence of a close encounter between the trajectory and the coordinate singularity.

Such a peak can be seen in all of the following plots that were generated using the Euler

angles (Figures 2-14, 2-16, and 2-18), and are absent from the plots generated by using the

manifold integrator (Figures 2-13, 2-15, 2-17, and 2-19).

Similar comparisons can be made using the components of the angular momentum, as

shown in Figures 2-14 through 2-19.

In contrast to the spherical pendulum, in this example all the components of angular

momentum (as computed from the inertial frame), as well as the energy function, are used in

the integration. Thus, the manifold integrator attempts to minimize deviations from initial

values of conserved quantities, which improves their conservation at the cost of making it

harder to check how well the system does.

4

3

2

0

-1

-2

-_
3t

x10-15

.. 1. ..

0 2000 4000 6000 8000 10000
time index

Figure 2-15: Relative error in conserving the x component of the angular momentum
for rigid body motion using the manifold approach. The maximum absolute value of
the error is 2.7755575615628914 x 10-15, while the average absolute value of the error
is 3.8748171338198744 x 10-16

I

4

3

2
U)

1

0

-1

-2

x 10- 13

0 2000 4000 6000 8000 10000
time index

Figure 2-16: Relative error in conserving the y component of the angular momentum
for rigid body motion using Euler angles. The maximum absolute value of the er-
ror is 4.3375450673823944 x 10- 13, while the average absolute value of the error is
8.348734810181229 x 10-14.

I

L.

-1

x 10 -14

I I

0 2000 4000 6000 8000 10000
time index

Figure 2-17: Relative error in conserving the y component of the angular momentum
for rigid body motion using the manifold approach. The maximum absolute value of
the error is 1.7798707703661857 x 10 - 14 , while the average absolute value of the error
is 2.1083459210375576 x 10-15.

2 r-

.......... I

x 10 3

4

0 2000 4000 6000 8000
time index

Figure 2-18: Relative error in conserving the
tum for rigid body motion using Euler angles.
error is 4.352060412667006 x 10-13, while the
9.479992724704404 x 10-14.

z component of
The maximum

average absolute

the angular momen-
absolute value of the
value of the error is

-2

10000

..

...

..............

..

1

0.5

0)
.> 0
co~

-0.5

-1

10-14

0 2000 4000 6000 8000 10000
time index

Figure 2-19: Relative error in conserving the z component of the angular momentum
for rigid body motion using the manifold approach. The maximum absolute value of
the error is 1.1322645212381266 x 10-14, while the average absolute value of the error
is 1.5603516120091776 x 10-15.

,,

2.4 Directions for future work

Clearly, in order for this to be useful, several improvements are required. Among these, the

most important is probably efficiency: While the manifold integrator is, in many cases, more

accurate than traditional methods, the cost of integrating in several charts simultaneously

can make such integrators prohibitively slow. One solution is to integrate in one chart at a

time, and to have much more sophisticated methods for when and how to switch from one

chart to another. While not nearly as elegant as the current approach, this would probably

be much more efficient.

Another problem is the difficulty in constructing manifolds. As shown by the example of

covering the sphere using stereographic projection, constructing a manifold can take quite

a bit of work (especially without the aid of the inverse function theorem). Thus, there need

to be better tools, or at any rate larger libraries, for constructing and combining manifolds.

Chapter 3

Linear partial differential equations

This chapter describes the application of the manifold abstraction to the numerical solu-

tion of linear partial differential equations. For simplicity, the discussion is restricted to

scalar equations over two-dimensional manifolds. This is because some of the algorithms

described here depend on efficient mesh generators, which are most easily constructed for

two dimensions.' However, it should be noted that there exist much more powerful mesh

generators than the one used here, and hence the programs developed in this section should

generalize to higher dimensions without too much difficulty [6].

Appendix A briefly describes some background material on partial differential equations,

including a brief treatment of finite element methods and an even less complete description

of iterative solution methods for sparse linear systems of equations. Readers unfamiliar

with these topics may wish to take a look at Appendix A first, and to use Vichnevetsky [27]

as a more in-depth reference. Petersson [23] describes the solution of PDEs using multiple

coordinate systems in a more specialized and less abstract context, as do Chesshire and

Henshaw [7].

Note that this chapter focuses on elliptic boundary-value problems, although many of the

ideas extend to more general problems. Hyperbolic initial-value problems are considered

in the next chapter. The rest of this chapter begins with an exploration of theoretical

representations of partial differential operators on manifolds. Then §3.2 discusses different

approaches to the discretization of PDEs on manifolds. These approaches are developed

and analyzed in more detail in later sections.

'It is even easier to do in one dimension, but such cases are too simple.

3.1 Partial differential operators on manifolds

In Chapter 2, first-order ordinary differential equations were redefined as smooth vector

fields on differentiable manifolds. By using the tangent bundle construction, higher-order

ODEs also became representable in a coordinate-independent fashion. This approach pro-

vided a natural framework for representing ODEs using multiple coordinate systems, and

for developing these ideas into functional programs that improved the accuracy of numerical

integrations. The questions that naturally follow are: How can PDEs be represented in a

coordinate-independent fashion? And can similar improvements in accuracy be made?

We begin with a simple observation: Let M be a differentiable manifold, and let f be

a smooth real-valued function on M. Given a point p, dfp is a linear transformation from

TM into Tf(p)R, by definition. But the tangent space to R at f(p) is just another copy of

R, so for any tangent vector v E TpM, the value of the differential of f at p on v, dfp(v), is

just another real number. By definition, this corresponds to the directional derivative of f

in the direction v in local coordinates, scaled by the length of v.2 Since this gives us a way

to define the directional derivative of f in the direction v in a coordinate-independent way,

we can turn the argument around and say that the vector v operates on the function f.
More precisely, let v be a smooth vector field on M, and define Vp(f) to be dfp(vp),

where Vp is the value of the vector field at p. Furthermore, define the function v[f] by the
equation:

v[f](p) = vp(f) = dfp(vp). (3.1)

Since v and f are smooth, so is v[f]. Furthermore, v as an operator on functions is linear,

and satisfies the product rule:

v[f . g] = v[f] . g + f - v[g]. (3.2)

As an operator, then, v has the properties of a differential operator. In fact, one can easily

check that, in local coordinates, this turns the vector field v into a linear first-order partial

differential operator. Conversely, let (U, V, 0) be a chart. Then it is not difficult to verify

that every first-order differential operator of the form

n

Lf(x) = Zai(x)Dif(x), (3.3)
i=1

where f is a smooth function on the open subset V of Rn, uniquely generates a "local vector

21t makes sense to speak of the length of v because this is a directional derivative in a given chart. The
length of v is its magnitude according to the dot product with respect to the chart's coordinate maps.

field" on the corresponding subset U of the manifold via the mapping .-1. Hence, we can

define first-order partial differential operators on manifolds to be smooth vector fields. Since

vector fields are already coordinate-independent objects, this means first-order operators

are also coordinate-independent. Furthermore, higher-order operators may be produced by

linear combinations and compositions of first-order operators, so linear partial differential

operators can be defined in a nicely coordinate-independent way on manifolds. A linear

PDE on a manifold then takes the form

Lf = g, (3.4)

where f and g are smooth functions on the domain M, and L is a linear partial differential

operator, as described above. Furthermore, if M is a manifold with boundary and h is

a smooth function on the boundary OM of M, then a function f is said to satisfy the

boundary value problem with boundary data h if Lf = g and f = h on 4M.

Unfortunately, this definition of partial differential operators is too abstract to be useful

for practical implementations. In fact, it is very difficult to develop a general representation

of differential operators that is efficient for all numerical methods. Thus, each method in

this chapter uses a different representation of operators, and programs are structured to

provide flexibility with respect to the choice of representation. However, this theoretical

definition is still important for the logical framework it provides, and for demonstrating a

different way to view vector fields on manifolds. In practice, though, it is Equation (3.3)

and its higher-order generalizations that play a more important role in computation.

3.2 Approaches to discretization

General comments. Differential equations determine unknown functions. Thus, to facil-

itate numerical computation, it is often necessary to parametrize the set of possible solutions

using finitely many variables, and to reduce the PDE itself to a system of algebraic equa-

tions that determine the values of these variables. This process of reducing a PDE into a

system of algebraic equations is called discretization.

In general, one can describe discretization in terms of two separate but interdependent

steps: First, one must choose a representation for the approximate solution, so that a fi-

nite set of variables can be mapped to a function approximating the true solution. This

often involves series expansions, such as Fourier series, power series, or expansion in terms

of finite element basis functions. For these cases, the finite set of variables to which the

unknown function has been reduced are, respectively, the Fourier coefficients, the Taylor

coefficients, or values of the given function at specified sample points. The choice of a rep-

resentation, informally, corresponds to the geometric part of discretization: In choosing a

representation for approximate solutions, one often needs to first discretize (i.e. represent

using a finite number of parameters) the domain of the PDE. Of course, as finite element

methods show, there is more to choosing representations than simply discretizing (or trian-

gulating) the domain-One must also choose the order of the basis functions and various

other parameters.

In contrast, the derivation of discrete algebraic equations can be said to discretize the

PDE itself. This step often involves either replacing the differential operator with finite

difference operators, as in standard finite difference schemes, or by invoking some other

formulation of physical problems, such as variational principles or Galerkin's orthogonality

condition.3 To some extent, this component of the discretization process can be performed

independently of the domain discretization in that one can often use the same discretized

domain to discretize different PDEs that are defined over the same domain. However, the

method of discretizing the PDE, be it finite elements or finite differences, must work very

closely with the discretized domain. Thus, the two components are not truly independent,

although it is important to recognize the flexibility and modularity in the structure of PDE

solvers.

In this report, the focus will be on finite difference and finite element methods, so the

domain discretization will involve choosing a discrete set of sample points and, for finite

elements, generating the appropriate mesh.

Global methods versus local ones. The discussion above on discretization applies

unambiguously to the discretization of PDEs whose domains are regions in Euclidean spaces.

However, in the case of manifolds, we have a choice in the order in which the various steps

are carried out because of the existence of multiple coordinate systems: One choice is to

discretize the entire manifold first, and then discretize the PDE. For example, using finite

elements, we would first triangulate the entire manifold before invoking variational principles

to derive the discretized equations. In this report, this type of discretization is called global

discretization.

On the other hand, we can first discretize the PDE locally, so that for each chart there

exists a set of discretized equations. These sets of discretized equations must then somehow

be combined to form a global system of equations that determine the approximate solution

everywhere. This is called local discretization.

Since finite difference methods are inherently local, the distinction between global and

local discretization is very little when one uses finite difference techniques. However, finite

3In the case of spectral decomposition methods, the PDE discretization involves the Fourier transform.

element methods require triangulations, and the general problem of triangulating mani-

folds is a rather difficult one in computational geometry. There appears to be no well-

documented way of performing such triangulations except for low dimensions. 4 With im-

provements in computational-geometric algorithms, the global discretization approach may

become tractable someday, but it is too difficult to use in general with currently available

tools. In contrast, local discretization methods do not suffer from such handicaps because we

can always choose charts with simple images in Rn, which simplifies the local triangulation

process. 5

Consequently, this chapter concentrates on local methods: Each chart is independently

discretized in the local discretization phase, and the resulting local equations are then com-

bined to form a global set of equations in the combination phase.6 §3.3 considers local

discretization using finite difference techniques, where the primary problem is the formu-

lation of local equations and their solution. §3.4 then discusses the use of finite element

methods, which require special attention to the combination phase; some simple ideas are

proposed and tested first, followed by a somewhat more efficient and accurate algorithm.

Finally, §3.5 revisits the topic of mesh generation on manifolds and discusses some of the

difficulties involved.

There is much more work to be done in the application of the manifold abstraction to

the numerical solution of PDEs, and §3.6 suggests some of these possible directions.

3.3 Finite differences on manifolds

Recall that finite difference techniques generally involve the use of difference quotients to

replace derivatives, thus transforming partial differential equations into linear algebraic

equations which can then be solved using a variety of numerical techniques. Approximate

solutions are represented by their values at some set of chosen sample points, often referred

to as nodes in this document,' and algebraic equations are derived to relate the values at

these discrete sample points to each other.

4In particular, the triangulation of surfaces and solids in R3 has been extensively studied because of their
extensive engineering applications.

5 One might well imagine triangulating each chart first, and then somehow combining these local meshes to
form a global mesh. This is, in fact, the strategy employed in proving that every manifold has a triangulation.
However, there are technical difficulties with a direct implementation of this idea, as discussed in §3.5.

6 Please do not confuse the local discretization phase with local discretization methods: The former is part
of the latter. Since global discretization is not the focus of this report, this terminology should not be too
confusing.

7 This terminology comes from imagining the use of these algorithms on massively-parallel computers,
where each processor, or node, represents a sample point. For example, Abelson, et. al., describe a novel
new approach to computing that may be able to exploit the locality inherent in finite difference and finite
element approximations to perform computations in parallel [1].

Chart 1

A

Aa

a

Chart 2

o O
0 0

00o 0o0
0 0 0

Figure 3-1: Copying nodes in the overlap between two charts to enforce constraints on
unknown values, thus combining local equations into a global system. In this figure, the
triangular nodes belong to chart 1, while the circular nodes belong to chart 2.

There are several possibilities for applying finite difference techniques to manifolds.

What follows is the pseudocode for one of the simplest methods:

;;; This is the pseudocode for a finite differences algorithm on manifolds.
;;; Actually, this can easily be turned into a working program, but since most
;; of the following material has already been implemented in C for speed, the

;;; Scheme versions were never implemented.

(define (finite-difference-on-manifold M L g h)

;; M should be a manifold, L a linear differential operator, and G and H
;; should be smooth functions on M. The solution U is a function such that
;; (L U) = F over M, and where U = G on the boundary of M.

(let ((charts (manifold:get-finite-atlas M)))

;; Based on the local geometry of each chart, construct a collection of
;; sample points. Then for each node, compute its finite difference
;; coefficients with respect to its neighbors in each chart:

(for-each

(lambda (nodes)
(for-each
(lambda (node)

(node:set-fd-coefficients! (compute-fd-coefficients node nodes)))
nodes))

(process-node-lists (map make-nodes charts) charts))))

This program contains a number of auxiliary procedures: Make-nodes takes a chart and

constructs a list of nodes for that chart. Manifold: get-finite-atlas returns a finite atlas

(i.e. a finite list of charts) for the manifold, if such a thing exists. Process-node-lists is a

procedure that copies nodes between charts in overlapped regions (see Figure 3-1), so that

nodes that lie in the overlap of two charts will exist in both charts and agree on the value of

C

the approximate solution at that point. Finally, the procedure compute-f d-coef ficients

locallly discretizes the PDE, and can use any method it prefers to derive the finite difference

coefficients of node with respect to its neighbors in chart.

Note that by copying nodes between lists in process-node-lists, we have implic-

itly constrained the system of equations to be consistent with each other on overlapped

regions between charts. Thus, two sample points x1 E C1 and X2 E C2 are guaran-

teed to have the same value if xl and x2 really correspond to the same point p in M.

Process-node-lists thus performs all the necessary work for the combination phase. On

the other hand, compute-fd-coef f icients is the part of the program that controls how in-

formation flows between different parts of the discretized domain. For example, since many

physical systems arise from local interactions, this procedure can be written to consider

only those nodes in the list nodes that are physically close to the given node, node.

The combination phase of this local method, as described above, may seem trivial.

However, because nodes are copied between charts, it is in general impossible to guarantee

that nodes lie on regular grids. This causes two problems: First, local discretization becomes

more difficult, since many standard methods depend on regular grids (we will see such a

method later). Second, it often turns out that in the irregular case, the resulting finite

difference equations are not sufficiently structured to be solvable by iterative methods such

as relaxation.8 But the application of direct or semi-direct methods to large matrices can be

computationally intensive and numericaly undesirable, and hence the resulting set of linear

algebraic equations can become very difficult to solve. The price we paid for simplicity in

the combination phase is that the local problem becomes more difficult.

Chesshire and Henshaw avoid these difficulties by using a different approach [7]: Their

method uses locally regular grids for local discretization, and instead of copying nodes (which

destroys the regularity of local grids in the method outlined above), the combination phase is

carried out by using interpolation functions between nodes. While this works well for some

problems, however, it relies on much more complicated procedures for the combination

phase and restricts the types of charts one could use. Thus, their method is not explored

in this section, although variations on their idea are explored later in the context of finite

elements.

The rest of this section focuses on the local problem of obtaining and solving finite dif-

ference approximations for PDEs because the problem is already non-trivial at that level,

and adding the complication of solving PDEs on manifolds probably would not help.9 Both

8Readers unfamiliar with relaxation and other iterative methods for solving large sparse linear systems
of equations are referred to Chapter 6 of Vichnevetsky [27]. Appendix A also contains a brief introduction
to the subject.

9 Except that, perhaps, one could choose local coordinate systems to "regularize" the sample point ge-

... o....-

.. I

Figure 3-2: The discrete Dirichlet problem.

the simple method described above and that of Chesshire and Henshaw involve more dif-

ficulties, and thus in this section we only consider the application of finite differences to

irregularly-distributed sample points over subsets of Euclidean space. This is an interesting

problem in its own right.

3.3.1 Generating coefficients for irregular sample points

This section discusses the problem of local discretization using finite differences. As such,

all domains are open subsets of Euclidean spaces unless otherwise stated.

The discrete Dirichlet's problem

As mentioned in §3.3, one of the primary problems encountered in implementing the al-

gorithm above is the formulation of finite difference techniques using irregularly-distributed

sample points. Before tackling this more difficult case, though, let us revisit the canoni-

cal example of finite differences: Laplace's equation on a regular rectangular grid and the

discrete version of Dirichlet's problem (see Figure 3-2).

The basic idea is this: Let f be a real-valued differentiable function of one real variable.

By the definition of the derivative, we have:

f'(x) e.0f(x + h/2) - f(x - h/2) (3.5)
h

This is the central-difference approximation, and has nicer numerical properties than

the standard forward-difference approximation.

ometry to improve their numerical properties. But this turns out to be a rather difficult problem. For more
details, Clark, et. al., present and analyze one possible way of carrying out this procedure, and describe its
application to image processing [8].

Applying this approximation twice to f at x, we have an estimate of the second derivative

of f:

fi() f(x + h) + f(x - h) - 2f(x)
f"(h2

Now suppose we are interested in solving the boundary value problem for Laplace's

equation over some region Q in R n. Cover the space Rn by a lattice Lh = {(X 1,...,n,) :

xi = kih, ki E Z} with spacing h > 0, and choose h sufficiently small so that the domain Q

may be approximated by a subset Qh of Lh. Applying the formula above, we obtain:

V 2u(,y) u(x + h, y) + u(x-h, y) + u(x, y + h) + u(x, y - h) - 4u(x, y) (3.7)

Upon rearrangement and setting the Laplacian of u to 0, this yields the familiar formula:

u(,y) u(x + h, y) + u(x - h, y) + u(x, y + h) + u(x, y - h) (3.8)
4

This formula is sufficient to determine approximate solutions of Laplace's equation over

a regular lattice with reasonable accuracy for domains with sufficiently smooth boundaries

and boundary data.

Polynomial interpolation

However, we cannot generalize this method to other irregular sample points because we

made heavy use of the regularity of the grid in its derivation: The approximation formula

(3.6) was valid because the sample points are regularly spaced, and an approximation of the

Laplacian operator could be made because the lattice is generated by the orthogonal vectors

hi and hý, which lets us take the appropriate derivatives for computing the Laplacian. Thus,

this method would not work if the sample points did not lie on a regular grid.

A different approach to finite differences is thus necessary. One natural idea is poly-

nomial interpolationio: In any finite difference method, the primary goal is to express the

partial differential equation as a set of coupled finite difference equations. Since we are only

concerned with linear operators here, it is natural to take these finite difference equations

to be linear. In particular, let the ith sample point be pi, and let L be a linear differential

operator. Then for each sample point, we would like to find coefficients aij such that:

Lu(pi) = Zaiju(pj), (3.9)

10Special thanks to Thanos Siapas and Gerald Jay Sussman for telling me about this idea.

where the index j ranges over all other nodes. Furthermore, since many physical problems

involve only local interactions, and because of concerns for computational efficiency on

parallel machines, the indices aij are chosen so that aij is non-zero only if pi and pj are

physically close. Deciding whether two sample points are close or not is, of course, a

parameter that needs to be chosen. Usually, one can call two sample points close if pi -pjl <

R for some fixed radius R; in that case, pi and pj are called neighbors.

One way of computing the coefficients aij for some fixed i is as follows: Suppose that

we would like to choose the coefficients for some point pi with respect to its neighbors

Pnik, k = 1,..., ni. For concreteness, let the domain be a subset of the plane. Then we can

require that the approximation (3.9) is exact on some set of test functions, ¢1, 2., -. , mi.

Substituting the basis functions into Equation (3.9), this gives:

ni

Loj(pi) = E ainik j(pnik), j = 1, 2, ..., mi. (3.10)
k=1

Clearly, this is a set of mi linear equations in the ni variables ainik (recall that i is

fixed). If we have enough basis functions qj so that mi = ni, and if the basis functions

are chosen so that the Lqj can be easily computed, then the equations (3.10) provide an

efficient means of determining the unknown coefficents ainik. Indeed, when this is applied

to the rectangular grid, where each grid point is given its immediate neighbors in the b and

9 directions as neighbors, this process yields the approximation (3.8).

3.3.2 Solving linear algebraic equations

While this method gives reasonable approximations of the differential operator L, there is a

serious problem: The iterative methods usually used to solve the resulting linear algebraic

equations, such as successive overrelaxation, do not converge, while the use of direct or

semi-direct methods are often not possible for very large systems of equations.

One idea is to take advantage of the following well-known theorem: If A is a symmet-

ric positive-definite matrix, then successive overrelaxation converges for all overrelaxation

factors 0 < Ca < 2. Now, suppose we wish to solve the linear system of equations Ax = b

for some non-singular matrix A. Then ATAx = ATb is equivalent to the original system of

equations. Furthermore, if A is nonsingular, then ATA is positive-definite and the theorem

applies. Additionally, this computation can be carried out locally: Since the jth column

of A consists of the coefficients anjkj, k = 1, 2, ..., n, which are the coefficients of Pnjk with

respect to pj, two columns share a non-zero entry if and only if the corresponding sample

points are within two radii of each other (see Figure 3-3). Since the entries of ATA are

actually the dot products of the columns of A, the computation of ATA remains mostly

local, with the neighborhood radius of each node increasing from R to 2R.

Figure 3-3: The case of irregularly-distributed nodes: In performing the "transpose trick,"
two nodes have non-zero coefficients for each other if and only if they are within two hops.

Unfortunately, this clever idea is not as magical as it may seem at first: First, by mul-

tiplying a matrix with its own transpose, the condition number of the matrix is squared.'1

This tremendously worsens the numerical properties of the matrix. Furthermore, the the-

orem quoted earlier states that the relevant spectral radius, p, is less than 1. However, it

does not bound p away from 1. Thus, the actual spectral radius is often so near 1 that, in

the presence of round-off error, the method converges too slowly to be useful, and we are

forced to explore other methods.

3.3.3 Numerical examples

This sections presents the results of some numerical experiments using finite differences.

Out of a desire to compute using a large number of nodes rather quickly, the programs have

been written in C. Thus, the source code will not be included here because they are not

very illuminating.

The problem in which we are interested is the rectangular slot problem: Consider the

unit square Q = [0, 1] x [0, 1], depicted in Figure 3-4. Given the electric potential on the

boundary of 0 and the condition that there are no charges in the interior of Q, what is the

electric potential everywhere inside Q? From electrostatics, we know that the solution must

satisfy Laplace's equation. Furthermore, analytical solutions of this problem can be easily

derived using Fourier methods, so that numerical answers can be checked against the true

"1The condition number of a matrix measures, in some sense, how close the matrix is to the identity
matrix. The larger it is, the harder it is to obtain numerically accurate solutions. For a more thorough
discussion of condition numbers, as well as a discussion of this particular problem, see [24].

1.

1

00

Figure 3-4: Determining the electric potential in a rectangular slot, with boundary condi-
tions specified by Equation (3.11). The plot is generated by dividing the unit square into
smaller squares, over which the nodal values are averaged. This reduces the number of
points that need to be plotted.

solution. 12

For our purposes, it is useful to just settle on boundary conditions whose corresponding

solution is easy to compute. One such example is:

h(x, y) 1 + sin(rx), o (3.11)
1, otherwise.

The exact solution for these boundary values is:

sinh(iry) - sin(7rx)u(x,y) = 1 + sinh(r) (3.12)sinh(7r)
Notice that practically every function involved has the constant 1 added to it. This bounds

solution values away from zero so that meaningful relative errors may be computed; it should

not add significantly to the numerical error, since 1 is of the same order of magnitude as

the solution values.13

12For more information about this and other related problems, see Haus and Melcher [15].
13This is essentially the first term in the Fourier series expansion for the solution of the slot problem with

boundary values:

h(x, y) = 0 (3.13)10, otherwise.

··

1.

1

00

Figure 3-5: The electric potential in a rectangular slot, determined by finite difference
computations on a regular rectangular grid. About 100,000 iterations (with D = 1.9) were
run, so the solver may not have converged to the "true" approximate solution yet.

A note on graphics. It is vital to note that in this section, all plots of sample values

over the unit square are produced by dividing the unit square into rather coarse grids first,

and then averaging over the sample values. This simplifies the task of plotting, but at the

risk of making the data appear more smooth than it is. So please take care not to be misled

by the apparent simplicity of the plots.

Regular grid. First, let us use the approximation (3.8) to approximate the solution on

a regular rectangular grid. The actual grid used consists of 10,000 nodes, placed at regular

intervals in the unit square 9 on a 100 x 100 grid. After applying Equation (3.8) to each

node for about 106 iterations,14 the resulting values are checked against the actual solution.

Figure 3-4 shows the shape of the electric potential arising from the boundary conditions

specified in Equation (3.11). Figure 3-5 shows the values obtained from the regular grid

approximation. Note that they are qualitatively alike.

In fact, one can plot the error between the two; this is shown in Figure 3-6. Notice that

the error reaches its maximum near the non-zero boundary values.

While this boundary condition is much simpler than the one above, its corresponding solution requires the
computation of an infinite series that converges rather slowly; the relevant Fourier series is that of the
unit-step funtion, where Gibbs' effect shows up.

Note that this boundary condition is also discontinuous, which makes accurate numerical solutions some-
what harder to obtain (especially near the corners). This is one of the many reasons why one may wish to
have the ability to use multiple coordinate systems when solving PDEs, thus concentrating computational

x 10-5

1

00

Figure 3-6: The absolute difference between the functions depicted in Figure 3-4 and Figure
3-5. The maximum absolute error is 0.0000291001797184, the minimum absolute error is
0.0000000157547926, and the average absolute error is 0.0000115848344767. The maximum
relative error, on the other hand, is 0.0000216438565018, the minimum relative error is
0.0000000157534190, and the average relative error is 0.0000093994479478.

Randomly-distributed sample points and simple averaging. The next idea de-

pends on an alternative derivation of the approximation (3.8): Let u be a function over

some region 1. For every point p and any real r > 0, denote the closed ball of radius r

centered at p, {q : p - qj < r}, by Bn(p), and denote its boundary (the n - 1-sphere) by

Sn-'(p). Then, u is said to have the mean-value property if for every point p and radius r

such that Bn(p) is contained in Q, u(p) = fsf-l(p) u dS (where dS denotes the appropriate

measure for a surface integral). A well-known theorem then states that u satisfies Laplace's

equation if and only if it has the mean value property.

The equivalence of Laplace's equation and the mean-value property has many important

consequences; Ahlfors [3] contains more details. For our part, it can be used to derive an-

other approach to Laplace's equation: One uses randomly-distributed nodes, 15 but instead

of trying to perform fancy derivations of finite difference coefficients, each node simply av-

effort near discontinuities in the boundary data.
14Actually, the algorithm used is successive overrelaxation (SOR), with a relaxation factor of 1.9. This

helps accelerate the convergence rate; for more information, see Appenix A or Vichnevetsky [27].
'5 Actually, using uniformly distributed random numbers to place nodes uniformly in a rectangular region

tends to create clusters of nodes because the law of large numbers does not give us a very tight bound on
the variance of the distribution from the mean, so it is necessary to enforce a minimum distance between
nodes to ensure a "uniform" distribution.

xlO-s.. -"

1

1

00

Figure 3-7: The potential computed by simple averaging using randomly-distributed nodes.
As in previous figures, this plot is generated by dividing the unit square into smaller squares,
over which the nodal values are averaged. So please keep in mind the comments at the
beginning of this section: This plot may appear to be more smooth than the actual data
because of the averaging procedure.

erages the values of its neighbors within a given radius R and sets its own value to this

average. The validity of this approach follows from the mean-value property and a simple

volume integral over the closed ball of radius R centered at each point p.

Figure 3-7 shows the approximate solution constructed this way; the smooth surface

is generated by locally averaging nodal values. In this particular computation, there are

10,000 nodes in the rectangular slot, each having an average of 25 neighbors. Notice that

it is qualitatively similar to Figures 3-4 and 3-5. However, as Figure 3-8 shows, the error

distribution is much less smooth and is much larger.

Furthermore, we can examine the relationship between the average error and parameters

such as the radius R and the number of nodes. Figure 3-9 plots average absolute error

against the radius R for a domain having a fixed number of nodes. We see that as R

decreases, the error decreases as well. This can be understood in terms of a node's ability

to adapt to the approximate solution: Averaging over too large a neighborhood "stiffens" the

approximate solution and makes convergence to solutions with large gradients difficult. Also,

the semi-log plot shows that the error decreases approximately exponentially for sufficiently

large R, though the curve tapers off as R becomes smaller. However, the error cannot

be made arbitrarily small by decreasing R along, because nodes can become disconnected

0.03

0.02

0.01

0
1

1

00

Figure 3-8: The error distribution for the averaging method. The maximum absolute error
is 0.0303547633666503, the minimum absolute error is 0.0000001458319725, and the average
absolute error is 0.0044948995201661. The maximum relative error, on the other hand, is
0.0246888943589139, the minimum relative error is 0.0000001448811931, and the average
relative error is 0.0035004079565252.

10- 1

0.05 0.15
radius

0.2 0.25

Figure 3-9: The average absolute error versus the radius R. The domain contains 1,000
nodes while the radius ranged from 0.2 to 0.05. Successive overrelaxation is performed on
each configuration for 100,000 iterations, with i = 1.7.

··

............

4 A1j*1
Il

0U)

U,
.0 -2
cu 10
0)
CTO

CDcts

0

i n-3

103 104
loa(total node count)

Figure 3-10: The average relative error versus total number of nodes. The number of
nodes varies from 1,000 to 5,000, and the radii are changed to keep the average number
of nodes per neighborhood at around 27 nodes. Successive overrelaxation is performed on
each configuration for 100,000 iterations, with (D = 1.7.

from each other for sufficiently small R, and the boundary data would then have no way of

"propagating" to interior nodes.

Figure 3-10 shows the analogous plot for the average absolute error versus the total

number of nodes, with the density held constant by changing the radius. This log-log plot

demonstrates an approximate power law governing the relation between the total number

of nodes (given fixed density) and the average absolute error.

However, despite its simplicity and reasonable accuracy, the averaging method is limited

by its lack of generality: Because it uses properties specific to Laplace's equation, it is not

immediately applicable to other elliptic differential equations. This is one of the advantages

of generating finite difference coefficients using polynomial interpolation, as described in

§3.3.1.

Randomly-distributed sample points and polynomial interpolation. Let us now

take a look at the finite difference coefficients generated using polynomial interpolation.

Unlike the case of regular grids, the iteration diverges rather quickly. For the ease of

computation, this section examines systems with smaller numbers of nodes - The tests

........................._r. : r

..'.

... " " "

1.5

1
1

1

00

Figure 3-11: The approximate solution generated by applying direct matrix inversion
to the system of equations generated by polynomial interpolation. The maximum ab-
solute error is 0.0081833977839731, the minimum absolute error is 0.0000000779550711,
and the average absolute error is 0.0004690292039753. The maximum relative error is
0.0076113517976692, the minimum relative error is 0.0000000745384821, and the average
relative error is 0.0004207582072576.

here use 300 interior nodes distributed uniformly in the unit square and 144 nodes spaced

evenly along the boundary, with the same boundary conditions (3.11).

For a system this size, one could explicitly compute the spectral radius for various

iteration methods. 16 Indeed, for the example here, the spectral radius for Gauss-Seidel is

73.75932386604968, while that of Jacobi iteration is 6.69818594658326. Thus, both iteration

methods diverge for this system. However, as a test of the accuracy of the coefficients

themselves, we can directly invert the matrix using LU decomposition.17 The result, shown

in Figure 3-11, demonstrates that polynomial interpolation actually produces fairly accurate

answers-If one had the ability to solve the resulting equations.

The transpose trick. So what happens if we actually attempt to apply the "transpose

trick" described in §3.3.2? Does this really improve the stability of Gauss-Seidel iterations?

The answer is a lackluster affirmative: The spectral radius for Gauss-Seidel iteration is

0.99999999123756, while that of Jacobi iteration is 7.52337630885650. Thus, Gauss-Seidel

16The computations in this section are done using MATLABTM
17This could be done because the system only has 300 interior nodes, and hence 300 unknowns. With

10,000 unknowns, there is no way to invert the matrix directly! Of course, from the view of error analysis,
one should be suspicious of directly inverting even a 300 x 300 matrix...

1

00

Figure 3-12: The approximate solution generated by applying direct matrix inversion
to the system of equations generated by the "transpose trick." The maximum abso-
lute error is 0.0079623718237853, the minimum absolute error is 0.0000001702022259,
and the average absolute error is 0.0004585412757934. The maximum relative error is
0.0074057762673312, the minimum relative error is 0.0000001577217479, and the average
relative error is 0.0004110492850620.

(in theory) converges for this problem, even though the spectral radius is close enough to

1 that convergence is very slow. Furthermore, the condition number of the matrix before

multiplying by the transpose is 2.016135227435024 x 106, while after multiplying by the

transpose it becomes 2.382088963154271 x 1012-Roughly squared, as expected.

Thus, instead of applying iteration to these equations, LU decomposition is applied

directly as in Figure 3-11. The result is shown in Figure 3-12.

3.4 Finite elements on manifolds

An alternative to finite difference techniques is to employ finite element methods in local

discretization, which in general do not require regular grids to perform efficiently (as do finite

difference methods). However, the combination of local equations into a global system can

be more problematic for finite elements than for finite differences.

The basic idea of finite elements on manifolds is simple: For each chart (U, V, 0), one

can map the open set U onto the open subset V of R n. Since V is an open subset of R n,

one can generate a mesh that covers almost all of V in a number of ways: One way is to

always ensure that V is of a simple shape by choosing the appropriate mapping 0; then it is

a easy to generate a regular grid over V. Another way is to generate a set of nodes that fill

V "densely," and to triangulate them using a mesh generation algorithm such as quickhull

[6], which works for general n-dimensional convex polytopes. Having generated a mesh over

each chart, one can then apply standard finite element methods, such as Rayleigh-Ritz or

Galerkin's method, to the open subset V of Rn . This yields locally discretized equations

for each chart.

The next step is to combine the equations. One straightforward proposal is to choose

a set of nodes in the overlap region between charts, and to constrain the unknown value

at each of those nodes to the interpolated value from the other chart, thus generating a

relation between unknown variables in different charts. The nodes chosen to form these

constraints are called interpolation nodes, and choosing good ones turns out to be rather

tricky: Too few, and not enough information propagates between charts to generate a good

solution. Too many, and the resulting equations become overconstrained and cannot come

anywhere close to the real solution.

Before discussing these issues in detail, however, it is useful to devlelop a deeper under-

standing of what it means to integrate functions over manifolds.

3.4.1 Integration on manifolds

Integration is a very powerful tool in the study of partial differential equations, particularly

in the formulation of numerical methods. This is because integrals are much easier to

compute accurately and have a number of other nice properties, and can often be used to

reformulate PDEs in ways that simplify numerical solution methods. For example, finite

element methods often rely on variational principles (as in the Rayleigh-Ritz method) or

orthogonality conditions (as in Galerkin's method) to discretize PDEs: In the former case,

the computation of the action functional to be minimized requires integration over the

domain of the PDE, and in the latter case, the evaluation of the inner product on the

function space of possible solutions again requires the integration of functions over the

domain.

While these ideas are all straightforward to define on subsets of Euclidean space, it is

less obvious how one can arrive at a coordinate-independent definition of integration on

manifolds. Integration, as opposed to differentiation, is inherently a global operation, not a

local one, and thus the definition of integrals is more difficult than that of differentials.

There is no unique way to define the integral of a real-valued function on manifolds.

However, one could integrate real-valued functions over Riemannian manifolds (see §2.1.4),

where a "smoothly-varying" inner product is defined on each of tangent spaces. There is

another useful approach to integration that relies on "differential forms." Since this material

will not be needed for our purposes here, a discussion is postponed until §B.2.

Partitions of unity

In view of the usefulness of tangent vectors on manifolds, which were defined using the

fact that manifolds locally "look like" Euclidean spaces, one natural idea would be to

reduce the problem of integrating a function over the whole manifold to the problem of

integrating a function over a chart. That is, the problem of integration can be divided into

two subproblems: The first is how to reduce the problem of integration to a local problem,

and the second is how to define integration locally in a consistent way so that the integral of

a function over a small subset of the manifold is independent of the chart chosen to evaluate

that integral.

It turns out that the two approaches to integration mentioned above differ only in how

they solve the second subproblem. The common solution to the first subproblem, called a

"partition of unity," is a simple but powerful idea.

Let {pi} be a set of smooth real-valued functions on a manifold M, let Ui denote the

interior of the support of Pi, and let A be an atlas that is compatible with the atlas of M.

Then {pi} is a partition of unity subordinate to A if:

1. pi(x) > 0 for all x E M.

2. For each i, there exists a chart (U, V, 4) E A such that the support Ui of pi is contained

in U. Furthermore, Ui is compact.'8

3. Fi pi(x) = 1 for all x E M.

4. Every point x E M has a neighborhood W such that W is contained in only finitely

many of the sets Ui.

For any atlas on any manifold, there exists a partition of unity subordinate to it. For

a proof of this fact, see Munkres [21], Guillemin and Pollack [14], or Warner [28]. In this

discussion, the atlas to which a partition of unity is subordinate may not be mentioned

explicitly; in such cases, the atlas of the manifold is assumed. 19 Incidentally, finite element

basis functions furnish a nice example of a partition of unity.

18For those who have not had exposure to point set topology, compactness in this context is equivalent
to saying that the image of Ui under 0 is a closed and bounded subset of V. It is a topological property
independent of the chart.

19In most treatments of partitions of unity, axiom 2 is stated using open covers, not atlases. However, for
our purposes, partitions of unity are most useful when the open cover is an atlas.

Suppose, now, that we have already found a nice way to define an integral operator "f"

on real-valued functions over the manifold M. What properties should it have? First of all,

integrals should be linear;, that is, the integral of two functions f and g should satisfy

/M(af +bg) = a f +b fg (3.14)

for real constants a and b. Now note that for any function f and any partition of unity

{pi}, the following equation holds for all x E M:

f(x) = ypi(x)f(x). (3.15)

This expression is well-defined, because even though the collection {pi} may be infinite,

axiom 4 shows that for each x, only finitely many of the numbers pi(x) is non-zero. Thus,

this potentially infinite series is actually a finite sum for each x, and the expression is

well-defined. The equation then follows from the fact that the Pi sum to 1.

Combining this with the linearity of integrals, we obtain:

/M f = M if (3.16)

= pif (3.17)

But each of the functions pif has compact support. Furthermore, the support of pif

must be a subset of the support of pi, which is contained entirely in some chart.

Conversely, suppose that we have a way of integrating functions whose supports lie

entirely within a chart. It is easy to show that the choice of a partition of unity to combine

these integrals does not affect the final outcome: Let {p'} be another partition of unity

subordinate to the atlas A' = {Uj}. Then:

E PifPp= Ef pl~fC./~ (3.18)

We have thus reduced the problem of finding a reasonable definition of integrals of

functions on manifolds to a local problem: How can we integrate functions whose supports

lie entirely in a given chart?

Integration on Riemannian manifolds

Consider now open subsets V1 and V2 of Euclidean n-space. Suppose f is a smooth bounded

real-valued function on V2 (boundedness is generally required to ensure that the integral is

finite), and that there exists a smooth bijective map 0 from V1 to V2. Using the change of

variables theorem, we know that the integral of f over V2 can be written in two ways:

Ly 2 f(y)dy = fX L V f(O(x))l det D¢(x)lds, (3.19)

where traditional notation, rather than functional notation, was used for the sake of clarity.

As stated in §3.4.1, one major aspect of defining integration on manifolds is finding a

consistent definition of local integrals. In view of Equation (3.19), this amounts to figur-

ing out what geometric information is necessary to construct objects that transform like

determinants, so that integrals of functions over "small" subsets of the manifold are the

same no matter what chart is used. The approach here is to relate determinants to a local

measure of volume in tangent spaces of the manifold, so that the function analogous to the

determinant can be defined geometrically.20

The geometry of determinants. Let us begin with the geometric interpretation of the

determinant: Let S be a set of n vectors B = {vl, v2, ..., vn} in Euclidean n-space. Every

such set S defines a parallelpiped:

n n

{vE Rn : v = aivi, E ai, iý 1 , (3.20)
i= i=0

where vo = E=1 vi. This generates a convex polyhedron with vertices at the origin, each

of the points vi, and the point vo = E vi; in the case n = 2, this is just the definition of a

parallelogram. The n-dimensional volume of this geometric object is then I det Al, where A

is the matrix whose columns are the vectors vl, v2, ..., Vn.

Now, this definition of volume implicitly used the structure of Euclidean space. The

determinant depends on the components of the matrix A, which in turn depend on the

particular basis chosen. In the Euclidean case, there is a standard basis, but general vector

spaces do not have special bases singled out for them, and hence the determinants of linear

transformations are not well-defined. However, for inner product spaces, the determinant

is well-defined, up to a sign:

Let V and W be n-dimensional inner product spaces, and let L be a linear transformation

from V to W. Choosing bases By and Bw for V and W, respectively, we can write L as

a matrix with real components. Its determinant is then well-defined with respect to these

bases. In particular, let Bv,1 and BV,2 be orthonormal bases for V, and let Bw,i and BW,2

2 0As discussed in §B.2, the other approach is to associate determinants to functions, so that instead
of integrating real-valued functions, one integrates functions called differential forms, whose values are
"determinant-like" functions.

be orthonormal bases for W. If we let Li be the matrix representation of L with respect to

the bases Bv,i and Bw,;, then elementary linear algebra shows that:

L 2 = A' -L1 -Av, (3.21)

where Av is the matrix representation of the basis Bv,2 with respect to the basis Bv,i, and

Aw is the matrix representation of the basis BW,2 with respect to the basis Bw,i. But the

bases Bv,i and Bw,i are chosen to be orthonormal for i = 1, 2, so the matrices Av and Aw

are orthogonal, and their determinants are ±1. Thus, det L2 = +1 det L1, and we see that

for inner product spaces, one can define the determinant in a consistent way up to a factor

of ±1.

We can therefore make the following definition: Let L be a linear transformation from

an inner product space V to another inner product space W, both of dimension n. Then

the function I det LI is defined to be the absolute value of the determinant of L with respect

to any orthonormal bases for V and W. By the argument above, this is well-defined.

Furthermore, like ordinary determinants, this has the following properties: I det I I = 1
for the identity operator I, and given inner product spaces V1, V2, and V3, and linear

transformations L1 : VI -+ V2 and L2 : V2 - V/3, where the dimensions of the Vi are all n,

I det L2L1I = I det L21 I det Li1.

Integrals on compact Riemannian manifolds. Let M be a Riemannian manifold,

and for each point x E M, let gx denote the inner product on the tangent space TIM.

Suppose f is a smooth real-valued function on M whose support is a compact subset of U

for some chart (U, V, q). Define the integral of f on U by:

UI = f 0o-'det do-'1. (3.22)

Since the tangent spaces of M are inner product spaces (recall that M is a Riemannian
manifold), and V as a subset of Rn has a canonical inner product, the expression I det do-' I
is well-defined. 21 Furthermore, suppose the support of f is contained in both U, and U2 for

some charts (U1 , VI, 01) and (U2, V2, 2). Let U be the intersection of U1 and U2, and let

Wi = Oi(U). Then f is also supported in U, and:

/u f= f (3.23)

21The differential do- 1 is well-defined because 0-1 is a smooth map from the open subset V, which is a
manifold itself, into the manifold M.

= fwof det dol-I (3.24)

= fW2 (fo o (4 1 o 1)) detdo1 ' -Idet(d(lq o021)) (3.25)

= /2 fo 211det d2 1 (3.26)

= 2f, (3.27)

and the integral fJ f is well-defined. But by our earlier argument using partitions of unity

in §3.4.1, this means the integral is well-defined on manifolds.

One last note: This discussion actually skirts the issue of convergence. While each local

integral f pif is well-defined because Pif o 0-1 has compact support in V, there is nothing

that guarantees that the sum f f = f pif converges. In general, it does not always

converge, and one often requires that the partition of unity be finite. A manifold for which

there exists a finite partition of unity must be compact.22

Implementation in Scheme

Having gone to such lengths to discuss integration on manifolds, the reader might suspect

that one could build an elaborate computational scheme for computing integrals of real-

valued functions over Riemannian manifolds. However, in practice it often happens that

the manifold in question is an open subspace of R n (or, in cases where boundary conditions

are necessary, closures of open subspaces of Rn). In such cases, it suffices to use the

Euclidean structure directly to define integrals, and the code for manipulating finite element

basis functions implement the ideas in the previous section automatically. As a complete

implementation of these ideas is not necessary for testing the use of multiple coordinate

systems to solve PDEs, such routines have not been implemented at this time. The purpose

of this treatment of integration has primarily been for the theoretical insight it provides;

like partial differential operators in §3.1, the code used in this chapter can seem ad-hoc and

confusing without a proper framework in mind.

3.4.2 More about boundaries

This section picks up where §2.1.8 left off: In order to discuss the computational solution

of elliptic boundary-value problems on manifolds, it is necessary to build a computational

framework for working with boundary charts and manifolds with boundaries. This section

discusses the implementation of manifolds with boundaries in Scheme.

22A good introduction to general topology and such concepts as compactness, connectedness, and conti-
nuity for general topological spaces is Munkres [19].

Figure 3-13: A boundary chart for the solid disc in the plane.

Figure 3-14: Another boundary chart for the solid disc in the plane.

Add-boundary-to-chart and make-boundary-chart are the primary procedures for

computing with boundaries of manifolds. Add-boundary-to-chart takes as arguments a

chart (U, V, 0), an index i, and an optional argument level L, and declares the subset

{p E U : xi = L, x = O(p)} of V the boundary of the chart. This creates boundary charts

for the original manifold. While this is a slight deviation from the definition of boundary

charts in §2.1.8, it is clearly equivalent and slightly simplifies programming with these

abstractions. Make-boundary-chart 23 then constructs a chart for the boundary manifold

out of a boundary chart for the original manifold.

The actual construction of a manifold with boundary can be rather messy, so the code

is omitted here. Figures 3-13 through 3-15 show three charts that cover the solid disc

{x E R2 : IxI < 1}, the first two being boundary charts and the third covering the center of

the disc. Figure 3-16 shows how these charts overlap.

2 3This procedure is a bit of a misnomer, since boundary charts, as defined, are really charts of the manifold
M, not charts of the boundary manifold OM.

Figure 3-15: A third chart for the solid disc in the plane; this one covers only the interior
and does not intersect the boundary.

Figure 3-16: All three charts together, covering the unit disc.

3.4.3 Computing with finite elements on manifolds

The previous sections, together with Appendix A, contain the material necessary for de-

veloping finite elements on manifolds. Since the subject of partial differential equations is

sufficiently vast and complicated that many issues of theoretical and computational impor-

tance need to be resolved in very different fashions in different cases, the programs have

been designed to provide only a logical skeleton into which all the components fit, and

the individual components, such as the finite element basis functions and their integraton

over domains, are very flexible. Consequently, the best way to understand the algorithms

and representations used for these computations is to examine how it works for a concrete

example; otherwise the program can seem excessively abstract.

The main program is divided into three parts: The first is a finite element program

(FEM) that performs the local finite element assembly, etc., and has no knowledge of

manifolds. Indeed, this portion stands on its own as a finite element PDE solver over

Euclidean spaces. The second part is a set of additions to the manifold code developed in

the Chapter 2 that help manage geometric structures such as boundaries for the sake of

setting boundary values and solving PDEs. Finally, the third part is a set of tools that

oversee the finite element assembly process on manifolds, and has various routines that

combine local equations into global ones in different ways.

The primary example in this section, as in Appendix A, is the boundary value problem

for Laplace's equation. The domain of solution is the unit disc (see Figure 3-16), which

was given the structure of a manifold with three charts (see Figures 3-13 through 3-15). As

stated before, this is a natural problem because of its simplicity and importance in physical

problems. Furthermore, one can easily derive analytical solutions for simple boundary

values, and for more complicated boundary values traditional finite element methods (over

subspaces of Euclidean space) are known to perform reasonably well.

3.4.4 Local finite-elements

First, let us discuss the local finite element program. It depends on explicit computational

representations of nodes and elements and uses these abstractions to isolate different stages

in the finite element assembly process and to clarify the interdependence of different com-

ponents. In this discussion, unless explicitly stated, all objects exist in Euclidean spaces.

In this system, nodes are objects that have coordinates, carry values, and have some
extra fields (such as various ID numbers that identify them from other nodes in the ensem-
ble), and flags that identify them as boundary nodes. Since each element object also keeps
track of the nodes that they contain, each node is also assigned a local ID by the element.
Conversely, each node must also keep track of the elements to which they belong.

In terms of elements and nodes, then, the finite element assembly process can be ex-

pressed rather concisely as follows:

(define (assemble-equations source nodes)

;; SOURCE is a function from R^2 to R, and NODES is expected to be a vector.

(let* ((ncount (vector-length nodes))
(bcount 0)
(index-map (make-vector ncount)))

;; First, assign each node an index and count the number of boundary nodes.

(do ((i 0 (+ i 1)))
((>= i ncount))

(node:set-id! (vector-ref nodes i) i)
(if (node:boundary? (vector-ref nodes i))

(set! bcount (+ bcount 1))))

;; Next, create a mapping from node indices into matrix row number. (The
;; matrix has one row per interior node.)

(let loop ((i 0) (row 0))
(if (< i ncount)

(if (node:boundary? (vector-ref nodes i))
(begin
(vector-set! index-map i #f)
(loop (+ i 1) row))

(begin
(vector-set! index-map i row)
(loop (+ i 1) (+ row 1))))))

;; Loop over the nodes to create row entries:

(let* ((icount (- ncount bcount))
(big-matrix (make-sparse-matrix icount (1+ icount))))

(do ((i 0 (+ i i)))
((>= i ncount))

(if (not (node:boundary? (vector-ref nodes i)))
(let ((row (vector-ref index-map i)))

;; Compute the source term for this row:

(sparse-matrix-set! big-matrix row icount
(node:compute-source (vector-ref nodes i)

source))

;; Combine boundary values:

(for-each
(lambda (pair)

(let ((id (car pair))
(val (cadr pair)))

(if (node:boundary? (vector-ref nodes id))
(sparse-matrix-set!
big-matrix row icount

i

Figure 3-17: As defined in Appendix A, each node corresponds to a vertex in a triangulation,
and to each node i there corresponds a finite element basis function Oi. The support of
Oi is the union of all those elements adjacent to node i, and hence the intersection of the
supports of two basis functions Oi and Oj, i : j, consists of a union of elements as well.
Element: compute-integrals, when given an element E and an index i belonging to E,
returns the set of all integrals of the form fE i " Loj for all j that are neighbors of i.

(- (sparse-matrix-ref big-matrix row icount)
(* val (node:get-value (vector-ref nodes id)))))

(sparse-matrix-set! big-matrix row
(vector-ref index-map id) val))))

(node:assemble (vector-ref nodes i))))))

big-matrix)))

Note that this FEM assembly program does not actually compute the integrals, but calls

node:assemble to recursively construct the appropriate coefficients and combine them.

(define (node:assemble node)
(let ((1 (append-map

(lambda (element index)
(element: compute-integrals element index))

(node:get-elements node)
(node:get-local-ids node))))

;; ELEMENT:COMPUTE-INTEGRALS returns a list of pairs, where each pair takes
;; the form (node-id . coefficient). MERGE-TERMS then sorts and adds up
;; coefficients that have the same ID.

(merge-terms 1 + (lambda (x y) (< (car x) (car y))))))

Node:assemble calls element :compute-integrals, which returns a list of pairs of the

form (node-index . integral), which represent the element's contribution to the finite

element integrals involving the basis function centered at the given node. More precisely,

let i be the index of the current node, and let j denote the index of one of its neigh-

bors, and let E denote an element shared by these two nodes (see Figure 3-17).24 Then

element :compute-integrals and node:assemble compute and return a list of pairs of the

form:

(j, Ei -Lj). (3.28)

Merge-terms then adds up contributions corresponding to the same node index j.
This shows that all routines for integrating basis functions and dealing with the differ-

ential operator can be isolated in the element abstraction: The FEM assembly program

and the nodes exist merely for "book-keeping" purposes, and all the information about the

geometry of the domain and the action of the differential operator are encapsulated in the

elements. The element abstraction thus isolates all the components that need to be changed

in order to modify the type of basis functions used and the method used to integrate them;

this simplifies the method's application to manifolds.

Constructing elements and differential operators. The construction of elements is

much more complicated than the mere packaging of data. It takes as arguments three

procedures for constructing important data structures. The first of these, make-operator,

takes a list of nodes and returns a list of structures that represent the differential operator

(or an approximation thereof) over the element described by the given nodes. It is organized

in such a convoluted way because oftentimes it is useful to have the ability to approximate

differential operators with variable coefficients with operators whose coefficients are locally

constant. To facilitate this, operators need to "know" the element over which it is operating,

and hence we have the make-operator constructor.

To complicate matters even more, it is often useful to split a differential operator L into

three components: An m-vector-valued differential operator Left, a second m-vector-valued

opreator Lright, and a bilinear form (on vectors in Rm) (,), satisfying the equation

I (Lieftf,Lrightf) = (f -Lf), (3.29)

where f is an arbitrary differentiable function of compact support, which, for example, can

be a basis function.25 The reason for this is that finite element basis functions are often

piecewise polynomial functions, and hence are only differentiable finitely many times. In

24That is, E is part of the intersection of the supports of the basis functions 4, and 4j.
251t should be clear what Lieft and Lright mean for functions on Euclidean spaces. In the context of

manifolds, think of the operators Lieft and Lright as m-tuples of partial differential operators as defined
earlier in §3.1, which would map real-valued functions f : M -+ R on M to m-vector-valued functions
Lf : M -- R " .

general, the more degree of differentiability one requires, the higher the order of the polyno-

mials. Since higher-order polynomials require more nodes, their storage and manipulation

require more computational resources. Conversely, one can often reduce the amount of

data needed by reducing the order of the polynomials. This is possible if one integrates by

parts and split the differential operator into two parts. For example, the Laplacian is often

represented by the gradient operator Lleft = Lright = V, which when integrated by parts

to yield the (negative) Laplacian operator -V 2; this allows the use of basis functions that

are continuous with piecewise-continuous first partials, such as piecewise-linear functions. 26

Thus, make-operator returns left-op, right-op, and combine, which correspond to

Lleft, Lright, and (,), respectively. This structure also allows the use of the usual repre-

sentation of differential operators: Just let right-op compute the differential operator, let

left-op be the identity operator, and replace combine with a function product operation.

The other two arguments of element-maker are simpler: Make-integrator takes as

argument a list of nodes and returns a procedure capable of integrating basis functions

over the element defined by those nodes, and make-basis-function creates a basis func-

tion data structure. Note that basis functions are generally abstract data structures that

represent mathematical functions, not computational procedures, and their representa-

tions are completely flexible: The entire program works so long as make-integrator and

make-basis-function agreed a priori upon a consistent representation of basis functions.

In practice, as stated above, piecewise polynomial basis functions are often used because

their images under differential operators are easy to compute, as are their integrals.

;;; Note that this implicitly assumes that elements are the convex hull of
; their vertices.

; The (meta-)constructor for element-constructors:

(define (element-maker make-operator
make-integrator
make-basis-function)

;; MAKE-INTEGRATOR should take as argument a list of nodes, and returns a
;; procedure that takes a variable number of functions (at least 1) and
;; integrates their product over the domain specified implicitly as the
;; convex hull of the vertex nodes.

;; MAKE-BASIS-FUNCTION should take as argument a list of nodes and the index
;; of the node that is to be the center of the basis function, and return
;; some structure representing basis functions.

;; We place no restrictions on the representation of functions over elements,
;; so long as the particular instances of MAKE-BASIS-FUNCTION and
;; MAKE-INTEGRATOR agree a-priori on the representation.

26In the case of Laplace's equation, the symmetric positive semi-definite form -f (,) on the space of
differentiable functions is called the Dirichlet form.

MAKE-OPERATOR should take a list of nodes and return LEFT-OP, RIGHT-OP,
and COMBINE procedure, satisfying (INTEGRATE (COMBINE (LEFT-OP F)
(RIGHT-OP G))) = (INTEGRATE F (OP G)), i.e. implement integration by parts
so that basis functions can be less smooth.

The list of nodes facilitates the interpolation of variable coefficients
in the operator. This may not be a good interface, as it makes artificial

;; assumptions on the contract between basis functions and operators (as is
the explicit use of LEFT-OP and RIGHT-OP).

(define (make-element vertex-nodes other-nodes)

;; The first part stores the coefficients, the second part the source
;; terms. What about coefficients? Maybe we should incorporate the
;; source term into the differential operator.

(let* ((nodes (append vertex-nodes other-nodes))
(number-of-nodes (length nodes))
(n-choose-2 (choose (+ number-of-nodes 2) 2))
(element
(vector (make-vector n-choose-2 0)

(make-vector n-choose-2 0)
vertex-nodes
other-nodes
(make-vector number-of-nodes #f)))

(op (make-operator nodes)))

;; Add the element to the nodes:

(let loop ((nodes nodes) (i 0))
(if (not (null? nodes))

(begin
(node:add-element (car nodes) element i)
(loop (cdr nodes) (+ i 1)))))

;; Initiailize elements (and hiding the hair)...

(let ((integrate (make-integrator vertex-nodes))
(local-form (operator:get-local-form op)))

(do ((i 0 (+ i 1)))
((>= i number-of-nodes))

(element:set-basis-function!
element i (make-basis-function nodes i)))

(do ((i 0 (+ i 1)))
((>= i number-of-nodes))

(let ((f (element:get-basis-function element i)))

(do ((j i (+ j 1)))
((>= j number-of-nodes))

(let ((g (element:get-basis-function element j)))
(element:set-coeff! element i j

(integrate (local-form f g)))
(element:set-source! element i j (integrate f g)))))))

element))

make-element)

This also shows that, as a matter of efficiency, elements can be called on to evaluate the

integrals first when one constructs the domain. One can then work with different boundary

values (or source functions, in the case of Poisson's equation) without recomputing the finite

element integrals.

3.4.5 Basic FEM algorithm on manifolds

There are two top-level programs that manage the computation of finite element equations

on manifolds. The first program manages mesh generation and element construction, while

the second program uses these elements and the local finite-element assembly program to

generate a sparse matrix that represents the discretized system of linear equations.

What follows is the main portion of the code for the first program:27

(define (pde:domain-maker generate-node-lists process-complex)
(lambda (M

make-vertices
make-extra-nodes
tesselate
. argl)

;; First, make the bounding nodes of the convex domain, and then
;; triangulate and make the extra nodes:

(let ((atlas (manifold:get-finite-atlas M)))

(if (not atlas)
(error "Error: Can only do FEM with finite atlases."))

(write-line '(tesselating domain...))

;; Do something more complicated here to reduce the overlap:

(let loop ((charts atlas)
(node-lists (generate-node-lists make-vertices atlas argl)))

(if (not (null? charts))

;; TESSELATE should return a list of lists, where each list
;; contains the elemental faces of a given dimension (in some given
;; polytope). In the planar case, this reverses the convention in
;; fem.scm: The list should be sorted by dimension in *descending*
;; order.

27A little matter of terminology: Many procedures in this code manipulate data structures called "com-
plexes" (as in chart :get-complex). The term refers to simplicial complexes, which are spaces that can
be formed as the union of points, lines, triangles, tetrahedra, and their higher-dimensional generalizations
called simplices. Not only are simplicial complexes useful for finite element computation, they are also very
important for studying the structure of topological spaces and form one of the starting points for algebraic
topology. For more details, see Munkres [20]. For our purposes, however, it is just a convenient way to
package data structures that describe triangulations on charts.

(let* ((chart (car charts))
(nodes (car node-lists))
(complex (process-complex (tesselate nodes) (cdr charts)))
(extra-nodes (make-extra-nodes complex)))

;; By default, use FEM-DISCRETIZE. Can replace with others.

(make-pde-chart chart extra-nodes fem-discretize complex)
(loop (cdr charts) (cdr node-lists)))))

;; Construct elements. We don't need to explicitly mark boundaries
;; because manifolds should already have such structures defined.

(lambda (operator make-integrator make-basis-function)
(let ((element-maker (pde:element-maker operator

make-integrator
make-basis-function)))

(write-line '(constructing elements...))

(for-each

(lambda (chart)

;; Construct the elements:

(write-line
'(making ,(length (complex->faces (chart:get-complex chart)))

elements...))

(let* ((make-element (element-maker chart))
(new-elements (map make-element

(complex->faces
(chart:get-complex chart))

(chart:get-extra-nodes chart))))
(chart:set-elements! chart new-elements)))

atlas))))))

This program is a "meta-constructor" for domain constructors, and returns a procedure

that adds sufficient structure to a given manifold (such as nodes and local triangulations,

etc.) that finite element analysis can be performed. It provides only a logical skeleton into

which other procedures fit; the real work is done by procedures like generate-node-lists,

process-complex, make-vertices, make-extra-nodes, and tesselate.
Given the appropriate procedures for constructing nodes and meshes on charts, the pro-

gram generates nodes and constructs meshes for each chart. Then, some of the nodes are

"pruned" away to control the size of the number of nodes shared between charts. 28 The ex-

pression (make-pde-chart chart extra-nodes fem-discretize complex) attaches ex-

tra data structures to chart, so that in a later stage the information obtained here can

28This will be discussed in more detail in the next section.

be used to construct the elements.29 Finally, yet another procedure is returned that takes

the information obtained above, as well as representations of the differential operator, con-

structors for basis functions, and integrators of basis functions, and actually constructs the

elements.

Having constructed elements and prepared the domain of solution for finite element

analysis, the second top-level program generates the discretized equations given boundary

data and a source function:

;; Given a domain with constructed elements, a source function, and a boundary
;; value function, produce the appropriate discretized equation. The nodes

;;; are left with indices that specify their corresponding row in the matrix.

(define (pde:equation-maker merge-equations)
(lambda (domain source boundary-value . extra-args)

;; EXTRA-ARGS gives us finer control over the discretization.

;; DOMAIN should be a manifold that already has PDE structures constructed.
;; Hence, it contains information about the operator (through the elements
;; in its discretized charts).

;; BOUNDARY-VALUE is irrelevant for domains without boundary. Just specify
;; anything (but do put in something).

(let* ((M domain)
(charts (manifold:get-finite-atlas M))
(nodes (list->vector (append-map chart:get-nodes charts)))
(ncount (vector-length nodes)))

;; CHART:DISCRETIZE-PDE should return a list of linear equations. First,
;; set the boundary values:

(write-line '(,ncount nodes generated...))
(write-line '(setting boundary values...))

(do ((i 0 (+ i i)))
((>= i ncount))

(let ((node (vector-ref nodes i)))
(if (node:boundary? node)

(node:set-value! node (boundary-value node)))))

;; Next, compute the local equation systems:

(write-line '(computing ,(length charts) local systems of equations...))

(let ((equations (append-map
(lambda (chart)

(chart:discretize-pde chart source extra-args))
charts)))

;; Compute constraints:

29 The procedure fem-discretize is stored away and called later for the local finite element assembly
procedure. It provides a simple interface to the program of the previous section. It can always be replaced
by a different FEM routine, of course.

'"1

Figure 3-18: A point y in some chart, with its "neighbors" ni through n5, which are the
nodes belonging to the element that contains y. (Since the elements of a triangulation
partition whatever chart they cover, each point lies in only one element except for points
lying in the boundaries of elements.) This figure is drawn using the coordinate system of
C2, and it illustrates two charts, with the dotted lines outlining the element (of C1) to which
the point x = 1 (p) belongs while the dashed line delineates the boundary of the image

q2(U1 n U2) of C1 in this coordinate system. The dotted element has a curved boundary
because the entire image is seen in the coordinate system of C2.

(write-line '(merging local equations...))
(merge-equations domain equations)))))

Once again, this program only serves as a logical skeleton. All the major components

of the programs, such as the procedure merge-equations, are easily modifiable. This

facilitates the testing of different methods for performing these tasks. Indeed, the fol-

lowing sections will explore a couple different implementations of generate-node-lists,

process-complex, and merge-equations that control how much charts overlap and how

local equations are merged into a global set of equations.

3.4.6 Interpolation between charts

Finally, we come to the most delicate part of the problem: How does one actually combine

local equations into a global set of equations? This process is determined by the procedures

generate-node-lists, process-complex, and merge-equations, which are passed into

pde: domain-maker and pde:equation-maker as arguments.

As mentioned at the beginning of §3.4, one natural idea is the following: Let C1 =

(U1,V , 1) and C2 = (U2, V2, 02) be charts on the manifold M. Suppose the ith node in

the discretized domain is at the point p E M, and that p lies in the intersection Ui n U2.

Let x = 01 (p) be the coordinate vector corresponding to p in V1, and let y = 02(p) be the

coordinate vector corresponding to p in V2. Then one could simply constrain the unknown

value at x, ai, to the value at the corresponding point y = 02(p), interpolated from basis

functions in C2. More precisely, let ni be the indices of the nodes in the element E containing

y in C2 (see Figure 3-18). Then the constraint we want is:

ai = Cnk (y)ank, (3.30)
k

where aj denotes the sample value u(pj) of the approximate solution at the jth node,

with position pj. Since the expressions 4ni (y) can be computed without reference to any

unknowns, we see that this is a linear equation relating unknown nodal values. Thus,

the constraints generated this way may simply be "appended" onto the system of locally-

discretized equations for each chart, each of which is also linear. Doing this for a sufficiently

large number of nodes that lie in the overlap of two charts should generate enough extra

equations to relate the local equations derived for each chart. It should be noted that

this process of appending constraints produces overdetermined systems, for which exact

solutions generally do not exist. Thus, a least-squares approximation is the best one could

do. This can be done by computing the normal equations, which finds an approximate

solution to the overdetermined system Ax = b by minimizing the magnitude of the error

Ax - b with respect to the natural inner product of Euclidean space.

A program that implement a general procedure for combining equations and constraints

into a large matrix is shown below. It relies on make-constraints to construct the con-

straint equations, and the main body of the program performs the tedious task of construct-

ing the matrix row by row:

;;; This complicated-looking procedure performs the simple task of forming a
; sparse matrix out of locally-discretized equations and constraint
;; equations. The constraints are generated with the help of
; MAKE-CONSTRAINTS.

(define (append-constraint-equations make-constraints)
(lambda (domain equations)

;; First, set IDs and clear hidden states:

(write-line '(setting node ids...))

(let loop ((id 0) (nodes (manifold:get-nodes domain)))
(if (not (null? nodes))

(let ((node (car nodes)))
(node:set-constraint! node #f)

(if (node:boundary? node)
(begin
(node:set-id! node 'boundary-node!)
(loop id (cdr nodes)))

(begin
(node:set-id! node id)
(loop (+ id 1) (cdr nodes)))))))

; Next, generate constraints:

(write-line '(generating constraints...))

(with-values
(lambda () (make-constraints domain))

(lambda (c-count clists)
(let* ((eq-count (length equations))

(m (+ eq-count c-count))
(n (+ eq-count 1)))

(write-line '(constructing a matrix of dimension (,m ,n)...))

(let ((mat (make-sparse-matrix m n)))

;; First, copy the equations:

(write-line '(copying ,eq-count equations...))

(for-each
(lambda (eq)

(let ((i (equation:get-id eq)))
(sparse-matrix-set!
mat i eq-count (equation:get-constant eq))
(for-each
(lambda (term)

(sparse-matrix-set! mat i (term:get-id term)
(term:get-coeff term)))

(equation:get-terms eq))))
equations)

;; Next, copy the constraints:

(write-line '(copying ,c-count constraints...))

(let next-clist ((i eq-count) (clists clists))
(if (null? clists)

mat
(let next-constraint ((clist (car clists)) (i i))
(if (null? clist)

(next-clist i (cdr clists))
(let ((constraint (car clist)))

(sparse-matrix-set!
mat i eq-count (equation:get-constant constraint))
(for-each
(lambda (term)

(sparse-matrix-set! mat i (term:get-id term)
(term:get-coeff term)))

(equation:get-terms constraint))
(next-constraint (cdr clist) (+ i 1)))))))))))))

While the basic idea of interpolating unknown values from other charts is simple enough,

there are some unresolved details here: For one thing, what does it mean to create con-

straints for "a sufficiently large number of nodes"? Is it necessary to create constraints for

all nodes in the overlap, or just some specially-chosen interpolation nodes? Which ones

should we use? Furthermore, let C1, C2 , and C3 be charts, let p E M be a point contained

in all three charts, and let xi = qi (p) be the image of p in the chart Ci. Since there are

three charts, there are three different constraints we can generate using the recipe above

by considering different pairs of charts. Is it better to generate all three constraints, or to

generate only one or two of them? Since the basis functions and triangulations in different

charts are by no means related to each other, one would expect that the constraints are

independent of each other, and hence this is a non-trivial question. Clearly, this problem

extends in general to any node that lies in more than two charts, and if not all possible

constraints are to be generated, then which ones should we use?

Since there are many possible choices here and no obvious candidate, it seems reasonable
to try a couple of different ideas and see how well they perform:

1. Generate all constraints for all nodes in the overlaps between all pairs of charts.

2. Put the set of all charts in some linear ordering, and generate all constraints for all
nodes in the overlaps of adjacent charts (in the given ordering).

The following program, make-all-constraints, implements the first of the ideas enu-

merated above by generating all constraints between all pairs of charts:

(define (make-all-constraints domain)
(let ((constraints

(append-map
(lambda (pair)

(let ((chart-1 (car pair))
(chart-2 (cadr pair)))

(append (constrain-all-nodes chart-1 chart-2)
(constrain-all-nodes chart-2 chart-i))))

(pairs (manifold:get-finite-atlas domain)))))
(values (length constraints) (list constraints))))

(define (constrain-all-nodes chart-1 chart-2)
(append-map
(lambda (node)
(if (node:boundary? node)

'10
(let ((eq (chart:pointwise-constraint node chart-2)))
(if eq

(list eq)
'()))))

(chart:get-nodes chart-i)))

(define (pairs 1)
(let loop ((1 1) (result '()))

(if (null? 1)
result
(loop (cdr 1)

(let ((a (car 1)))
(let loop ((1 (cdr 1)) (result result))
(if (null? 1)

result
(loop (cdr 1) (cons (list a (car 1)) result)))))))))

It can be passed into append-constraint-equations to construct the constraints. This

program is rather straightforward: For all pairs of distinct charts, generate all possible

constraints from nodes in the overlap between these two charts.

The next program implements the second idea, which involves ordering the charts. Since

atlases are represented by Scheme lists, the implicit ordering of lists is used to linearly order

the charts.

(define make-all-ordered-constraints
(let ((exists? (lambda (node) #t)))

(lambda (domain)
(let* ((charts (manifold:get-finite-atlas domain))

(result-1 (charts->constraints charts exists?))
(result-2 (charts->constraints (reverse charts) exists?)))

(values (+ (car result-i) (car result-2))
(append (cadr result-1) (cadr result-2)))))))

;;; The charts come in a ordered list, so that implicit ordering is used as the
;;; linear ordering we need.

(define (charts->constraints charts good-node?)

The predicate GOOD-NODE? lets the calling procedure control which nodes to
;; use. In this case, it simply uses all non-boundary nodes

(let next-chart ((charts charts)
(count 0)
(clists '())

(if (null? charts)

(list count clists)

;; Go through each node in the chart and check for constraints:

(let ((chart (car charts)))
(let next-node ((nodes (chart:get-nodes chart))

(count count)
(clist '()))

(if (null? nodes)
(next-chart (cdr charts) count (cons clist clists))
(let ((node (car nodes)))

;; We only want to create constraints for nodes that do not
;; already have a constraint:

(if (and (good-node? node)
(not (node:get-constraint node))

(not (node:boundary? node)))
(let ((eq (make-constraint node (cdr charts))))
(if eq

(next-node (cdr nodes) (+ count 1) (cons eq clist))

(next-node (cdr nodes) count clist)))
(next-node (cdr nodes) count clist)))))))))

(define (make-constraint node charts)
(let loop ((charts charts))
(if (null? charts)

(let ((eq (chart:pointwise-constraint node (car charts))))
(if eq

eq
(loop (cdr charts)))))))

This program is a bit more complicated: Charts->constraints takes a list of charts

and produces a list of constraints, such that a node n in a chart Ci is constrained to a

chart Cj if and only if j is the least integer greater than i such that Cj contains n. The

same procedure is then called again to construct constraints in the reverse direction, so that

constraints exist for charts adjacent in this linear ordering (or as close to being adjacent as

possible).

Both of the programs above call chart :pointwise-constraint, which can be imple-

mented thusly:

(define (chart:pointwise-constraint node chart)

;; The coefficients of a linear constraint for some node x should simply be
;; the value at p of the basis function centered at x. This linearity
;; depends only on the fact that the solution is approximated by a linear
;; combination of basis functions.

(if (chart:member? (node:get-point node) chart)
(let* ((x (chart:point->coords (node:get-point node) chart))

(element (chart:coords->any-element x chart)))
(if element

(let loop ((nodes (element:get-nodes element))
(i 0)
(const 0)
(terms (list (make-term node -1))))

(if (null? nodes)
(begin

(node:set-constraint! node chart)
(make-equation node const terms))

(let ((neighbor (car nodes))
(coeff (evaluate-basis-function

(element:get-basis-function element i) x)))
(if (node:boundary? neighbor)

(loop (cdr nodes)
(+ i 1)
(- const (* (node:get-value neighbor) coeff))
terms)

(loop (cdr nodes)
(+ i 1)

const
(cons (make-term neighbor coeff) terms))))))

#f))
#f))

It simply finds an element of chart to which node belongs, and loops through the nodes

of the given element to evaluate the basis functions and compute the coefficients.

3.4.7 Some numerical results.

To test the ideas above, we should perform some numerical experiments. The canonical

problem on which every FEM program should cut its teeth is the boundary value problem

for Laplace's equation. For us, the domain will be the unit disc {(x,y) E R 2 :X 2 y2 1}

in the plane (see Figure 3-16), with the boundary value

f(0) = cos(20). (3.31)

Using the angle addition formula for cosines, one finds that f (0) = cos2 9 - sin2 9. But the

function g(x, y) = x 2 - y2 satisfies Laplace's equation everywhere, and g(cos 0, sin 9) = f(0)

for all 0, so g must be the true solution corresponding to the boundary data f. This gives

us a convenient problem on which to test the ideas above and an exact solution against

which to compare answers.

So far we have only seen how to implement the auxiliary procedure merge-equations:

The constructor append-constraint-equations, given either make-all-constraints or

make-all-ordered-constraints, should return a procedure that constructs constraint

equations for pde:equation-maker. But we also need to implement the auxiliary procedures

for pde :domain-maker. To do this, we need the procedures make-nodes-for-each-chart

and do-nothing-to-complex, which, as their names suggest, are very simple procedures.

We will need more complicated auxiliary procedures later on, but these simple programs

suffice for now.

The definitions of key data structures are shown below:

;;; The procedure that prepares the domain for the PDE solver:

(define pde:make-simple-domain
(pde:domain-maker make-nodes-for-each-chart do-nothing-to-complex))

;;; Two different ways for generating constraints:

(define combine-equations-with-overlapl
(pde: equation-maker
(append-constraint-equations make-all-constraints)))

(define combine-equations-with-overlap2

(pde:equation-maker
(append-constraint-equations make-all-ordered-constraints)))

;;; Construct the domain of the PDE:

(define disc
(make-ball 2 make-spherical-sphere))

;; Construct the Laplacian. Note that OPERATOR:IMBEDDED-POLY-OP simply
;;; packages the operators left-op, right-op, and combine. This splits the
;;; Laplacian into two parts through integration by parts.

(define imbedded-poly-laplacian
(make-operator
disc
(operator:imbedded-poly-op
poly-gradient
poly-gradient
(lambda (v v) (basis:scalar* -1 (basis:dot v w))))))

;;; The true solution of Laplace's equation that we're trying to approximate:

(define (test-function node)
(let ((x (x-coord-map node))

(y (y-coord-map node)))
(- (square x) (square y))))

Having defined the necessary auxiliary procedures, we can now try to compute the
solution of Laplace's equation:

;;; Prepare the domain for FEM:

(define make-test-domain
(pde:make-simple-domain disc ;; The domain.

make-mesh ;; A generic vertex generator.
make-no-extra-nodes ;; No edge nodes, just vertices.
planar-triangulate ;; A generic mesh generator.

;; Some extra parameters:
'(rectangular 10 5)
'(spherical 5 10)))

(tesselating domain...)
;Value: make-test-domain

;;; Construct the elements and initialize finite element integrals:

(make-test-domain
;; The Laplacian we just constructed.
imbedded-poly-laplacian

;; Integrates directly in Euclidean space -- It cheats!
make-triangular-imbedded-integrator

;; Make some generic piecewise-polynomial basis functions.

pde:make-imbedded-poly-basis-function)
(constructing elements...)
(making 72 elements...)
process time: 4880 (4470 RUN + 410 GC); real time: 5744
(making 72 elements...)
process time: 4960 (4540 RUN + 420 GC); real time: 5761
(making 70 elements...)
process time: 4810 (4370 RUN + 440 GC); real time: 5616
;No value

;; Assemble the equations, generate constraints, and build the matrix
;;; equation:

(define mat1
(combine-equations-with-overlap1 disc ;; The domain again.

0-function ;; No source term.
test-function)) ;; The true solution.

(141 nodes generated...)
(setting boundary values...)
(computing 3 local systems of equations...)
(40 equations generated for 50 nodes.)
(40 equations generated for 50 nodes.)
(41 equations generated for 41 nodes.)
(merging local equations...)
(setting node ids...)
(generating constraints...)
(constructing a matrix of dimension (267 122) ...)
(copying 121 equations...)
(copying 146 constraints...)
process time: 13560 (12180 RUN + 1380 GC); real time: 20325
;Value: mati

;;; Try the other method:

(define mat2
(combine-equations-with-overlap2 disc 0-function test-function))

(141 nodes generated...)
(setting boundary values...)
(computing 3 local systems of equations...)
(40 equations generated for 50 nodes.)
(40 equations generated for 50 nodes.)
(41 equations generated for 41 nodes.)
(merging local equations...)
(setting node ids...)
(generating constraints...)
(constructing a matrix of dimension (235 122) ...)
(copying 121 equations...)
(copying 114 constraints...)
process time: 9800 (8860 RUN + 940 GC); real time: 14915
;Value: mat2

;;; Neither matrices are square, of course, because of the constraint
;;; equations:

(sparse-matrix-size mat1)
;Value 62: (267 122)

100

(sparse-matrix-size mat2)
;Value 63: (235 122)

;;; Use least-squares to solve these guys:

(define mat1 (sparse-normal-equations mati))
;Value: mati

(define v1 (sor mati 1000 1.9))
(residual: 5.731092683758376e-16)
;Value: vi

(define mat2 (sparse-normal-equations mat2))
;Value: mat2

(define v2 (sor mat2 1000 1.9))
(residual: 7.216449660063518e-16)
;Value: v2

Note that we tested both constraint-generation systems without having to recompute the

finite element integrals. This is one of the principal advantages of structuring the program

to exploit the modularity of the finite element method.

The numerical experiments consist of a series of 11 tests, with the number of nodes

ranging from 63 to 3,601; note that because some methods discard unnecessary nodes, the

actual number used for computation may change between methods. The code used to run

the numerical experiments themselves are very similar to what is shown above, and hence

will not be listed separately. Table 3.4.7 shows the statistics based on results generated using

make-all-constraints, while Table 3.4.7 shows the statistics for the results generated

using the other method.

Note that in both tables, the maximum absolute error remains fairly constant. This

may hint at a deeper reason for the method's failure. Such issues are discussed in the next

section, where this situation is analyzed a little more closely.

Figure 3-19 plots the average absolute error against the number of nodes using the data

from Table 3.4.7, while Figure 3-20 does the same for Table 3.4.7.

Figure 3-21 plots the true solution, while Figure 3-22 plots one solution obtained by

make-all-constraints. As one can see, they are qualitatively similar, even though nu-

merically the solution is fairly far off.

3.4.8 The problem with interpolation

As can be seen from the data in the previous section, neither of the methods work very well,

even though they employed relatively straightforward algorithms and obtained qualitatively

reasonable results.

101

Total number Absolute error Relative error
of nodes Maximum Minimum Average Maximum Minimum
121 0.186186 0.000346268 0.0321264 3.04321 -1.98107
253 0.174211 5.49186e-05 0.0296698 18.854 -79.1678
433 0.170829 3.3609e-05 0.0299808 11.44 -14.8512
661 0.167295 0.00010959 0.0310626 30.1526 -16.9254
937 0.163327 1.76278e-05 0.031479 38.7539 -44.89
1261 0.160884 3.38679e-06 0.0323654 53.2708 -52.5735
1633 0.160982 4.98298e-06 0.0327103 76.6556 -64.7096
2053 0.162743 7.24373e-06 0.0334327 102.64 -83.955
2521 0.163858 1.6586e-05 0.0342905 109.606 -131.524
3037 0.163727 8.36536e-06 0.0352394 153.382 -154.745
3601 0.165879 1.22342e-05 0.0365282 200.408 -188.901

Table 3.1: Statics of the results generated by make-all-constraints.

Total number Absolute error Relative error
of nodes Maximum Minimum Average Maximum Minimum
121 0.192343 0.000764133 0.0337441 2.17113 -1.65951
253 0.180941 5.30935e-06 0.029554 27.2596 -68.7197
433 0.166176 9.66714e-06 0.0281985 13.4546 -8.88716
661 0.16295 5.27949e-05 0.0291729 18.9087 -19.8467
937 0.15868 4.36369e-07 0.0294747 34.479 -23.4737
1261 0.158527 2.13021e-05 0.0300879 39.5776 -43.8798
1633 0.159253 4.22971e-06 0.0305563 58.4892 -56.2954
2053 0.157801 1.44311e-05 0.030769 62.5005 -86.9364
2521 0.159835 1.02857e-06 0.031765 108.839 -90.1434
3037 0.161139 1.10304e-05 0.032667 123.56 -132.926
3601 0.163639 1.53283e-06 0.033938 165.795 -163.194

Table 3.2: Statistics of the results generated by make-all-orderd-constraints.

102

n W

0.036

0.034

0.028
1000 2000

number of nodes
3000 4000

Figure 3-19: Average absolute error versus number of nodes. The results were generated
using make-all-constraints.

0.035

0.034

0.033

0.032

0.031

0.03

0.029

0.028
1000 2000 3000 4000

number of nodes

Figure 3-20: Average absolute error versus number of nodes. The results were generated
using make-all-ordered-constraints.

103

I ·

I i i g

V, f-ff

V.vAO

.............:
a/

I.

i

)3 R r ·

1

0.5

0

-0.5

-1
1

1

00

Figure 3-21: The true solution to the disc problem. Note that this plot is generated in a
fashion similar to Figures 3-5 through 3-12: The domain is divided into a simple square
grid, over which the sample values are averaged. This reduces the number of points to be
plotted. The surface generated is a hyperbolic paraboloid of one sheet, as expected.

1

00

Figure 3-22: The sample solution generated by using all possible constraints.

104

No constraints.

Too many constraints.

Figure 3-23: Enforcing too many constraints causes basis functions to become too dependent
on each other.

The main problem appears to be that the interpolation approach produces more equa-

tions than unknowns, which in general yields overdetermined systems of equations. There

are two consequences of this overdetermination: First, geometrically speaking, the basis

functions become too rigid. Becuase these methods enforced too many constraints on nodal

values in overlaps, the basis functions in different charts become very tightly dependent on

each other, and the approximate solution itself (which consists of linear combinations of

basis functions) becomes too "stiff" to conform to the real solution (see Figure 3-23). As a

result, much of the numerical accuracy is lost.

A second problem may be that in order to solve a large system of overdetermined system

of equations,

Ax = b, (3.32)

where the number of rows of A far exceeds its number of columns, one would normally have

to compute the normal equations:30

ATA = ATb. (3.33)

Now, this should look somewhat familiar. It is, in fact, our friend from §3.3.2, where the

3 0This is what the procedure sparse-normal-equations does. While there exist much better methods
for producing least-squares solutions to overdetermined systems, such as singular value decomposition (also
known as SVD; see [24)), they do not apply easily to large systems of equations. In order to use iterative
solution methods, the normal equations are the easiest way to facilitate the use of iterative solution methods
like relaxation on overdetermined systems.

105

Constrain I _ : L 03 -,

Figure 3-24: Only nodes near the edge in their own charts are allowed to become interpo-
lation nodes. This reduces the amount of "rigidity" in the approximate solution.

"transpose trick" was used in an attempt to make relaxation converge for a class of sparse

matrices. In this case, however, more than convergence is at stake: If A is not square, it

simply does not make sense to apply relaxation! But in multiplying A by AT, we have once

again made the system of equation even more ill-conditioned.31 Furthermore, the resulting

Gauss-Seidel iteration matrix again has a spectral radius close to 1, making convergence

extremely slow.

3.4.9 Other approaches to FEM on manifolds

How can we avoid the problems associated with overdetermined systems of equations?

There are a few alternatives. First, we can use more sophisticated methods of generating

constraint equations and choosing interpolation nodes, such as the methods proposed in

Chesshire and Henshaw [7] or Petersson [23]. While this will not avoid the necessity of

computing the normal equations, it does hold the hope of minimizing the effects of the

rigidity problem.

Improving interpolation methods

For the sake of completeness, let us take a brief look at how well these variations on inter-

polation methods work. The basic algorithms tested here are:

1. The idea of Chesshire and Henshaw, CMPGRD.

2. Same as make-all-ordered-constraints, except nodes in overlap regions are al-

lowed to become interpolation nodes if and only if they are near the chart's edge.

The second idea above attempts to create an interpolation geometry depicted in Figure

3-24. Contrast this with Figure 3-23, and one sees that this should help make the system

of equations less overdetermined while still propagating enough information to arrive at a

reasonable solution.

3 1That is, its condition number has been increased.

106

n naoU.Vtf

0.09

0.085

0.08

0.075
1000 2000

number of nodes
3000 4000

Figure 3-25: The results generated using Chesshire and Henshaw's CMPGRD algorithm.

0.036

0.034

0.032

0.03

n 9OQ
V.4 U

0 1000 2000 3000 4000
number of nodes

Figure 3-26: The results generated using the idea depicted in Figure 3-24.

107

· ·

I.-

.......

'L-

Figure 3-27: The idealized case, where charts do not overlap but intersect nicely along a
common edge.

Figure 3-25 shows the result of the Chesshire-Henshaw algorithm, while 3-25 shows the

results of using the second idea. The accuracy should have improved slightly. However,

relaxation converges sufficiently slowly that the improvement in accuracy, if any at all, is

probably lost in the noise.

A method that works

This section describes a method that actually works fairly well compared to the interpolation

methods of earlier sections. It avoids the problem of generating overdetermined systems of

equations, and the global matrix of equations it generates is guaranteed to be symmetric

positive-definite, and thus solvable by relaxation without having to worry about normal

equations and condition numbers. This method involves "pretending" as if the mesh were

global, even if it were not, and for this reason it is referred to as the "semi-local method"

here, even though by our earlier definition this is a strictly local discretization method.

The basic idea is simple: Suppose that charts, instead of overlapping, fit together like

jigsaw puzzle on the manifold along well-defined boundaries (see Figure 3-27).32

Suppose now that the ith node lies on the boundary between these two "charts." From

C1 the node obtains an equation of the form

i = aijuj + b, (3.34)

where the uj are the unknowns sample values, and the aij are the finite element coefficients.

Similarly, from C2 the node obtains:

32Actually, images of charts on manifolds are generally open sets, so they cannot intersect along a boundary
in the way described here. However, their closures can behave this way.

108

= aiuj' + b'. (3.35)

Now, consider what the constraint approach actually does: In this idealized case, the

node in question does not lie inside an element, but rather is also a node of the other chart.

Thus, the constraint approach must append the equation

u - ui = 0. (3.36)

This is equivalent to the system of two equations:33

ui (Ej aiuj + Z E aidu[+ b + b') ,ui 2 3(3.37)

But consider the finite element integrals in Equation (A.28) of §A.2.3: In order the

obtain the correct finite element equation over the whole mesh, the correct equation is the

top equation, which is the sum of the two contributions from the charts. In the context of

finite elements, the bottom equation makes no sense at all.34 Thus, the constraint approach

overdetermines the discretized system of equations, and the addition of this extra equation

destroys the accuracy of the approximation method in this idealized case.

This is a fairly clear indication that we should add the equations corresponding to the

same node in different charts. Furthermore, this generates one equation for each interior

node, instead of two as in the interpolation case. And, because of the form of the finite

element integrals in Equation (A.28), the matrix is guaranteed to be symmetric positive

semi-definite; invertibility then guarantees positive-definiteness.

Now, in general, charts willl not cover the manifold this nicely. However, we can always

try to make the overlap as small as possible (in terms of nodes shared by charts), and then

pretend as if we are in the idealized case and apply the equations above.

More formally, the following is the semi-local algorithm. Note that {Ci} is a given list

of charts.

1. Construct a set of nodes Ni for each chart Ci.

2. For each node n in Ni and for each chart Cj with j > i, check if n belongs to Cj. If so,

remove n from Ni. This completely removes the overlap (in terms of sample points)

between charts.

33These equations are obtained by identifying the variables ui and uý, and then taking the sum and the
difference of the two resulting equations contributed by the two charts.

34This can come about if the elements had opposite orientations, so that the integrals pick up an extra
minus sign.

109

Befo:

Trim &
paste

Figure 3-28: The closer a chart is to the bottom of the "stack," the more likely it will keep
its nodes. The lower nodes are then copied to the top charts. Intuitively, think of this as
cutting holes from the top charts, and then "pasting" them downwards onto lower charts.

3. For each remaining node n in Ni and each chart Cj with j < i, check if n belongs to

Cj. If so, make a copy of n and add it to Nj. This restores some overlap. Furthermore,

while this cannot guarantee that local meshes agree in intersections of charts, it does

guarantee that all charts share all nodes in overlap regions.

4. Triangulate and initialize elements; perform local FEM computation. The previous

step may have restored too much overlap, so the meshes may have to be "trimmed."

5. For each node n' of chart C', if it is a copy of some node n in another chart C,

then add the equation of n' in C' to the equation of n in C, and remove the variable

corresponding to n'.

Figure 3-28 depicts what the semi-local algorithm does to the overlap between charts.

Steps 2 and 3 above are carried out by the following implementation of the auxiliary pro-

cedures generate-node-lists:

;;; Generate lists of nodes for each chart, and then reduce the overlap:

(define (generate-node-lists make-nodes charts argl)

110

I

;; Generate a list of nodes for each chart, then loop over the charts. Note

;; that the earlier a chart is in the list, the less likely its nodes are to
;; survive.

(let next-chart ((charts charts)
(lists (make-nodes-for-each-chart
(result '())
(reversed '())
(count 0))

(if (null? charts)
(copy-overlap-nodes count result reversed)
(next-chart (cdr charts)

(cdr lists)
(cons (remove-overlap-nodes (car

result)
(cons (car charts) reversed)
(+ count 1)))))

make-nodes charts argl))

lists) (cdr charts))

(define (make-nodes-for-each-chart make-nodes charts extra-args)
(map (lambda (chart) (apply make-nodes (cons chart extra-args))) charts))

;;; Take out all nodes in NODES that belong to any of the charts in CHARTS.

(define (remove-overlap-nodes nodes charts)
(let next-node ((nodes nodes) (result '()))
(if (null? nodes)

result
(let* ((node (car nodes))

(p (node:get-point node)))
(let next-chart ((charts charts))
(if (null? charts)

(next-node (cdr nodes) (cons node result))
(if (chart:member? p (car charts))

(next-node (cdr nodes) result)
(next-chart (cdr charts)))))))))

For each node list in LISTS, take each node and see if it's in one of the
charts that come after the node's own chart in list-order. If so, make a
copy of that node and put it in the corresponding chart. Note that the
order of node lists is reversed.

(define (copy-overlap-nodes count lists charts)
(let ((v (make-vector count '())))

(let next-list ((lists lists) (charts charts) (i 0) (result '()))
(if (null? lists)

result
(let next-node ((nodes (car lists)))
(if (null? nodes)

(next-list (cdr lists) (cdr charts) (+ i 1)
(cons (append (vector-ref v i) (car lists)) result))

(let ((node (car nodes)))
(if (or (node:local-boundary? node)

(node:boundary? node))
(let ((p (node:get-point node)))

(let next-chart ((charts (cdr charts))
(j (+ i 1))

111

(1 (cdr lists)))
(if (null? charts)

(next-node (cdr nodes))
(let ((chart (car charts)))
(if (chart:member? p chart)

(let ((other (close-node p (car 1))))
(if other

(node:set-constraint! other node)
(vector-set! v j

(cons
(node:copy node chart)
(vector-ref v j))))))

(next-chart (cdr charts) (+ j 1) (cdr 1)))))
(next-node (cdr nodes))))))))))

;;; A kluge to make sure nodes do not become too close to each other:

(define close-node
(let* ((close-enuf? (make-comparator .01))

(too-close? (lambda (p q)
(close-enuf? (vector:distance p q) 0))))

(lambda (p 1)
(let loop ((1 1))
(if (null? 1)

(if (too-close? p (node:get-point (car 1)))
(car 1)
(loop (cdr 1))))))))

After this stage, the amount of overlap between charts (in terms of how many nodes are

shared) should have been reduced. But more importantly, the fact that nodes are shared

will help us construct the equations later.35 However, the amount of overlapping after this

stage may still be too much, so after triangulation it is necessary to "trim" the mesh a

bit. This is accomplished through the following implementation of the auxiliary procedure

process-complex:

;;; After filtering out nodes, local boundary information becomes useless...

(define (exact-overlap complex charts)
(kill-extra-nodes complex charts)
(resurrect-only-connected-nodes complex charts)
(keep-only-live-nodes complex charts))

(define (kill-extra-nodes complex charts)

;; Figure out which nodes to keep by looking at the overlaps:

(write-line '(processing ,(length (complex->vertices complex)) nodes...))

(let next-node ((nodes (complex->vertices complex)))

35Nodes are shared in the sense that if n belongs to a chart C1, and its location on the manifold also
places it in the chart C2 , then a node at exactly the same location exists in C2, and hence the two nodes
can be identified later on.

112

(if (not (null? nodes))
(let ((node (car nodes)))

(let ((p (node:get-point node)))
(let next-chart ((charts charts))
(if (null? charts)

(next-node (cdr nodes))
(let ((chart (car charts)))
(if (chart:member? p chart)

(let ((node (car nodes)))
(node:kill! node)
(node:set-local-boundary! node #f)
(next-node (cdr nodes)))

(next-chart (cdr charts)))))))))))

(define (resurrect-only-connected-nodes complex charts)

;; Only keep nodes that are connected to live ones:

(write-line '(figuring out overlaps...))

(let loop ((faces (complex->faces complex)) (keep '()))
(if (null? faces)

(for-each
(lambda (face)

(for-each
(lambda (node)
(if (not (node:active? node))

(begin
(node:set-local-boundary! node #t)
(node:resurrect! node))))

face))
keep)
(if (at-least-one-live-node? (car faces) charts)

(loop (cdr faces) (cons (car faces) keep))
(loop (cdr faces) keep)))))

(define (keep-only-live-nodes complex charts)

;; Figure out which faces/edges/etc. to keep:

(write-line '(processing complex...))

(let loop ((complex complex) (result '()))
(if (null? complex)

(reverse result)
(let inner-loop ((faces (car complex)) (okay-faces '()))
(if (null? faces)

(loop (cdr complex) (cons okay-faces result))
(let* ((face (car faces))

(list? (list? face)))
(if (or (and list? (not (memq #f (map node:active? face))))

(and (not list?) (node:active? face)))
(inner-loop (cdr faces) (cons face okay-faces))
(inner-loop (cdr faces) okay-faces))))))))

(define (at-least-one-live-node? face charts)
(memq #t (map node:active? face)))

113

This works much like the earlier routines: It removes all possible overlap, then "grows"

the mesh back a little bit. But because this stage occurs after the triangulation, the structure

of the mesh can be used to control how much overlap there is. And because the earlier stage

ensured that intersecting charts share nodes in overlap regions, this guarantees that this

geometric configuration is as close to the ideal situation in Figure 3-27 as possible.

The following definitions then combine the local equations into a global system of equa-

tions, and construct the top-level programs:

;;; Generate the sparse matrix by adding appropriate equations together:

(define (merge-equations domain equations)
(let ((nodes (manifold:get-nodes domain))

(count 0)
(mat #f))

;; First, assign IDs to nodes, and create the matrix:

(write-line '(creating matrix...))

(let loop ((nodes nodes) (i 0))
(if (null? nodes)

(begin
(set! count i)
(set! mat (make-sparse-matrix count (+ count 1))))

(let ((node (car nodes)))
(cond ((node:boundary? node)

(node:set-id! node 'boundary-node!)
(loop (cdr nodes) i))

((node:get-constraint node)
(node:set-id! node 'constrained-node!)
(loop (cdr nodes) i))

(else
(node:set-id! node i)
(loop (cdr nodes) (+ i I)))))))

;; Next, start filling in equations while keeping track of constraints:

(write-line '(copying equations...))

(let next-eq ((equations equations))
(if (null? equations)

(begin
(write-line '(done!))
mat)

(let* ((eq (car equations))
(i (node:get-real-id (equation:get-node eq))))

(sparse-matrix-set! mat i count
(+ (equation:get-constant eq)

(sparse-matrix-ref mat i count)))

(let next-term ((terms (equation:get-terms eq)))
(if (null? terms)

(next-eq (cdr equations))
(let* ((term (car terms))

114

Total number Absolute error Relative error
of nodes Maximum Minimum Average Maximum Minimum
63 0.105298 0.000442996 0.0131643 0.547058 -1.19462
130 0.0745854 0.000150227 0.00777591 2.99789 -10.7455
225 0.049322 0.00010038 0.00369715 0.991634 -2.70366
337 0.0532307 1.88416e-06 0.0067024 5.5545 -1.92022
485 0.0762939 1.29948e-06 0.00677602 22.5097 -7.5364
655 0.0420157 4.13828e-06 0.00207558 2.01222 -0.65778
843 0.0232905 1.88216e-07 0.00137413 5.82382 -1.90627
1062 0.0270354 7.00353e-07 0.0012742 2.89441 -0.983369
1297 0.0233997 4.69356e-06 0.00224749 3.20791 -9.62969
1562 0.0187541 1.03235e-07 0.00139054 0.542516 -1.62893
1862 0.0172077 7.19112e-07 0.000983776 6.20396 -2.05861

Table 3.3: Statistics of the results generated by the "semi-local method."

(j (node:get-real-id (term:get-node term)))
(val (term:get-coeff term)))

(sparse-matrix-set! mat i j (+ (sparse-matrix-ref mat i j)
val))

(next-term (cdr terms))))))))))

;;; Construct the top-level programs:

(define combine-equations-without-overlap
(pde:equation-maker merge-equations))

(define pde:make-domain-without-overlaps
(pde:domain-maker generate-node-lists exact-overlap))

Like append-constraint-equations, this program mostly performs the tedious task

of matrix construction. Overlaps between elements from different charts are a source of

error for this method. However, the algorithm very carefully reduces the amount of overlap

between charts to the minimum required for the merging process.

Table 3.4.9 shows the results generated by this method, while Figure 3-29 shows an

approximate solution generated this way.

What is more interesting is a plot of the relative error in Figure 3-30: By a compari-

son with Figure 3-16, one sees that the the areas with the highest relative error are very

much correlated with chart boundaries, which is where we would expect the errors to be

maximized.

Figure 3-31 shows a plot of the average absolute error versus the number of nodes,

which should be convincing evidence that this method, while not extremely accurate, does

converge to the true solution at a reasonable rate as the number of nodes is increased.

115

1

0.5

0

-0.5

-1
1

1

0 0

Figure 3-29: An approximate solution of the boundary value problem generated by the
semi-local method.

U.'

0.2

0.1

-0.1
1

0.5 0.5

0 0

Figure 3-30: The relative error for the solution plotted in Figure 3-29.

116

U.U14

0.012

S0.01a)

= 0.008

a0.006

0 0.004

0.002

n

0 500 1000 1500 2000
number of nodes

Figure 3-31: The average absolute error versus the number of nodes. The data is generated
using the semi-local methods, with the same parameters as earlier experiments.

3.5 Some comments on mesh generation

This section contains a few brief comments regarding the difficulty of triangulating man-

ifolds, and hence using global discretization methods, for integrating PDEs on manifolds.

In particular, a standard theorem of differential topology states that every manifold can be

covered by a mesh of "triangular" elements.3 6 More precisely, Munkres [18] presents a proof

that every manifold has the structure of a simplicial complex. The proof is constructive and

works by first triangulating each chart locally (in Euclidean space), and then refining the

triangulations on overlapped regions between charts so that they can be "pasted together."

While this construction is very suggestive from a computational viewpoint, there is a catch:

The proof requires the computation of the interesections between a large number of sim-

plicies. While this mostly involves only linear equations, and is in principle computable, in

practice this can be extremely expensive in terms of computational resources. Thus, the

mathematical proof does not actually supply a solution to the computational problem of

triangulating a manifold.

In fact, the merging of local meshes into global ones is the main bottleneck of the entire

process. As shown by the quickhull algorithm [6], one can always efficiently triangulate

convex subsets of Euclidean spaces. Thus, the only major problem is the merging of local

36In three dimensions, triangles become tetrahedrons, and in even higher dimensions they are called
simplices. A space that is formed by "pasting" together simplices is known as a simplicial complex.

117

A f%4 A ·

-

-

-

..........................

...

...

..........................

...

.........
I . 1- ; v

meshes into global ones.

One possible solution is to use abstractions other than manifolds to describe spaces with

complex geometries. For example, instead of building local coordinate systems that overlap

arbitrarily, one could imagine building complex spaces by deforming and "pasting" lines and

squares and cubes and other such topological objects. One can indeed build a large class

of spaces this way (in theory), and such spaces are called CW complexes. Differentiable

manifolds are all examples of CW complexes, so in principle one could use this abstraction

to do local triangulation and, because the pieces fit along the boundary exactly (instead of

in some hard-to-determine overlap), one could merge the meshes more easily.

One important thing to note is that, in the end, a decision on how spaces are con-

structed should be driven by actual applications because it is almost impossible to arrive at

a general computational framework for any class of numerical problems without a context.

For example, even though many computational geometry algorithms are restricted to low-

dimensions (2 or 3), for most structural engineering problems this is sufficient to generate

reasonable models. Furthermore, in fluid problems, the spatial dimension is often low, and

while the geometry of the domain is a significant part of the difficulty of simulating fluid

flows, it is not the only difficulty. The abstract manifold approach developed in this report

are probably most suited to solving problems from mathematical physics, where abstract

mathematical spaces are perhaps more commonly encountered.

3.6 Directions for future work

There are a number of alternatives that may help surmount the difficulties described in

earlier sections.

3.6.1 Improvements to finite differences

There are a few directions in which finite difference methods may be improved. One is to

develop better algorithms for solving large sparse systems of linear equations, so that the

unstable coefficients generated by finite difference techniques using irregular sample points

would become solvable.

A distinctly different approach would be to simply do finite differences on regular grids,

and to basically follow the Chesshire-Henshaw idea. While their idea works well for some

special problems, however, there are cases when their idea produces less reasonable answers.

For a discussion of this, see [23].

118

3.6.2 Improvements to finite elements

To improve the performance of finite element methods on manifolds, on the other hand,

probably requires more work. While FEMs work admirably well with irregular sampling

geometry, the complexity of the geometric problem of combining local equations into a

global system can be rather daunting, as was shown in this section. Clearly, much more

work needs to be done in this domain, and there are many variations on these ideas. Part

of the difficulty of this problem is that, in view of the variational formulation of Laplace's

equation, the problem of combining local equations is that of a constrained minimization

problem, which are often non-trivial. On the other hand, perhaps a standard technique like

Lagrange multipliers would work nicely for this case. There are many other things to try.

On the other hand, one of the difficulties that arises with the semi-local method is that it

gives charts little control over the geometry of their local meshes because nodes are copied

between charts. Thus, while the method produces reasonably good results and has nice

convergence properties, it does accumulate quite a bit of truncation error due to geometric

defects. It would be very useful to generalize the idea in a way that still allows regular local

grids, so as to minimize the effects of geometry on accuracy.

3.6.3 Other methods

Finally, there could be breakthroughs in mesh generation on arbitrary n-manifolds. Al-

though most current work have focused on low-dimensional problems because of their po-

tential applications in engineering and computer graphics, this is a rather active research

area and much is being discovered. A global finite element method should work rather

nicely on a manifold.

Or one could exploit the meshless methods developed by Duarte and Oden [11], which

explicitly build partitions of unity using discrete sample points without first generating a

mesh. This has the advantage that one does not need to think about combining meshes to

use these methods on manifolds. Furthermore, their method can utilize essentially Rayleigh-

Ritz or Galerkin approximations, so that the resulting linear equations are solvable by
iterative methods.

119

Chapter 4

Problems with Time

This topic of this chapter is the numerical solution of partial differential equations that

describe how certain physical systems evolve in time. Again, as in the solution of ellip-

tic boundary value problems on manifolds, it is possible to break this problem into two

components: First, we must have a way of locally integrating the PDE; and second, the

local solutions must be combined to form a global solution. It is also possible, of course,

to discretize the entire manifold first before solving the equations, but it will turn out that

the difficulties one must overcome in global methods are not all that different from those of

local methods. Because of the nontrivial nature of solving such equations even in the case

where the domain has trivial geometry, this chapter focuses on the local problem.

Standard PDE solvers generally perform finite element or finite difference approxima-

tions in space first, so as to compute the time derivative, and then step forward uniformly

in time at regular intervals-As one would with ordinary differential equations.' While this

approach works well enough for many problems, it is rather unsatisfactory philosophically:

We have good reason to believe that physical reality does not distinguish among time-like

directions, and that any time axis is just as fundamental and just as arbitrary as any

other. Thus, a coordinate-independent description of fundamental physical processes and

the equations that govern them should not depend on the existence of a unique time axis.

More pragmatically, there exist physical problems for which it is helpful to use different

frames of reference, and a properly coordinate-independent formulation of PDEs should not

be restricted to advancing along an arbitrarily chosen time axis. The use of regular time

steps implicitly gives the time coordinate a special status, which complicates any attempt

at coordinate-independent representations and solutions.

1A notable exception occurs in numerical general relativity, where the use of Regge calculus suggests
some interesting ideas for the work at hand. Einstein's field equations are very much beyond the scope of
this report, though, and will not be discussed here. For more information on Regge calculus, see Sorkin [26].
For a good introduction to general relativity, see Schutz [25].

120

One natural solution to this dilemma is the following: Instead of discretizing the spatial

dimensions and stepping forward in time, one simply discretizes the equation over spacetime2

and solve for the unknown solution over the entire spacetime region of interest in one step.

One might expect, for example, that standard finite element techniques may be applied

directly to the entire spacetime domain, and that the unknown solution can be solved over

all spacetime events by solving one very large system of algebraic equations.

Perhaps not too surprisingly, this simple idea does not work, even though there are

no obvious problems in the derivation. One reason for this failure is proposed in the next

section, and, in view of this proposal, various ways for improving the accuracy are suggested

in §4.3. §4.4 discusses some of the difficulties that arise in these improved methods, and

also presents some problems that spacetime methods must, in general, overcome. Finally,

possible directions for future research in this area are suggested in §4.5.

This chapter is more about open questions than solutions to well-posed problems, and

as such may be seem less coherent than earlier chapters. However, it is hoped that the

questions asked here will lead to other questions whose answers will some day shed light on

the mathematical, physical, and computational structures involved in understanding partial

differential equations. Also, because everything here is performed in subsets of Euclidean

space, explicit programs probably do not aid in understanding, and are thus omitted in this

chapter.

As in earlier chapters, the focus here will be on the simplest possible example that

exhibits interesting behavior, which in this case is the linear wave equation.

4.1 The linear wave equation

While Laplace's equation is arguably one of the most important PDEs, there are other

important equations that have fundamentally different behavior. One of these is the linear

wave equation. This equation describes, for example, the propagation of electromagnetic

waves in free space. It is therefore useful to identify one of the variables as time in some

frame of reference, and to define Dt = Dn+I so that time and space derivatives can be more

easily distinguished. The wave equation in (n + 1) dimensions (n space dimensions plus

time) is then:

(D2 - c2A)u = 0, (4.1)

where c > 0 is a real constant and A = V2 = j= 1 D? is the Laplacian operator over the

space variables. For concreteness, this discussion will be restricted to the case n = 1. In

2Spacetime is simply the set of all spatial positions of our space along with time indices. Points in
spacetime are often called events, and Figure 4-1 would be an example of a spacetime diagram.

121

this case, the wave equation also describes the behavior of a vibrating string with small

oscillations. For convenience, let us define Dx = D 1 so that A = D2 .

In constrast to Laplace's equation, the boundary value problem for the wave equation

is ill-posed. That is, it does not always have solutions for arbitrary boundary conditions,

and even when such solutions exist, they are often not unique. However, in the case when

n = 1 and Q is the unit square {(x,t) E R210 < X < 1,0 < t < 1}, one can specify initial

conditions

u(x, 0) = f(x), Dtu(x, 0) = g(x), (4.2)

u(O, t) = h(t), u(1, t) = k(t), (4.3)

for some prescribed functions f, g, h, and k. Then the wave equation does have a unique

solution. This is called the initial value problem.3

It is tempting to apply the finite element method directly to the initial value problem

for the wave equation. In particular, Galerkin's method may seem generally applicable.

However, there is good evidence that Galerkin's method, as presented in Appendix A, will

almost always do poorly for the linear wave equation. This does not, of course, imply that

finite element methods cannot be somehow adapted for the wave equation. First, though,

let us take a closer look at why boundary value problems are ill-posed for the linear wave

equation.

4.2 Initial value problems and characteristics

As stated in in the previous section, boundary value problems are ill-posed for the wave

equation. The root of this problem is the existence of "characteristic manifolds," which

describe the "propagation" of initial data. In this section, these notions will be examined

a little more closely. However, a close analysis of the ill-posedness of the boundary value

problem for the wave equation in terms of these concepts can be fairly complicated and

involves many technical details. 4 Thus, this discussion will instead focus on a simpler

example, from which we can derive some informal observations on the wave equation.

3Technically, this is known as a mixed initial-boundary value problem because it contains both initial data
in time (the top two equations) and boundary data in space (the bottom two).

4Specifically, this problem is ill-posed in that there is no generally applicable existence and uniqueness
theorem for such problems. On the other hand, for special cases of the wave equation over rectangular
regions, there are existence and uniqueness results for the boundary value problem. See Fox and Pucci [13]
and Payne [22].

122

4.2.1 Characteristic curves for a first-order equation

There are many equations for which the boundary value problem is ill-posed. Among these

are hyperbolic equations, for which initial value problems are well-posed.5 This is because

of the existence of characteristics, along which one cannot specify arbitrary values of the

solution and its derivatives of order less than m (where m is the order of the equation).

Equivalently, characteristics propagate data about values of the solution and its lower-order

partials, because the interdependence of the solution and its lower-order derivatives leads

to equations that determine the evolution of the solution along characteristics.

To illustrate, consider the first-order linear equation

(DA + cD,)u = 0, (4.4)

with constant c > 0. Defining the coordinate transformation f with inverse g by

f(x, t) = x - ct, f,(x, t) = t, (4.5)

gx((, 7) = + cr, gt(,Cr) = 7, (4.6)

we obtain the new equation

(Dt + cDx)u = (D,v o f)Dtf, + (Dcv o f)DtfC) +

c[(Dv o f)Dxfr + (Duv o f)Dxfg] (4.7)

= D,v o f - cDev o f + cDev o f (4.8)

= Dv o f (4.9)

=0, (4.10)

where v((, 7) = u(gx(ý, 7), gt (ý, -r)). Thus, under this coordinate transformation, the equa-

tion becomes Dev = 0, so that v is constant in T and depends only on ý. Thus, v(4, 7) = F(()

for some function F. Changing back to the old coordinates, this implies that a solution

u(x, t) of Equation (4.4) must take the form

u(x, t) = F(x - ct). (4.11)

Equivalently:

u(x, t) = u(x - ct, 0). (4.12)

SThere exist equations, such as the diffusion equation (Dt - kA)u = 0, where neither initial value nor
boundary value problems are well-posed.

123

Conversely, any differentiable function in the form (4.11) satisfies the original equation. So

the solution is completely determined by its values along the line t = 0. The initial values

u(x, 0) are thus "propagated" along the lines x = ct, which are called characteristic curves

(or simply characteristics). As shown above, one cannot specify arbitrary values at two

distinct points along the same characteristic. Thus, the boundary value problem for the

first-order linear equation (4.4) is, in general, ill-posed: Every characteristic intersects the

boundary of any bounded spacetime region at least twice,6 and admissible boundary data

are thus severely constrained.

4.2.2 Characteristics for general equations

Now consider an mth-order partial differential equation over an (n + 1)-dimensional domain

f2. Let S be an n-dimensional subspace of Q. In general, one can prescribe values for the

derivatives of order less than m on S, subject to some compatibility conditions-Partial

derivatives of orders less than m in directions tangent to S must satisfy the chain rule. 7

These compatibility conditions, together with the differential equation, usually produce

enough equations to determine all derivatives D'u of u with lal < m, including the normal

derivatives with respect to S up to order m. If this is true everywhere on S, then S is

said to be non-characteristic. If the equations are singular everywhere on S, then S is

characteristic.

Intuitively, information on a characteristic subspace S does not determine how the

solution evolves outside of S. Since the coefficients of linear equations8 formed by the com-

patibility conditions and the differential equation consist of combinations of the unknown

solution and their lower derivatives, the singularity of such a system of equations on a char-

acteristic manifold implies that the quantities are not independent of each other. These

constraints in turn determine derivatives tangential to the characteristic in terms of lower-

order normal derivatives and solution values, so that such data can be propagated along

6A "bounded spacetime region" is a subset of the spacetime domain that is bounded in spacetime, not
just bounded in space.

7Normal derivatives of order less than m can be specified arbitrarily. For a more coherent and less vague
exposition of this material, see John [16].

8The general nonlinear partial differential equation can be transformed into a quasilinear equation by
differentiating with respect to its highest-order derivative. A quasilinear equation is one that is linear in the
highest-order derivatives, but the coefficients may depend on the unknown solution and its lower derivatives.
Since the order of the equation is increased by this transformation, additional constraints can and must be
derived from the original data and appended to the new data. However, this allows us to define characteristic
surfaces for all equations.

This also shows why nonlinear equations are complicated: The characteristics of linear equations depend
only on the coefficients themselves, and thus are almost always well-defined. However, for nonlinear (quasi-
linear) equations, since the coefficients themselves can depend on the unknown solution and its derivatives,
the characteristic manifolds (and hence the directions of information propagation) depend on the particular
solution, thus complicating the problem tremendously.

124

Characteristics

t x
Domain of dependence

Figure 4-1: Characteristic lines of the wave equation. The interval on the initial line {t = 0}
bounded by characteristics is called the domain of dependence of the solution u at the given
point: The value of the solution at the "tip" of the triangular region bounded by the
characteristics (called an inverted light cone) can only depend on data in the domain of
dependence; nothing outside the interval can affect the solution at that point.

the characteristic via another differential equation.

For mth-order quasilinear partial differential equations L[u] = b, one can derive an

algebraic criterion for characteristics (only the result is stated here): Let L = Zfal<m AaD 1,

where the A, are functions of spacetime events, values of the unknown solution, and its

derivatives of order strictly less than m. Then S is characteristic if and only if for every

point p on S and non-zero vector v normal to S at p, the equation ElaI=m Aav" = 0 holds.

For example, in the case of the linear wave equation, v2 -c 2v2 = 0 must hold, so if a vector
v = (vx, vt) is normal to characteristics, then it satisfies vt = cvx or vt = -cvx. Thus, the

characteristics for the linear wave equation are the lines x = ct and x = -ct (see Figure

4-1). Because solution values along characteristics cannot be completely independent, we

see that the boundary value problem for the wave equation cannot be well-posed in the

strictest sense.

4.2.3 Variational principles revisited

We will now examine variational principles more closely, and to develop some tools useful for

analyzing the application of finite elements to the linear wave equation. It may be helpful

for the reader to review the material in Appendix A first, particularly the derivation of the

Rayleigh-Ritz method and its relation to Galerkin's method.

First, we need to derive a necessary condition for a function to minimize an action. Let

L : R5 - R be a differentiable function, which is called the Lagrangian density, and for any

125

real-valued function u on Q let -yu be the function defined by

'yu(x, y) = (u(x, y), Diu(X, y), D2u(x, y), x, y). (4.13)

Once again, define the action by

S(u) = L o u, (4.14)

and note that if L is defined by

L(u, v, w,x, y) = (v2 + w2), (4.15)

then the action S above becomes the action defined in Equation (A.21).

At this point, it is important to note that in what follows, it will be necessary to

differentiate both the function L, which has a 5-dimensional domain, and u, which has a

2-dimensional domain. To avoid confusion, in the rest of this section, differential operators

on functions over R 5 will be written as oi instead of Di; operators on functions over the

2-dimensional domain Q will continue to be denoted by Di.

To determine a necessary condition for action-minimizing functions, it is helpful to

generalize the idea of directional derivatives. Let h be any real-valued function that vanishes

on the boundary a0 of t. Consider the real-valued function of a real variable,

Vh(s) = S(u+ sh) = Lo u+sh. (4.16)

As in the case when u and h belong to a finite-dimensional vector space, Vh(s) computes

the function S along the one-dimensional subspace spanned by h. Hence, DVh(O) is the

directional derivative of S in the direction of h at u. If u is indeed a minimum of S, then

it follows that DVh(O) = 0 for all "directions" h. Differentiating Vh under the integral sign

yields

DVh(O) = (1L o.7y) h + (62L o /u) . (Dlh) + (3L o 7y) . (D 2h) = 0. (4.17)

Integrating by parts and noting that h vanishes on the boundary aQ gives us:

f (a1L o 7u-Dl(92Lo7 u) -D 2(3Lou)) -h = 0. (4.18)

This equation holds for all functions h that vanish on the boundary of (09, so the following

equation must hold:

D1L o yu = D1 (82L o yu) + D2(&3 L o ,u). (4.19)

126

With L define as in Equation (4.15), this gives us Laplace's equation.9

Note that even though the equivalence of the variational principle with Equation (4.19)

has historically been called the principle of least action, the derivation above really finds the

stationary points of the action functional. Thus, it is more appropriate to call it the principle

of stationary action, though in the case of Laplace's equation it really is a minimum action

principle.

4.2.4 Galerkin's method and the initial value problem

Let us now return to the question of applying Galerkin's method to the linear wave equation.

The main problem is that the wave equation arises from a variational principle, and that

Galerkin's method is equivalent to the Rayleigh-Ritz method. This would not be a problem
if one is interested in solving boundary value problems, for then the stationary points of the

action functional are solutions of the wave equation. But the boundary value problem for
the wave equation is ill-posed, as indicated in §4.2, and in most applications initial value

problems are more important. The difference between initial and boundary value problems
is that data are specified at different parts of the domain, and in the initial value problem
not all of the boundary of the domain has specified values. This geometric difference is
where finite element methods break down.

Specifically, let L be defined by

1
L(u, v, w,x,t) = 2(w2 - c2v 2). (4.20)

Using Equation (4.19), this generates the wave equation (4.1). But recall now that in the
derivation of Equation (4.19), one of the crucial steps is integrating by parts and using
the fact that the perturbation h vanishes on the boundary to get rid of boundary terms.
But such perturbations were natural because we were solving boundary value problems.
However, if one is interested in the initial value problem, then the appropriate class of
perturbations h should vanish on the set {x = 0} U {x = 1} U {t = 0}, and furthermore
Dth should vanish on the initial line {t = 0}. The function h can now be nonzero along the
subset {t = 1} of the boundary, and hence integrating by parts would not yield Equation

9Equation (4.19) may seem a bit unwieldy in our notation, but consider how one would write this in
traditional notation: One is tempted to simply write

L-- = OL + (L

But both L and u have x and y as arguments, and the notation o-2 does not distinguish between them. So
this equation is wrong! The correct way to write this in traditional notation requires writing out all the
arguments, which is an even bigger mess than Equation (4.19).

127

(4.18). Instead, it gives

/ (OiL o'yu - Dx(2L o u) - Dt(O3L o .u))h + (03L oyu)h = 0. (4.21)

Supposing u is continuous and has continuous first derivatives, the boundary term in Equa-

tion (4.21) vanishes for all h only if D3 L o y. = 0 for t = 1, which in the case of the wave

equation means Dtu(x, 1) = 0 for 0 < x < 1. This cannot in general be true. Therefore,

the boundary term is almost always nonzero, which implies that the integrand in the first

term is also nonzero, and thus u cannot satisfy the wave equation. 10

One can easily show that Galerkin's method for the wave equation is equivalent to finding

the stationary points of the approximate action, using an argument almost identical to that

of §A.2.4. Thus, in the limit as the finite element approximation becomes more exact,

the approximation constructed by Galerkin's method would converge to some stationary

point satisfying the initial conditions (if it converges at all). As shown above, this function

cannot satisfy the wave equation. In fact, one can derive lower bounds on the error using

the variational principle.

We can also strengthen the argument to show that if such a action-minimizing function

exists in the case of the initial value problem and has continuous first derivatives, then for

every point p = (x, 1) of the line {t = 1} such that Dtu(p) 5 0, the residual Dt2 - C2D2u

is unbounded in every neighborhood of p. Thus, u cannot even have continuous second

derivatives, and any solution that minimizes the action must contain singularities.

4.3 Variations on a theme of Lagrange

In view of the analysis above, there are a few natural variations on the Rayleigh-Ritz idea

that may help produce reasonable solutions to the wave equation. In particular, it is possible

to eliminate the boundary term from Equation (4.21), so that stationary points of the action

functional are indeed solutions of the wave equation. There are a few ways of accomplishing

this, and this section proposes two of them.11

4.3.1 Modifying the action principle

The first idea is to simply modify the Lagrangian density to change the form of Equation

(4.21), so that the boundary integral

=1 (3 L o y)h = 0 (4.22)

10That is, if such a stationary point u exists at all.
11Apologies are due to Professors Guillemin and Sternberg for borrowing the title of their book.

128

0.5

n
0 0.5 1 1.5

Figure 4-2: A typical cut-off function.

vanishes. This allows the rest of the derivation of Equation (4.19) to be carried through,

so that the stationary points of the action do exist and correspond to solutions of the wave

equation (or so one would hope).

More specifically, consider the following Lagrangian:

1
L(u, v, w,, t) = 1(c22 p(t)w), (4.23)

where p is a cut-off function, as depicated in Figure 4-2. Cut-off functions provide a nice

way to change the behavior of the differential equation in different regions of spacetime. In

this particular case, we wish to choose constants tl and t2 such that p(t) = 1 for all t < tl

and p(t) = 0 for all t > t2. For our purposes, set tl = , and t2 = 1. p then vanishes on the

final line {t = 1}.

We can apply Equation (4.19) to the Lagrangian density above, obtaining:

p(t)Dt2u(X, t) + Dp(t) -Dtu(x, t) - c2D 2u(x, t) = 0. (4.24)

Thus, for t < , the equation is just the linear wave equation. For 1 < t < 1, the

equation slowly changes until at t = 1, it becomes:

D2u(x, t) = 0, (4.25)

which is obviously no longer well-posed because it says nothing about the behavior of u

over time. Time ceases to have any meaning in this modified system after t = t2 = 1.
The boundary integral term that we wanted to eliminate becomes:

f (03L o -y1)h = p(t)Dtu(x, t)d = 0, (4.26)
because p was chosen to vanish on the line {t = 1}.

Note the characteristics are no longer straight lines, and hence the speed of the wave is

129

Figure 4-3: The characteristics of this modified wave equation. The top boundary is where
"time ends."

also no longer constant (see Figure 4-3). The top boundary, {t = 1}, is where the meaning

of time breaks down. The speed of propagation at time t:

cc(4.27)

Thus, the speed of the wave approaches infinity as time approaches t2.

Causality

Note that there is something suspicious about this method. After all, we are hoping to ob-

tain, via this trick, accurate solutions of the wave equation in the spacetime region {t < 1/2}

by modifying the equation in the region {t > 1/2}. How can changes in the future affect the

accuracy of solution in the past? Has some notion of causality been violated? Indeed, even

though this trick does not provide accurate numerical solutions, it does generate symmetric

systems of linear algebraic equations, which implies that unknown data from the future

does somehow affect the past.

The "solution" to this apparent paradox is that the finite element method really has

no built-in directionality. Thus, the Rayleigh-Ritz equations do not enforce any causal

structure in spacetime, but instead only gives correlations between sample points. In a

very informal sense, this can actually be advantageous: By correlating predications made

from past data with constraints imposed in the future, one might even hope to improve the

solution over the entire spacetime region of interest.

130

The Lorentz metric

The usual Lagrangian for the wave operator can be expressed in terms of the Lorentz

metric:12

L(u(x, t), Dxu(x, t), Dtu(x, t), x, t) = 2[c2(Dzu(x, t))2 - (Dtu(x, t)) 2] (4.28)

= 29g*(du(x,t), du(x,t)), (4.29)

where g is the metric tensor, g* its dual metric on the dual space, and du(x,t) denotes, as in

Chapter 2, the differential of u at (x, t).

This has several consequences. First, it gives us a coordinate-independent way of de-

scribing the wave equation on arbitrary manifolds equipped with a Lorentz metric: Because

metric tensors and differentials are already coordinate-free objects on manifolds, Equation

(4.28) gives a coordinate-free way of describing the Lagrangian. Now, the variational prin-

ciple itself can also be stated in a coordinate-free way, since integration of scalar functions

can also be defined with respect to a Lorentz metric, as was done for Riemannian metrics in

§3.4.1.13 So using this Lagrangian and Equation (4.19) gives us a consistent way of gener-

alizing the wave equation to Lorentz manifolds.14 In the usual case of Euclidean spacetime

with the flat metric, this gives us the usual wave equation.

Furthermore, this description also tells us what we are really doing when we put the

time-dependent factor p into the Lagrangian density: The metric itself is being made time-

dependent! Thus, spacetime is no longer flat, and Equation (4.27) shows that the "speed of

light" becomes infinite in a finite amount of time in this coordinate system (see Figure 4-3.

This may seem problematic from a physical point of view, and it is. It introduces curvature

into spacetime and may even violate some conservation laws due to the coarseness of the

discretization. The numerical results of the next section show that this method does not

work very well.

12 This section supposes some familiarity with relativistic concepts.
13Symmetric nondegenerate tensor fields, such as Lorentz metrics, are known as pseudo-Riemannian met-

rics. Because they have orthogonal eigenvectors, the basic argument that defined integration on Riemannian
manifolds also works on any pseudo-Riemannian manifold: The key result is the fact that with respect to
a Lorentz metric, we can define orthonormal bases, which are orthogonal basis vectors with magnitude ±1.
Then the matrix representatio of bases are also orthogonal matrices, and their determinants are ±1. Taking
absolute values defines local integrals consistently.

14Compactness is required for computing the action, but not for computing Equation (4.19) in local
coordinates.

131

Number Absolute error Relative error
of nodes Maximum Minimum Average Maximum Minimum

14 3.46339 0.00629682 1.36863 5.65633e+16 -4.27969e+15
27 17.2273 0.577482 7.74683 55.7488 -45.7939
44 7.10821 0.365194 3.23993 1.98809e+15 -9.46197e+16
65 4.34967 0.211686 2.05495 11.2617 -14.2968
90 2.5196 0.0978345 1.06008 1.5842e+15 -3.17402e+16
119 2.05826 0.034336 0.820245 9.95072 -10.4461
152 3.05573 0.0313615 1.13394 1.45998e+16 -2.40796e+16
189 8.72154 0.157251 3.54988 31.5282 -44.0292
230 3.31555 0.0326151 1.20425 4.68941e+15 -2.98963e+16
275 2.48151 0.0037325 0.881522 11.2937 -11.9207
324 2.22377 0.000174037 0.753538 5.73477e+14 -2.11547e+16
377 2.01804 0.00592493 0.675755 8.69369 -12.2134
434 1.99763 0.000252334 0.634148 3.13461e+14 -1.5434e+16

Table 4.1: Statics of the results generated by modifying the wave equation.

Numerical reults

In order to perform actual numerical experiments, it is necessary to choose a specific cut-off

function. The actual p used is:

p(t) = Po - tl (4.30)

where po is defined by:

po(t) { 2t3
17,

- 3t 2 + 1,

0,

t < tl,

tl • t < t2 ,

t2 < t.

(4.31)

The function p has the following properties (see Figure 4-2):

p(ti) = 1,

Dp(ti) = 0,

p(t2) = 0,

Dp(t 2) = 0,

so that it provides a fairly smooth transition between the linear wave equation (in the range

t < t1) to the degenerate equation (4.25) (in the range t > t2).
Table 4.3.1 shows the data from numerical experiments performed using this method.

It is unclear why the relative error jumps between entries, but it may have to do with

accidental geometric configurations (i.e. the placement of nodes in the charts and how they

overlap), since these jumps also exist in Table 4.3.2. The statistics are only collected over

132

(4.32)

7
L-

o

2

1

0 100 200 300 400 500
number of nodes

Figure 4-4: Average absolute error versus number of nodes.

those nodes for which t < 1/2, i.e. in the region where the modified equation agrees with

the wave equation. The true solution, in this case, is:

u(x, t) = cos(27r(x - t)), (4.33)

where c was set to 1 for convenience. The discretized equations are solved directly using

LU decomposition with partial pivoting.

Figure 4-4 plots some of the results of Table 4.3.1. Clearly, this method does not work

very well, although it does appear to slowly converge to the true solution.

Figure 4-5 plots the true solution of the wave equation over this square domain, while

Figure 4-6 plots the solution generated by this method. As one can see, this method

produces solutions that are only vaguely similar to the true solution in a qualitative sense.

Figure 4-7 shows the absolute error distribution, which is sufficiently structured to lead

one to suspect the existence of deeper causes of error and possible ways of improving the

performance of this method. However, what those causes should be is not entirely clear. 15

A discussion of possible reasons for the poor performance of this method is postponed

until §4.4.1. First, let us take another look at a different approach to eliminating the

troublesome boundary term in Equation (4.21).

15Noting the jumps in relative error in alternating entries of Table 4.3.1 and its similarity to Table 4.3.2,
the problem does seem to be related to the parity of the mesh used.

133

0.5

0

-0.5

-1
1

1

00

Figure 4-5: The "true" solution to the wave equation given in Equation (4.33).

00

Figure 4-6: The approximate solution generated by this method.

134

1.5

1

0.5

0
1

1

00

Figure 4-7: The absolute error. Note that this error is very structured, and hence hints at
a deeper cause.

4.3.2 Modifying the domain

The second idea depends on modifying the geometry of the domain so that the "final

line" {t = 1} does not exist at all (see Figure 4-8). More specifically, we extend and modify

the geometry of the domain by "attaching" a triangle to the original spacetime domain.

It is important to ensure that the triangular part of the domain has sides whose slopes

are greate than 1/c; this makes sure that the boundaries remain timelike, so that boundary

conditions can be imposed without making the problem ill-posed. With respect to Equation

(4.21), this means the boundary term would no longer exist because boundary data would

Figure 4-8: Attempting to eliminate the boundary term in equation (4.21) by changing the
shape of the domain.

135

be imposed over the entire boundary.

Geometry and metrics

At first glance, this method and that of the previous section may seem very different: One

modifies the wave equation but does not modify spacetime itself, while the other changes

the shape of the domain without modifying the equation. However, the two are really more

similar than they seem.

Let X1 be the rectangular spacetime of Figure 4-3, and let X2 denote the "house"-shaped

spacetime of Figure 4-8. Consider the comments of §4.3.1: The wave equation really arises

from the metric of spacetime, and the method of the previous section works by introducing

curvature into spacetime. On the other hand, the "geometric method" of this section seems

to have deformed the space without modifying the metric. But X 1 and X 2 are topologically

equivalent-i.e. One can be continuously mapped onto the other bijectively. Thus, we can

always map the oddly-shaped X2 onto X1 via a continuous transformation 4.
Now, this mapping has an inverse ¢-1 : X 1 -+ X2 that is also smooth. By using its

differential 16, we can "pull back" the flat metric from X2 onto the space X1:

g (v, w) = g2 (d (v), doq 1 (w)), (4.34)

where gi is the metric of Xi, p E X 1, and q = -1'(p) E X2 . The "pulled-back" metric g'

then induces a dual metric (gl)*, which can be used to produce the modified wave equation

on X1 that is equivalent to the "flat" wave equation on X2, in the sense that:

u1((X, t)) = u2(x, t), (4.35)

where ui is the solution of the wave equation associated with the Lorentz metric g, on the

space Xi.

While X2 has a flat metric g2, the metric g' induced by 0 on X 1 is in general not flat,

because the transformation 0 is generally nonlinear. Thus, we see that this new method

really can be thought of as just another way to modify the metric of spacetime. The

modification, of course, differs from that of the previous section, and generates much more

complicated characteristic curves.

One important thing to note is that one can only go so far in modifying the geometry

of a space by changing its metric-The topology of the manifold will always stay invariant if

the metric is smooth everywhere, even though the geometry changes. In order to generalize

16It should be clear the we can choose 0 so that it is continuous almost everywhere, except at the corners
on the boundary of X 2 . Similar comments apply to 0-1

136

Number Absolute error Relative error
of nodes Maximum Minimum Average Maximum Minimum
6 14.2485 1.74795 9.29633 1.35509e+17 -14.2485
20 3.89164 0.138369 1.95244 7.78328 -4.68721
42 0.627265 0.00518237 0.247108 1.02444e+16 -6.52581e+15
72 3.24599 0.00177442 1.1747 10.5042 -5.74983
110 0.289144 0.00082902 0.0979768 2.97096e+15 -7.02175e+14
156 0.318759 6.53735e-05 0.12427 1.18395 -1.43249
210 0.194245 0.000291551 0.084536 3.06143e+15 -4.19103e+14
272 0.0736915 0.000189996 0.0240319 0.286878 -0.300047
342 0.0496121 3.03278e-05 0.0153055 2.52581e+14 -1.80042e+14
420 0.149277 1.30728e-05 0.0369261 1.04892 -0.677157
506 0.0927114 0.000108788 0.0293263 5.23132e+14 -1.48843e+15
600 0.812075 0.000495892 0.320429 3.90818 -6.36069
702 0.0492277 5.3695e-07 0.0108849 1.4358e+14 -2.39808e+13

Table 4.2: Statics of the results generated by modifying the spacetime domain.

this particular idea of deforming the spacetime domain to equations on more complicated

manifolds, it may be necessary to apply topological transformations as well, so that this

method would no longer be simply a variant of the algorithm presented in the previous
section.

Numerical results

Table 4.3.2 shows the data collected using this method. The first few entries were ob-

tained using LU decomposition, but such direct methods fail for larger systems of equations,
so relaxation had to be used. Since the wave operator does not produce symmetric positive-
definite matrices (as does the Laplacian), it is necessary to generate the normal equations by

multiplying the matrix with its own transpose. Thus, the accuracy of the solution obtained

by relaxation is rather limited (see §3.3.2). However, despite these difficulties, this method

clearly outperforms our previous attempt.

Figure 4-9 plots the average absolute error against the number of nodes. As one can

see, this method works much better, although it still leaves much room for improvement.

Figure 4-10 shows the approximate solution generated this way, and Figure 4-11 shows

the absolute error between this solution and the solution shown in Figure 4-5. Note that
the solution in Figure 4-10 is at least qualitatively reminiscent of Figure 4-5.

For this particular method, there is one more parameter we can control: The only
constraint on the slope of the triangular "extension" to our domain is that its sides have
slope greater than 1/c. Thus, the slope of the sides can be varied, which affects the accuracy

137

101

'..

10
0

0a)

O

D 1010

n - 2

200 400 600
number of nodes

Figure 4-9: Average absolute error
modifying the domain of solution.

versus number of nodes. Results are generated by

1

00

Figure 4-10: Approximate solution generated by extending and changing the shape of the
domain.

138

800
,,

0.06

0.04

0.02

0
1

1

00

Figure 4-11: The absolute error between Figure 4-5 and 4-10.

Boundary Absolute error Relative error
slope Maximum Minimum Average Maximum Minimum
2.0 0.0492277 5.3695e-07 0.0108849 1.4358e+14 -2.39808e+13
2.1 0.021287 8.38556e-06 0.00718122 1.62293e+14 -1.168e+14
2.2 0.104445 0.000264129 0.0333464 8.29833e+14 -7.40989e+14
2.3 0.204355 0.000355765 0.0454508 1.09504e+15 -8.71415e+14
2.4 0.0987477 6.25076e-05 0.0366781 1.18056e+15 -7.67629e+13
2.5 0.0390811 3.05883e-06 0.00954907 2.82624e+14 -2.05056e+14
2.6 0.0415744 1.61621e-05 0.0103743 4.5445e+13 -2.62967e+14
2.7 0.563769 0.000158676 0.22424 5.51249e+15 -3.11361e+14
2.8 0.738567 1.63661e-05 0.252891 7.57622e+15 -1.83677e+15
2.9 1.12121 0.000821135 0.309993 7.87134e+15 -6.65048e+15
3.0 0.858581 6.42513e-05 0.270326 6.98004e+15 -3.78587e+15

Table 4.3: Statistics obtained by varying the size of the triangular region added.

139

L-
0

oL_

CD

CD
0)
O)COCD

CD

2 2.2 2.4 2.6 2.8 3
slODe

Figure 4-12: The relative error between Figure 4-5 and 4-10.

of solution. Table 4.3.2 shows this data.

Figure 4-12 plots this data. As one can see, there is no clear indication of how one

choose the slope to minimize the error.

4.4 Difficulties with the spacetime approach

This section offers some tentative explanations for the failure of the ideas from the previous

section. Furthermore, we will discuss some issues faced by spacetime methods in general.

4.4.1 Why the variations failed

It turns out that both of the methods described above probably fail for the same reason:

Numerical solvers for the wave equation (and all hyperbolic equations) seem to depend

rather sensitively on the geometry of characteristics. In particular, it is often necessary

to ensure that information is "propagated" in characteristic direction. Very informally, in

terms of finite elements, this means that every node is connected to at least one neighbor in a

characteristic direction, so that at least some information is propagated along characteristic

lines.

Now, while this condition holds true for both methods over some regions of spacetime,

it fails for both methods after some time tcrit: For the first method, tcrit = tl = 1/2 because

the slope of characteristic curves change after that time but the mesh stays the same. For

140

h Clr

the second method, tcrit = 1 because after that, the mesh changes to match the shape of

the triangular region. Note that this indicates that we should try to choose the slope of the

extended triangular region in the second method to be as close to 1/c as possible, and also

offers a hint of why the second method performs better than the first.

One might wonder how changes in characteristics or mesh geometry after tcrit affects

the accuracy of the solution before tcit. The answer is that the comments on causality in

§4.3.1 apply to both methods: Because the finite element method has no built-in notion

of time and provides only correlations between past and future events, errors arising from

inconsistencies between the mesh and characteristics after tcrit naturally affect the accuracy

of solution before t.rit.

4.4.2 Other problems

Aside from that of accuracy, there are other problems associated with applying spacetime

methods to hyperbolic PDEs. One of the most serious is the computational resources

required: While standard finite difference methods (or finite element methods with regular

time steps) need only keep in memory the data associated with the current time step, plus

or minus a few neighboring steps, spacetime methods-by their very nature--require all of

the data over the spacetime domain. This can be costly in terms of storage requirements

if the domain is large. For example, if one needs to understand both the short-term and

long-term behavior of solutions, the spacetime region is likely to require a large number of

sample points to represent.

Yet another issue is the solution of the discretized equations. Unlike Laplace's equation

(or elliptic equations in general), hyperbolic equations almost never generate systems of

linear equations that are solvable by relaxation directly. It is for this reason that we were

forced to compute the normal equations before applying relaxation to produce Table 4.3.2.

While direct methods work fairly well, they are limited by the size of the system one can

solve, and in view of the comments above, one can see that spacetime methods can easily

generate very large systems of equations.

One last issue is the solution of "true" initial value problems: As stated before, the

particular version of the wave equation considered here is a mixed initial-boundary value

problem because space, in our case, has finite extent, and both initial values in time and

boundary values in space are given. In simulating the propagation of electromagnetic waves

in free space, it would be necessary to understand how to simulate large space domains,

since finite elements can only work for compact domains.1"

17For such problems, it is necessary to consider absorbing boundary conditions, which help make space
"look" infinite using a finite number of spatial sample points. For more information, see Engquist and Majda
[12].

141

4.5 Directions for future work

Aside from the difficulties mentioned in the previous section, there are other issues of interest

here. For one thing, the derivation of Equation (4.19) from the variational principle makes

no reference to the initial data Dtu(x, 0) = g(x), only the boundary data. Furthermore,

the existence and importance of characteristics never arises, even though the variational

principle is an equivalent way of formulating the wave equation. One natural question, then,

is this: Is there a way to analyze the Lagrangian density itself, perhaps as a by-product of the

tools used to derive Equation (4.19), that clarifies the importance of characteristics? And

why does the initial time derivative not matter in the derivation? What is different between

variational principles for PDEs and ODEs, such that the Euler-Lagrange equations hold for

ODEs, even though it is initial value problems that are of interest in classical mechanics?

Yet another interesting direction, though only tangentially related to this topic, is that

of information propagation. This idea has been mentioned informally throughout this chap-

ter; it would be very interesting to formalize it. In particular, can we compute how much

information is "propagated along characteristics"? Is there a way to understand the well-

posedness of initial value problems for the wave equation, as well as the ill-posedness of

boundary value problems, in terms of information propagation? What connections, if any,

exist between information propagation and the Lagrangian density? Finally, how is infor-

mation propagation in the PDE itself related to information propagation in the PDE solver,

and can we use such ideas to estimate numerical accuracy?

It is the author's hope to follow up on some of these questions, and that they may lead

to a deeper understanding of hyperbolic equations in general (both linear and nonlinear),

and the wave equation in particular.

142

Appendix A

Background Material on Partial
Differential Equations

Two general classes of numerical methods for solving partial differential equations are finite
difference methods and finite element methods. While other methods, such as spectral
decomposition methods, are very effective in special situations, they do not have the general
applicability of finite differences and finite elements.

Finite difference methods are very simple. They depend upon the approximation of
derivatives by difference quotients. For example, we know from differential calculus that
the forward difference

f(x + h) - f(x)(A.1)
h

approximates the derivative of f at x for sufficiently small h. Finite difference methods
are very popular because they are easy to understand and program, and generally run very
efficiently on most computers. However, they often depend sensitively upon the particular
way in which the domain is discretized, and can easily become numerically unstable. As a
result, the literature is full of long, excruciating analyses of convergence criteria and error
estimates. The reader will not be subjected to such tortures here.

Instead, this appendix treats finite elements in more depth. This will bring out several
important ideas in the theory of partial differential equations along the way.

A.1 Matrix inversion

Before all else, one should know that the numerical solution of partial differential equations
generally involves the solution of large systems of linear algebraic equations. Thus, it is
useful to first examine some of the more popular methods for solving such systems of
equations, and to keep these methods in mind throughout the rest of this appendix and
the report itself. The reader is assumed to have some knowledge of elementary linear
algebra, including familiarity with direct methods such as Gauss-Jordan elimination and LU
decomposition (which terminate after a finite number of operations). This section describes
some basic iterative methods.

A.1.1 Iterative methods and relaxation

The basic problem is this: We wish to solve a system of linear equations:

143

Ax = b, (A.2)

where A is an n x n matrix and x, b are n-vectors, and where n is a large positive integer. For
such problems, direct methods such as Gaussian elimination or LU-decomposition require
too much space and time to be useful.

One way of computing the solution x is by noting that x is the fixed point of the system
of finite-difference equations:

Xk+1 = (I - A)xk + b, k = 0, 1, 2,... (A.3)

Iterating the equation above generates a sequence of vectors {xk, k = 0, 1, 2, ...}. If
the sequence converges, then one would obtain a solution to the original linear system of
equations (A.2). Letting B = I - A in the above equation, it follows by induction that:

k-1

Xk = Bko + E Bib, (A.4)
i=O

where by convention Ei-1o B i = 0. B is called the iteration matrix, and the sequence {Xk}
converges to the solution x for all initial conditions x0o if and only if limk-,, B = 0 and
the infinite series EZ=o B' converges. One could then show that this holds if and only if the
spectral radius p(B) is less than 1.1

A.1.2 Jacobi iteration

For general A, the iteration matrix B = I - A often has large eigenvalues, so the iteration
would not converge. However, there are some modifications that do produce convergent
iterations in many instances. These iterative methods, where a difference equation B is ob-
tained from the matrix A and then iterated, are called relaxation methods. In the following,
let L denote the off-diagonal lower-triangular entries of A, let D denote the diagonal entries
of A, and let U denote the off-diagonal upper-triangular entries of A, so that A = L+D+U.

The simplest among these methods, called Jacobi iteration, simply normalizes each row
of the matrix by the diagonal entries, so that instead of B = I - A, one has:

B = I - D-1A = -D-1 (L + U). (A.5)

In components, this is equivalent to:

xk+1(i) = - = ai () + a(A.6)
aii

Thus, one could perform the iterations rather efficiently if the matrix is sparse; i.e. has a
large number of zeros. This method, of course, does not always converge, and Vichnevetsky
contains a discussion of such issues [27].

'The spectral radius of a matrix A is the maximum among the absolute vaules of the eigenvalues of A.

Those familiar with some point set topology should notice that this criterion is equivalent to saying that the

function defined by f(x) = Bx + b is a contraction mapping.

144

A.1.3 Gauss-Seidel iteration

A slight variation, called Gauss-Seidel iteration, uses:

xk+l(i) = - Ejj% a 1ijxk+(j) - ELji+1 aijXk(j) + E j (A.7)
aii

That is, instead of updating all components xk(i) synchronously, the new components are
used as soon as they become available. In matrix form, this means:

(L + D)Xk+l + UXk = b, (A.8)

or

Xk+1 = -(L + D)- UXk + (L + D)-lb. (A.9)

This method is somewhat better than the Jacobi method in that it updates the compo-
nents successively instead of synchronously, so the storage requirements are less stringent
and programs are generally more compact and efficient. However, one should be careful in
using these methods because their convergence properties are different, although for a large
class of problems they both converge.

A.1.4 Overrelaxation

These iterative methods are, in general, relatively slow. In order to speed up the conver-
gence, one often uses overrelaxation techniques by taking larger "steps" in each iteration.
For Jacobi iteration, this means using:

Xk+1 - Xk = CO((I - D-'(L + U))Xk + D-lb), (A.10)

or

Xk+1 = ((1 - C)I - CD-I(L + U))Xk + ID-lb. (A.11)

The number Cj is called the overrelaxation factor when 1 < C < 2, and called the
underrelaxation factor when 0 < C < 1. One could show that the iteration must necessarily
diverge (that is, the spectral radius of the resulting iteration matrix B must be greater than
1) unless 0 < C < 2. However, the converse does not hold: 0 < ~ < 2 does not guarantee
convergence.

For Gauss-Seidel, a similar derivation yields:

Xk+1 = ((1 - c@)I - O(L + D)-1 U)Xk + O(L + D)-lb. (A.12)

This is known as successive overrelaxation.

A.2 A brief introduction to finite elements

A.2.1 Introduction

This section briefly summarizes how numerical solutions of partial differential equations
can be computed using the finite element method. In particular, it contains a derivation of
the standard discretization of Laplace's equation in two dimensions. Most of this material

145

comes from Vichnevetsky [27]; it is an excellent introduction to numerical methods for
partial differential equations. Johnson [17] also contains a clear and more detailed account
of finite element methods. For an analytical approach, the opening chapters of Fritz John's
text [16] offer a good introduction. The classic treatise on partial differential equations is
Courant and Hilbert [10], which may be too encyclopedic to serve as an introduction but
contains a lot of good stuff. A very brief but clear survey article appears in the McGraw-Hill
Encyclopedia of Science & Technology [5].

Notational and mathematical conventions

This section will not rigorously define such terms as open set, closed set, and boundary,
since these topological concepts should be fairly intuitive in this setting. It will only define
some notations and terms not commonly covered in introductory calculus courses.

The boundary of a region Q is denoted by 80, and its closure !I is defined as the union
of Q and its boundary. Given a real-valued function f over Q, its support is defined as the
closure of the subset of points over which f is nonzero, i.e. the set {x E ilf(x) : 0}.

For the sake of precision (which is important for turning ideas into programs), functional
notation will be used wherever appropriate. Thus, the integral of a real-valued function f
over open set Q is

j f, (A.13)
instead of

nf (x, y)dxdy. (A.14)

That the above is an area integral should be clear from the context, since Q is an open subset
of the plane. Similarly, differential operators will operate on functions, not expressions.
More precisely:

d 0 8n
-f(t) = (D f) (t), f(x, y) = (Df)(x, y), f(x, y) = (D)f(x, y), (A.15)
dt Ox

and so on. And, unless otherwise specified, all functions considered here will be continuously
differentiable up to whatever order is required in its context. Note that, for emphasis, the
derivative of a function evaluated at t was written as (Df)(t) above, but in general the
differential operator D takes precedence over functional evaluation, and (Df)(t) = Df(t).

One last bit of notational convenience is the multi-index notation. A multi-index a is
an n-tuple of non-negative integers (al, a 2, ... , an). Given an n-vector x, define xa to be

x'• x 2 ... Xn. Also, define the gradient operator V = D = (Di, D2,..., Dn). Then D
gives us a useful way to denote the differential operator Dal...D.Dan For convenience, define
lal to be al + ... + an.

A.2.2 Partial differential equations

Before a discussion of algorithms for solving partial differential equations, some terminology
and examples are needed. The focus here is on scalar differential equations, though some
of these methods generalize to systems of equations.

146

Basic definitions

A partial differential equation for a real-valued function u of n real variables is a relation of
the form

F(x, u(x), D u(x), ..., Dnu(x), D u(x), ...) = 0, (A.16)

where F is real-valued function of finitely many real variables and x denotes a real vector
with n components. A function u is a solution of the PDE over the domain Q if it satisfies
Equation (A.16) for all x in Q. F constrains the value of the solution u and a finite
number of its partial derivatives, and may depend on the coordinates. The order of a
partial differential equation is the order of the highest-order partial derivative that appears
in Equation (A.16). Depending on the specific function F, Equation (A.16) may have no
solution, a unique solution, or more than one solution; the existence theory for solutions of
partial differential equations is a large and complicated subject, and this report makes no
attempt at presenting it. An mth-order PDE is linear if it can be written as

SADau = Lu = b, (A.17)

where the coefficients A, of L, as well as b, are functions of the coordinates. This class of
equations will be the most important to us.

Many equations arising from applications have infinitely many solutions, so one must
prescribe additional constraints to obtain unique solutions. For an equation of order m
on a domain of dimension n, these constraints usually involve specifying the values of the
solution and its derivatives of order less than m on some (n - 1)-dimensional subspace
of the domain of solution. If a partial differential equation along with a constraint has a
unique solution, the problem is said to be well-posed.2 As we shall see, different types of
equations require different constraints to have existence and uniqueness of solutions. For
example, some constraints make the equation overdetermined; that is, there may not be a
solution of the differential equation that satisfies the given constraint. On the other hand,
some constraints may make the equation underdetermined, and there may be more than
one solution. In these cases, the problem is said to be ill-posed.

This section deals with equations over open subsets 0 of the plane (n = 2). Moreover,
it concentrates on equations that are linear and homogeneous with constant coefficients:

aDu2 + bDiD2u + cD2U + dDlu + eD 2 u + fu = 0, (A.18)

where a, b, c, d, e, and f are arbitrary real constants. Slightly more general equations are
treated later.

Laplace's equation

Here are, without proof, a number of facts regarding Laplace's equation. Given an open
subset Q of the plane, Laplace's equation for two variables is

D2u + D2U = 0, (A.19)

2The idea of well-posedness is due to Jacques Hadamard, the great French mathematician, who also
discovered some of the earliest examples of ill-posed problems. As a result, well-posed problems are sometimes
called well-posed in the sense of Hadamard in mathematical literature.

147

where u is a real-valued function on U. A function satisfying Laplace's equation is said to
be harmonic. It is clear that Laplace's equation is a special case of Equation (A.18). In
general, it has infinitely many solutions on a given domain 9. However, given a real-valued
function f on the boundary 80, the requirement that the solution u agrees with f on i0,
i.e.,

u(x,y) = f(x, y), (x, y) E 1Q, (A.20)

uniquely determines the solution u; this is one of the clasical results in the theory of PDEs.
Note that in this case, our constraint only specifies the values of the solution on the bound-
ary, not the values of its first partials.

Equation (A.20) is called the boundary condition, and Equations (A.19) and (A.20)
together form the boundary value problem. Solving this equation allows us to determine,
for example, the electric potential in a bounded, charge-free region given the potential on
the boundary.

There is a beautiful way to reformulate the boundary value problem for Laplace's equa-
tion as a minimization problem. Let f be a real-valued function on 109, and let Xf be the
set of all real-valued functions u on U that agree with f on o0. Define the real-valued
mapping

S(u) = - f ((Diu)2 + (D2u)2) (A.21)

on the function space Xj; S is called the action. One can show that, among all functions u
that satisfy the boundary conditions, the solution of Laplace's equation minimizes S. This
is an example of a variational principle, and is discussed in more detail in §refsec:variational.

A.2.3 The Rayleigh-Ritz Method

Typically, the numerical solution of a partial differential equation involve two distinct steps.
First, a way of representing the approximate solution is chosen, and the differential equation
is reduced to some set of simpler equations that determine the approximate solution; this is
known as discretization. Next, the discretized equations are solved, yielding the approximate
solution. This section discusses only discretization methods, whereas the solution of large
systems of linear algebraic equations was briefly described in §A.1. For a more thorough
discussion of both aspects of this problem, see Vichnevetsky [27].

The specific discretization method developed here is known as the Rayleigh-Ritz method.
The basic idea behind this method is simple: Given the domain f and a prescription of the
boundary value f, choose a set of N functions {oi} on N and express the solution u as a
linear combination

N

S= aii. (A.22)
i=1

The functions qi are the basis functions, and the Rayleigh-Ritz method requires them to have
some specific properties (these are discussed later). These properties allow us to interpret
the coefficients ai as values of the approximate solution u at pre-specified sample points (or
nodes) pi. Having specified a representation of approximate solutions, an approximation
of the action can be computed as a function of the unknown coefficients ai and the given
boundary values. Minimizing this approximate action turns out to produce a system of
linear equations, which can be solved to yield the coefficients ai.3

3In the case of Laplace's equation, the coefficients of the discretized equations form a positive-definite

148

Figure A-i: Finite elements on the unit disc.

Constructing basis functions

The Rayleigh-Ritz method and a large class of other methods are collectively referred to as
finite element methods because they all represent approximate solutions as linear combina-
tions of a special type of basis functions. They rely on dividing the domain into a finite
number of simple shapes, called elements, and expressing the approximate solution over
each element as a sum of simple shapes. In what follows, the shapes are assumed to be
triangles for simplicity, though in general they can be more complicated.

Here is a more detailed description of triangular elements: Choose a finite set of sample
points {Pi} in the domain N, such that the subset of sample points lying on the boundary
80 is non-empty. Choose a finite collection of triangular subsets Ti of i, such that the
Ti intersect each other only along their boundaries, and the sample points are precisely
the vertices of the triangles. Furthermore, the union of the triangles Ti should closely
approximates 2.4 As an example, Figure A-1 shows a crude division of the unit circle into
triangular elements. In general, the more finely the elements tesselate the domain Q, the
more accurate the approximate solution will be.

To each sample point pi we now associate a basis function qi. Intuitively, the basis
function €i is produced by "pasting together" simple shapes over each element adjacent
to pi; this arrangement, as will be shown later, makes the computation of finite element
coefficients more efficient. More precisely, these are the requirements on the basis functions:

0, iij

2. E=i 1iq2(x, y) = 1 for all (x, y) E i.

3. The functions Oi should be piecewise-differentiable, if not smooth everywhere.

4. The function qi should be nonzero only in the elements immediately adjacent to pi.

matrix, and may be inverted using many methods, such as relaxation, LU factorization, or conjugate gradient
methods.

4This report does not attempt to precisely define this notion, but the union of the elements should at
least be topologically equivalent to the original domain 0.

149

The first requirement guarantees that if a function u is expressed as linear combination of
the basis {(i}, as in Equation (A.22), then its ith coefficient is simply

ai = u(pi). (A.23)

This is a particularly nice property, for if pi is a sample point on the boundary a0, then the
value of the approximate solution, u(pi), is just the given boundary value f(pi). But then
ai = f(pi), so that in the linear combination (A.22), the coefficients which correspond to
boundary nodes do not need to be computed at all, thus reducing the number of unknowns.
This is the way through which boundary values help determine the unknowns.

The second requirement ensures that if al = a2 = ... = aN- = a, then u(x, y) = a for
all (x, y) E N2; that is, constant functions are interpolated exactly by these basis functions.
This ensures, for example, that if two approximate solutions constructed from these basis
functions have the same values at all sample points, then they are equal everywhere. 5

The third requirement is necessary because in the process of discretizing the PDE,
it is necessary to take partial derivatives of the approximate solution. Finally, the last
requirement makes precise the idea of pasting together simple shapes over elements adjacent
to pi. Note that the support of a basis function corresponding to a node p is simply the
union of the elements with p as a vertex, and that the intersection of the supports of two
basis functions must also be a union of elements. This is an important property for finite
element computation.

One way of constructing basis functions that satisfy the requirements above are the so-
called "tent functions," which are piecewise-linear functions constructed by linearly inter-
polating between neighboring nodes, and to let qi vanish uniformly outside of the elements
adjacent to pi. Note that by continuity, the last condition implies that ¢i = 0 at all nodes
except for pi, so requirements 1 and 4 are redundant.

Discretization

With a specific representation of approximate solutions, one can now compute the unknown
coefficients. To do this, use the approximate solution u to compute an approximation of
the action (A.21). This is then a real-valued mapping that depends on the (finitely many)
unknown coefficients of u. One can then minimize this approximate action by equating its
derivative to zero, which yields a set of linear equations. 6

At this point, it is helpful to keep track of nodes that lie on the boundary a0. Thus,
let us relabel the sample points so that the basis functions Pi, i = 1, 2, ..., N correspond to
sample points on the boundary of Q, and let qi, i = 1, 2, ..., M continue to denote those that
correspond to interior nodes. Let ai denote the coefficients of Oi, and let bi denote those of
P3i. As noted in the previous section, the N variables bl, b2, ..., bN are precisely the boundary
values at the sample points on the boundary, so the only unknown values are al, a2,.., aM. 7

5Unlike finite difference methods, which only work with values of solutions at sample poitns, finite ele-
ments explicitly interpolates between sample points in discretizing PDEs.

6 These are actually stationary points of the approximate action. For Laplace's equation, this is indeed
the minimum. For other equations where variational principles apply, stationary points need not minimize
the action.

7This step brings up a subtle point: There are two conditions that the approximate solution must satisfy,
and together they produce a unique solution. One is that the approximate solution minimizes the action,
and the other is that the solution has the required boundary values. This can be thought of as a constrained
minimization problem. There are two approaches to these sorts of problems: The first (the one used here) is

150

Let T be a real-valued function of the M unknown variables ai, defined by

T(al,...,aM) = S(u[al,a2,...,aM]) (A.24)

1= f(Diu[a, a2, ...7 aM])2 + (D2U[a2, 2, ..., aM])2, (A.25)

where u[al, a2, ..., aM] is defined by

M N
u[al, a2, ..., aM] = Z aioi + bi/3i (A.26)

i=1 i=1

and the action S was defined in Equation (A.21).
To minimize T, simply differentiate under the integral sign. Via the chain rule, the

partial derivatives of T, DjT(al, ..., aM), are:

m N N
aiDI4 ++ biD= A • D1 j + aiD2i + .bi fli D2j (A.27)

i=-1 i= i=I

for j = 1, 2, ... , M. Equating the derivatives of T to 0 produces a system of equations:

M N

aij (Di4 - D1 + D2Ai- D2 j) = -Zbif (DAi- D0i +D 2 i -D2 5)9, (A.28)

with j = 1, 2, ..., M. This is a system of M linear equations in M unknowns. Indeed, let

a23 = (D1 i -" D1 + D2A-" D20j), (A.29)

and let A be the matrix (aij). Define the M-vector

b= (-Z bJ (D13 -Di_+D 2 a D2J)). (A.30)

Then Equation (A.28) becomes simply

Au = b, (A.31)

where u is the vector of the unknown coefficients ai.

Some comments on finite elements

The derivation of the discretized equations (A.28) involves many integrals. But recall now
that the basis functions were chosen so that a basis function associated with the node pi is
nonzero only over those elements adjacent to pi. Thus, the integrals in Equation (A.28) need
only be evaluated over a finite number of elements. One can generally choose element shapes

to enforce the constraint first, and then minimize the action. The second involves minimizing the action first,
and then enforcing the constraint. A careful analysis will show that the second approach actually produces a
overdetermined system of equation; in order to arrive at the same equations one must justify the elimination
of the "extra" equations involving the inner product of the residual and basis functions corresponding to
boundary nodes.

151

P2 Pl P8

P3

flA

P4 P5 P6

Figure A-2: Rectangular finite elements.

and basis functions to simplify the computation of these integrals, and the primary reason
for the popularity of finite element methods is the efficiency with which these coefficients
can be computed.

Additionally, this locality mirrors the fact that in many physical systems, most interac-
tions are local and effects propagate with finite speed through the system. And because a
coefficient is nonzero only if two nodes are neighbors (in the sense that they are vertices of
the same element), the matrix A defined by Equation (A.29) is usually sparse; that is, it
contains many zeros. This lessens the storage requirements when working with systems with
large numbers of sample points, as well as making iterative solution methods like relaxation
more efficient.8

Example

As an example, let us derive the standard finite difference equations for the boundary value
problem using the Rayleigh-Ritz method. Consider a rectangular grid of points in the plane,
a subset of which is shown in Figure A-2.

Let's use piecewise-linear tent functions on the elements, and suppose that the elements
are isoceles triangles with base and height h. Let Oi denote the basis function corresponding
to the node pi; it is then a tent function with its tip at the point pi. To compute the
coefficients corresponding to a typical node po in the matrix A = (aij) of Equation (A.29),
let ci = ao,i.9 Since the interpolants are linear, their gradients are constant. Hence, the
coefficients are simply the dot products of the interpolants multiplied by the area of the
intersection of their supports; denote the intersection Support(qi) n Support(%j) by 9(i,j).
The row of A corresponding to po can have at most six non-zero entries, since Po has only six
neighbors - namely pl, P2, p3, P5, p6, and p7. p4 and P8 (as well as any nodes in the system

8For solving large systems of linear equations, iterative methods are generally preferred over direct meth-
ods (such as LU decomposition) because of speed and the accumulation of round-off errors.

9The matrix is denoted by boldface in this section because the symbol A also refers to one of the regions
in Figure (A-2).

152

F

that are not pictured in Figure A-2) are not neighbors of po and hence those coefficients
must vanish.

To compute cl, note that 9(1,0) = A U G. Over the region A, the gradients are

V 1= (1, 1), Vo = (0,-1), (A.32)

and over the region G, they are

Vo 1 = h(0, 1), V0o = (-1,-1). (A.33)

The area of each element is Ah2, so the coefficient cl is simply -2. Similarly, C3 = c5 = c7 =
-2 and c2 = cg = 0. Finally, co = 1 + 1 + 1 + 1 + 2 + = = 8, so the po equation of the system
Ax = b is 8co - 2cl - 2C3 - 2c5 - 2c7 = 0, which upon rearrangement yields

Cl + C3 + C5 + C7 (A.34)
co - 4 (A.34)

Equation (A.34) is simply the standard finite difference approximation for Laplace's equa-
tion, and similar computations yield the same equations for the case when po is on the
boundary 0Q.

A.2.4 Galerkin's method

Another commonly-used finite element method is Galerkin's method. In many cases, it pro-
duces equations equivalent to the Rayleigh-Ritz equations. However, this method differs in
that it is slightly more difficult to justify mathematically, even though it is more generally
applicable, especially in situations where a variational principle is not available. We de-
rive Galerkin's method by a close analogy with a slightly more general function-expansion
method, which also uses expansion in terms of basis functions to solve differential equations.

As before, basis functions are denoted by {qi, i = 1, 2, 3, ...}; however, these functions
are not, for the moment, necessarily of the type considered in Rayleigh-Ritz. Furthermore,
representations of functions as (possibly infinite) linear combinations of these basis functions
is assumed to be exact, so the set of basis functions (called the basis) will no longer be finite.
Given two real-valued functions f and g on Q, define the inner product (f, g) by

(f, g) = f .g (A.35)

The basis is required to be complete, in the sense that if a function u satisfies (u, 4i) = 0
for all i, then u = 0 uniformly on Q. For example, if Q is a bounded interval of the real
line, one can choose the Oi to be Legendre polynomials or sinusoidal functions; both form
complete bases.

Back to Laplace's equation now: Recall that this involves finding a real-valued function
u on N such that

D2u + D22u = 0 (A.36)

on 2 and u = f on the boundary O for some prescribed function f. Expanding the solution
as an infinite series

00

u = ai i(x, y) (A.37)
i=l1

153

over a complete basis, the problem reduces to the determination of the unknown coefficients.
Using completeness, this is equivalent to

(D2u+ D2u),i i= 0, i = 1, 2,3, ... (A.38)

Expanding u in its infinite series, the above equation becomes

aif (D92i + D2,i)Oj = 0,j = 1, 2, 3,.... (A.39)
i=1

Galerkin's method generalizes this procedure to the case when the basis is finite, and there-
fore not complete.

More specifically, let {i, i = 1,2, ..., M} and {3i, i = 1, 2,..., N} now denote the finite
element basis functions considered in §A.2.3, where, as before, M nodes lie in the interior
of Q and N nodes lie on the boundary. Since the finite element basis is finite, it cannot be
a complete basis for the solution space (which is generally infinite-dimensional). However,
by analogy with Equation (A.39), one can still require that the residual be orthogonal to
the basis functions, producing

M N

ai (D2 2, + Di)/j = -jbi (D2 + DN), , (A.40)
i=1 i=1

with j = 1, 2, ..., M. Integrating by parts and noting that each basis functions vanishes
outside a bounded region, the equations become

M N

-Zai (Dii -D1 j + D 2Ai. -D20j) = • bi (Di -. D1, +D 2/3, D2j), (A.41)

again for j = 1, 2, ..., M. These equations are identical, up to a sign, to (A.28).
Let u denote the approximate solution given by Galerkin's method. Galerkin's method

only requires that the residual D2u + D2u lies in the orthogonal complement of the span of
the basis. Thus, without some other criterion to justify the equations, Galerkin's method
does not actually guarantee that the approximate solution satisfies the differential equation
in any sense. Notice the resemblance between the orthogonality condition and least-squares
approximations: Recall that if 0 is a function to be approximated, and u is linear combina-
tion of basis functions qi, then the orthogonality condition (0 - u, q,) = 0 indeed produces
the least-squares approximation. But in this case, the exact solution 0 is not available to us.
Thus, Galerkin's method does not actually produce the least squares approximation. Or-
thogonalizing the residual does not minimize it. Indeed, since the basis is not complete, the
error residual can be arbitrarily large while still being orthogonal to all the basis functions.

154

Appendix B

Odds & Ends

This appendix develops a few more basic ideas of manifold theory for the interested reader.
This is mainly "just for fun," and is meant to provide a slightly more detailed look at the
definitions of Chapter 2 for the interested reader.

B.1 Charts without a manifold

As we have seen, the description of spaces that require more than one coordinate system
can be effectively accomplished using the manifold abstraction. More concretely, we started
with an arbitrary set of points M and defined enough structure on it that it allowed us to
define smooth maps and their differentials on the set. It can be shown, however, that all one
needs are the charts themselves: The set M itself is unnecessary, and can be constructed out
of charts. However, this definition of a system of coordinate charts without an underlying
manifold is equivalent to the usual one; this section is simply an interesting exercise in
manipulating the mathematical definition of manifolds.

Let S = {Ui} be a collection of open subsets of Rn. Let T be a mapping on S x S that
assigns to each pair of open sets (Ui, Uj) a triple (Vi, Vj, fij) such that:

1. Vi and Vj are (possibly empty) open subsets of Ui and Uj, respectively.

2. fij is a smooth bijection from Vi to Vj.

3. If Ui = Uj, then Vi = Vj = Ui and fij is the identity.

4. If Ui, Uj, Uk E S, then fik = fik o fij, and the domains Vi, Vj, and Vk are mapped
onto each other by these maps and their inverses.

Let us define a coordinate manifold to be a collection of open sets S with such a map
T. It is clear that whenever we are given a manifold in the usual sense, it can be converted
to a coordinate manifold. Conversely, given a coordinate manifold, one could construct an
underlying space for it: Let x E Ui for some open set Ui E S. The pair (x, Ui) is called a
coordinate, and two coordinates (x, Ui) and (x', Uj) are equivalent if the open sets Vi and Vj
assigned to Ui and Uj by T are nonempty, and if fij(x) = x'. Under this equivalence relation,
the equivalence classes are called points, and the collection M of all points constructed this
way is the underlying space of the manifold.

What good is this definition? It is absolutely useless for all theoretical purposes: The
underlying set M in the usual definition lets us apply the tools of topology, which are very

155

important in the theory of manifolds. However, for all practical purposes, coordinate mani-
folds are actually enough: The programs in Chapters 2 and 3 only use local coordinates, and
points on the manifold are simply used as identifiers. Furthermore, in usual computations
involving manifolds, one carries out most calculations explicitly in specific charts anyway.
This way of treating points on manifolds is very much in the spirit of the construction of
tangent vectors.

B.2 Integration of differential forms on oriented manifolds

This section briefly sketches the construction of differential forms, which are "functions"
that can be integrated on oriented manifolds. While they are of less importance in the
theory of differential equations on manifolds, they are very much essential in the study of
differential topology. However, those applications would take us too far afield and will not
be discussed here. For more information, please see either Guillemin and Pollack [14] or
Warner [28].

Recall the change of variables theorem (3.19):

fv2 f(y)dy = Lv f((x))I det D(x) jdx (B.1)

where f is a function on B and 0 : A -+ B is a smooth bijection. In §3.4.1, this the-
orem is used to define integrals of scalar-valued functions on compact Riemannian man-
ifolds. Another possible approach, which we will briefly sketch here, involves assigning
"determinant-like" functions to each tangent space of the manifold. Such an assignment is
called a "differential form."

Let V be a finite-dimensional vector space. A scalar-valued function T on V x ... x V
is multilinear if it is linear in each of its components, and is alternating if exchanging any
two arguments changes T to -T. The degree of T is the number of arguments T has. It
is a theorem of linear algebra that such functions, called alternating tensors, are always
proportional to the determinant function on V with respect to some basis.

Now, let w be a function that assigns to each point p E M an alternating tensor wp on
TpM. One can show (although it is not done here) that the usual notions of smoothness
also apply to these alternating tensor fields. A differential form on a manifold M is then a
smooth alternating tensor field on M.

Because alternating tensors are proportional to the determinant function, it is not very
difficult to show that one could obtain a consistent definition of integration for differential
forms. To do this, first choose a partition of unity so that the problem is reduced to a local
one. Then, note that tensors transform naturally in the following way:

T'(vl, ..., Vk) = T(Lvl, ..., Lvk), (B.2)

where T' is a tensor on some vector space W, T is a tensor on V, L : V -+ W is a
linear transformation, and k is the degree of T'. Generalizing this to differential forms on
manifolds, we can simply replace L by the differential do of the transition map 0. A little
bit of linear algebra shows that this almost gives us the change of variables theorem:

fYE2 f(y)dy = LEy, f(4(x)) det Db(x)dx, (B.3)

where f det is a (local) differential form on V2 and (f o 4) det is a differential form on V1.

156

(Note that both their degrees have to agree with the dimension of the space, n, because of
the dimensions of Do as a matrix.) As one can see, this is the change of variables theorem
except for the absolute value. Thus, if one could choose charts so that all the transition
maps have positive determinants:

det Dq(x) > 0, (B.4)

then we can define integrals consistently. Manifolds for which such atlases exist are called
orientable manifolds, and we can thus define integration of differential forms of degree n on
compact orientable n-manifolds.

B.2.1 Stokes's theorem

One of the most important things one can do with differential forms is to generalize Stokes's
theorem to compact orientable manifolds. This is done through a map called the exterior
derivative, which takes a differential form w of degree k to another differential form dw of
degree k+1. Defining d takes a little bit of work and will not be done here. But to show how
much Stokes's theorem is simplified, here is the statement of the theorem using differential
forms:

Mdu = M W. (B.5)

This is actually so abstract that it does not say much, unless one has studied differential
forms in some depth. However, note that the boundary operator on manifolds satisfies:

9(M x N) = (OM x N) U (M x N), (B.6)

just like the product rule. As there is a corresponding product rule for exterior derivatives,
this shows that there is a rather deep duality between geometric objects on the one hand
and algebraic structures (such as differential forms) on the other.

157

Appendix C

Complete Program Listings

This appendix contains the source code for all the programs written for this project. The
programs are listed in alphabetical order, and as such are rather incomprehensible. They
have been included primarily for completeness rather than for clarity.

C.1 Computational manifolds

The following programs implement ODE and PDE solvers on manifolds, as described in
Chapters 2 and 3. All of this work is done in Scheme [9]. Interested readers may wish
to begin with load-pde. scm and load-ode. scm to get a feel for the organization of the
programs.

C.1.1 basis-imb.scm

;;; The basis functions defined here are much like polynomial basis functions,
only they exist directly on the imbedding representation of a manifold,

;;; instead of on the chart. Many of the procedures in 2d-poly-basis.scm are
;;; called here.

(declare (usual-integrations))

;;; Interface to the manifold code:

(define (pde:make-imbedded-poly-basis-function nodes i)
(let ((basis (make-imbedded-basis-function

nodes i (node:get-chart (car nodes)))))
(node:add-basis-function (list-ref nodes i) basis)
basis))

(define (operator:imbedded-poly-op left-op right-op combine)
(lambda (chart nodes)

(lambda (f g)
(combine (left-op f) (right-op g)))))

;;; Basic constructor:

(define (vector->imbedded v chart)
(package-basis-function-methods

158

'2d-imbeded-basis-function

v

(imbedded->function v chart)
(make-2d-poly-adder v)
(make-2d-poly-subtractor v)
(make-2d-poly-multiplier v)
(make-2d-poly-scalar-multiplier v)))

(define (make-imbedded-basis-function nodes center chart)
(let* ((n (length nodes))

(vals (make-vector n))
(points (make-vector n)))

(let loop ((nodes nodes) (i 0))
(if (null? nodes)

(vector->imbedded (poly:point-value->coeff vals points) chart)
(let ((node (car nodes)))
(if (= i center)

(vector-set! vals i 1)
(vector-set! vals i 0))

(vector-set! points i (node:get-point node))
(loop (cdr nodes) (+ i 1)))))))

;;; A slightly different kind of constructor:

(define (function->imbedded f nodes)
(let* ((n (length nodes))

(vals (make-vector n))
(points (make-vector n)))

(let loop ((i 0) (nodes nodes))
(if (null? nodes)

(vector->poly (poly:point-value->coeff vals points))
(let ((node (car nodes)))

(vector-set! points i (node:get-point node))
(vector-set! vals i (f node))
(loop (+ i 1) (cdr nodes)))))))

;;; And its inverse:

(define (imbedded->function f chart)
(lambda (x)

(imbedded:evaluate f x chart)))

(define (imbedded:evaluate f x chart)
(vector-first (poly:coeff->point-value

f (vector (chart:coords->point x chart)))))

;;; The truly messy stuff: Integrals! This needs to run a lot faster. What
;;; about doing away with the coordinate transformations?

(define (make-triangular-imbedded-integrator vertex-nodes)

;; We assume that there are three vertex nodes, and that the triangle they
;; form is the boundary of the element:

159

(if (not (= (length vertex-nodes) 3))
(error (string-append "Error: Elements must have three vertex nodes."

" -- MAKE-TRIANGULAR-IMBEDDED-INTEGRATOR")))

(let ((pl (car vertex-nodes))
(p2 (cadr vertex-nodes))
(p3 (caddr vertex-nodes)))

;; Find the absolute value of the Jacobian of the affine transformation
;; mapping the reference triangle {(0,0),(1,O),(O,I)} to this triangle.

(let* ((A (list->matrix
22
(list
(- (node:get-real-x p2) (node:get-real-x pi))
(- (node:get-real-x p3) (node:get-real-x pi))
(- (node:get-real-y p2) (node:get-real-y pi))
(- (node:get-real-y p3) (node:get-real-y pi)))))

(b (node:get-point pl))
(jacobian (abs (det A))))

(define (integrate f . rest)
(let* ((f (apply basis:* (cons f rest)))

(degree (poly:degree f))
(reference (poly:make-sample-points degree))
(n (choose (+ degree 2) 2))
(real (make-vector n)))

(do ((i 0 (+ i 1)))
((>= i n))

(vector-set! real i
(apply-affine-transformation
A b (vector-ref reference i))))

(* jacobian
(inner-product
(poly:point-value->coeff
(poly:coeff->point-value (basis:get-rep f) real) reference)
(make-reference-integrals degree)))))

integrate)))

C.1.2 basis-poly.scm

This file defines some procedures that help extend the polynomial basis
functions used in fem.scm. Note that these functions limit the accuracy of
computation because a polynomial may not stay a polynomial under coordinate
transformations, and yet that is how we transform these guys between
coordinate systems.

(declare (usual-integrations))

;;; A little wrapper that let's us keep track of basis functions:

(define (pde:make-poly-basis-function nodes i)
(let ((basis (make-polynomial-basis-function nodes i)))

160

(node:add-basis-function (list-ref nodes i) basis)
basis))

This procedure turns an operator on M, where M is represented as an
imbedded submanifold of R^n, into an operator on functions on M. It
depends heavily on the fact that it's working with polynomial interpolants.

(define (operator:pull-back-poly-op left-op right-op combine)
(lambda (chart nodes)

Take a polynomlal basis function, pull back to the canonical coordinates
of the ambient space, interpolate by polynomial, then apply operator to
form a polynomial approximating the image of the original polynomial in
the original chart under the differential operator.

(let* ((pl
(pv
(cl
(cv

(lambda
(let*

(map node:get-point nodes))
(list->vector pl))
(map node:get-coords nodes))
(list->vector cl)))
(f g)
((f 1
(f2

(basis-function->function f))
(vector->poly (poly:point-value->coeff

(list->vector (map fl cl)) pv)))
(basis-function->function g))
(vector->poly (poly:point-value->coeff

(list->vector (map gi cl)) pv)))

(h (basis-function->function
(combine (left-op f2) (right-op g2)))))

(vector->poly (poly:point-value->coeff
(list->vector (map h pl)) cv)))))))

Here's a problem: If we integrate purely in local coordinates, then the
integral is in fact using the *wrong* measure. In order to perform the
correct integration, we need to put in the Jacobian of the coordinate
function. Since integrators are given nodes (not coordinates), and nodes
have charts attached to them, this could be done (very approximately):

(define (make-triangular-chart-integrator nodes)
(let ((triangular-integrate (make-triangular-integrator nodes))

(jacobian (abs (/ (apply triangle-area (map node:get-point nodes))
(apply triangle-area (map node:get-coords nodes))))))

(lambda (f . rest)
(* (apply triangular-integrate (cons f rest)) jacobian))))

(define (triangle-area a b c)
(let ((xl (- (vector-ref b

(yl (- (vector-ref b
(x2 (- (vector-ref c
(y2 (- (vector-ref c

(abs (* 1/2 (- (* xl y2)

(vector-ref
(vector-ref
(vector-ref
(vector-ref
yl x2))))))

0)))
1)))
0)))
1))))

161

I--- ý - - - . -- f -1

C.1.3 basis-real.scm

;; This file defines a class of basis functions based on real functions (not
;;; just polynomials). At bottom, we still use polynomial basis functions, but
;; these guys don't get truncated under changes of coordinates. The drawback

;;; is that we actually need to use numerical integration, which is less
;;; accurate and a lot slower.

(declare (usual-integrations))

;;; Constructor:

(define (pde:make-real-basis-function nodes i)
(let ((f (make-real-basis-function nodes i)))
(node:add-basis-function (list-ref nodes i) f)

f))

;; Differential operators:

(define (operator:pull-back-real-op left-op right-op combine)
(lambda (chart nodes)

;; Take a basis function, pull back, apply operator, and then send it back
;; to the chart.

(let ((coord-map (chart:get-coord-map chart))
(inverse-map (chart:get-inverse-map chart)))

(lambda (f g)
(let ((f (proc->real (compose (basis:get-rep f) coord-map)))

(g (proc->real (compose (basis:get-rep g) coord-map))))
(let ((h (combine (left-op f) (right-op g))))
(proc->real (compose (basis:get-rep h) inverse-map))))))))

This integrates with the wrong *measure*, though. What is required is to
;;; take into account the Jacobian of the coordinate charts. (See
;;; basis-poly.scm, where this is done very approximately.) Of course, this

particular approach assumes that the manifold is imbedded in some Euclidean
space, which can be restrictive for some applications. To fix this, we
probably need some computational representation of Riemann metrics or
differential forms on manifolds.

(define (trapezoidal-integrator-maker-on-charts count)
(let ((make-integrator (trapezoidal-integrator-maker count)))

(lambda (nodes)
(let* ((integrate (make-integrator nodes))

(g (chart:get-inverse-map (node:get-chart (car nodes))))
(dg (proc->real (function->jacobian g))))

(lambda (f . rest)
(apply integrate '(,dg ,f ,@rest)))))))

;;; Given that F is an imbedding of a subset of the plane in a
higher-dimensional Euclidean space, how do we (efficiently) compute its
Jacobian?

162

;;; This guy will currently work only if F goes from R^2 to R^2. Needs fixing.

(define (function->jacobian f)
(lambda (x)

(let ((M (jacobian-matrix f x)))
(abs (det M)))))

(define (jacobian-matrix f x)
(let ((n (vector-length x))

(m (vector-length (f x))))
(let ((mat (make-matrix m n)))

(do ((j (- n 1) (- j 1)))
((< j 0) mat)

(let ((v (((pdiff j) f) x)))
(do ((i 0 (+ i 1)))

((>= i m))
(matrix-set! mat i j (vector-ref v i))))))))

C.1.4 boundary.scm

;;; Manifolds with boundary are probably going to be useful for PDEs:

(declare (usual-integrations))

;;; Boundary charts? What extra structures are needed? By convention, a
;;; boundary chart maps the boundary to the half space {x.n >= 0}, so that the
;;; boundary is the space {xn = 0}.

;; Of course, any changes made here propagate to tangent and product chart
; constructions...

;; The problem is that the product of two smooth manifolds with boundary will
;;; be a *topological* manifold with boundary, but points (p,q) where p and q
;;; are in the respective boundaries of the component manifolds may not have a
;;; neighborhood that maps to the boundary of a Euclidean half-space.
;;; (Consider the product of the unit interval with itself: There are corners!)

;; Make these regular domains imbedded inside manifolds and that avoids the
;; problem -- Can't make those constructions...

(define (add-boundary-to-chart chart i . argl)
(let ((level 0))

;; Locally, the boundary should look like the set of all X such that
;; COORD-MAP(X) [i = LEVEL, where LEVEL is by default 0.

(if (and (not (null? argl))
(real? (car argl)))

(set! level (car argl)))

;; Given the coordinate maps (xO, ..., xn), the boundary in the image of
;; the chart is the set {x_i = 0}.

(let ((coord-map (chart:get-coord-map chart))

163

(in-domain? (chart:get-membership-test chart))
(in-range? (chart:get-range-test chart)))

(letrec
((range-boundary?

(lambda (x)
(and (in-range? x)

(almost-equal? level (vector-ref x i)))))

(domain-boundary?
(lambda (p)

(and (in-domain? p)
(range-boundary? (coord-map p))))))

(chart:install-extra chart
'boundary-structs
(vector i level domain-boundary? range-boundary?))

chart))))

(define (chart:get-boundary-structs chart)
(chart:get-extra chart 'boundary-structs))

(define (boundary-chart? chart)
(if (chart:get-boundary-structs chart)

#f))

(define (chart:get-boundary-index chart)
(let ((result (chart:get-boundary-structs chart)))
(if result

(vector-ref result 0)
#f)))

(define (chart:get-boundary-level chart)
(let ((result (chart:get-boundary-structs chart)))
(if result

(vector-ref result 1)
#f)))

(define (chart:get-domain-boundary-test chart)
(let ((result (chart:get-boundary-structs chart)))
(if result

(vector-ref result 2)
#f)))

(define (chart:get-range-boundary-test chart)
(let ((result (chart:get-boundary-structs chart)))
(if result

(vector-ref result 3)
#f)))

(define (chart:domain-boundary? p chart)
(let ((boundary? (chart:get-domain-boundary-test chart)))

(if boundary?
(boundary? p)
#f)))

(define (chart:range-boundary? x chart)
(let ((boundary? (chart:get-range-boundary-test chart)))

(if boundary?

164

(boundary? x)
#f)))

;;; Make a chart for the boundary out of a chart-with-boundary:

(define (make-boundary-chart chart)
(let ((boundary-chart (chart:get-extra chart 'boundary-chart)))

(if boundary-chart
boundary-chart
(make-new-boundary-chart chart))))

(define (make-new-boundary-chart chart)
(let ((in-domain? (chart:get-domain-boundary-test chart))

(in-range? (chart:get-domain-boundary-test chart))
(index (chart:get-boundary-index chart))
(level (chart:get-boundary-level chart))
(dim (chart:dimension chart)))

(if (and in-domain? in-range? index level)
(let ((coord-map (chart:get-coord-map chart))

(inverse-map (chart:get-inverse-map chart))

(project (lambda (x)
(vector:drop-coord x index)))

(immerse (lambda (x)
(let ((y (vector:add-coord x index)))

(vector-set! y index level)

(let ((new-coord-map (compose project coord-map))
(new-inverse-map (compose inverse-map immerse))

(transition
(lambda (Bother)

(let ((other (chart:whose-boundary? Bother)))
(compose
(lambda (x)
(vector:drop-coord
x (chart:get-boundary-index other)))

(chart:make-transition-map chart other)
immerse)))))

(let ((boundary-chart
(make-chart (- dim 1) in-domain? in-range?

new-coord-map new-inverse-map transition)))

(chart:install-extra chart 'boundary-chart boundary-chart)
(chart:install-extra
boundary-chart 'whose-boundary? (delay chart))

boundary-chart)))
#f)))

(define (chart:whose-boundary? chart)
(force (chart:get-extra chart 'whose-boundary?)))

;;; Now a manifold with boundary (this may end up being the empty set):

165

(define (make-boundary-manifold M)
(let ((charts (manifold:get-finite-atlas M)))

(if charts

(let loop ((charts charts) (result '())
(if (null? charts)

(if (null? result)
#f
(charts->manifold result))

(let ((boundary-chart (make-boundary-chart (car charts))))
(if boundary-chart

(loop (cdr charts) (cons boundary-chart result))
(loop (cdr charts) result)))))

(let ((find-chart-in-M (manifold:get-general-chart-finder M))
(minimize-in-M (manifold:get-general-chart-finder M)))

(letrec

((general-find-chart
(lambda (p . predicates)

(call-with-current-continuation
(lambda (return)
(find-chart-in-M

p
(lambda (chart)
(if (chart:domain-boundary? p chart)

(let ((new-chart (make-boundary-chart chart)))
(let valid? ((predicates predicates))
(if (null? predicates)

(return new-chart)
(if ((car predicates) new-chart)

(valid? (cdr predicates))
#f))))

#f)))))))

(find-minimizing-chart
(lambda (p f <)
(cadr (minimize-in-M

p
(lambda (chart)
(if (chart:domain-boundary? p chart)

(let ((new-chart (make-boundary-chart chart)))
(list new-chart (f new-chart)))

#f))

(lambda (x y)
(or (and x y (< (cadr x) (cadr y)))

(and x (false? y))))))))

(local-atlas-finder
(lambda (p)
(map (lambda (chart) (make-boundary-chart chart))

(manifold:get-local-atlas M p)))))

(make-manifold (- (manifold:dimension M) 1)
general-find-chart
find-minimizing-chart
local-atlas-finder))))))

166

C.1.5 bug.scm

(load "load-ode")

(define result
(show-time

(lambda ()
(rigid-body-path singular-init 1.))))

(define e-list
(show-time
(lambda ()
(map (compose vector-first (make-rigid-body-energy 1. (sqrt 2) 2.) cadr)

result))))

(define e-errors
(let ((ref (car e-list)))

(show-time
(lambda ()
(map (lambda (val) (relative-error val ref)) e-list)))))

C.1.6 charts.scm

;;; Charts:

(declare (usual-integrations))

; Abstract charts need only contain the right maps. What they actually do is
;;; up to the particular implementation.

;; Might have been nice to make charts out of smooth maps, but that might be
;;; more trouble than it's worth. It's too recursive, and the abstraction has
;;; to bottom out somewhere. (Why? Because otherwise it wouldn't be
;; computable!) Charts will be made out of structures much like smooth
;;; functions. We'll try to merge these structures if it appears possible.

(define (make-chart dim in-domain? in-range? coord-map inverse-map transition)

;; TRANSITION should be a function that, given another chart, returns a
;; transition function to the other chart from this one. (Within reasonable
;; ranges, of course.)

(vector in-domain? in-range? coord-map inverse-map transition dim '()))

(define (make-simple-chart dim in-domain? in-range? coord-map inverse-map)
(make-chart dim in-domain? in-range? coord-map inverse-map

(lambda (V)
(compose (chart:get-coord-map V) inverse-map))))

;; Get the various maps out:

(define (chart:get-membership-test chart)
;; Should return a function that tests whether a point is in the chart.
(vector-ref chart 0))

167

(define (chart:get-range-test chart)
(vector-ref chart 1))

(define (chart:get-coord-map chart)
;; Should provide the mapping from the manifold to Euclidean coordinates.
(vector-ref chart 2))

(define (chart:get-inverse-map chart)
;; Should provide the inverse of the above.
(vector-ref chart 3))

(define (chart:get-transition-maker chart)
(vector-ref chart 4))

(define (chart:dimension chart)
(vector-ref chart 5))

(define (chart:install-extra chart tag datum)
(let ((result (assq tag (vector-ref chart 6))))
(if result

(set-cdr! result datum)
(vector-set! chart 6 (cons (cons tag datum) (vector-ref chart 6))))))

(define (chart:get-extra chart tag)
(let ((result (assq tag (vector-ref chart 6))))
(if result

(cdr result)

Some useful wrappers for debugging purposes:

(define (domain-check f chart)
(lambda (p)
(if (not (chart:member? p chart))

(write-line '(warning! stepping out of domain!)))

(f p)))

(define (range-check g chart)
(lambda (x)

(if (not (chart:in-range? x chart))
(write-line '(warning! stepping out of range!)))

(g x)))

Some methods that are bound to be handy:

(define (chart:member? x chart)
((chart:get-membership-test chart) x))

(define (chart:in-range? x chart)
((chart:get-range-test chart) x))

(define (chart:point->coords x chart)
((chart:get-coord-map chart) x))

(define (chart:coords->point x chart)
((chart:get-inverse-map chart) x))

168

(define (chart:make-transition-map U V)

((chart:get-transition-maker U) V))

;;; Turn the chart maps into smooth maps:

(define (chart:get-range U)
(make-euclidean-space (chart:dimension U)))

(define (chart:get-domain chart)
(let ((U (chart:get-extra chart 'chart-as-manifold)))
(if U

(force U)
(let ((U (charts->manifold (list chart))))

(chart:install-extra chart 'chart-as-manifold (delay U))
U))))

(define (chart:smooth-coord-map chart)
(make-smooth-map (chart:get-domain chart)

(chart:get-range chart)
(chart:get-coord-map chart)
(lambda (U V) (chart:get-coord-map chart))))

(define (chart:smooth-inverse-map chart)
(make-smooth-map (chart:get-range chart)

(chart:get-domain chart)
(chart:get-inverse-map chart)
(lambda (U V) (chart:get-inverse-map chart))))

;;; A faster distortion test to compute for the ODE integrator:

(define (chart:stable-coords? x chart)
(chart:in-range?
(chart:point->coords (chart:coords->point x chart) chart)
chart))

C.1.7 cotangent.scm

;;; This file defines cotangent bundles as vector bundles (see vbundle.scm).

(declare (usual-integrations))

;;; Make some covectors:

(define (make-cotangent chart x v)

x is a point in the abstract manifold, and chart contains x. v is an
element of the dual tangent space at x, represented in the chart as an
n-vector.

(vector 'cotangent chart x v))

(define (cotangent? x)
(and (vector? x)

(> (vector-length x) 0)

169

(eq? 'cotangent (vector-ref x 0))))

(define (cotangent:get-chart v)
(vector-ref v 1))

(define (cotangent:get-anchor v)
(vector-ref v 2))

(define (cotangent:get-coords v)
(vector-ref v 3))

(define (cotangent:dimension v)
(vector-length (cotangent:get-coords v)))

(define (make-binary-cotangent-operation op)
(lambda (v w)
(let ((p (cotangent:get-anchor v))

(q (cotangent:get-anchor w)))
(if (equal? p q)

(let ((chart (cotangent:get-chart v)))
(make-tangent chart

P
(op (cotangent:get-coords v)

(chart:pull-back v chart))))
(error "Cannot add covectors tangent to different points.")))))

(define cotangent+ (make-binary-cotangent-operation vector:+))
(define cotangent- (make-binary-cotangent-operation vector:-))

(define (cotangent* a v)
(make-tangent (cotangent:get-chart v)

(cotangent:get-anchor v)
(vector:* a (cotangent:get-coords v))))

(define (cotangent:act ctv tv)
(let ((chart (cotangent:get-chart ctv)))

(vector:dot (cotangent:get-coords ctv) (chart:push-forward tv chart))))

;;; Pull back a covector along a chart:

(define (chart:pull-back ctv chart)
(let ((orig (cotangent:get-chart ctv))

(v (cotangent:get-coords ctv)))
(if (eq? chart orig)

v
(pull-back-in-coords
(chart:make-transition-map chart orig)
(chart:point->coords (cotangent:get-anchor ctv) chart)
v))))

;;; Pull back v from T*f(x) to T*x:

(define (pull-back-in-coords f x v)
(let ((n (vector-length x)))

(let ((V (make-vector n))
(df ((diff f) x)))

170

(do ((i 0 (+ i 1)))

((>= i n) w)

(vector-set! w i (vector:dot v (df (vector:basis n i 1))))))))

Cotangent charts:

(define (make-cotangent-chart chart)

(let ((new-chart (chart:get-extra chart 'cotangent-chart)))

(if new-chart

(force new-chart)

(make-new-cotangent-chart chart))))

(define (make-new-cotangent-chart chart)

(let* ((dim (chart:dimension chart))

(2*dim (* 2 dim))

(in-M-domain? (chart:get-membership-test chart))

(in-M-range? (chart:get-range-test chart))

(M-map (chart:get-coord-map chart))

(M-inverse (chart:get-inverse-map chart))

(dim-vector? (make-euclidean-test dim))

(2*dim-vector? (make-euclidean-test 2*dim)))

(letrec

((in-domain?

(lambda (v)

(and (in-M-domain? (cotangent:get-anchor v))

(dim-vector? (cotangent:get-coords v)))))

(in-range?

(lambda (v)

(and (2*dim-vector? v)

(in-M-range? (vector-head v dim)))))

(coord-map

(lambda (v)

(vector-append (M-map (cotangent:get-anchor v))

(chart:pull-back v chart))))

(inverse-map

(lambda (x)

(make-cotangent chart

(M-inverse (vector-head x dim))

(vector-end x dim))))

(transition

(lambda (Tother)

(let ((other (chart:get-base-chart Tother)))

(let ((f (chart:make-transition-map chart other))

(g (chart :make-transition-map other chart)))
(lambda (x)

(let ((anchor (f (vector-head x dim)))

(cotangent (vector-end x dim)))

(vector-append

anchor

(pull-back-in-coords g anchor cotangent)))))))))

171

(let ((new-chart (make-chart 2*dim in-domain? in-range?
coord-map inverse-map transition)))

(chart:install-extra new-chart 'base-chart (delay chart))
(chart:install-extra chart 'cotangent-chart (delay new-chart))
new-chart))))

(define (chart:get-base-chart chart)
(let ((result (chart:get-extra chart 'base-chart)))
(if result

(force result)
#f)))

Here's how we make a cotangent bundle:

(define (make-cotangent-bundle M)
(let ((T*M (manifold:get-extra M 'cotangent-bundle)))
(if T*M

(force T*M)
(make-new-cotangent-bundle M))))

(define (make-new-cotangent-bundle M)
(let ((dim-M (manifold:dimension M)))

(let ((E
(let ((charts (manifold:get-finite-atlas M)))
(if charts

(charts->manifold (map (lambda (chart)
(make-cotangent-chart chart))

charts))

(let ((find-chart-in-M (manifold:get-general-chart-finder M))
(minimize-in-M (manifold:get-general-minimizer M)))

(letrec
((general-find-chart

(lambda (p . predicates)
(call-with-current-continuation
(lambda (return)

(find-chart-in-M
(cotangent:get-anchor p)
(lambda (chart)

(let ((new-chart
(make-cotangent-chart chart)))

(let valid? ((predicates predicates))
(if (null? predicates)

(return new-chart)
(if ((car predicates) new-chart)

(valid? (cdr predicates))

(find-minimizing-chart
(lambda (p f <)
(cadr (minimize-in-M

(cotangent:get-anchor p)
(lambda (chart)

(let ((new-chart
(make-cotangent-chart chart)))

172

(list new-chart (f new-chart))))
(lambda (x y)
(< (cadr x) (cadr y)))))))

(local-atlas-finder
(lambda (p)

(map (lambda (chart) (make-cotangent-chart chart))
(manifold: get-local-atlas
M (cotangent:get-anchor p))))))

(make-manifold (* 2 dim-M)
general-find-chart
find-minimizing-chart
local-atlas-finder))))))

(proj cotangent:get-anchor)

(fiber
(lambda (p)
(make-fiber cotangent+ cotangent- cotangent*

(lambda (v)
(equal? p (cotangent:get-anchor v)))))))

(let ((T*M (make-vector-bundle M E proj fiber)))
(manifold:install-extra M 'cotangent-bundle (delay T*M))
T*M))))

C.1.8 fields.scm

;;; This file defines some structures related to vector fields:

;;; Here's a trivial vector field on the circle:

(define (circle-field p)
(let ((x (vector-ref p 0))

(y (vector-ref p I)))
(imbedding->tangent circle p (vector (- y) x))))

;;; Here is the nonlinear pendulum. This shouldn't be *that* hard to define,
;;; but it is. Why? What should we change about the system?

;;; Related to the problem of defining vector fields is the issue of
;;; efficiency. The definition problem can be solved by making more charts,
;;; but efficiency would suffer even more. How do we fix that?

(define (make-pendulum g mass length)
(let* ((k (/ g length))

(-k (* -i k))
(chart-1 (make-spherical-chart 1 '(0 1) 0))
(chart-2 (make-spherical-chart 1 '(1 0) 0))
(find-chart
(make-tangent-chart-finder (lambda (x)

(if (chart:member? x chart-i)
chart-i
chart-2)))))

173

(lambda (p)

;; p should be a point from the cylinder constructed above.

(let* ((x (tangent:get-anchor p))
(chart (if (chart:member? x chart-1) chart-1 chart-2)))

(let ((xdot (chart:push-forward p chart)))
(make-tangent (find-chart p)

p
(vector-append
xdot
(vector (* (if (chart:member? x chart-1) -k k)

(vector-ref x 1))))))))))

;;; This is useful for checking how well the integrator is doing:

(define (make-pendulum-energy-function g mass length)
(lambda (p)

(let ((x (tangent:get-anchor p))
(v (tangent->imbedded-velocity circle p)))

(- (/ (* mass (vector:magnitude'2 v)) 2)
(* mass g length (vector-ref x 0))))))

Spherical pendulum:

(define make-spherical-pendulum
(let* ((Ci (make-tangent-chart (make-spherical-chart 2 '(2 0 1) 0)))

(C2 (make-tangent-chart (make-spherical-chart 2 '(1 0 2) pi)))
(TS^2 (charts->manifold (list C1 C2))))

(lambda (g mass length)
(let* ((k (/ g length))

(-k (- k)))
(lambda (p)

(let* ((chart (manifold:find-best-chart TS^2 p))
(x (chart:point->coords p chart))
(phi (vector-ref x 0))
(theta (vector-ref x i))
(phidot (vector-ref x 2))
(thetadot (vector-ref x 3)))

(make-tangent chart

P

;; Ended up deriving these things using Lagrangian
;; mechanics anyway; might as well automate it.

(if (eq? chart C1)
(vector phidot

thetadot
(* (+ 1 (* (cos phi) (square thetadot)))

(sin phi))
(* -2 (cot phi) phidot thetadot))

(vector phidot
thetadot
(* (+ (* (sin phi) (square thetadot))

(sin theta))

174

(cos phi))
(+ (* -2 (cot phi) phidot thetadot)

(/ (cos theta) (sin phi))))))))))))

;;; And in phase space:

(define make-spherical-H-pendulum
(let* ((Ci (make-cotangent-chart (make-spherical-chart 2 '(2 0 1) 0)))

(C2 (make-cotangent-chart (make-spherical-chart 2 '(1 0 2) pi)))
(T*S^2 (charts->manifold (list C1 C2))))

(lambda (g mass length)
(let ((ki (/ (* mass (square length))))

(k2 (* mass g length)))
(lambda (p)

(let* ((chart (manifold:find-best-chart T*S^2 p))
(x (chart:point->coords p chart))
(phi (vector-ref x 0))
(theta (vector-ref x i))
(pphi (vector-ref x 2))
(ptheta (vector-ref x 3)))

(make-tangent chart

p
(if (eq? chart C1)

(vector (* ki pphi)
(* (/ ki (square (sin phi))) p-theta)
(+ (* ki (square ptheta)

(/ (* (square (sin phi))
(tan phi))))

(* k2 (sin phi)))
0)

(vector (* k1 pphi)
(* (/ k1 (square (sin phi))) p-theta)
(+ (* ki (square ptheta)

(/ (* (square (sin phi))
(tan phi))))

(* k2 (cos phi) (sin theta)))
(* k2 (sin phi) (cos theta)))))))))))

;;; An example of something defined using Lagrangian methods:

(define R^3 (make-euclidean-space 3))
(define TR^3 (make-tangent-bundle R^3))

(define (make-free-particle-lagrangian m)
(let ((m/2 (/ m 2)))

(make-real-map TR^3
(lambda (p)
(* m/2 (vector:magnitude^2 (tangent:get-coords p)))))))

;; An example of something defined using Hamiltonian methods:

(define T*R'3 (make-cotangent-bundle R'3))

(define (make-free-particle-hamiltonian m)
(let ((m/2 (/ m 2)))

(make-real-map T*R^3
(lambda (p)

175

(* m/2 (vector:magnitude^2 (cotangent:get-coords p)))))))

;;; The Lagrangian for a rather simple potential:

(define TR'3 (make-tangent-bundle R^3))

(define falling-lagrangian
(make-real-map
TR-3 (lambda (p)

(- (* 1/2 (vector:magnitude^2 (tangent:get-coords p)))
(vector-third (tangent:get-anchor p))))))

;;; And the equivalent Hamiltonian:

(define T*R^3 (make-cotangent-bundle R^3))

(define falling-hamiltonian
(make-real-map
T*R^3 (lambda (p)

(+ (* 1/2 (vector:magnitude^2 (cotangent:get-coords p)))
(vector-third (cotangent:get-anchor p))))))

;;; And now for rigid bodies:

(define S03 (make-rotational-group))
(define TS03 (make-tangent-bundle S03))
(define T*S03 (make-cotangent-bundle S03))

;;; What is the easiest way to make a Lagrange top? Just write down the
;;; Lagrangian!

(define (antisymmetric-matrix->vector A)
(vector (matrix-ref A 2 1) (matrix-ref A 0 2) (matrix-ref A 1 0)))

(define (tangent->angular-velocity p)
(let* ((M (tangent:get-anchor p))

(chart (tangent:get-chart p))
(Mdot
(vector->matrix 3 3

(push-forward-in-coords
(compose matrix:flatten

(chart:get-inverse-map chart))
(chart:point->coords M chart)
(tangent:get-coords p)))))

(antisymmetric-matrix->vector (matrix:* Mdot (transpose M)))))

(define (make-free-rigid-body-angular-momentum A B C)
(make-simple-map
TS03
(make-euclidean-space 3)
(lambda (p)

(let* ((M (tangent:get-anchor p))
(w (apply-linear-transformation

(transpose M) (tangent->angular-velocity p)))
(w-prime (apply-linear-transformation (transpose M) w)))

(vector (* A (vector-ref w-prime 0))
(* B (vector-ref w-prime 1))

176

(* C (vector-ref w-prime 2)))))))

(define (make-free-rigid-body-lagrangian A B C)
(make-real-map
TS03
(lambda (p)

(let* ((M (tangent:get-anchor p))
(w (apply-linear-transformation

(transpose M) (tangent->angular-velocity p)))
(v-prime (apply-linear-transformation (transpose M) w)))

(* 1/2
(+ (* A (square (vector-ref w-prime 0)))

(* B (square (vector-ref w-prime 1)))
(* C (square (vector-ref w-prime 2)))))))))

(define (free-rigid-body-field-maker a b c)
(let* ((charts (manifold:get-finite-atlas TS03))

(fields (list rigid-field-0 rigid-field-i
rigid-field-2 rigid-field-3))

(charts&fields (map cons charts fields)))
(lambda (chart)

(let ((field (assq chart charts&fields)))
(if field

(lambda (x)
((cdr field) a b c (vector-head x 3) (vector-tail x 3)))

(error "Unknown chart! -- FREE-RIGID-BODY"))))))

(define (scmutils-rigid-body-field-maker a b c)
(let* ((charts (manifold:get-finite-atlas TS03))

(fields (map (make-sysder a b c)
(list t-rigid-body-0

t-rigid-body-1
t-rigid-body-2
t-rigid-body-3)))

(charts&fields (map cons charts fields)))
(lambda (chart)

(let ((field (assq chart charts&fields)))
(if field

(cdr field)
(error "Unknown chart! -- FREE-RIGID-BODY"))))))

(define (make-sysder a b c)
(lambda (t-rigid-body)

(show-time
(lambda ()

(let* ((sysder (lambda (a b c)
(lagrangian->st ate-derivative
(t-rigid-body a b c))))

(compiled (compile-sysder 3 sysder))
(field (compiled a b c)))

(lambda (x)
(state->manifold (field (manifold->state x)))))))))

(define (make-rigid-body-energy a b c)

(let* ((charts (cons euler-angles (manifold:get-finite-atlas S03)))
(energies (list (t-rigid-body a b c)

(t-rigid-body-O a b c)
(t-rigid-body-1 a b c)
(t-rigid-body-2 a b c)

177

(t-rigid-body-3 a b c)))
(charts&energies (map cons charts energies)))

(lambda (tangent)
(let* ((chart (tangent:get-chart tangent))

(energy (assq chart charts&energies)))
(if energy

((cdr energy)

(manifold->state
(vector-append
(chart:point->coords (tangent:get-anchor tangent) chart)
(tangent:get-coords tangent))))

(error "Unknown chart! -- FREE-RIGID-BODY"))))))

(define (make-rigid-body-momentum a b c)

;; This version is more accurate than MAKE-RIGID-BODY-ANGULAR-MOMENTUM.

(let* ((charts (cons euler-angles (manifold:get-finite-atlas S03)))
(momenta (list (state->L-space a b c)

(state->L-space-O a b c)
(state->L-space-1 a b c)
(state->L-space-2 a b c)
(state->L-space-3 a b c)))

(charts&momenta (map cons charts momenta)))
(lambda (tangent)

(let* ((chart (tangent:get-chart tangent))
(momentum (assq chart charts&momenta)))

(if momentum
((cdr momentum)
(manifold->state
(vector-append
(chart:point->coords (tangent:get-anchor tangent) chart)
(tangent:get-coords tangent))))

(error "Unknown chart! -- FREE-RIGID-BODY"))))))

(define (manifold->state x)
(let ((psi (vector-ref x 0))

(theta (vector-ref x i))
(phi (vector-ref x 2))
(psidot (vector-ref x 3))
(thetadot (vector-ref x 4))
(phidot (vector-ref x 5)))

(->state 0 (vector theta phi psi) (vector thetadot phidot psidot))))

(define (state->manifold state)
(let ((q (state->q state))

(qdot (state->qdot state))
(t (state->t state)))

(let ((theta (vector-ref q 0))
(phi (vector-ref q i))
(psi (vector-ref q 2))

(thetadot (vector-ref qdot 0))
(phidot (vector-ref qdot 1))
(psidot (vector-ref qdot 2)))

(vector psi theta phi psidot thetadot phidot))))

178

C.1.9 hamilton.scm

;;; This file implements Hamiltonian mechanics. Given a sufficiently efficient
;; implementation of cotangent bundles, this should run faster than using
; Lagrangians.

(declare (usual-integrations))

;; The Hamiltonian should be a smooth map from the cotangent bundle of some
;; manifold into the real line.

(define (hamiltonian->v.field H)
(let ((T*M (smooth-map:get-domain H))

(R (smooth-map:get-range H)))
(lambda (p)

(let ((U (manifold:find-best-chart T*M p)))
(make-tangent U p

(hamilton-in-coords
(smooth-map:make-transition
H U (car (manifold:get-finite-atlas R)))
(chart:point->coords p U)))))))

;;; Derive Hamilton's equations for f at x (in coordinates):

(define (hamilton-in-coords f x)
(let* ((2n (vector-length x))

(v (make-vector 2n))
(n (/ 2n 2)))

(do ((i n (+ i 1))
(j 0 (+ j i)))

((>= j n) v)

(vector-set! v i (- (vector-first (((pdiff j) f) x))))
(vector-set! v j (vector-first (((pdiff i) f) x))))))

C.1.10 imbedding.scm

;; This file defines some procedures that are useful for working with
;; imbedding representations of manifolds:

(declare (usual-integrations))

;;; For tangent vectors:

(define (imbedding->tangent M p v)
(let ((U (manifold:find-best-chart M p)))

(make-tangent U p (push-forward-in-coords (chart:get-coord-map U) p v))))

(define (tangent->imbedding v)
(let* ((U (tangent:get-chart v))

(p (tangent:get-anchor v)))
(list p

(push-forward-in-coords (chart:get-inverse-map U)

179

(chart:point->coords p U)
(tangent:get-coords v)))))

(define tangent->imbedded-velocity
(compose cadr tangent->imbedding))

;;; For cotangent vectors:

(define (imbedding->cotangent M p v)
(let ((U (manifold:find-best-chart M p)))

(make-cotangent U p (pull-back-in-coords (chart:get-inverse-map U)
(chart:point->coords p U)
v))))

(define (cotangent->imbedding v)
(let* ((U (cotangent:get-chart v))

(p (cotangent:get-anchor v)))
(list p

;; Need to project the pulled-back functional onto the imbedded
;; surface because it's represented in the standard basis of the
;; ambient space, not the basis of the tangent space to M imbedded
;; inside R^n.

(project-onto-basis
(make-imbedded-basis U p)
(pull-back-in-coords (chart:get-coord-map U)

p
(cotangent:get-coords v))))))

(define (make-imbedded-basis chart x)
(let ((dim (chart:dimension chart)))

(let loop ((i 0) (vlist '())
(if (< i dim)

(loop (+ i 1) (cons (tangent->imbedded-velocity
(make-tangent chart x (vector:basis dim i 1)))

vlist))
vlist))))

C.1.11 job-ode.scm

(load "load-ode")

(show-time
(lambda ()

(let ((segment-size 1.)
(count 101)
(filename "rigid-man.data")
(charts (manifold:get-finite-atlas TS03)))

(let loop ((i 0) (x singular-init) (t 0.))
(if (< i count)

(begin

(write-line '(step ,i t = ,t))

180

(let ((results
(show-time

(lambda ()
(rigid-body-path x (+ t segment-size) t)))))

(let ((port (open-output-file filename #t)))

(for-each

(lambda (1)
(let ((t (car 1))

(p (cadr 1)))

(display t port)

(let loop ((i 0) (charts charts))
(if (null? charts)

(display "No chart!" port)
(let ((chart (car charts)))
(if (chart:member? p chart)

(begin
(display " " port)
(display i port)
(display " " port)
(display (chart:point->coords p chart)

port))
(loop (+ i 1) (cdr charts))))))

(newline port)))

(let ((1 (sort results (lambda (x y) (< (car x) (car y))))))
(if (> t 0)

(cdr 1)
1)))

(close-output-port port))

(loop (+ i 1) (cadar results) (caar results)))))))))

C.1.12 job-pde.scm

(load "load-pde")

;;; Construct a domain:

(define make-test-domain
(pde:make-domain-without-overlaps
disc
make-vertices
make-no-extra-nodes
planar-triangulate
'(rectangular 20 10)
'(spherical 10 20)))

;;; Construct the elements:

(make-test-domain
imbedded-poly-laplacian
make-triangular-imbedded-integrator
pde:make-imbedded-poly-basis-function)

;;; Make a matrix!

(define mat (combine-equations-without-overlap disc 0-function test-function))

;;; Print some stuff out to file:

(if #f
(begin

(write-line '(writing matrix to file...))

(let ((port (open-output-file "mat")))
(print-matrix mat port)
(close-output-port port))))

(write-line '(done!))

(if #f
(let ((port (open-output-file "err")))

(write-line '(max err = ,(max-error disc x-coord-map v)) port)
(write-line '(min err = ,(min-error disc x-coord-map v)) port)
(write-line '(avg err = ,(avg-error disc x-coord-map v)) port)

(newline port)
(write-line '(computed actual) port)

(for-each

(lambda (node)
(let ((index (node:get-id node)))
(if (number? index)

(write-line '(,(vector-ref v index)
,(x-coord-map node))

port))))

(sort (append-map (lambda (node)
(if (number? (node:get-id node))

(list node)
'0))

(manifold:get-nodes disc))
(lambda (ni n2)
(< (node:get-id ni) (node:get-id n2)))))

(close-output-port port)))

C.1.13 lagrange.scm

;;; This file defines the structures necessary to support Lagrangian vector
fields on configuration spaces of classical mechanical systems.

182

(declare (usual-integrations))

;; The Lagrangian should be a smooth map from the tangent bundle of some
;;; manifold into the real line.

;; This is very slow, as every evaluation of the field involves a matrix
;;; inversion. Which is why Hamiltonians are *better*, even for comuptational
;;; purposes!

(define (lagrangian->v.field L)
(let ((TM (smooth-map:get-domain L))

(R (smooth-map:get-range L)))
(lambda (p)

(let ((U
(if (tangent? p)

(make-tangent-chart (tangent:get-chart p))
(manifold:find-best-chart TM p))))

(let ((f (smooth-map:make-transition
L U (car (manifold:get-finite-atlas R))))

(x (chart:point->coords p U)))
(let ((v (vector-tail x (/ (vector-length x) 2))))

(let ((E-L (euler-lagrange-in-coords f x)))
(let ((A (car E-L))

(B (cadr E-L))
(c (caddr E-L)))

(let ((accel (matrix:solve-linear-system
A
(vector:+ (apply-linear-transformation B v) c))))

(make-tangent U p (vector-append v accel)))))))))))

;; Derive the Euler-Lagrange equations for f at x (in coordinates) in the form
;; A*xdotdot = B*xdot + c.

(define (euler-lagrange-in-coords f x)
(let* ((n (/ (vector-length x) 2))

(A (make-matrix n n))
(B (make-matrix n n))
(c (make-vector n 0)))

(do ((i n (+ i 1))
(p 0 (+ p I)))
((>= p n))

;; First, compute the hessian of f with respect to the velocity part of
;; the independent variable:

(matrix-set! A p p (vector-first (((pdiff i) ((pdiff i) f)) x)))

(do ((j (+ i 1) (+ j 1))
(q (+ p 1) (+ q 1)))

((>= q n))
(let ((val (vector-first (((pdiff j) ((pdiff i) f)) x))))
(matrix-set! A p q val)
(matrix-set! A q p val)))

;; Next, compute the rest of the terms involving the partials of the

183

;; Lagrangian with respect to the positions (note the minus sign):

(do ((j 0 (+ j 1)))
((>= j n))

(let ((val (- (vector-first (((pdiff j) ((pdiff i) f)) x)))))
(matrix-set! B p j val)))

;; And then there's the term due to the derivative of the Lagrangian with
;; respect to the position variables:

(vector-set! c p (vector-first (((pdiff p) f) x))))

(list A B c)))

;;; In many mechanics problems, it's natural to check conservation laws:

(define (check-vector-conservation-law quantity ref-point)
(let ((ref (quantity ref-point)))

(lambda (chart tangent)
(vector:distance (quantity (tangent:get-anchor tangent)) ref))))

C.1.14 linear.scm

;;; This file defines (again) some useful vector algebra procedures. And
SQUARE is *always* useful...

(declare (usual-integrations))

Vector operations. For completeness, we provide procedures that operate on
objects of the same *shape* (made up of lists of lists of vectors, etc.),
which *may* be useful for working with product structures.

(define (generalize-binary-operation combine-vectors
combine-numbers
combine-structs
null
error-string)

(let ((report-error
(let ((string (string-append "Objects have different sizes or are of"

" the wrong type. -- "

error-string)))
(lambda ()

(error string))))

(generalized-op
(lambda (v w)
(if (list? v)

(if (list? w)
(if (null? v)

(if (null? w)
null
(report-error))

(if (null? w)
(report-error)
(combine-structs (generalized-op (car v) (car w))

184

(generalized-op (cdr v) (cdr v)))))
(report-error))

(if (vector? v)
(if (vector? w)

(combine-vectors v w)
(report-error))

(if (number? v)
(if (number? v)

(combine-numbers v w)
(report-error))

(report-error)))))))
generalized-op))

;;; Vector addition:

(define (vector:binary+ vi v2)
(if (= (vector-length vi) (vector-length v2))

(let* ((len (vector-length vi))
(v (make-vector len)))

(let loop ((i 0))
(if (< i len)

(begin
(vector-set! v i (+ (vector-ref vi i) (vector-ref v2 i)))
(loop (+ i 1)))

v)))
(error "Cannot add vectors of different dimensions. -- VECTOR:+")))

(define (vector:+ v . vlist)
(let loop ((v v) (vlist vlist))
(if (null? vlist)

v
(loop (vector:binary+ v (car vlist)) (cdr vlist)))))

(define vector:general+
(generalize-binary-operation vector:binary+ + cons '() "VECTOR:+"))

;;; Vector subtraction:

(define (vector:binary- vi v2)
(if (= (vector-length vi) (vector-length v2))

(let* ((len (vector-length vi))
(v (make-vector len)))

(let loop ((i 0))
(if (< i len)

(begin
(vector-set! v i (- (vector-ref vi i) (vector-ref v2 i)))
(loop (+ i i)))

v)))
(error "Cannot subtract vectors of different lengths. -- VECTOR:-")))

(define (vector:- v . vlist)
(if (null? vlist)

(vector:* -1 v)
(let loop ((v v) (vlist vlist))
(if (null? vlist)

v
(loop (vector:binary- v (car vlist)) (cdr vlist))))))

185

(define vector:general-
(generalize-binary-operation vector:binary- - cons '() "VECTOR:-"))

;;; Scalar multiplication:

(define (vector:* a v)
(let* ((len (vector-length v))

(w (make-vector len)))
(let loop ((i 0))
(if (< i len)

(begin
(vector-set! w i (* a
(loop (+ i 1)))

w))))

(define (vector:general* a v)
(if (list? v)

(if (null? v)
1()
(cons (vector:general*

(if (vector? v)
(vector:* a v)
(if (number? v)

(vector-ref v i)))

a (car v)) (vector:general* a (cdr v))))

(* a v)
(error "Object is not a vector! -- VECTOR:*")))))

;;; Standard euclidean structures:

(define (vector:dot v w)
(let ((len (vector-length v)))
(if (not (= len (vector-length w)))

(error "Vectors do not have the same dimension. -- VECTOR:DOT")
(let loop ((i 0) (sum 0.))
(if (< i len)

(loop (+ i 1) (+ sum (* (vector-ref v i) (vector-ref w i))))
sum)))))

(define vector:general-dot
(generalize-binary-operation vector:dot * + 0 "VECTOR:DOT"))

;;; Solve linear systems of equations:

(define (matrix:solve-linear-system A b)
(let* ((m (matrix-row-count A))

(n (matrix-column-count A))
(mat (make-matrix m (+ n 1))))

(do ((i 0 (+ i 1)))
((>= i m))

(do ((j 0 (+ j 1)))
((>= j n))

(matrix-set! mat i j (matrix-ref A i j))))

(do ((i 0 (+ i i)))
((>= i m))

(matrix-set! mat i n (vector-ref b i)))

186

(rref mat)

(let ((result (make-vector n)))
(do ((j 0 (+ j 1)))

((>= j n))
(vector-set! result j (matrix-ref mat j n)))

result)))

C.1.15 load-main.scm

;; Figure out if ScmUtils is loaded (by checking if a few key procedures are
;;; defined):

(define *using-scmutils?*
(let ((procs '(derivative vector:scalar*vector)))
(and mit-scheme?

(not (memq #f (map
(lambda (proc)

(environment-bound? (the-environment) proc))

procs))))))

(newline)
(display
(if *using-scmutils?*

"*** It looks like we're running ScmUtils..."
"*** ScmUtils doesn't seem to be running. Going numerical..."))

(newline)

(let ((preload '("misc"
"lshared"))

(core '("charts"
"manifold"
"vbundle"
"product"

"boundary"
"ranges"
"smooth"
"spaces"))

(numdiff '("misc-math"
"fem/matlib"
"linear"
"richardson"))

(scmutils '("stubs")))

(for-each load
(for-each load
(for-each load

preload)
(if *using-scmutils?* scmutils numdiff))
core))

C.1.16 load-ode.scm

;;; Load the PDE stuff separately (so that the parts of the program *not* under
;;; development can still be used without these definitions).

187

(let ((ode-core
'("ode"

"ode-fast"
"lagrange"
"hamilton"
"fields"
"rigid-fields"
"ode-examples"))

(ode-scmutils
' ("rigid")))

(load "load-main")

(if (not *using-scmutils?*)
(begin

(newline)

(display "*** Warning: ODE code works better with ScmUtils!")
(newline))

(for-each load ode-scmutils))

(for-each load ode-core))

C.1.17 load-pde.scm

Load the PDE stuff separately (so that the parts of the program *not* under
development can still be used without these definitions).

(let ((pde-core
("pde-aux"
"pde-charts"
"pde-cmpgrd"
"pde-debug"
"pde-elements"
"pde-main"
"pde-mergers"
"pde-nodes"
"pde-ops"
"pde-tools"
"pde-config"

"basis-imb"
"basis-poly"
"basis-real"

"pde-examples"))

(fem-stuff
'("basis"

"2d-poly-basis"
"2d-real-basis"
"2d-trapezoid"
"delaunay"
"delaux"
"dyntable"
"edge"

188

"fem"
"relax"
"sparse"
"util-too"))

(fem-dir "fem/"))

(load "load-main")

(if *using-scmutils?*
(begin
(newline)
(display "*** Warning: PDE code does not work well with ScmUtils!")
(newline)))

(for-each (lambda (file)
(load (string-append fem-dir file)))

fem-stuff)

(for-each load pde-core))

C.1.18 lshared.scm

(declare (usual-integrations sqrt))

;;; Some useful procedures for manipulating stereographic projections and such:

(define (vector:drop-coord v i)
;; Project v onto the orthogonal complement of the ith standard basis vector:
(let* ((n (vector-length v))

(w (make-vector (- n 1))))
(let loop ((j 0) (k 0))
(if (< j n)

(if (= j i)
(loop (+ j 1) k)
(begin
(vector-set! w k (vector-ref v j))
(loop (+ j 1) (+ k 1))))

v))))

(define (vector:add-coord v i)
;; Do the opposite:
(let* ((n (+ (vector-length v) 1))

(w (make-vector n)))
(let loop ((j 0) (k 0))
(if (< j n)

(if (= j i)
(begin

(vector-set! w j 0.)
(loop (+ j 1) k))

(begin
(vector-set! w j (vector-ref v k))
(loop (+ j 1) (+ k I))))

w))))

(define (vector:basis dim i val)

189

(let ((v (make-vector dim 0.)))
(vector-set! v i val)
v))

;;; Useful to return the last COUNT elements of a vector:

(define (vector-end v count)
(vector-tail v (- (vector-length v) count)))

;;; Based on vector:dot:

(define (vector:magnitude-2 v)
(vector:dot v v))

(define (vector:magnitude v)
(sqrt (vector:magnitude-2 v)))

(define (vector:distance^2 v w)
(vector:magnitude'2 (vector:- v w)))

(define (vector:distance v w)
(sqrt (vector:distance^2 v w)))

;;; Least-squares approximation:

(define (project-onto-basis vlist vector)

;; Just do least-squares...

(let* ((trans (list->vector vlist))
(basis (transpose trans))

;; Taking this transpose, of course, is where we implicitly use the
;; metric structure of the ambient Euclidean space.

(result (matrix:solve-linear-system (matrix:* trans basis)
(apply-linear-transformation
trans vector))))

(apply-linear-transformation basis result)))

;;; Make an identity matrix:

(define (make-identity-matrix n)
(let ((mat (make-matrix n n)))

(do ((i 0 (+ i 1)))
((>= i n) mat)

(matrix-set! mat i i 1))))

Compute the square root of the trace of a matrix multiplied by its own
;;; transpose:

(define (matrix:magnitude A)
(let ((m (matrix-row-count A))

(n (matrix-column-count A)))

190

(let next-row ((i 0) (sum 0))
(if (< i m)

(let next-col ((j 0) (sum sum))
(if (< j n)

(next-col (+ j 1) (+ sum (square (matrix-ref A i j))))
(next-row (+ i 1) sum)))

(sqrt sum)))))

;; Find the maximum element of a matrix:

(define (matrix:max A)
(let ((m (matrix-row-count A))

(n (matrix-column-count A)))

(let next-row ((i 0) (max 0))
(if (< i m)

(let next-col ((j 0) (max max))
(if (< j n)

(let ((mag (magnitude (matrix-ref A i j))))
(if (> mag max)

(next-col (+ j 1) mag)
(next-col (+ j 1) max)))

(next-row (+ i 1) max)))
max))))

; Do a least-squares approximation:

(define (least-squares mat)
(let* ((m (matrix-row-count mat))

(n+1 (matrix-column-count mat))
(n (- n+1 1))
(out (make-matrix n n+1)))

(write-line '(preparing normal equations...))

(do ((i 0 (+ i 1)))
((>= i n))

(do ((j 0 (+ j 1)))
((> j n))

(let loop ((k 0) (sum 0))
(if (< k m)

(loop (+ k 1) (+ sum (* (matrix-ref mat k i)
(matrix-ref mat k j))))

(matrix-set! out i j sum)))))

(write-line '(solving normal equations using lu-decomposition...))
(lu-solve mat)))

;;; Here's a matrix deconstructor:

(define (matrix:flatten A)
(let* ((m (matrix-row-count A))

(n (matrix-column-count A))
(size (* m n))
(v (make-vector size 0)))

191

(do ((i 0 (+ i 1)))
((>= i m))

(do ((j 0 (+ j i)))
((>= j n))

(vector-set! v (+ (* i n) j) (matrix-ref A i j))))
v))

(define (vector->matrix m n v)
(let ((A (make-matrix m n)))

(do ((i 0 (+ i i)))
((>= i m))

(do ((j 0 (+ j 1)))
((>= j n))

(matrix-set! A i j (vector-ref v (+ (* i n) j)))))
A))

C.1.19 manifold.scm

;;; Some obsolete comments:

;;; How do we represent manifolds as computational objects? How can we perform
;;; geometric operations in a coordinate-free way? Can we efficiently encode
;; charts and mappings? How can we use the inverse function theorem (or the
;; implicit function theorem) to automagically construct charts for a

;;; manifold?

And how much set theory do we need to implement? This probably depends on
;;; what we want to do with the system. How can we implement, for example, the

axiom of choice?

Regarding the question of using the inverse function theorem: We can
probably accomplish this by some kind of numerical differentiation and
using a first-order approximation of the function to define charts.

Do this quickly and try out ideas. Don't waste time on completeness or
generality.

;;; December 1996 (from Neal's and Holly's machines):

;;; Notes on PDEs have been moved to pde.scm, while notes on ODEs are now in
;;; ode.scm.

(declare (usual-integrations))

;;; We need to make some simple Euclidean spaces:

(define (make-new-euclidean-space dim)

;; Just need one big happy chart:

(let* ((test (make-euclidean-test dim))
(chart (make-simple-chart dim test test identity identity)))

(charts->manifold (list chart))))

Will need this a lot in charts, so this will help speed it up a bit:

192

(define make-euclidean-space (simple-memoize make-new-euclidean-space 26))

Manifolds:

Again, abstract manifolds need only have the right access methods. This
;;; allows potentially infinite atlases (if the required methods can be

computed efficiently). It's not even clear the atlases need to be
;;; externally accessible.

;;; To construct a manifold, we need a procedure FIND-CHART that looks up a
chart satisfying some given predicate. Most other procedures can be

;;; constructed out of this, but it should be arranged so that these procedures
can be replaced, if necessary.

I guess we need to require atlases to be *locally finite*. Most manifolds
;;; we construct will be compact (or products of compact manifolds with
;;; Euclidean spaces), so it shouldn't matter anyway.

(define (package-manifold-maps dimension
general-chart-finder
general-chart-minimizer
find-chart
find-another-chart
find-least-distorted
get-local-atlas)

(vector dimension

Find a chart containing a given point and satisfying a given list
of predicates:

general-chart-finder

Find a chart containing a given point and minimizing a given
function (given an ordering on the function's output):

general-chart-minimizer

;; Find a chart containing a given point:
find-chart

;; Find a chart containing a given point and not in a given list:
find-another-chart

Find the least distorted chart containing the given tangent
;; vector:

find-least-distorted

;; Find a (finite) set of charts containing a given point. The
;; procedure is allowed to return (), if p is not in the manifold.
;; Note that everything else is, theoretically, implementable from
;; this. However, this would be too slow (even for us).
get-local-atlas

;; Extra junk:
'0))

;;; Here's an easier way to make manifolds: GENERAL-FIND-CHART finds a chart
;;; satisfying a given predicate, and FIND-MINIMIZING-CHART finds a chart that

193

;;; minimizes a function that always returns either a real *or* #f (#f means

;; the chart should be thrown out).

;;; As usual, if something cannot be found, #f is returned.

(define (make-manifold dim

general-find-chart

find-minimizing-chart

get-local-atlas)

(letrec

((find-chart

(lambda (p)

(general-find-chart p)))

(find-another-chart

(lambda (p charts)

(general-find-chart

p
(lambda (chart)

(not (memq chart charts))))))

(find-least-distorted

(lambda (tangent)

(car (find-minimizing-chart

(tangent:get-anchor tangent)

(lambda (chart)

(local-distortion chart tangent))

<))))

(package-manifold-maps dim

general-find-chart

find-minimizing-chart

find-chart

find-another-chart

find-least-distorted

get-local-atlas)))

;;; Get the various methods:

(define (manifold:dimension M)

(vector-ref M 0))

(define (manifold:get-general-chart-finder M)

(vector-ref M 1))

(define (manifold:get-general-minimizer M)

(vector-ref M 2))

(define (manifold:get-chart-finder M)

;; Return a function that finds a chart containing a given point.

(vector-ref M 3))

(define (manifold:get-second-opinion M)

(vector-ref M 4))

(define (manifold:get-least-distorted M)

(vector-ref M 5))

194

(define (manifold:get-local-atlas M p)
((vector-ref M 6) p))

(define (manifold:install-extra M tag datum)
(let ((result (assq tag (vector-ref M 7))))
(if result

(set-cdr! result datum)
(vector-set! M 7 (cons (cons tag datum) (vector-ref M 7))))))

(define (manifold:get-extra M tag)
(let ((result (assq tag (vector-ref M 7))))
(if result

(cdr result)
#f)))

(define (manifold:reset-extra! M)
(vector-set! M 7 '()))

;;; Some things that are bound to be handy:

(define (manifold:member? M x)
(if ((manifold:get-chart-finder M) x)

#f))

(define (manifold:find-chart M x)

;; If the manifold has only one chart, always return it without checking.
;; This kludge make smooth functions on tangent bundles of Euclidean spaces
;; work with ScmUtils.

(let ((atlas (manifold:get-finite-atlas M)))
(if (and atlas (null? (cdr atlas)))

(car atlas)
((manifold:get-chart-finder M) x))))

(define (manifold:find-another-chart M x . charts)
((manifold:get-second-opinion M) x charts))

(define (manifold:find-least-distorted M tangent)
((manifold:get-least-distorted M) tangent))

(define manifold:find-best-chart
(if *using-scmutils?*

manifold:find-chart
(lambda (M x)
((manifold:get-least-distorted M)
(make-tangent (manifold:find-chart M x)

x
(make-vector (manifold:dimension M) 1))))))

;;; An easy way to construct a large class of manifolds:

(define (charts->manifold charts)

(if (null? charts)

195

(error "No charts given. -- CHARTS->MANIFOLD"))

(let ((dim (chart:dimension (car charts))))

(let loop ((charts (cdr charts)))
(if (not (null? charts))

(if (= dim (chart:dimension (car charts)))
(loop (cdr charts))
(error (string-append "Not all charts have the same dimension!"

" -- CHARTS->MANIFOLD")))))

(letrec
((general-chart-finder
(lambda (p . predicates)

(let loop ((charts charts))
(if (null? charts)

(let ((chart (car charts)))
(if (chart:member? p chart)

(let valid? ((predicates predicates))
(if (null? predicates)

chart
(if ((car predicates) chart)

(valid? (cdr predicates))
(loop (cdr charts)))))

(loop (cdr charts))))))))

(find-minimizing-chart
(lambda (p f <)

(let loop ((charts charts) (result #f) (min #f))
(if (null? charts)

(if result
(list result min)
#f)

(let ((chart (car charts)))
(if (chart:member? p chart)

(let ((val (f chart)))
(if result

(if (< val min)
(loop (cdr charts) chart val)
(loop (cdr charts) result min))

(loop (cdr charts) chart val)))
(loop (cdr charts) result min)))))))

(get-local-atlas
(lambda (p)

(let loop ((charts charts) (result '()))
(if (null? charts)

result
(let ((chart (car charts)))
(if (chart:member? p chart)

(loop (cdr charts) (cons chart result))
(loop (cdr charts) result))))))))

(let ((M (make-manifold dim
general-chart-finder
find-minimizing-chart
get-local-atlas)))

(manifold:install-extra M 'finite-atlas charts)

196

M))))

(define (manifold:get-finite-atlas M)
(manifold:get-extra M 'finite-atlas))

;;; There are various tools for constructing new manifolds out of old ones,
;; such as vector bundles and product manifolds. However, the constructors do
;; not know about each other: A product of two vector bundles should be a
;; vector bundle, etc. I guess if such structures are ever needed, we can
;; create extra operations.

;; Note that the product of two manifolds with boundary may have corners on
;;; its boundary, so it may not be a smooth manifold with boundary. For
;;; example, the product of the unit interval with itself has corners. (Is
;;; this a problem for manifolds with n > 1?)

C.1.20 misc-math.scm

(declare (usual-integrations))

;;; Some definitions that are always useful:

(define (square z)
(* z z))

(define (compose f . rest)
(let loop ((f f) (1 rest))
(if (null? 1)

f
(loop (binary-compose f (car 1)) (cdr 1)))))

(define (binary-compose f g)
(lambda (first . rest)
(f (apply g (cons first rest)))))

(define pi (* 4 (atan 1)))
(define -pi (- pi))

(define (identity x)
x)

(define (relative-error val ref)
(if (zero? ref)

val

(/ (- val ref) ref)))

C.1.21 misc.scm

(declare (usual-integrations))

;;; Sometimes useful (stolen from nscmutils):

(define (make-comparator tol)

197

(lambda (a b)
(< (magnitude (- a b))

(* .5 tol
(+ (magnitude a) (magnitude b) 2.0)))))

(define almost-equal? (make-comparator le-1O))

(define (almost-zero? x)
(almost-equal? x 0))

;;; Useful in making product manifolds:

(define (all-pairs 11 12)
(let loopi ((11 11) (result '()))
(if (null? 11)

result
(let ((obj (car 11)))

(let loop2 ((12 12) (result result))
(if (null? 12)

(loopi (cdr 11) result)
(loop2 (cdr 12) (cons (list obj (car 12)) result))))))))

How do you tell if an object is a vector in R^n?

(define (make-euclidean-test dim)
(lambda (v)

(and (vector? v)
(= (vector-length v) dim)
(let loop ((i 0))
(if (< i dim)

(and (real? (vector-ref v i))
(loop (+ i 1)))

#t)))))

Always useful to memoize things:

(define (simple-memoize proc size)
;; Memoize a function whose argument is a non-negative integer:
(let ((cache (make-vector size 'undefined)))
(lambda (n)
(if (>= n size)

(proc n)
(let ((val (vector-ref cache n)))
(if (eq? val 'undefined)

(let ((val (proc n)))
(vector-set! cache n val)
val)

val))))))

;;; Useful in our implementation of spherical coordinates:

(define (list-integers i)
(let loop ((result '()) (i i))
(if (< i 0)

result

198

(loop (cons i result) (- i 1)))))

;;; Surprisingly enough, this is not in MIT Scheme:

(define (cot z)
(/ (tan z)))

;;; PARTIAL in ScmUtils doesn't do the right thing for functions of vector

;;; arguments, so we can't just use that and stub out the numerical equivalent:

(define (pdiff i)
(lambda (f)

(let ((df (diff f)))
(lambda (x)

(let ((v (make-vector (vector-length x) 0)))
(vector-set! v i 1)
((df x) v))))))

C.1.22 ode-examples.scm

;;; This file defines some examples of things we can do on manifolds. First,
;;; load some files that need to be compiled:

;;; Let's make a torus!

(define circle (make-sphere 1))
(define torus (product-manifold circle circle))

;;; Now we need the tangent bundle of the circle, or this wouldn't make very

;;; much sense...

(define TS1I (make-tangent-bundle circle))

;;; The tangent bundle of the circle is trivial, because the circle is a Lie
;;; group!

(define cylinder TS^1)

;;; Here's something to integrate:

(define circle-path
(v.field->flow circle

(v.field->local-field-maker circle-field)
(make-rk4-integrator (* 2 pi le-3))
local-distortion))

(define (real-circ t)
(vector (cos t) (sin t)))

;;; Try this:
;(vector:distance (cadar (circle-path (vector 1 0) (* 2 pi))) (vector 1 0))

199

;;; Make a nonlinear pendulum:

(define pend-field (make-pendulum 1 1 1))

(define pend-path
(v.field->flow cylinder

(v.field->local-field-maker pend-field)
(make-rk4-integrator le-3)
local-distortion))

(define pend-energy (make-pendulum-energy-function 1 1 1))

(define pend-init (imbedding->tangent circle (vector 0 1) (vector 0 0)))

;;; Try this:
;(define pend-results (pend-path pend-init 1))

;;; We should check things like the conservation of energy. Also, do it with
;;; other methods (such as the imbedding) so that we have something to compare.

;;; The spherical pendulum isn't much harder to make:

(define S'2 (make-sphere 2))
(define TS^2 (make-tangent-bundle S'2))

(define make-sphere-tangent
(let* ((chart (make-tangent-chart (make-spherical-chart 2 '(2 0 1) 0)))

(coords->point (chart:get-inverse-map chart)))

(lambda (latitude longitude dlat dlong)
(let ((p (coords->point (vector latitude longitude dlat dlong))))
;(write-line '(initial position: ,(tangent:get-anchor p)))
;(write-line '(initial velocity: ,(tangent->imbedded-velocity p)))

p))))

(define spherical-init (make-sphere-tangent (* 3/4 pi) 0 0 1))

(define spherical-field (make-spherical-pendulum 1 1 1))

(define spherical-path
(v.field->flow TS^2

(v.field->local-field-maker spherical-field)
(make-rk4-integrator le-3)
local-distortion))

An example of something defined using Lagrangian methods:

(define free-L-field (lagrangian->v.field (make-free-particle-lagrangian 1)))

;;; An example of something defined using Hamiltonian methods:

(define free-H-field (hamiltonian->v.field (make-free-particle-hamiltonian 1)))

;;; Let's try the spherical pendulum again:

(define spherical-inclusion

200

(smooth-map:diff (make-simple-map S^2 R^3 identity)))

(define spherical-lagrangian
(smooth-map:compose falling-lagrangian spherical-inclusion))

(define spherical-L-field

;; Note that this works only in numerical mode -- Due to some structural
;; problems, ScmUtils won't do the right thing on smooth functions on tangent
;; bundles that are *not* derived from maps on the base space.

(lagrangian->v.field spherical-lagrangian))

(define spherical-L-init
(imbedding->tangent S^2 (vector 1 0 0) (vector 0 1 0)))

(define spherical-L-path
(v.field->flow TS^2

(v.field->local-field-maker spherical-L-field)
(make-rk4-integrator le-3)
local-distortion))

;;; And again...

(define T*S'2 (make-cotangent-bundle S'2))

(define spherical-inclusion*
(let* ((chart (car (manifold:get-finite-atlas R^3)))

(f (lambda (v)
(apply make-cotangent

(cons chart (cotangent->imbedding v))))))
(make-simple-map T*S^2 T*R^3 f)))

(define spherical-hamiltonian
(smooth-map:compose falling-hamiltonian spherical-inclusion*))

(define spherical-H-field
(if #t

(make-spherical-H-pendulum 1 1 1)
(hamiltonian->v.field spherical-hamiltonian)))

(define spherical-H-init
(imbedding->cotangent S^2 (vector 1 0 0) (vector 0 1 .5)))

(define spherical-H-path
(v.field->flow T*S^2

(v.field->local-field-maker spherical-H-field)
(make-rk4-integrator le-3)
(check-vector-conservation-law
(smooth-map:get-point-function spherical-hamiltonian)
spherical-H-init)))

(define (spherical-H-angular-momentum cv)
(let ((p (cadr (cotangent->imbedding cv)))

(q (cotangent:get-anchor cv)))
(let ((px (vector-ref p 0))

(py (vector-ref p 1))
(x (vector-ref q 0))

201

(y (vector-ref q 1)))

(- (* x py) (* y px)))))

(define (print-spherical-H-state pair port)
(let ((p (cadr (cotangent->imbedding (cadr pair))))

(q (cotangent:get-anchor (cadr pair))))
(let ((t (car pair))

(px (vector-ref p 0))
(py (vector-ref p 1))
(pz (vector-ref p 2))
(x (vector-ref q 0))
(y (vector-ref q 1))
(z (vector-ref q 2)))

(display t port)
(for-each (lambda (val)

(display " " port)
(display val port))

(list x y z px py pz))
(newline port))))

;;; Here's a test of rigid bodies and Euler angles.

(define euler-angles (make-euler-angles 0 1 (/ -pi 2) (/ pi 2)))

(define rigid-body-energy
(make-free-rigid-body-lagrangian 1. (sqrt 2) 2.))

(define rigid-body-momentum
(make-free-rigid-body-angular-momentum 1. (sqrt 2) 2.))

(define rigid-body-init
(make-tangent euler-angles

(chart:coords->point (vector 0 1 0) euler-angles)
(vector .1 .1 .I)))

(define singular-init
(chart:coords->point (vector 0. 1. 0. -.01 -.1 -.01)

(make-tangent-chart euler-angles)))

(define bad-init
(chart:coords->point
#(-1.309711193385365 .12149475001297212 1.1518832285401293
-.19763392062291368 .09649536172931211 .18861249508985967)
(list-ref (manifold:get-finite-atlas TS03) 0)))

(define make-rigid-body-field
(free-rigid-body-field-maker 1 (sqrt 2) 2))

(define energy+momentum
(let ((E (smooth-map:get-point-function rigid-body-energy))

(L (smooth-map:get-point-function rigid-body-momentum)))
(lambda (p)
(vector-append (E p) (L p)))))

(define (correct->traditional-order v)
(let ((psi (vector-ref v 0))

(theta (vector-ref v 1))
(phi (vector-ref v 2))

202

(psidot (vector-ref v 3))

(thetadot (vector-ref v 4))
(phidot (vector-ref v 5)))

(vector 0. theta phi psi thetadot phidot psidot)))

(define scmutils-energy+momentum
(let ((energy (make-rigid-body-energy 1. (sqrt 2) 2.))

(momentum (make-rigid-body-momentum 1. (sqrt 2) 2.)))
(lambda (state)

(let ((L (momentum state))
(E (energy state)))

(vector E (vector-first L) (vector-second L) (vector-third L))))))

(define rigid-body-path
(v.field->flow
TS03
make-rigid-body-field
(if *using-scmutils?*

(begin
(set! *ode-integration-method* 'bulirsch-stoer)
(make-scmutils-integrator .01 le-12))

(make-rk4-integrator .01))
(check-vector-conservation-law
(if *using-scmutils?*

scmutils-energy+momentum
energy+momentum)

singular-init)))

C.1.23 ode-fast.scm

;;; This is like ode.scm, only the integrator has its distortion checks
;;; disabled.

(declare (usual-integrations))

(define (fast-v.field->flow M make-local-field next-step)
(lambda (p t-final . aux)

;; Reset the error-reporting mechanism:
(set! *point-of-failure* #f)

;; AUX lets the user specify an initial time (optional).

(let next-point ((p p)
(t (if (not (null? aux)) (car aux) 0.))
(result '())

(if (< t t-final)

;; Find all the charts containing this point and try each of them:

(let ((charts (manifold:get-local-atlas M p)))

(if (null? charts)
(begin
(write-line '(failure after ,(length result) steps))
(write-line '(failed at time = ,t seconds))
(set! *point-of-failure* p)

203

(error (ode-integrator-error 2))))

(let next-chart ((charts charts))
(if (null? charts)

;; No more charts: Panic!
(begin

(write-line '(failure after ,(length result) steps))
(write-line '(failed at time = ,t seconds))
(set! *point-of-failure* p)
(error (ode-integrator-error 1)))

;; Take a step forward in the next chart:
(let* ((chart (car charts))

(not-in-range
(compose not (chart:get-range-test chart)))

(v.field (make-local-field chart))
(make-field (field-protector v.field)))

(let ((new

;; This hack provides an escape mechanism from the
;; local integrator: Check if it tries to access the
;; field at a point outside the current chart.

(call-with-current-continuation
(lambda (return)

(next-step
(chart:point->coords p chart)
(make-field
chart
(list (list not-in-range return))
'())

(lambda () (return #f)))))))

(if new
(let ((x (integrator:get-new-x new))

(dt (integrator:get-dt new)))
(next-point (chart:coords->point x chart)

(+ t dt)
(cons (list t p) result)))

(next-chart (cdr charts))))))))
result))))

C.1.24 ode.scm

;;; What do we do when a orbit makes a transition between charts? This depends
on the representation of points; GJS used an explicit imbedding. Whatever
the representation, we can use hashing to look up charts given a point (and

;;; this operation should be abstracted anyway).

;;; What about using imbeddings? What would this do for either ODEs (the paths
should just stay on the manifold) or PDEs? This is not very general.

Since we can only get global existence under limited circumstances (e.g. a
;;; smooth vector field is complete if the manifold is compact), we might as
;;; well assume that the underlying manifold (or configuration space, since

204

;;; local existence works for second-order equations as well) is compact, thus
;;; allowing us to assume that the manifold has a finite atlas. Given that, we
;;; can evolve the integral curve in all charts at the same time, and pick the
;;; "best" solution at each step. (Or even any solution at all.)

;;; Actually, this idea only requires a locally finite atlas.

(declare (usual-integrations))

;;; Solve ODEs with 4th-order Runge-Kutta:
;;; (Needs automatic step-size control.)

;;; Something to agree on:

(define integrator:package-result cons)
(define integrator:get-new-x cdr)
(define integrator:get-dt car)

;;; Local integrators are assumed to take, in order, the following things:
;;; A STATE vector, a vector field, and FAIL (which is a thunk that does
;;; something in the case of an error).

;;; This procedure turns real vector fields into constructors for local fields;
;;; this exists (mostly) for compatibility issues.

(define (v.field->local-field-maker v.field)
(lambda (chart)

(let ((f (chart:get-inverse-map chart)))
(lambda (x)
(chart:push-forward (v.field (f x)) chart)))))

;;; RK4 on manifolds. Still needs QC.

(define (make-rk4-integrator dt)
(lambda (x v fail)

(let ((dt/2 (I dt 2.))
(dt/6 (/ dt 6.)))

(let* ((Fl (v x))
(F2 (v (vector:+ x (vector:* dt/2 Fi))))
(F3 (v (vector:+ x (vector:* dt/2 F2))))
(F4 (v (vector:+ x (vector:* dt F3)))))

(integrator:package-result
dt
(vector:+
(vector:* dt/6

(vector:+ F1
(vector:* 2. F2)
(vector:* 2. F3)
F4))

x))e))))

If ScmUtils is loaded, just use the integrator there (QCRK4 is the default,

205

;;; I believe):

(define (make-scmutils-integrator dt tol)
(lambda (x v fail)

(let* ((w (lambda (x)
(vector-append (vector 1) (v (vector-tail x 1)))))

(result (ode-advancer w (vector-append (vector 0) x) dt tol)))
(integrator:package-result
(vector-ref result 0)
(vector-tail result i)))))

;; We now need ODE solvers. When dealing with ODEs (as opposed to PDEs),
;; there is one particular problem we need to address: When do we switch

charts, if integrating locally?

;;; Here's an integrator integrates one step at a time. It understands how and
when to switch between charts.

;; This procedure uses continuations to handles faults like stepping out of
the chart on a intermediate step, or detecting really bad error conditions.
This simplifies the local integrator. (Tail recursion is *cool*.)

We should modify this continuation hack to allow QC-RK-4 to punt charts
;; based on local error analysis.

PRE-CHECKS and POST-CHECKS are predicate-continuation pairs that check for
;; errors before and after the computation of the vector field.

(define (field-protector v.field)
(lambda (chart pre-checks post-checks)

(lambda (x)
(let loop ((1 post-checks))
(if (null? 1)

(let ((v (v.field x)))
(let loop ((1 post-checks))
(if (null? 1)

v
(let ((pred-cont (car 1)))
(if ((car pred-cont) v)

((cadr pred-cont) v)
(loop (cdr 1)))))))

(let ((pred-cont (car 1)))
(if ((car pred-cont) x)

((cadr pred-cont) x)
(loop (cdr 1)))))))))

As an optimization, it might make sense for vector fields to work directly
;;; with charts. That is, a vector field is a constructor that, given a chart,
;;; constructs a local vector field on the chart. This fits in more nicely

with a Lagrangian or Hamiltonian description of mechanics.

There are some problems here:

;;; If we switch charts *before* we step off, then how do we know which chart
;;; to switch to? The program could sit there switching charts forever unless

we build some memory into this.

206

;; On the other hand, if we switch charts *after* we step off, then the
;;; inverse mapping fails. So what we need is a "compact refinement" of a
; covering of charts...

;; We can always simultaneously evolve the point in several charts. But is
;; that too slow?

(define ode-integrator-error
(let ((errors

(vector "*** Warning: Cannot find a good chart. Using any chart..."
"Error: I'm stuck! (Out of charts!) -- V.FIELD->FLOW"
"Error: Is this point in the manifold at all?")))

(lambda (i)
(vector-ref errors i))))

(define *point-of-failure* #f)

(define (integrator-failure-point)
point-of-failure)

;;; M is the manifold on which we integrate, MAKE-LOCAL-FIELD is a function
;;; that takes a chart and returns a (local) vector field on that chart,
;;; NEXT-STEP is the local integrator, and DISTORTION lets the user rank how
;;; undesirable a particular result is.

(define (v.field->flow M make-local-field next-step distortion)
(lambda (p t-final . aux)

;; Reset the error-reporting mechanism:
(set! *point-of-failure* #f)

;; AUX lets the user specify an initial time (optional).

(let next-point ((p p)
(t (if (not (null? aux)) (car aux) 0.))
(result '())

(if (<= t t-final)

;; Find all the charts containing this point and try each of them:

(let ((charts (manifold:get-local-atlas M p)))

;(write-line '(one more point!))

(let next-chart ((charts charts) (min #f) (best #f))
(if (null? charts)

;; If we have found a pretty good answer, use it for the next
;; step and save the previous time step. Otherwise panic and
;; use any chart we can find. If we can't even find a chart,
;; then the previous step was really bad, too, so the program
;; just dies.

(if best

(next-point (cadr best)
(+ t (car best))
(cons (list t p) result))

207

(let ((chart (manifold:find-best-chart M p)))
(if chart

(let* ((v.field (make-local-field chart))
(make-field (field-protector v.field))
(new (next-step

(chart:point->coords p chart)
(make-field chart '() '())
(lambda () (return #f)))))

(newline)
(display (ode-integrator-error 0))
(newline)
(next-point (chart:coords->point

(integrator:get-new-x new) chart)
(+ t (integrator:get-dt new))
(cons (list t p) result)))

(begin
(write-line
'(failure after ,(length result) steps))

(write-line '(failed at time = ,t seconds))
(set! *point-of-failure* p)
(error (ode-integrator-error i))))))

;; Take a step forward in the next chart:

(let* ((chart (car charts))
(not-in-range
(compose not (chart:get-range-test chart)))
(v.field (make-local-field chart))
(make-field (field-protector v.field)))

;(write-line '(one more chart!))

(let ((new

;; This hack provides an escape mechanism from the
;; local integrator: Check if it tries to access the
;; field at a point outside the current chart.

(call-with-current-continuation
(lambda (return)

(next-step
(chart:point->coords p chart)
(make-field
chart
(list (list not-in-range return))
'())

(lambda () (return #f)))))))

If nothing went wrong, check if the current chart does
better, and keep the result if it does. Otherwise
keep the old results.

(if new
(let ((x (integrator:get-new-x new)))
(if (chart:in-range? x chart)

(let* ((q (chart:coords->point x chart))
(dt (integrator:get-dt new))
(e (distortion

208

chart
(make-tangent chart q

(v.field x)))))
;(write-line '(t = ,t e = ,e))
(if min

(if (< e min)
(next-chart (cdr charts)

e
(list dt q))

(next-chart (cdr charts) min best))
(next-chart (cdr charts) e (list dt q))))

(next-chart (cdr charts) min best)))
(next-chart (cdr charts) min best)))))))

result))))

;; Local integrators, on the other hand, are more general. But they have the
;;; following problems:

;;; 1. They are less efficient.

;;; 2. When to switch charts?

;;; 3. Distortion of the vector field may produce locally bad solutions.

;;; Some of these problems (namely 2) can be solved by requiring that manifolds
;;; have charts (U, V, f) where the closure of U and V are both compact, and f
;;; extends to a diffeomorphism between those compact sets. This lets us
;;; switch charts without having a measure of how badly the vector field's
;;; doing. (Namely, switch when we step out of a chart!)

;; Using the imbedding to integrate: It's probably faster, in many cases more
;;; intuitive, and avoids the issue of switching between charts. The problems
;;; are:

;;; 1. It's not as useful in abstract manifolds. We don't know if all
;;; manifolds important for applications will be represented by imbeddings).

;;; 2. The trajectories may not stay on the manifold.

;;; Some of these problems can be resolved by having a uniform way to attach
;;; special structures to charts. It's ugly, but it'll be needed for solving
;;; PDEs.

C.1.25 pde-aux.scm

;;; This file defines some auxiliary data structures for the PDE code.

(declare (usual-integrations))

;;; Linear equations:

(define (make-equation node constant terms)
(vector constant terms node))

(define (equation:get-constant equation)

209

(vector-ref equation 0))

(define (equation:get-terms equation)
(vector-ref equation 1))

(define (equation:get-node equation)
(vector-ref equation 2))

(define (equation:get-id equation)
(node:get-id (equation:get-node equation)))

(define (null-equation? equation)
(let loop ((terms (equation:get-terms equation)))
(if (null? terms)

(let ((node (equation:get-node equation)))
(list (node:get-point node) (node:boundary? node)))

(if (almost-zero? (term:get-coeff (car terms)))
(loop (cdr terms))
#f))))

Terms in linear equations:

(define (make-term node value)
(vector node value))

(define (term:get-node term)
(vector-ref term 0))

(define (term:get-id term)
(node:get-id (term:get-node term)))

(define (term:get-coeff term)
(vector-ref term i))

C.1.26 pde-charts.scm

This file defines the structures necessary on charts to facilitate PDE
integration.

(declare (usual-integrations))

;;; When these charts are constructed, the space has already been discretized.
It only remains to compute the appropriate coefficients with respect to the
given differential operator.

(define (make-pde-chart chart extra-nodes discretize complex)

;; NODES should be the list of nodes used to discretize this chart.
DISCRETIZE should be a procedure that takes a differential operator and

;; whatever extra arguments it requires to produce a list of equations. Note
that it doesn't need a list of nodes because that state can already be
encapsulated in the proceure.

(chart:install-extra
chart 'pde-chart

210

(vector (complex->vertices complex)
extra-nodes
discretize
complex
(concat-node-list extra-nodes)
1C)))

chart)

(define (pde-chart? chart)
(if (chart:get-extra chart 'pde-chart)

#f))

(define (chart:get-vertices chart)
(let ((result (chart:get-extra chart 'pde-chart)))
(if result

(vector-ref result 0)
#f)))

(define (chart:get-extra-nodes chart)

;; This returns a list of lists, where sublists contain extra nodes for
;; corresponding faces in the face list of the complex.

(let ((result (chart:get-extra chart 'pde-chart)))
(if result

(vector-ref result 1)

(define (chart:get-nodes chart)
(let ((result (chart:get-extra chart 'pde-chart)))
(if result

(append (vector-ref result 0) (vector-ref result 4))
#f)))

(define (chart:get-discretizer chart)
(let ((result (chart:get-extra chart 'pde-chart)))
(if result

(vector-ref result 2)
#f)))

(define (chart:set-discretizer! chart discretize)
(let ((result (chart:get-extra chart 'pde-chart)))
(if result

(vector-set! result 2 discretize)
#f)))

(define (chart:get-complex chart)
(let ((result (chart:get-extra chart 'pde-chart)))
(if result

(vector-ref result 3)
#f)))

(define (chart:get-elements chart)
(let ((result (chart:get-extra chart 'pde-chart)))
(if result

(vector-ref result 5)
#f)))

211

(define (chart:set-elements! chart elements)
(let ((result (chart:get-extra chart 'pde-chart)))
(if result

(vector-set! result 5 elements)

#f)))

(define (chart:in-an-element? p chart)
(and (chart:member? p chart)

(let ((x (chart:point->coords p chart)))
(let loop ((elements (chart:get-elements chart)))

(if (null? elements)

(if (element:member? (car elements) x)
#t
(loop (cdr elements))))))))

(define (chart:coords->elements x chart)
(if (chart:in-range? x chart)

(let loop ((elements (chart:get-elements chart)) (result '()))

(if (null? elements)
result
(if (element:member? (car elements) x)

(loop (cdr elements) (cons (car elements) result))

(loop (cdr elements) result))))
'(0))

(define (chart:point->elements p chart)
(chart:coords->elements (chart:point->coords p chart) chart))

(define (chart:node->elements node chart)
(chart:point->elements (node:get-point node) chart))

(define (chart:coords->any-element x chart)
(if (chart:in-range? x chart)

(let loop ((elements (chart:get-elements chart)))
(if (null? elements)

#f
(if (element:member? (car elements) x)

(car elements)
(loop (cdr elements)))))

#f))

(define (chart:point->any-element p chart)
(chart:coords->any-element (chart:point->coords p chart) chart))

(define (chart:node->any-element node chart)
(chart:point->any-element (node:get-point node) chart))

;;; A useful routine:

(define (concat-node-list node-list)
(let ((all-nodes (apply append node-list)))

(for-each (lambda (node)
(node:set-id! node #f))

all-nodes)

(let loop ((1 all-nodes) (result '()))

212

(if (null? 1)
result
(let ((node (car 1)))
(if (node:get-id node)

(loop (cdr 1) result)
(begin
(node:set-id! node #t)
(loop (cdr 1) (cons node result)))))))))

;;; This actually doesn't do anything, except it gives us the flexibility of
;; using different discretization algorithms on different charts. For now,

;;; all we have is Galerkin's method.

(define (chart:discretize-pde chart source extra-args)
(let ((discretize (chart:get-discretizer chart)))
(if discretize

(apply discretize '(,chart ,source ,Cextra-args))
(error "Error: Cannot discretize this chart."))))

C.1.27 pde-cmpgrd.scm

;;; Following the ideas and algorithms in Chesshire and Henshaw's paper, let's
;;; try to duplicate (as much as possible) what their program, CMPGRD, does.

;; Note that they use finite differences and this program uses finite
;;; elements. So their interpolation kluge doesn't seem nearly as natural
;;; here; one is very tempted to interpolate using finite element basis
;;; functions, which doesn't seem to work.

(declare (usual-integrations))

;;; Classify the nodes as interpolation, discretization, or exterior, as done
;;; in the paper.

(define (cmpgrd:combine-equations domain equations)
(let* ((cv (list->vector (cons 'foo! (manifold:get-finite-atlas domain))))

(chart-count (- (vector-length cv) 1))
(coords (make-vector (+ chart-count 1) #f)))

;; Make the array one longer than it should so that the array indexing
;; conforms to the pseudocode in the paper... (Bletch!)

(vector-set! cv 0 chart-count)
(vector-set! coords 0 chart-count)

;; First, construct and initialize each entry in the array.

(write-line '(cmpgrd step 0: initializing array...))

(do ((k 1 (+ k 1)))
((> k chart-count))

(vector-set! coords k
(make-vector (length (chart:get-nodes (vector-ref cv k)))

chart-count)))

213

;; Next, follow the steps in the paper.
;; Step 1: Assign IDs to *all* nodes.

(write-line '(cmpgrd step 1: assigning ids to all nodes...))
(cmpgrd:step-1/assign-ids cv)

;; Step 2: Mark exterior nodes. (Is this really necessary?)

(write-line '(cmpgrd step 2: marking exterior nodes...))
(cmpgrd:step-2/mark-exterior-nodes cv coords)

;; Step 3: Find interpolating nodes.

(write-line '(cmpgrd step 3: finding interpolation nodes...))
(cmpgrd:step-3/find-interpolating-nodes cv coords)

;; Step 4: Mark necessary interpolation nodes.

(write-line '(cmpgrd step 4: marking necessary interpolation nodes...))
(cmpgrd:step-4/mark-necessary-interpolation-nodes cv coords)

;; Step 5: Delete interpolation points.

(write-line '(cmpgrd step 5: deleting extra interpolation points...))
(cmpgrd:step-5/delete-interpolation-points cv coords)

;; Step 6: Fix the entries in the table.

(write-line '(cmpgrd step 6: fixing up table...))
(cmpgrd:step-6/fix-table cv coords)

;; Finally, generate the appropriate constraints and produce a matrix:

(write-line '(cmpgrd final step: generating matrix...))
(cmpgrd:final-step/generate-matrix cv coords domain equations)))

;;; Step 1: Assign IDs to *all* nodes, sequentially (beginning with 0) within
;;; each chart.

(define (cmpgrd:step-1/assign-ids cv)
(let ((n (vector-ref cv 0)))

(do ((k 1 (+ k 1)))
((> k n))

(do ((nodes (chart:get-nodes (vector-ref cv k)) (cdr nodes))
(i 0 (+ i 1)))

((null? nodes))
(let ((node (car nodes)))

(node:set-id! node i))))))

;;; Step 2: Mark exterior nodes.

(define (cmpgrd:step-2/mark-exterior-nodes cv coords)
(let ((n (vector-ref cv 0)))

(do ((k 1 (+ k 1)))
((> k n))

(for-each
(lambda (node)

214

(if (node:boundary? node)
(let ((p (node:get-point node)))
(do ((k-prime 1 (+ k-prime 1)))

((> k-prime n))
(if (not (= k-prime k))

(let* ((nodes (chart:get-nodes (vector-ref cv k-prime)))
(node (car nodes)))

(let loop ((nodes (cdr nodes))
(dist (vector:distance

p (node:get-point node)))
(id (node:get-id node)))

(if (null? nodes)
(vector-set! (vector-ref coords k-prime) id 0)
(let* ((node (car nodes))

(new-d (vector:distance
p (node:get-point node))))

(if (< new-d dist)
(loop (cdr nodes) nev-d (node:get-id node))
(loop (cdr nodes) dist id)))))))))))

(chart:get-nodes (vector-ref cv k))))))

;;; Step 3: Find interpolating nodes.

(define (cmpgrd:step-3/find-interpolating-nodes cv coords)
(let ((n (vector-ref cv 0)))

(let loop ((count 1))
(let ((change-count 0))

(do ((k 1 (+ k 1)))
((> k n))

(let ((v (vector-ref coords k)))
(for-each

(lambda (node)
(let ((i (node:get-id node))

(p (node:get-point node)))

;; In the paper, 1 = k-prime.

(let ((valid-point? #f))
(do ((1 (vector-ref v i) (- 1 i)))

((or (zero? 1) valid-point?))
(cond ((= k 1)

(if (node:local-boundary? node)
(begin

(set! change-count (+ change-count 1))
(vector-set! v i (- (vector-ref v i) 1)))))

((not (chart:in-an-element? p (vector-ref cv 1)))
(set! change-count (+ change-count 1))
(vector-set! v i (- (vector-ref v i) 1)))

(else (set! valid-point? #t)))))))

(chart:get-nodes (vector-ref cv k)))))

(if (> change-count 0)
(begin

215

(write-line '(,change-count changes. number of tries = ,count))
(loop (+ count 1))))))))

;;; Step 4: Mark necessary interpolation nodes.

(define (cmpgrd:step-4/mark-necessary-interpolation-nodes cv coords)
(let ((n (vector-ref cv 0)))

(do ((k 1 (+ k 1)))
((> k n))

(let ((v (vector-ref coords k)))
(for-each
(lambda (node)

(let* ((i (node:get-id node))
(1 (vector-ref v i)))

(if (and (< 1 k) (> 1 0))
(let ((v (vector-ref coords 1)))
(for-each
(lambda (needed)

(let ((j (node:get-id needed)))
(vector-set! w j (- (abs (vector-ref w j))))))

(chart:needed-nodes node (vector-ref cv 1)))))))
(chart:get-nodes (vector-ref cv k)))))))

;;; Step 5: Delete interpolation points.

(define (cmpgrd:step-5/delete-interpolation-points cv coords)
(let ((n (vector-ref cv 0)))

(do ((k 1 (+ k 1)))
((> k n))

(let* ((v (vector-ref coords k))
(i-nodes (cmpgrd:step-5/get-interpolation-nodes cv v k)))

(for-each
(lambda (node)

(let ((i (node:get-id node)))
(if (> (vector-ref v i) 0)

(vector-set! v i 0))))
i-nodes)

(for-each
(lambda (node)
(if (not (or (node:boundary? node)

(node: local-boundary? node)))
(vector-set! v (node:get-id node) k)))

i-nodes)

(for-each
(lambda (node)

(let ((1 (vector-ref v (node:get-id node))))
(if (> 1 k)

(let ((w (vector-ref coords 1)))
(for-each
(lambda (needed)

(let ((j (node:get-id needed)))
(vector-set! w j (- (abs (vector-ref v j))))))

(chart:needed-nodes node (vector-ref cv 1)))))))
i-nodes)))))

216

(define (cmpgrd:step-5/get-interpolation-nodes cv v k)
(let loop ((nodes (chart:get-nodes (vector-ref cv k))) (result '()))
(if (null? nodes)

result
(let ((val (vector-ref v (node:get-id (car nodes)))))
(if (not (or (= val k) (zero? k)))

(loop (cdr nodes) (cons (car nodes) result))
(loop (cdr nodes) result))))))

Step 6: Fix the entries in the table.

(define (cmpgrd:step-6/fix-table cv coords)
(let ((n (vector-ref cv 0)))
(do ((k 1 (+ k i)))

((> k n))
(let ((v (vector-ref coords k)))
(for-each
(lambda (node)

(let* ((i (node:get-id node))
(abs-val (abs (vector-ref v i))))

(cond ((= abs-val k)
(vector-set! v i abs-val))

((> abs-val 0)
(vector-set! v i (- abs-val))))))

(chart:get-nodes (vector-ref cv k)))))))

;;; Final step: Generate the interpolation equations and produce the final
matrix:

(define (cmpgrd:final-step/generate-matrix cv coords domain equations)

;; First, loop through the charts and pick up the nodes.

(let ((chart-count (vector-ref cv 0))
(m 0)
(n 0)
(mat #f)
(constraints '()))

(let next-chart ((k 1) (result '()))
(if (<= k chart-count)

(let ((chart (vector-ref cv k))
(v (vector-ref coords k)))

(let next-node ((nodes (chart:get-nodes chart))
(result result))

(if (null? nodes)
(next-chart (+ k 1) result)
(let* ((node (car nodes))

(val (vector-ref v (node:get-id node))))
(if (< val 0)

(let* ((other (vector-ref cv (- val)))
(eq (chart:pointwise-constraint node other)))

(if eq
(next-node (cdr nodes) (cons eq result))
(next-node (cdr nodes) result)))

(next-node (cdr nodes) result))))))

217

(set! constraints result)))

;; Next, create the matrix. The IDs need to be reset first:

(let loop ((nodes (manifold:get-nodes domain)) (count 0))
(if (null? nodes)

(set! m count)
(let ((node (car nodes)))
(if (node:boundary? node)

(begin
(node:set-id! node 'boundary-node!)
(loop (cdr nodes) count))

(begin
(node:set-id! node count)
(loop (cdr nodes) (+ count 1)))))))

(set! n (+ m 1))
(set! mat (make-sparse-matrix m n))

;; Finally, copy the equations into the matrix while replacing equations
;; corresponding to interpolation nodes with the corresponding constraint
;; equation.

(let ((ev (make-vector m #f)))

;; Need to keep track of equations:

(for-each
(lambda (equation)
(vector-set! ev

(node:get-id (equation:get-node equation))
equation))

equations)

;; Constraints can overwrite equations:

(for-each
(lambda (constraint)

(vector-set! ev
(node:get-id (equation:get-node constraint))
constraint))

constraints)

;; Now just copy!

(do ((i 0 (+ i 1)))
((>= i m) mat)

(let ((eq (vector-ref ev i)))
(if eq

(begin
(sparse-matrix-set! mat i m (equation:get-constant eq))
(let next-term ((terms (equation:get-terms eq)))
(if (not (null? terms))

(let* ((term (car terms))
(j (term:get-id term))
(val (term:get-coeff term)))

(sparse-matrix-set! mat i j val)
(next-term (cdr terms))))))

(write-line '(*** warning: row ,i of matrix is null!))))))))

218

;;; With the roles of the nodes figured out, here's the real work: Generate the
;;; appropriate constraints. First, we need to figure out which nodes to
;;; interpolate from:

(define (chart:needed-nodes node chart)

;; Instead of using basis functions to interpolate, maybe we should follow
;; Chesshire & Henshaw's suggestion and create higher-order *interpolating
;; equations* (constraint equations, in our language) by extending the
;; constraint to elements neighboring the one containing the given point.

;; For now, let's just use the finite element interpolation and test the rest
;; of the Chesshire-Henshaw code.

(element:get-nodes (chart:node->any-element node chart)))

C.1.28 pde-collect.scm

;;; Use this file to collect data for theis work. Based on pde-test.scm.

(load "pde-test")

;;; Define the test procedures:

(define test-1
(pde:experiment-too

(define test-2
(pde:experiment-too

(define test-3
(pde:experiment-too

(define test-4
(pde:experiment-too

(define test-5
(pde:experiment-too

(define test-6
(pde:experiment-too

'pde:make-domain-without-overlaps
'combine-equations-without-overlap))

'pde:make-domain-with-small-overlaps
'combine-equations-without-overlap))

'pde:make-domain-with-overlaps
'combine-equations-with-overlap))

'pde:make-domain-with-larger-overlaps
'combine-equations-with-overlap))

'pde:make-simple-domain
'combine-equations-with-overlap))

'pde:make-simple-domain
'combine-equations-using-cmpgrd))

;;; Run the experiments (sorted by size, not test):

(test-1 '(rectangular
(test-2 '(rectangular
(test-3 '(rectangular

10 5) '(spherical 5 10) 10000 1.7
10 5) '(spherical 5 10) 10000 1.7
10 5) '(spherical 5 10) 10000 1.7

"Data/disc/testia")
"Data/disc/test2a")
"Data/disc/test3a")

219

'(rectangular 10 5) '(spherical 5 10) 10000 1.7 "Data/disc/test4a")
'(rectangular 10 5) '(spherical 5 10) 10000 1.7 "Data/disc/test5a")
'(rectangular 10 5) '(spherical 5 10) 10000 1.7 "Data/disc/test6a")

(test-4
(test-5
(test-6

(test-1
(test-2
(test-3
(test-4
(test-5
(test-6

(test-i
(test-2
(test-3
(test-4
(test-5
(test-6

(test-i
(test-2
(test-3
(test-4
(test-5
(test-6

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

10 20)
10 20)
10 20)
10 20)
10 20)
10 20)

20 30)
20 30)
20 30)
20 30)
20 30)
20 30)

'(rectangular 20
'(rectangular 20
'(rectangular 20
'(rectangular 20
'(rectangular 20
'(rectangular 20

'(rectangular 40
'(rectangular 40
'(rectangular 40
'(rectangular 40
'(rectangular 40
'(rectangular 40

'(rectangular 60
'(rectangular 60
'(rectangular 60
'(rectangular 60
'(rectangular 60
'(rectangular 60

10000
10000
10000
10000
10000
10000

10000
10000
10000
10000
10000
10000

10000
10000
10000
10000
10000
10000

1.7
1.7
1.7
1.7
1.7
1.7

1.7
1.7
1.7
1.7
1.7
1.7

1.7
1.7
1.7
1.7
1.7
1.7

"Data/disc/testlb")
"Data/disc/test2b")
"Data/disc/test3b")
"Data/disc/test4b")
"Data/disc/test5b")
"Data/disc/test6b")

"Data/disc/testlc")
"Data/disc/test2c")
"Data/disc/test3c")
"Data/disc/test4c")
"Data/disc/test5c")
"Data/disc/test6c")

"Data/disc/testld")
"Data/disc/test2d")
"Data/disc/test3d")
"Data/disc/test4d")
"Data/disc/test5d")
"Data/disc/test6d")

C.1.29 pde-collectl.scm

;;; Just the last two tests, which take more memory, from pde-collect.scm.

(load "pde-test")

(define test-5
(pde:experiment-too 'pde:make-simple-domain

'combine-equations-with-overlap))

(define test-6
(pde:experiment-too 'pde:make-simple-domain

'combine-equations-using-cmpgrd))

(test-5 '(rectangular 60 30) '(spherical 37 61) 10000 1.7 "Data/disc/test5d")
(test-6 '(rectangular 60 30) '(spherical 37 61) 10000 1.7 "Data/disc/test6d")

C.1.30 pde-collect2.scm

;;; Even more tests:

(load "pde-test")

;;; Define the test procedures:

(define test-7
(pde:experiment-too 'pde:make-simple-domain

'combine-equations-with-overlapi))

220

'(spherical 37 61)
'(spherical 37 61)
'(spherical 37 61)
'(spherical 37 61)
'(spherical 37 61)
'(spherical 37 61)

(define test-8
(pde:experiment-too 'pde:make-simple-domain

'combine-equations-with-overlap2))

;;; Run the experiments (sorted by size, not test):

(test-7 '(rectangular 10 5) '(spherical 5 10) 10000 1.7 "Data/disc/test7a")
(test-8 '(rectangular 10 5) '(spherical 5 10) 10000 1.7 "Data/disc/test8a")

(test-7 '(rectangular 20 10) '(spherical 10 20) 10000 1.7 "Data/disc/test7b")
(test-8 '(rectangular 20 10) '(spherical 10 20) 10000 1.7 "Data/disc/test8b")

(test-7 '(rectangular 40 15) '(spherical 20 30) 10000 1.7 "Data/disc/test7c")
(test-8 '(rectangular 40 15) '(spherical 20 30) 10000 1.7 "Data/disc/test8c")

C.1.31 pde-collect3.scm

;;; Even more tests:

(load "pde-test")

;;; Define the test procedures:

(define test-7
(pde:experiment-too 'pde:make-simple-domain

'combine-equations-with-overlapi))

(define test-8
(pde:experiment-too 'pde:make-simple-domain

'combine-equations-with-overlap2))

;;; Run the experiments (sorted by size, not test):

(test-7 '(rectangular 40 15) '(spherical 20 30) 10000 1.7 "Data/disc/test7c")
(test-8 '(rectangular 40 15) '(spherical 20 30) 10000 1.7 "Data/disc/test8c")

C.1.32 pde-collect4.scm

;;; Just the last two tests, which take more memory, from pde-collect.scm.

(load "pde-test")

;;; Define the test procedures:

(define test-7
(pde:experiment-too 'pde:make-simple-domain

'combine-equations-with-overlapl))

(define test-8
(pde:experiment-too 'pde:make-simple-domain

'combine-equations-with-overlap2))

221

;;; Run the experiments (sorted by size, not test):

(test-7 '(rectangular 60 30) '(spherical 37 61) 10000 1.7 "Data/disc/test7d")
(test-8 '(rectangular 60 30) '(spherical 37 61) 10000 1.7 "Data/disc/test8d")

C.1.33 pde-config.scm

;;; This file defines procedures that need to be easily modifiable:

;; Methods for generating equations from triangulated domains:

(define combine-equations-without-overlap
(pde:equation-maker merge-equations))

(define combine-equations-with-overlap
(pde:equation-maker
(append-constraint-equations make-ordered-boundary-constraints)))

(define combine-equations-with-overlapi
(pde:equation-maker
(append-constraint-equations make-all-constraints)))

(define combine-equations-with-overlap2
(pde:equation-maker
(append-constraint-equations make-all-ordered-constraints)))

(define combine-equations-using-CMPGRD
(pde:equation-maker cmpgrd:combine-equations))

;;; Methods for triangulating domains:

(define pde:make-domain-without-overlaps
(pde:domain-maker generate-node-lists exact-overlap))

(define pde:make-domain-with-small-overlaps
(pde:domain-maker copy-between-node-lists exact-overlap))

(define pde:make-domain-with-overlaps
(pde:domain-maker make-nodes-for-each-chart

(define pde:make-domain-with-larger-overlaps
(pde:domain-maker make-nodes-for-each-chart

(define pde:make-simple-domain
(pde:domain-maker make-nodes-for-each-chart

C.1.34 pde-debug.scm

;;; This file is based on fem/debug.scm.

(declare (usual-integrations))

reduce-overlap))

extended-overlap))

do-nothing-to-complex))

222

;;; Drawing a domain requires some care with element edges:

(define (draw-domain domain)
(draw-charts-in-domain (manifold:get-finite-atlas domain) domain))

;;; Drawing a chart is much simpler:

(define (draw-chart chart)
(let ((edges (complex->edges (chart:get-complex chart)))

(nodes (chart:get-nodes chart)))
(apply 2d-draw

(append
(list (chart:get-nodes chart) edges node:get-coords draw-line)
(bounding-box nodes node:get-coords)))))

(define (draw-chart-in-domain chart domain)
(draw-charts-in-domain (list chart) domain))

(define (draw-charts-in-domain charts domain)
(let ((edges (append-map (compose complex->edges chart:get-complex) charts))

(nodes (append-map chart:get-nodes charts)))
(apply 2d-draw

(append
(list nodes edges node:get-point draw-edge-in-chart)
(bounding-box (manifold:get-nodes domain) node:get-point)))))

Actually draw something:

(define *planar-device* 'undefined)

(define (make-2d-draw colors)
(let ((background (vector-ref colors 0))

(cursor (vector-ref colors 1))
(line (vector-ref colors 2))
(boundary (vector-ref colors 3))
(loc-bound (vector-ref colors 4))
(node (vector-ref colors 5))
(bnode (vector-ref colors 6))
(gnode (vector-ref colors 7))

(border-frac .05)
(cross-frac .005))

(lambda (nodes edges get-coords draw-edge
x-left y-bottom x-right y-top)

;; Report the dimensions:

(write-line '(x range: ,x-left to ,x-right))
(write-line '(y range: ,y-bottom to ,y-top))

;; Open a graphics window, if there isn't one already:

(if (eq? *planar-device* 'undefined)
(set! *planar-device* (make-graphics-device 'x))
(graphics-clear *planar-device*))

223

(let ((dev *planar-device*)
(bx (* border-frac (- x-right x-left)))
(by (* border-frac (- y-top y-bottom)))
(ex (* cross-frac (- x-right x-left)))
(ey (* cross-frac (- y-top y-bottom))))

(if (zero? bx) (set! bx .5))
(if (zero? by) (set! by .5))
(if (zero? ex) (set! ex cross-frac))
(if (zero? ey) (set! ey cross-frac))

;; Set up the window:

(write-line '(setting up...))

(graphics-set-coordinate-limits
dev (- x-left bx) (- y-bottom by) (+ x-right bx) (+ y-top by))
(graphics-operation dev 'set-foreground-color line)
(graphics-operation dev 'set-background-color background)
(graphics-operation dev 'set-mouse-color cursor)
(graphics-clear dev)
(graphics-enable-buffering dev)

;; First, draw the edges (the graphics are cooler if one sorts the
;; edges first):

(write-line '(drawing ,(length edges) edges...))

(let ((color 'line))
(for-each
(lambda (e)

(let* ((org-e (car e))
(dest-e (cadr e))
(org (get-coords org-e))
(dest (get-coords dest-e)))

(cond ((and (node:boundary? org-e) (node:boundary? dest-e))

(if (not (eq? color 'boundary))
(begin

(set! color 'boundary)
(graphics-operation
dev 'set-foreground-color boundary))))

((and (node:local-boundary? org-e)
(node:local-boundary? dest-e))

(if (not (eq? color 'local-boundary))
(begin

(set! color 'local-boundary)
(graphics-operation
dev 'set-foreground-color loc-bound))))

(else

(if (not (eq? color 'line))
(begin

(set! color 'line)
(graphics-operation

224

dev 'set-foreground-color line)))))

(draw-edge dev e)))

edges))

;; Next, draw the nodes:

(write-line '(drawing ,(length nodes) nodes...))

(let ((color 'node))
(graphics-operation dev 'set-foreground-color node)

(for-each
(lambda (n)

(let* ((coords (get-coords n))
(x (vector-ref coords 0))
(y (vector-ref coords 1)))

(cond ((node:boundary? n)

(if (not (eq? color 'bnode))
(begin

(set! color 'bnode)
(graphics-operation
dev 'set-foreground-color bnode)))

(draw-boundary-node dev x y ex ey))

((node:constrained? n)

(if (not (eq? color 'gnode))
(begin

(set! color 'gnode)
(graphics-operation
dev 'set-foreground-color gnode)))

(draw-glued-node dev x y ex ey))

(else

(if (not (eq? color 'node))
(begin

(set! color 'node)
(graphics-operation
dev 'set-foreground-color node)))

(draw-node dev x y ex ey)))))
nodes))

(write-line '(flushing buffers...))
(graphics-disable-buffering dev))

'done)))

;;; Different color schemes for different purposes:

(define *standard-colors*
(vector "black" ;; Background.

225

"white"

"blue"
"red"

"purple"

"white"

"orange"
"green"))

(define *boring-colors*

(vector "white"

"black"

"black"

"black"

"black"
"black"

"black"

"black"))

(define *print-colors*

(vector "white"

"black"
"blue"
"red"

"yellow"

"black"
"red"

"black"))

Cursor.

Regular edges.

Boundary edges.

Local boundaries.

Regular node color.

Boundary node color.

"Glued" node color.

Background.

Cursor.

Regular edges.

Boundary edges.

Local boundaries.

Regular node color.

Boundary node color.

"Glued" node color.

Background.

Cursor.

Regular edges.

Boundary edges.

Local boundaries.

Regular node color.

Boundary node color.

"Glued" node color.

(define 2d-draw (make-2d-draw *standard-colors*))

;;; Methods for drawing nodes:

(define (draw-node dev x y ex ey)

;; An 'x' is a regular node:

(graphics-draw-line dev (- x ex) (- y ey) (+ x ex) (+ y ey))

(graphics-draw-line dev (- x ex) (+ y ey) (+ x ex) (- y ey)))

(define (draw-boundary-node dev x y ex ey)

;; A square is a boundary node:

(let ((x-ex (- x ex))

(x+ex (+ x ex))
(y-ey (- y ey))

(y+ey (+ y ey)))

(graphics-move-cursor

(graphics-drag-cursor

(graphics-drag-cursor

(graphics-drag-cursor

(graphics-drag-cursor

dev x-ex y-ey)

dev x-ex y+ey)

dev
dev

dev

x+ex y+ey)

x+ex y-ey)
x-ex y-ey)))

(define (draw-glued-node dev x y ex ey)

;; A triangle is a node glued to another chart:

226

(let ((x-ex (- x ex))
(x+ex (+ x ex))
(y-ey (- y ey))
(y+ey (+ y ey)))

(graphics-draw-line dev x-ex y-ey x y+ey)
(graphics-draw-line dev x y+ey x+ex y-ey)
(graphics-draw-line dev x+ex y-ey x-ex y-ey)))

;;; Getting rid of the window is sometimes useful, too!

(define (close)
(if (not (eq? *planar-device* 'undefined))

(begin
(graphics-close *planar-device*)
(set! *planar-device* 'undefined))))

In order to get edges drawn correctly, we need to walk around the
parametrized path in the chart and then map it into the manifold (the
straight line in the manifold seldom works correctly):

(define draw-edge-in-chart
(let* ((step-count 40)

(dt (exact->inexact (/ step-count))))
(lambda (dev edge)

(let* ((org (node:get-coords (car edge)))
(dir (vector:- (node:get-coords (cadr edge)) org))
(f (chart:get-inverse-map (node:get-chart (car edge)))))

(let loop ((i 0) (p (f org)) (q (f (vector:+ (vector:* dt dir) org))))
(if (< i step-count)

(let ((i+1 (+ i 1)))
(graphics-draw-line dev

(vector-ref p 0) (vector-ref p 1)
(vector-ref q 0) (vector-ref q 1))

(loop i+1 q (f (vector:+ (vector:* (* i+1 dt) dir) org))))
'done))))))

;;; Draw a straight line:

(define (draw-line dev edge)
(let ((org (node:get-coords (car edge)))

(dest (node:get-coords (cadr edge))))
(graphics-draw-line dev

(vector-ref org 0) (vector-ref org 1)
(vector-ref dest 0) (vector-ref dest 1))))

;;; What we have so far actually doesn't work! Even though we get more
equations than unknowns, the rank is smaller than the number of unknowns

;; (i.e. the system is underdetermined). What can be going wrong?

1. Something is wrong in applying FEM, most notably FEM-DISCRETIZE in
pde-tools.scm.

;;; 2. Something is wrong in assembling the equations after that, as in
;;; COMBINE-EQUATIONS.

227

;;; 3. Something is wrong in generating constraints.

;;; 4. Something is wrong in collecting the equations and constraints.

;;; 5. Something is wrong in *controlling* when to generate constraints.

;;; (5) is the hardest one to fix, but it's most likely what's wrong with the
;;; approach.

;;; We can do a end-to-end test of 1, 2, and 4 by extracting the local matrices

and comparing them with the local results. (There shouldn't be any bugs in
;;; FEM, right?) It turns out that the specific example we have does pass the

;;; test. So we need to figure out if there are problems with the constraints

;;; (items 3 and 5).

(define (extract-local-matrix mat chart)
(let ((icount 0)

(ncount-1 (- (matrix-column-count mat) 1))
(result #f)
(indices '()))

(let loop ((nodes (chart:get-nodes chart)) (count 0) (ilist '()))
(if (null? nodes)

(begin
(set! icount count)
(set! result (make-matrix icount (+ icount 1)))
(set! indices (sort ilist <)))

(let ((id (node:get-id (car nodes))))
(if (number? id)

(loop (cdr nodes) (+ count 1) (cons id ilist))
(loop (cdr nodes) count ilist)))))

(do ((ilist indices (cdr ilist))
(m 0 (+ m 1)))

((null? ilist) result)
(let ((i (car ilist)))

(do ((jlist indices (cdr jlist))
(n 0 (+ n 1)))
((null? jlist))

(let ((j (car jlist)))
(matrix-set! result m n (matrix-ref mat i j))))

(matrix-set! result m icount (matrix-ref mat i ncount-1))))))

(define (compute-local-matrix source chart)
(sparse->matrix (assemble-equations

source (list->vector (chart:get-nodes chart)))))

(define (compare-matrices A B)
(let ((m (matrix-row-count A))

(n (matrix-column-count A)))
(do ((i 0 (+ i 1)))

((>= i m))
(do ((j 0 (+ j 1)))

((>= j n))
(let ((diff (- (matrix-ref A i j) (matrix-ref B i j))))
(if (not (zero? diff))

(write-line
'((,i ,j)

228

(- ,(matrix-ref A i j) ,(matrix-ref B i j))
=> ,diff))))))))

;;; Test if a column of a matrix is all almost zero.

(define (matrix:null-column? mat j)
(let ((m (matrix-row-count mat)))

(let loop ((i 0))
(if (< i m)

(if (almost-zero? (matrix-ref mat i j))
(loop (+ i 1))
#f)

#t))))

(define (matrix:null-row? mat i)
(let ((n (matrix-column-count mat)))

(let loop ((j 0))
(if (< j n)

(if (almost-zero? (matrix-ref mat i j))
(loop (+ j i))
#f)

#t))))

(define (matrix:find-null-columns mat)
(let ((n (matrix-column-count mat)))

(let loop ((j 0) (results '()))
(if (< j n)

(if (matrix:null-column? mat j)
(loop (+ j 1) (cons j results))
(loop (+ j 1) results))

results))))

(define (matrix:find-null-rows mat)
(let ((m (matrix-row-count mat)))

(let loop ((i 0) (results '()))
(if (< i m)

(if (matrix:null-row? mat i)
(loop (+ i 1) (cons i results))
(loop (+ i 1) results))

results))))

;;; Compute some errors:

(define (process-absolute-errors process nodes f v)
(apply process

(append-map
(lambda (node)

(let ((index (node:get-id node)))
(if (and (number? index) (not (node:constrained? node)))

(list (abs (- (f node) (vector-ref v index))))
'())))

nodes)))

(define (max-error domain f v)
(process-absolute-errors max (manifold:get-nodes domain) f v))

(define (min-error domain f v)

229

(process-absolute-errors min (manifold:get-nodes domain) f v))

(define (avg-error domain f v)
(/ (process-absolute-errors + (manifold:get-nodes domain) f v)

(vector-length v)))

(define (process-relative-errors process nodes f v)
(apply process

(append-map
(lambda (node)

(let ((index (node:get-id node)))
(if (number? index)

(list (relative-error (vector-ref

'0))))
nodes)))

v index) (f node)))

(define (max-relative-error domain f v)
(process-relative-errors max (manifold:get-nodes domain) f v))

(define (min-relative-error domain f v)
(process-relative-errors min (manifold:get-nodes domain) f v))

(define (avg-relative-error domain f v)
(/ (process-relative-errors + (manifold:get-nodes domain) f v)

(vector-length v)))

;; Somewhat more useful information about how bad the solutions
;; number of nodes is reasonably small):

(define (display-results domain f v)
(for-each
(lambda (node)

(let ((id (node:get-id node)))
(if (number? id)

(write-line

(manifold:get-nodes

'((id = ,id)
(computed = ,(vector-ref v (node:get-id node)))
(actual = ,(f node))
(x = ,(node:get-x node) y = ,(node:get-y node)))))))

domain)))

; This is so things can be drawn in ndMLAB or Maple: uraw a rectangle hnat
; bounds the manifold, divide it into an MxN grid, drop the nodes and average
; the values. Output is a matrix.

(define (manifold->grid m n domain f v diff)
(let ((nodes (manifold:get-nodes domain)))

(if (null? nodes)
(error "Manifold contains no nodes! -- MANIFOLD->GRID"))

;; Save nodal values:

(for-each
(lambda (node)

(let ((index (node:get-id node)))
(if (number? index)

230

are (if the

" '

(node:set-value! node (vector-ref v index)))))
nodes)

(let* ((p (node:get-point (car nodes)))
(x-min (vector-first p))
(x-max (vector-first p))
(y-min (vector-second p))
(y-max (vector-second p)))

;; Then find the bounding rectangle:

(for-each
(lambda (node)

(let* ((p (node:get-point node))
(x (vector-first p))
(y (vector-second p)))

(cond ((> x x-max) (set! x-max x))
((< x x-min) (set! x-min x)))

(cond ((> y y-max) (set! y-max y))
((< y y-min) (set! y-min y)))))

(cdr nodes))

;; Next, create the matrix and start averaging:

(let ((mat (make-matrix m n))
(count (make-matrix m n))
(dx (/ (- x-max x-min) m))
(dy (/ (- y-max y-min) n)))

;; Collect the sums and count the number of nodes in each box:

(for-each
(lambda (node)

(let* ((p (node:get-point node))
(x (- (vector-first p) x-min))
(y (- (vector-second p) y-min))
(i (inexact->exact (floor (/ x dx))))
(j (inexact->exact (floor (/ y dy)))))

;; Silly fence-post conditions:

(if (= i m) (set! i (- m 1)))
(if (= j n) (set! j (- n i)))

(matrix-set! count i j (+ 1 (matrix-ref count i j)))
(matrix-set! mat i j

(+ (diff (node:get-value node) (f node))
(matrix-ref mat i j)))))

nodes)

;; Normalize:

(do ((i 0 (+ i 1)))
((>= i m) mat)

(do ((j 0 (+ j 1)))
((>= j ni))

(if (> (matrix-ref count i j) 0)
(matrix-set!
mat i j

231

(/ (matrix-ref mat i j) (matrix-ref count i j))))))))))

;;; This lets save the results of a computation, if not the finite element
;;; stuff itself:

(define (node-states domain f v)
(let ((nodes (manifold:get-nodes domain)))
(if (null? nodes)

(let* ((n (real-node-count nodes))
(mat (make-matrix n 4)))

(for-each
(lambda (node)

(let ((id (node:get-id node)))
(if (number? id)

(let ((p (node:get-point
(matrix-set! mat id 0
(matrix-set! mat id 1
(matrix-set! mat id 2
(matrix-set! mat id 3

nodes)
mat))))

node)))
(vector-first p))
(vector-second p))
(vector-ref v id))
(f node))))))

(define (real-node-count nodes)
(let loop ((count 0) (nodes nodes))
(if (null? nodes)

count
(let ((id (node:get-id (car nodes))))
(if (number? id)

(loop (+ count 1) (cdr nodes))
(loop count (cdr nodes)))))))

C.1.35 pde-elements.scm

;;; This file defines tools for dealing with elements.

(declare (usual-integrations))

;;; A template for element constructors:

(define (pde:element-maker L
make-integrator
make-basis-function)

;; The operator abstraction in the FEM program is a bit artificial (see
;; ELEMENT-MAKER). Note that the interpolation of variable coefficients
;; *there* may not be necessary, as the operator is already given a PDE-chart

along with a list of the nodes.

(lambda (chart)

;; This ugly hack sort of works (for now). Really ought to just make
;; ELEMENT-MAKER to do the right thing (whatever that is).

(element-maker

232

(lambda (nodes)
(operator:set-context! L chart nodes)
L)

make-integrator
make-basis-function)))

;;; We need to know when a node belongs to an element. Note that this only
;;; works with simplices. For more complicated shapes, we would require more

;;; structure (i.e. a list of *faces* of the boundary of the convex element),
;;; which can only be supplied by TESSELATE during domain construction.

(define (element:member? element p)
(let ((vertices (map node:get-coords (element:get-vertex-nodes element))))
(in-simplex? p vertices)))

;;; Some procedures that help with ELEMENT:MEMBER?.

(define (in-simplex? point vertices)
(in-convex-domain?
point vertices (choose-sublists vertices (vector-length point))))

(define (in-convex-domain? point vertices faces)
(not (memq #f (map (lambda (face)

(same-side? point
(find-another-vertex face vertices)
(car face)
(cdr face)))

faces))))

(define (find-another-vertex face vertices)
(let loop ((vertices vertices))
(if (null? vertices)

(let ((vertex (car vertices)))
(if (member vertex face)

(loop (cdr vertices))
vertex)))))

(define (same-side? p q origin basis)

;; See if P and Q lie on the same side of the n-l-dimensional hyperplane
;; defined by translating the span of BASIS from 0 to ORIGIN.

(let ((basis (map (lambda (v) (vector:- v origin)) basis))
(p (vector:- p origin))
(q (vector:- q origin)))

(let ((val (* (det (list->vector (cons p basis)))
(det (list->vector (cons q basis))))))

(or (>= val 0)
(almost-zero? val)))))

C.1.36 pde-examples.scm

;;; We won't get any farther on this endeavor without defining some good

233

examples. A good example to use first is Laplace's equation, since the
answers are easy to check. Another option is to define something on the
torus or the sphere -- How does one define the Laplacian in that case?
Laplacian = (d + d*)^2 = d*d + dd*. On 0-forms (smooth functions) d* = 0,
so it's just d*d. How does one compute the adjoint locally?

;;; Laplace's equation in a compact region of the plane
;; covered by more than one coordinate system.

;;; First, let the domain be the unit closed disc, with
;;; on the boundary:

(with boundary),

spherical coordinates

(define disc
(make-ball 2 make-spherical-sphere))

;;; Define some Laplacian operators (on different basis functions):

(define poly-disc-laplacian
(make-operator
disc
(operator:pull-back-poly-op
poly-gradient
poly-gradient
(lambda (v w) (basis:scalar*

(define imbedded-poly-laplacian
(make-operator
disc
(operator:imbedded-poly-op
poly-gradient
poly-gradient
(lambda (v w) (basis:scalar*

(define real-disc-laplacian
(make-operator
disc
(operator:pull-back-real-op
real-gradient
real-gradient
(lambda (v w) (basis:scalar*

-1 (basis:dot v w))))))

-1 (basis:dot v w))))))

-1 (basis:dot v w))))))

;;; Some other things that are useful as test solutions:

(define x-coord-map
(compose vector-first node:get-point))

(define y-coord-map
(compose vector-second node:get-point))

(define (test-function node)
(let ((x (x-coord-map node))

(y (y-coord-map node)))
(- (square x) (square y))))

;;; Useful definitions to have (for debugging purposes):

234

(define atlas (manifold:get-finite-atlas disc))
(define cl (car atlas))
(define c2 (cadr atlas))
(define c3 (caddr atlas))

;;; The null equation corresponds to the node in row 228 of MAT. It is the
node at the center of the disc. Why are its coefficients 0? We should

;;; never get null equations because the diagonal terms should at least be
;;; non-zero.

It may appear that the problem lies with the fact that differential
operator operates on (inexact, interpolated) pull-backs of basis functions

;;; back onto the imbedded-manifold.

;;; But why should this cause problems on C3, which is really a subset of R'2?
What really must be happening is that Galerkin's method doesn't work unless

;; one performs the integration by parts, which is not exactly kosher because
;;; the basis functions are only piecewise-differentiable. So a variational

principle must be really what's at work in finite elements...

;; Using first-order operators and inner products seems to get rid of the
;; problem. This is because while the basis functions are C^2 over elements,

they are only C^0 across edges. Thus, differential operator we can safely
;; apply to basis functions have at most order 1, and it is necessary to split

the operator using integration by parts.

;;; Most of the error is probably coming from truncation errors in computing
the differential operator, since we cut off higher-order terms when
applying coordinate transformations. The other possible source of error is
the constraint. First thing to try, then, is to implement a nice

;;; multidimensional numerical integrator.

C.1.37 pde-gentest.scm

;;; Useful for generating the test cases in pde-thesis.scm:

(define (generate-test-case ilist rectangular spherical count sor-fact string)
(for-each
(lambda (i)

(newline)
(display
(string-append
"(test-" (number->string i) " "
"'(rectangular " (number->string (cadr rectangular)) " "

(number->string (caddr rectangular)) ") "
"'(spherical " (number->string (cadr spherical)) " "
(number->string (caddr spherical)) ") "

(number->string count) " "

(number->string sor-fact) " "
"\"Data/thesis/test" (number->string i) string "\")")))

ilist)
(newline))

;;; Generate the test cases:

235

(define (generate-test-set indices)
(newline)
(display "*** Test cases:")
(newline)
(for-each
(lambda (args)

(apply generate-test-case (cons indices args)))
(list (list '(rectangular 10 5) '(spherical 5 10) 10000 1.9 "a")

(list '(rectangular 14 7) '(spherical 7 14) 11000 1.9 "b")
(list '(rectangular 18 9) '(spherical 9 18) 12000 1.9 "c")
(list '(rectangular 22 11) '(spherical 11 22) 13000 1.9 "d")
(list '(rectangular 26 13) '(spherical 13 26) 14000 1.9 "e")
(list '(rectangular 30 15) '(spherical 15 30) 15000 1.9 "f")

(list '(rectangular 34 17) '(spherical 17 34) 16000 1.9 "g")
(list '(rectangular 38 19) '(spherical 19 38) 17000 1.9 "h")

(list '(rectangular 42 21) '(spherical 21 42) 18000 1.9 "i")
(list '(rectangular 46 23) '(spherical 23 46) 19000 1.9 "j")
(list '(rectangular 50 25) '(spherical 25 50) 20000 1.9 "k"))))

C.1.38 pde-main.scm

This program relies on the existence of local triangulation algorithms for
arbitrary dimensions. That problem does appear to be solved: See Barber,

;;; Dobkin, Huhdanpaa, "The Quickhull Algorithm for Convex Hulls." The paper,
;;; as well as the software itself, are available at the University of
;; Minnesota's Geometry Center, "http://ww.geom.umn.edu/software/qhull/".

;;; See pde-main.scm.old for lots and lots of comments and design notes. (It's
;;; a bit incoherent, so I've deleted them from this version.)

;;; NOTE:

;; Yet another possible approach is to look through the differential topology
;;; literature and see if there exists a (constructive) proof that manifolds

are triangulable or CW complexes. One can probably show that manifolds are
;;; CW complexes by Morse theory; is this computable? Does "computational
;; Morse theory" exist?

;; If we require the manifolds to be CW complexes or simplicial compexes to
;;; begin with, all these problems would be solved.

(declare (usual-integrations))
(load "pde-mergers")

;; Given a domain with constructed elements, a source function, and a boundary
;;; value function, produce the appropriate discretized equation. The nodes
;;; are left with indices that specify their corresponding row in the matrix.

(define (pde:equation-maker merge-equations)
(lambda (domain source boundary-value . extra-args)

;; EXTRA-ARGS gives us finer control over the discretization.

;; DOMAIN should be a manifold that already has PDE structures constructed.
; Hence, it contains information about the operator (through the elements

in its discretized charts).

236

;; BOUNDARY-VALUE is irrelevant for domains without boundary. Just specify
;; anything (but do put in something).

(let* ((M domain)
(charts (manifold:get-finite-atlas M))
(nodes (list->vector (append-map chart:get-nodes charts)))
(ncount (vector-length nodes)))

;; CHART:DISCRETIZE-PDE should return a list of linear equations. First,
;; set the boundary values:

(write-line '(,ncount nodes generated...))
(write-line '(setting boundary values...))

(do ((i 0 (+ i 1)))
((>= i ncount))

(let ((node (vector-ref nodes i)))
(if (node:boundary? node)

(node:set-value! node (boundary-value node)))))

;; Next, compute the local equation systems:

(write-line '(computing ,(length charts) local systems of equations...))

(let ((equations (append-map
(lambda (chart)

(chart:discretize-pde chart source extra-args))
charts)))

;; Compute constraints:

(write-line '(merging local equations...))
(show-time
(lambda ()

(merge-equations domain equations)))))))

;;; This procedure creates a constructor that, given a manifold M, creates the
data structures necessary for solving PDEs. The arguments must agree with

;;; the manifold on a contract that lets procedures obtain chart information.

(define (pde:domain-maker generate-node-lists process-complex)
(lambda (M

make-vertices
make-extra-nodes
tesselate
. argl)

;; First, make the bounding nodes of the convex domain, and then
;; triangulate and make the extra nodes:

(let ((atlas (manifold:get-finite-atlas M)))

(if (not atlas)
(error "Error: Can only do FEM with finite atlases."))

(write-line '(tesselating domain...))

237

;; Do something more complicated here to reduce the overlap:

(let loop ((charts atlas)
(node-lists (generate-node-lists make-vertices atlas argl)))

(if (not (null? charts))

;; TESSELATE should return a list of lists, where each list
;; contains the elemental faces of a given dimension (in some given
;; polytope). In the planar case, this reverses the convention in
;; fem.scm: The list should be sorted by dimension in *descending*

order.

(let* ((chart (car charts))
(nodes (car node-lists))
(complex (process-complex (tesselate nodes) (cdr charts)))
(extra-nodes (make-extra-nodes complex)))

;; By default, use FEM-DISCRETIZE. Can replace with others.

(make-pde-chart chart extra-nodes fem-discretize complex)
(loop (cdr charts) (cdr node-lists)))))

;; Construct elements. We don't need to explicitly mark boundaries
;; because manifolds should already have such structures defined.

(lambda (operator make-integrator make-basis-function)
(let ((element-maker (pde:element-maker operator

make-integrator
make-basis-function)))

(write-line '(constructing elements...))

(for-each

(lambda (chart)

;; Construct the elements:

(write-line
'(making ,(length (complex->faces (chart:get-complex chart)))

elements...))

(let* ((make-element (element-maker chart))
(new-elements (show-time

(lambda ()
(map make-element

(complex->faces
(chart:get-complex chart))
(chart:get-extra-nodes chart))))))

(chart:set-elements! chart new-elements)))

atlas))))))

;; This procedure uses the implicit ordering of the charts to remove extra
;; nodes in overlaps and to duplicate enough nodes so that the meshes can be
;; "glued" together.

(define (make-nodes-for-each-chart make-nodes charts extra-args)

238

(map (lambda (chart) (apply make-nodes (cons chart extra-args))) charts))

(define (generate-node-lists make-nodes charts argl)

;; Generate a list of nodes for each chart, then loop over the charts. Note
;; that the earlier a chart is in the list, the less likely its nodes are to
;; survive.

(let next-chart ((charts charts)
(lists (make-nodes-for-each-chart make-nodes charts argl))
(result '())
(reversed '())
(count 0))

(if (null? charts)
(copy-overlap-nodes count result reversed)
(next-chart (cdr charts)

(cdr lists)
(cons (remove-overlap-nodes (car lists) (cdr charts))

result)
(cons (car charts) reversed)
(+ count 1)))))

(define (copy-between-node-lists make-nodes charts argl)

;; Same as GENERATE-NODE-LISTS, but doesn't call REMOVE-OVERLAP-NODES.

(let ((node-lists (make-nodes-for-each-chart make-nodes charts argl)))
(copy-overlap-nodes (length charts)

(reverse node-lists)
(reverse charts))))

;;; Take out all nodes in NODES that belong to any of the charts in CHARTS.

(define (remove-overlap-nodes nodes charts)
(let next-node ((nodes nodes) (result '()))
(if (null? nodes)

result
(let* ((node (car nodes))

(p (node:get-point node)))
(let next-chart ((charts charts))
(if (null? charts)

(next-node (cdr nodes) (cons node result))
(if (chart:member? p (car charts))

(next-node (cdr nodes) result)
(next-chart (cdr charts)))))))))

;;; For each node list in LISTS, take each node and see if it's in one of the
;;; charts that come after the node's own chart in list-order. If so, make a

copy of that node and put it in the corresponding chart. Note that the
;;; order of node lists is reversed.

(define (copy-overlap-nodes count lists charts)
(let ((v (make-vector count '())))
(let next-list ((lists lists) (charts charts) (i 0) (result '()))
(if (null? lists)

result
(let next-node ((nodes (car lists)))
(if (null? nodes)

(next-list (cdr lists) (cdr charts) (+ i 1)

239

(cons (append (vector-ref v i) (car lists)) result))
(let ((node (car nodes)))
(if (or (node:local-boundary? node)

(node:boundary? node))
(let ((p (node:get-point node)))

(let next-chart ((charts (cdr charts))
(j (+ i 1))
(1 (cdr lists)))

(if (null? charts)
(next-node (cdr nodes))
(let ((chart (car charts)))
(if (chart:member? p chart)

(let ((other (close-node p (car 1))))
(if other

(node:set-constraint! other node)
(vector-set! v j

(cons
(node:copy node chart)
(vector-ref v j))))))

(next-chart (cdr charts) (+ j 1) (cdr 1))))))
(next-node (cdr nodes))))))))))

(define close-node
(let* ((close-enuf? (make-comparator .01))

(too-close? (lambda (p q)
(close-enuf? (vector:distance p q) 0))))

(lambda (p 1)
(let loop ((1 1))
(if (null? 1)

(if (too-close? p (node:get-point (car 1)))
(car 1)
(loop (cdr 1))))))))

;;; After filtering out nodes, local boundary information becomes useless...

(define (exact-overlap complex charts)
(kill-extra-nodes complex charts)
(resurrect-only-connected-nodes complex charts)
(keep-only-live-nodes complex charts))

(define (remove-overlap complex charts)
(kill-extra-nodes complex charts)
(resurrect-some-nodes complex charts)
(keep-only-live-nodes complex charts))

(define (reduce-overlap complex charts)
(kill-extra-nodes complex charts)
(resurrect-some-nodes complex charts)
(resurrect-some-nodes complex charts)
(keep-only-live-nodes complex charts))

(define (absolutely-no-overlap complex charts)
(kill-extra-nodes complex charts)
(keep-only-live-nodes complex charts))

(define (extended-overlap complex charts)
(extend-local-boundary complex charts)
complex)

240

(define (extend-local-boundary complex charts)

(write-line '(extending local boundary...))

(let loop ((edges (complex->edges complex)) (keep '()))
(if (null? edges)

(for-each
(lambda (node)
(node:set-local-boundary! node #t))

keep)
(let ((ni (caar edges))

(n2 (cadar edges)))
(if (node:local-boundary? nl)

(if (node:local-boundary? n2)
(loop (cdr edges) keep)
(loop (cdr edges) (cons n2 keep)))

(if (node:local-boundary? n2)
(loop (cdr edges) (cons ni keep))
(loop (cdr edges) keep)))))))

(define (do-nothing-to-complex complex charts)
complex)

(define (kill-extra-nodes complex charts)

;; Figure out which nodes to keep by looking at the overlaps:

(write-line '(processing ,(length (complex->vertices complex)) nodes...))

(let next-node ((nodes (complex->vertices complex)))
(if (not (null? nodes))

(let ((node (car nodes)))
(let ((p (node:get-point node)))

(let next-chart ((charts charts))
(if (null? charts)

(next-node (cdr nodes))
(let ((chart (car charts)))
(if (chart:member? p chart)

(let ((node (car nodes)))
(node:kill! node)
(node:set-local-boundary! node #f)
(next-node (cdr nodes)))

(next-chart (cdr charts)))))))))))

(define (resurrect-some-nodes complex charts)

;; We actually need to keep more nodes than this, because we need *some*
;; overlap, though not too much. We also need more sophisticated ways of
;; checking whether a node should be kept.

(write-line '(figuring out overlaps...))

(let loop ((faces (complex->faces complex)) (keep '()))
(if (null? faces)

(for-each
(lambda (face)

(for-each
(lambda (node)

241

(if (not (node:active? node))
(begin

(node:set-local-boundary! node #t)
(node:resurrect! node))))

face))
keep)
(if (save-face? (car faces) charts)

(loop (cdr faces) (cons (car faces) keep))
(loop (cdr faces) keep)))))

(define (resurrect-only-connected-nodes complex charts)

;; Only keep nodes that are connected to live ones:

(write-line '(figuring out overlaps...))

(let loop ((faces (complex->faces complex)) (keep '()))
(if (null? faces)

(for-each
(lambda (face)
(for-each
(lambda (node)
(if (not (node:active? node))

(begin
(node:set-local-boundary! node #t)
(node:resurrect! node))))

face))
keep)
(if (at-least-one-live-node? (car faces) charts)

(loop (cdr faces) (cons (car faces) keep))
(loop (cdr faces) keep)))))

(define (keep-only-live-nodes complex charts)

;; Figure out which faces/edges/etc. to keep:

(write-line '(processing complex...))

(let loop ((complex complex) (result '()))
(if (null? complex)

(reverse result)
(let inner-loop ((faces (car complex)) (okay-faces '()))
(if (null? faces)

(loop (cdr complex) (cons okay-faces result))
(let* ((face (car faces))

(list? (list? face)))
(if (or (and list? (not (memq #f (map node:active? face))))

(and (not list?) (node:active? face)))
(inner-loop (cdr faces) (cons face okay-faces))
(inner-loop (cdr faces) okay-faces))))))))

;; We need to check if the particular element covers a region of the manifold
;;; that isn't covered by another chart. It is hard to do this in general, but
;;; we can use a probabilistic algorithm and take advantage of the fact that
;; elements are convex:

(define save-face?

242

;; KLUGE-FACTOR defines how many random points to try. It should scale up
w; with the dimension/size of the element, but for now it's constant.

(let ((kluge-factor 40))
(lambda (face charts)

(or (at-least-one-live-node? face charts)

;; Go through a complicated (and probabilistic) test:

(let ((vertices (map node:get-coords face))
(chart (node:get-chart (car face))))

(let ((m (length face))
(n (chart:dimension chart)))

(let loop ((k 0))
(if (< k kluge-factor)

;; Contruct a random point in the element:

(let ((v (make-random-probability-vector m))
(w (make-vector n 0)))

(do ((i 0 (+ i 1))
(vertices vertices (cdr vertices)))

((>= i m))
(let ((coeff (vector-ref v i))

(x (car vertices)))
(do ((j 0 (+ j 1)))

((>= j n))
(vector-set! w j (+ (vector-ref w j)

(* coeff (vector-ref x j)))))))

;; Now test it:

(let ((p (chart:coords->point w chart)))
(let next-chart ((charts charts))
(if (null? charts)

(if (chart:member? p (car charts))
(loop (+ k 1))
(next-chart (cdr charts)))))))

#f))))))))

(define (make-random-probability-vector n)
(let ((v (make-vector n)))

(let loop ((i 0) (sum 0))
(if (< i n)

(let ((val (random 1.)))
(vector-set! v i val)
(loop (+ i 1) (+ val sum)))

(do ((j 0 (+ j I)))
((>= j n) v)

(vector-set! v j (/ (vector-ref v j) sum)))))))

Here is a simpler variant:

(define (at-least-one-live-node? face charts)
(memq #t (map node:active? face)))

243

;;; A useful procedure that gets all the nodes out of the domain:

(define (manifold:get-nodes domain)
(append-map chart:get-nodes (manifold:get-finite-atlas domain)))

C.1.39 pde-mergers.scm

;;; This file defines some ways of putting together equations from different
;;; charts.

(declare (usual-integrations))

;;; Just adding linear combinations of old equations to the matrix won't do
anything new. We also need to eliminate old equations -- How do we do

;;; this? In the case when two nodes overlap, the choice is simple: Just
;; eliminate the two original equations, and replace one of the old nodes with

;;; the other. But what do we do when the node lies *inside* an element?

;;; Let's leave that for future work, and instead implement a method based on
"copying" nodes from other charts to guarantee that nodes overlap exactly

;;; in interactions. Then this reduces to something like the exact case, and
;;; we know how to combine equations in this case.

;;; By the way, is it important to enforce constraints on boundary nodes? The
;;; current design makes this impossible to do, but one could probably fix it.

(define (merge-equations domain equations)
(let ((nodes (manifold:get-nodes domain))

(count 0)
(mat #f))

;; First, assign IDs to nodes, and create the matrix:

(write-line '(creating matrix...))

(let loop ((nodes nodes) (i 0))
(if (null? nodes)

(begin
(set! count i)
(set! mat (make-sparse-matrix count (+ count 1))))

(let ((node (car nodes)))
(cond ((node:boundary? node)

(node:set-id! node 'boundary-node!)
(loop (cdr nodes) i))
((node:get-constraint node)
(node:set-id! node 'constrained-node!)
(loop (cdr nodes) i))

(else
(node:set-id! node i)
(loop (cdr nodes) (+ i i)))))))

;; Next, start filling in equations while keeping track of constraints:

(write-line '(copying equations...))

244

(let next-eq ((equations equations))
(if (null? equations)

(begin
(write-line '(done!))
mat)

(let* ((eq (car equations))
(i (node:get-real-id (equation:get-node eq))))

(sparse-matrix-set! mat i count
(+ (equation:get-constant eq)

(sparse-matrix-ref mat i count)))

(let next-term ((terms (equation:get-terms eq)))
(if (null? terms)

(next-eq (cdr equations))
(let* ((term (car terms))

(j (node:get-real-id (term:get-node term)))
(val (term:get-coeff term)))

(sparse-matrix-set! mat i j (+ (sparse-matrix-ref mat i j)
val))

(next-term (cdr terms))))))))))

A slightly different way to merge equations that requires overlaps: Append
;;; linear constraints that force nodal values in overlapping regions to agree
;;; with the interpolated value in the other chart. Note that if one does this

for *all* nodes, it might "stiffen" the solution over the overlap and force
it to be approximately linear. Thus, one should try to avoid having too

;;; many constrained nodes, or to somehow reduce the overlap.

(define (append-constraint-equations make-constraints)
(lambda (domain equations)

;; First, set IDs and clear hidden states:

(write-line '(setting node ids...))

(let loop ((id 0) (nodes (manifold:get-nodes domain)))
(if (not (null? nodes))

(let ((node (car nodes)))
(node:set-constraint! node #f)
(if (node:boundary? node)

(begin
(node:set-id! node 'boundary-node!)
(loop id (cdr nodes)))

(begin
(node:set-id! node id)
(loop (+ id 1) (cdr nodes)))))))

;; Next, generate constraints:

(write-line '(generating constraints...))

(with-values
(lambda () (make-constraints domain))

(lambda (c-count clists)
(let* ((eq-count (length equations))

245

(m (+ eq-count c-count))
(n (+ eq-count i)))

(write-line '(constructing a matrix of dimension (,m ,n)...))

(let ((mat (make-sparse-matrix m n)))

;; First, copy the equations:

(write-line '(copying ,eq-count equations...))

(for-each
(lambda (eq)

(let ((i (equation:get-id eq)))
(sparse-matrix-set!
mat i eq-count (equation:get-constant eq))
(for-each
(lambda (term)

(sparse-matrix-set! mat i (term:get-id term)
(term:get-coeff term)))

(equation:get-terms eq))))
equations)

;; Next, copy the constraints:

(write-line '(copying ,c-count constraints...))

(let next-clist ((i eq-count) (clists clists))
(if (null? clists)

mat
(let next-constraint ((clist (car clists)) (i i))
(if (null? clist)

(next-clist i (cdr clists))
(let ((constraint (car clist)))

(sparse-matrix-set!
mat i eq-count (equation:get-constant constraint))
(for-each
(lambda (term)

(sparse-matrix-set! mat i (term:get-id term)
(term:get-coeff term)))

(equation:get-terms constraint))
(next-constraint (cdr clist) (+ i i)))))))))))))

;;; Here's one way to make constraints:

(define (make-ordered-boundary-constraints domain)
(let* ((charts (manifold:get-finite-atlas domain))

(result-1 (charts->constraints charts node:local-boundary?))
(result-2 (charts->constraints

(reverse charts) node:local-boundary?)))
(values (+ (car result-i) (car result-2))

(append (cadr result-i) (cadr result-2)))))

(define (charts->constraints charts good-node?)
(let next-chart ((charts charts)

(count 0)
(clists '()))

(if (null? charts)

246

(list count clists)

;; Go through each node in the chart and check for constraints:

(let ((chart (car charts)))
(let next-node ((nodes (chart:get-nodes chart))

(count count)
(clist '()))

(if (null? nodes)
(next-chart (cdr charts) count (cons clist clists))
(let ((node (car nodes)))
(if (and (good-node? node)

(not (node:get-constraint node))
(not (node:boundary? node)))

(let ((eq (make-constraint node (cdr charts))))
(if eq

(next-node (cdr nodes) (+ count 1) (cons eq clist))
(next-node (cdr nodes) count clist)))

(next-node (cdr nodes) count clist))))))))

(define (make-constraint node charts)
(let loop ((charts charts))
(if (null? charts)

#f
(let ((eq (chart:pointwise-constraint node (car charts))))
(if eq

eq
(loop (cdr charts)))))))

A slightly different approach that generates *more* constraints:

(define make-all-ordered-constraints
(let ((exists? (lambda (node) #t)))

(lambda (domain)
(let* ((charts (manifold:get-finite-atlas domain))

(result-i (charts->constraints charts exists?))
(result-2 (charts->constraints (reverse charts) exists?)))

(values (+ (car result-i) (car result-2))
(append (cadr result-i) (cadr result-2)))))))

;;; Finally, something that generates a lot of constraints:

(define (make-all-constraints domain)
(let ((constraints

(append-map
(lambda (pair)

(let ((chart-i (car pair))
(chart-2 (cadr pair)))

(append (constrain-all-nodes chart-1 chart-2)
(constrain-all-nodes chart-2 chart-i))))

(pairs (manifold:get-finite-atlas domain)))))
(values (length constraints) (list constraints))))

(define (constrain-all-nodes chart-1 chart-2)
(append-map
(lambda (node)

247

(if (node:boundary? node)
'()
(let ((eq (chart:pointwise-constraint node chart-2)))
(if eq

(list eq)
'())))

(chart:get-nodes chart-i)))

;;; Some extensions to charts:

;; Here's one problem with this approach to constraints, though: Consider the
;;; case when we *do* have a mesh over a simple subset of the plane. Let's try
;;; to apply this constraint idea to this case: Cut the mesh along some line
;; formed by the edges, so that we cut the meshed region R into two subregions

;;; Ri and R2. Let's try to paste R1 and R2 together using constraints. What
;;; we notice is that when we identify two nodes (by adding a constraint
;; equation), we are actually requiring that the nodal value satisfies *two*

;;; separate equations, one for R1 and one for R2, instead of satisfying the
;;;*sum* of those two equations. What this indicates is that this method

;;; actually *requires* overlaps.

;; Furthermore, note that building constraints by putting in (indeterminate)
;;; Dirichlet boundary conditions along chart boundaries won't work. Consider
;;;the ideal case, where two charts overlap by exactly their boundary: Since
;;; the Dirichlet problem is well-posed for Laplace's equation, we can put
;;; *any* "boundary value" on this overlap and still get a solution of the
;;; equation over the whole domain. Clearly, this idea *may* work if one uses
;;; von Neumann conditions rather than Dirichlet conditions, but how to do that
;;; nicely is not clear. Perhaps using Lagrange multipliers for a constrained
;;; minimization...

(define (chart:pointwise-constraint node chart)

The coefficients of a linear constraint for some node x should simply be

the value at p of the basis function centered at x. This linearity
;; depends only on the fact that the solution is approximated by a linear

combination of basis functions.

(if (chart:member? (node:get-point node) chart)
(let* ((x (chart:point->coords (node:get-point node) chart))

(element (chart:coords->any-element x chart)))
(if element

(let loop ((nodes (element:get-nodes element))
(i 0)
(const 0)
(terms (list (make-term node -1))))

(if (null? nodes)
(begin

(node:set-constraint! node chart)
(make-equation node const terms))

(let ((neighbor (car nodes))
(coeff (evaluate-basis-function

(element:get-basis-function element i) x)))
(if (node:boundary? neighbor)

(loop (cdr nodes)
(+ i 1)
(- const (* (node:get-value neighbor) coeff))
terms)

248

(loop (cdr nodes)
(+ i 1)
const
(cons (make-term neighbor coeff) terms))))))

#f))
#f))

C.1.40 pde-nodes.scm

This file defines nodes for solving PDEs on manifolds. These are more
complicated than nodes in the old FEM program because they need to keep
track of corresponding structures on manifolds.

(declare (usual-integrations))

;;; The constructor now takes a chart. (X should be *coordinates* in the
;;; chart, not the point on the manifold.)

(define (make-node x chart)
(let ((p (chart:coords->point x chart))

(b? (and (boundary-chart? chart)
(chart:range-boundary? x chart))))

(vector x ;; 0. Coordinates.
0. ;; 1. Value.
37 ;; 2. ID.
b? ;; 3. Boundary?
'() ;; 4. Elements.
'(;; 5. Local IDs.
p ;; 6. Point on manifold.
chart ;; 7. Chart.
'() ;; 8. Basis functions.
'() ;; 9. Extra structures.
#f ;; A. Is this node constrained to another chart?
#f ;; B. Is this node on the boundary of the chart?
#t))) ;; C. Is this guy still alive?

;;; Same old methods:

(define (node:get-x node) (vector-ref (node:get-coords node) 0))
(define (node:get-y node) (vector-ref (node:get-coords node) 1))
(define (node:get-z node) (vector-ref (node:get-coords node) 2))
(define (node:get-coords node) (vector-ref node 0))
(define (node:get-value node) (vector-ref node 1))
(define (node:set-value! node val) (vector-set! node 1 val))
(define (node:get-id node) (vector-ref node 2))
(define (node:set-id! node id) (vector-set! node 2 id))
(define (node:boundary? node) (vector-ref node 3))
(define (node:get-elements node) (vector-ref node 4))
(define (node:get-local-ids node) (vector-ref node 5))

(define (node:add-element node element index)
(vector-set! node 4 (cons element (vector-ref node 4)))
(vector-set! node 5 (cons index (vector-ref node 5))))

249

;;; Some new additions:

(define (node:get-real-x node) (vector-ref (node:get-point node) 0))
(define (node:get-real-y node) (vector-ref (node:get-point node) 1))
(define (node:get-real-z node) (vector-ref (node:get-point node) 2))

(define (node:get-point node)
(vector-ref node 6))

(define (node:get-chart node)
(vector-ref node 7))

(define (node:get-basis-functions node)
(vector-ref node 8))

(define (node:add-basis-function node basis-function)
(vector-set! node 8 (cons basis-function (vector-ref node 8))))

(define (node:install-extra node tag datum)
(let ((result (assq (vector-ref node 9) tag)))
(if result

(set-cdr! result datum)
(vector-set! node 9 (cons (cons tag datum) (vector-ref node 9))))))

(define (node:get-extra node tag)
(let ((result (assq (vector-ref node 9) tag)))
(if result

(cdr result)
#fM))

(define (node:constrained? node)
(if (node:get-constraint node)

#t
#f))

(define (node:get-constraint node)
(vector-ref node 10))

(define (node:set-constraint! node chart)
(vector-set! node 10 chart))

;;; Copy a node to a different chart:

(define (node:copy node chart)
(let ((new-node (make-node (chart:point->coords (node:get-point node) chart)

chart)))
(node:set-constraint! new-node node)
new-node))

;; Recursively find the ID of the node to which a given node is constrained:

(define (node:get-real-id node)
(let ((constraint (node:get-constraint node)))
(if constraint

(node:get-real-id constraint)
(node:get-id node))))

;; (Some of these properties may be obsolete.)

250

(define (node:local-boundary? node)
(and (vector-ref node 11)

(not (node:boundary? node))))

(define (node:set-local-boundary! node flag)
(vector-set! node 11 flag))

(define (node:active? node)
(vector-ref node 12))

(define (node:kill! node)
(vector-set! node 12 #f))

(define (node:resurrect! node)
(vector-set! node 12 #t))

C.1.41 pde-ops.scm

;;; Let's define some differential operators so we have something to test.

(declare (usual-integrations))

Differential operators (ours only act on scalar functions, not sections of
;;; vector bundles):

(define (make-operator M make-local-form)
(vector M make-local-form #f '()))

(define (operator:get-manifold L)
(vector-ref L 0))

Some extra structures for working with FEM. "Context" is a kluge that lets
operators learn about the particular element they are working in, etc.

(define (operator:get-local-form operator)
(let ((context (operator:get-context operator)))
(if context

(apply (vector-ref operator 1) context)

(define (operator:set-context! operator . contextual-data)
(vector-set! operator 2 contextual-data))

(define (operator:get-context operator)
(vector-ref operator 2))

;;; This might come in handy:

(define (operator:install-extra L tag datum)
(let ((result (assq tag (vector-ref L 4))))
(if result

(set-cdr! result datum)
(vector-set! L 4 (cons (cons tag datum) (vector-ref L 4))))))

(define (operator:get-extra L tag)
(let ((result (assq tag (vector-ref L 4))))

251

(if result
(cdr result)
#f)))

C.1.42 pde-test.scm

;;; See pde-test.scm.old for more information about the errors associated with
;;; different variants of our method.

;;; Let's see how the error scales with the number of nodes:

(define (pde:experiment domain-maker combine-equations)

;; DOMAIN-MAKER and COMBINE-EQUATIONS should be *symbols*, not procedures.

(lambda (rectangular spherical sor-steps sor-coeff port)

;; First, reload everything (to clear residual states in data structures).

(load "load-pde")
(if port (newline port))

;; Let's start:

(let ((make-test-domain
((evaluate-symbol domain-maker) disc

make-vertices
make-no-extra-nodes
planar-triangulate
rectangular
spherical))

(f test-function))

(make-test-domain
imbedded-poly-laplacian
make-triangular-imbedded-integrator
pde:make-imbedded-poly-basis-function)

(let ((mat ((evaluate-symbol combine-equations)
disc 0-function test-function)))

(write-line '(creating normal equations...))
(set! mat (show-time (lambda () (sparse-normal-equations mat))))

(write-line '(solving normal equations...))

(let ((v (show-time (lambda () (sor mat sor-steps sor-coeff))))
(write (lambda (stuff)

(write-line stuff)
(if port

(write-line stuff port)))))
(write '(domain-maker = ,domain-maker))
(write '(combine-equations = ,combine-equations))
(write '(,(length (manifold:get-nodes disc)) nodes))
(write '(max absolute error = ,(max-error disc f v)))
(write '(min absolute error = ,(min-error disc f v)))

252

(write '(average absolute error = ,(avg-error disc f v)))
(write '(max relative error = ,(max-relative-error disc f v)))
(write '(min relative error = ,(min-relative-error disc f v))))))))

Use #f for FILE-NAME if standard output is the only desired output port.
Otherwise, the output is sent to both standard output and the named file.

(define (run-test-case test-case file-name)
(let ((port (if file-name

(open-output-file file-name)
#f)))

(write-line '(test case: ,test-case))
(if port (write-line '(test case: ,test-case) port))

(case test-case
((1)
(let ((try-pde (pde:experiment 'pde:make-domain-with-overlaps

'combine-equations-with-overlap)))
(try-pde '(rectangular 10 5) '(spherical 5 10) 10000 1.9 port)
(try-pde '(rectangular 20 10) '(spherical 10 20) 20000 1.9 port)
(try-pde '(rectangular 40 25) '(spherical 25 40) 30000 1.9 port)))

((2)
(let ((try-pde (pde:experiment 'pde:make-domain-with-overlaps

'combine-equations-with-overlap)))
(try-pde '(rectangular 20 10) '(spherical 10 20) 10000 1.9 port)))

((3)
(let ((try-pde (pde:experiment 'pde:make-simple-domain

'combine-equations-using-CMPGRD)))
(try-pde '(rectangular 20 10) '(spherical 10 20) 10000 1.9 port)))

((4)
(let ((try-pde (pde:experiment 'pde:make-simple-domain

'combine-equations-using-CMPGRD)))
(try-pde '(rectangular 10 5) '(spherical 5 10) 10000 1.9 port)
(try-pde '(rectangular 20 10) '(spherical 10 20) 20000 1.9 port)
(try-pde '(rectangular 40 25) '(spherical 25 40) 30000 1.9 port)))

((5)
(let ((try-pde (pde:experiment 'pde:make-domain-with-overlaps

'combine-equations-with-overlap)))
(try-pde '(rectangular 10 5) '(spherical 5 10) 0 0 #f)))

((6)
(let ((try-pde (pde:experiment 'pde:make-domain-with-small-overlaps

'combine-equations-without-overlaps)))
(try-pde '(rectangular 20 10) '(spherical 10 20) 10000 1.9 #f)))

(else #f))

(if port (close-output-port port))))

A slight variant used for collecting data for thesis work:

(define (pde:experiment-too domain-maker combine-equations)

;; DOMAIN-MAKER and COMBINE-EQUATIONS should be *symbols*, not procedures.

253

(lambda (rectangular spherical sor-steps sor-coeff file)

;; First, reload everything (to clear residual states in data structures).

(load "load-pde")

;; Let's start:

(show-time
(lambda ()
(let ((make-domain

((evaluate-symbol domain-maker) disc
make-vertices
make-no-extra-nodes
planar-triangulate
rectangular
spherical))

(f test-function))

(write-line '(constructing elements...))

(make-domain
imbedded-poly-laplacian
make-triangular-imbedded-integrator
pde:make-imbedded-poly-basis-function)

(let ((mat ((evaluate-symbol combine-equations) disc 0-function f)))

(if (not (= (+ (sparse-matrix-row-count mat) 1)
(sparse-matrix-column-count mat)))

(begin
(write-line '(need normal equations.))
(set! mat (show-time

(lambda ()
(sparse-normal-equations mat))))))

(write-line '(solving equations...))

(let ((v (show-time (lambda () (sor mat sor-steps sor-coeff)))))
(write-line '(preparing to save data...))
(let ((states (node-states disc f v))

(port (open-output-file file)))
(write-line '(saving...))
(print-matrix states port)
(close-output-port port)))))))))

;;; Tests for thesis-related data:

(define test-1
(pde:experiment-too 'pde:make-domain-without-overlaps

'combine-equations-without-overlap))

(define test-2
(pde:experiment-too 'pde:make-domain-with-small-overlaps

'combine-equations-without-overlap))

(define test-3

254

(pde:experiment-too

(define test-4
(pde:experiment-too

(define test-5
(pde:experiment-too

(define test-6
(pde:experiment-too

(define test-7
(pde:experiment-too

(define test-8
(pde:experiment-too

'pde:make-domain-with-overlaps
'combine-equations-with-overlap))

'pde:make-domain-with-larger-overlaps
'combine-equations-with-overlap))

'pde:make-simple-domain
'combine-equations-with-overlap))

'pde:make-simple-domain
'combine-equations-using-cmpgrd))

'pde:make-simple-domain
'combine-equations-with-overlapi))

'pde:make-simple-domain
'combine-equations-with-overlap2))

C.1.43 pde-thesis.scm

;;; Use this file to collect data for theis work. Based on pde-collect.scm.

(load "pde-test")

;;; Run the experiments (sorted by size, not test):

'(rectangular
'(rectangular
'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular
'(rectangular
'(rectangular

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

10000
10000
10000
10000
10000

11000
11000
11000
11000
11000

12000
12000
12000
12000
12000

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

1.9
1.9
1.9
1.9
1.9

1.9
1.9
1.9
1.9
1.9

1.9
1.9
1.9
1.9
1.9

"Data/thesis/testla")
"Data/thesis/test2a")
"Data/thesis/test3a")
"Data/thesis/test4a")
"Data/thesis/test5a")

"Data/thesis/testib")
"Data/thesis/test2b")
"Data/thesis/test3b")
"Data/thesis/test4b")
"Data/thesis/test5b")

"Data/thesis/testic")
"Data/thesis/test2c")
"Data/thesis/test3c")
"Data/thesis/test4c")
"Data/thesis/test5c")

13000 1.9 "Data/thesis/testld")
13000 1.9 "Data/thesis/test2d")
13000 1.9 "Data/thesis/test3d")
13000 1.9 "Data/thesis/test4d")
13000 1.9 "Data/thesis/test5d")

(test-i '(rectangular 26 13) '(spherical 13 26) 14000 1.9 "Data/thesis/testle")

255

(test-1
(test-2
(test-3
(test-4
(test-5

(test-1
(test-2
(test-3
(test-4
(test-5

(test-i
(test-2
(test-3
(test-4
(test-5

(test-i
(test-2
(test-3
(test-4
(test-5

(test-2
(test-3
(test-4
(test-5

(test-1
(test-2
(test-3
(test-4
(test-5

(test-1
(test-2
(test-3
(test-4
(test-5

(test-i
(test-2
(test-3
(test-4
(test-5

(test-i
(test-2
(test-3
(test-4
(test-5

(test-I
(test-2
(test-3
(test-4
(test-5

(test-i
(test-2
(test-3
(test-4
(test-5

'(rectangular 26
'(rectangular 26
'(rectangular 26
'(rectangular 26

'(rectangular 30
'(rectangular 30
'(rectangular 30
'(rectangular 30
'(rectangular 30

'(rectangular 34
'(rectangular 34
'(rectangular 34
'(rectangular 34
'(rectangular 34

'(rectangular 38
'(rectangular 38
'(rectangular 38
'(rectangular 38
'(rectangular 38

'(rectangular 42
'(rectangular 42
'(rectangular 42
'(rectangular 42
'(rectangular 42

'(rectangular 46
'(rectangular 46
'(rectangular 46
'(rectangular 46
'(rectangular 46

'(rectangular 50
'(rectangular 50
'(rectangular 50
'(rectangular 50
'(rectangular 50

'(spherical
'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical
'(spherical
'(spherical

13 26)
13 26)
13 26)
13 26)

15 30)
15 30)
15 30)
15 30)
15 30)

17 34)
17 34)
17 34)
17 34)
17 34)

19 38)
19 38)
19 38)
19 38)
19 38)

21 42)
21 42)
21 42)
21 42)
21 42)

23 46)
23 46)
23 46)
23 46)
23 46)

25 50)
25 50)
25 50)
25 50)
25 50)

14000
14000
14000
14000

15000
15000
15000
15000
15000

16000
16000
16000
16000
16000

17000
17000
17000
17000
17000

18000
18000
18000
18000
18000

19000
19000
19000
19000
19000

20000
20000
20000
20000
20000

1.9
1.9
1.9
1.9

1.9
1.9
1.9
1.9
1.9

1.9
1.9
1.9
1.9
1.9

1.9
1.9
1.9
1.9
1.9

1.9
1.9
1.9
1.9
1.9

1.9
1.9
1.9
1.9
1.9

1.9
1.9
1.9
1.9
1.9

C.1.44 pde-thesisl.scm

;;; Use this file to collect data for theis work. Based on pde-collect.scm.

(load "pde-test")

;;; Run the experiments (sorted by size, not test):

(test-6 '(rectangular 10 5) '(spherical 5 10) 10000 1.9 "Data/thesis/test6a")
(test-7 '(rectangular 10 5) '(spherical 5 10) 10000 1.9 "Data/thesis/test7a")
(test-8 '(rectangular 10 5) '(spherical 5 10) 10000 1.9 "Data/thesis/test8a")

(test-6 '(rectangular 14 7) '(spherical 7 14)
(test-7 '(rectangular 14 7) '(spherical 7 14)
(test-8 '(rectangular 14 7) '(spherical 7 14)

11000 1.9 "Data/thesis/test6b")
11000 1.9 "Data/thesis/test7b")
11000 1.9 "Data/thesis/test8b")

256

"Data/thesis/test2e")
"Data/thesis/test3e")
"Data/thesis/test4e")
"Data/thesis/test5e")

"Data/thesis/testlf")
"Data/thesis/test2f")
"Data/thesis/test3f")
"Data/thesis/test4f")
"Data/thesis/test5f")

"Data/thesis/testig")
"Data/thesis/test2g")
"Data/thesis/test3g")
"Data/thesis/test4g")
"Data/thesis/test5g")

"Data/thesis/testih")
"Data/thesis/test2h")
"Data/thesis/test3h")
"Data/thesis/test4h")
"Data/thesis/test5h")

"Data/thesis/testli")
"Data/thesis/test2i")
"Data/thesis/test3i")
"Data/thesis/test4i")
"Data/thesis/test5i")

"Data/thesis/testlj")
"Data/thesis/test2j")
"Data/thesis/test3j ")

"Data/thesis/test4j")
"Data/thesis/test5j ")

"Data/thesis/testik")
"Data/thesis/test2k")
"Data/thesis/test3k")
"Data/thesis/test4k")
"Data/thesis/test5k")

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

'(spherical 9 18) 12000 1.9 "Data/thesis/test6c")
'(spherical 9 18) 12000 1.9 "Data/thesis/test7c")
'(spherical 9 18) 12000 1.9 "Data/thesis/test8c")

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

11)
11)
11)

13)
13)
13)

15)
15)
15)

17)
17)
17)

19)
19)
19)

21)
21)
21)

23)
23)23)

25)
25)
25)

'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical

22)
22)
22)

26)
26)
26)

30)
30)
30)

34)
34)
34)

38)
38)
38)

42)
42)
42)

46)
46)
46)

50)
50)
50)

13000
13000
13000

14000
14000
14000

15000
15000
15000

16000
16000
16000

17000
17000
17000

18000
18000
18000

19000
19000
19000

20000
20000
20000

1.9
1.9
1.9

1.9
1.9
1.9

1.9
1.9
1.9

1.9
1.9
1.9

1.9
1.9
1.9

1.9
1.9
1.9

1.9
1.9
1.9

1.9
1.9
1.9

C.1.45 pde-thesis2.scm

;;; Crashed in the middle...

(load "pde-test")

(test-7 '(rectangular 38 19) '(spherical 19 38) 17000 1.9 "Data/thesis/test7h")
(test-8 '(rectangular 38 19) '(spherical 19 38) 17000 1.9 "Data/thesis/test8h")

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

'(rectangular
'(rectangular
'(rectangular

21)
21)
21)

23)
23)
23)

25)
25)
25)

'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical

'(spherical
'(spherical
'(spherical

42)
42)
42)

46)
46)
46)

18000
18000
18000

19000
19000
19000

20000
20000
20000

1.9
1.9
1.9

1.9
1.9
1.9

1.9
1.9
1.9

"Data/thesis/test6i")
"Data/thesis/test7i")
"Data/thesis/test8i")

"Data/thesis/test6j ")
"Data/thesis/test7j")
"Data/thesis/test8j")

"Data/thesis/test6k")
"Data/thesis/test7k")
"Data/thesis/test8k")

257

"Data/thesis/test6d")
"Data/thesis/test7d")
"Data/thesis/test8d")

"Data/thesis/test6e")
"Data/thesis/test7e")
"Data/thesis/test8e")

"Data/thesis/test6f")
"Data/thesis/test7f")
"Data/thesis/test8f")

"Data/thesis/test6g")
"Data/thesis/test7g")
"Data/thesis/test8g")

"Data/thesis/test6h")
"Data/thesis/test7h")
"Data/thesis/test8h")

"Data/thesis/test6i")
"Data/thesis/test7i")
"Data/thesis/test8i")

"Data/thesis/test6j")
"Data/thesis/test7ji")
"Data/thesis/test8j")

"Data/thesis/test6k")
"Data/thesis/test7k")
"Data/thesis/test8k")

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

(test-6
(test-7
(test-8

C.1.46 pde-thesis3.scm

;;; Turns out one of the bug fixes introduced an error. The new code with the
;;; error got reloaded into the system, and...

(load "pde-test")

(test-5 '(rectangular 46 23) '(spherical 23 46) 19000 1.9 "Data/thesis/test5j")

(test-1 '(rectangular 50 25) '(spherical 25 50) 20000 1.9 "Data/thesis/testik")
(test-2 '(rectangular 50 25) '(spherical 25 50) 20000 1.9 "Data/thesis/test2k")
(test-3 '(rectangular 50 25) '(spherical 25 50) 20000 1.9 "Data/thesis/test3k")
(test-4 '(rectangular 50 25) '(spherical 25 50) 20000 1.9 "Data/thesis/test4k")
(test-5 '(rectangular 50 25) '(spherical 25 50) 20000 1.9 "Data/thesis/test5k")

C.1.47 pde-thesis4.scm

;;; In fixing a previous bug, I introduced another bug.

(load "pde-test")

;;; Here goes again:

(test-1 '(rectangular 10 5) '(spherical 5 10) 10000 1.9 "Data/thesis/testla")
(test-2 '(rectangular 10 5) '(spherical 5 10) 10000 1.9 "Data/thesis/test2a")

(test-1 '(rectangular 14 7) '(spherical 7 14) 11000 1.9 "Data/thesis/testlb")
(test-2 '(rectangular 14 7) '(spherical 7 14) 11000 1.9 "Data/thesis/test2b")

(test-1 '(rectangular 18 9) '(spherical 9 18) 12000 1.9 "Data/thesis/testic")
(test-2 '(rectangular 18 9) '(spherical 9 18) 12000 1.9 "Data/thesis/test2c")

(test-1 '(rectangular 22 11) '(spherical 11 22) 13000 1.9 "Data/thesis/testid")
(test-2 '(rectangular 22 11) '(spherical 11 22) 13000 1.9 "Data/thesis/test2d")

(test-1 '(rectangular 26 13) '(spherical 13 26) 14000 1.9 "Data/thesis/testie")
(test-2 '(rectangular 26 13) '(spherical 13 26) 14000 1.9 "Data/thesis/test2e")

(test-1 '(rectangular 30 15) '(spherical 15 30) 15000 1.9 "Data/thesis/testif")
(test-2 '(rectangular 30 15) '(spherical 15 30) 15000 1.9 "Data/thesis/test2f")

(test-1 '(rectangular 34 17) '(spherical 17 34) 16000 1.9 "Data/thesis/testlg")
(test-2 '(rectangular 34 17) '(spherical 17 34) 16000 1.9 "Data/thesis/test2g")

(test-1 '(rectangular 38 19) '(spherical 19 38) 17000 1.9 "Data/thesis/testlh")
(test-2 '(rectangular 38 19) '(spherical 19 38) 17000 1.9 "Data/thesis/test2h")

(test-1 '(rectangular 42 21) '(spherical 21 42) 18000 1.9 "Data/thesis/testli")
(test-2 '(rectangular 42 21) '(spherical 21 42) 18000 1.9 "Data/thesis/test2i")

(test-i '(rectangular 46 23) '(spherical 23 46) 19000 1.9 "Data/thesis/testlj")
(test-2 '(rectangular 46 23) '(spherical 23 46) 19000 1.9 "Data/thesis/test2j")

(test-1 '(rectangular 50 25) '(spherical 25 50) 20000 1.9 "Data/thesis/testik")
(test-2 '(rectangular 50 25) '(spherical 25 50) 20000 1.9 "Data/thesis/test2k")

258

C.1.48 pde-tools.scm

;;;This file provides the interface between the manifold PDE code and the FEM

;;; toolkit. These should be actual examples of constructors for PDE charts

;;;that use the FEM stuff we already have. This part can be as specific as is

;;; necessary.

;;; If we didn't care about good triangulations, then one might think that this

;;; recursive algorithm works for convex sets: Sort the nodes along one axis,

and form the n-simplex with the highest n nodes. Take the vertices not in

;;; contact with the rest of the solid out, and apply recursively. This is an

;;; O(n log n) algorithm. Well, it actually doesn't seem to work, not without

;;; some tweaking. In any case, there is something better:

;;; See http://www.geom.umn.edu/software/qhull/ for general triangulation

;;; algorithms; it's probably better than the Guibas/Stolfi algorithm we're

;;; using. (These algorithms usually work by requiring convexity, which we

;;; will also do.)

(declare (usual-integrations))

;; Local tesselations depend on the fact that domains of charts are often

;;; simple shapes (like squares and discs). Focus on 2-D case for now.

(define make-rectangular-vertices

(let ((border-frac le-3))

(lambda (chart x-low x-high y-low y-high vcount hcount)

;; Stay away from the borders so that all the nodes lie in the chart.

(let ((x-border (* (- x-high x-low) border-frac))

(y-border (* (- y-high y-low) border-frac)))

(set! x-high (- x-high x-border))

(set! x-low (+ x-low x-border))

(set! y-high (- y-high y-border))

(set! y-low (+ y-low y-border))

;; Is this a boundary chart? If so, fix it so that boundary nodes are
;; really on the boundary:

(if (boundary-chart? chart)

(let ((level (chart:get-boundary-index chart)))

(if (= (chart:get-boundary-index chart) 0)

(if (almost-equal? level (- x-low x-border))

(set! x-low (- x-low x-border))

(set! x-high (+ x-high x-border)))

(if (almost-equal? level (- y-low y-border))

(set! y-low (- y-low y-border))

(set! y-high (+ y-high y-border)))))))

(let* ((hcount-1 (- hcount 1))

(vcount-1 (- vcount 1))
(dx (/ (- x-high x-low) hcount-1))
(dy (/ (- y-high y-low) vcount-1)))

(let next-row ((i 0) (nodes '()))

(if (< i hcount)

259

(let ((x (+ x-low (* i dx))))
(let next-col ((j 0) (nodes nodes))
(if (< j vcount)

(let* ((y (+ y-low (* j dy)))
(new-node (make-node (vector x y) chart)))

(if (or (= i 0) (= i hcount-1) (= j 0) (= j vcount-1))
(node:set-local-boundary! new-node #t))

(next-col (+ j 1) (cons new-node nodes)))
(next-row (+ i 1) nodes))))

nodes))))))

(define make-circular-vertices
(let ((border-frac le-3))
(lambda (chart x y radius radial-count angular-count)

;; Stay away from the borders so that all the nodes lie in the chart. By
our convention, this can't be a boundary chart, so no boundary nodes.

(set! radius (* (- 1 border-frac) radius))

(let* ((radial-count-1 (- radial-count 1))
(dr (/ radius radial-count-i))
(dt (/ (* 2 pi) angular-count)))

(let next-ray ((i 1) (nodes '()))
(if (< i radial-count)

(let ((r (* i dr)))
(let next-point ((j 0) (nodes nodes))
(if (< j angular-count)

(let* ((t (* j dt))
(new-node (make-node (vector (+ (+ r (cos t)) x)

(+ (+ r (sin t)) y))
chart)))

(if (= i radial-count-1)
(node:set-local-boundary! new-node #t))

(next-point (+ j 1) (cons new-node nodes)))
(next-ray (+ i 1) nodes))))

(cons (make-node (vector x y) chart) nodes)))))))

;;; Let's use the range structures for meshing. Better back off from the edge
;;; a bit to a compact subset, though, to avoid trouble with charts that cover
;;; almost all of the manifold (such as spherical coordinates on the sphere).

(define (make-vertices chart . args)
(let ((dim (chart:dimension chart)))
(if (= dim 2)

(let ((nodes
(cond ((chart:cell-range? chart)

(apply make-rectangular-vertices
(append
(cons chart

(append-map
(lambda (interval)

(list (interval:inf interval)
(interval:sup interval)))

(cell-range:get-interval-list chart)))
(cdr (assq 'rectangular args)))))

260

((chart:spherical-range? chart)

(let ((center (spherical-range:get-center chart)))

(apply make-circular-vertices

(append

(list chart

(vector-ref center 0)

(vector-ref center 1)

(spherical-range:get-radius chart))

(cdr (assq 'spherical args))))))
(else (error "Don't know how to mesh this chart!")))))

nodes)

(write-line '(can only handle planar regions for now!)))))

;;; A discretization routine. This is our interface to local FEM.

(define (fem-discretize chart source)

(let* ((nodes (list->vector (chart:get-nodes chart)))

(sparse (assemble-equations source nodes))

(n (sparse-matrix-row-count sparse))

(m (vector-length nodes))

(index-map (make-vector n #f)))

(write-line '(,n equations generated for ,m nodes.))

;; Need to be able to translate row indices into node IDs.

(let loop ((i 0) (j 0))

(if (< i m)

(let ((node (vector-ref nodes i)))

(if (node:boundary? node)

(loop (+ i 1) j)

(begin

(vector-set! index-map j i)

(loop (+ i 1) (+ j 1)))))))

(let loop ((i 0) (result '()))
(if (< i n)

(let ((node (vector-ref nodes (vector-ref index-map i))))
(let next-term ((row (sparse-matrix-get-row sparse i))

(terms '())
(const 0))

(if (null? row)

(loop (+ i 1) (cons (make-equation node const terms) result))
(let* ((pair (car row))

(index (car pair))

(coeff (cadr pair)))

(if (= index n)

(next-term (cdr row) terms coeff)

(let ((node (vector-ref

nodes (vector-ref index-map index))))
(next-term (cdr row)

(cons (make-term node coeff) terms)

const)))))))
result))))

;;; Usually, we won't need more than just the vertices:

261

(define (make-no-extra-nodes complex)
(map (lambda (face) '()) (complex->faces complex)))

;;; However, it's always nice to have mid-edge nodes:

(define make-mid-edge-nodes
(let ((edge-index

(lambda (edge)
(apply symmetric->vector-index (map node:get-id edge)))))

(lambda (complex)
(let* ((nodes (complex->vertices complex))

(edges (complex->edges complex))
(n (choose (+ (length nodes) 2) 2))
(big-v (make-vector n #f)))

;; First, assign each node a unique ID:

(let loop ((i 0) (nodes nodes))
(if (not (null? nodes))

(begin
(node:set-id! (car nodes) i)
(loop (+ i 1) (cdr nodes)))))

;; Next, construct mid-edge nodes for each edge and save them:

(for-each
(lambda (edge)

(let* ((org (car edge))
(dest (cadr edge))
(node (make-node

(vector:* 1/2
(apply vector:+

(node:get-chart org))))
(map node:get-coords edge)))

(if (and (node:local-boundary? org)
(node:local-boundary? dest))

(node:set-local-boundary! node #t))

(vector-set! big-v (edge-index edge) node)))

edges)

;; Finally, assign edge nodes to each face of the complex:

(map
(lambda (face)
(append-map
(lambda (pair)

(let ((node (vector-ref
(if node

(list node)
'()))

(pairs face)))
(complex->faces complex))))))

big-v (edge-index pair))))

(define (complex->edges complex)

(cadr (reverse complex)))

262

(define (complex->vertices complex)
(car (reverse complex)))

(define (complex->faces complex)
(car complex))

Mesh-generation stuff: Here's an interface to Delaunay triangulation
;;; routines in 2-D.

(define (planar-triangulate nodes)
(reverse (cons nodes (delaunay-triangulation (list->vector nodes)))))

;;; Count the number of boundary nodes in a VECTOR of nodes:

(define (number-of-boundary-nodes nodes)
(let ((n (vector-length nodes)))

(let loop ((i 0) (count 0))
(if (< i n)

(if (node:boundary? (vector-ref nodes i))
(loop (+ i 1) (+ count 1))
(loop (+ i 1) count))

count))))

C.1.49 pde-works.scm

;;; This stuff works!

(load "load-pde")

;;; Try something a *little* different:

(write-line '(constructing domain...))

(define make-domain
(show-time

(lambda ()
(pde:make-domain-without-overlaps
disc make-vertices make-no-extra-nodes planar-triangulate
'(rectangular 40 15) '(spherical 20 30)))))

;;; Construct elements, as usual (cheat on the integration):

(write-line '(constructing elements...))

(show-time
(lambda 0
(make-domain
imbedded-poly-laplacian
make-triangular-imbedded-integrator
pde:make-imbedded-poly-basis-function)))

;;; Forming matrix:

263

(write-line '(forming matrix...))

(define mat
(show-time
(lambda ()
(combine-equations-without-overlap disc 0-function test-function))))

;;; Solve the equations:

(write-line '(relax!))

(define v
(show-time

(lambda ()
(sor mat 10000 1.9))))

;;; Get a rough picture of what this looks like:

(write-line '(getting a picture of the relative error...))

(define relative-error-picture
(show-time
(lambda ()

(manifold->grid 15 15 disc test-function v relative-error))))

(write-line '(getting a rough picture of the solution...))

(define solution-picture
(show-time
(lambda ()
(manifold->grid 15 15 disc test-function v (lambda (val ref) val)))))

;;; We'll need to re-run these tests and save the numbers. For now, just a
;; brief indication (so we know what to write).

;;; What works:

;; 1. PDE:MAKE-DOMAIN-WITH-SMALL-OVERLAPS + COMBINE-EQUATIONS-WITHOUT-OVERLAP!

;;; 2. PDE:MAKE-DOMAIN-WITHOUT-OVERLAPS, with sufficiently many nodes.

;;; And what doesn't:

;; 1. PDE:MAKE-DOMAIN-WITH-OVERLAPS requires generating constraints, and
requires using the normal equations (which is very slow in converging).

;; 2. PDE:MAKE-DOMAIN-WITH-LARGER-OVERLAPS generates much larger systems of
equations. Again, using normal equations may be a bad idea.

;;; 3. PDE:MAKE-SIMPLE-DOMAIN doesn't do much better.

264

C.1.50 product.scm

;; Product manifolds. (Note that, in this scheme (no pun intended), RxR is
;;; not the same as R-2; they are, of course, diffeomorphic.)

(declare (usual-integrations))

;;; First, we need product charts:

(define (make-product-chart chart-i chart-2)
(let* ((dim-1 (chart:dimension chart-i))

(dim-2 (chart:dimension chart-2))
(dim (+ dim-1 dim-2))

(coord-map-1 (chart:get-coord-map chart-i))
(coord-map-2 (chart:get-coord-map chart-2))

(inverse-map-1 (chart:get-inverse-map chart-i))
(inverse-map-2 (chart:get-inverse-map chart-2))

(euclidean? (make-euclidean-test dim)))

(letrec
((in-domain?
(lambda (x)

(and (list? x)
(not (null? (cdr x)))
(chart:member? (car x) chart-i)
(chart:member? (cadr x) chart-2))))

(in-range?
(lambda (x)
(and (euclidean? x)

(chart:in-range? (vector-head x dim-1) chart-i)
(chart:in-range? (vector-end x dim-2) chart-2))))

(coord-map
(lambda (x)

(vector-append (coord-map-i (product:get-arg-i x))
(coord-map-2 (product:get-arg-2 x)))))

(inverse-map
(lambda (x)

(product:combine (inverse-map-1 (vector-head x dim-1))
(inverse-map-2 (vector-end x dim-2)))))

(transition
(lambda (VxW)

(let ((components (chart:get-components VxW))
(V (car components))
(W (cadr components)))

(let ((f (chart:make-transition-map chart-i V))
(g (chart:make-transition-map chart-2 W)))

(lambda (x)
(vector-append (f (vector-head x dim-1))

(g (vector-end x dim-2)))))))))

265

(let ((new-chart (make-chart

(+ dim-1 dim-2)

in-domain? in-range? coord-map inverse-map

transition)))

(chart:install-extra new-chart 'product-chart (list chart-i chart-2))
new-chart))))

(define (chart:get-components chart)

(chart:get-extra chart 'product-chart))

(define (chart:first-component chart)

(car (chart:get-components chart)))

(define (chart:second-component chart)

(cadr (chart:get-components chart)))

;;; This is slow, but should be sufficient for most examples we construct (such

;;; as the 2-torus and products of Euclidean spaces with other manifolds).

(define (product-manifold M1i M2)

(let ((atlas-1 (manifold:get-finite-atlas Mi))

(atlas-2 (manifold:get-finite-atlas M2)))

(let ((M

(if (and atlas-1 atlas-2)

(charts->manifold (map (lambda (1) (apply make-product-chart 1))

(all-pairs atlas-1 atlas-2)))

(make-general-product-manifold Mi M2))))

(manifold:install-extra M 'product-manifold (list M1i M2))

M)))

(define (make-general-product-manifold M1 M2)

(let ((general-find-i (manifold:get-general-chart-finder Mi))

(general-find-2 (manifold:get-general-chart-finder M2))

(find-chart-i (manifold:get-chart-finder Mi))

(find-chart-2 (manifold:get-chart-finder M2))

(minimize-i (manifold:get-general-minimizer Mi))

(minimize-2 (manifold:get-general-minimizer M2)))

(letrec

((find-chart

(lambda (p . predicates)

(if (null? predicates)

(let ((chart-1 (find-chart-1 (car p)))

(chart-2 (find-chart-2 (cadr p))))

(if (and chart-1 chart-2)

(make-product-chart chart-1 chart-2)

#f))

(call-with-current-continuation

(lambda (return)

(general-find-i

(car p)

(lambda (chart-i)

(general-find-2

(cadr p)

(lambda (chart-2)

(let ((chart (make-product-chart chart-1 chart-2)))

(let valid? ((predicates predicates))

(if (null? predicates)

266

(return chart)
(if ((car predicates) chart)

(valid? (cdr predicates))

(minimize-chart
(lambda (p f <)

(cadr (minimize-i
(car p)
(lambda (chart-i)

(minimize-2
(cadr p)
(lambda (chart-2)

(let ((chart (make-product-chart chart-i chart-2)))

(list chart (f chart))))
(lambda (x y)
(< (cadr x) (cadr y)))))

(lambda (x y)
(< (cadr x) (cadr y)))))))

(get-local-atlas
(lambda (p)
(map make-product-chart

(manifold:get-local-atlas Mi (car p))
(manifold:get-local-atlas M2 (cadr p))))))

(make-manifold (apply + (map manifold:dimension (list M1 M2)))
find-chart minimize-chart get-local-atlas))))

(define (manifold:get-components M)
(manifold:get-extra M 'product-manifold))

(define (manifold:first-component M)
(car (manifold:get-components M)))

(define (manifold:second-component M)
(cadr (manifold:get-components M)))

C.1.51 ranges.scm

;;; Some special structures that lets us tell simple *range* shapes. This
;;; makes mesh generation for the PDE solver much easier.

(declare (usual-integrations))

;;; Spherical ranges are very useful (e.g. stereographic projection):

(define (make-spherical-range chart center radius)
(chart:install-extra chart 'spherical-range (vector center radius)))

(define (spherical-range:get-structs chart)
(chart:get-extra chart 'spherical-range))

(define (spherical-range:get-center chart)
(let ((result (spherical-range:get-structs chart)))
(if result

267

(vector-ref result 0)
#f)))

(define (spherical-range:get-radius chart)
(let ((result (spherical-range:get-structs chart)))
(if result

(vector-ref result 1)

(define (chart:spherical-range? chart)
(if (spherical-range:get-structs chart)

#t
#f))

;;; Ranges that are n-cells are also very useful (e.g. spherical coordinates).

(define (make-cell-range chart intervals)
(chart:install-extra
chart 'cell-range (if (list? intervals)

(list->vector intervals)
intervals)))

(define (cell-range:get-structs chart)
(chart:get-extra chart 'cell-range))

(define (cell-range:get-interval chart i)
(let ((result (cell-range:get-structs chart)))
(if result

(vector result i)

(define cell-range:get-intervals cell-range:get-structs)

(define (cell-range:get-interval-list chart)
(let ((result (cell-range:get-intervals chart)))
(if result

(vector->list result)
#f)))

(define (chart:cell-range? chart)
(if (cell-range:get-structs chart)

#f))

The interval:

(define (make-interval a b)
(vector a b))

(define (interval:inf interval)
(vector-ref interval 0))

(define (interval:sup interval)
(vector-ref interval 1))

(define (interval:member? x interval)
(and (real? x)

268

(< (interval:inf interval) x)
(< x (interval:sup interval))))

C.1.52 richardson.scm

;;; This file plays around with Richardson extrapolation. ORDER sould be the
;;; order of the error.

(declare (usual-integrations))

;;; Here is the slow way:

(define (richardson f order)
(if (> order 0)

(let ((f (richardson f (- order i)))
(k (expt 2 order)))

(lambda (h)
(/ (- (* k (f (/ h 2))) (f h)) (- k 1))))

f))

;;; Here is a quicker way:

(define (richardson-coeffs order)
(let ((v (make-vector order 0))

(w (make-vector order 0)))

(vector-set! v 0 1)

(let loop ((i 1) (2^i 1) (from v) (to w))
(if (< i order)

(let ((2"i+1 (* 2 2^i))
(i-1 (- i 1)))

(vector-set! to 0 (/ (vector-ref from 0) (- 1 2^i+I)))

(do ((j 1 (+ j 1)))

((> j i-i))
(vector-set! to j (/ (- (* 2^i+1 (vector-ref from (- j i)))

(vector-ref from j))
(- 2-i+1 1))))

(vector-set! to i (* (/ 2^i+1 (- 2^i+1 i))
(vector-ref from i-i)))

(loop (+ i 1) 2^i+1 to from))
from))))

(define (quick-r f order)
(let ((v (richardson-coeffs order)))
(lambda (h)

(let loop ((i 0) (h/2^i h) (sum 0.))
(if (< i order)

(loop (+ i 1) (/ h/2^i 2) (+ sum (* (vector-ref v i) (f h/2^i))))
sum)))))

269

;;; Try some numerical differentiation:

;;; An observation that may make this better: When the derivative is computed
;; using the central difference (instead of forward or backward difference),

;;; only the even-degree terms in the difference quotient survive.

;;;Also, try using roots of unity (complex arithmetic) to get rid of
;;;higher-order terms. Better yet, use contour integrals!

(define (make-differentiator v+ v- v* h order)
(let ((v (richardson-coeffs order)))
(lambda (f)

(let ((diff-quo
(lambda (x)
(lambda (h)
(v* (I (* 2 h)) (v- (f (+ x h)) (f (- x h))))))))

(lambda (x)
(let ((f (diff-quo x)))

(let loop ((i 1)
(h/2^i (/ h 2))
(sum (v* (vector-ref v 0) (f h))))

(if (< i order)
(loop (+ i 1) (/ h/2^i 2)

(v+ sum (v* (vector-ref v i) (f h/2^i))))
sum))))))))

;(define derivative (make-differentiator + - * le-5 3))

;;;For now, let's use numerical differentiation with Richardson extrapolation,
and use charts to represent tangent vectors. Later, we should provide ways

;;; of automagically switching between different representations (e.g. among
;; different charts and/or between chart-vector representations and imbedding

;;; representations (imbeddings *are* very useful)).

(define (make-numerical-differential-operator h n scale)
(let ((d (make-differentiator vector:+ vector:- vector:* h n)))

(lambda (f)
(lambda (x)

(lambda (v)
(let* ((change-factor (/ (vector:magnitude v) scale))

(w (if (zero? change-factor)
v

(vector:* (/ change-factor) v)))
(on-path (lambda (s) (f (vector:+ x (vector:* s w))))))

(vector:* change-factor ((d on-path) 0))))))))

Is this basically equivalent to Ridder's method, described in _Numerical
;;; Recipes in Fortran, Second Edition_?

Minimize a convex function:

(define (minimize-convex-function f a b n)
(let loop ((n n) (a a) (b b))
(if (> n 0)

(let ((xl (+ (* 2/3 a) (/ b 3)))
(x2 (+ (/ a 3) (* 2/3 b))))

(let ((yl (f xl))

270

(y2 (f x2)))
(cond ((< yl y2) (loop (- n 1) a x2))

((> yl y2) (loop (- n 1) xl b))
(else (loop (- n 1) xl x2)))))

(let ((result (/ (+ a b) 2)))
(list result (f result))))))

;;; Let's define the differential operator:

(define diff
(let ((order 5)

(min-step-size le-5)
(max-step-size le-1)
(search-depth 11)
(scale 1))

(make-numerical-differential-operator
(let ((result

(minimize-convex-function
(lambda (h)

(let ((d (make-numerical-differential-operator h order scale)))
(abs (- (vector-ref (((d (lambda (x)

(vector (sqrt (vector-ref x 0)))))
(vector 1))

(vector 1))
0)

1/2))))
min-step-size max-step-size search-depth)))

(write-line '(richardson order = ,order))
(write-line '(h = ,(car result)))
(write-line '(error = ,(cadr result)))
(car result))

order
scale)))

;(define diff-old (make-numerical-differential-operator le-5 3))

C.1.53 rigid-body.scm

;;; This uses ScmUtils to compute the usual axisymmetric top:

(set! *ode-integration-method* 'bulirsch-stoer)

(define (my-ode-advancer v x dt tol)
(let ((dt/2 (/ dt 2.))

(dt/6 (/ dt 6.)))
(let* ((F1 (v x))

(F2 (v (vector:+ x (vector:scalar*vector dt/2 Fi))))
(F3 (v (vector:+ x (vector:scalar*vector dt/2 F2))))
(F4 (v (vector:+ x (vector:scalar*vector dt F3)))))

(vector:+ (vector:scalar*vector dt/6
(vector:+ F1

(vector:scalar*vector 2. F2)
(vector:scalar*vector 2. F3)
F4))

271

(define (rigid-body-evolver a b c xO t-final dt tol)
(let ((v.field (compiled-rigid-body a b c)))

(let loop ((x xO) (results '()))
(if (< (state->t x) t-final)

(let ((new-x (ode-advancer v.field x dt tol)))
(loop new-x (cons x results)))

results))))

;;; The vector field:

(define (rigid-body-sysder a b c)
(lagrangian->state-derivative
(t-rigid-body a b c)))

(newline)
(display "*** Compiling state derivative")

(define compiled-rigid-body
(show-time

(lambda ()
(compile-sysder 3 rigid-body-sysder))))

;;; Useful functions:

;((STATE->L-SPACE A B C) STATE) => angular momentum in the reference frame.
;((STATE->L-BODY A B C) STATE) => angular momentum in the body frame.
;(RELATIVE-ERROR VALUE REFERENCE-VALUE) => error of VALUE relative to
; REFERENCE-VALUE.

;;; Initial conditions from the book:

;;; In Euler coordinates:
;;; qO = #(1 0 0), qdotO = #(0.1 0.1 0.1).
;;; Step size = 0.01, and final time is 100.0.
;;; Maximum local truncation error is 1.0e-12.
;;; A=1, B=sqrt(2), C=2.

;;; Note that the order of components needs to be switched when using these

;;; initial conditions with the manifold stuff.

(newline)
(display "*** Evolving trajectories")

(define result
(show-time

(lambda ()
(rigid-body-evolver 1 (sqrt 2) 2

(->state 0. (vector 1. 0. 0.) (vector -.1 -.01 -.01))
100.
.01 1.0e-12))))

(newline)
(display "*** Saving results")

(let ((port (open-output-file "rigid-reg.data")))
(for-each

272

(lambda (state)

(display (state->t state) port)

(display " " port)
(display (state->q state) port)
(display " " port)
(display (state->qdot state) port)
(newline port))

(sort results (lambda (x y) (< (state->t x) (state->t y)))))
(close-output-port port))

;;; Directly from the text:

(define (do-it A B C state0 final-t dt tol)
(let ((dstate (compiled-rigid-body A B C))

(LO ((state->L-space A B C) state0))
(EO ((T-rigid-body A B C) state0)))

(let ((LxO (vector-ref LO 0))
(LyO (vector-ref LO 1))
(Lz0 (vector-ref LO 2)))

(let loop ((state state0))
(if (< (state->t state) final-t)

(let ((ns (ode-advancer dstate state dt tol)))
(let ((L ((state->L-space A B C) ns))

(E ((T-rigid-body A B C) ns))
(t (state->t ns)))

(let ((Lx (vector-ref L 0))
(Ly (vector-ref L 1))
(Lz (vector-ref L 2)))

(let ((error-Lx (relative-error Lx Lx0))
(error-Ly (relative-error Ly LyO))
(error-Lz (relative-error Lz LzO))
(error-E (relative-error E EO)))

(plot-point window t error-Lx)
(plot-point window t error-Ly)
(plot-point window t error-Lz)
(plot-point window t error-E)
(loop ns))))))))))

#1
;;; Comments by GJS:

;; For QC Runge-Kutta 4
(set! *ode-integration-method* (quote qcrk4))
(define window (frame 0. 100. -1.e-12 l.e-12))

;;; For bulirsch-stoer
(set! *ode-integration-method* (quote bulirsch-stoer))
(define window (frame 0. 100. -1.e-13 l.e-13))

;;; Comes by the coordinate singularity several times

(do-it 1. (sqrt 2.) 2.
(->state 0.0

(vector 1. 0. 0.)
(vector 0.1 0.1 0.1))

100.0
0.01
1.Oe-12)

273

;;; Whizzing rather close to a singularity

(do-it 1. (sqrt 2.) 2.
(->state 0.0

(vector 1. 0. 0.)
(vector -0.1 -.01 -.01))

100.0
0.01
1.0e-12)

I#

C.1.54 rigid-compute.scm

(load "rigid")

;;; Compute some expressions:

(for-each
(lambda (make-sysder filename)

(let ((port (open-output-file filename)))
(pp (traditional->correct-order

(vector-tail
(show-time
(lambda ()

(*sysder-simplify*
((make-sysder 'a 'b 'c) rigid-qqdot))))

1))
port)

(close-output-port port)))
(list rigid-sysder-0 rigid-sysder-1 rigid-sysder-2 rigid-sysder-3)
(list "rigid-field-O" "rigid-field-i" "rigid-field-2" "rigid-field-3"))

C.1.55 rigid-errors.scm

(define (check-relative-error list)
(let ((ref (car list)))

(write-line '(reference value = ,ref))
(map (lambda (val) (relative-error val ref)) list)))

(define (check-absolute-error list)
(let ((ref (car list)))

(write-line '(reference value = ,ref))
(map (lambda (val) (abs (- val ref))) list)))

#1
(define reg-list

(show-time
(lambda ()
(read-regular-file "rigid-reg. data"))))

(define reg-e-list
(show-time
(lambda ()
(map (t-rigid-body 1. (sqrt 2.) 2.) regular))))

274

(define reg-l-list
(show-time

(lambda ()
(map (state->L-space 1. (sqrt 2) 2.) regular))))

(define reg-11-list (map vector-first reg-l-list))
(define reg-12-list (map vector-second reg-l-list))
(define reg-13-list (map vector-third reg-l-list))

(define reg-e-errors (check-absolute-error reg-e-list))
(define reg-li-errors (check-absolute-error reg-11-list))
(define reg-12-errors (check-absolute-error reg-12-list))
(define reg-13-errors (check-absolute-error reg-13-list))

(define man-list
(show-time

(lambda ()
(read-manifold-file "rigid-man. data"))))

(define man-e-list
(show-time

(lambda ()
(map (t-rigid-body 1. (sqrt 2) 2.) manifold))))

(define man-l-list
(show-time
(lambda ()
(map (state->L-space 1. (sqrt 2) 2.) man-list))))

(define man-11-list (map vector-first man-l-list))
(define man-12-list (map vector-second man-l-list))
(define man-13-list (map vector-third man-l-list))

(define man-e-errors (check-absolute-error man-e-list))
(define man-11-errors (check-absolute-error man-11-list))
(define man-12-errors (check-absolute-error man-12-list))
(define man-13-errors (check-absolute-error man-13-list))
I*

C.1.56 rigid-fields.scm

;;; These vector fields are machine-generated:

(define (rigid-field-O a b c x v)
(let ((psi (vector-ref x 0))

(theta (vector-ref x i))
(phi (vector-ref x 2))
(psidot (vector-ref v 0))
(thetadot (vector-ref v i))
(phidot (vector-ref v 2)))

(vector psidot thetadot phidot
(/ (+ (* (cos theta) (+ (* (cos theta) (+ (* (cos psi) (+ (* (cos
psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* a b c phidot thetadot)
(* (expt b 2) c phidot thetadot))) (* (sin theta) (sin psi) (+ (*
-1 (expt a 2) c (expt phidot 2)) (* (expt b 2) c (expt phidot
2)))))) (* (expt (sin psi) 2) (+ (* a (+ (* a c phidot thetadot)

275

(* 2 b c phidot thetadot))) (* (expt b 2) c phidot thetadot))) (*

-1 b (expt c 2) phidot thetadot))) (* (sin theta) (sin psi) (+ (*

(expt (sin psi) 2) (+ (* -1 (expt a 2) c (expt phidot 2)) (* (expt

b 2) c (expt phidot 2)))) (* a (expt c 2) (expt phidot 2)) (* -1 b

(expt c 2) (expt phidot 2)))))) (* (expt (sin psi) 2) (+ (* (expt

(sin psi) 2) a (+ (* a c phidot thetadot) (* b c phidot

thetadot))) (* -1 a (expt c 2) phidot thetadot))))) (* (cos psi)

(+ (* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* -1 a b c
psidot thetadot) (* (expt b 2) c psidot thetadot))) (* (sin theta)

(sin psi) (+ (* -1 (expt a 2) c phidot psidot) (* (expt b 2) c
phidot psidot))))) (* (expt (sin psi) 2) (+ (* a (+ (* a c psidot

thetadot) (* -2 b c psidot thetadot))) (* (expt b 2) c psidot

thetadot))) (* -1 b (expt c 2) psidot thetadot))) (* (sin theta)

(sin psi) (+ (* (expt (sin psi) 2) (+ (* -1 (expt a 2) c phidot

psidot) (* (expt b 2) c phidot psidot))) (* a (expt c 2) phidot

psidot) (* -1 b (expt c 2) phidot psidot))))) (* (expt (sin psi)

2) (+ (* (expt (sin psi) 2) a (+ (* a c psidot thetadot) (* -1 b c

psidot thetadot))) (* -1 a (expt c 2) psidot thetadot))))) (* (cos

psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* (cos
psi) (+ (* (cos psi) (expt (sin theta) 2) a (+ (* -1 a b phidot

thetadot) (* (expt b 2) phidot thetadot))) (* (sin theta) (+ (*

(expt (sin theta) 2) (sin psi) a (+ (* -1 a b (expt phidot 2)) (*

(expt b 2) (expt phidot 2)))) (* (sin psi) a (+ (* a b (expt

thetadot 2)) (* -1 (expt b 2) (expt thetadot 2)))))))) (* (expt

(sin theta) 2) (+ (* (expt (sin psi) 2) a (+ (* -1 a b phidot

thetadot) (* (expt b 2) phidot thetadot))) (* a b c phidot

thetadot))))) (* (sin theta) (+ (* (expt (sin theta) 2) (expt (sin

psi) 3) a (+ (* -2 a b (expt phidot 2)) (+ 2 (expt b 2) (expt

phidot 2)))) (* (expt (sin psi) 3) a (+ (* 2 a b (expt thetadot

2)) (* -2 (expt b 2) (expt thetadot 2)))))))) (* (expt (sin theta)

2) (expt (sin psi) 2) (+ (* (expt (sin psi) 2) a (+ (* a b phidot

thetadot) (* -1 (expt b 2) phidot thetadot))) (* 2 a b c phidot

thetadot))))) (* (sin theta) (+ (* (expt (sin theta) 2) (expt (sin

psi) 5) a (+ (* -1 a b (expt phidot 2)) (* (expt b 2) (expt phidot

2)))) (* (expt (sin psi) 5) a (+ (* a b (expt thetadot 2)) (* -1

(expt b 2) (expt thetadot 2)))))))) (* (expt (sin theta) 2) (expt

(sin psi) 4) (+ (* (expt (sin psi) 2) a (+ (* a b phidot thetadot)

(* -1 (expt b 2) phidot thetadot))) (* a b c phidot thetadot))))

(+ (* (expt (cos psi) 2) (+ (* (expt (cos psi) 2) (sin theta) a b

c) (* 2 (sin theta) (expt (sin psi) 2) a b c))) (* (sin theta)

(expt (sin psi) 4) a b c))) (/ (+ (* (cos theta) (+ (* (sin theta)

(+ (* (expt (cos psi) 2) a (+ (* a (expt phidot 2)) (* -1 c (expt

phidot 2)))) (* (expt (sin psi) 2) b (+ (* b (expt phidot 2)) (*

-1 c (expt phidot 2)))))) (* (cos psi) (sin psi) (+ (+ a (+ (* -1

a phidot thetadot) (* c phidot thetadot))) (* b (+ (* b phidot

thetadot) (* -1 c phidot thetadot))))))) (* (sin theta) (+ (*

(expt (cos psi) 2) (+ (* -1 (expt (cos psi) 2) a b phidot psidot)

(* -2 (expt (sin psi) 2) a b phidot psidot) (* a (+ (* a phidot

psidot) (* -1 c phidot psidot))))) (* (expt (sin psi) 2) (+ (* -1

(expt (sin psi) 2) a b phidot psidot) (* b (+ (* b phidot psidot)

(* -1 c phidot psidot))))))) (* (cos psi) (sin psi) (+ (+ a (+ (*

-1 a psidot thetadot) (* c psidot thetadot))) (* b (+ (* b psidot

thetadot) (* -1 c psidot thetadot)))))) (+ (* (expt (cos psi) 2)

(+ (* (expt (cos psi) 2) a b) (* 2 (expt (sin psi) 2) a b))) (*

(expt (sin psi) 4) a b))) (/ (+ (* (cos theta) (+ (* (cos psi) (+

(* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* -1 a b phidot

thetadot) (* -1 (expt b 2) phidot thetadot))) (* (sin theta) (sin

psi) (+ (* (expt a 2) (expt phidot 2)) (* -1 (expt b 2) (expt

phidot 2)))))) (* (expt (sin psi) 2) (+ (* a (+ (* -1 a phidot

276

thetadot) (* -2 b phidot thetadot))) (* -1 (expt b 2) phidot
thetadot))) (* b c phidot thetadot))) (* (sin theta) (sin psi) (+
(* (expt (sin psi) 2) (+ (* (expt a 2) (expt phidot 2)) (* -1
(expt b 2) (expt phidot 2)))) (* -1 a c (expt phidot 2)) (* b c
(expt phidot 2)))))) (* (expt (sin psi) 2) (+ (* (expt (sin psi)
2) a (+ (* -1 a phidot thetadot) (* -1 b phidot thetadot))) (* a c
phidot thetadot))))) (* (cos psi) (+ (* (cos psi) (+ (* (cos psi)
(+ (* (cos psi) (+ (* a b psidot thetadot) (* -1 (expt b 2) psidot
thetadot))) (* (sin theta) (sin psi) (+ (* (expt a 2) phidot
psidot) (* -1 (expt b 2) phidot psidot))))) (* (expt (sin psi) 2)
(+ (* a (+ (* -1 a psidot thetadot) (* 2 b psidot thetadot))) (*
-1 (expt b 2) psidot thetadot))) (* b c psidot thetadot))) (* (sin
theta) (sin psi) (+ (* (expt (sin psi) 2) (+ (* (expt a 2) phidot
psidot) (* -1 (expt b 2) phidot psidot))) (* -i a c phidot psidot)
(* b c phidot psidot))))) (* (expt (sin psi) 2) (+ (* (expt (sin
psi) 2) a (+ (* -1 a psidot thetadot) (* b psidot thetadot))) (* a
c psidot thetadot)))) (+ (* (expt (cos psi) 2) (+ (* (expt (cos
psi) 2) (sin theta) a b) (* 2 (sin theta) (expt (sin psi) 2) a
b))) (* (sin theta) (expt (sin psi) 4) a b))))))

(define (rigid-field-i a b c x v)
(let ((psi (vector-ref x 0))

(theta (vector-ref x 1))
(phi (vector-ref x 2))
(psidot (vector-ref v 0))

(thetadot (vector-ref v 1))
(phidot (vector-ref v 2)))

(vector psidot thetadot phidot

(/ (+ (* (cos theta) (+ (* (cos theta) (+ (* (cos psi) (+ (* (cos
psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* a b c phidot thetadot)
(* (expt b 2) c phidot thetadot))) (* (sin theta) (sin psi) (+ (*
-1 (expt a 2) c (expt phidot 2)) (* (expt b 2) c (expt phidot
2)))))) (* (expt (sin psi) 2) (+ (* a (+ (* a c phidot thetadot)
(* 2 b c phidot thetadot))) (* (expt b 2) c phidot thetadot))) (*
-1 b (expt c 2) phidot thetadot))) (* (sin theta) (sin psi) (+ (*
(expt (sin psi) 2) (+ (* -1 (expt a 2) c (expt phidot 2)) (* (expt
b 2) c (expt phidot 2)))) (* a (expt c 2) (expt phidot 2)) (* -1 b
(expt c 2) (expt phidot 2)))))) (* (expt (sin psi) 2) (+ (* (expt
(sin psi) 2) a (+ (* a c phidot thetadot) (* b c phidot
thetadot))) (* -1 a (expt c 2) phidot thetadot))))) (* (cos psi)
(+ (* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* -1 a b c
psidot thetadot) (* (expt b 2) c psidot thetadot))) (* (sin theta)
(sin psi) (+ (* -1 (expt a 2) c phidot psidot) (* (expt b 2) c
phidot psidot))))) (* (expt (sin psi) 2) (+ (* a (+ (* a c psidot
thetadot) (* -2 b c psidot thetadot))) (* (expt b 2) c psidot
thetadot))) (* -1 b (expt c 2) psidot thetadot))) (* (sin theta)
(sin psi) (+ (* (expt (sin psi) 2) (+ (* -1 (expt a 2) c phidot
psidot) (* (expt b 2) c phidot psidot))) (* a (expt c 2) phidot
psidot) (* -1 b (expt c 2) phidot psidot))))) (* (expt (sin psi)
2) (+ (* (expt (sin psi) 2) a (+ (* a c psidot thetadot) (* -1 b c
psidot thetadot))) (* -1 a (expt c 2) psidot thetadot))))) (* (cos
psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* (cos
psi) (+ (* (cos psi) (expt (sin theta) 2) a (+ (* -1 a b phidot
thetadot) (* (expt b 2) phidot thetadot))) (* (sin theta) (+ (*
(expt (sin theta) 2) (sin psi) a (+ (* -1 a b (expt phidot 2)) (+
(expt b 2) (expt phidot 2)))) (* (sin psi) a (+ (* a b (expt
thetadot 2)) (* -1 (expt b 2) (expt thetadot 2)))))))) (* (expt
(sin theta) 2) (+ (* (expt (sin psi) 2) a (+ (* -1 a b phidot
thetadot) (* (expt b 2) phidot thetadot))) (* a b c phidot

277

thetadot))))) (* (sin theta) (+ (* (expt (sin theta) 2) (expt (sin

psi) 3) a (+ (* -2 a b (expt phidot 2)) (* 2 (expt b 2) (expt
phidot 2)))) (* (expt (sin psi) 3) a (+ (* 2 a b (expt thetadot

2)) (* -2 (expt b 2) (expt thetadot 2)))))))) (* (expt (sin theta)

2) (expt (sin psi) 2) (+ (* (expt (sin psi) 2) a (+ (* a b phidot
thetadot) (* -1 (expt b 2) phidot thetadot))) (* 2 a b c phidot
thetadot))))) (* (sin theta) (+ (* (expt (sin theta) 2) (expt (sin

psi) 5) a (+ (* -1 a b (expt phidot 2)) (* (expt b 2) (expt phidot

2)))) (* (expt (sin psi) 5) a (+ (* a b (expt thetadot 2)) (* -1
(expt b 2) (expt thetadot 2)))))))) (* (expt (sin theta) 2) (expt

(sin psi) 4) (+ (* (expt (sin psi) 2) a (+ (* a b phidot thetadot)

(* -1 (expt b 2) phidot thetadot))) (* a b c phidot thetadot))))

(+ (* (expt (cos psi) 2) (+ (* (expt (cos psi) 2) (sin theta) a b
c) (* 2 (sin theta) (expt (sin psi) 2) a b c))) (* (sin theta)

(expt (sin psi) 4) a b c))) (/ (+ (* (cos theta) (+ (* (sin theta)

(+ (* (expt (cos psi) 2) a (+ (* a (expt phidot 2)) (* -1 c (expt

phidot 2)))) (* (expt (sin psi) 2) b (+ (* b (expt phidot 2)) (*

-1 c (expt phidot 2)))))) (* (cos psi) (sin psi) (+ (* a (+ (* -1

a phidot thetadot) (* c phidot thetadot))) (* b (+ (* b phidot
thetadot) (* -1 c phidot thetadot))))))) (* (sin theta) (+ (*

(expt (cos psi) 2) (+ (* -1 (expt (cos psi) 2) a b phidot psidot)

(* -2 (expt (sin psi) 2) a b phidot psidot) (* a (+ (* a phidot

psidot) (* -1 c phidot psidot))))) (* (expt (sin psi) 2) (+ (* -1

(expt (sin psi) 2) a b phidot psidot) (* b (+ (* b phidot psidot)

(* -1 c phidot psidot))))))) (* (cos psi) (sin psi) (+ (* a (+ (*

-1 a psidot thetadot) (* c psidot thetadot))) (* b (+ (* b psidot

thetadot) (* -1 c psidot thetadot)))))) (+ (* (expt (cos psi) 2)

(+ (* (expt (cos psi) 2) a b) (* 2 (expt (sin psi) 2) a b))) (*

(expt (sin psi) 4) a b))) (/ (+ (* (cos theta) (+ (* (cos psi) (+

(* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* -1 a b phidot
thetadot) (* -1 (expt b 2) phidot thetadot))) (* (sin theta) (sin

psi) (+ (* (expt a 2) (expt phidot 2)) (* -1 (expt b 2) (expt

phidot 2)))))) (* (expt (sin psi) 2) (+ (* a (+ (* -1 a phidot
thetadot) (* -2 b phidot thetadot))) (* -1 (expt b 2) phidot

thetadot))) (* b c phidot thetadot))) (* (sin theta) (sin psi) (+

(* (expt (sin psi) 2) (+ (* (expt a 2) (expt phidot 2)) (* -1

(expt b 2) (expt phidot 2)))) (* -1 a c (expt phidot 2)) (* b c

(expt phidot 2)))))) (* (expt (sin psi) 2) (+ (+ (expt (sin psi)

2) a (+ (* -1 a phidot thetadot) (* -1 b phidot thetadot))) (* a c

phidot thetadot))))) (* (cos psi) (+ (* (cos psi) (+ (* (cos psi)

(+ (* (cos psi) (+ (* a b psidot thetadot) (* -1 (expt b 2) psidot

thetadot))) (* (sin theta) (sin psi) (+ (* (expt a 2) phidot

psidot) (* -1 (expt b 2) phidot psidot))))) (* (expt (sin psi) 2)

(+ (* a (+ (* -1 a psidot thetadot) (* 2 b psidot thetadot))) (*

-1 (expt b 2) psidot thetadot))) (* b c psidot thetadot))) (* (sin

theta) (sin psi) (+ (* (expt (sin psi) 2) (+ (* (expt a 2) phidot

psidot) (* -1 (expt b 2) phidot psidot))) (+ -1 a c phidot psidot)
(+ b c phidot psidot))))) (* (expt (sin psi) 2) (+ (* (expt (sin
psi) 2) a (+ (* -1 a psidot thetadot) (* b psidot thetadot))) (* a

c psidot thetadot)))) (+ (* (expt (cos psi) 2) (+ (* (expt (cos

psi) 2) (sin theta) a b) (* 2 (sin theta) (expt (sin psi) 2) a

b))) (* (sin theta) (expt (sin psi) 4) a b))))))

(define (rigid-field-2 a b c x v)
(let ((psi (vector-ref x 0))

(theta (vector-ref x 1))
(phi (vector-ref x 2))
(psidot (vector-ref v 0))
(thetadot (vector-ref v 1))

278

(phidot (vector-ref v 2)))

(vector psidot thetadot phidot
(/ (+ (* (cos theta) (+ (* (cos theta) (+ (* (cos psi) (+ (* (cos
psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* -1 a b c phidot
thetadot) (* -1 (expt b 2) c phidot thetadot))) (* (sin theta)
(sin psi) (+ (* -1 (expt a 2) c (expt phidot 2)) (* (expt b 2) c
(expt phidot 2)))))) (* (expt (sin psi) 2) (+ (* a (+ (* -1 a c
phidot thetadot) (* -2 b c phidot thetadot))) (* -1 (expt b 2) c
phidot thetadot))) (* b (expt c 2) phidot thetadot))) (* (sin
theta) (sin psi) (+ (* (expt (sin psi) 2) (+ (* -1 (expt a 2) c
(expt phidot 2)) (* (expt b 2) c (expt phidot 2)))) (* a (expt c
2) (expt phidot 2)) (* -1 b (expt c 2) (expt phidot 2)))))) (*
(expt (sin psi) 2) (+ (* (expt (sin psi) 2) a (+ (* -1 a c phidot
thetadot) (* -1 b c phidot thetadot))) (* a (expt c 2) phidot
thetadot))))) (* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (+ (*
(cos psi) (+ (* -1 a b c psidot thetadot) (* (expt b 2) c psidot
thetadot))) (* (sin theta) (sin psi) (+ (* (expt a 2) c phidot
psidot) (* -1 (expt b 2) c phidot psidot))))) (* (expt (sin psi)
2) (+ (* a (+ (* a c psidot thetadot) (* -2 b c psidot thetadot)))
(* (expt b 2) c psidot thetadot))) (* -1 b (expt c 2) psidot
thetadot))) (* (sin theta) (sin psi) (+ (* (expt (sin psi) 2) (+
(* (expt a 2) c phidot psidot) (* -1 (expt b 2) c phidot psidot)))
(* -1 a (expt c 2) phidot psidot) (* b (expt c 2) phidot
psidot))))) (* (expt (sin psi) 2) (+ (* (expt (sin psi) 2) a (+ (*
a c psidot thetadot) (* -1 b c psidot thetadot))) (* -1 a (expt c
2) psidot thetadot))))) (* (cos psi) (+ (* (cos psi) (+ (* (cos
psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (expt (sin
theta) 2) a (+ (* a b phidot thetadot) (* -1 (expt b 2) phidot
thetadot))) (* (sin theta) (+ (* (expt (sin theta) 2) (sin psi) a
(+ (* -1 a b (expt phidot 2)) (* (expt b 2) (expt phidot 2)))) (*
(sin psi) a (+ (* a b (expt thetadot 2)) (* -1 (expt b 2) (expt
thetadot 2)))))))) (* (expt (sin theta) 2) (+ (* (expt (sin psi)
2) a (+ (* a b phidot thetadot) (* -1 (expt b 2) phidot
thetadot))) (* -1 a b c phidot thetadot))))) (* (sin theta) (+ (*
(expt (sin theta) 2) (expt (sin psi) 3) a (+ (* -2 a b (expt
phidot 2)) (* 2 (expt b 2) (expt phidot 2)))) (* (expt (sin psi)
3) a (+ (* 2 a b (expt thetadot 2)) (* -2 (expt b 2) (expt
thetadot 2)))))))) (* (expt (sin theta) 2) (expt (sin psi) 2) (+
(* (expt (sin psi) 2) a (+ (* -1 a b phidot thetadot) (* (expt b
2) phidot thetadot))) (* -2 a b c phidot thetadot))))) (* (sin
theta) (+ (* (expt (sin theta) 2) (expt (sin psi) 5) a (+ (* -1 a
b (expt phidot 2)) (* (expt b 2) (expt phidot 2)))) (* (expt (sin
psi) 5) a (+ (* a b (expt thetadot 2)) (* -1 (expt b 2) (expt
thetadot 2)))))))) (* (expt (sin theta) 2) (expt (sin psi) 4) (+
(* (expt (sin psi) 2) a (+ (* -1 a b phidot thetadot) (* (expt b
2) phidot thetadot))) (* -1 a b c phidot thetadot)))) (+ (* (expt
(cos psi) 2) (+ (* (expt (cos psi) 2) (sin theta) a b c) (* 2 (sin
theta) (expt (sin psi) 2) a b c))) (* (sin theta) (expt (sin psi)
4) a b c))) (/ (+ (* (cos theta) (+ (* (sin theta) (+ (* (expt
(cos psi) 2) a (+ (* a (expt phidot 2)) (* -1 c (expt phidot 2))))
(* (expt (sin psi) 2) b (+ (* b (expt phidot 2)) (* -1 c (expt
phidot 2)))))) (* (cos psi) (sin psi) (+ (* a (+ (* a phidot
thetadot) (* -1 c phidot thetadot))) (* b (+ (* -1 b phidot
thetadot) (* c phidot thetadot))))))) (* (sin theta) (+ (* (expt
(cos psi) 2) (+ (* (expt (cos psi) 2) a b phidot psidot) (* 2
(expt (sin psi) 2) a b phidot psidot) (* a (+ (* -1 a phidot
psidot) (* c phidot psidot))))) (* (expt (sin psi) 2) (+ (* (expt
(sin psi) 2) a b phidot psidot) (* b (+ (* -1 b phidot psidot) (*

279

c phidot psidot))))))) (* (cos psi) (sin psi) (+ (* a (+ (* -1 a

psidot thetadot) (* c psidot thetadot))) (* b (+ (* b psidot

thetadot) (* -1 c psidot thetadot)))))) (+ (* (expt (cos psi) 2)

(+ (* (expt (cos psi) 2) a b) (* 2 (expt (sin psi) 2) a b))) (*

(expt (sin psi) 4) a b))) (/ (+ (* (cos theta) (+ (* (cos psi) (+

(* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* -1 a b phidot

thetadot) (* -1 (expt b 2) phidot thetadot))) (* (sin theta) (sin

psi) (+ (* -1 (expt a 2) (expt phidot 2)) (* (expt b 2) (expt

phidot 2)))))) (* (expt (sin psi) 2) (+ (* a (+ (* -1 a phidot

thetadot) (* -2 b phidot thetadot))) (0 -1 (expt b 2) phidot

thetadot))) (* b c phidot thetadot))) (* (sin theta) (sin psi) (+

(* (expt (sin psi) 2) (+ (* -1 (expt a 2) (expt phidot 2)) (*

(expt b 2) (expt phidot 2)))) (* a c (expt phidot 2)) (* -1 b c

(expt phidot 2)))))) (* (expt (sin psi) 2) (+ (* (expt (sin psi)

2) a (+ (* -1 a phidot thetadot) (* -1 b phidot thetadot))) (* a c

phidot thetadot))))) (* (cos psi) (+ (* (cos psi) (+ (* (cos psi)

(+ (* (cos psi) (+ (* -1 a b psidot thetadot) (+ (expt b 2) psidot
thetadot))) (* (sin theta) (sin psi) (+ (* (expt a 2) phidot

psidot) (* -1 (expt b 2) phidot psidot))))) (* (expt (sin psi) 2)

(+ (* a (+ (* a psidot thetadot) (* -2 b psidot thetadot))) (+
(expt b 2) psidot thetadot))) (* -1 b c psidot thetadot))) (* (sin

theta) (sin psi) (+ (* (expt (sin psi) 2) (+ (* (expt a 2) phidot

psidot) (* -1 (expt b 2) phidot psidot))) (+ -1 a c phidot psidot)
(* b c phidot psidot))))) (* (expt (sin psi) 2) (+ (* (expt (sin

psi) 2) a (+ (* a psidot thetadot) (* -1 b psidot thetadot))) (*

-1 a c psidot thetadot)))) (+ (+ (expt (cos psi) 2) (+ (* (expt

(cos psi) 2) (sin theta) a b) (* 2 (sin theta) (expt (sin psi) 2)

a b))) (* (sin theta) (expt (sin psi) 4) a b))))))

(define (rigid-field-3 a b c x v)
(let ((psi (vector-ref x 0))

(theta (vector-ref x 1))
(phi (vector-ref x 2))
(psidot (vector-ref v 0))
(thetadot (vector-ref v 1))
(phidot (vector-ref v 2)))

(vector psidot thetadot phidot
(/ (+ (* (cos theta) (+ (* (cos theta) (+ (* (cos psi) (+ (* (cos

psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* -1 a b c phidot

thetadot) (* -1 (expt b 2) c phidot thetadot))) (* (sin theta)

(sin psi) (+ (* -1 (expt a 2) c (expt phidot 2)) (* (expt b 2) c

(expt phidot 2)))))) (* (expt (sin psi) 2) (+ (+ a (+ (* -1 a c

phidot thetadot) (* -2 b c phidot thetadot))) (* -1 (expt b 2) c

phidot thetadot))) (+ b (expt c 2) phidot thetadot))) (* (sin

theta) (sin psi) (+ (* (expt (sin psi) 2) (+ (* -1 (expt a 2) c

(expt phidot 2)) (* (expt b 2) c (expt phidot 2)))) (* a (expt c

2) (expt phidot 2)) (* -1 b (expt c 2) (expt phidot 2)))))) (*

(expt (sin psi) 2) (+ (* (expt (sin psi) 2) a (+ (* -1 a c phidot
thetadot) (* -1 b c phidot thetadot))) (* a (expt c 2) phidot

thetadot))))) (* (cos psi) (+ (+ (cos psi) (+ (* (cos psi) (+ (*
(cos psi) (+ (+ -1 a b c psidot thetadot) (* (expt b 2) c psidot

thetadot))) (* (sin theta) (sin psi) (+ (* (expt a 2) c phidot

psidot) (* -1 (expt b 2) c phidot psidot))))) (* (expt (sin psi)

2) (+ (* a (+ (* a c psidot thetadot) (* -2 b c psidot thetadot)))
(* (expt b 2) c psidot thetadot))) (* -1 b (expt c 2) psidot
thetadot))) (* (sin theta) (sin psi) (+ (* (expt (sin psi) 2) (+
(* (expt a 2) c phidot psidot) (* -1 (expt b 2) c phidot psidot)))
(* -1 a (expt c 2) phidot psidot) (* b (expt c 2) phidot
psidot))))) (* (expt (sin psi) 2) (+ (* (expt (sin psi) 2) a (+ (*

280

a c psidot thetadot) (* -1 b c psidot thetadot))) (* -1 a (expt c
2) psidot thetadot))))) (* (cos psi) (+ (* (cos psi) (+ (* (cos
psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (expt (sin

theta) 2) a (+ (* a b phidot thetadot) (* -1 (expt b 2) phidot
thetadot))) (* (sin theta) (+ (* (expt (sin theta) 2) (sin psi) a
(+ (* -1 a b (expt phidot 2)) (* (expt b 2) (expt phidot 2)))) (*
(sin psi) a (+ (* a b (expt thetadot 2)) (* -1 (expt b 2) (expt
thetadot 2)))))))) (* (expt (sin theta) 2) (+ (* (expt (sin psi)
2) a (+ (* a b phidot thetadot) (* -1 (expt b 2) phidot
thetadot))) (* -1 a b c phidot thetadot))))) (* (sin theta) (+ (*
(expt (sin theta) 2) (expt (sin psi) 3) a (+ (* -2 a b (expt
phidot 2)) (* 2 (expt b 2) (expt phidot 2)))) (* (expt (sin psi)
3) a (+ (* 2 a b (expt thetadot 2)) (* -2 (expt b 2) (expt
thetadot 2)))))))) (* (expt (sin theta) 2) (expt (sin psi) 2) (+
(* (expt (sin psi) 2) a (+ (* -1 a b phidot thetadot) (* (expt b
2) phidot thetadot))) (* -2 a b c phidot thetadot))))) (* (sin
theta) (+ (* (expt (sin theta) 2) (expt (sin psi) 5) a (+ (* -1 a
b (expt phidot 2)) (* (expt b 2) (expt phidot 2)))) (* (expt (sin
psi) 5) a (+ (* a b (expt thetadot 2)) (* -1 (expt b 2) (expt
thetadot 2)))))))) (* (expt (sin theta) 2) (expt (sin psi) 4) (+
(* (expt (sin psi) 2) a (+ (* -1 a b phidot thetadot) (* (expt b
2) phidot thetadot))) (* -1 a b c phidot thetadot)))) (+ (* (expt
(cos psi) 2) (+ (* (expt (cos psi) 2) (sin theta) a b c) (* 2 (sin
theta) (expt (sin psi) 2) a b c))) (* (sin theta) (expt (sin psi)
4) a b c))) (/ (+ (* (cos theta) (+ (* (sin theta) (+ (* (expt
(cos psi) 2) a (+ (* a (expt phidot 2)) (* -1 c (expt phidot 2))))
(* (expt (sin psi) 2) b (+ (* b (expt phidot 2)) (* -1 c (expt
phidot 2)))))) (* (cos psi) (sin psi) (+ (* a (+ (* a phidot
thetadot) (* -1 c phidot thetadot))) (* b (+ (* -1 b phidot
thetadot) (* c phidot thetadot))))))) (* (sin theta) (+ (* (expt
(cos psi) 2) (+ (* (expt (cos psi) 2) a b phidot psidot) (* 2
(expt (sin psi) 2) a b phidot psidot) (* a (+ (* -1 a phidot
psidot) (* c phidot psidot))))) (* (expt (sin psi) 2) (+ (* (expt
(sin psi) 2) a b phidot psidot) (* b (+ (* -1 b phidot psidot) (*
c phidot psidot))))))) (* (cos psi) (sin psi) (+ (* a (+ (* -1 a
psidot thetadot) (* c psidot thetadot))) (* b (+ (* b psidot
thetadot) (* -1 c psidot thetadot)))))) (+ (* (expt (cos psi) 2)
(+ (* (expt (cos psi) 2) a b) (* 2 (expt (sin psi) 2) a b))) (*
(expt (sin psi) 4) a b))) (/ (+ (* (cos theta) (+ (* (cos psi) (+
(* (cos psi) (+ (* (cos psi) (+ (* (cos psi) (+ (* -1 a b phidot
thetadot) (* -1 (expt b 2) phidot thetadot))) (* (sin theta) (sin
psi) (+ (* -1 (expt a 2) (expt phidot 2)) (* (expt b 2) (expt
phidot 2)))))) (* (expt (sin psi) 2) (+ (* a (+ (* -1 a phidot
thetadot) (* -2 b phidot thetadot))) (* -1 (expt b 2) phidot
thetadot))) (* b c phidot thetadot))) (* (sin theta) (sin psi) (+
(* (expt (sin psi) 2) (+ (* -1 (expt a 2) (expt phidot 2)) (*
(expt b 2) (expt phidot 2)))) (* a c (expt phidot 2)) (* -1 b c
(expt phidot 2)))))) (* (expt (sin psi) 2) (+ (* (expt (sin psi)
2) a (+ (* -1 a phidot thetadot) (* -1 b phidot thetadot))) (* a c
phidot thetadot))))) (* (cos psi) (+ (* (cos psi) (+ (* (cos psi)
(+ (* (cos psi) (+ (* -1 a b psidot thetadot) (* (expt b 2) psidot
thetadot))) (* (sin theta) (sin psi) (+ (* (expt a 2) phidot
psidot) (* -1 (expt b 2) phidot psidot))))) (* (expt (sin psi) 2)
(+ (* a (+ (* a psidot thetadot) (* -2 b psidot thetadot))) (*
(expt b 2) psidot thetadot))) (* -1 b c psidot thetadot))) (* (sin
theta) (sin psi) (+ (* (expt (sin psi) 2) (+ (* (expt a 2) phidot
psidot) (* -1 (expt b 2) phidot psidot))) (* -1 a c phidot psidot)
(* b c phidot psidot))))) (* (expt (sin psi) 2) (+ (* (expt (sin
psi) 2) a (+ (* a psidot thetadot) (* -1 b psidot thetadot))) (*

281

-1 a c psidot thetadot)))) (+ (* (expt (cos psi) 2) (+ (* (expt
(cos psi) 2) (sin theta) a b) (* 2 (sin theta) (expt (sin psi) 2)

a b))) (* (sin theta) (expt (sin psi) 4) a b))))))

C.1.57 rigid-read.scm

;; Generate some plots from data! Of course, the two runs are using different
;;; formats, which makes it kind of hard...

(declare (usual-integrations))

(define (eof? port)
(eof-object? (peek-char port)))

(define (read-number port)
(let loop ((c (read-char port)) (string '()))
(if (or (eof-object? c) (memq c '(#\space #\tab #\newline)))

(string->number (list->string (reverse string)))
(if (memq c (string->list "-.0123456789e"))

(loop (read-char port) (cons c string))
(loop (read-char port) string)))))

(define (read-vector n port)
(let ((v (make-vector n)))

(do ((i 0 (+ i 1)))
((>= i n) v)

(vector-set! v i (read-number port)))))

(define (read-regular-state port)
(let ((t (read-number port))

(x (read-vector 3 port))
(v (read-vector 3 port)))

(->state t x v)))

(define read-manifold-state
(let ((charts (manifold:get-finite-atlas TSO3))

(Tchart (make-tangent-chart euler-angles)))
(lambda (port)
(let* ((t (read-number port))

(chart (read-number port))
(coords (read-vector 6 port))

(v (chart:point->coords
(chart:coords->point coords (list-ref charts chart))
Tchart))

(psi (vector-ref v 0))
(theta (vector-ref v i))
(phi (vector-ref v 2))
(psidot (vector-ref v 3))
(thetadot (vector-ref v 4))
(phidot (vector-ref v 5)))

(->state t (vector theta phi psi)
(vector thetadot phidot psidot))))))

(define (read-regular-file filename)

282

(let ((port (open-input-file filename)))
(let loop ((states '()) (count 0) (total 0))
(if (eof? port)

(begin
(close-input-port port)
(sort states (lambda (x y) (< (state->t x) (state->t y)))))

(if (> count 100)
(begin

(write-line '(read ,total states))
(loop (cons (read-regular-state port) states) 0 (+ total 1)))

(loop (cons (read-regular-state port) states)
(+ count 1) (+ total 1)))))))

(define (read-manifold-file filename)
(let ((port (open-input-file filename)))

(let loop ((states '()) (count 0) (total 0))
(if (eof? port)

(begin
(close-input-port port)
(sort states (lambda (x y) (< (state->t x) (state->t y)))))

(if (> count 100)
(begin

(write-line '(read ,total states))
(loop (cons (read-manifold-state port) states) 0 (+ total 1)))

(loop (cons (read-manifold-state port) states)
(+ count 1) (+ total 1)))))))

(define (read-pendulum-file filename)
(let ((port (open-input-file filename)))

(let loop ((result '()) (count 0) (total 0))
(if (eof? port)

(begin
(close-input-port port)
(reverse result))

(if (> count 100)
(begin

(write-line '(read ,total states))
(loop (cons (read-pendulum-state port) result) 0 (+ total 1)))

(loop (cons (read-pendulum-state port) result)
(+ count 1) (+ total 1)))))))

(define (read-pendulum-state port)
(read-number port)
(let* ((x (read-number port))

(y (read-number port))
(z (read-number port))
(px (read-number port))
(py (read-number port))
(pz (read-number port)))

(imbedding->cotangent S^2 (vector x y z) (vector px py pz))))

C.1.58 rigid-test.scm

(load "load-ode")

(define p bad-init)
(define m (tangent:get-anchor p))

283

(define pO (make-tangent cO m (chart:push-forward p cO)))
(define pl (make-tangent ci m (chart:push-forward p ci)))
(define p2 (make-tangent c2 m (chart:push-forward p c2)))
(define p3 (make-tangent c3 m (chart:push-forward p c3)))

(define atlas (manifold:get-finite-atlas so3))

(define cO (list-ref atlas 0))
(define cl (list-ref atlas 1))
(define c2 (list-ref atlas 2))
(define c3 (list-ref atlas 3))

(define tcO (make-tangent-chart cO))
(define tcl (make-tangent-chart ci))
(define tc2 (make-tangent-chart c2))
(define tc3 (make-tangent-chart c3))

(define ttcO (make-tangent-chart tcO))
(define ttci (make-tangent-chart tci))
(define ttc2 (make-tangent-chart tc2))
(define ttc3 (make-tangent-chart tc3))

(define (evaluate-rigid-field chart p)
(let ((x (chart:point->coords p chart)))

(vector-append x ((make-rigid-body-field chart) x))))

(define vO (evaluate-rigid-field tcO pO))
(define vi (evaluate-rigid-field tcl pi))
(define v2 (evaluate-rigid-field tc2 p2))
(define v3 (evaluate-rigid-field tc3 p3))

(for-each
(lambda (v chart)
(write-line
(vector:distance (chart:point->coords (chart:coords->point v chart) ttcO)

vO)))
(list vO vi v2 v3)
(list ttcO ttcl ttc2 ttc3))

C.1.59 rigid-too.scm

(load "load-ode")

(define (make-v.field a b c)
(lambda (state)

(vector-append (vector 1)
(rigid-field-i a b c

(state->q state)
(state->qdot state)))))

(define (reorder v)
(let ((t (state->t v))

(q (state->q v))
(qdot (state->qdot v)))

(let ((psi (vector-ref q 0))
(theta (vector-ref q i))
(phi (vector-ref q 2))

284

(psidot (vector-ref qdot 0))
(thetadot (vector-ref qdot 1))
(phidot (vector-ref qdot 2)))

(->state t (vector theta phi psi) (vector thetadot phidot psidot)))))

(define v.field (make-v.field 1. (sqrt 2) 2.))
(define step (compose integrator:get-new-x (make-rk4-integrator .01)))

(define results
(show-time
(lambda ()

(let loop ((i 0)
(x (->state 0 (vector 0 1 0) (vector .1 .1 .1)))
(results '())

(if (< i 10000)
(loop (+ i 1) (step x v.field (lambda () 'foo)) (cons x results))
(map reorder

(sort results
(lambda (x y) (< (state->t x) (state->t y))))))))))

(define E-errors (map (t-rigid-body I. (sqrt 2) 2.) results))
(define L-errors (map (state->L-space 1. (sqrt 2) 2.) results))
(define Ll-errors (map vector-first L-errors))
(define L2-errors (map vector-second L-errors))
(define L3-errors (map vector-third L-errors))

;;; Graphics devices:

(define dev 'undefined)

(define (open)
(if (eq? dev 'undefined)

(begin
(set! dev (make-graphics-device 'x))
(graphics-operation dev 'set-background-color "white")
(graphics-operation dev 'set-foreground-color "blue")
(graphics-operation dev 'set-mouse-color "black")
(graphics-set-coordinate-limits dev -2 -2 2 2)
(graphics-clear dev))))

(define (close)
(if (not (eq? dev 'undefined))

(begin
(graphics-close dev)
(set! dev 'undefined))))

(define (clear)
(open)
(graphics-clear dev))

(define (plot-conservation-error 1)
(let* ((ref (car 1))

(1 (map (lambda (x) (relative-error x ref)) 1))
(max (apply max 1))
(min (apply min 1))
(len (- (length 1) 1))
(ref (car 1)))

(write-line '(range: ,min to ,max))
(open)

285

(graphics-enable-buffering dev)
(graphics-set-coordinate-limits dev 0. min len max)
(graphics-move-cursor dev 0. 0.)
(let loop ((i 1) (1 (cdr 1)))
(if (null? 1)

(graphics-disable-buffering dev)
(begin

(graphics-drag-cursor dev i (car 1))
(loop (+ i 1) (cdr 1)))))))

(define (set-fg color)
(graphics-operation dev 'set-foreground-color color))

C.1.60 rigid-tops.scm

;;; This file uses ScmUtils to derive the Lagrangian for tops. This is much
;;; like the rigid body stuff.

(load "rigid")

The Lagrangian for the top (note that the moments of inertia are with
;;; respect to the pivot):

(define (make-top-lagrangian-1 a b c MgR)
(let ((T (T-rigid-body a b c)))
(lambda (state)

(let ((theta (vector-ref (state->q state) 0)))
(- (T state) (* MgR (cos theta)))))))

(define (make-top-lagrangian-2 a b c MgR)
(let ((T (kT-rigid-body a b c)))

(lambda (state)
(let* ((q (state->q state))

(theta (vector-ref q 0))
(phi (vector-ref q 1)))

(+ (T state) (* MgR (cos phi) (sin theta)))))))

;; The corresponding Euler-Lagrange equations:

(define (top-sysder-I a b c MgR)
(lagrangian->state-derivative
(make-top-lagrangian-1 a b c MgR)))

(define (top-sysder-2 a b c MgR)
(lagrangian->state-derivative
(make-top-lagrangian-2 a b c MgR)))

;;; Compute some expressions:

(let ((port (open-output-file "foo")))
(pp (traditional->correct-order

(vector-tail
(show-time

(lambda ()

286

(*sysder-simplify*
((top-sysder-1 'a 'b 'c 'MgR) rigid-qqdot))))

i))
port)

(close-output-port port))

(let ((port (open-output-file "bar")))
(pp (traditional->correct-order

(vector-tail
(show-time
(lambda ()

(*sysder-simplify*
((top-sysder-2 'a 'b 'c 'MgR) rigid-qqdot))))

1))
port)

(close-output-port port))

C.1.61 rigid.scm

This file uses ScmUtils to derive the Lagrangian for rigid bodies using an
;;; Euler-like coordinate system that covers a region of S0(3) different from
;;; standard Euler angles.

;; These are the Euler-like charts we are actually working with:

;;; A canonical rotation matrix that isn't defined in ScmUtils:

(define (rotate-y angle)
(vector
(vector (cos angle) 0 (- (sin angle)))
(vector 0 1 0)
(vector (sin angle) 0 (cos angle))))

;;; Some procedures for testing charts built on Euler angles:

(define (compare-euler-angles chart euler->m)
(let ((theta (random pi))

(phi (- (random (* 2 pi)) pi))
(psi (- (random (* 2 pi)) pi)))

(let ((A (chart:coords->point (vector psi theta phi) chart))
(B (euler->m (vector theta phi psi))))

(print-matrix A)
(print-matrix B)
(write-line '(diff = ,(matrix:max (matrix:- A B)))))))

(define (test-euler-chart chart)
(let ((psi (- (random (* 2 pi)) pi))

(theta (random pi))
(phi (- (random (* 2 pi)) pi)))

(let ((v (vector psi theta phi)))
(vector:distance (chart:point->coords (chart:coords->point v chart)

chart)
v))))

(define (test-euler-tangent-chart chart range)

287

(let ((psi (- (random (* 2 pi)) pi))
(theta (random pi))
(phi (- (random (* 2 pi)) pi))
(psidot (- (random (* 2 range)) range))
(thetadot (- (random (* 2 range)) range))
(phidot (- (random (* 2 range)) range))

(chart (make-tangent-chart chart)))
(let ((v (vector psi theta phi psidot thetadot phidot)))

(vector:distance (chart:point->coords (chart:coords->point v chart)
chart)

v))))

(define (test-euler-tt-chart chart range)
(let ((psi (- (random (* 2 pi)) pi))

(theta (random pi))
(phi (- (random (* 2 pi)) pi))
(psidot (- (random (* 2 range)) range))
(thetadot (- (random (* 2 range)) range))
(phidot (- (random (* 2 range)) range))
(a (- (random (* 2 range)) range))
(b (- (random (* 2 range)) range))
(c (- (random (* 2 range)) range))
(d (- (random (* 2 range)) range))
(e (- (random (* 2 range)) range))
(f (- (random (* 2 range)) range))

(chart (make-tangent-chart (make-tangent-chart chart))))
(let ((v (vector psi theta phi psidot thetadot phidot

a b c d e f)))
(vector:distance (chart:point->coords (chart:coords->point v chart)

chart)
v))))

;;; Generate rotation matrix from angles: (Why is the order of arguments used
;;; in the book so *odd*?)

(define (eulerO->m angles)
(let ((theta (vector-ref angles 0))

(phi (vector-ref angles 1))
(psi (vector-ref angles 2)))

(matrix:* (rotate-z phi)
(rotate-y (- theta))
(rotate-z psi))))

(define eulerl->m
(let ((rot (vector (vector -1 0 0)

(vector 0 -1 0)
(vector 0 0 1))))

(lambda (angles)
(let ((theta (vector-ref angles 0))

(phi (vector-ref angles 1))
(psi (vector-ref angles 2)))

(matrix:* (rotate-z phi)
(rotate-y (- theta))
(rotate-z psi)
rot)))))

(define euler2->m

288

(let ((rot-x (vector (vector 1 0 0)
(vector 0 0 1)
(vector 0 -1 0)))

(rot-y (vector (vector -1 0 0)
(vector 0 1 0)
(vector 0 0 -1))))

(lambda (angles)

(let ((theta (vector-ref angles 0))

(phi (vector-ref angles 1))

(psi (vector-ref angles 2)))

(matrix:* (rotate-y phi)

rot-y

(rotate-z (- theta))

rot-x

(rotate-z psi))))))

(define euler3->m

(let ((rot-x (vector (vector 1 0 0)

(vector 0 0 1)

(vector 0 -1 0)))

(rot-y (vector (vector -1 0 0)

(vector 0 1 0)
(vector 0 0 -I)))

(rot-z (vector (vector -1 0 0)
(vector 0 -1 0)
(vector 0 0 1))))

(lambda (angles)

(let ((theta (vector-ref angles 0))

(phi (vector-ref angles 1))

(psi (vector-ref angles 2)))

(matrix:* (rotate-y phi)

rot-y

(rotate-z (- theta))

rot-x

(rotate-z psi)

rot-z)))))

;;; Generate the angular velocity vector:

(define (((make-euler->omega euler->m) angles-path) t)

(define (m-on-path t)
(euler->m (angles-path t)))

(define (w-cross t)

(matrix:* ((derivative m-on-path) t)

(matrix:transpose (m-on-path t))))
(antisymmetric->3vector-components (w-cross t)))

;;; Generate the angular velocity vector in the body frame:

(define (((make-euler->omega-body euler->m) angles-path) t)

(matrix:matrix*vector

(matrix:transpose (euler->m (angles-path t)))

(((make-euler->omega euler->m) angles-path) t)))

;;; Compute the expression for the angular velocity in terms of the angles:

289

(define (angular-velocity-expression euler->m)

(let ((euler->omega-body (make-euler->omega-body euler->m)))

(show-time

(lambda ()
((compose ham:simplify easy-simplify)

((euler->omega-body

(vector (literal-function 'theta)

(literal-function 'phi)

(literal-function 'psi)))

;;; Compute the kinetic energy!

(define ((t-rigid-body-O a b c) state)

(let ((q (state->q state))

(qdot (state->qdot state))

(t (state->t state)))

(let ((theta (vector-ref q 0))

(phi (vector-ref q 1))

(psi (vector-ref q 2))

(thetadot (vector-ref qdot 0))

(phidot (vector-ref qdot 1))

(psidot (vector-ref qdot 2)))

(let ((w_a (- (* thetadot (sin psi)) (* (sin theta) (cos psi) phidot)))

(w_b (+ (* (cos psi) thetadot) (* (sin theta) (sin psi) phidot)))

(w_c (+ psidot (* (cos theta) phidot))))

(+ 1/2 (+ (+ a (square w_a))

(* b (square wvb))

(* c (square wc))))))))

(define ((t-rigid-body-1 a b c) state)

(let ((q (state->q state))

(qdot (state->qdot state))

(t (state->t state)))

(let ((theta (vector-ref q 0))

(phi (vector-ref q 1))

(psi (vector-ref q 2))

(thetadot (vector-ref qdot 0))

(phidot (vector-ref qdot 1))

(psidot (vector-ref qdot 2)))

(let ((w_a (- (* (sin theta) (cos psi) phidot) (* thetadot (sin psi))))

(w_b (- (+ (* (sin theta) (sin psi) phidot)

(* (cos psi) thetadot))))

(w_c (+ psidot (* (cos theta) phidot))))

(+ 1/2 (+ (* a (square w_a))

(* b (square w_b))

(* c (square wc))))))))

(define ((t-rigid-body-2 a b c) state)

(let ((q (state->q state))

(qdot (state->qdot state))

(t (state->t state)))

(let ((theta (vector-ref q 0))

(phi (vector-ref q 1))

(psi (vector-ref q 2))

(thetadot (vector-ref qdot 0))

(phidot (vector-ref qdot 1))

(psidot (vector-ref qdot 2)))

290

(let ((w.a (+ (* (sin theta) (cos psi) phidot) (* (sin psi) thetadot)))

(w_b (- (* (cos psi) thetadot) (* (sin theta) (sin psi) phidot)))
(w_c (- psidot (* (cos theta) phidot))))

(* 1/2 (+ (* a (square w_a))
(* b (square wb))
(* c (square wc))))))))

(define ((t-rigid-body-3 a b c) state)
(let ((q (state->q state))

(qdot (state->qdot state))
(t (state->t state)))

(let ((theta (vector-ref q 0))
(phi (vector-ref q 1))
(psi (vector-ref q 2))
(thetadot (vector-ref qdot 0))
(phidot (vector-ref qdot 1))
(psidot (vector-ref qdot 2)))

(let ((v_a (- (+ (* (sin theta) (cos psi) phidot)
(* (sin psi) thetadot))))

(w.b (- (* (sin theta) (sin psi) phidot) (* (cos psi) thetadot)))

(w_c (- psidot (* (cos theta) phidot))))
(* 1/2 (+ (* a (square w_a))

(* b (square wb))
(* c (square wc))))))))

;;; Compute the angular momentum!

(define ((state->L-body-O a b c) state)
(let ((q (state->q state))

(qdot (state->qdot state))
(t (state->t state)))

(let ((theta (vector-ref q 0))
(phi (vector-ref q 1))
(psi (vector-ref q 2))
(thetadot (vector-ref qdot 0))
(phidot (vector-ref qdot 1))
(psidot (vector-ref qdot 2)))

(let ((w_a (- (* thetadot (sin psi)) (* (sin theta) (cos psi) phidot)))
(w_b (+ (* (cos psi) thetadot) (* (sin theta) (sin psi) phidot)))
(v_c (+ psidot (* (cos theta) phidot))))

(vector (* a w_a) (* b wb) (* c c))))))

(define ((state->L-body-1 a b c) state)
(let ((q (state->q state))

(qdot (state->qdot state))
(t (state->t state)))

(let ((theta (vector-ref q 0))
(phi (vector-ref q 1))
(psi (vector-ref q 2))
(thetadot (vector-ref qdot 0))

(phidot (vector-ref qdot 1))
(psidot (vector-ref qdot 2)))

(let ((w_a (- (* (sin theta) (cos psi) phidot) (* thetadot (sin psi))))

(w_b (- (+ (* (sin theta) (sin psi) phidot)
(* (cos psi) thetadot))))

(w_c (+ psidot (* (cos theta) phidot))))
(vector (* a w_a) (+ b w_b) (* c _c))))))

291

(define ((state->L-body-2 a b c) state)

(let ((q (state->q state))

(qdot (state->qdot state))

(t (state->t state)))

(let ((theta (vector-ref q 0))

(phi (vector-ref q 1))

(psi (vector-ref q 2))

(thetadot (vector-ref qdot 0))

(phidot (vector-ref qdot 1))

(psidot (vector-ref qdot 2)))

(let ((w_a (+ (* (sin theta) (cos psi) phidot) (+ (sin psi) thetadot)))

(w_b (- (* (cos psi) thetadot) (* (sin theta) (sin psi) phidot)))

(wc (- psidot (* (cos theta) phidot))))

(vector (+ a w_a) (+ b wb) (* c wc))))))

(define ((state->L-body-3 a b c) state)

(let ((q (state->q state))

(qdot (state->qdot state))

(t (state->t state)))

(let ((theta (vector-ref q 0))

(phi (vector-ref q 1))

(psi (vector-ref q 2))

(thetadot (vector-ref qdot 0))

(phidot (vector-ref qdot 1))

(psidot (vector-ref qdot 2)))

(let ((w_a (- (+ (* (sin theta) (cos psi) phidot)

(* (sin psi) thetadot))))

(w_b (- (+ (sin theta) (sin psi) phidot) (* (cos psi) thetadot)))

(wc (- psidot (* (cos theta) phidot))))

(vector (* a wa) (* b wb) (* c wc))))))

(define ((state->L-space-0 a b c) state)

(let ((angles (state->q state)))

(* (eulerO->m angles) ((state->L-body-O a b c) state))))

(define ((state->L-space-1 a b c) state)

(let ((angles (state->q state)))

(* (eulerl->m angles) ((state->L-body-1 a b c) state))))

(define ((state->L-space-2 a b c) state)

(let ((angles (state->q state)))

(* (euler2->m angles) ((state->L-body-2 a b c) state))))

(define ((state->L-space-3 a b c) state)

(let ((angles (state->q state)))

(* (euler3->m angles) ((state->L-body-3 a b c) state))))

The state derivatives:

(define (rigid-sysder-O a b c)

(lagrangian->state-derivative

(t-rigid-body-O a b c)))

(define (rigid-sysder-1 a b c)

(lagrangian->state-derivative
(t-rigid-body-1 a b c)))

(define (rigid-sysder-2 a b c)

292

(lagrangian->state-derivative
(t-rigid-body-2 a b c)))

(define (rigid-sysder-3 a b c)
(lagrangian->state-derivative
(t-rigid-body-3 a b c)))

;;; This is rather useful:

(define rigid-qqdot
(->state 't

(vector 'theta 'phi 'psi)
(vector 'thetadot 'phidot 'psidot)))

(define rigid-qp
(->state 't

(vector 'theta 'phi 'psi)
(vector 'p.theta 'pphi 'p_psi)))

;;; Something useful to remember (thanks to CPH): This should fix the
;;; simplifier so that the really big expressions can be simplified.

;(ge '(user))
;(in-package scmutils-base-environment
; ((pcf-package 'set-gcd-method!) (pcf-package 'gcd-euclid)))
;(ge generic-environment)

;;; Stupid exchange of order of arguments:

(define (traditional->correct-order v)
(let ((theta (vector-ref v 0))

(phi (vector-ref v 1))
(psi (vector-ref v 2))

(thetadot (vector-ref v 3))
(phidot (vector-ref v 4))
(psidot (vector-ref v 5)))

(vector psi theta phi psidot thetadot phidot)))

C.1.62 smooth.scm

;;; Here is an example to worry about: Let X be a manifold, and let H be a
;; real-valued smooth function on its cotangent bundle T*X. Let Y be a

;;; submanifold of X, and let i:Y->X be the inclusion map. Then we can define
;;; Ti(x,v) = di(x)(v), as usual, and consider H' = Ti*H, the restriction of H
;;; to the submanifold Y. (Holonomic constraints!) Now consider this: dH' =
;;; d(Ti*H) = Ti*dH, which basically means (T(Ti))*(dH), right? And anyway TH'
;;; = T(Ti*H) = T(Ti)*(TH), by covariant functoriality. Now, the latter
;; expression is computable under the current system, but does not provide

;;; closure, while the first expression is not even computable, but would
;;; provide closure if it were. Obviously, this system needs to be
;;; restructured: We should at least be able to express holonomic constraints!

;;; The answer to this is that SMOOTH-MAP:DIFF needs to push the tangent

293

;;; functor *into* compositions, not pull them out. So maps are differentiated
;;; in stages rather than as a whole. This sounds like it stands a chance,
;;; actually.

;;; This file defines the structures for smooth maps between manifolds. A
;;; smooth map, in addition to a Scheme procedure that computes the point
;;; transformation, should also contain pointers to its domain, range, and
;; methods for making transition maps. But then that makes constructing

;;; charts a bit more recursive than necessary, so domains and ranges are not
;;; included (it's not useful information).

(declare (usual-integrations))

;;; How to make one:

(define (make-smooth-map domain range point-function make-transition)

;; POINT-FUNCTION should be a scheme procedure that computes the function
given a point in its domain. Note that this function is *not* meant to be

;; used in manipulations of the function, but only in computing the values.
;; In order that the functorial properties are satisfied (whatever that

means), compositions and exterior differentiation need to be handled
separately so that the resulting functions are always differentiable. (In

;; particular, this makes ScmUtils work.)

MAKE-TRANSITION should take as arguments two charts and create a
transition function between the respective Euclidean spaces.

(vector domain range point-function make-transition '()))

(define (make-simple-map domain range f)
(make-smooth-map domain range f (make-simple-transition-maker f)))

(define (make-simple-transition-maker f)
(lambda (U V)

(compose (chart:get-coord-map V) f (chart:get-inverse-map U))))

;;; Will probably be useful in our PDE work:

(define R^1 (make-euclidean-space 1))

(define real-line R'1)

(define (make-real-map domain f)
(make-simple-map domain real-line (compose vector f)))

;;; Accessors:

(define (smooth-map:get-domain f)
(vector-ref f 0))

(define (smooth-map:get-range f)
(vector-ref f i))

(define (smooth-map:get-point-function f)
(vector-ref f 2))

294

(define (smooth-map:get-transition-maker f)
(vector-ref f 3))

(define (smooth-map:make-transition f U V)
((smooth-map:get-transition-maker f) U V))

(define (smooth-map:get-extra f tag)
(let ((result (assq tag (vector-ref f 4))))
(if result

(cdr result)
#f)))

(define (smooth-map:install-extra f tag datum)
(let ((result (assq tag (vector-ref f 4))))
(if result

(set-cdr! result datum)
(vector-set! f 4 (cons (cons tag datum) (vector-ref f 4))))))

;;; Useful constructs:

(define (apply-smooth-map f p)
((smooth-map:get-point-function f) p))

(define (smooth-map:compose f . rest)
(if (null? rest)

f
(let* ((last-guy (car (reverse rest)))

(flist (cons f rest))
(point-map (apply compose (map smooth-map:get-point-function

flist)))
(h (make-smooth-map (smooth-map:get-domain last-guy)

(smooth-map:get-range f)
point-map
(make-simple-transition-maker point-map))))

(smooth-map:install-extra h 'composition flist)
h)))

(define (smooth-map:decompose f)
(let ((result (smooth-map:get-extra f 'composition)))
(if result

result

#f)))

;;; It would be nice to make everything else (such as composition and
;;; differentiation) do the right thing with regards to inverses:

(define (make-diffeomorphism f f-inverse)
(smooth-map:install-extra f 'inverse f-inverse)
(smooth-map:install-extra f-inverse 'inverse f)
f)

(define (smooth-map:invert f)
(let ((result (smooth-map:get-extra f 'inverse)))
(if result

result
Mf)))

295

(define (make-simple-diffeomorphism domain range f g)
(let ((sf (make-simple-map domain range f))

(sg (make-simple-map range domain g)))
(make-diffeomorphism sf sg)))

;;; Some useful (covariant) functors:

;;; This one maps from the category of smooth manifolds into point sets, and
;;; maps smooth maps.

(define forgetful-functor smooth-map:get-point-function)

;;; This uses the differential to map from smooth manifolds into the category
;;; of tangent bundles.

(define (smooth-map:diff f)
(let ((Tf (smooth-map:get-extra f 'tangent-extension)))
(if Tf

Tf
(let ((flist (smooth-map:decompose f)))
(if flist

(apply smooth-map:compose (map smooth-map:diff flist))
(let ((components (product-map:get-components f)))
(if components

(make-product-map (smooth-map:diff (car component))
(smooth-map:diff (cadr component)))

(smooth-map:new-diff f))))))))

(define (smooth-map:new-diff smap)
(let* ((TM (make-tangent-bundle (smooth-map:get-domain smap)))

(TN (make-tangent-bundle (smooth-map:get-range smap)))
(transit (diff-transition-map smap))
(df (diff-point-function smap)))

(let ((new-map (make-smooth-map TM TN df transit)))
(smooth-map:install-extra smap 'tangent-extension new-map)
new-map)))

(define (diff-point-function f)
(let ((N (smooth-map:get-range f)))
(lambda (v)

(let* ((p (tangent:get-anchor v))
(q (apply-smooth-map f p))
(M-chart (tangent:get-chart v))
(N-chart (manifold:find-best-chart N q))
(transit (smooth-map:make-transition f M-chart N-chart)))

(make-tangent N-chart

q
(push-forward-in-coords transit

(chart:point->coords p M-chart)
(tangent:get-coords v)))))))

(define (diff-transition-map smap)

;; Make a transition map between the tangent charts of two given charts.

296

;; Note that this depends on the fact that SMOOTH-MAP:DIFF decomposes
;; compositions of functions into chunks whose transition maps are directly
;; differentiable.

(let ((make-transition-map (smooth-map:get-transition-maker smap)))
(lambda (TU TV)

(let* ((U (chart:get-base-chart TU))
(V (chart:get-base-chart TV))
(f (make-transition-map U V))
(dim (chart:dimension U)))

(lambda (p)
(let ((x (vector-head p dim)))
(vector-append (f x)

(push-forward-in-coords
f x (vector-end p dim)))))))))

;;; Another very useul construction:

(define product:combine cons)
(define product:get-arg-1 car)
(define product:get-arg-2 car)

(define (make-product-map f g)
(let ((fp (smooth-map:get-point-function f))

(gp (smooth-map:get-point-function g))

(M-i (smooth-map:get-domain f))
(M-2 (smooth-map:get-domain g))

(N-1 (smooth-map:get-range f))
(N-2 (smooth-map:get-range g)))

(let ((point-map
(lambda (x)

(product:combine (fp (product:get-arg-i x))
(gp (product:get-arg-2 x)))))

(make-transition-map
(lambda (U V)

(let ((dim-1 (chart:dimension U))
(dim-2 (chart:dimension V)))

(lambda (x)
(vector-append (fp (vector-head x dim-i))

(gp (vector-end x dim-2))))))))

(let ((f&g (make-smooth-map (product-manifold Mi M2)
(product-manifold Ni N2)
point-map
make-transition-map)))

(smooth-map:install-extra f&g 'product-map-structs (list f g))
f&g))))

(define (product-map:get-structs f)
(smooth-map:get-extra f 'product-map-structs))

(define (product-map:get-components f)
(let ((result (product-map:get-structs f)))

297

(if result
result
#f)))

;;; Some useful examples:

(define (make-simple-projection-map n i)

;; Make a map from R^n to R'(n-1) by dropping the ith coordinate.

(make-simple-map (make-euclidean-space n)
(make-euclidean-space (- n 1))
(lambda (v) (vector:drop-coord v i))))

(define (make-simple-imbedding-map n i)

;; Do the opposite:

(make-simple-map (make-euclidean-space (- n 1))
(make-euclidean-space n)
(lambda (v) (vector:add-coord v i))))

C.1.63 spaces.scm

;;; Some manifolds:

;(declare (usual-integrations cos sin acos atan + - * /))

The n-sphere? What sort of chart should we use? Stereogrphic projection?
Mercator projection? Both? The representation of points isn't so trivial
in this case. I guess we'll just use the imbedding, since in this context
it's perfectly natural.

(define (make-imbedded-sphere-test dim)
(let ((euclidean? (make-euclidean-test (+ dim I))))
(lambda (v)

(and (euclidean? v)
(almost-equal? (vector:magnitude^2 v) 1)))))

;;; Do the obvious thing: Stereographic projection.

(define (make-stereographic-chart dim pole-dim pole-dir)
(let* ((ubound 5)

(dim+l (+ dim 1))
(pole (vector:basis dim+1 pole-dim pole-dir)))

(letrec
((in-domain?

(let ((sphere? (make-imbedded-sphere-test dim)))
(lambda (v)

(and (sphere? v)
(not (almost-equal? (vector:distance^2 v pole) 0))
(< (- (/ 4 (vector:magnitude^2 (vector:- v pole))) 1)

ubound)))))

298

(in-range?
(let ((euclidean? (make-euclidean-test dim)))
(lambda (v)

(and (euclidean? v)
(< (vector:magnitude^2 v) ubound)))))

(map
(lambda (x)

(let* ((d (vector:- x pole))
(y (vector:* (/ 2 (vector:magnitude'2 d)) d)))

(vector:drop-coord (vector:+ y pole) pole-dim))))

(inverse
(lambda (x)

(let* ((d (vector:- (vector:add-coord x pole-dim) pole))
(y (vector:* (/ 2 (vector:magnitude^2 d)) d)))

(vector:+ y pole)))))

(let ((chart (make-simple-chart dim in-domain? in-range? map inverse)))
(make-spherical-range chart (make-vector dim 0) (sqrt ubound))
chart))))

;;; Of course, in most applications, it's better to have (generalized)
;;; spherical coordinates...

;;; ILIST should be a permutation of 0, 1, ..., dim. It determines the order
;;; in which the angles are generated. The singularity is a half-sphere of
;;; dimension (dim - 1), and is orthogonal to the last coordinate in ILIST,
;; occupying the negative half space with respect to the next-to-last

;;; coordinate. ROT should be an angle in radians; the final two coordinates
;;; are rotated by this angle before being generated.

(define (make-planar-rotation angle)
(let* ((cosine (cos angle))

(sine (sin angle))
(A (list->matrix 2 2 '(,cosine ,sine ,(- sine) ,cosine))))

(lambda (v)
(apply-linear-transformation A v))))

(define (make-spherical-chart dim ilist angle)
(let ((el 0)

(e2 (/ pi 9))
(dim-1 (- dim 1))
(dim+1 (+ dim 1))
(rot (make-planar-rotation angle))
(-rot (make-planar-rotation (- angle))))

;; The membership test is rather circular... (No pun intended! :)

(letrec
((in-domain?
(let ((sphere? (make-imbedded-sphere-test dim)))

(lambda (v)
(and (sphere? v)

(in-range? (map v))))))

(in-range?

299

(let ((euclidean? (make-euclidean-test dim)))
(lambda (v)

(and (euclidean? v)
(let valid? ((i 0))

(let ((angle (vector-ref v i)))
(if (< i dim-1)

(and (< el angle)
(< angle (- pi el))
(valid? (+ i 1)))

(and (< (+ -pi e2) angle)
(< angle (- pi e2))))))))))

(map
(lambda (x)

(let ((result (make-vector dim 0)))
(let loop ((i 0) (ilist ilist) (r 1))
(if (= i dim-i)

(let ((z (rot (vector (vector-ref x (car ilist))
(vector-ref x (cadr ilist))))))

(vector-set! result i
(atan (vector-ref z 1) (vector-ref z 0)))

result)
(let ((val (/ (vector-ref x (car ilist)) r)))
(vector-set! result i (acos val))
(loop (+ i 1)

(cdr ilist)
(r (sqrt (- 1 (square val)))))))))))

(inverse
(lambda (x)

(let ((p (make-vector dim+i)))
(let loop ((i 0) (ilist ilist) (r 1))

(let ((angle (vector-ref x i)))
(if (< i dim-i)

(begin
(vector-set! p (car ilist) (* r (cos angle)))
(loop (+ i 1) (cdr ilist) (* r (sin angle))))

(let ((z (-rot (vector (cos angle) (sin angle)))))
(vector-set! p (car ilist) (* r (vector-ref z 0)))
(vector-set! p (cadr ilist) (* r (vector-ref z 1)))

p))))))))

(let ((chart (make-simple-chart dim in-domain? in-range? map inverse))
(intervals (make-vector dim (make-interval el (- pi el)))))

(vector-set! intervals dim-i (make-interval (+ -pi e2) (- pi e2)))
(make-cell-range chart intervals)
chart))))

;;; Here's one way to make a sphere; it turns out to be very hard to define
;;; vector fields on its tangent bundle. (Try the pendulum!)

(define (make-stereographic-sphere dim)
(charts->manifold (list (make-stereographic-chart dim 0 1.)

(make-stereographic-chart dim 0 -1.))))

Another way:

(define (make-spherical-sphere dim)

300

(let* ((11 (list-integers dim))
(12 (reverse 11)))

(charts->manifold (list (make-spherical-chart dim 11 0)
(make-spherical-chart dim 12 pi)))))

;;; Choose a way to make spheres:

(define make-sphere make-spherical-sphere)

;;; The next thing to make is S0(3). Note that because the inverse function
;;; theorem can't be used to compute coordinate systems directly, it
;;; complicates the creation of charts for Lie subgroups of GL(n).

;; For now, we won't bother with explicitly representing Lie group structures
;;; computationally.

(define (make-special-orthogonal-group n)

;; Don't bother making SO(n) in general:

(case n

;; n = 2 is just the circle group:
((2) (make-sphere 1))

;; n = 3 is the rotational group in 3-space:
((3) (make-rotational-group))

;; Otherwise panic:
(else
(error "Sorry! I only know how to make SO(2) and S0(3)! -- MAKE-SO(n)"))))

;;; Make a planar rotation matrix in n-space, in a plane specified by two
;;; canonical coordinate axes:

(define (make-rotation-matrix dim x-axis y-axis theta)
(let ((rot (make-matrix dim dim)))

(do ((i 0 (+ i 1)))
((>= i dim) rot)

(do ((j 0 (+ j 1)))
((>= j dim))

(cond ((and (= i x-axis) (= j x-axis))
(matrix-set! rot i j (cos theta)))

((and (= i x-axis) (= j y-axis))
(matrix-set! rot i j (- (sin theta))))

((and (= i y-axis) (= j y-axis))
(matrix-set! rot i j (cos theta)))

((and (= i y-axis) (= j x-axis))
(matrix-set! rot i j (sin theta)))

((= i j)
(matrix-set! rot i j 1)))))))

301

;; Make the rotational group using Euler angles. This is a nice test because
;; they contain singularities:

;; Need support for Lagrangian and Hamiltonian dynamics, too, if you believe
;; in such things.

(define make-rotational-group
(let ((result #f))
(lambda ()
(if result

result
(let ((S03 (charts->manifold

(list (make-euler-angles 0 1 0 0)
(make-euler-angles 0 1 0 pi)
(make-euler-angles 0 2 pi 0)
(make-euler-angles 0 2 pi pi)))))

;; This ensures that we get an atlas. Might be a bit of an
overkill, but...

(set! result S03)
result)))))

;;; S(3) = S-2 x S^1? But it's probably not easier to do, and this (mostly)
;;; works...

(define (make-euler-angles i-axis j-axis ri r2)

General strategy: Given a specification of two axes (I and J), we can
deduce K. Using I, J, and K, we construct a spherical chart. We can then
decompose the rotation R into an S-2 and an S^1 component by its action on

;; some fixed vector v: Rv gives the S-2 component, and its action about the
axis specified by v gives the S^1 component. We choose v to be the

;; standard z-axis.

(let* ((id (make-identity-matrix 3))
(3-vector? (make-euclidean-test 3))
(k-axis (- 3 (+ i-axis j-axis)))
(S-chart (make-spherical-chart 2 (list k-axis i-axis j-axis) ri))
(C-chart (make-spherical-chart 1 (list 0 1) r2))
(xv (vector:basis 3 0 1))
(zv (vector:basis 3 2 1))
(rot (generate-axis-rotation k-axis 2))
(inv-rot (transpose rot)))

(letrec

((in-domain?
(lambda (R)

;; First, check that it's a matrix:
(and (matrix? R)

;; Next, check that it's orthogonal:
(let ((diff (matrix:- (matrix:* R (transpose R)) id)))
(almost-equal? (matrix:max diff) 0))

;; And then check that it works with the S-chart:

302

(chart:member? (apply-linear-transformation R zv) S-chart)

;; Finally, check that it really checks out completely:
(in-range? (coord-map R)))))

(in-range?
(lambda (x)

(and (3-vector? x)
(chart:in-range? (vector-head x 1) C-chart)
(chart:in-range? (vector-tail x 1) S-chart))))

(coord-map
(let ((i (vector:basis 3 i-axis 1))

(j (vector:basis 3 j-axis 1))
(k (vector:basis 3 k-axis 1)))

(lambda (R)
(let* ((v (apply-linear-transformation R zv))

(coords (chart:point->coords v S-chart))
(S (generate-rotation coords ri i-axis j-axis k-axis))
(T (matrix:* rot (transpose S) R))
(w (apply-linear-transformation T xv))
(psi (chart:point->coords (vector-head w 2) C-chart)))

(vector-append psi coords)))))

(inverse-map
(lambda (x)

(let ((psi (circle->rotation
(chart:coords->point (vector-head x 1) C-chart)))

(S (generate-rotation (vector-tail x 1) ri
i-axis j-axis k-axis)))

(matrix:* S inv-rot psi)))))

(make-simple-chart 3 in-domain? in-range? coord-map inverse-map))))

(define (circle->rotation v)
(let ((mat (make-matrix 3 3)))

(matrix-set! mat 2 2 1)
(let ((cos (vector-ref v 0))

(sin (vector-ref v 1)))
(matrix-set! mat 0 0 cos)
(matrix-set! mat 1 1 cos)
(matrix-set! mat 0 1 (- sin))
(matrix-set! mat 1 0 sin))

mat))

(define (generate-rotation coords angle x-axis y-axis z-axis)

;; Generate a rotation matrix that takes the z-axis to the coordinates
;; specified, minus an extra rotation of ANGLE about the z-axis.

(matrix:*
(make-rotation-matrix 3 x-axis y-axis (+ (vector-ref coords 1) angle))
(make-rotation-matrix 3 z-axis x-axis (vector-ref coords 0))))

(define (generate-axis-rotation axis-1 axis-2)

;; Generate an arbitrary (but deterministic) rotation that takes AXIS-I to
AXIS-2:

303

(if (= axis-1 axis-2)
(make-identity-matrix 3)
(let ((i (vector:basis 3 axis-1 1))

(j (vector:basis 3 axis-2 i))
(R (make-rotation-matrix 3 axis-1 axis-2 (/ pi 2))))

(if (almost-zero? (vector:distance
(apply-linear-transformation R i) j))

R
(transpose R)))))

;;; We need the unit closed n-ball for testing the PDE solver.

(define (make-ball n . argl)

It might be easier to do this in terms of the n-sphere.
(n = 1) case would have to be treated separately, then,
the boundary is a O-dimensional manifold.

The unit interval
since in that case

(let ((make-sphere make-sphere))

; Really, no matter how the sphere is made, so long
; atlas, this will work. But the user might have a
; generating the mesh for solving PDEs.

as it has a finite
preference, e.g. when

(if (and (not (null? argl))
(procedure? (car argl)))

(set! make-sphere (car argl)))

(cond ((= n 1)
(error "Sorry! The unit interval hasn't been implemented yet!"))

((>= n 2)
(let ((boundary (make-spherical-sphere (- n 1))))
(let* ((n-vector? (make-euclidean-test n))

(in? (lambda (p)
(and (n-vector? p)

(< (vector:magnitude p) 2/3))))
(center-chart (make-simple-chart

n in? in? identity identity)))

;; Define a chart that covers a neighborhood of the center, then
;; define the rest as a deformation retract onto the boundary.

(make-spherical-range center-chart (make-vector n 0) 2/3)

(let loop ((B-charts (list center-chart))

;; The sphere should have a finite atlas.

(S-charts (manifold:get-finite-atlas boundary)))

(if (null? S-charts)

(charts->manifold B-charts)

(let ((S-chart (car S-charts)))
(let ((S-coord-map (chart:get-coord-map S-chart))

(S-inverse (chart:get-inverse-map S-chart))

304

(in-S-domain? (chart:get-membership-test S-chart))
(in-S-range? (chart:get-range-test S-chart)))

;; Construct a chart on the ball out of a chart on the
;; sphere:

(let ((coord-map
(lambda (p)

(let* ((len (vector:magnitude p))
(x (vector:add-coord

(S-coord-map (vector:* (/ len) p))
0)))

(vector-set! x 0 len)
X)))

(inverse-map
(lambda (x)

(vector:* (vector-ref x 0)
(S-inverse (vector-tail x 1)))))

(in-domain?
(lambda (p)

(and (n-vector? p)
(let ((len (vector:magnitude p)))

(and (< 1/3 len)
(<= len 1)
(in-S-domain?
(vector:* (/ len) p)))))))

(in-range?
(lambda (x)

(and (n-vector? x)
(let ((len (vector-ref x 0)))
(and (< 1/3 len) (<= len 1)))

(in-S-range? (vector-tail x 1))))))

(let ((B-chart (make-simple-chart
n in-domain? in-range?
coord-map inverse-map)))

;; This thing has a boundary:

(add-boundary-to-chart B-chart 0 1)

;; Check the range type; this is useful for
;; meshing. Note that we only handle n-cells
;; for now.

(if (chart:cell-range? S-chart)
(let ((int (cell-range:get-interval-list

S-chart)))
(make-cell-range
B-chart (cons (make-interval 1/3 1) int))))

;; Keep going:

(loop (cons B-chart B-charts)
(cdr S-charts)))))))))))

305

(else (error "Error: Invalid argument. -- MAKE-BALL")))))

C.1.64 stubs.scm

;;; Using Scmutils' differentiation facilities to replace the numerical
;;;differentiation stuff.

(declare (usual-integrations))

;;; Ugly kludge, but sort of works. For everything we care about, at any rate.

(define (diff f)
(let ((df (derivative f)))
(lambda (p)

(let ((J (df p)))
(if (number? J)

(set! J (vector (vector J)))

(if (not (vector? (vector-ref J 0)))
(set! J (vector->row-matrix J))))

(lambda (v)
(if (number? v)

(set! v (vector v)))

(apply-linear-transformation J v))))))

Scmutils can't handle this, though:

;(define (f x)
;(if (> x 0)

;(exp (- (/ (square x))))

;0))

;(((derivative f) x) 1)

;;; Need to replace some linear algebra stuff, too:

(define (list->matrix m n 1)
(let ((v (list->vector 1)))

(generate-matrix
mn

(lambda (i j)
(vector-ref v (+ (* i n) j))))))

(define vector:* vector:scalar*vector)
(define vector:dot vector:dot-product)
(define inner-product vector:dot)
(define apply-linear-transformation matrix:matrix*vector)

;;; Printing matrices:

(define matrix-row-count matrix:num-rows)
(define matrix-column-count matrix:num-cols)

(define (matrix-size M)

306

(list (matrix-row-count M) (matrix-column-count M)))

(define (print-matrix matrix)
(newline)
(let ((m (matrix-row-count matrix))

(n (matrix-column-count matrix)))
(do ((i 0 (+ i 1)))

((>= i m))
(display (matrix-ref matrix i 0))

(do ((j 1 (+ j 1)))
((>= j n))

(display #\tab)
(display (matrix-ref matrix i j)))

(newline))))

(define matrix-get-colunm matrix:nth-col)

;;; This can come in handy sometimes:

(define (make-matrix m n)

(generate-matrix m n (lambda (i j) 0)))

;;; As can this:

(define det matrix:determinant)

;;; And to solve linear equations:

(define (1u-solve eqs . whatever)
(let ((m (matrix-row-count eqs))

(n (matrix-column-count eqs)))
(if (= n (+ m 1))

(let ((v (make-vector m))
(A (make-matrix m m)))

(do ((i 0 (+ i 1)))
((>= i m))

(do ((j 0 (+ j 1)))
((>= j m))

(matrix-set! A i j (matrix-ref eqs i j)))
(vector-set! v i (matrix-ref eqs i m)))

(matrix:solve-linear-system A v))
(error "Input has incorrect dimensions. -- LU-SOLVE"))))

;;; And something else as well... (This is getting out of hand!)

(define (apply-affine-transformation A b v)
(vector:+ (matrix:matrix*vector A v) b))

C.1.65 tangent.scm

;;; This file defines tangent bundles as vector bundles (see vbundle.scm).

307

(declare (usual-integrations))

;;; Make some tangent vectors:

(define (make-tangent chart p v)
;; p is the (abstract) point to which v is tangent, and v is the *coordinate
;; representation* of the tangent vector in the coordinates provided by the
;; given chart.

(vector 'tangent chart p v))

(define (tangent? x)
(and (vector? x)

(> (vector-length x) 0)
(eq? 'tangent (vector-ref x 0))))

(define (tangent:get-chart v)
(vector-ref v 1))

(define (tangent:get-anchor v)
(vector-ref v 2))

(define (tangent:get-coords v)
(vector-ref v 3))

(define (tangent:dimension v)
(vector-length (tangent:get-coords v)))

(define (make-binary-tangent-operation op)
(lambda (v w)

(let ((p (tangent:get-anchor v))
(q (tangent:get-anchor w)))

(if (equal? p q)
(let ((chart (tangent:get-chart v)))

(make-tangent chart

P
(op (tangent:get-coords v)

(chart:push-forward w chart))))
(error "Cannot add vectors tangent to different points.")))))

(define tangent+ (make-binary-tangent-operation vector:+))
(define tangent- (make-binary-tangent-operation vector:-))

(define (tangent* a v)
(make-tangent (tangent:get-chart v)

(tangent:get-anchor v)
(vector:* a (tangent:get-coords v))))

;;; We can measure the distortion by how close the composition of a coordinate
;;; map with its "inverse" comes to the identity...

(define (local-distortion chart tangent)
(let ((f (chart:make-transition-map chart chart))

(x (chart:point->coords (tangent:get-anchor tangent) chart))
(v (chart:push-forward tangent chart)))

(vector:distance v (((diff f) x) v))))

308

(define distorted?
(let ((close-enuf? (make-comparator le-5)))

(lambda (chart v)
(not (close-enuf? (local-distortion chart v) 0)))))

;; Push a tangent vector along a chart:

(define (chart:push-forward tv chart)
(let ((other (tangent:get-chart tv))

(v (tangent:get-coords tv)))
(if (eq? chart other)

v

(push-forward-in-coords
(chart:make-transition-map other chart)
(chart:point->coords (tangent:get-anchor tv) other)
v))))

(define (push-forward-in-coords f x v)
(((diff f) x) v))

;;; Tangent charts:

(define (make-tangent-chart chart)
(let ((new-chart (chart:get-extra chart 'tangent-chart)))

(if new-chart
(force new-chart)
(make-new-tangent-chart chart))))

(define (make-new-tangent-chart chart)
(let* ((dim (chart:dimension chart))

(2*dim (* 2 dim))

(in-M-domain? (chart:get-membership-test chart))
(in-M-range? (chart:get-range-test chart))

(M-map (chart:get-coord-map chart))
(M-inverse (chart:get-inverse-map chart))

(dim-vector? (make-euclidean-test dim))
(2*dim-vector? (make-euclidean-test 2*dim)))

(letrec
((in-domain?

(lambda (v)
(and (in-M-domain? (tangent:get-anchor v))

(dim-vector? (tangent:get-coords v)))))

(in-range?
(lambda (v)

(and (2*dim-vector? v)
(in-M-range? (vector-head v dim)))))

(coord-map
(lambda (v)

(vector-append (M-map (tangent:get-anchor v))
(chart:push-forward v chart))))

309

(inverse-map
(lambda (x)

(make-tangent chart
(M-inverse (vector-head x dim))
(vector-end x dim))))

(transition
(lambda (Tother)

(let* ((other (chart:get-base-chart Tother))
(f (chart:make-transition-map chart other)))

(lambda (x)
(let ((anchor (vector-head x dim))

(tangent (vector-end x dim)))
(vector-append (f anchor)

(push-forward-in-coords
f anchor tangent))))))))

(let ((new-chart (make-chart 2*dim in-domain? in-range?
coord-map inverse-map transition)))

(chart:install-extra new-chart 'base-chart (delay chart))
(chart:install-extra chart 'tangent-chart (delay new-chart))
new-chart))))

(define (chart:get-base-chart chart)
(let ((result (chart:get-extra chart 'base-chart)))
(if result

(force result)
#f)))

;; This is sometimes useful for procedures (such as vector fields) that need
;;; to explicitly manipulate charts on tangent bundles:

(define (make-tangent-chart-finder find-chart-in-M)
(let ((chart-finder

(lambda (x . aux)
(let ((chart (apply find-chart-in-M

(cons (tangent:get-anchor x) aux))))
(if chart

(make-tangent-chart chart)

#f)))))
chart-finder))

;;; Here's how we make a tangent bundle:

(define (make-tangent-bundle M)
(let ((TM (manifold:get-extra M 'tangent-bundle)))
(if TM

(force TM)
(make-new-tangent-bundle M))))

(define (make-new-tangent-bundle M)
(let ((dim-M (manifold:dimension M)))

(let ((E
(let ((charts (manifold:get-finite-atlas M)))
(if charts

(charts->manifold (map (lambda (chart)

310

(make-tangent-chart chart))
charts))

(let ((find-chart-in-M (manifold:get-general-chart-finder M))
(minimize-in-M (manifold:get-general-minimizer M)))

(letrec
((general-find-chart
(lambda (p . predicates)
(call-with-current-continuation
(lambda (return)

(find-chart-in-M
(tangent:get-anchor p)
(lambda (chart)

(let ((new-chart (make-tangent-chart chart)))
(let valid? ((predicates predicates))
(if (null? predicates)

(return new-chart)
(if ((car predicates) new-chart)

(valid? (cdr predicates))

(find-minimizing-chart
(lambda (p f <)

(cadr (minimize-in-M
(tangent:get-anchor p)
(lambda (chart)

(let ((new-chart
(make-tangent-chart chart)))

(list new-chart (f new-chart))))
(lambda (x y)
(< (cadr x) (cadr y)))))))

(local-atlas-finder
(lambda (p)

(map (lambda (chart) (make-tangent-chart chart))
(manifold:get-local-atlas
M (tangent:get-anchor p))))))

(make-manifold (* 2 dim-M)
general-find-chart
find-minimizing-chart
local-atlas-finder))))))

(proj tangent:get-anchor)

(fiber
(lambda (p)
(make-fiber tangent+ tangent- tangent*

(lambda (v)
(equal? p (tangent:get-anchor v)))))))

(let ((TM (make-vector-bundle M E proj fiber)))
(manifold:install-extra M 'tangent-bundle (delay TM))
TM))))

311

C.1.66 vbundle.scm

;;; Definitely need cotangent bundles!

;;; OLD COMMENTS THAT ARE STILL RELEVANT:

;;; We Shouldn't be too particular about vector representations, and should
;;; leave several different options.

;;; The differential operator representation is a good one, though, since via
;;; compositions we can generate most other differential operators of interest.

;; OLD COMMENTS THAT APPEAR TO BE IRRELEVANT:

;;; Some of the issues involved in making tangent bundles, etc.:

;; Something that looks like vector bundles will allow us to implement vector
;;; fields and differential forms. Maybe differential operators, too.

;; Should we make this more like a manifold?

;;; Maybe the right thing is to make local trivializations a special kind of
;; chart (just as product charts are). We need standard ways to attach and
;; access optional structures on charts (and manifolds), such as product

;;; structures, metric structures, symplectic structures, etc.

Is the vector space structure necessary on the coordinate-free level?

;; And when do we ever need to treat the bundle as a manifold?

;;; Make tangent and cotangent bundles? Metric tensors, symplectic forms,
;;; differential operators are all related to these bundles...

;;; GJS used nscmutils to directly differentiate the functions. Maybe we
;;; should consider using that at some point, too. Tangent vectors appear to
;;;be represented by first-order differential operators on functions.

;;;BUT, we don't know that charts always map to an imbedding of the manifold

;;; in a euclidean space! What if it uses some other representation on the
;;; other end? We can numerically differentiate transition maps, but in
;;; general not charts. So use some other representation of tangent vectors
;; and vector fields?

;;; Chart and vector may be the best represenatation; that appears to be what

;;; GJS uses, too.

(declare (usual-integrations))
(load "tangent")
(load "imbedding")
(load "cotangent")

;;; Abstract vector bundles:

(define (make-vector-bundle M E proj fiber)

PROJ takes a pair (x,v) and returns x, FIBER yields the operations for the
;; vector space structure on the fiber above x.

312

(let ((dim (- (manifold:dimension E) (manifold:dimension M))))
(manifold:install-extra E 'vector-bundle (vector (delay M)

proj
fiber
dim)))

E)

(define (vbundle:get-manifold E)
(let ((structs (manifold:get-extra E
(if structs

(force (vector-ref structs 0))
#f)))

(define (vbundle:get-fiber-map E)
(let ((structs (manifold:get-extra E
(if structs

(vector-ref structs 2)
#f)))

'vector-bundle)))

'vector-bundle)))

(define (vbundle:get-projection E)
(let ((structs (manifold:get-extra E 'vector-bundle)))
(if structs

(vector-ref structs 1)
#f)))

(define (vbundle:dimension E)
(let ((structs (manifold:get-extra E 'vector-bundle)))
(if structs

(vector-ref structs 3)
"f)))

;; Abstract vector spaces (fibers
;;; manifold:

of the bundle) above each point of the

(define (make-fiber + - * member?)
(vector + - * member?))

(define (fiber:get+ fiber)
(vector-ref fiber 0))

(define (fiber:get- fiber)
(vector-ref fiber 1))

(define (fiber:get* fiber)
(vector-ref fiber 2))

(define (fiber:get-membership-test fiber)
(vector-ref fiber 3))

(define (fiber:+ fiber v w)
((fiber:get+ fiber) v w))

(define (fiber:- fiber v w)
((fiber:get- fiber) v w))

(define (fiber:* fiber a v)
((fiber:get* fiber) a v))

313

(define (fiber:member? v fiber)
((fiber:get-membership-test fiber) v))

C.2 Finite elements

The following programs implement a finite element solver that can be used both as a stand-
alone program and as part of the coordinate-independent solver listed in the prevoius sec-
tion. It implements the Rayleigh-Ritz method, described in Appendix A. The interested
reader should begin with feem. scm to understand the top-level structure of the program,
and refer to load. scm for dependencies.

C.2.1 2d-domains.scm

;;;This file uses the Delaunay triangulation code to construct two-dimensional
;; domains of solution. It defines constructors for different types of

;;; domains of solution, and also defines ways of setting different kinds of
;;; boundary conditions.

(declare (usual-integrations))

A generic template for making domains. Note that this is limited to planar
regions. For higher dimensions, we need to handle higher-dimensional
simplices, not just faces and edges...

(define (domain-maker make-vertex-nodes
make-edge-nodes
make-interior-nodes
tesselate
make-element
make-boundary)

MAKE-VERTEX-NODES is given the arguments to MAKE-DOMAIN, and should return

a vector of (vertex) nodes.

MAKE-EDGE-NODES should return a list of edge nodes on the edge defined by
the two given nodes.

MAKE-INTERIOR-NODES should make interior nodes in the element defined by a

list of given nodes.

TESSELATE takes a vector of nodes and returns a pair containing a list of

edges and a list of faces, in that order. (Edges are defined by pairs of

nodes, while faces are defined by triplets of nodes. Just like abstract
simplicial complexes...)

MAKE-BOUNDARY takes a vector of nodes and sets the appropriate ones to be

boundary nodes.

See fem.scm for the definition of MAKE-ELEMENT.

(define (make-domain . args)

;; Make vertex nodes:

314

(write-line '(making nodes...))

(let* ((vertex-nodes (apply make-vertex-nodes args))
(vertex-count (vector-length vertex-nodes)))

;; Tesselate the vertex nodes:

(write-line '(tesselating nodes...))

(let* ((complex (tesselate vertex-nodes))
(edges (car complex))
(faces (cadr complex)))

;; Record some debugging information:

(set! *debugging-info* edges)

;; Create edge nodes:

(write-line '(creating edge nodes...))

(let ((edge-nodes (make-vector (choose (+ vertex-count 1) 2) '()))

(edge-index symmetric->vector-index))

(do ((i 0 (+ i 1)))
((>= i vertex-count))

(node:set-id! (vector-ref vertex-nodes i) i))

(for-each

(lambda (pair)
(vector-set! edge-nodes

(apply edge-index (map node:get-id pair))
(apply make-edge-nodes pair)))

edges)

;; Create interior nodes:

(write-line '(creating interior nodes and making elements...))

(let loop ((faces faces) (interior-nodes '()))
(if (not (null? faces))

(let* ((face (car faces))
(elist (append-map

(lambda (pair)
(vector-ref edge-nodes

(apply edge-index pair)))
(pairs (map node:get-id face))))

(ilist (apply make-interior-nodes (append face elist))))

(make-element face (append elist ilist))
(loop (cdr faces) (append ilist interior-nodes)))

(begin

;; We now need to combine the three lists of nodes into one
;; big list, and to figure out the boundary:

315

(write-line '(cleaning up...))

;; First, count the number of edge nodes and create a vector
;; to store the node:

(let ((edge-count (vector-length edge-nodes)))
(let loop ((count 0) (i 0))
(if (< i edge-count)

(loop (+ count (length (vector-ref edge-nodes i)))
(+ i I))

(let* ((icount (length interior-nodes))
(nodes (make-vector

(+ vertex-count count icount))))

;; Report data:

(write-line '(,count edge nodes))
(write-line '(,icount interior nodes))
(write-line '(,vertex-count vertices))

;; Copy the vertex nodes:

(write-line '(copying vertices...))

(do ((i 0 (+ i 1)))
((>= i vertex-count))

(vector-set! nodes i
(vector-ref vertex-nodes i)))

;; Copy the edge nodes:

(write-line '(copying edge nodes...))

(let loop ((i 0) (j vertex-count))
(if (< i edge-count)

(loop (+ i 1)
(let loop ((1 (vector-ref edge-nodes

i))
(j j))

(if (null? 1)

j
(begin

(vector-set! nodes j (car 1))
(loop (cdr 1) (+ j 1))))))))

;; Copy the interior nodes:

(write-line '(copying interior nodes...))

(let loop ((i (+ vertex-count count))
(1 interior-nodes))

(if (null? 1)
(begin

;; Make boundary nodes:

(write-line '(setting boundary...))
(make-boundary nodes)

316

;; Sort and return nodes:

(write-line '(sorting nodes...))
(sort! nodes lexicographic<))

(begin
(vector-set! nodes i (car 1))

(loop (+ i 1) (cdr 1))))))))))))))))

make-domain)

;;; Some useful routines:

(define (make-no-edge-nodes vO v1) '())

(define (make-no-interior-nodes . args) '())

(define (predicate->make-boundary boundary?)
(lambda (nodes)

(let ((n (vector-length nodes)))
(do ((i 0 (+ i 1)))

((>= i n))
(let ((node (vector-ref nodes i)))

(node:set-boundary! node (boundary? node)))))))

(define (make-midpoint-node vO vi)
(list (make-node (/ (+ (node:get-x vO) (node:get-x vi)) 2.)

(/ (+ (node:get-y vO) (node:get-y vi)) 2.))))

(define (do-nothing-to-nodes nodes)
'done)

;;; Various procedures to help build domains:

;;; Circular domains:

(define (make-circular-domain-vertices angular-count radial-count)
(let* ((rcount+l (+ radial-count 1))

(count (+ (* rcount+1 angular-count) i))
(nodes (make-vector count))
(dt (/ (* 2 3.141592653589793) angular-count))
(dr (/ .5 rcount+i)))

(vector-set! nodes 0 (make-node .5 .5))

(let next-ray ((i 0) (count i))
(if (< i angular-count)

(let ((t (* i dt)))
(let next-node ((j 1) (count count))

(if (<= j rcount+l)
(let ((r (* j dr)))

(vector-set! nodes count
(make-node (+ .5 (* r (cos t)))

(+ .5 (* r (sin t)))))
(next-node (+ j 1) (+ count i)))

(next-ray (+ i 1) count))))

317

nodes))))

(define (circular-boundary? node)

(let ((x (node:get-x node))

(y (node:get-y node)))

(almost-zero? (- .5 (sqrt (+ (square (- x .5)) (square (- y .5))))))))

;;; Square domains:

;; We need to play a trick to keep track of the number of nodes in the square

;;; between calls to MAKE-VERTEX-NODES and TESSELATE in MAKE-ELEMENT; we should

;;;find some way to restructure MAKE-ELEMENT so that this is not necessary.

(define square-domain-constructor

(let ((width 0)
(height 0)

(h 0.)
(k 0.))

(list
(lambda (m n)

(set! width (+ m 2))
(set! height (+ n 2))
(let ((nodes (make-vector

(set! h (exact->inexact
(set! k (exact->inexact
(write-line '(h/k = ,(/

(* width height))))

(/ (+ m 1))))
(/ (+ n 1))))
h k)))

(do ((i 0 (+ i 1)))

((>= i width) nodes)

(do ((j 0 (+ j 1)))
((>= j height))

(vector-set! nodes (+ (* i height) j)

(make-node (* i h) (* j k)))))))

(lambda (nodes)

;; Triangulate:

(let ((height-i (- height i))

(width-i (- width i))

(get-node (lambda (i) (vector-ref

(let column ((i 0) (results '(()())

(if (< i width)

(column

(+ i i)
(let row ((j 0) (edges (car re

(if (< j height)

(let ((me (+ (* i height

(north (+ (+ i hei

(east (+ (* i heig

(ne (+ (* i height

(if (= j height-i)
(list edges faces)

(if (= i width-i)

(row (+ j 1)

(cons (map

nodes i))))

suits)) (faces (cadr results)))

) j))
ght) j i))

ht) j height))

) j height i)))

get-node (list me north))

318

edges)
faces)

(let ((fl (list (vector-ref nodes me)
(vector-ref nodes north)
(vector-ref nodes ne)))

(f2 (list (vector-ref nodes me)
(vector-ref nodes ne)
(vector-ref nodes east))))

(row (+ j 1)
(append (map

(lambda (1)
(map get-node 1))

(list (list me north)
(list north ne)
(list me ne)
(list ne east)
(list me east)))

edges)
(cons fi (cons

results))))

(lambda () (list h k)))))

(define make-square-domain-vertices
(car square-domain-constructor))

(define square-domain-triangulation
(cadr square-domain-constructor))

(define square-domain-element-size
(caddr square-domain-constructor))

(define (dirichlet-boundary? node)
(let ((x (node:get-x node))

(y (node:get-y node)))
(memq #t (map almost-zero? (list

f2 faces))))))))))

x y (- 1 x) (- 1 y))))))

(define (cauchy-boundary? node)
(let ((x (node:get-x node))

(t (node:get-y node))
(threshold (* .75 (cadr (square-domain-element-size)))))

(or (memq #t (map almost-zero? (list x (- 1 x))))
(< t threshold))))

;;; Square domain with right triangle attached:

(define (hat-boundary? node)
(let* ((x (node:get-x node))

(t (node:get-y node))
(sizes (square-domain-element-size))
(dx (car sizes))
(dt (cadr sizes))
(m (/ dt dx))
(b (- 1 m)))

(or (< t (* .75 dt))

(> x (- 1 (* .25 dx)))
(> t (- (+ (* x m) b) (* .25 dt)))

319

(< x (* .25 dx)))))

;;; Random domains:

(define (make-random-square-domain-vertices n)
(let* ((border (inexact->exact (floor (sqrt n))))

(size (+ n (* 4 border) 4))
(nodes (make-vector size)))

(write-line '(border: ,(+ (* 4 border) 4) total: ,size))

;; Create the border (top and bottom):

(let ((h (/ 1. (+ border 1))))
(let ((border+2 (+ border 2)))
(do ((i 0 (+ i 1)))

((>= i border+2))
(let ((new-node (make-node (* i h) 0.)))
(vector-set! nodes (* 2 i) new-node))

(let ((new-node (make-node (* i h) 1.)))
(vector-set! nodes (+ (* 2 i) 1) new-node))))

;; Left and right:

(let ((2*border+2 (+ (* 2 border) 2)))
(do ((j 1 (+ j 1)))

((> j border))
(let ((new-node (make-node 0. (* j h))))
(vector-set! nodes (+ (* 2 j) 2*border+2) new-node))

(let ((new-node (make-node 1. (* j h))))
(vector-set! nodes (+ (* 2 j) 2*border+2 1) new-node))))

;; Make internal nodes:

(do ((i (+ (* 4 border) 4) (+ i 1)))
((>= i size) nodes)

(let* ((x (random 1.))
(y (random 1.))
(new-node (make-node x y)))

(vector-set! nodes i new-node))))))

(define (make-random-domain-vertices n)
(let ((nodes (make-vector n)))

(do ((i 0 (+ i 1)))
((>= i n) nodes)

(let* ((x (random 1.))
(y (random 1.))
(new-node (make-node x y #f)))

(vector-set! nodes i new-node)))))

(define (random-domain-triangulation nodes)

;; Triangulate:

(let ((n (vector-length nodes)))
(do ((i 0 (+ i 1)))

((>= i n))
(node:set-boundary! (vector-ref nodes i) #f)))

320

(let ((chull (convex-hull nodes)))
(write-line '(the convex hull has ,(length chull) nodes...))
(for-each
(lambda (e) (node:set-boundary! (org e) #t))
chull))

(list (map (lambda (e)
(list (org e) (dest e)))

(list-edges))
(map (lambda (f)

(map org f))
(list-faces))))

(define (make-not-so-random-domain-vertices n max-r)
(let ((nodes (make-vector n)))

(do ((i 0 (+ i 1)))
((>= i n) nodes)

(let try ((x (random 1.)) (y (random 1.)))
(let ((new-node (make-node x y #f)))

(let loop ((j 0))
(if (< j i)

(if (< (nodal-distance new-node (vector-ref nodes j)) max-r)
(try (random 1.) (random 1.))

(loop (+ j 1)))
(vector-set! nodes i new-node))))))))

;;; Making triangular domains:

(define triangular-domain-constructor
(let ((dx 0.)

(dy 0.))
(list

(lambda (n)
;; N is the number of nodes along the base.
(let ((nodes (make-vector (/ (* n (+ n 1)) 2))))

(set! dx (/ 1. (- n 1)))
(set! dy dx)

(write-line '(making ,(* n (- (* 2 n) 1)) nodes...))

(let ((count 0))
(do ((i 0 (+ i 1))

(y 0. (+ y dy))
(row (- n 1) (- row I)))

((>= i n) nodes)
(do ((j 0 (+ j 1))

(x (/ y 2) (+ x dx)))
((> j row))

(vector-set! nodes count (make-node x y))
(set! count (+ count 1)))))))

(lambda () (list dx dy)))))

(define make-triangular-domain-vertices (car triangular-domain-constructor))
(define triangular-domain-element-size (cadr triangular-domain-constructor))

321

(define (triangular-boundary? node)

(let ((dt (cadr (triangular-domain-element-size)))

(x (node:get-x node))

(t (node:get-y node)))

(or (memq #t (map almost-zero? (list (- t (* 2 x)) (- t (- 2 (* 2 x))))))

(< t (* .75 dt)))))

;;; Construct a true hat domain:

(define *hat-vertices-data* '())

(define (make-hat-vertices t-count x-count ratio)

Build a "hat domain," where the rectangular part is the unit square and

contains X-COUNT by T-COUNT nodes. RATIO is the slope of the leg of the

hat.

(let* ((node-count (+ (* t-count x-count) (/ (* x-count (- x-count 1)) 2)))

(nodes (make-vector node-count))

(dx (/ 1. (- x-count 1)))

(dt (/ 1. (- t-count 1))))

(write-line '(,node-count nodes))

(set! *hat-vertices-data* (list dx dt ratio))

;; The square part:

(do ((i 0 (+ i 1)))

((>= i x-count))

(do ((j 0 (+ j 1)))

((>= j t-count))

(let ((x (* i dx))

(t (* j dt)))

(vector-set! nodes (+ (* i t-count) j) (make-node x t)))))

;; The triangle:

(let ((count (* t-count x-count)))

(set! dt (* ratio dx))

(do ((j 1 (+ j 1)))

((>= j x-count))
(let* ((t (+ 1 (* j dt)))

(xO (/ (- t 1) ratio 2)))

(do ((i 0 (+ i 1)))

((>= i (- x-count j)))

(let ((x (+ xO (* i dx))))

(vector-set! nodes count (make-node x t))

(set! count (+ count 1)))))))

nodes))

(define (true-hat-boundary? node)

(let ((dx (car *hat-vertices-data*))

(dt (cadr *hat-vertices-data*))

(ratio (caddr *hat-vertices-data*)))

(let ((x (node:get-x node))

322

(t (node:get-y node))
(dx/4 (/ dx 4))
(3/4*dt (* 3/4 dt))
(dx/8 (/ dx 8)))

(or (and (<= t (+ I dx/4))
(or (<= t 3/4*dt)

(<= x dx/4)
(>= x (- 1 dx/4))))

(and (>= t 1)
(or (and (<= x (+ .5 dx/8))

(<= x (+ (/ (- t 1) ratio 2) dx/8)))
(and (>= x (- .5 dx/8))

(>= x (- (- 1 (/ (- t 1) ratio 2)) dx/8)))))))))

C.2.2 2d-examples.scm

;;; This file defines some examples of PDEs over planar regions, particularly
;;; the unit square. This file goes with 2d-domains.scm and 2d-basis.scm.

;; Some methods for constructing elements:

;;; For Laplace's equation:

(define make-laplacian-element
(element-maker laplacian

make-triangular-integrator
make-polynomial-basis-function))

;;; For the linear wave equation:

(define (make-wave-element-with-coeff c)
(element-maker (make-wave-operator c)

make-triangular-integrator
make-polynomial-basis-function))

(define *wave-constant* 1.00001)

(define make-wave-element (make-wave-element-with-coeff *wave-constant*))

;;; For characteristic bending:

(define make-bent-element
(element-maker (make-bent-operator *wave-constant* .5 1.)

make-triangular-integrator
make-polynomial-basis-function))

;;; For testing real functions:

(define make-real-laplacian-element
(element-maker real-laplacian

(trapezoidal-integrator-maker 16)
make-real-basis-function))

323

;;; Constructors for various test cases:

;;; Estimate the solution in the center of a disk, using N nodes on the
;;;boundary.

(define make-circular-domain
(domain-maker make-circular-domain-vertices

make-no-edge-nodes
make-no-interior-nodes
delaunay-triangulation
make-laplacian-element
(predicate->make-boundary circular-boundary?)))

;;;Make a square consisting of MxN interior nodes. M is the number of nodes
;;; along the x-axis, N is the number of nodes along the y-axis.

(define make-square-domain
(domain-maker make-square-domain-vertices

make-no-edge-nodes
make-no-interior-nodes
square-domain-triangulation
make-laplacian-element
(predicate->make-boundary dirichlet-boundary?)))

(define make-quadratic-domain
(domain-maker make-square-domain-vertices

make-midpoint-node
make-no-interior-nodes
square-domain-triangulation
make-laplacian-element
(predicate->make-boundary dirichlet-boundary?)))

(define make-wave-domain
(domain-maker make-square-domain-vertices

make-midpoint-node
make-no-interior-nodes
square-domain-triangulation
make-wave-element
(predicate->make-boundary cauchy-boundary?)))

(define make-dirichlet-wave-domain
(domain-maker make-square-domain-vertices

make-no-edge-nodes
make-no-interior-nodes
square-domain-triangulation
make-wave-element
(predicate->make-boundary dirichlet-boundary?)))

(define make-bent-domain
(domain-maker make-square-domain-vertices

make-midpoint-node
make-no-interior-nodes
square-domain-triangulation
make-bent-element
(predicate->make-boundary cauchy-boundary?)))

(define make-hat-domain

(domain-maker make-square-domain-vertices

324

make-midpoint-node
make-no-interior-nodes
square-domain-triangulation
(make-wave-element-with-coeff 4.)
(predicate->make-boundary hat-boundary?)))

(define make-true-hat-domain
(domain-maker make-hat-vertices

make-midpoint-node
make-no-interior-nodes
delaunay-triangulation
make-wave-element
(predicate->make-boundary true-hat-boundary?)))

;;; For testing real functions:

(define make-real-square-domain
(domain-maker make-square-domain-vertices

make-no-edge-nodes
make-no-interior-nodes
square-domain-triangulation
make-real-laplacian-element
(predicate->make-boundary dirichlet-boundary?)))

;;; A triangular domain:

(define make-triangular-domain
(domain-maker make-triangular-domain-vertices

make-midpoint-node
make-no-interior-nodes
delaunay-triangulation
(make-wave-element-with-coeff 1.)
(predicate->make-boundary triangular-boundary?)))

;; Now let's try a randomized distribution, using the Delaunay triangulation:

(define make-random-square-domain
(domain-maker make-random-square-domain-vertices

make-no-edge-nodes
make-no-interior-nodes
delaunay-triangulation
make-laplacian-element
(predicate->make-boundary dirichlet-boundary?)))

;;; The boundary, instead of the unit square, is the convex hull:

(define make-random-domain
(domain-maker make-random-domain-vertices

make-no-edge-nodes
make-no-interior-nodes
random-domain-triangulation
make-laplacian-element
do-nothing-to-nodes))

325

;;; Same thing, but the nodes shouldn't get too close:

(define make-not-so-random-domain
(domain-maker make-not-so-random-domain-vertices

make-no-edge-nodes
make-no-interior-nodes
random-domain-triangulation
make-laplacian-element
do-nothing-to-nodes))

;;; Some useful boundary/initial conditions:

(define potential
(let* ((pi 3.141592653589793)

(sinh (lambda (x) (/ (- (exp x) (exp (- x))) 2)))
(A (/ (sinh pi))))

(lambda (node)
(* A (sinh (* pi (node:get-y node))) (sin (* pi (node:get-x node)))))))

(define (wave node)
(let ((x (node:get-x node))

(t (node:get-y node)))
(cos (* 2 pi (- x (* t *wave-constant*))))))

(define (standing-wave node)
(* (sin (* 2 pi (node:get-x node)))

(sin (* 2 pi *wave-constant* (node:get-y node)))))

;;;A harmonic function for testing the programs:

(define (test-function node)
(let ((x (node:get-x node))

(y (node:get-y node)))
(* 4 (- (square (- x .5)) (square (- y .5))))))

C.2.3 2d-operators.scm

;;; Some examples:

(declare (usual-integrations))

;;; The two-dimensional Laplcian:

(define (laplacian nodes)
(make-operator
poly-gradient
poly-gradient
(lambda (v w) (basis:scalar* -1 (basis:dot v w)))))

The 1+1-dimensional d'Alembertian:

(define (make-wave-operator c)
(lambda (nodes)

326

(make-operator
(lambda (f)

(vector (d/dt f) (basis:* (- c) (d/dx f))))
(lambda (f)
(vector (d/dt f) (basis:* c (d/dx f))))

(lambda (v w)
(basis:* -1 (basis:dot v w))))))

;; Characteristic bending: For t < ti, the operator agrees with the wave
;;; operator. For t > t2, the equation becomes elliptic. The characteristics
;;; are "bent" between tl and t2.

(define (make-bent-operator c ti t2)
(let ((phi (make-bending-coeff tl t2)))

(lambda (nodes)
(let ((phi (function->poly phi nodes)))

(make-operator
(lambda (f)

(vector (basis:* phi (d/dt f)) (basis:* (- (square c)) (d/dx f))))
(lambda (f)
(vector (d/dt f) (d/dx f)))

(lambda (v w)
(basis:* -i (basis:dot v w))))))))

;;; Let this be a polynomial for now:

(define (cut-off t)

;; This one lets the wave operator transition nicely into a "parabolic"
operator. (But without a time derivative!)

(cond ((<= t 0) 1.)
((>= t 1) 0.)
(else (+ (* 2 (cube t)) (* -3 (square t)) 1))))

(define (cut-off-1 t)

;; This one lets the wave operator transition into an elliptic operator.

(if (> t 0)
(- 1 (cube t))
1.))

(define (make-bending-coeff ti t2)
(let ((delta (- t2 tl)))
(lambda (node)

(let ((t (node:get-y node)))
(cut-off (/ (- t ti) delta))))))

;;; The Laplcian operator for "real" functions:

(define (real-laplacian nodes)
(make-operator
real-gradient
real-gradient
(lambda (v w) (basis:scalar* -1 (basis:dot v w)))))

327

C.2.4 2d-poly-basis.scm

;;; This file defines basis function constructors and integrator codes. What
;;; it provides is a way to handle functions over elements. Note that the code
;;; in fem.scm operates independent of the representation we use here.

;;; There is an abuse of terms here. By "basis function" we mean basis
;;;functions and their linear combinations. Thus, functions over elements
;;; represented by sums of basis functions are also considered basis functions.

;;; This code is specific to polynomial basis functions of two variables. The
;;; polynomial code we have still needs lots of work, so we won't use it here.
;; Most of the procedures operate directly on vector representations of basis

functions.

(declare (usual-integrations))

;;; Basic constructor:

(define (vector->poly v)
(package-basis-function-methods
'2d-poly-basis-function
v

(poly->function v)
(make-2d-poly-adder v)
(make-2d-poly-subtractor v)
(make-2d-poly-multiplier v)
(make-2d-poly-scalar-multiplier v)))

(define (make-polynomial-basis-function nodes center)
(let* ((n (length nodes))

(vals (make-vector n))
(points (make-vector n)))

(let loop ((nodes nodes) (i 0))
(if (null? nodes)

(vector->poly (poly:point-value->coeff vals points))
(let ((node (car nodes)))
(if (= i center)

(vector-set! vals i 1)
(vector-set! vals i 0))

(vector-set! points i (vector (node:get-x node) (node:get-y node)))

(loop (cdr nodes) (+ i 1)))))))

(define (make-2d-poly-adder v)
(lambda (w)

(vector->poly (poly:+ v (basis:get-rep w)))))

(define (make-2d-poly-subtractor v)
(lambda (w)

(vector->poly (poly:- v (basis:get-rep w)))))

(define (make-2d-poly-multiplier v)
(lambda (w)

(vector->poly (poly:* v (basis:get-rep w)))))

(define (make-2d-poly-scalar-multiplier v)

328

(lambda (a)
(vector->poly (poly:scalar* a v))))

;;; A slightly different kind of constructor:

(define (function->poly f nodes)
(let* ((n (length nodes))

(vals (make-vector n))
(points (make-vector n)))

(let loop ((i 0) (nodes nodes))
(if (null? nodes)

(vector->poly (poly:point-value->coeff vals points))
(let ((node (car nodes)))

(vector-set! points i (node:get-coords node))
(vector-set! vals i (f node))
(loop (+ i 1) (cdr nodes)))))))

;;; And its inverse:

(define (poly->function f)
(lambda (x)

(poly:evaluate f x)))

(define (poly:evaluate f x)
(vector-first (poly:coeff->point-value f (vector x))))

;;; Operations on basis functions:

(define (poly:+ v w)
(let ((m (vector-length v))

(n (vector-length w)))

(let ((m (max m n))
(n (min m n))
(v (if (>= m n) v w))
(w (if (< m n) v w)))

(let ((result (make-vector m)))
(do ((i 0 (+ i 1)))

((>= i n))
(vector-set! result i (+ (vector-ref v i) (vector-ref w i))))

(do ((i n (+ i i)))

((>= i m) result)
(vector-set! result i (vector-ref v i)))))))

(define (poly:scalar* a v)
(let* ((n (vector-length v))

(w (make-vector n)))
(do ((i 0 (+ i 1)))

((>= i n) w)
(vector-set! w i (* a (vector-ref v i))))))

(define (poly:* pl p2)
(let* ((nl (vector-length pi))

(n2 (vector-length p2))
(degree (+ (poly:degree pl) (poly:degree p2)))

329

(n (choose (+ degree 2) 2))

(p (make-vector n 0)))

(do ((i 0 (+ i 1)))

((>= i ni) p)

(let ((powers (zig-zag i))

(coeff (vector-ref pl i)))

(do ((j 0 (+ j 1)))
((>= j n2))

(let ((k (apply inverse-zig-zag (map + powers (zig-zag j)))))

(vector-set! p k (+ (vector-ref p k)

(* coeff (vector-ref p2 j))))))))))

(define (poly:- v w)

(poly:+ v (poly:scalar* -1 w)))

(define (poly-basis:partial k)

(if (not (or (= k 0) (= k 1)))
(error "Only (partial 0) and (partial 1) exist (for now)! -- PARTIAL")

(let ((select (if (= k 0) car cadr)))

(lambda (v)

(let* ((v (basis:get-rep v))

(n (vector-length v))

(w (make-vector n 0)))

(do ((i 0 (+ i I)))

((>= i n) (vector->poly w))

(let ((powers (zig-zag i)))

(if (> (select powers) 0)

(vector-set!

w (- i (apply + powers) k)

(* (select powers) (vector-ref v i)))))))))))

;;; Some useful definitions in two dimensions:

(define d/dx (poly-basis:partial 0))

(define d/dy (poly-basis:partial 1))

(define d/dt d/dy)

;;; Converting between point-value and coefficient representations; is there a

higher-dimensional analog of the FFT trick? Point-value representation is

;;; great for everything *except* differentiation...

(define (poly:coeff->point-value v sample-points)

(let* ((n (vector-length sample-points))

(w (make-vector n))

(m (vector-length v)))

(do ((i 0 (+ i 1)))
((>= i n) w)

(let* ((coords (vector-ref sample-points i))

(x (vector-ref coords 0))

(y (vector-ref coords 1)))

(let loop ((j 0) (sum 0.))
(if (< j m)

(let ((powers (zig-zag j)))

330

(loop (+ j 1) (+ sum (* (vector-ref v j)
(expt x (car powers))
(expt y (cadr powers))))))

(vector-set! w i sum)))))))

(define (poly:point-value->coeff w sample-points)
(let* ((n (vector-length sample-points))

(A (make-matrix n (+ n 1))))

(let next-row ((i 0))
(if (< i n)

(let* ((coords (vector-ref sample-points i))
(x (vector-ref coords 0))
(y (vector-ref coords 1)))

(let next-column ((j 0))
(if (< j n)

(let* ((powers (zig-zag j))
(p (car powers))
(q (cadr powers)))

(matrix-set! A i j (* (expt x p) (expt y q)))
(next-column (+ j 1)))

(begin
(matrix-set! A i n (vector-ref w i))
(next-row (+ i 1))))))

(lu-solve A 'no-copy)))))

(define (poly:slow-make-sample-points n)
(if (> n 0)

(let* ((delta (exact->inexact (/ n)))
(n (choose (+ n 2) 2))
(v (make-vector n)))

(do ((i 0 (+ i i)))
((>= i n) v)

(let ((powers (zig-zag i)))
(vector-set! v i (vector (* (car powers) delta)

(* (cadr powers) delta))))))
(vector (vector 0 0))))

(define poly:make-sample-points
(simple-memoize poly:slow-make-sample-points 10))

;;; Some useful operations on basis functions:

(define (poly:degree p)
(apply + (zig-zag (- (vector-length p) 1))))

(define (poly:coeff->expr v)
(let* ((v (basis:get-rep v))

(n (vector-length v)))
(let loop ((expr '()) (i (- n 1)))
(if (>= i 0)

(let ((powers (zig-zag i)))
(loop (cons '((x ,(car powers) y ,(cadr powers)) ,(vector-ref v i))

expr)
(- i i)))

expr))))

331

;;; The truly messy stuff: Integrals! This needs to run a lot faster. What

;;; about doing away with the coordinate transformations?

(define (make-triangular-integrator vertex-nodes)

We assume that there are three vertex nodes, and that the triangle they

form is the boundary of the element:

(if (not (= (length vertex-nodes) 3))

(error (string-append "Error: Elements must have three vertex nodes."
" -- MAKE-TRIANGULAR-INTEGRATOR")))

(let ((pl (car vertex-nodes))

(p2 (cadr vertex-nodes))

(p3 (caddr vertex-nodes)))

;; Find the absolute value of the Jacobian of the affine transformation

;; mapping the reference triangle {(0,0),(1,0),(O,1)} to this triangle.

(let* ((A (list->matrix

22
(list

(- (node:get-x p2) (node:get-x pl))

(- (node:get-x p3) (node:get-x pi))

(- (node:get-y p2) (node:get-y pl))

(- (node:get-y p3) (node:get-y p1)))))

(b (node:get-coords pl))

(jacobian (abs (det A))))

(define (integrate f . rest)

(let* ((f (apply basis:* (cons f rest)))

(degree (poly:degree f))

(reference (poly:make-sample-points degree))

(n (choose (+ degree 2) 2))

(real (make-vector n)))

(do ((i 0 (+ i 1)))

((>= i n))
(vector-set! real i

(apply-affine-transformation

A b (vector-ref reference i))))

(* jacobian

(inner-product

(poly:point-value->coeff

(poly:coeff->point-value (basis:get-rep f) real) reference)

(make-reference-integrals degree)))))

integrate)))

(define (slow-make-reference-integrals degree)

(let* ((n (choose (+ degree 2) 2))

(integrals (make-vector n)))

(do ((i 0 (+ i 1)))

((>= i n) integrals)

(vector-set! integrals i (apply reference-integral (zig-zag i))))))

(define make-reference-integrals

332

(simple-memoize slow-make-reference-integrals 10))

(define (reference-integral m n)
(let ((n+l (+ n i)))

(let loop ((i 0) (sum 0.) (-1^i 1))
(if (<= i n+1)

(loop (+ i 1)
(+ sum (* (choose n+1 i) (/ (exact->inexact (+ i m 1))) -1^i))
(* -1^i -1))

(/ sum n+l)))))

;;; Zig-zag across the two-dimensional square lattice:

(define (slow-zig-zag n)
(let loop ((n n) (p 0) (q 0))
(if (> n 0)

(if (zero? p)
(loop (- n 1) (+ q 1) 0)
(loop (- n 1) (- p 1) (+ q 1)))

(list p q))))

(define zig-zag (simple-memoize slow-zig-zag 20))

(define (inverse-zig-zag m n)
(if (and (zero? m) (zero? n))

0
(+ (choose (+ m n 1) 2) n)))

;;; We need to define the gradient to help define the laplacian:

(define (poly-gradient f)
(vector (d/dx f) (d/dy f)))

C.2.5 2d-real-basis.scm

;;; This file defines basis functions that are still polynomial, but are
;; represented by real Scheme procedures and can thus undergo general

;;; coordinate transformations in a nice way. This is not so important here
;;; (in fact, it is a slower and less accurate implementation), but is useful
;;; for extending FEM to manifolds.

(declare (usual-integrations))

;;; Constructor:

(define (proc->real f)
(package-basis-function-methods
'2d-real-basis-function
f
f
(make-real-adder f)
(make-real-subtractor f)
(make-real-multiplier f)
(make-real-scalar-multiplier f)))

333

(define make-real-basis-function
(compose proc->real basis-function->function make-polynomial-basis-function))

;;; Operations on basis functions:

(define (make-real-adder f)
(lambda (g)

(let ((g (basis:get-rep g)))
(proc->real
(lambda (x)

(+ (f x) (g x)))))))

(define (make-real-subtractor f)
(lambda (g)

(let ((g (basis:get-rep g)))
(proc->real
(lambda (x)

(- (f x) (g x)))))))

(define (make-real-multiplier f)
(lambda (g)

(let ((g (basis:get-rep g)))
(proc->real
(lambda (x)

(* (f x) (g x)))))))

(define (make-real-scalar-multiplier f)
(lambda (a)

(proc->real
(lambda (x)
(* a (f x))))))

;;; The gradient is needed for defining the laplacian:

(define (real-gradient f)
(let* ((f (compose vector (basis:get-rep f)))

(fx (proc->real (compose vector-first ((pdiff 0) f))))
(fy (proc->real (compose vector-first ((pdiff 1) f)))))

(vector fx fy)))

C.2.6 2d-real-diff.scm

;; This file loads the appropriate definitions for the numerical
differentiation of real functions.

(declare (usual-integrations))
(load "manifolds/linear")
(load "manifolds/lshared")
(load "manifolds/richardson")

;;; Stolen from manifolds/misc.scm:

(define (pdiff i)

334

(lambda (f)
(let ((df (diff f)))
(lambda (x)

(let ((v (make-vector (vector-length x) 0)))
(vector-set! v i 1)

((df x) v))))))

C.2.7 2d-trapezoid.scm

;;; This file defines a simple numerical integrator over triangular subregions
;;; of the plane. It uses the trapezoidal rule because that's the easiest
;;; thing to implement, and I'd just like to see if it improves FEM on
;;; manifolds.

(declare (usual-integrations))
;;; Heh heh... -----------

;;; We can follow the same idea as in 2d-basis.scm: Map the triangular region
;; to a standard isoceles triangle by an affine transformation and apply the

;;; trapezoidal rule. Note that its assumptions about basis functions are
;;; different.

(define (trapezoidal-integrator-maker count)

This parameter determines how many thingamajigs to use for integration.
It should really scale depending on the element, but for simplicity let's
keep it a constant (for now).

(let* ((count-i (- count 1))
(h (/ 1. count))
(area (/ (square h) 2)))

(lambda (vertex-nodes)

;; We assume that there are three vertex nodes, and that the triangle
;; they form is the boundary of the element:

(if (not (= (length vertex-nodes) 3))
(error (string-append "Error: Elements must have three vertex nodes."

" -- MAKE-TRIANGULAR-INTEGRATOR")))

(let ((pl (car vertex-nodes))
(p2 (cadr vertex-nodes))
(p3 (caddr vertex-nodes)))

;; Find the absolute value of the Jacobian of the affine transformation
;; mapping the reference triangle {(0,0),(1,0),(0,I)} to this triangle.

(let* ((A (list->matrix
22
(list

(- (node:get-x p2) (node:get-x pl))
(- (node:get-x p3) (node:get-x pl))
(- (node:get-y p2) (node:get-y pl))
(- (node:get-y p3) (node:get-y pl)))))

(b (node:get-coords pl))
(jacobian (abs (det A)))

335

(aff (lambda (x) (apply-affine-transformation A b x))))

(lambda (f . rest)
(let ((flist (map basis-function->function (cons f rest)))

(sum 0))
(do ((i 0 (+ i 1)))

((>= i count))
(let ((xl (* i h))

(x2 (* (+ i 1) h)))
(do ((j (- count i 1) (- j 1)))

((< j 0))
(let* ((yl (* j h))

(y2 (* (+ j 1) h))

(11 (aff (vector xi yi)))
(ir (aff (vector x2 yi)))
(ul (aff (vector xi y2))))

(set! sum (+ sum (trapezoidal-average
flist (list 11 Ir ul))))

(if (< (+ i j) count-i)
(let ((ur (aff (vector x2 y2))))

(set! sum (+ sum (trapezoidal-average
flist (list ul ur Ir))))))))))

(* sum area jacobian))))))))

(define (trapezoidal-average flist plist)
(let next-point ((plist plist) (sum 0) (count 0))
(if (null? plist)

(/ sum count)
(let ((p (car plist)))

(let next-function ((flist flist) (prod 1))
(if (null? flist)

(next-point (cdr plist) (+ sum prod) (+ count 1))
(next-function (cdr flist) (* prod ((car flist) p)))))))))

C.2.8 basis.scm

;;; We need to provide a common structure for handling basis functions. This

;;; way, all that the user needs to change in order to change basis functions
;;; is the constructor passed into the domain constructor.

(declare (usual-integrations))

;;; Basis functions need to carry around their own methods:

(define (package-basis-function-methods
type rep eval + - * scalar*)

(vector type rep eval + - * scalar* '()))

(define (basis-function? f)
(and (vector? f)

(= (vector-length f) 7)))

(define (basis:type f)

336

(if (basis-function? f)

(vector-ref f 0)

#f))

(define (basis:get-rep f)

(vector-ref f 1))

(define (basis-function->function f)

(vector-ref f 2))

(define (basis:binary+ f g)

(if (basis:same-type? f g)

((vector-ref f 3) g)

(error "Cannot add basis functions of different types.")))

(define (basis:binary- f g)

(if (basis:same-type? f g)

((vector-ref f 4) g)

(error "Cannot subtract basis functions of different types.")))

(define (basis:binary* f g)

(if (number? f)

(if (number? g)

(* f g)
(basis:scalar* f g))

(if (number? g)

(basis:scalar* g f)

(if (basis:same-type? f g)

((vector-ref f 5) g)

(error "Cannot multiply basis functions of different types.")))))

(define (basis:scalar* a f)

((vector-ref f 6) a))

(define (basis:install-extra f tag datum)
(let ((result (assq tag (vector-ref f 7))))

(if result

(set-cdr! result datum)

(vector-set! f 7 (cons (cons tag datum) (vector-ref f 7))))))

(define (basis:get-extra f tag)

(let ((result (assq tag (vector-ref f 7))))

(if result

(cdr result)

#f)))

;;; Derived from the basic methods:

(define (basis:same-type? f g)

(eq? (basis:type f) (basis:type g)))

(define (evaluate-basis-function f p)
((basis-function->function f) p))

(define (basis:+ f . rest)

(let loop ((f f) (1 rest))
(if (null? 1)

f

337

(loop (basis:binary+ f (car 1)) (cdr 1)))))

(define (basis:- f . rest)
(if (null? rest)

f

(basis:binary- f (apply basis:+ rest))))

(define (basis:* f . rest)
(let loop ((f f) (1 rest))
(if (null? 1)

f
(loop (basis:binary* f (car 1)) (cdr 1)))))

(define (basis:dot v w)
(let ((n (vector-length v)))

(let loop ((i 1) (result (basis:* (vector-ref v 0) (vector-ref w 0))))
(if (< i n)

(loop (+ i 1)
(basis:+ result (basis:* (vector-ref v i) (vector-ref w i))))

result))))

C.2.9 bent.scm

;;; Drawing the bent characteristics:

;;;First, open graphics device and set scale:

(define dev (make-graphics-device 'x))
(graphics-set-coordinate-limits dev -.1 -.1 1.1 1.1)

(if #f

(begin
(graphics-operation dev 'set-background-color "black")
(graphics-operation dev 'set-foreground-color "red")
(graphics-operation dev 'set-mouse-color "white")))

Next, define a procedure to integrate and draw the characteristics (using a
silly foward-Euler integrator).

(define (draw-characteristic slope xO tO dt)
(graphics-move-cursor dev xO tO)

(let loop ((i 1) (x xO))
(let ((t (+ (+ i dt) tO)))

(if (and (<= 0 t) (<= t 1)
(<= 0 x) (<= x I))

(let* ((dt/dx (slope t))
(new-x (+ x (/ dt dt/dx))))

(cond ((> new-x 1) (graphics-drag-cursor dev I t))
((< new-x 0) (graphics-drag-cursor dev 0 t))
(else (graphics-drag-cursor dev new-x t)))

(loop (+ i 1) new-x)))))
'done)

338

;;; The functions we want to use:

(define (cut-off t)
(cond ((<= t 0) 1.)

((>= t 1) 0.)
(else (+ (* 2 (expt t 3)) (* -3 (expt t 2)) 1))))

(define (f t)

(cut-off (- (* 2 t) i)))

(define (g t)

(- (f t)))

;;; Something to generate sample points:

(define (samples min max count)

(let ((dx (/ (- max min) (- count 1))))
(let loop ((result '()) (i (- count i)))
(if (< i 0)

result

(loop (cons (+ (* i dx) min) result) (- i 1))))))

(define (constant-list val count)
(vector->list (make-vector count val)))

;;; Do it!

(graphics-clear dev)

(graphics-draw-line dev 0. 0. 0. 1.)
(graphics-draw-line dev 0. 0. 1. 0.)
(graphics-draw-line dev 0. 0. 1. 0.)
(graphics-draw-line dev 1. 0. 1. 1.)
(graphics-draw-line dev 0. 1. 1. 1.)

(for-each

(lambda (x t)
(draw-characteristic f x t .01))

(samples 0. 1. 11)

(constant-list 0. 11))

(for-each

(lambda (x t)
(draw-characteristic g x t .01))

(samples 0. 1. 11)
(constant-list 0. 11))

(for-each

(lambda (x t)

(draw-characteristic f x t .01))
(constant-list 0. 11)
(samples 0. .9 11))

(for-each

(lambda (x t)

(draw-characteristic g x t .01))
(constant-list 1. 11)

339

(samples 0. .9 11))

;(graphics-close dev)

C.2.10 collect.scm

;;; Collect some data for thesis work. First, load the FEM programs and set
;;;the speed of light to 1.

;;; Here's how we run experiments:

(define (make-experiment domain-maker)
(lambda (argl filename)

;; Reload to clear hidden states:

(load "load")
(set! *wave-constant* 1.)
(let ((make-domain (evaluate-symbol domain-maker)))

(write-line '(constructing domain...))
(let ((nodes (show-time (lambda () (apply make-domain argl)))))
(write-line '(,(vector-length nodes) nodes constructed))
(write-line '(constructing matrix...))
(let ((mat (show-time

(lambda ()
(sparse->matrix (fem 0-function nodes wave))))))

(write-line '(matrix size = ,(matrix-size mat)))
(write-line '(solving equations...))
(let ((v (show-time (lambda () (lu-solve mat)))))

(write-line '(computing results...))
(let ((results (compute-results nodes v wave)))
(write-line '(saving...))
(let ((port (open-output-file filename)))

(print-matrix results port)
(close-output-port port)))))))))

(define (make-relaxing-experiment domain-maker)
(lambda (argl sor-count sor-factor filename)

;; Reload to clear hidden states:

(load "load")
(set! *wave-constant* 1.)
(let ((make-domain (evaluate-symbol domain-maker)))

(write-line '(constructing domain...))
(let ((nodes (show-time (lambda () (apply make-domain argl)))))

(write-line '(,(vector-length nodes) nodes constructed))
(write-line '(constructing matrix...))
(let ((mat (show-time

(lambda ()
(sparse-normal-equations
(fem 0-function nodes wave))))))

(write-line '(matrix size = ,(sparse-matrix-size mat)))
(write-line '(relaxing...))

340

(let ((v (show-time (lambda () (sor mat sor-count sor-factor)))))
(write-line '(computing results...))
(let ((results (compute-results nodes v wave)))

(write-line '(saving...))
(let ((port (open-output-file filename)))
(print-matrix results port)
(close-output-port port)))))))))

;; A couple of tests:

(define test-1 (make-experiment 'make-true-hat-domain))
(define test-2 (make-experiment 'make-bent-domain))
(define test-3 (make-relaxing-experiment 'make-true-hat-domain))

C.2.11 debug.scm

;; For debugging purposes, this program draws the output of the Delaunay
;;; triangulation program, TRIANGULATE, in delaunay.scm.

;;; We assume that the sites are subsets of the unit square [0,1]3x0,1].

(declare (usual-integrations))

;;; Draw the mesh:

(define *delaunay-device* 'undefined)
(define *debugging-info* '())

(define draw
(let ((background "black")

(cursor "white")
(line "blue")
(boundary "red")
(node "white")
(boundary-node "purple"))

(lambda (nodes)
(if (eq? *delaunay-device* 'undefined)

(set! *delaunay-device* (make-graphics-device 'x))
(graphics-clear *delaunay-device*))

(let* ((dev *delaunay-device*)
(b .02)
(elist (set-coordinate-limits dev nodes b .005))
(ex (car elist))
(ey (cadr elist)))

(graphics-operation dev 'set-foreground-color line)
(graphics-operation dev 'set-background-color background)
(graphics-operation dev 'set-mouse-color cursor)
(graphics-clear dev)

(for-each
(lambda (e)

(let* ((org-e (car e))
(dest-e (cadr e))
(org (node:get-coords org-e))

341

(dest (node:get-coords dest-e))

(org-boundary? (node:boundary? org-e))

(dest-boundary? (node:boundary? dest-e)))

(if (and org-boundary? dest-boundary?)

(graphics-operation dev 'set-foreground-color boundary))

(graphics-move-cursor dev (vector-ref org 0) (vector-ref org 1))

(graphics-drag-cursor dev (vector-ref dest 0) (vector-ref dest 1))

(if (and org-boundary? dest-boundary?)

(graphics-operation dev 'set-foreground-color line))))

debugging-info)

(graphics-operation dev 'set-foreground-color node)

(for-each

(lambda (n)

(let ((x (node:get-x n))

(y (node:get-y n)))

(if (node:boundary? n)

(graphics-operation dev 'set-foreground-color boundary-node))

(graphics-draw-line dev (- x ex) (- y ey) (+ x ex) (+ y ey))

(graphics-draw-line dev (- x ex) (+ y ey) (+ x ex) (- y ey))

(if (node:boundary? n)

(graphics-operation dev 'set-foreground-color node))))

(vector->list nodes))))))

(define (set-coordinate-limits dev nodes border edge)

(apply

(lambda (x-left y-bottom x-right y-top)

(if (= x-left x-right)

(begin

(set! x-left (- x-left .5))

(set! x-right (+ x-right .5))))

(if (= y-top y-bottom)

(begin

(set! y-bottom (- y-bottom .5))

(set! y-top (+ y-top .5))))

(let ((dx (- x-right x-left))

(dy (- y-top y-bottom)))

(graphics-set-coordinate-limits

dev (- x-left (* dx border)) (- y-bottom (* dy border))

(+ x-right (* dx border)) (+ y-top (* dy border)))

(list (* edge dx) (* edge dy))))

(bounding-box (vector->list nodes) node:get-coords)))

(define (close)

(if (not (eq? *delaunay-device* 'undefined))

(begin

342

(graphics-close *delaunay-device*)
(set! *delaunay-device* 'undefined))))

;;; Quick and easy way to dump a vector, matrix, whatever into a file:

(define (dump obj file-name)
;; Compound objects should always come before primitive ones, because they
;; may be implemented from primitives like LISTs or VECTORs.
(cond ((matrix? obj)

(write-line '(dumping matrix to file ,file-name))
(let ((port (open-output-file file-name)))
(print-matrix obj port)
(close-output-port port)))

((sparse-matrix? obj)
(write-line '(dumping sparse-matrix to file ,file-name))
(let ((port (open-output-file file-name)))

(print-sparse-matrix obj port)
(close-output-port port)))

((vector? obj)
(write-line '(dumping vector to file ,file-name))

(let ((n (vector-length obj))
(port (open-output-file file-name)))

(do ((i 0 (+ i 1)))
((>= i n))

(display (vector-ref obj i) port)
(newline port))

(close-output-port port)))

((list? obj)
(write-line '(dumping list to file ,file-name))
(let ((port (open-output-file file-name)))

(for-each
(lambda (x)

(display x port)
(newline port))

obj)

(close-output-port port)))

(else
(error "Object must be a VECTOR, MATRIX, or LIST -- DUMP"))))

;;; Dump a matrix into a Maple-readable file:

(define matrix->maple
(let ((variable-name "foo"))

(lambda (A file-name)
(let* ((port (open-output-file file-name))

(print (lambda (obj) (display obj port))))

(print (string-append variable-name " := ["))

343

(print #\newline)

(let ((m (matrix-row-count A))

(n (matrix-column-count A)))

(print (string-append "[" (number->string (matrix-ref A 0 0))))

(do ((j 1 (+ j 1)))
((>= j n))

(print (string-append "," (number->string (matrix-ref A 0 j)))))

(print #\])

(do ((i 1 (+ i 1)))
((>= i m))

(print (string-append (list->string '(#\, #\newline #\D))
(number->string (matrix-ref A i 0))))

(do ((j 1 (+ j 1)))
((>= j n))

(print (string-append "," (number->string (matrix-ref A i j)))))

(print #\]))

(print "] :")
(print #\newline)

(print (string-append

(print #\newline)
(print (string-append

(print #\newline)
(print (string-append

(print #\newline))

variable-name
" := array("
variable-name
11) :,,))

variable-name

" := [seq(Eseq([i, j,

variable-name

"[i, j]], i=1.."

(number->string m)
")], j=1.."
(number->string n)
")] :"))

"plots[surfdata]("

variable-name

", axes=frame, style=wireframe);"))

(close-output-port port)))))

Compute the error vector:

(define (compute-error nodes v f)

V should be the output of SOR.

F computes the initial condition/solution, given a node.

(let ((e (make-matrix (vector-length v) 3))

(size (vector-length nodes))

(max 0)

(max-index 0))

(let loop ((i 0) (j 0))
(if (< j size)

(if (node:boundary? (vector-ref nodes j))

344

(loop i (+ j 1))
(begin
(matrix-set! e i 0 (f (vector-ref nodes j)))
(matrix-set! e i 1 (vector-ref v i))
(matrix-set! e i 2 (abs (- (f (vector-ref nodes j))

(vector-ref v i))))
(if (>= (matrix-ref e i 2) max)

(begin
(set! max (matrix-ref e i 2))
(set! max-index i)))

(loop (+ i 1) (+ j 1))))

(begin
(write-line '(maximum error: ,max at node ,max-index))
e)))))

;;; Generate results that we can plot with MATLAB:

(define (compute-results nodes v f)

;; V should be the output of SOR.

(let ((e (make-matrix (interior-node-count nodes) 4))
(size (vector-length nodes)))

(let loop ((i 0) (j 0))
(if (< j size)

(if (node:boundary? (vector-ref nodes j))
(loop i (+ j i))
(let ((node (vector-ref nodes j)))

(matrix-set! e i 0 (node:get-x node))
(matrix-set! e i 1 (node:get-y node))
(matrix-set! e i 2 (vector-ref v i))
(matrix-set! e i 3 (f node))
(loop (+ i 1) (+ j 1))))

e))))

(define (interior-node-count nodes)
(let ((n (vector-length nodes)))

(let loop ((count 0) (i 0))
(if (< i n)

(if (node:boundary? (vector-ref nodes i))
(loop count (+ i i))
(loop (+ count 1) (+ i i)))

count))))

;;; Save the data back to the nodes:

(define (store-results! nodes v)
;; V should be the output of SOR.
(let ((size (vector-length nodes)))

(let loop ((i 0) (j 0))
(if (< j size)

(if (node:boundary? (vector-ref nodes j))
(loop i (+ j 1))
(begin
(node:set-value! (vector-ref nodes j) (vector-ref v i))
(loop (+ i 1) (+ j 1))))

(write-line '(,i interior nodes))))))

345

C.2.12 delaunay.scm

;;; This implements the Delaunay triangulation algorithm described in:

"Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams," ACM transactions on graphics, Vol. 4,

;; No. 2, April 1985, P. 74-123.
;;; Leonidas Guibas and Jorge Stolfi, Xerox PARC and Stanford University.

;;;There is something better now; take a look at the Geometry Center's home
;;; page at "http://www.geom.umn.edu/", and check out the quickhull algorithm.

(declare (usual-integrations))

;;; This is kind of useful for the FEM stuff:

(define (delaunay-triangulation nodes)
(triangulate nodes)
(list (map (lambda (e)

(list (org e) (dest e)))
(list-edges))

(map (lambda (f)
(map org f))

(list-faces))))

This is the divide-and-conquer algorithm. The nodal data structure should
provide the methods NODE:GET-X and NODE:GET-Y.

(define (triangulate nodes)
;; NODES should be a vector containing nodal data structures.
(set! *delaunay-edges* (make-dynamic-table))
(delaunay (sort (vector->list nodes) lexicographic<)))

(define (lexicographic< ni n2)
(let ((delta-x (- (node:get-x n2) (node:get-x ni))))
(if (almost-zero? delta-x)

(< (node:get-y ni) (node:get-y n2))
(> delta-x 0))))

(define (delaunay S)
This returns the counterclockwise convex hull edge out of
the leftmost vertex and the clockwise convex hull edge out
of the rightmost vertex.

S is assumed to be a list of nodes, sorted along the abscissa.

(cond
((< (length S) 2)
(error "Need at least two nodes to triangulate -- DELAUNAY"))

((= (length S) 2)
;; Let sl, s2 be the two sites, in sorted order, and create an edge from sl

to s2:

(let* ((si (car S))

(s2 (cadr S))
(a (make-edge)))

(set-org! a si)

346

(set-dest! a s2)
(list a (sym a))))

((= (length S) 3)
;; Let si, s2, and s3 be the three sites, in sorted order.
;; Create edges a connecting sl to s2 and b connecting s2 to s3:
(let* ((si (car S))

(s2 (cadr S))
(s3 (caddr S))
(a (make-edge))
(b (make-edge)))

(splice (sym a) b)
(set-org! a si)
(set-dest! a s2)
(set-org! b s2)
(set-dest! b s3)

;; Now close the triangle:
(cond
((ccw sl s2 s3)
(connect b a)
(list a (sym b)))

((ccv si s3 s2)
(let ((c (connect b a)))

(list (sym c) c)))

(else ; the three points
(list a (sym b))))))

(else
;; ISI > 3. Let L and R be
(let* ((L&R (halve S))

(L (car L&R))
(R (cadr L&R))

are collinear

the left and right halves of S.

(ldo&ldi (delaunay L))
(ldo (car ldokldi))
(ldi (cadr ldo&ldi))

(rdi&rdo (delaunay R))
(rdi (car rdi&rdo))
(rdo (cadr rdi&rdo)))

;; Compute the lower common tangent of L and R:

(call-with-current-continuation
(lambda (exit)

(do () (#f)
(cond ((left-of (org rdi) Idi)

(set! ldi (lnext ldi)))
((right-of (org ldi) rdi)
(set! rdi (rprev rdi)))
(else (exit 'done))))))

;; Create a first cross edge basel from rdi.Org to ldi.Org:

(let* ((basel (connect (sym rdi) ldi))

347

(valid (lambda (e) (right-of (dest e) basel))))

(if (node= (org Idi) (org ido)) (set! Ido (sym basel)))

(if (node= (org rdi) (org rdo)) (set! rdo basel))

;; This is the merge loop:
;; Locate the first L point (lcand.Dest)
;; rising bubble, and delete L edges out
;; circle test.

to be encountered by the

of basel.Dest that fail the

(call-with-current-continuation
(lambda (exit)

(do () (#f)

(let ((icand (onext (sym basel))))
(if (valid Icand)

(do ()
((not (in-circle (dest basel)

(dest (onext
(let ((t (onext Icand)))

(delete-edge icand)
(set! Icand t))))

(org basel) (dest Icand)

icand)))))

;; Symmetrically, locate the first R point to be hit, and delete

;; R edges:

(let ((rcand (oprev basel)))

(if (valid rcand)

(do ()

((not (in-circle (dest

(dest

(let ((t (oprev rcand)))

(delete-edge rcand)

(set! rcand t))))

;; If both lcand and rcand are

;; upper common tangent:

basel) (org basel) (dest rcand)

(oprev rcand)))))

invalid, then basel is the

(if (and (not (valid icand)) (not (valid rcand)))
(exit 'done))

;; The next cross edge is to be connected to either icand.Dest
;; or rcand.Dest. If both are valid, then choose the
;; appropriate one using the InCircle test:

(if (or (not (valid icand))
(and (valid rcand)

(in-circle (dest lcand) (org icand) (org rcand)
(dest rcand))))

Add cross edge basel from rcand.Dest to basel.Dest:
(set! basel (connect rcand (sym basel)))
;; Else add cross edge basel from basel.Org to Icand.Dest:
(set! basel (connect (sym basel) (sym Icand))))))))))

(list Ido rdo)))))

Miscellaneous functions:

348

(define (halve 1)
;; Split L down the middle
(let loop ((hcount 0) (tcount (length 1)) (head '()) (tail 1))
(if (<= tcount hcount)

(list (reverse head) tail)
(loop (+ hcount 1) (- tcount 1) (cons (car tail) head) (cdr tail)))))

(define (node= ni n2)
(apply equal? (map node:get-coords '(,nl ,n2))))

;;; Use the above algorithm to compute the convex hull:

(define (convex-hull nodes)
(let* ((e (cadr (triangulate nodes)))

(e.org (org e)))
(let loop ((1 (list e)))

(let ((next (Inext (car 1))))
(if (node= (org next) e.org)

1
(loop (cons next 1)))))))

C.2.13 delaux.scm

;; This implements the topological and geometric primitives needed for the
;;; Delaunay triangulation algorithm described in:

;;; "Primitives for the manipulation of general subdivisions and the
;;; computation of Voronoi diagrams," ACM transactions on graphics, Vol. 4,
;;; No. 2, April 1985, P. 74-123.
;; Leonidas Guibas and Jorge Stolfi, Xerox PARC and Stanford University.

;; This needs the file edge.scm for the edge-algebraic definitions.
;;; The nodal structures are assumed to provide the methods NODE:GET-X and
;;; NODE:GET-Y.

(declare (usual-integrations))

;;; Edge-record methods:

(define (org e-ref)
(((get-edge-record e-ref) (get-rot-deg e-ref)) 'data))

(define (left e-ref)
(org (inv-rot e-ref)))

(define (right e-ref)
(org (rot e-ref)))

(define (dest e-ref)
(org (sym e-ref)))

(define (set-org! e-ref new)
((((get-edge-record e-ref) (get-rot-deg e-ref)) 'set-data!) new))

(define (set-dest! e-ref new)

349

(set-org! (sym e-ref) new))

;;; Topological operators:

(define (connect a b)
Create an edge E that connects A.Dest to B.Org, such that A.Left = E.Left
= B.Left after the connection is complete.

(let ((e (make-edge)))
(set-org! e (dest a))
(set-dest! e (org b))
(splice e (Inext a))
(splice (sym e) b)
e))

(define (delete-edge e)
(splice e (oprev e))
(splice (sym e) (oprev (sym e)))
(dynamic-table-set! *delaunay-edges* (get-edge-id e) 'deleted))

(define (swap e)
(let ((a (oprev e))

(b (oprev (sym e))))
(splice e a)
(splice (sym e) b)
(splice e (Inext a))
(splice (sym e) (Inext b))
(set-org! e (dest a))
(set-dest! e (dest b))))

;;; Geometric primitives:

(define (in-circle a b c d)
;; a, b, c, and d should be 2-vectors.
(let ((m (make-matrix 4 4)))

(do ((1 (map node:get-coords (list a b c d)) (cdr 1))
(i 0 (+ i 1)))

((null? 1))
(let* ((p (car 1))

(x (vector-ref p 0))
(y (vector-ref p 1)))

(matrix-set! m i 0 x)
(matrix-set! m i 1 y)
(matrix-set! m i 2 (+ (square x) (square y)))
(matrix-set! m i 3 1)))

(> (det m) 0)))

(define (ccw a b c)
;; a, b, and c should be 2-vectors.
(let ((m (make-matrix 3 3)))

(do ((1 (map node:get-coords (list a b c)) (cdr 1))

(i 0 (+ i 1)))
((null? 1))

(let* ((p (car 1))
(x (vector-ref p 0))

350

(y (vector-ref p 1)))

(matrix-set! m i 0 x)

(matrix-set! m i 1 y)

(matrix-set! m i 2 1)))

(> (det m) 0)))

(define (right-of x e)

(ccw x (dest e) (org e)))

(define (left-of x e)

(ccw x (org e) (dest e)))

;;; A procedure that lists all of the mesh elements in a Delaunay triangulation
;;; can be very useful, particularly for our FEM applications.

(define (get-edge-mark e-ref)

(((get-edge-record e-ref) (get-rot-deg e-ref)) 'mark))

(define (set-edge-mark! e-ref val)
((((get-edge-record e-ref) (get-rot-deg e-ref)) 'set-mark!) val))

(define (list-faces)

(let ((edges (list-edges)))

(if (< (length edges) 3)

(let ((faces ())
(let ((faces '0))

;; Reset markings:

(for-each

(lambda (e)

(set-edge-mark!

(set-edge-mark!

edges)

e #f)
(sym e) #f))

;; Begin DFS:

(let loop ((e (car edges)))

(for-each

(lambda (a)

(if (false? (get-edge-mark a))

(let* ((b (lnext a))

(c (lnext b)))

(set-edge-mark! a #t)

(if (node= (dest c) (org a))
(begin

(set-edge-mark! b #t)

(set-edge-mark! c #t)

(set! faces (cons (list a b c) faces))))
(loop (sym a)))))

(get-edge-ring e)))

faces))))

C.2.14 dyntable.scm

(declare (usual-integrations))

351

(define (make-dynamic-table . argl)

(if (or (null? argl)
(> (length argl) 0))

(vector 0 (make-vector 8))

(vector 0 (make-vector (car argl)))))

(define (dynamic-table-size table)

(vector-ref table 0))

(define (dynamic-table-add table new-element)

(let ((size (dynamic-table-size table))

(real-size (vector-length (vector-ref table 1))))

(if (= size real-size)

(let ((old-table (vector-ref table 1))

(new-table (make-vector (* 2 real-size))))

(do ((i 0 (+ i i)))

((>= i real-size))

(vector-set! new-table i (vector-ref old-table i)))

(vector-set! table 1 new-table)))

(vector-set! (vector-ref table 1) size new-element)

(vector-set! table 0 (+ size 1))))

(define (dynamic-table-fetch table i)

(if (>= i (dynamic-table-size table))

(error "Access out of bound -- DYNAMIC-TABLE-FETCH")

(vector-ref (vector-ref table 1) i)))

(define (dynamic-table->list table)

(let loop ((1 '()) (n (- (dynamic-table-size table) 1)))

(if (< n 0)

1

(loop (cons (dynamic-table-fetch table n) 1) (- n i)))))

(define (dtableq table element)

(let loop ((n (- (dynamic-table-size table) 1)))

(if (< n 0)

#f

(if (eq? (dynamic-table-fetch table n) element)

n

(loop (- n 1))))))

(define (dynamic-table-set! table i val)

(if (>= i (dynamic-table-size table))

(error "Access out of bound -- DYNAMIC-TABLE-SET!")

(vector-set! (vector-ref table 1) i val)))

C.2.15 edge.scm

This is a simple implementation of the quad-edge data structure and the

associated edge functions on the edge algebra, as described in:

"Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams," ACM transactions on graphics, Vol. 4,

No. 2, April 1985, P. 74-123.

Leonidas Guibas and Jorge Stolfi, Xerox PARC and Stanford University.

352

;;; This is, in particular, meant to be used by the Delaunay triangulation
algorithm.

(declare (usual-integrations))

;;; A global list of edges:

(define *delaunay-edges* (make-dynamic-table))

The quad-edge data structure: This is the basic data structure
representing the edges in an edge algebra. It consists of a representative
edge and its orbit under the operations Rot and Flip.

(define (make-edge-record id)

(let ((orientation 0)

(next (make-vector 4))

;; Auxiliary data fields, initialized to the null lists:
(data (make-vector 4 'undefined))

(mark (make-vector 4 'undefined)))

Main dispatcher:

(define (me r)

(lambda (msg)

(case msg

((next) (vector-ref next r))

((set-next!) (lambda (val) (vector-set! next r val)))
((data) (vector-ref data r))

((set-data!) (lambda (val) (vector-set! data r val)))
((mark) (vector-ref mark r))

((set-mark!) (lambda (val) (vector-set! mark r val)))
(else (error "Unknown request -- EDGE-RECORD"))))))

Initialize the edges, which lie on a 2-sphere.

(vector-set! next 0 (make-edge-ref me 0 orientation id))
(vector-set! next I (make-edge-ref me 3 orientation id))
(vector-set! next 2 (make-edge-ref me 2 orientation id))
(vector-set! next 3 (make-edge-ref me 1 orientation id))

me))

;;; An edge-reference is a triplet (e, r, f), where e is an edge record and r
;;; and f are the corresponding Rot and Flip degrees.

(define (make-edge-ref e r f id)

(vector e r f id))

(define (get-edge-record e-ref)

(vector-ref e-ref 0))

(define (get-rot-deg e-ref)
(vector-ref e-ref 1))

(define (get-flip-deg e-ref)

353

(vector-ref e-ref 2))

(define (get-edge-id e-ref)
(vector-ref e-ref 3))

(define (get-edge-ring e)
(let ((e.dest (dest e)))

(let loop ((1 (list e)) (e e))
(let ((e.onext (onext e)))
(if (node= e.dest (dest e.onext))

1
(loop (cons e.onext 1) e.onext))))))

;;; Basic edge functions on which others are built:

(define (rot e-ref)
(let ((e (get-edge-record e-ref))

(r (get-rot-deg e-ref))
(f (get-flip-deg e-ref))
(id (get-edge-id e-ref)))

(make-edge-ref e (modulo (+ r 1 (* 2 f)) 4) f id)))

(define (flip e-ref)
(let ((e (get-edge-record e-ref))

(r (get-rot-deg e-ref))

(f (get-flip-deg e-ref))
(id (get-edge-id e-ref)))

(make-edge-ref e r (modulo (+ f 1) 2) id)))

(define (onext e-ref)

(let ((e (get-edge-record e-ref))
(r (get-rot-deg e-ref))
(f (get-flip-deg e-ref)))

(if (zero? f)
((e (modulo (+ r f) 4)) 'next)
(flip (rot ((e (modulo (+ r f) 4)) 'next))))))

Other edge functions:

(define inv-flip flip)

(define (sym e-ref)
(rot (rot e-ref)))

(define (inv-rot e-ref)
(rot (rot (rot e-ref))))

(define (dual e-ref)
(rot (flip e-ref)))

(define (Inext e-ref)
(rot (onext (inv-rot e-ref))))

(define (rnext e-ref)

(inv-rot (onext (rot e-ref))))

(define (dnext e-ref)

354

(sym (onext (sym e-ref))))

(define (oprev e-ref)

(rot (onext (rot e-ref))))

(define (lprev e-ref)

(sym (onext e-ref)))

(define (rprev e-ref)

(onext (sym e-ref)))

(define (dprev e-ref)

(inv-rot (onext (inv-rot e-ref))))

;;; Vertices are represented by an out-going edge, and faces are represented by
;;; an out-going edge in the dual diagram:

(define (org-ring e-ref)

e-ref)

(define (left-ring e-ref)

(org-ring (inv-rot e-ref)))

(define (right-ring e-ref)

(org-ring (rot e-ref)))

(define (dest-ring e-ref)

(org-ring (sym e-ref)))

;;; Basic topological operators:

(define (make-edge)

(let* ((id (dynamic-table-size *delaunay-edges*))

(e (make-edge-ref (make-edge-record id) 0 0 id)))
(dynamic-table-add *delaunay-edges* e)

e))

(define (splice a b)

(if (not (equal? b (flip (onext a))))

(let* ((alpha (rot (onext a)))

(beta (rot (onext b)))

(a-onext (onext a))

(b-onext (onext b))

(alpha-onext (onext alpha))

(beta-onext (onext beta)))

(set-onext! a b-onext beta)

(set-onext! b a-onext alpha)

(set-onext! alpha beta-onext b)
(set-onext! beta alpha-onext a))))

(define (set-onext! e-ref new alt)
(let ((f (get-flip-deg e-ref)))

(if (zero? f)

(let ((e (get-edge-record e-ref))
(r (get-rot-deg e-ref)))

355

(((e (modulo (+ r f) 4)) 'set-next!) new))
(let* ((e-ref (rot (flip e-ref)))

(e (get-edge-record e-ref))
(r (get-rot-deg e-ref))
(f (get-flip-deg e-ref)))

(((e (modulo (+ r f) 4)) 'set-next!) (flip alt))))))

;;;List all edges:

(define (list-edges)
(if (list? *delaunay-edges*)

delaunay-edges
(let ((size (dynamic-table-size *delaunay-edges*)))

(let loop ((1 '()) (i 0))
(if (< i size)

(let ((e (dynamic-table-fetch *delaunay-edges* i)))
(if (eq? e 'deleted)

(loop 1 (+ i i))
(loop (cons e 1) (+ i 1))))

(begin
(set! *delaunay-edges* 1)
1))))))

C.2.16 fem.scm

This program solves linear partial differential equations (with variable
;; coefficients) using the finite element method (FEM). It takes as input the
;; source function (the RHS of the equation) and a list of nodes to be

;;; used. The boundary nodes should be initialized to the desired values.

;;; Internal dependencies among data structures:

;;;* In the final output matrix, each row corresponds to a node. Hence, we
use nodes to organize the computation of coefficients in each row, and
the actual integrals are computed by the elements. As a result, the
procedures ASSEMBLY and MAKE-NODE are fairly general, and one should
seldom need to change them.

;;;* The differential operator is encapsulated in the constructor for
elements, since the operator only affects the computation of the
integrals. Many properties of the system (such as the differential
operator, element shapes/sizes, dimension of the domain) are parametrized
through this.

Mathematical assumptions:

* Linearity of the differential operator appears to be necessary for these
methods. Otherwise nodal assembly wouldn't work, and we wouldn't be able

;;; to construct linear equations out of the matrix of inner products.

;;;* We cannot handle systems of equations yet.

* MAKE-NODE and ELEMENT-MAKER appear to be the only procedures that
restrict the dimensions to which this program applies. The former does
so by requiring X and Y as arguments, while the latter needs to handle

356

higher-dimensional (dim > 1) faces of simplices.

;; * None of this code actually does anything, of course, since it's
completely abstract. To generalize this to higher dimensions, the
appropriate integrators and constructors would still need to be supplied,
which can be a non-trivial task. How much of what's in 2d-domains.scm

;; generalized to higher dimensions (assuming regions simple enough to be
triangulated efficiently)?

;; Our basic reference is:
;; Vichnevetsky, Robert. -Computer Methods for Partial Differential Equations,
;; Volume 1: Elliptic Equatins and the Finite-Element Method_. Prentice-Hall:

;;; Englewood Cliffs, New Jersey, 1981.

;;; Note that elements are implicitly accessed through nodes, so that we should
;;; never have to directly refer to elements. Also, the program only computes
;; the system of linear algebraic equations; it does not attempt to solve

;;; them.

;; A possible future direction is to extend this program to systems of
;; equations. How does one handle non-linear equations in general?

(declare (usual-integrations))

;;; Use FEM to produce a matrix:

(define (fem source nodes potential)
(initialize-values nodes potential)
(assemble-equations source nodes))

;; Set boundary values:

(define (initialize-values nodes f)
(let ((size (vector-length nodes)))

(do ((i 0 (+ i 1)))
((>= i size))

(let ((node (vector-ref nodes i)))
(node:set-value! node (f node))))))

The Rayleigh-Ritz method, as described in Vichnevetsky. Actually, since
;;; MAKE-ELEMENT already incurs most of the cost of discretization up front, we
;; only need to assemble the equations.

;; NODE:ASSEMBLE returns a SPARSE-MATRIX data structure, as described in
;;; sparse.scm. It can be used directly as input to SOR, or converted into a
;;; matrix and solved by LU decomposition.

(define (assemble-equations source nodes)

;; SOURCE is a function from R^2 to R, and NODES is expected to be a vector.

(let* ((ncount (vector-length nodes))
(bcount 0)
(index-map (make-vector ncount)))

;; First, assign each node an index and count the number of boundary nodes.

357

(do ((i 0 (+ i 1)))
((>= i ncount))

(node:set-id! (vector-ref nodes i) i)

(if (node:boundary? (vector-ref nodes i))

(set! bcount (+ bcount 1))))

;; Next, create a mapping from node indices into matrix row number. (The

;; matrix has one row per interior node.)

;; This enforces the constraint that the equations satisfy the boundary

;; conditions. Note that we can enforce the constraint before *or* after

;; minimizing the action. If we do it before, everything is fine. If we

;; do it in the other order, then we have to justify dropping the

;; constraint equations. (Why does this sound vaguely familiar? Does it

have anything at all to do with nonholonomic constraints?)

;; In any case, we can drop the equations associated with boundary nodes by

;; enforcing the constraint *before* we differentiate. Perhaps this cannot

;; be done with the wave equation? Would the Neumann condition along the

;; initial line look like some kind of nonholonomic constraint when we

;; perform the constrained minimization of the action? But ODEs do not

;; have this problem...

(let loop ((i 0) (row 0))

(if (< i ncount)

(if (node:boundary? (vector-ref nodes i))

(begin

(vector-set! index-map i #f)

(loop (+ i 1) row))

(begin

(vector-set! index-map i row)

(loop (+ i 1) (+ row 1))))))

;; Loop over the nodes to create row entries:

(let* ((icount (- ncount bcount))

(big-matrix (make-sparse-matrix icount (1+ icount))))

(do ((i 0 (+ i 1)))

((>= i ncount))

(if (not (node:boundary? (vector-ref nodes i)))

(let ((row (vector-ref index-map i)))

;; Compute the source term for this row:

(sparse-matrix-set! big-matrix row icount

(node:compute-source (vector-ref nodes i)

source))

Combine boundary values:

(for-each

(lambda (pair)

(let ((id (car pair))

(val (cadr pair)))

(if (node:boundary? (vector-ref nodes id))

(sparse-matrix-set!

358

big-matrix row icount
(- (sparse-matrix-ref big-matrix row icount)

(* val (node:get-value (vector-ref nodes id)))))
(sparse-matrix-set! big-matrix row

(vector-ref index-map id) val))))
(node:assemble (vector-ref nodes i))))))

big-matrix)))

These procedures localize some of the assembly process in nodes; they are
defined separately from nodes themselves to isolate the definitions
specific to this particular application, thus increasing the generality of
the definitions in this file.

(define (node:assemble node)
(let ((1 (append-map

(lambda (element index)
(element:compute-integrals element index))

(node:get-elements node)
(node:get-local-ids node))))

(merge-terms 1 + (lambda (x y) (< (car x) (car y))))))

(define (node:compute-source node source)
(apply + (map (lambda (element index)

(element:compute-source element source index))
(node:get-elements node)
(node:get-local-ids node))))

;;; This is a useful helper procedure: Given a list L of the form L = ((indexi
;;; vall) (index2 val2) ...) and a procedure COMBINE, use COMBINE to
;;; concatenate the values of elements of L with the same index.

(define (merge-terms 1 combine <)

Sort first, then accumulate. This is O(n log n), which is after than the
obvious O(n'2) algorithm.

(if (null? 1)

(let* ((1 (sort 1 <))
(indices (map car 1))
(values (map cadr 1)))

(let loop ((indices (cdr indices))
(vals (cdr values))
(result 0())
(id (car indices))
(accum (car values)))

(if (null? indices)
(cons (list id accum) result)
(if (eq? (car indices) id)

(loop (cdr indices) (cdr vals) result id
(combine accum (car vals)))

(loop (cdr indices) (cdr vals)
(cons (list id accum) result)
(car indices) (car vals))))))))

359

;;; Let's now define elements. To be completely general (in terms of
;;; dimensions of applicability), we should allow the construction of nodes on
;;; higher-dimensional (> 1) faces.

;;;Note that this implicitly assumes that elements are the convex hull of
;;; their vertices.

;; The constructor for element-constructors:

(define (element-maker make-operator
make-integrator
make-basis-function)

MAKE-INTEGRATOR should take as argument a list of nodes, and returns a
procedure that takes a variable number of functions (at least 1) and

integrates their product over the domain specified implicitly as the
;; convex hull of the vertex nodes.

MAKE-BASIS-FUNCTION should take as argument a list of nodes and the index

; of the node that is to be the center of the basis function, and return
;; some structure representing basis functions.

We place no restrictions on the representation of functions over elements,
so long as the particular instances of MAKE-BASIS-FUNCTION and
MAKE-INTEGRATOR agree a-priori on the representation.

MAKE-OPERATOR should take a list of nodes and return LEFT-OP, RIGHT-OP,
and COMBINE procedure, satisfying (INTEGRATE (COMBINE (LEFT-OP F)
(RIGHT-OP G))) = (INTEGRATE F (OP G)), i.e. implement integration by parts
so that basis functions can be less smooth.

The list of nodes facilitates the interpolation of variable coefficients

;; in the operator. This may not be a good interface, as it makes artificial

assumptions on the contract between basis functions and operators (as is

the explicit use of LEFT-OP and RIGHT-OP).

(define (make-element vertex-nodes other-nodes)

;; The first part stores the coefficients, the second part the source

terms. What about coefficients? Maybe we should incorporate the

source term into the differential operator.

(let* ((nodes (append vertex-nodes other-nodes))
(number-of-nodes (length nodes))
(n-choose-2 (choose (+ number-of-nodes 2) 2))
(element
(vector (make-vector n-choose-2 0)

(make-vector n-choose-2 0)
vertex-nodes
other-nodes
(make-vector number-of-nodes #f)))

(op (make-operator nodes)))

Add the element to the nodes:

(let loop ((nodes nodes) (i 0))
(if (not (null? nodes))

(begin

360

(node:add-element (car nodes) element i)

(loop (cdr nodes) (+ i 1)))))

;; Initiailize elements (and hiding the hair)...

(let ((integrate (make-integrator vertex-nodes))
(local-form (operator:get-local-form op)))

(do ((i 0 (+ i 1)))
((>= i number-of-nodes))

(element:set-basis-function!
element i (make-basis-function nodes i)))

(do ((i 0 (+ i 1)))
((>= i number-of-nodes))

(let ((f (element:get-basis-function element i)))

(do ((j i (+ j 1)))
((>= j number-of-nodes))

(let ((g (element:get-basis-function element j)))
(element:set-coeff! element i j

(integrate (local-form f g)))
(element:set-source! element i j (integrate f g)))))))

element))
make-element)

;;; Methods for accessing the data structure:

(define (element:get-coeff element i j)
(vector-ref (vector-ref element 0) (symmetric->vector-index i j)))

(define (element:set-coeff! element i j val)
(vector-set! (vector-ref element 0) (symmetric->vector-index i j) val))

(define (element:get-source element i j)
(vector-ref (vector-ref element 1) (symmetric->vector-index i j)))

(define (element:set-source! element i j val)
(vector-set! (vector-ref element 1) (symmetric->vector-index i j) val))

(define (element:get-vertex-nodes element)
(vector-ref element 2))

(define (element:get-non-vertex-nodes element)
(vector-ref element 3))

(define (element:get-nodes element)
(append (element:get-vertex-nodes element)

(element:get-non-vertex-nodes element)))

(define (element:node-count element)
(length (element:get-nodes element)))

(define (element:set-basis-function! element i basis-function)
(vector-set! (vector-ref element 4) i basis-function))

361

(define (element:get-basis-function element i)

(vector-ref (vector-ref element 4) i))

;;; Computing the data needed in assembly:

(define (element:compute-source element source i)

(let loop ((nodes (element:get-nodes element)) (sum 0.) (j 0))

(if (null? nodes)

sum

(loop (cdr nodes)

(* (source (car nodes)) (element:get-source element i j))

(+ j 1)))))

(define (element:compute-integrals element i)

(let loop ((nodes (element:get-nodes element)) (1

(if (null? nodes)

1

(loop (cdr nodes)

(cons (list (node:get-id (car nodes))

(element:get-coeff element

1)
(+ j 1)))))

'()) (j 0))

i j))

;;; It's useful to have constant source functions:

(define (make-constant-function const)

(lambda (node) const))

(define 0-function (make-constant-function 0))

C.2.17 job.scm

(load "load")

(define nodes (make-real-square-domain 3 3))
(define m (sparse->matrix (fem 0-function nodes node:get-x)))

(define v (lu-solve m))

(let ((port (open-output-file "test"))

(n (vector-length v)))

(print-matrix m port)

(newline port)

(newline port)

(do ((i 0 (+ i I)))
((>= i n))

(write-line (vector-ref v i) port))

(close-output-port port))

C.2.18 jobl.scm

(load "collect")

(test-3 '(20 20 2.1) 10000 1.9 "bigtest.data")

362

C.2.19 load.scm

(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load
(load

"util")
"util-too")
"matlib")
"sparse")
"relax")
"dyntable")
"debug")
"delaunay")
"delaux")
"edge")
"fern")
"nodes")
"basis")
"2d-poly-basis")
"2d-real-diff")
"2d-real-basis")
"2d-trapezoid")
"operators")
"2d-operators")
"2d-domains")
"2d-examples")

C.2.20 matlib.scm

;; Some useful ideas from concrete linear algebra. It is pretty poorly
;; organized and some implementations need improving.

(declare (usual-integrations))

;;; Vector operations (more to come as needed):

(define (inner-product vi v2)
(if (and (vector? vl)

(vector? v2)
(= (vector-length vi) (vector-length v2)))

(let ((n (vector-length vi)))
(let loop ((sum 0) (i 0))
(if (< i n)

(loop (+ sum (* (vector-ref v1 i) (vector-ref v2 i))) (+ i 1))
sum)))

#f))

(define (apply-affine-transformation A b v)

;; Left-multiplication by a matrix:

(let* ((n (vector-length v))
(w (make-vector n)))

(do ((i 0 (+ i i)))
((>= i n) w)

(let loop ((j 0) (sum 0.))
(if (< j n)

(loop (+ j 1) (+ sum (* (matrix-ref
(vector-set! w i (+ sum (vector-ref

A i j) (vector-ref v j))))
b i))))))))

363

Useful helper routines.
Useful routines compatible with ScmUtils.
Everyone needs the matrix library.
Sparse matrices.
Relaxation.
Dynamic tables.
Graphics & stuff.
Delaunay triangulation.
Auxiliary routines for Delaunay.
Edge algebra junk for Delaunay.
The main finite-element code.
Definition of nodes.
Basis functions.
Polynomial basis functions in two variables.
Real differential operators on real functions.
Polynomial basis functions in two variables.
Numerical integration using trapezoidal rule.
Tools for differential operators.
Examples.
Making domains and boundaries, etc.
Some examples...

(define (apply-linear-transformation A v)
(let ((m (matrix-row-count A))

(n (matrix-column-count A))
(p (vector-length v)))

(if (not (= n p))
(error "Wah! A mistake! -- APPLY-LINEAR-TRANSFORMATION"))

(let ((w (make-vector m)))
(do ((i 0 (+ i 1)))

((>= i m) w)
(let loop ((j 0) (sum 0))
(if (< j n)

(loop (+ j 1) (+ sum (* (matrix-ref A i j) (vector-ref v j))))
(vector-set! w i sum)))))))

;;; Miscellaneous matrix operations:

(define (transpose A)
(let* ((m (matrix-row-count A))

(n (matrix-column-count A))
(At (make-matrix n m)))

(do ((i 0 (+ i 1)))
((>= i m) At)

(do ((j 0 (+ j 1)))
((>= j n))

(matrix-set! At j i (matrix-ref A i j))))))

(define (matrix:binary* A B)
(let ((p (matrix-column-count A)))

(if (not (= p (matrix-row-count B)))
(error "Incompatible matrix sizes!"))

(let* ((m (matrix-row-count A))
(n (matrix-column-count B))
(result (make-matrix m n)))

(do ((i 0 (+ i 1)))
((>= i m))

(do ((j 0 (+ j 1)))
((>= j n))

(let loop ((k 0) (sum 0))
(if (< k p)

(loop (+ k 1)
(+ sum (* (matrix-ref A i k) (matrix-ref B k j))))

(matrix-set! result i j sum)))))
result)))

(define (matrix:* A . rest)
(let loop ((A A) (1 rest))
(if (null? 1)

A
(loop (matrix:binary* A (car 1)) (cdr 1)))))

(define (matrix:+ A . rest)
(let loop ((A A) (1 rest))
(if (null? 1)

364

(loop (matrix:binary+ A (car 1)) (cdr 1)))))

(define (matrix:binary+ A B)
(let* ((m (matrix-row-count A))

(n (matrix-column-count A))
(C (make-matrix m n)))

(if (not (and (= m (matrix-row-count B))
(= n (matrix-column-count B))))

(error "Cannot add matrices of different dimensions!"))

(do ((i 0 (+ i 1)))
((>= i m) C)

(do ((j 0 (+ j 1)))
((>= j n))

(matrix-set! C i j (+ (matrix-ref A i j) (matrix-ref B i j)))))))

(define (matrix:- A . rest)
(if (null? rest)

A
(matrix:binary- A (apply matrix:+ rest))))

(define (matrix:binary- A B)
(let* ((m (matrix-row-count A))

(n (matrix-column-count A))
(C (make-matrix m n)))

(if (not (and (= m (matrix-row-count B))
(= n (matrix-column-count B))))

(error "Cannot subtract matrices of different dimensions!"))

(do ((i 0 (+ i 1)))
((>= i m) C)

(do ((j 0 (+ j 1)))
((>= j n))

(matrix-set! C i j (- (matrix-ref A i j) (matrix-ref B i j)))))))

(define (matrix:trace A)
(let ((m (matrix-row-count A)))

(if (not (= m (matrix-column-count A)))
(error "Cannot compute the trace of a non-square matrix!"))

(let loop ((i 0) (sum 0))
(if (< i m)

(loop (+ i 1) (+ sum (matrix-ref A i i)))
sum))))

;; Matrix constructors and methods:

(define (make-matrix m n)
(let ((vector-of-rows (make-vector m)))
(do ((i 0 (+ i 1)))

((>= i m))
(vector-set! vector-of-rows i (make-vector n 0)))

vector-of-rows))

365

(define (list->matrix m n 1)
(if (not (= (length 1) (* m n)))

(error "Incorrect dimensions -- LIST->MATRIX")

(let ((A (make-matrix m n)))
(do ((i 0 (+ i 1)))

((>= i m) A)

(do ((j 0 (+ j i)))
((>= j n))

(matrix-set! A i j (car 1))
(set! 1 (cdr 1)))))))

(define (matrix-set! matrix i j newval)
(vector-set! (vector-ref matrix i) j newval))

(define (matrix-ref matrix i j)
(vector-ref (vector-ref matrix i) j))

(define matrix-row-count vector-length)

(define (matrix-column-count matrix)
(vector-length (vector-ref matrix 0)))

(define (matrix-size matrix)
(list (matrix-row-count matrix) (matrix-column-count matrix)))

(define matrix-dimensions matrix-size)

(define (matrix-copy A)
(let* ((m (matrix-row-count A))

(n (matrix-column-count A))
(B (make-matrix m n)))

(do ((i 0 (+ i 1)))
((>= i m) B)

(do ((j 0 (+ j 1)))
((>= j n))

(matrix-set! B i j (matrix-ref A i j))))))

(define (matrix-get-row A i)
(let* ((n (matrix-column-count A))

(result (make-vector n)))
(do ((j 0 (+ j 1)))

((>= j n) result)
(vector-set! result j (matrix-ref A i j)))))

(define (matrix-get-column A j)
(let* ((m (matrix-row-count A))

(result (make-vector m)))
(do ((i 0 (+ i i)))

((>= i m) result)
(vector-set! result i (matrix-ref A i j)))))

Some predicates that might be useful:

(define (matrix? matrix)
(and (vector? matrix)

(> (vector-length matrix) 0)
(vector? (vector-ref matrix 0))
(let ((m (vector-length matrix))

366

(n (vector-length (vector-ref matrix 0))))

(let loop ((i 0))
(if (< i m)

(if (and (vector? (vector-ref matrix i))
(= (vector-length (vector-ref matrix i)) n))

(loop (+ i 1))
#f)

*t)))))

(define (diag-dom? matrix)
(let ((m (matrix-row-count matrix))

(n (matrix-column-count matrix)))

(if (> m n) (error "Matrix has more rows than columns - DIAG-DOM?"))

(call-with-current-continuation
(lambda (return)

(let ((sum 0.))
(do ((i 0 (+ i i)))

((>= i m))

(set! sum 0.)

(do ((j 0 (+ j 1)))
((>= j m))

(set! sum (+ sum (abs (matrix-ref matrix i j)))))

(let ((diag (abs (matrix-ref matrix i i))))
(if (not (or (> diag (- sum diag))

(almost-zero? (- (* 2 diag) sum))))
(begin

(write-line '(- ,diag ,(- sum diag)))
(return #f))))))

(define (symmetric? matrix)
(let ((m (matrix-row-count matrix))

(n (matrix-column-count matrix)))
(if (> m n)

*f
(call-with-current-continuation
(lambda (return)

(do ((i 1 (+ i 1)))
((>= i m))

(do ((j 0 (+ j 1)))
((>= j i))

(if (not (almost-zero? (- (matrix-ref matrix i j)
(matrix-ref matrix j i))))

(return #f))))
#t)))))

;;; LU-decomposition, done in a pretty primitive way. It is almost directly
;;; lifted out of _Numerical Recipes_. It can also be used to compute
;;; determinants, but it mutates its argument. DET does not.

;;; Note that the matrix may be left in a partially modified state, since the
;;; procedure aborts on singular matrices.

(define (LU-decomp A . aux)

367

(call-with-current-continuation
(lambda (exit)

(let ((m (matrix-row-count A))
(n (matrix-column-count A))
(det (if (and (not (null? aux))

(eq? (car aux) 'no-det))
#f

1)))

;; Compute the upper part:

(do ((j 0 (+ j 1)))
((>= j m))

(do ((i 0 (+ i 1)))
((>= i j))

(let ((sum (matrix-ref A i j)))
(do ((k 0 (+ k 1)))

((>= k i))
(set! sum (- sum (* (matrix-ref A i k) (matrix-ref A k j)))))

(matrix-set! A i j sum)))

;; Compute the lower portion with partial pivoting:

(let ((pivot 0) (new-j -1))
(do ((i j (+ i 1)))

((>= i m))

(let ((sum (matrix-ref A i j)))
(do ((k 0 (+ k 1)))

((>= k j))
(set! sum (- sum (* (matrix-ref A i k) (matrix-ref A k j)))))

(matrix-set! A i j sum)

(if (>= (abs sum) (abs pivot))
(begin

(set! pivot sum)
(set! new-j i)))))

;; Swap rows, if necessary.

(if (> new-j j)
(begin
(if det (set! det (* det -1)))
(do ((k 0 (+ k 1)))

((>= k n))
(let ((val (matrix-ref A j k)))

(matrix-set! A j k (matrix-ref A new-j k))
(matrix-set! A new-j k val)))))

;; If the matrix is singular, return 0 and leave matrix as is.

(if (almost-zero? pivot) (exit 0))

(do ((i (+ j 1) (+ i 1)))
((>= i m))

(matrix-set! A i j (/ (matrix-ref A i j) pivot)))))

;; Compute the determinant, if necessary. Note that we kept track of

368

;; its sign during row swaps.

(if det
(do ((k 0 (+ k 1)))

((>= k m) det)

;; Look out for underflows:

(if (or (almost-zero? det) (almost-zero? (matrix-ref A k k)))
(exit 0)
(set! det (* det (matrix-ref A k k)))))

(begin
(do ((k 0 (+ k 1)))

((>= k m))
(if (almost-zero? (matrix-ref A k k))

(exit 0)))

(exit 1)))))))

;; Use LU-decomposition to solve a linear system of equations (signals error
;; if the system is singular).

(define (LU-solve A . aux)

(if (sparse-matrix? A)
(set! A (sparse->matrix A)))

(let ((m (matrix-row-count A))
(n (matrix-column-count A)))

(if (or (null? aux)
(not (eq? (car aux) 'no-copy)))

(set! A (matrix-copy A)))

(rref A)

;; Form the result:

(if (> n (+ m 1))
(let ((result (make-matrix m (- m n))))

(do ((i 0 (+ i 1)))
((>= i m) result)

(do ((j m (+ j 1)))
((>= j n))

(matrix-set! result i (- j m) (matrix-ref A i j)))))

(let ((result (make-vector m)))

(do ((i 0 (+ i 1)))
((>= i m) result)

(vector-set! result i (matrix-ref A i m)))))))

(define (rref A)
;; Solve Ax = b.

(let ((m (matrix-row-count A))
(n (matrix-column-count A)))

(if (>= m n) (error "Incorrect dimensions -- LU-SOLVE"))

;; Get A = LU.

369

(let ((det (lu-decomp A 'no-det)))
(if (almost-zero? det)

(error (string-append "Singular matrix! (Determinant = "
(number->string det)
") -- LU-SOLVE"))))

;; Forward substitution to solve Ly = b.

(do ((j 0 (1+ j)))
((>= j m))

(do ((i (1+ j) (1+ i)))
((>= i m))

(do ((k m (1+ k)))
((>= k n))

(matrix-set! A i k
(- (matrix-ref A i k)

(* (matrix-ref A j k) (matrix-ref A i j))))
(matrix-set! A i j 0))))

;; Backward substitution to solve Ux = y.

(do ((i (-1+ m) (-1+ i)))

((< i 0))

(let ((diag (matrix-ref A i i)))
(do ((k i (1+ k)))

((>= k n))
(matrix-set! A i k (/ (matrix-ref A i k) diag))))

(do ((j (-1+ i) (-1+ j)))

((< j 0))
(let ((factor (matrix-ref A j i)))

(do ((k i (1+ k)))
((>= k n))

(matrix-set! A j k
(- (matrix-ref A j k)

(* factor (matrix-ref A i k))))))))))

Compute determinants without mutating the argument:

(define (det A)
(lu-decomp (matrix-copy A)))

;;; A very useful procedure to have around:

(define (print-matrix matrix . argl)
(if (null? argl)

(set! argl (list (current-output-port))))

(if (not (and (null? (cdr argl)) (output-port? (car argl))))
(error "Invalid argument(s) -- PRINT-MATRIX"))

(let ((port (car argl)))
(newline port)
(let ((m (matrix-row-count matrix))

(n (matrix-column-count matrix)))
(do ((i 0 (+ i 1)))

370

((>= i m))
(display (matrix-ref matrix i 0) port)

(do ((j 1 (+ j 1)))
((>= j n))

(display #\tab port)
(display (matrix-ref matrix i j) port))

(newline port)))))

;;; Also very useful, especially for printing large matrices in a Emacs buffer:

(define (round-matrix mat precision)
(let* ((m (matrix-row-count mat))

(n (matrix-column-count mat))
(out (make-matrix m n)))

(do ((i 0 (+ i 1)))
((>= i m) out)

(do ((j 0 (+ j 1)))
((>= j n))

(let ((val (matrix-ref mat i j)))
(matrix-set! out i j (* (round (/ val precision)) precision)))))))

C.2.21 nodes.scm

;;; This file defines nodes, which localize assembly computations. Nodes use
;;; elements to compute source terms and integrals. Linearity of the PDE is
;;; probabliy the only assumption here. This also appears to be the only
;;; definition that restricts this code to two dimensions.

(declare (usual-integrations))

;;; Constructor:

(define (make-node x y . aux)
(vector x y (if (null? aux) #f (car aux)) '() '() 37 0.))

;;; Access methods for nodes. These are necessary for the Delaunay
;; triangulation program, and are also useful for testing the algorithm, as

;;; the canonical coordinate functions are harmonic.

(define (node:get-x node) (vector-ref node 0))
(define (node:get-y node) (vector-ref node I))
(define (node:get-coords node) (vector (node:get-x node) (node:get-y node)))
(define (node:get-value node) (vector-ref node 6))
(define (node:set-value! node val) (vector-set! node 6 val))
(define (node:get-id node) (vector-ref node 5))
(define (node:set-id! node id) (vector-set! node 5 id))
(define (node:boundary? node) (vector-ref node 2))
(define (node:set-boundary! node flag) (vector-set! node 2 flag))
(define (node:get-elements node) (vector-ref node 3))
(define (node:get-local-ids node) (vector-ref node 4))

(define (node:add-element node element index)

371

(vector-set! node 3 (cons element (vector-ref node 3)))
(vector-set! node 4 (cons index (vector-ref node 4))))

C.2.22 opalg.scm

;;; This file defines abstract operator algebra. It turns out to be more
general than what we need. If we're going to be this abstract anyway, why
don't we just use the polynomial code? Anyway, this is the wrong thing, so

;;; we won't continue along this line of work. Let's keep it around, though,
;;; just in case we need it someday.

(declare (usual-integrations))

;;; We use the multi-index notation:

(define (make-multi-index n)
(make-vector n 0))

(define multi-index vector)

(define multi-index:length vector-length)

(define multi-index:get vector-ref)

(define multi-index:set! vector-set!)

(define (multi-index:sum multind)
(let ((len (multi-inde:length multind)))

(let loop ((sum 0) (i 0))
(if (< i len)

(loop (+ sum (multi-index:get multind i)) (+ i 1))
sum))))

(define (mult-index:fact multind)
(let ((len (multi-index:length multind)))

(let loop ((prod 1) (i 0))
(if (< i len)

(loop (* prod (factorial (mult-index:get multind i))) (+ i 1))
prod))))

(define (multi-index:+ mil mi2)
(let* ((len (multi-index:length mil))

(result (make-multi-index len)))
(do ((i 0 (+ i 1)))

((>= i len) result)
(multi-index:set! result i

(+ (multi-index:get mil i) (multi-index:get mi2 i))))))

Make a partial differential operator with one summand:

(define (multi-index->diffop multind)
'((I ,multind)))

;;; Elementary operations:

372

(define (diffop:+ opi op2)
(append opi op2))

(define (diffop:- opl op2)
(append opl (diffop:negate op2)))

(define diffop:first-term car)

(define diffop:remaining-terms cdr)

(define (diffop:zero? op)
(null? (diffop:simplify op)))

;;; Composing differential operators:

(define (diffop:compose opl op2)
(if (diffop:zero? opl)

op2
(diffop:compose (diffop:remaining-terms opi)

(let ((opi (diffop:first-term opl)))
(append-map
(lambda (op2)

(diffop:compose-terms opl op2))
op2)))))

C.2.23 operators.scm

;; This file contains some ad-hoc definitions of simple differential
;; operators, such as the two-dimensional Laplacian or the 1+1-dimensional

;;; d'Alembertian. It also defines some important constructors and operations
;; on differential operators that compute the adjoint and encapsulate

;;; integration-by-parts. (See ELEMENT-MAKER in fem.scm.)

;; opalg.scm contains the beginnings of a much more abstract (and complete)
;;; approach.

;;; This file uses various procedures from basis.scm.

(declare (usual-integrations))

;;; Simple constructor and methods for an operator structure:

(define (make-operator left-op right-op combine)
(vector left-op right-op combine))

(define (operator:get-left-op operator)
(vector-ref operator 0))

(define (operator:get-right-op operator)
(vector-ref operator i))

(define (operator:get-combine operator)
(vector-ref operator 2))

373

(define (operator:get-local-form op)
(let ((combine (operator:get-combine op))

(left-op (operator:get-left-op op))
(right-op (operator:get-right-op op)))

(lambda (f g)
(combine (left-op f) (right-op g)))))

C.2.24 relax.scm

;; Matrix inversion using successive overrelaxation methods (SOR):

;;; We use classical SOR methods to solve linear systems of equations.
;;; The representation for matrices is defined in sparse.scm.

(declare (usual-integrations))
;(load "sparse")

;;; Note that this procedure first modifies the matrix by dividing through by
;;; the diagonal...

(define (sor sm n . aux)
(let* ((nrows (sparse-matrix-row-count sm))

(ncols-1 (- (sparse-matrix-column-count sm) 1))
(rhs (make-vector nrows))
(state (make-vector nrows 0))
(factor 1)
(residual 0))

;; Parse auxiliary arguments, if any:
;; (The first should be SOR factor, the second an alternate state.)

(if (not (null? aux))
(if (not (null? (cdr aux)))

(set! state (cadr aux))
(set! factor (car aux))))

;; Normalize the matrix:

(do ((i 0 (+ i 1)))
((>= i nrows))

(let ((diag (sparse-matrix-ref sm i i)))
(for-each
(lambda (pair)

(sparse-matrix-set! sm i (car pair) (/ (cadr pair) diag)))
(sparse-matrix-get-row sm i))))

;; Collect the right hand side of the equation Ax = b:

(do ((i 0 (+ i 1)))
((>= i nrows))

(vector-set! rhs i (sparse-matrix-ref sm i ncols-1)))

;; Now perform SOR (note that we have normalized the matrix so that the
;; diagonal terms are all unity):

(do ((n n (- n 1)))

374

((<= n 0))

(set! residual 0.)

(do ((i 0 (+ i 1)))
((>= i nrows))

;; Compute the row sum:

(let ((sum 0))
(for-each

(lambda (pair)
(let ((index (car pair))

(val (cadr pair)))
(if (< index ncols-1)

(set! sum (+ sum (* (vector-ref state index) val))))))
(sparse-matrix-get-row sm i))

;; Step forward:

(let ((step (- (vector-ref rhs i) sum)))
(if (> (abs step) residual)

(set! residual (abs step)))

(vector-set! state i (+ (vector-ref state i) (* factor step)))))))

(write-line '(residual: ,residual))
state))

C.2.25 sparse.scm

;;; This file describes a data structure useful for describing sparse matrices.
;;; It is geared towards saving space, and is rather handy for performing SOR
;;; on large matrices or assembling finite-element equations.

(declare (usual-integrations))

;;; Basic data structure and associated methods:

(define (make-sparse-matrix nrows ncols)
(list (make-vector nrows '()) nrows ncols))

(define sparse-matrix-row-count cadr)
(define sparse-matrix-column-count caddr)
(define sparse-matrix-size cdr)

(define (sparse-matrix-ref sm i j)
(let ((m (sparse-matrix-row-count sm))

(n (sparse-matrix-column-count sm)))

(if (or (< i 0) (>= i m) (< j 0) (>= j n))
(error "Matrix access out of bound. -- SPARSE-MATRIX-REF"))

(let ((result (assq j (vector-ref (car sm) i))))
(if result

(cadr result)

375

0))))

(define (sparse-matrix-set! sparse i j val)
(let ((m (sparse-matrix-row-count sparse))

(n (sparse-matrix-column-count sparse))
(sm (car sparse)))

(if (or (< i 0) (>= i m) (< j 0) (>= j n))
(error "Matrix access out of bound. -- SPARSE-MATRIX-SET!"))

(let ((result (assq j (vector-ref sm i))))
(if (zero? val)

(if result
(vector-set! sm i (all-but (vector-ref sm i) result)))

(if result
(set-cdr! result (list val))
(vector-set! sm i (cons (list j val) (vector-ref sm i))))))))

(define (sparse-matrix-get-row sm i)
(let ((m (sparse-matrix-row-count sm)))

(if (or (< i O) (>= i m))
(error "Matrix access out of bound. -- SPARSE-MATRIX-GET-ROW"))

(vector-ref (car sm) i)))

(define sparse-matrix-get-rows car)

(define (sparse-matrix-get-column sm j)
(let ((m (sparse-matrix-row-count sm)))

(let next-row ((i 0) (result '())
(if (< i m)

(let next-term ((row (sparse-matrix-get-row sm i)))
(if (null? row)

(next-row (+ i 1) result)
(if (= (caar row) j)

(next-row (+ i 1) (cons (list i (cadar row)) result))
(next-term (cdr row)))))

result))))

(define (sparse-matrix-get-columns sm)
(let ((m (sparse-matrix-row-count sm))

(v (make-vector (sparse-matrix-column-count sm) '())))
(let next-row ((i 0))
(if (< i m)

(let next-term ((row (sparse-matrix-get-row sm i)))
(if (null? row)

(next-row (+ i 1))
(let ((j (caar row)))
(vector-set! v j (cons (list i (cadar row))

(vector-ref v j)))
(next-term (cdr row)))))

v))))

;;; A predicate that can come in handy:

(define (sparse-matrix? sm)
(call-with-current-continuation

376

(lambda (exit)
(if (and (list? sm) (= (length sm) 3))

(let ((m (cadr sm))
(n (caddr sm))
(sm (car sm)))

(if (and (integer? m) (integer? n) (> m 0) (> n 0) (vector? sm))

(do ((i 0 (+ i i)))
((>= i m))

(let ((1 (vector-ref sm i)))
(if (or (not (list? 1))

(memq #f (map list? 1)))
(exit #f))))

#f)
#t)

#f))))

;; Converters:

(define (sparse->matrix sm)
(let* ((m (sparse-matrix-row-count sm))

(n (sparse-matrix-column-count sm))
(matrix (make-matrix m n)))

(do ((i 0 (+ i 1)))
((>= i m) matrix)

(for-each
(lambda (pair)
(matrix-set! matrix i (car pair) (cadr pair)))

(sparse-matrix-get-row sm i)))))

(define (matrix->sparse matrix)
(let* ((m (matrix-row-count matrix))

(n (matrix-column-count matrix))
(sm (make-sparse-matrix m n)))

(do ((i 0 (+ i 1)))
((>= i m) sm)

(do ((j 0 (+ j 1)))
((>= j n))

(sparse-matrix-set! sm i j (matrix-ref matrix i j))))))

;;; Very useful routine:

(define (print-sparse-matrix matrix . argl)
(if (null? argl)

(set! argl (list (current-output-port))))

(if (not (and (null? (cdr argl)) (output-port? (car argl))))
(error "Invalid argument(s) -- PRINT-MATRIX"))

(let ((port (car argl)))
(newline port)
(let ((m (sparse-matrix-row-count matrix))

(n (sparse-matrix-column-count matrix)))
(do ((i 0 (+ i 1)))

((>= i m))
(display (sparse-matrix-ref matrix i 0) port)

(do ((j 1 (+ j 1)))

377

((>= j n))
(display #\tab port)
(display (sparse-matrix-ref matrix i j) port))

(newline port)))))

;;; Prepare for least squares on sparse matrices:

(define (sparse-normal-equations mat)
(let* ((m (sparse-matrix-row-count mat))

(n+1 (sparse-matrix-column-count mat))
(n (- n+1 1))
(out (make-sparse-matrix n n+1))
(columns (sparse-matrix-get-columns mat)))

;; Compute the normal equations:

(do ((i 0 (+ i 1)))
((>= i n) out)

(let ((ith-column (vector-ref columns i)))

;; First, the diagonal:

(sparse-matrix-set! out i i (sparse-dot ith-column ith-column))

;; Next, the off-diagonal terms:

(do ((j (+ i 1) (+ j 1)))
((>= j n))

(let ((val (sparse-dot ith-column (vector-ref columns j))))
(sparse-matrix-set! out i j val)
(sparse-matrix-set! out j i val)))

;; Finally, the RHS:

(sparse-matrix-set! out i n (sparse-dot ith-column
(vector-ref columns n)))))))

(define (sparse-dot a b)
(let a-loop ((a a) (sum 0))
(if (null? a)

sum

(let ((id (caar a)))
(let b-loop ((b b))
(if (null? b)

(a-loop (cdr a) sum)
(if (= id (caar b))

(a-loop (cdr a) (+ sum (* (cadar a) (cadar b))))
(b-loop (cdr b)))))))))

C.2.26 thesis.scm

(load "collect")

;;; Test cases:

378

(test-1 '(3 3 2.) "Data/thesis/testia")
(test-i '(4 4 2.) "Data/thesis/testib")
(test-I '(5 5 2.) "Data/thesis/testic")
(test-i '(6 6 2.) "Data/thesis/testld")
(test-I '(7 7 2.) "Data/thesis/testle")
(test-i '(8 8 2.) "Data/thesis/testlf")
(test-1 '(9 9 2.) "Data/thesis/testig")
(test-i '(10 10 2.) "Data/thesis/testlh")
(test-i '(11 11 2.) "Data/thesis/testli")
(test-i '(12 12 2.) "Data/thesis/testij")
(test-i '(13 13 2.) "Data/thesis/testik")
(test-I '(14 14 2.) "Data/thesis/testll")
(test-i '(15 15 2.) "Data/thesis/testlm")

(test-2 '(3 3) "Data/thesis/test2a")
(test-2 '(4 4) "Data/thesis/test2b")
(test-2 '(5 5) "Data/thesis/test2c")
(test-2 '(6 6) "Data/thesis/test2d")
(test-2 '(7 7) "Data/thesis/test2e")
(test-2 '(8 8) "Data/thesis/test2f")
(test-2 '(9 9) "Data/thesis/test2g")
(test-2 '(10 10) "Data/thesis/test2h")
(test-2 '(11 11) "Data/thesis/test2i")
(test-2 '(12 12) "Data/thesis/test2j")
(test-2 '(13 13) "Data/thesis/test2k")
(test-2 '(14 14) "Data/thesis/test21")
(test-2 '(15 15) "Data/thesis/test2m")

(test-i '(15 15 2.1) "Data/thesis/test3m")
(test-1 '(15 15 2.2) "Data/thesis/test4m")
(test-1 '(15 15 2.3) "Data/thesis/test5m")
(test-i '(15 15 2.4) "Data/thesis/test6m")
(test-I '(15 15 2.5) "Data/thesis/test7m")
(test-I '(15 15 2.6) "Data/thesis/test8m")
(test-i '(15 15 2.7) "Data/thesis/test9m")
(test-i '(15 15 2.8) "Data/thesis/testlOm")
(test-i '(15 15 2.9) "Data/thesis/testllm")
(test-i '(15 15 3.0) "Data/thesis/testl2m")

C.2.27 thesisl.scm

(load "collect")

;;; Test cases (the first run somehow stopped in the middle, probably because
;;; of errors in LU-solve):

(test-3 '(15 15 2.7) 30000 1.5 "Data/thesis/test9m")
(test-3 '(15 15 2.8) 30000 1.5 "Data/thesis/testlOm")
(test-3 '(15 15 2.9) 30000 1.5 "Data/thesis/testllm")
(test-3 '(15 15 3.0) 30000 1.5 "Data/thesis/testi2m")

C.2.28 util-too.scm

;;; Miscellaneous mathematical helpers that are useful:

(declare (usual-integrations))

379

;;; Some combinatorial things:

(define (choose n r)

Compute nCr:

(/ (factorial n) (factorial r) (factorial (- n r))))

(define (slow-factorial n)
(let loop ((n n) (result 1))
(if (> n 1)

(loop (- n 1) (* result n))
result)))

(define factorial (simple-memoize slow-factorial 100))

(define (pairs 1)
(let loop ((1 1) (result '()))
(if (null? 1)

result
(loop (cdr 1)

(let ((a (car 1)))
(let loop ((1 (cdr 1)) (result result))
(if (null? 1)

result
(loop (cdr 1) (cons (list a (car 1)) result)))))))))

;; Forming the list of all sublists of L of length N is a bit more
;;; complicated.

(define (choose-sublists 1 n)
(if (or (null? 1) (<= n 0))

'(())
(let loop ((1 1) (n n) (k (- (length 1) n)) (result '()))

(cond ((< k 0) result)
((zero? k) (cons 1 result))
((= n 1) (append (map list 1) result))
(else
(let ((first (car 1))

(rest (cdr 1)))
(append
result
(loop rest n (- k 1)

(map (lambda (sublist) (cons first sublist))
(loop rest (- n 1) k '()))))))))))

This procedure converts references to entries in an NxN symmetric matrix
into a vector representation.

(define (symmetric->vector-index i j)
(if (>= i j)

(if (= i 0)
0
(+ (choose (+ i 1) 2) j))

(if (= j 0)

380

0
(+ (choose (+ j 1) 2) i))))

;;; Why isn't this built into Scheme?

(define (all-but list item)
(let loop ((head '()) (tail list))
(if (null? tail)

list
(if (eq? (car tail) item)

(append (reverse head) (cdr tail))
(loop (cons (car tail) head) (cdr tail))))))

;;; It's useful to find the bounding box of a finite subset of an Euclidean
;;; space:

(define (bounding-box nodes get-coords)
(let* ((p (get-coords (car nodes)))

(dim (vector-length p))
(best (let ((1 (vector->list p)))

(list->vector (map cons 1 1)))))

(let loop ((nodes (cdr nodes)))
(if (null? nodes)

(let ((1 (vector->list best)))
(append (map car 1) (map cdr 1)))

(let ((p (get-coords (car nodes))))
(do ((i 0 (+ i 1)))

((>= i dim))
(let ((pair (vector-ref best i))

(val (vector-ref p i)))
(cond ((< val (car pair)) (set-car! pair val))

((> val (cdr pair)) (set-cdr! pair val)))))
(loop (cdr nodes)))))))

C.2.29 util.scm

;;; Memoization is frequently useful:

(declare (usual-integrations))

;;; ALWAYS useful:

(define (square z)
(* z z))

(define (cube z)
(* z z z))

;;; Even more useful:

(define (simple-memoize proc size)
;; Memoize a function whose argument is a non-negative integer:
(let ((cache (make-vector size 'undefined)))

381

(lambda (n)
(if (>= n size)

(proc n)
(let ((val (vector-ref cache n)))
(if (eq? val 'undefined)

(let ((val (proc n)))
(vector-set! cache n val)
val)

val))))))

(define almost-zero?
(let ((*tolerance* le-14))

(lambda (z)
(< (magnitude z) *tolerance*))))

;;; Why is this not defined elsewhere?

(define (compose f . rest)
(let loop ((f f) (1 rest))
(if (null? 1)

f
(loop (binary-compose f (car 1)) (cdr 1)))))

(define (binary-compose f g)
(lambda (first . rest)
(f (apply g (cons first rest)))))

C.3 Finite differences

The following programs implement the finite difference algorithms discussed in Chapter 3.
They have been written in C for speed, and hence may be even less coherent than the
previous sections.

C.3.1 farray.h

typedef struct {
int size;
double *array;

} farray;

farray *farray_cons(int);
void farray_free(farray *);
double fa_ref(farray *, int);
void faset(farray *, int, double);
int fa_size(farray *);

C.3.2 gunk.h

#include <stdio.h>

#define STRLEN 256
#define pi 3.141592653589793
#define TOLERANCE le-16

382

#define SQUARE(x) ((x)*(x))

/**

* Currently supported node types include interior and boundary.
**/

#define INTERIOR-NODE 0
#define BOUNDARY-NODE 1

/**
* This is a kluge. It is especially useful for keeping track of the evolution
* of file formats.
**/

*define GUNK-VERSION 1

/**

* These macros decide which potential *
* function we use. *

**

/* #define POT2 */
/* #define POT2 */

typedef struct CELL {
int index;
struct CELL *next;

} cell;

typedef struct {
double x, y, z;
cell *neighbors;
int type;

} node;

typedef struct {
cell **list;
int size;

} partition;

/************************

* Function prototypes *
********************** /

void oldwrite-elements(FILE *, int, node *);
void write elements(FILE *, int, node *);
void oldreadelements(FILE *, int, node *);
void read elements(FILE *, int, node *);
int readneighbor(FILE *);

void putlf(FILE *, double);
void getlf(FILE *, double *);
void putint(FILE *, int);.
void getint(FILE *, int *);

383

void freememory(int, node *);

double potential(double, double);
double fsquare(double);
double distance(node *, node *);

partition *makepartition(int);
void partition-add(partition *, int, int, int);
cell *partitionget(partition *, int, int);
void freepartition(partition *);
void introduce(node *, int, int, double);

int interiornode(node *);
int boundarynode(node *);
void set.boundarynode(node *);
void set-interior-node(node *);

C.3.3 matrix.h

#include "farray.h"

#include <stdio.h>
#define TOL tolerance()
static double tolerancevalue = le-10;

typedef struct {
int nrows, ncols;
double **el;

} matrix;

matrix *matrix-cons(int, int);
void matrixfree(matrix *);
double mref(matrix *, int, int);
void mset(matrix *, int, int, double);

void exchangerows(matrix *, int, int);
void scalerow(matrix *, int, double);
void add_rows(matrix *, int, double, int);

void madd(matrix *, matrix *, matrix *);
void mmult(matrix *, matrix *, matrix *);
matrix *transpose(matrix *);
double rref(matrix *);
double ludecomp(matrix *);
void svdecomp(matrix *, farray *, matrix *);

void mprint(FILE *, matrix *);
void mprintf(FILE *, char *, matrix *);

double tolerance(void);
void settolerance(double);

C.3.4 random.h

#ifdef RANDOM_DECLS

384

#define R 43
#define R_1 42
#define S 22
#define RS 21
#define B 4294967291
*define B_1 4294967290
#define doubleB ((double)4294967291)
#define TRANSIENT 100000

static struct {
unsigned long vectorlR];
unsigned long borrow;
int index;

} random-state = {
417256956, 1236137991, 1100630827, 2433022217, 2575904056,
177405986, 526582298, 3028657187, 2171035790, 2723919184,
2986817232, 1113054914, 626934711, 19344552, 731146319,
914274156, 548850110, 1944853448, 3801326350, 2719133088,
3577421839, 86246253, 2765784422, 561513528, 3851288197,
2574098718, 744615398, 1598791186, 2262866255, 2248738083,
1670448839, 985226499, 4058327925, 177492605, 3322737975,
1918398670, 3765485260, 629347060, 553460448, 278339973,
1688376297, 1125926514, 2267411077}, 1, 35};

#endif

double frandom(void);
unsigned long lrandom(void);
void initialize-random(void);

C.3.5 stat.h

void sqstat(FILE *, int, node *);
void nstat(FILE *, int, node *);

C.3.6 accum.c

* accum.c *

Convert a list of tuples of the form (x, y, val, ref) into a rectangular grid
of something-or-other, readable by MATLAB or Maple. Just like list2grid.c or
slice.c.

*/

#include <stdio.h>
#include <math.h>
#include "matrix.h"

matrix *accum(FILE *, int, int, int);

385

main(int argc, char *argv[])

{
FILE *fin, *fout;

int m, n, opt = 0;

matrix *mat;

if (argc != 5 && argc != 6) {

fprintf(stderr, "Usage: %s input-file output-file x-count y-count [opt]\n",

argv[0]);

exit ();

}

/* Open input file. */

fin = fopen(argv[l], "r");

if (fin == NULL) {

fprintf(stderr, "Error: Cannot read file \"'s\".\n", argv[l]);

exit(2);

}

sscanf(argv[3], "'d", 8m);

sscanf(argv[41], "d", &n);

if (argc == 6)

sscanf(argv[51], "d", &opt);

printf("Constructing %dx'd grid and accumulating data...\n", m, n);

getc(fin); /* Pop the first character in the file. */

mat = accum(fin, m, n, opt);

fclose(fin);

/* Open output file. */

fout = fopen(argv[2] , "w");

if (fout == NULL) {

fprintf(stderr, "Error: Cannot write to file \"%s\".\n", argv[2]);
exit(3);

}

mprint(fout, mat);

fclose(fout);

matrix-free(mat);

return 0;

matrix *accum(FILE *fin, int m, int n, int opt)
{
double x, y, val, ref, x_max, x_min, y_max, y_min, dx, dy;

int i, j;
matrix *mat, *count;

if (opt < 0 II opt > 3) {

fprintf(stderr, "Valid options:\n\n");

fprintf(stderr, "0. Save absolute error.\n");

fprintf(stderr, "1. Save relative error.\n");

fprintf(stderr, "2. Save reference value.\n");

fprintf(stderr, "3. Save computed value.\n\n");

386

exit(4);
}

mat = matrixcons(m, n);
count = matrix_cons(m, n);

fscanf(fin, "%lg\t%lg\t%lg\t.lg\n", &x, &y, &val, &ref);
xmax = xmin = x;

ymax = ymin = y;

while (fscanf(fin, "%lg\tlg\tlg\tlg\n", &x, &y, &val, &ref) != EOF) {
if (x > xmax)

xmax = x;
else if (x < x_min)

x_min = x;

if (y > ymax)
y-max = y;

else if (y < ymin)
y_min = y;

dx = (x_max - x_min)/(m + 1);
dy = (ymax - y_min)/(n + 1);

fprintf(stderr, "x_max = %lg, x-min = %1g, y-max = l1g, y_min = %lg.\n",
x_max, x_min, y_max, y_min);

rewind(fin);

while (fscanf(fin, "%lg\t.lg\tXlg\tY.lg\n", &x, &y, &val, &ref) != EOF) {
i = (int)((x - x_min)/dx);

j = (int)((y - ymin)/dy);

if (i >= m) i = m - 1;

if (j >= n) j = n

switch(opt)
case 0:
mset(mat,
break;

case 1:
mset(mat,
break;

case 2:
mset(mat,
break;

case 3:
mset(mat,
break;

default:
mset(mat,
break;

{

i, j, mref(mat, i, j) + fabs(val - ref));

i, j, mref(mat, i, j) + (ref == 0.0 ? 0.0 : (val - ref)/ref));

i, j, mref(mat, i, j) + ref);

i, j, mref(mat, i, j) + val);

i, j, mref(mat, i, j) + val);

mset(count, i, j, mref(count, i, j) + 1);

for (i = O; i < m; i++)

for (j = 0; j < n; j++)

387

if (mref(count, i, j) > 0)
mset(mat, i, j, mref(mat, i, j)/mref(count, i, j));

matrixfree(count);
return mat;

}

C.3.7 approx.c

/*************

* approx.c *

Input: A gunk file, such as the output of mkbd or mkgrid.

Output: Local finite-difference approximations of the Laplacian
operator, obtained via polynomial interpolation.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"
#include "matrix.h"

/* #define NORMALIZE */
#define CACHESIZE 105

void initop(int, node *, farray **);
void gencoeff(int, node *, farray **);
void checkcoeff(int, farray **);
void normalizecoeff(int, farray **);

void isqfit(int, node *, farray *);
void memowalk(int, int *, int *);
void walk(int, int *, int *);

double monomial(double, double, int, int);
double laplacemonomial(double, double, int, int);
int termcount(int);

void average(int, node *, farray *);
void diamond(int, node *, farray *);

main(int argc, char *argv[])
{
farray **coeff;
int size, i, j, N;
FILE *fp;
node *elements;

if (argc != 3 && !(argc == 4 && (strcmp(argv[3], "-ascii") == 0))) {
fprintf(stderr, "Usage: '/s input-file output-file [-ascii)\n",

argv [0]);
exit(1);

388

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[l]);
exit(2);

}

fscanf(fp, "Ud", &size);
elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Reading input file (%d nodes)...\n", size);
read_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Initializing differential operator coefficients...\n") ;
coeff = (farray **)calloc(sizeof(farray *), size);
init_op(size, elements, coeff);
gen_coeff(size, elements, coeff);

#ifdef NORMALIZE
normalize_coeff(size, coeff);

#endif
check-coeff(size, coeff);

fp = fopen(argv[2], "w");
fprintf(stderr, "Writing output file...\n");

if (argc == 4) {
for (i = 0; i < size; i++) {
N = fasize(coeff[i]);
fprintf(fp, "Xd", N);

for (j = 0; j < N; j++)
fprintf(fp, " %.161g", fa_ref(coeff[i], j));

fprintf(fp, "\n");
}

}
else {
for (i = 0; i < size; i++) {
N = fa_size(coeff[i]);
putint(fp, N);

for (j = 0; j < N; j++)
putlf(fp, fa_ref(coeff[i], j));

fclose(fp);

fprintf(stderr, "Freeing memory... \n");
free-memory(size, elements);

for (i = 0; i < size; i++)
farray_free(coeff i]);

free(coeff);
return 0;

389

}

void initop(int size, node *elements, farray **coeff)
{

cell *cp;
int i, length;

for (i = 0; i < size; i++)
if (interior-node(elements + i)) {

length = 0;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next)
length++;

coeff[i] = farraycons(length + 1);
}

void gencoeff(int size, node *elements, farray **coeff)

{
int n;

for (n = 0; n < size; n++)
if (interiornode(elements + n))
isqfit(n, elements, coeff[n]);

}

void checkcoeff(int size, farray **coeff)

double sum;
int n, i, N, count = 0;

for (n = 0; n < size; n++) {
N = fasize(coeff [n]);

if (N > 0) {
sum = 0.0;

for (i = 1; i < N; i++)
sum += fabs(fa-ref(coeff n], i));

if (sum > fabs(faref(coeff[n], 0)))
count++;

}

if (count > 0)
fprintf(stderr, "Warning: Matrix not diagonally dominant! (%d/%d)\n",

count, size);

void memowalk(int n, int *x, int *y)
{

static int xi[CACHESIZE], yi[CACHESIZE], filled[CACHESIZE];
static int first-time = 1;
int k;

if (n < CACHESIZE) {
if (firsttime) {

390

for (k = 0; k < CACHESIZE; k++)
filledCk] = 0;

firsttime = 0;
}

if (!filled[n]) {
walk(n, xi + n, yi + n);
filled[n] = 1;

}

*x = xi[n];
*y = yi[n];

}
else
walk(n, x, y);

void walk(int n, int *x, int *y)
{

int i = 0, j = 0, k;

for (; n > 0; n--)
if (i == j) {

i++;

j = 0;
}
else if (i > j) {
k =i;
i =j;

j =k;
}
else {
k = i + 1;
i =j;
j =k;

}

*x = i;

*y = j;
}

double monomial(double x, double y, int i, int j)
{
double product = 1.0;

for (; i > 0; i--) product *= x;
for (; j > 0; j--) product *= y;

return product;
}

double laplacemonomial(double x, double y, int i, int j)
{
double xprod = i*(i - 1), yprod = j*(j - 1);
int k;

for (k = 2; k < i; k++) xprod *= x;
for (k = 0; k < j; k++) xprod *= y;

391

for (k = 2; k < j; k++) yprod *= y;
for (k = 0; k < i; k++) yprod *= x;

return xprod + yprod;

}

int termscount(int n)
{
/* n = (int)ceil(sqrt(8.0*n + 1.0)/2.0 - 1.5);

n = ((n + 1)*(n + 2))/2; */
return (n > 6) ? n : 6;

}

void lsqfit(int index, node *elements, farray *coeff)

{
FILE *fp;
static int print = 0, first-time = 0;
cell *cp;
double x = elements[index].x, y = elements[index].y, sum;
farray *W;
int i, j, M, N, p, q, other, badcount = 0;
matrix *U, *V;

N = fasize(coeff);
M = termcount(N);
U = matrixcons(M, N);
V = matrixcons(N, N);
W = farraycons(N);

if (firsttime) {
fp = fopen("matrix", "w");

fprintf(fp, "%.161g", elements[index].z);

for (cp = elements[index].neighbors; cp != NULL; cp = cp->next)
fprintf(fp, " . 161g", elements[cp->index).z);

fprintf(fp, "\n");
}

for (i = 0; i < M; i++) {
memowalk(i, &p, &q);
other = index;
cp = elements[index].neighbors;

for (j = 0; j < N; j++) {
mset(U, i, j, monomial(elements[other].x - x, elements[other].y - y,

p, q));

if (firsttime) fprintf(fp, "%.161g ", mref(U, i, j));

other = cp->index;
cp = cp->next;

if (firsttime) fprintf(fp, "\n");

}

svdecomp(U, W, V); /* use _Numerical Recipes_ */

392

if (print) {
printf("\nSingular values:\n");

for (i = 0; i < N; i++)
printf("X.161g\n", fa_ref(W, i));

printf("\nU =\n");
mprint(stdout, U);
printf("\nV =\n");
mprint(stdout, V);

for (i = 0; i < N; i++)
if (fabs(faref(W, i)) < TOL)
faset(W, i, 0.0);

else {
sum = 0.0;

for (j = 0; j < M; j++) {
memo_walk(j, &p, &q);
sum += laplacemonomial(O.0, 0.0, p, q)*mref(U, j, i);

}

fa_set(W, i, sum/faref(W, i));
}

for (i = 0; i < N; i++) {
sum = 0.0;

for (j = 0; j < N; j++)
sum += mref(V, i, j)*fa_ref(W, j);

fa-set(coeff, i, sum);
}

if (print) {
print--;

printf ("\nCoefficients:\n");
printf("(/lf, X•f)\t%.161g\n", 0.0, 0.0, fa_ref(coeff, 0));

for (cp = elements[index].neighbors, i = 1; i < N; i++, cp = cp->next)
printf(" (X.161g, X.161g)\tX..161g\n",

elements[cp->index].x - elements[index] .x,

elements[cp->index] .y - elements[index] .y,
fa_ref(coeff, i));

if (first_time) {
first_time = 0;
fclose(fp);
fprintf(stderr, "Done dumping.\n");

}

matrix_free(U);
matrix_free(V);
farrayfree(W);

}

393

** The following procedures are alternatives to isqfit.

void average(int index, node *elements, farray *coeff)

{
int i, N = fa_size(coeff);

for (i = 1; i < N; i++)
fa_set(coeff, i, 1);

faset(coeff, 0, -N + 1);
}

void diamond(int index, node *elements, farray *coeff)

{
cell *cp;
double max_r = 0.0, dist, x = elements[index].x, y = elements[index].y;
int i, N = 0;

if (interior_node(elements + index)) {
for (cp = elements[index].neighbors; cp != NULL; cp = cp->next) {

dist = distance(elements + index, elements + cp->index);

if (dist > max_r)
max_r = dist;

}

dist = max_r/sqrt(2);

for (cp = elements[index].neighbors, i = 1;
cp != NULL;
cp = cp->next, i++)

if (fabs(elements[cp->index].x - x) + fabs(elements[cp->index].y - y) <=

dist + TOLERANCE) {
fa_set(coeff, i, 1);

N++;
}
else
fa_set(coeff, i, 0);

fa_set(coeff, 0, -N);

}

/**
* This function divides through each row of the matrix by the diagonal term,

* to help reduce the magnitude of coefficients.

++/

void normalize_coeff(int size, farray **coeff)
{
double val;
int i, j, n;

for (i = 0; i < size; i++)

if (coeff[i] != NULL) {

394

n = fasize(coeff[il);
val = faref(coeff [i], 0);

for (j = 0; j < n; j++)
faset(coeff[i], j, faref(coeff[i], j)/val);

C.3.8 band.c

/***********

* band.c *

This program computes the bandwidth of the matrix
generated by a gunk system.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"
#include "matrix.h"

void band(int, node *);

main(int argc, char *argvyll)
{

int size;
node *elements;
FILE *fp;

if (argc != 2) {
fprintf(stderr,
exit(1);

}

fp = fopen(argv[l], "r");

if (fp == NULL) {
fprintf(stderr, "Error:
exit(1);

}

"Usage: %s input-file\n", argv[0]);

Cannot open file \"%s\"\n", argv[l]);

fscanf(fp, "%d", &size);
fprintf(stderr, "Reading input (%d nodes)...\n", size);
elements = (node *)calloc(sizeof(node), size);
read_elements(fp, size, elements);
fclose(fp);

band(size, elements);

fprintf(stderr, "Freeing memory... \n");
free_memory(size, elements);

return 0;

395

void band(int size, node *elements)
{
cell *cp;
int realsize = 0, i, *index, band = 0, row, maxindexi = -1;
int maxindex2 = -1, maxindex3 = -1;

for (i = 0; i < size; i++)
if (interiornode(elements + i))
realsize++;

index = (int *)calloc(sizeof(int), size);

if (interior-node(elements))
index[O] = 0;

else

index[0] = -1;

for (i = 1; i < size; i++)
if (interiornode(elements + i))

index[i] = index[i - 1] + 1;
else

index[i] = index[i - 1i;

for (i = 0; i < size; i++)
if (interiornode(elements + i)) {
row = 0;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next)
if (elements[cp->index].neighbors != NULL &&

fabs(index[i] - index[cp->index]) > row) {
row = fabs(index[i] - index[cp->index]);
max-index3 = cp->index;

}

if (row > band) {
band = row;
maxindexi = i;
maxindex2 = max-index3;

}

free(index);

printf("Node 'd: at (%lf, 1lf)\n",
maxindexl, elements [maxindexil .x, elements [maxindexl].y);

printf("Node %d: at (%lf, ,lf)\n",
maxindex2, elements [maxindex2).x, elements [maxindex2].y);

printf("Bandwidth = %d\n", 2*band + 1);

C.3.9 blud.c

/***********
* blud.c *

396

Load a file of gunk and operator coefficients and try to

invert the matrix using LU decomposition. This tries to take

advantage of banded matrices, so gsort might come in handy.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"
#include "matrix.h"

#define MAX(X,Y) (((X) > (Y)) ? (X) : (Y))
#define MIN(X,Y) (((X) < (Y)) ? (X) : (Y))

int band(int, node *);
void solve(int, node *, farray **);
void readcoeff(FILE *, int, farray **);
int entry(int, int, int, int);

main(int argc, char *argv[])
{

farray **coeff;
int size, i;
node *elements;
FILE *fp;

if (argc != 4) {
fprintf(stderr, "Usage: %s input-file coeff output-file\n",

argv [03);
exit(1);

}

fprintf(stderr, "Warning: This program has not been thoroughly tested\n");
fprintf(stderr, " and may not operate correctly!\n");

fp = fopen(argv[l], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[l]);
exit(l);

fscanf(fp, "%d", &size);
fprintf(stderr, "Reading input (%d nodes)...\n", size);
elements = (node *)calloc(sizeof(node), size);
readelements(fp, size, elements);
close(fp);

fp = fopen(argv[2], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"'s\"\n", argv[2));
exit(1);

}

fprintf(stderr, "Reading coefficients...\n");
coeff = (farray **)calloc(sizeof(farray *), size);
readcoeff(fp, size, coeff);

397

fclose(fp);

fprintf(stderr, "Solving system of equations...\n");
solve(size, elements, coeff);

fprintf(stderr, "Writing output...\n");
fp = fopen(argv[3], "w");
write_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
free_memory(size, elements);

for (i = 0; i < size; i++)
farrayfree(coeff[i]);

free(coeff);
return 0;

}

void read_coeff(FILE *fp, int size, farray **coeff)
{

double val;
int i, j, N;

for (i = 0; i < size; i++) {
getint(fp, &N);

if (N > 0) {
coeff[i] = farray_cons(N);

for (j = 0; j < N; j++) {
getlf(fp, &val);
fa_set(coeff[i], j, val);

}
}

}

void solve(int size, node *elements, farray **coeff)

{
cell *cp;
double sum, scale, mem = 0;
farray **rows, *rhs;
int realsize = 0, i, j, k, bw, B, index[size];

/* solving Ax = u */
/* set up the banded matrix A */

for (i = 0; i < size; i++)
if (interiornode(elements + i))
realsize++;

bw = band(size, elements);
B = (bw - 1)/2;

fprintf(stderr, " Xdxyd matrix, bandwith = %d\n", real_size, real_size, bw);

for (i = 0; i < size; i++)

398

if (bw > real_size) {
fprintf(stderr, "Error: Matrix not banded\n");
exit(1);

}

if (interiornode(elements))
index[O] = 0;

else
index[O] = -1;

for (i = 1; i < size; i++)
if (interiornode(elements + i))

index[i] = index[i - 1] + 1;
else

index[i] = index[i - 1];

rows = (farray **)calloc(sizeof(farray *), real_size);
rhs = farray_cons(realsize);
mem = fa_size(rhs)*sizeof(double) + realsize*sizeof(farray *);

for (i = 0; i < real_size; i++) {
if (i + B < realsize)

rows[i] = farray_cons(entry(real-size, B, i, i + B) + 1);
else

rows[i] = farray_cons(entry(real_size, B, i, realsize - 1) + i);

mem += sizeof(farray) + fasize(rows[i])*sizeof(double);
}

fprintf(stderr, " Using approximately %/.llfK...\n", mem/1024);

for (i = 0; i < size; i++)
if (interiornode(elements + i)) {
sum = 0;

fa_set(rows[index[i]],
entry(realsize, B, index[i], index[i]),
fa-ref(coeff [i] , 0));

for (cp = elements[i].neighbors, j = 1; cp != NULL; cp = cp->next, j++)
if (interior_node(elements + cp->index))
fa_set (rows [index [i]],

entry(real_size, B, index[i], index[cp->index]),
fa_ref(coeff[i], j));

else
sum -= fa-ref(coeff[i], j)*elements[cp->index] .z;

fa_set(rhs, index[i], sum);
}

/* LU decomposition (without pivoting): A = LU */

fprintf(stderr, " Performing LU decomposition...\n");

for (j = 0; j < real-size; j++) {
for (i = MAX(O, j - B); i <= j; i++) {
sum = fa-ref(rows[i], entry(real_size, B, i, j));

for (k = MAX(MAX(O, j - B), i - B); k < MIN(i, j + B); k++)

399

sum -= faref(rows[i], entry(real_size, B, i, k))*
faref(rows[k], entry(real_size, B, k, j));

fa_set(rows[i], entry(real_size, B, i, j), sum);

}

for (i = j + 1; i <= MIN(real-size - 1, j + B); i++) {
sum = fa_ref(rows[i], entry(real-size, B, i, j));

for (k = MAX(MAX(O, j - B), i - B); k < MIN(j, i + B); k++)
sum -= faref(rows[i], entry(real_size, B, i, k))*

fa_ref(rows[k], entry(realsize, B, k, j));

faset(rows[i], entry(real_size, B, i, j),
sum/fa-ref(rows[j], entry(real_size, B, j, j)));

/* forward substitution: Ly = u */

fprintf(stderr, " Forward substitution...\n");

for (j = 0; j < real_size; j++)
for (i = j + 1; i <= MIN(realsize - 1, j + B); i++) {
fa_set(rhs, i, fa_ref(rhs, i) -

fa_ref(rows[i], entry(real_size, B, i, j))*fa_ref(rhs, j));
fa_set(rows[i], entry(real_size, B, i, j), 0.0);

}

/* backward substitution: Ux = y */

fprintf(stderr, " Backward substitution...\n");

for (j = real_size - 1; 0 <= j; j--) {
scale = fa_ref(rows[j], entry(real_size, B, j, j));

for (k = j; k <= MIN(real-size - 1, j + B); k++)
fa_set(rows[j], entry(real_size, B, j, k),

fa_ref(rows[j], entry(real_size, B, j, k))/scale);

fa_set(rhs, j, fa_ref(rhs, j)/scale);

for (i = j - i; MAX(O, j - B) <= i; i--) {
scale = fa_ref(rows[i], entry(real_size, B, i, j));

for (k = j; k <= MIN(real_size - 1, i + B); k++)
fa_set(rows[i], entry(real_size, B, i, k),

fa_ref(rows[i], entry(real_size, B, i, k)) -
scale*fa_ref(rows[j], entry(real_size, B, j, k)));

fa_set(rhs, i, fa_ref(rhs, i) - scale*fa_ref(rhs, j));
}

/* store answers back */

fprintf(stderr, " Storing answers...\n");

for (i = 0; i < size; i++)

400

if (interiornode(elements + i))
elements[il.z = faref(rhs, index[i]);

/* free up memory */

for (i = 0; i < realsize; i++)
farrayfree(rows[i]);

farrayfree(rhs);

}

int entry(int realsize, int B, int i, int j)
{

if (fabs(i - j) <= B)

if (i < B)

return j;
else
return j - i + B;

else {
fprintf(stderr, "Error: Banded matrix reference out of bound (%d, Xd)\n",

i, j);
exit(1);

}

int band(int size, node *elements)

{
cell *cp;
int real_size = 0, i, *index, band = 0, row;

for (i = 0; i < size; i++)

if (interior-node(elements + i))
real_size++;

index = (int *)calloc(sizeof(int), size);

if (interior_node(elements))
index[O] = 0;

else
index[0] = -1;

for (i = 1; i < size; i++)
if (interiornode(elements + i))

index[i] = index[i - 1] + 1;
else

index[i] = index[i - 1];

for (i = 0; i < size; i++)

if (interior_node(elements + i)) {
row = 0;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next)
if (interiornode(elements + cp->index) &&

fabs(index[i] - index[cp->index]) > row)
row = fabs(index[i] - index[cp->index]);

if (row > band) band = row;

}

401

free(index);

return 2*band + 1;

}

C.3.10 check.c

/************

* check.c *

Input: A file of gunk, such as the output of mkbd or mkgrid.

This program checks the consistency between node positions and

neighborhood information.

*/

#include <stdio.h>

#include <math.h>

#include "gunk.h"

void check(FILE *, int, node *, int);

int check-neighbors(node *, int, int);

int check_nhood(node *, int, int);

main(int argc, char *argv[])

{
int size, cell_count;

node *elements;

FILE *fp;

if (argc != 3) {

fprintf(stderr, "Usage: Ys file 1/radius\n",

argv [0]);

exit ();

}

sscanf(argv[2], "Ud", &cell_count);

fp = fopen(argv[1] , "r");

if (fp == NULL) {

fprintf(stderr, "Error: Cannot open file \".s\"\n", argv[1]);

exit (1);
}

fscanf(fp, "Xd", &size);

fprintf(stderr, "Reading input file (%d nodes)...\n", size);

elements = (node *)calloc(sizeof(node), size);

readelements(fp, size, elements);

fclose(fp);

fprintf(stderr, "Checking neighbors...\n");

check(stderr, size, elements, cell_count);

fprintf(stderr, "Freeing memory...\n");

402

free-memory(size, elements);

return O;

}

void check(FILE *fp, int size, node *elements, int cell-count)

{
cell *cp;
double radius = 1.0/cellcount, d;
int n, i, j, p, q, casel-count = 0.0, case2_count = 0.0;
partition *part = makepartition(cell-count);

for (n = O; n < size; n++)
if (interiornode(elements + n)) {
i = (int)floor(elements[n].x*cellcount);
j = (int)floor(elements[n].y*cell-count);

for (p = i - 1; p <= i + 1; p++)
for (q = j - 1; q <= j + 1; q++)
if (0 <= p && p < cell-count && 0 <= q &&
for (cp = partitionget(part, p, q); cp
d = distance(elements + n, elements +

q < cellcount)
!= NULL; cp = cp->next) {
cp->index);

if (d < radius && !check-neighbors(elements, n, cp->index))
case lcount++;

else if (d >= radius && checknhood(elements, n, cp->index))
case2_count++;

partitionadd(part, i, j, n);

fprintf(fp, "Number of missing neighbors = %d ", caselcount);
fprintf(fp, "(average = %f)\n", (float)caselcount/size);
fprintf(fp, "Number of illegal neighbors = %d ", case2_count);
fprintf(fp, "(average = %f)\n", (float)case2_count/size);

freepartition(part);

int checknhood(node *elements, int i, int j)
{

cell *cp;

for (cp = elements[i].neighbors; cp
if (cp->index == j) {
for (cp = elements[j].neighbors;
if (cp->index == i)
return 1;

break;

!= NULL; cp = cp->next)

cp != NULL; cp = cp->next)

return 0;

int check-neighbors(node *elements, int i, int j)
{

cell *cp;

403

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next)

if (cp->index == j II check_nhood(elements, cp->index, j)) {

for (cp = elements[j].neighbors; cp != NULL; cp = cp->next)

if (cp->index == i II checknhood(elements, cp->index, i))

return 1;

break;

}

return 0;

C.3.11 circle.c

/***********

* circle.c *

******#*******

Input: A file of gunk, such as the output of mkbd or mkgrid.

Output: The result of attempting to solve Laplace's equation

using approximations of line integrals. Pretty bad.

#include <stdio.h>

#include <math.h>

#include "gunk.h"

#include "random.h"

double circle(int, node *, unsigned long);

main(int argc, char *argv[])

{
int size;
unsigned long count;

FILE *fp;

node *elements;

if (argc != 4) {

fprintf(stderr, "Usage: %s input-file number-of-iterations output-file\n",

argv [0]);

exit(1);
}

fp = fopen(argv[1] , "r");

sscanf(argv[2] , "'u", &count);

if (fp == NULL) {

fprintf(stderr, "Error: Cannot open file \"V's\"\n", argv[yll]);

exit(2);
}

fscanf(fp, "'d", &size);

elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Reading input file (%d nodes)...\n", size);

read_elements(fp, size, elements);

404

fclose(fp);

fprintf(stderr, "Running %u iterations...\n", count);
fprintf(stderr, "Maximum residual = ..161f\n",

circle(size, elements, count));

fp = fopen(argv[3], "w");
fprintf(stderr, "Writing output file...\n");
writeelements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory... \n");
free_memory(size, elements);

return 0;
}

double circle(int size, node *elements, unsigned long count)
{

cell *cp, *beginning;
int n, i, length, index;
double sum, residual, max_residual;

initialize_random();

for (n = 0; n < count; n++) {
max_residual = 0.0;

for (i = 0; i < size; i++) {
index = Irandom()/.size;

if (interior_node(elements[index])) {
beginning = elements[index].neighbors;
sum = 0.0;
length = 0;

for (cp = beginning; cp->next != NULL; cp = cp->next) {
sum += (elements[cp->index] .z + elements[(cp->next)->index] .z)/2.0*
distance(elements + cp->index, elements + (cp->next)->index);

length++;

}

sum += (elements[cp->index. z + elements[beginning->index] .z)/2.0*
distance(elements + cp->index, elements + beginning->index);

residual = sum - elements[index].z;
elements[index] .z = sum;

if (fabs(residual) > maxresidual)
max_residual = fabs(residual);

return max_residual;
}

405

C.3.12 dot.c

/**********

* dot.c *

******** **

Let's test the inner product routine in norm-eqs.c.

*/

#include <stdio.h>

#include <math.h>

#include "gunk.h"

#include "farray.h"

void read_coeff(FILE *, int, farray **);

void write_coeff(FILE *, int, farray **);

void free.coeff(int, farray **);

void dot(int, node *, farray **, int, int);

main(int argc, char *argv[])

{
farray **coeff;

int size, i, j;
node *elements;

FILE *fp;

if (argc != 5) {

fprintf(stderr,

exit(1);

}

fp = fopen(argv[1], "r");

if (fp == NULL) {

fprintf(stderr, "Error:

exit(2);

}

"Usage: %s gunk coeff i j\n", argv[O]);

Cannot open file \"Xs\"\n", argv[1]);

fscanf(fp, "%d", &size);

elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Reading input file (%d nodes)...\n", size);

read-elements(fp, size, elements);

fclose(fp);

fp = fopen(argv[2], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\

exit(3);

"\n", argv[2]);

fprintf(stderr, "Reading coefficients...\n");
coeff = (farray **)calloc(sizeof(farray *), size);
read_coeff(fp, size, coeff);
fclose(fp);

406

/* Generate new coefficients and neighborhoods. */
sscanf(argv[3], "%d", ti);
sscanf(argv[4], "%d", &j);
dot(size, elements, coeff, i, j);

fprintf(stderr, "Freeing gunk memory...\n");
free-memory(size, elements);

fprintf(stderr, "Freeing coefficient memory...\n");
freecoeff(size, coeff);

return 0;
}

void free-coeff(int size, farray **coeff)
{

int i;

for (i = 0; i < size; i++)
farray-free (coeff i]);

free(coeff);
}

void write-coeff(FILE *fp, int size, farray **coeff)
{

int i, j, N;

for (i = 0; i < size; i++) {
N = fasize(coeff [i);
putint(fp, N);

for (j = 0; j < N; j++)
putlf(fp, faref(coeff[i], j));

void readcoeff(FILE *fp, int size, farray **coeff)
{

double val;
int i, j, N;

for (i = 0; i < size; i++) {
getint(fp, &N);

if (N > 0) {
coeff[i] = farraycons(N);
getlf(fp, &val);
fa-set(coeff [i], 0, val);

for (j = 1; j < N; j++) {
getlf(fp, &val);
fa-set(coeff[i], j, val);

}
}

}
}

407

/**

* Generate normal equations for the system of equations generated by
* gen_coeff. This has the distinct advantage that the result matrix is
* symmetric positive-definite.

* The current implementation is *wrong*. It actually gets the transpose of
* the normal equations, and it doesn't deal properly with boundaries (it's
* hard to deal with boundaries using these data structures).
**/

void dot(int size, node *elements, farray **coeff, int p, int q)
{

cell **newneighbors, *cp, *cq, *new, *prev, head;
double val;
farray **new_coeff, *temp;
int count, i, j, k;

double inner_product(int, int, node *, farray **);

/* First step: For each node, compute the union of its neighbor-set and its
* neighbors' neighbor-sets. */

fprintf(stderr, "Computing and sorting neighbor sets...\n");

newneighbors = (cell **)calloc(sizeof(cell *), size);
newcoeff = (farray **)calloc(sizeof(farray *), size);
head.index = -1;

/* We need this array to sort the old lists. */

for (i = 0; i < size; i++) {

/* Need some temporary space for sorting coefficients. */

if (coeff[i) != NULL) {
temp = farray_cons(fasize(coeff[il));
faset(temp, 0, faref(coeff[i], 0));

}

/* Copy neighbors first, taking care to sort the new list. */

head.next = NULL;

for (j = 0, cp = elements[i].neighbors; cp != NULL; j++, cp = cp->next) {

if (coeff[i] != NULL)
val = fa_ref(coeff[i], j);

for (prey = &head, cq = prev; cq != NULL; cq = cq->next)
if (cq->index > cp->index)
break;

else
prey = cq;

if (coeff[i] != NULL)
fa_set(temp, k, val);

new = (cell *)malloc(sizeof(cell));
new->next = prev->next;

408

prev->next = new;
new->index = cp->index;

}

/* Sort old list, too. */

for (j = 0, cp = elements[i].neighbors, cq = head.next;
cp != NULL;
j++, cp = cp->next, cq = cq->next)

cp->index = cq->index;

if (coeff[i] != NULL) {
farrayfree(coeff [i);
coeff i] = temp;

}

/* Then copy neighbors' neighbors, still sorting. */

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next)
for (cq = elements[cp->index].neighbors; cq != NULL; cq = cq->next)
if (cq->index != i) {
for (prey = &head, new = prev; new != NULL; new = new->next)
if (new->index > cq->index)
break;

else
prey = new;

if (prev->index != cq->index) {
new = (cell *)malloc(sizeof(cell));
new->next = prev->next;
prev->next = new;
new->index = cq->index;

}

new.neighbors[i] = head.next;

printf("The dot product of columns %d and %d is Y.161f.\n",

p, q, innerproduct(p, q, elements, coeff));

/* Free temporary memory. */

free(new.neighbors);
free(new-coeff);

* This procedure assumes that the neighbor lists have been sorted in
* descending order by index. This implementation does *not* do the right
* thing with boundary nodes: The inner product between an interior and a
* boundary node is automatically zero, and no boundary condition comes in.

* But why should this introduce instability into the system? *Which* matrix
* needs to be positive-definite?

double innerproduct(int i, int j, node *elements, farray **coeff)
{

409

cell *cp = elements[i].neighbors, *cq = elements[j].neighbors, *cr;
double sum = 0, prod;
int count, k, 1;

while (1)
if (cp == NULL && cq == NULL) {
if (i == j && interior_node(elements + i))

sum += fa_ref(coeff[i], 0)*fa_ref(coeff[j], 0);

return sum;

}
else if (cq == NULL II (cp != NULL && cp->index < cq->index)) {
if (cp->index == j && interiornode(elements + j)) {
prod = fa_ref(coeff[j], 0);

for (1 = 1, cr = elements[j].neighbors; cr != NULL; 1++, cr = cr->next)
if (cr->index == i) {

prod *= fa.ref(coeff[j], 1);
break;

}

sum += prod;
}

cp = cp->next;
}
else if (cp == NULL 11 (cq != NULL && cp->index > cq->index)) {
if (cq->index == i && interior_node(elements + i)) {

prod = fa_ref(coeff[i], 0);

for (1 = 1, cr = elements[i].neighbors; cr != NULL; 1++, cr = cr->next)
if (cr->index == j) {
prod *= fa_ref(coeff[i], 1);
break;

}

sum += prod;
}

cq = cq->next;
}
else {

k = cp->index;

if (interior_node(elements + k)) {
prod = 1.0;

for (count = 2, 1 = 1, cr = elements[k].neighbors;
cr != NULL && count > 0;
1++, cr = cr->next) {

if (cr->index == i) {
prod *= fa_ref(coeff [k], 1);
count--;

}

if (cr->index == j) {
prod *= fa_ref(coeff[k], 1);
count--;

410

sum += prod;

cp = cp->next;

cq = cq->next;

I

C.3.13 estimate.c

/***************

* estimate.c *

Input: A file of gunk, such as the output of mkbd or mkgrid.

Given the coordinates of the boundary nodes, this program attempts to
establish a crude coordinate system using relaxation.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"
#include "random.h"

const double omega = 1.9390892311242500;

double estimate(int, node *, int);

main(int argc, char *argv[])
{

int size, count;
FILE *fp;
node *elements;

if (argc != 4) {
fprintf(stderr, "Usage: %s input-file number-of-iterations output-file\n",

argv [03);
exit(1);

}

fp = fopen(argv[13, "r");
sscanf(argv[2], "%d", &count);

if (fp == NULL) {
fprintf(stderr, "Error: Cannot
exit(2);

open file \"Xs\"\n", argv[yll]);

fscanf(fp, "%d", &size);
elements = (node *)calloc(sizeof(node), size);

411

fprintf(stderr, "Reading input file (%d nodes)...\n", size);
read_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Running %d iterations...\n", count);
fprintf(stderr, "Maximum residual = %.161f\n",

estimate(size, elements, count));

fp = fopen(argv[3], "w");
fprintf(stderr, "Writing output file...\n");
write_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory... \n");
free_memory(size, elements);

return 0;

double estimate(int size, node *elements, int count)

{
cell *cp;
int n, i, length, index;
double sum_x, sum_y, residualx, residual_y, max_residual;

initializerandom();

for (n = 0; n < count; n++) {

max_residual = 0.0;

for (i = 0; i < size; i++)

if (interior_node(elements + i)) {

sum_x = sum_y = 0.0;

length = 0;

index = Irandom()%size;

for (cp = elements[index].neighbors;

sum_x += elements[cp->index].x;

sum-y += elements[cp->index].y;

length++;

if (length > 0) {
residual_x = sumx -
residual-y = sum_y -

cp != NULL; cp = cp->next) {

length*elements[index] .x;

length*elements[index].y;

elements[index].x += omega*residual_x/length;
elements[index].y += omega*residual_y/length;

if (fabs(residual_x) > max_residual)
max_residual = fabs(residual_x);

if (fabs(residual_y) > max_residual)
max_residual = fabs(residual-y);

}

return maxresidual;

412

C.3.14 farray.c

/****************

* farray.c *

This file defines the data type farray, which is an array/vector
of double-precision floating point numbers.

*/

#include <stdio.h>

#include "farray.h"

farray *farraycons(int size)
{
farray *fap;

if (size <= O) {
fprintf(stderr, "Error: Illegal array size\n");
exit(1);

}

fap = (farray *)malloc(sizeof(farray));
fap->size = size;
fap->array = (double *)calloc(sizeof(double), size + 1);

return fap;

void farrayfree(farray *fap)
{

if (fap != NULL) {
if (fap->array != NULL)

free(fap->array);

free(fap);

}

double faref(farray *fap, int i)

if (i < 0 I I fap->size <= i) {
fprintf(stderr, "Error: Array

i, fap->size);
exit(1);

access out of bound (%d/%d; action = ref)\n",

return *(fap->array + i + 1);

void faset(farray *fap, int i, double val)
{

if (i < 0 11 fap->size <= i) {

413

fprintf(stderr, "Error: Array access out of bound (.d/Xd; action = set)\n",
i, fap->size);

exit(1);
}

*(fap->array + i + 1) = val;
}

int fasize(farray *fap)
{

return fap->size;
}

C.3.15 femcompact.c

/******************

* femcompact.c *

Given a list of tuples of the form (x, y, val, ref), remove all tuples of the
form (0, 0, 0, 0).

*/

#include <stdio.h>

void femcompact(FILE *, FILE *);

main(int argc, char *argv[])
{
FILE *fin;

if (argc != 2) {
fprintf(stderr, "Usage: %s input-file\n", argv[0]);
exit(1);

}

/* Open input file. */

fin = fopen(argv[1], "r");

if (fin == NULL) {
fprintf(stderr, "Error: Cannot read file \"Xs\".\n", argv[1]);
exit(2);

}

getc(fin); /* Pop the first character in the file. */
femcompact(fin, stdout);
fclose(fin);
return 0;

void femcompact(FILE *fin, FILE *fout)

{
double x, y, val, ref;

414

fprintf(fout, "\n");

while (fscanf(fin, "%lg\t%lg\t%lg\t%lg\n", &x, ky, &val, &ref) != EOF)
if (!(x == 0 && y == 0 && ref == 0 && val == 0))
fprintf(fout, "%.161g\t%.161g\t.161g\t.61g.161g\n", x, y, val, ref);

C.3.16 femstats.c

* femstats.c *
******* ****** *

Given a list of tuples of the form (x, y, val, ref), compute statistics.

*/

#include <stdio.h>
#include <math.h>

void femstats(FILE *, FILE *);

main(int argc, char *argv[])

{
FILE *fin;

if (argc != 2) {
fprintf(stderr, "Usage: %s input-file\n", argv[03);
exit(1);

/* Open input file. */

fin = fopen(argv[1], "r");

if (fin == NULL) {
fprintf(stderr, "Error: Cannot
exit(2);

read file \"Vs\".\n", argv [l);

getc(fin); /* Pop the first character in the file. */
femstats(fin, stdout);
fclose(fin);
return 0;

void femstats(FILE *fin, FILE *fout)

{
double x, y, val, ref, maxabs, min_abs, sumabs, maxrel, minrel, abs, rel;
int count = 1;

fscanf(fin, "%lg\tlg\t%lg\t%lg\n", kx, &y, &val, &ref);
maxabs = minabs = sumabs = fabs(val - ref);
max rel = minrel = (ref == 0.0) ? 0.0 : (val - ref)/ref;

while (fscanf(fin, "Xlg\tlg\tlg\t%lg\n", &x, &y, &val, &ref) != EOF) {

415

abs = fabs(val - ref);
rel = (ref == 0.0) ? 0.0 : (val - ref)/ref;
count++;

sum-abs += abs;

if (abs > maxabs)
max_abs = abs;

else if (abs < min_abs)
min_abs = abs;

if (rel > max_rel)
max_rel = rel;

else if (rel < min_rel)
min_rel = rel;

fprintf(fout,
fprintf(fout,
fprintf(fout,
fprintf(fout,
fprintf(fout,

"Maximum
"Minimum
"Average
"Maximum
"Minimum

absolute

absolute

absolute

relative

relative

error:
error:
error:
error:
error:

%.161g\n", max_abs);

%.161g\n", min_abs);

..161g\n\n", sum_abs/count);

.. 161g\n", max_rel);
X.161g\n", min_rel);

C.3.17 fill.c

* fill.c *

This program appears to be a test of the pseudorandom number generator,

which was ported directly from MIT Scheme.

*/

#include

#include

#include

#include

#include

#include

<stdio.h>
"random.h"

<math.h>
"gunk.h"

<time.h>
<stdlib.h>

main(int argc, char *argv[])

{
double end, mean, stddev = 0.0;

int size, count = 0, n, index, max, *list, i;

if ((argc != 2) && (argc != 3)) {

fprintf(stderr, "Usage: %s sample-size [percentage]\n", argv[0]);

exit ();

}

sscanf(argv[1] , "%d", &size);

if (argc == 3)

sscanf(argv[2] , "%lf", &end);

416

else
end = 1.0;

/* initialize_random();*/

list = (int *)calloc(sizeof(int), size);

if (end > 1.0)
end = 1.0;

end *= size;

for (n = 0; count < end; n++) {
index = (int)(frandom()*size);

if (list[index] == 0)
count++;

if (list[index] == max)
max = ++(list[index]);

else
(list[index])++;

}

mean = (double)n/size;

for (i = 0; i < size; i++)
stddev += fsquare(list[i] - mean);

stddev = sqrt(stddev/size);

printf("Took %d samples to fill Xlf%Y. of Xd slots;\n",
n, 100*end/size, size);

printf("on the average %.161f per slot.\n", mean);
printf("Maximum is %d.\n", max);
printf("Standard deviation = X.161f\n", stddev);

free(list);
return 0;

C.3.18 filt.c

/**** *****

* filt.c *

This program seems to initialize the nodes according to some
odd criterion. Can't recall writing this for any good reason.

*/

#include <stdio.h>
#include "gunk.h"

void filter(int, node *, double);

417

main(int argc, char *argv[])

{
double threshold;

int size;

node *elements;
FILE *fp;

if (argc != 4) {

fprintf(stderr, "Usage: %s input-file threshold output-file\n", argv[0]);

exit(1);

}

fp = fopen(argv[1], "r");
sscanf(argv[2], "%lf", &threshold);

if (fp == NULL) {

fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[11]);
exit(2);

}

fscanf(fp, "%d", &size);
fprintf(stderr, "Reading file (%d nodes)...\n", size);

elements = (node *)calloc(sizeof(node), size);

read_elements(fp, size, elements);

fclose(fp);

fprintf(stderr, "Computing output...\n");

filter(size, elements, threshold);

fprintf(stderr, "Writing output...\n");
fp = fopen(argv[3], "w");
write_elements(fp, size, elements);

fclose(fp);

freememory(size, elements);

return 0;

void filter(int size, node *elements, double threshold)

{
int i;
node cornerl, corner2;

cornerl.x = 0.0;

cornerl.y = 1.0;

corner2.x = 1.0;

corner2.y = 1.0;

for (i = 0; i < size; i++)

if (interior_node(elements + i) &&

(distance(elements + i, &cornerl) < threshold II

distance(elements + i, &corner2) < threshold))
elements[i].z = potential(elements[i] .x, elements[i] .y);

418

C.3.19 grad.c

/***********

* grad.c *

This program attempts to estimate the magnitude of the gradient at
each sample point, I think.

*/

#include <stdio.h>
#include "gunk.h"

void grad(int, node *);

main(int argc, char *argv[])
{

int size;
node *elements;
FILE *fp;

if (argc != 3) {
fprintf(stderr, "Usage: %s input-file output-file\n", argv[O]);
exit ();

}

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[1]);
exit(2);

}

fscanf(fp, "Xd", &size);
fprintf(stderr, "Reading file (%d nodes)...\n", size);
elements = (node *)calloc(sizeof(node), size);
readelements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Computing output...\n");
grad(size, elements);

fprintf(stderr, "Writing output file...\n");
fp = fopen(argv[2], "w");
writeelements(fp, size, elements);
fclose(fp);

freememory(size, elements);
return 0;

void grad(int size, node *elements)
{

cell *cp;
double dist, *grad;
int i, j;

419

grad = (double *)calloc(sizeof(double), size);

for (i = 0; i < size; i++) {

j = i;

for (cp = elements[iJ.neighbors; cp != NULL; cp = cp->next)
if (elements[cp->index].z > elements[j].z)
j = cp->index;

dist = distance(elements + i, elements + j);
grad[i] = (dist > 0) ? (elements[j].z - elements[i].z)/dist : 0.0;

}

for (i = 0; i < size; i++)
elements[i].z = grad[i];

free(grad);

C.3.20 gs_mat.c

/*************
* gsmat.c *

Generate the matrix actually used in Gauss-Seidel iteration. We can then use
MATLAB or something like that to analyze the damn thing. Won't work for large
systems due to memory constraints.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"
#include "matrix.h"

void gsmat(FILE *, int, node *, farray **, double);

main(int argc, char *argv[])
{
double val, omega = 1.0;
farray **coeff;
int size, i, j, N, count = 0;
node *elements;
FILE *fp;

if (argc != 4 && argc != 5) {
fprintf(stderr, "Usage: '.s input-file coeff output-file [omegaJ\n",

argv [03) ;
exit(1);

}

fp = fopen(argv[1), "r");

420

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[l]);
exit(1);

}

fscanf(fp, "%d", &size);
fprintf(stderr, "Reading input (%d nodes)...\n", size);
elements = (node *)calloc(sizeof(node), size);
readelements(fp, size, elements);
close(fp);

fp = fopen(argv[2], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[23);
exit(1);

}

fprintf(stderr, "Reading coefficients...\n");
coeff - (farray **)calloc(sizeof(farray *), size);

for (i O0; i < size; i++) {
getint(fp, &N);

if (N > 0) {
count++;
coeff[i] = farraycons(N);

for (j = 0; j < N; j++) {
getlf(fp, &val);
fa-set(coeff[i], j, val);

}

fclose(fp);

fprintf(stderr, "Composing 'dx%d Gauss-Seidel iteration matrix...\n",
count, count);

if (argc == 5)
sscanf(argv[4], "%lf", &omega);

fp = fopen(argv[3], "w");
gs-mat(fp, size, elements, coeff, omega);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
freememory(size, elements);

for (i = O; i < size; i++)
farrayfree(coeff[i]);

free(coeff);
return 0;

}

void gs-mat(FILE *fp, int size, node *elements, farray **coeff, double omega)
f

421

cell *cp;
int real_size = 0, i, j, *index, count;
matrix *mat, *big_mat;

for (i = 0; i < size; i++)
if (interior_node(elements + i))
realsize++;

big_mat = matrix_cons(real_size, 2*real_size);
index = (int *)calloc(sizeof(int), size);

count = 0;

for (i = 0; i < size; i++)

if (interior_node(elements + i))
index[i] = count++;

else
index[i] = -1;

/* Construct the original matrix to be inverted: */

for (i = 0; i < size; i++)
if (interior_node(elements + i) && coeff[i] != NULL) {
for (j = 1, cp = elements[i].neighbors;

cp != NULL;
j++, cp = cp->next)

if (coeff[cp->index] != NULL)
mset(bigmat, index[i], index[cp->index], fa-ref(coeff[i], j));

mset(big_mat, index[i], index[i], fa_ref(coeff[i], 0));
}

/* Free up space as we go along. */

free(index);

/* Collect the diagonal and lower-triangular entries, and multiply the upper
triangular part by the overrelaxation factor. */

for (i = 0; i < realsize; i++)
for (j = i + 1; j < real-size; j++) {
mset(big_mat, i, j + real_size, -omega*mref(bigmat, i, j));
mset(big_mat, i, j, 0);

}

rref(big-mat);
mat = matrix_cons(real_size, real-size);

for (i = 0; i < real-size; i++)
for (j = 0; j < real-size; j++)
mset(mat, i, j, mref(big_mat, i, j + realsize));

matrix_free(big-mat);

for (i = 0; i < real_size; i++)
mset(mat, i, i, I - omega + mref(mat, i, i));

mprint(fp, mat);
matrix-free(mat);

422

C.3.21 gsort.c

/************

* gsort.c *

Sort gunk, in the hope of reducing bandwidth.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"

void sortnodes(int, node *);
int comparenodes(int, int, node *);
void sort(int *, int, int, node *);
int sort-part(int *, int, int, node *);

main(int argc, char *argvYl)
{
FILE *fp;
int size;
node *elements;

if (argc != 3) {
fprintf(stderr, "Usage: Xs input-file output-file\n", argv[03);
exit(1);

}

fp = fopen(argvC[], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argvll]);
exit(1);

}

fscanf(fp, "%d", &size);
fprintf(stderr, "Reading input (%d nodes)...\n", size);
elements = (node *)calloc(sizeof(node), size);
readelements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Sorting gunk...\n");
sortnodes(size, elements);

fp = fopen(argv[23, "w");
fprintf(stderr, "Writing output... \n");
writeelements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
free-memory(size, elements);

423

return 0;
}

void sort_nodes(int size, node *elements)
{
cell *cp;
int index[size], invert[size], i;
node temp[size];

for (i = 0; i < size; i++)
invert[i] = i;

sort(invert, 0, size - 1, elements);

for (i = 0; i < size; i++)
index[invert[i]] = i;

for (i = 0; i < size; i++) {
temp[i] = elements[i] ;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next)
cp->index = index[cp->index];

}

for (i = 0; i < size; i++)
elements[index[i]] = temp[i];

void sort(int *index, int p, int r, node *elements)
{

int q;

if (p < r) {
q = sort_part(index, p, r, elements);
sort(index, p, q, elements);
sort(index, q + 1, r, elements);

}

int sort_part(int *index, int p, int r, node *elements)
{

int x = index[p], i = p - 1, j = r + 1, temp;

while (1) {
do {j--;} while (compare-nodes(index[j], x, elements) > 0);
do {i++;} while (compare-nodes(index[i], x, elements) < 0);

if (i < j) {
temp = index[i];
index[i] = index[j];
index[j] = temp;

}
else return j;

int compare_nodes(int ni, int n2, node *elements)
{
if (elements[nl].neighbors == NULL && elements[n2].neighbors != NULL)

424

return -1;
else if (elements[nlJ.neighbors != NULL &&
return 1;

else if (elements[nl].y
return 1;

else if (elements[nl].y
return -1;

else if (elements[nl].x
return 1;

else if (elements[nl).x
return -1;

else
return 0;

elements[n23.neighbors == NULL)

> elements[n23.y)

< elements[n2).y)

> elements[n2J.x)

< elements[n2l.x)

C.3.22 gunk.c

/***********

* gunk.c *

Common routines used by gunk programs, including read/write, etc.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"

#define SERIES-LIMIT 1000
#define POT2

/**

* Some artifacts, left here just so
* sure what those programs are good
**/

some old programs would compile (I'm not
for, actually).

void oldreadelements(FILE *fp, int size, node *elements)
{

cell **cp;
int n, index;

for (n = 0; n < size; n++) {
fscanf(fp, ".lf", &(elements[n]
fscanf(fp, "%lf", &(elements[n]
fscanf(fp, "%lf", k(elements[n]

.x))

.y))

.z))

cp = &(elements[n].neighbors);
*cp = NULL;

while ((index = readneighbor(fp)) >= O) {
*cp = (cell *)malloc(sizeof(cell));
(*cp)->index = index;
cp = &((*cp)->next);
*cp = NULL;

}

425

}

int read_neighbor(FILE *fp)
{

char s[STRLEN], c;
int n = 0;

while (1) {
fscanf(fp, "Xc", &c);

if (c == 'x')
return -1;

else if (c != ' ') {
while (c != ' ') {

s [n++] = c;
fscanf(fp, "%c", &c);

}

sEn] = '\0';
sscanf(s, "Ud", &n);

return n;
}

}

void old_writeelements(FILE *fp, int size, node *elements)
{

cell *cp;
int n;

fprintf(fp, "Xd\n", size);

for (n = 0; n < size; n++) {
fprintf(fp, "X.171g X.171g X.171g ",

elements En] .x, elements En] .y, elements En]. z);

cp = elements n].neighbors;

while (cp != NULL) {
fprintf(fp, "Xd ", cp->index);
cp = cp->next;

}

fprintf(fp, "x\n");
}

/++
* A real mess, these file formats.
++/

void write_elements(FILE *fp, int size, node *elements)
{

cell *cp;
int n, count;

fprintf(fp, "Xd\n", size);

426

fprintf(fp, "Gunk file version 'd\n", GUNKVERSION);

for (n = 0; n < size; n++) {
putlf(fp, elements[n].x);
putlf(fp, elements[n].y);
putlf(fp, elements[n].z);
putint(fp, elements[n].type);

count = 0;

for (cp = elements[n].neighbors; cp != NULL; cp = cp->next)
count++;

putint(fp, count);

for (cp = elements[n].neighbors; cp != NULL; cp = cp->next)
putint(fp, cp->index);

void readelements(FILE *fp, int size, node *elements)
{

cell **cp;
int n, count, i, version, return_val;

return_val = fscanf(fp, "\nGunk file version 'd\n", &version);

if (returnval == EOF 11 return_val == 0) {
fprintf(stderr, "Error: Not a gunk file!\n");
exit(1);

}

for (n = 0; n < size; n++) {
getlf(fp, &(elements[n].x));
getlf(fp, &(elements[n].y));
getlf(fp, &(elements[n] .z));

if (version >= 1)
getint(fp, &(elements[n] .type));

getint(fp, &count);
elements[n].neighbors = NULL;
cp = &(elements[n].neighbors);

for (i = 0; i < count; i++) {
*cp = (cell *)malloc(sizeof(cell));
getint(fp, &((*cp)->index));
(*cp)->next = NULL;
cp = &((*cp)->next);

}

if (version < 1)
if (elements[n].neighbors == NULL)

set_boundary_node(elements + n);
else
set-interior_node(elements + n);

}
}

427

void putlf(FILE *fp, double x)
{

int i;
unsigned char *p = (unsigned char *)(&x);

for (i = 0; i < sizeof(double); i++)
putc(*(p++), fp);

void getlf(FILE *fp, double *x)
{

int i;
unsigned char *p = (unsigned char *)x;

for (i = 0; i < sizeof(double); i++)
*(p++) = (unsigned char)getc(fp);

void putint(FILE *fp, int n)
{

int i;
unsigned char *p = (unsigned char *)(&n);

for (i = 0; i < sizeof(int); i++)
putc(*(p++), fp);

void getint(FILE *fp, int *n)
{

int i;
unsigned char *p = (unsigned char *)n;

for (i = 0; i < sizeof(int); i++)
*(p++) = (unsigned char)getc(fp);

void freememory(int size, node *elements)
{
cell *cp, *cp-next;
int i;

for (i = 0; i < size; i++) {
cp = elements[i].neighbors;

while (cp != NULL) {
cpnext = cp->next;
free(cp);
cp = cp-next;

}

free(elements);
}

/****************************** *******

* This is the old potential; the new *
* one's simpler... *
***************************************/

428

#ifdef POTi

double potential(double x, double y)
{
double a = 1.0, b = 1.0, v = 1.0;
double m2 = a*(-log(1e-18))/(2.0*pi);
double ml = m2/b;
double terms[SERIESLIMIT];
int i, n;
double newvterm = 2*TOLERANCE, ratio, sum = 0.0;

for (i = 0; (i < SERIESLIMIT) && (fabs(new.term) >= TOLERANCE); i++) {
n = 2*i + 1;

if (n <= ml)
ratio = sinh(pi*n*y/a)/sinh(pi*n*b/a);

else if (n*y <= m2)
ratio = exp(pi*n*(y - b)/a) - exp(-pi*n*(y + b)/a);

else
ratio = exp(pi*n*(y - b)/a);

new-term = 4*v*ratio*sin(pi*n*x/a)/(pi*n);
terms(i] = new-term;

for (n = i - 1; n >= 0; n--)
sum += terms[n];

return 1.0 + sum;
}

#else
#ifdef POT2

/************** *************

* This is the new potential: *
* ******************************/

double potential(double x, double y)
{
double a = 1.0, b = 1.0, A = 1.0/sinh(pi*b/a);
return 1.0 + A*sinh(pi*y/a)*sin(pi*x/a);

}

/********************************

* Let's try estimating the ordinate: *

#else

double potential(double x, double y)
{
return y;

}

#endif
#endif

double fsquare(double x)

429

return 1*1:

}

double distance(node *nodel, node *node2)
{
return sqrt(fsquare(nodel->x - node2->x) + fsquare(nodel->y - node2->y));

}

void introduce(node *elements, int i, int j, double radius)
{

cell *new_celll, *newcell2;

if (distance(elements + i, elements + j) < radius) {
new_celll = (cell *)malloc(sizeof(cell));
newcell2 = (cell *)malloc(sizeof(cell));

new_celll->next = elements[i].neighbors;
newcell2->next = elements[j].neighbors;

elements[i].neighbors = new-celll;
elements[j].neighbors = new_cell2;

newcelll->index = j;
new_cell2->index = i;

partition *make_partition(int size)
{
partition *new_partition = (partition *)malloc(sizeof(partition));

newpartition->list = (cell **)calloc(sizeof(cell *), SQUARE(size));
new_partition->size = size;

return new_partition;
}

void partitionadd(partition *partition, int i, int j, int index)
{

cell **list = partition->list, *new_cell;
int size = partition->size;

if (i == size) i--;
if (j == size) j--;

if ((i >= size) II (j >= size)) {
fprintf(stderr, "Error: Partition access out of bounds\n");
exit(2);

}

new_cell = (cell *)malloc(sizeof(cell));
new_cell->next = *(list + i*size + j);
*(list + i*size + j) = newcell;
new_cell->index = index;

cell *partition_get(partition *partition, int i, int j)
{

430

cell **list = partition->list;
int size = partition->size;

if (i == size) i--;
if (j == size) j--;

if ((i >= size) II (j >= size)) {
fprintf(stderr, "Error: Partition access out of bounds\n");
exit(3);

}

return *(list + i*size + j);
}

void free_partition(partition *partition)
{

cell **list = partition->list, *cp, *cpnext;
int size = partition->size, i, j;

for (i = 0; i < size; i++) {
for (j = 0; j < size; j++) {

cp = *(list + i*size + j);

while (cp != NULL) {
cp_next = cp->next;
free(cp);
cp = cpnext;

}

free (partition);
}

int interior_node(node *n)
{
if (n->type == INTERIORNODE)
return 1;

else

return 0;

}

int boundary-node(node *n)
{
if (n->type == BOUNDARY_NODE)
return 1;

else

return 0;
}

void set_boundarynode(node *n)
{
n->type = BOUNDARY_NODE;

}

void set_interiornode(node *n)
{
n->type = INTERIORNODE;

I

431

C.3.23 gunk2mat.c

/***************

* gunk2mat.c *

Generate the matrix we're trying to invert. We can then use MATLAB or something
like that to analyze the damn thing. Won't work for large systems due to
memory constraints.

*/

#include <stdio.h>

#include <math.h>

#include "gunk.h"

#include "matrix.h"

void gunk2mat(FILE *, int, node *, farray *+);

main(int argc, char *argv[])

{
double val;

farray **coeff;

int size, i, j, N;
node *elements;

FILE *fp;

if (argc != 4) {
fprintf(stderr, "Usage:

exit (1);

}

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error:

exit ();

}

%s input-file coeff output-file\n", argv[O]);

Cannot open file \"'s\"\n", argv[1]);

fscanf(fp, "%d", &size);

fprintf(stderr, "Reading input (%d nodes)...\n", size);

elements = (node *)calloc(sizeof(node), size);

read_elements(fp, size, elements);

close(fp);

fp = fopen(argv[2], "r");

if (fp == NULL) {

fprintf(stderr, "Error: Cannot open file \"Xs\"\n", argv[2]);
exit(1);

}

fprintf(stderr, "Reading coefficients...\n");

coeff = (farray **)calloc(sizeof(farray *), size);

for (i = 0; i < size; i++) {

432

getint(fp, &N);

if (N > 0) {
coeff[i] = farray_cons(N);

for (j = 0; j < N; j++) {
getlf(fp, &val);
faset(coeff [i], j, val);

}

fclose(fp);
fp = fopen(argv[3], "w");
gunk2mat(fp, size, elements, coeff);
fclose(fp);

fprintf(stderr, "Freeing memory... \n");
freememory(size, elements);

for (i = 0; i < size; i++)
farrayfree(coeff[i]);

free(coeff);
return 0;

}

void gunk2mat(FILE *fp, int size, node *elements, farray **coeff)
{

cell *cp;
double boundary;
int real_size = 0, i, j, *index, count;
matrix *mat;

for (i = 0; i < size; i++)
if (interior_node(elements + i))
real_size++;

mat = matrix_cons(realsize, real-size + 1);
index = (int *)calloc(sizeof(int), size);

count = 0;

for (i = 0; i < size; i++)

if (interiornode(elements + i))
index[i] = count++;

else

index[i] = -1;

for (i = 0; i < size; i++)
if (interior_node(elements + i) && coeff[i] != NULL) {
boundary = 0.0;

for (j = 1, cp = elements[i] .neighbors;
cp != NULL;
j++, cp = cp->next)

if (coeff[cp->index] != NULL)
mset(mat, index[i], index[cp->index], fa_ref(coeff[i], j));

else

433

boundary -= faref(coeff i), j)*elements[cp->index].z;

mset(mat, index[i], index[i], fa_ref(coeff[i], 0));
mset(mat, index[i], real-size, boundary);

mprint(fp, mat);
matrixfree (mat);
free(index);

C.3.24 hilbert.c

* hilbert.c *

Generate a Hilbert matrix for testing matrix routines.

*/

#include <stdio.h>

#include "matrix.h"

void init-hilbert(matrix *);

main(int argc, char *argv[])
{

int i, n;
farray *W;
matrix *U, *V;

if (argc != 2) {
fprintf(stderr,
exit(1);

"Usage: %s n\n", argv[01);

sscanf(argv[l], "'d", kn);
U = matrixcons(n, n);
V = matrixcons(n, n);
W = farraycons(n);

init-hilbert(U);
svdecomp(U, W, V);

printf("Singular values for the ,dxd Hilbert matrix:\n", n, n);

for (i = 0; i < n; i++)
printf("',.161g\n", faref(W, i));

printf("Condition number = ,.161g\n", faref(W, 0)/faref(W, n - 1));

matrixfree(U);
matrixfree (V);
farray.free (W);

434

return 0;

}

void init.hilbert(matrix *mat)

{
int i, j, n = mat->nrows;

if (n != mat->ncols) {
fprintf(stderr, "Error: Cannot create non-square Hilbert matrix\n");
exit(1);

}

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
mset(mat, i, j, 1.0/(2.0 + i + j));

C.3.25 improve.c

/**************
* improve.c *

Input: A file of gunk, such as the output of mkbd or mkgrid, and a

file of operator coefficients, such as the output of approx.

Output: An attempt to get a more accurate solution using the coefficients.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"
#include "random.h"
#include "farray.h"

/* #define RANDOM */

const double mixture-ratio = 1.;

double improve(int, node *, int, farray **, double);
double sync(int, node *, int, farray **, double);
double laplace(int, node *, int, farray **);
double checksum(int, node *, int, farray **);
void read-coeff(FILE *, int, farray **);

main(int argc, char *argv[])

double val, omega = 1.0;
farray **coeff;
int size, i, count;
FILE *fp;
node *elements;

if (argc != 5 && argc != 6) {

435

fprintf(stderr,
"Usage: %s input-file coeff iteration-count output-file [omega]\n",
argv [0);

exit(1);

}

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argvyll]);
exit(2);

}

fscanf(fp, "%d", &size);
elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Reading input file (%d nodes)...\n", size);
read-elements(fp, size, elements);
fclose(fp);

fp = fopen(argv[21, "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[2]);
exit(1);

}

fprintf(stderr, "Reading coefficients...\n");
coeff = (farray **)calloc(sizeof(farray *), size);
readcoeff(fp, size, coeff);
fclose(fp);

sscanf(argv[3], "Ud", &count);
if (argc == 6) sscanf(argv[5], "%lf", &omega);

fprintf(stderr, "Running %d iterations...\n", count);
fprintf(stderr, "Maximum residual = X.161f\n",

improve(size, elements, count, coeff, omega));

fp = fopen(argv[4], "w");
fprintf(stderr, "Writing output file...\n");
writeelements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
freememory(size, elements);

for (i = 0; i < size; i++)
farray-free(coeff i]);

free(coeff);
return 0;

}

double improve(int size, node *elements, int count, farray **coeff,
double omega)

{
cell *cp;
int n, i, j, index;

436

double sum, maxresidual;

#ifdef RANDOM
initializerandom();

#endif

for (n = 0; n < count; n++) {
maxresidual = 0.0;

for (i = 0; i < size; i++) {
#ifdef RANDOM

index = Irandom()osize;
#else

index = i;
#endif

if (interior-node(elements + index)) {
sum = fa-ref(coeff[index], 0)*elements[index .z;

for (cp = elements[index].neighbors, j = 1;
cp != NULL;
cp = cp->next, j++)

sum += fa-ref(coeff[index], j)*elements[cp->index. z;

elements[index).z -= omega*sum/fa-ref(coeff[index), 0);

if (fabs(sum) > maxresidual) maxresidual = fabs(sum);
}

}

return maxresidual;
}

double sync(int size, node *elements, int count, farray **coeff, double omega)

{
cell *cp;
int n, i, j;
double sum, max-residual, *temp;

temp = (double *)calloc(size, sizeof(double));

for (i = 0; i < size; i++)
temp[i] = elements[i].z;

for (n = 0; n < count; n++) {
maxresidual = 0.0;

for (i = 0; i < size; i++)
if (interior.node(elements + i)) {
sum = fa-ref(coeff[i], 0)*elements[i) .z;

for (cp = elements[i].neighbors, j = 1;
cp != NULL;
cp = cp->next, j++)

sum += faref(coeff i], j)*elements[cp->index].z;

temp[i] = elements[i].z - omega*sum/fa-ref(coeff[i], 0);

437

for (i = 0; i < size; i++)
if (interiorjnode(elements + i)) {

sum = faref(coeff i], 0)*temp[i];

for (cp = elements[i].neighbors, j = 1;
cp != NULL;
cp = cp->next, j++)

sum += faref(coeff[i), j)*temp[cp->index];

elements[i].z = temp[i] - omega*sum/faref(coeff i], 0);

if (fabs(sum) > maxresidual) maxresidual = fabs(sum);
}

free(temp);
return maxresidual;

void readcoeff(FILE *fp, int size, farray **coeff)
{

double val;
int i, j, N;

for (i = 0; i < size; i++) {
getint(fp, &N);

if (N > 0) {
coeff i] = farray-cons(N);
getlf(fp, &val);
faset(coeff i], 0, -(1 - mixtureratio)*N + mixtureratio*val);

for (j = 1; j < N; j++) {
getlf(fp, &val);
faset(coeff i], j, 1 - mixtureratio + mixtureratio*val);

}
}

}

/**
* The following procedures exist for debugging purposes: *
* laplace() replaces the value at each node with an estimate of *
* the laplacian at that node, using the linear approximation. *
* checksum() computes the sum of the coefficients. *
**/

double laplace(int size, node *elements, int count, farray **coeff)
{
cell *cp;
int n, length, index;
double sum, maxresidual = 0.0;
double *temp;

temp = (double *)calloc(sizeof(double), size);

for (index = 0; index < size; index++)
if (interiornode(elements + index)) {

438

length = 0;

sum = fa_ref(coeff[index], 0)*elements[index] . z;

for (cp = elements[index].neighbors; cp != NULL; cp = cp->next)

sum += faref(coeff[index], ++length)*elements[cp->index]. z;

temp[index] = sum;

if (fabs(sum) > maxresidual)
maxresidual = fabs(sum);

}
else
temp[index] = 0.0;

for (index = 0; index < size; index++)
elements[index] .z = temp[index];

free(temp);
return max_residual;

double checksum(int size, node *elements, int count, farray **coeff)

{
cell *cp;
int index, i;

for (index = 0; index < size; index++)
elements[index].z = 0.0;

for (index = 0; index < size; index++)
if (interiornode(elements + index)) {
elements[index].z += fa_ref(coeff[index], 0);

for (i = 1, cp = elements[index].neighbors;
cp != NULL;
i++, cp = cp->next)

elements[cp->index] .z += faref(coeff[index], i);

return pi;
}

C.3.26 jac_mat.c

/**************

* jac_mat.c *

Generate the matrix actually iterated in Jacobi iteration. We can then use
MATLAB or something like that to analyze the damn thing. Won't work for large
systems due to memory constraints.

*/

#include <stdio.h>
#include <math.h>

439

#include "gunk.h"
#include "matrix.h"

void jac-mat(FILE *, int, node *, farray **, double);

main(int argc, char *argv[])
{
double val, omega = 1.0;
farray **coeff;
int size, i, j, N, count = 0;
node *elements;
FILE *fp;

if (argc != 4 && argc != 5) {
fprintf(stderr, "Usage: %s input-file coeff output-file [omega]\n",

argv [0]);
exit(1);

}

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[l]);
exit(1);

}

fscanf(fp, "Xd", &size);
fprintf(stderr, "Reading input (%d nodes)...\n", size);
elements = (node *)calloc(sizeof(node), size);
read-elements(fp, size, elements);
close(fp);

fp = fopen(argv[2], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"'s\"\n", argv[2]);
exit(1);

}

fprintf(stderr, "Reading coefficients... \n");
coeff = (farray **)calloc(sizeof(farray *), size);

for (i = 0; i < size; i++) {
getint(fp, &N);

if (N > 0) {
count++;
coeff[i] = farraycons(N);

for (j = 0; j < N; j++) {
getlf(fp, &val);
faset(coeff[i], j, val);

}

fclose(fp);

440

fprintf(stderr, "Composing .dx'd Jacobi iteration matrix...\n",
count, count);

if (argc == 5)

sscanf(argv[4], ",lf", &omega);

fp = fopen(argv[31, "w");
jacmat(fp, size, elements, coeff, omega);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
freememory(size, elements);

for (i = 0; i < size; i++)
farrayfree(coeffi]l);

free(coeff);
return 0;

}

void jac-mat(FILE *fp, int size, node *elements, farray **coeff, double omega)

cell *cp;
double diag;
int realsize = 0, i, j, *index, count;
matrix *mat;

for (i = 0; i < size; i++)
if (interior-node(elements + i))
realsize++;

mat = matrixcons(real_size, realsize);
index = (int *)calloc(sizeof(int), size);

count = 0;

for (i = 0; i < size; i++)
if (interiornode(elements + i))
index[i] = count++;

else

index[i] = -1;

for (i = 0; i < size; i++)
if (interiornode(elements + i) && coeff[i] != NULL) {
diag = faref(coeff[i), 0);

for (j = 1, cp = elements[i].neighbors;
cp != NULL;
j++, cp = cp->next)

if (coeff[cp->index] != NULL)
mset(mat, index[i], index[cp->index],

-omega*faref(coeff i], j)/diag);

mset(mat, indexCi], indexCi], 1 - omega);

mprint (fp, mat);
matrix-free(mat);
free(index);

441

C.3.27 list2grid.c

/******** *******

* list2grid.c *
** **************

Takes a gunk file and produces average sample values over a regular grid
of specified size. The output is sent to standard output. This can be used
to plot a solution on Maple or Matlab, for example.

*/

#include <stdio.h>
#include "gunk.h"

void list2grid(FILE *, int, node *, int);

main(int argc, char *argv[])
{

int gridsize, size;
node *elements;
FILE *fp;

if (argc != 3) {
fprintf(stderr, "Usage: %s input-file grid-size\n", argv[03);
exit(l);

}

fp = fopen(argv[1] , "r");
sscanf(argv [2, "7d", &grid_size);

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"Vs\"\n", argv[1]);
exit(2);

}

fscanf(fp, "Ud", &size);
fprintf(stderr, "Reading file (%d nodes)...\n", size);
elements = (node *)calloc(sizeof(node), size);
read_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Printing output...\n");
list2grid(stdout, size, elements, grid_size);

fprintf(stderr, "Freeing memory...\n");
free_memory(size, elements);
return 0;

}

void list2grid(FILE *fp, int size, node *elements, int grid-size)
{
double *value, *count, x, y;
int i, j, n;

442

value = (double *)calloc(sizeof(double), SQUARE(gridsize));

count = (double *)calloc(sizeof(double), SQUARE(gridsize));

for (n = 0; n < size; n++) {
x = elements[n].x;
y = elements[n].y;
i = (int)(x*grid_size);

j = (int)(y*gridsize);

if (i == grid_size) i--;

if (j == gridsize) j--;

*(count + i*gridsize + j) += 1.0;
*(value + i*gridsize + j) += elements[n].z;

fprintf(fp, ".d\n", grid_size);

for (j = 0; j < grid_size; j++) {

for (i = 0; i < grid_size; i++) {
n = *(count + i*grid_size + j);

if (n > 0.0)

fprintf(fp, "X.161f ", *(value + i*gridsize + j)/n);
else

fprintf(fp, "%.161f ", 0.0);

fprintf(fp, "\n");

free(value);

free(count);

C.3.28 lud.c

/**********
* lud.c *

Load a file of gunk and operator coefficients and try to
invert the matrix using LU decomposition. Right now we do
it the dumb way, so it takes lots and lots of memory.

*/

#include <stdio.h>

#include <math.h>

#include "gunk.h"

#include "matrix.h"

void solve(int, node *, farray **);

void readcoeff(FILE +, int, farray **);

443

main(int argc, char *argv[])
{
farray **coeff;
int size, i;
node *elements;
FILE *fp;

if (argc != 4) {
fprintf(stderr, "Usage: %s input-file coeff output-file\n",

argv [0]);
exit (1);

}

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"Xs\"\n", argv[1]);
exit ();

}

fprintf(stderr, "Warning: This program has not been thoroughly tested\n");
fprintf(stderr, " and may not operate correctly!\n");

fscanf(fp, "Xd", &size);
fprintf(stderr, "Reading input (Yd nodes).. .\n", size);
elements = (node *)calloc(sizeof(node), size);
read-elements(fp, size, elements);
close(fp);

fp = fopen(argv[2], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[2]);
exit ();

}

fprintf(stderr, "Reading coefficients...\n");
coeff = (farray **)calloc(sizeof(farray *), size);
read_coeff(fp, size, coeff);
fclose(fp);

fprintf(stderr, "Solving system of equations...\n");
solve(size, elements, coeff);

fprintf(stderr, "Writing output...\n");
fp = fopen(argv[3] , "w");
write_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory... \n");
free_memory(size, elements);

for (i = 0; i < size; i++)
farray_free(coeff[il);

free(coeff);
return 0;

}

444

void readcoeff(FILE *fp, int size, farray **coeff)

{
double val;
int i, j, N;

for (i = 0; i < size; i++) {
getint(fp, &N);

if (N > 0) {
coeff i] = farraycons(N);

for (j = 0; j < N; j++) {
getlf(fp, &val);
faset(coeff[i], j, val);

}
}

}
}

void solve(int size, node *elements, farray **coeff)
{

cell *cp;
double boundary, diag;
int real-size = 0, i, j, N, *index;
matrix *mat;

for (i = 0; i < size; i++)
if (interiornode(elements + i))
realsize++;

fprintf(stderr, "Generating %dx.d matrix...\n", real-size, realsize + 1);

mat = matrix-cons(realsize, real-size + 1);
index = (int *)calloc(sizeof(int), size);

if (interiornode(elements))
index[O] = 0;

else
index[O] = -1;

for (i = 1; i < size; i++)
if (interiornode(elements + i))

index[i] = indexCi - 1] + 1;
else

index[i] = index[i - 1];

for (i = 0; i < size; i++)
if (interior-node(elements + i) && coeff[i] != NULL) {
N = fa-size(coeff [i);
diag = fa-ref(coeff i], 0);
mset(mat, index[i], index[i], 1.0);
boundary = 0.0;

for (j = 1, cp = elements[i].neighbors;
cp != NULL;
j++, cp = cp->next) {

if (interiornode(elements + cp->index))
mset(mat, index[i], index[cp->index], faref(coeff[i], j)/diag);

445

else
boundary -= fa_ref(coeff[i], j)*elements[cp->index].z/diag;

mset(mat, index[i], real_size, boundary);

}

fprintf(stderr, "Inverting matrix...\n");
fprintf(stderr, "Determinant = %lf\n", rref(mat));

for (i = 0; i < size; i++)

if (interiornode(elements + i))
elements[i].z = mref(mat, index[i], real-size);

matrixfree(mat);

free(index);

C.3.29 maplegrid.c

/****************
* maplegrid.c +
*** **************

Input: A grid file, such as the output of list2grid.

Output: A file suitable for Maple consumption. This is to get around
a stupid input limitation in Maple's matrix-input mechanism.

#include <stdio.h>

void maplegrid(FILE *, FILE *, int, char *);

main(int argc, char *argv[])
{

int ncols, i;
FILE *fin, *fout;

if (argc != 3) {
fprintf(stderr,
exit(1);

}

"Usage: ,s input-file output-name\n", argv[0]);

fin = fopen(argv[l], "r");
fout =fopen(argv[2], "w");

if ((fin == NULL) II (fout == NULL)) {
fprintf(stderr, "Error: Cannot open file\n");
exit(2);

}

fscanf(fin, ".d", &ncols);
maplegrid(fin, fout, ncols, "foo");
fclose(fin);

446

fclose(fout);
return 0;

void maplegrid(FILE *fin, FILE *fout, int ncols, char *name)
{

double x;
int i, j;

fprintf(fout, "%s := [\n[", name);

for (j = 0;; j++) {
if (fscanf(fin, "'lf", &x) == EOF)

break;
else if (j > 0)

fprintf(fout, ") ,\n ");

fprintf(fout, "%.161f", x);

for (i = 1; i < ncols; i++) {
if (fscanf(fin, "Wlf", ax) == EOF) {

fprintf(stderr, "Error: Premature EOF\n");
exit(3);

fprintf(fout, ",%.161f", x);

fprintf(fout, "J\n] :\n");
fprintf(fout, "11s := array(%s):\n", name, name);
fprintf(fout, "%s := [seq([seq([i, j, %s[i, j]], i=l..%d)], j=1..%d)]:\n",

name, name, ncols, j);
fprintf(fout, "plots[surfdata] (%s, axes=frame, style=wireframe) ;\n", name);

C.3.30 matrix.c

/*************

* matrix.c *

*****$********

Matrix routines. LU decomposition for banded matrices should be
implemented and explored, as well as Cholesky decomposition and
conjugate gradient methods.

#include
#include
#include
#include

<stdio.h>
<math.h>
"matrix.h"

"recipes/nr.h"

/**************Constructor/destr***********ctor:
* Constructor/destructor: *

447

matrix *matrix_cons(int nrows, int ncols)

int i;
matrix *mat = (matrix *)malloc(sizeof(matrix));

if (!(nrows > 0 && ncols > 0)) {
fprintf(stderr, "Error: Illegal matrix dimensions\n");
exit (1);

}

mat->nrows = nrows;
mat->ncols = ncols;
mat->el = (double **)calloc(sizeof(double *), nrows + 1);

for (i = 0; i <= nrows; i++)
mat->el[i] = (double *)calloc(sizeof(double), ncols + 1);

return mat;
}

void matrix_free(matrix *mat)

{
int i;

if (mat != NULL) {
if (mat->el != NULL) {

for (i = 0; i <= mat->nrows; i++)

if (mat->el[i] != NULL)
free(mat->el [i]);

free (mat->el);

free(mat);
}

}

* Methods: *

*************/

double mref(matrix *mat, int i, int j)

if (i < 0 II mat->nrows <= i II j < 0 II mat->ncols <= j) {
fprintf(stderr, "Error: Matrix access out of bounds\n");
exit ();

}

return mat->el[i + 11i][j + 1];

void mset(matrix *mat, int i, int j, double val)
{
if (i < 0 II mat->nrows <= i II j < 0 II mat->ncols <= j) {
fprintf(stderr, "Error: Matrix access out of bounds\n");
exit(1);

448

}

mat->el[i + 1] [j + 13 = val;

* Elementary row operations: *
******** **********************/

void exchangerows(matrix *mat, int ii, int i2)
{
double *vect;
int nrows = mat->nrows, ncols = mat->ncols, j;

if (ii < 0 I I nrows <= ii 11 i2 < 0 II nrows <= i2) {
fprintf(stderr, "Error: Illegal row exchange\n");
exit(l);

}

if (it != i2) {
vect = (double *)calloc(sizeof(double), ncols);

for (j = 0; j < ncols; j++)
vect[j] = mref(mat, ii, j);

for (j = 0; j < ncols; j++)
mset(mat, ii, j, mref(mat, i2, j));

for (j = 0; j < ncols; j++)
mset(mat, i2, j, vect[j]);

free(vect);

}

void scalerow(matrix *mat, int i, double a)
{

int nrows = mat->nrows, ncols = mat->ncols, j;

if (i < 0 I I nrows <= i) {
fprintf(stderr, "Error: Illegal row scaling\n");
exit(1);

}

for (j = 0; j < ncols; j++)
mset(mat, i, j, a*mref(mat, i, j));

void addrows(matrix *mat, int ii, double a, int i2)
{

int nrows = mat->nrows, ncols = mat->ncols, j;

if (ii < 0 II nrows <= it I1 i2 < 0 II nrows <= i2) {
fprintf(stderr, "Error: Illegal row addition\n");
exit(1);

}

for (j = 0; j < ncols; j++)

449

mset(mat, i2, j, mref(mat, i2, j) + a*mref(mat, il, j));
}

/*******************++**

* Matrix operations: *
***********************/

void madd(matrix *sum, matrix *matl, matrix *mat2)

{
int nrows, ncols, i, j;

if (!(sum->nrows == matl->nrows &&
sum->ncols == matl->ncols &&

fprintf(stderr, "Error: Can only
exit(1);

matl->nrows == mat2->nrows &&
matl->ncols == mat2->ncols)) {
add matrices of same dimensions\n");

nrows = sum->nrows;

ncols = sum->ncols;

for (i = 0; i < nrows; i++)

for (j = 0; j < ncols; j++)
mset(sum, i, j, mref(matl, i, j) + mref(mat2, i, j));

void mmult(matrix *product, matrix *matl, matrix *mat2)

{
double sum;

int i, j, k, m = product->nrows, n = product->ncols, p = matl->ncols;

if (!(matl->ncols == mat2->nrows &&

matl->nrows == product->nrows &&

mat2->ncols == product->ncols)) {

fprintf(stderr, "Error: Invalid matrix dimensions for multiplication\n");

exit(l);

}

for (i = 0; i < m; i++)

for (j = 0; j < n; j++) {
sum = 0.0;

for (k = 0; k < p; k++)

sum += mref(matl, i, k)*mref(mat2, k, j);

mset(product, i, j, sum);

}

matrix *transpose(matrix *mat)

{
int i, j, m = mat->nrows, n = mat->ncols;

matrix *matt = matrix_cons(n, m);

for (i = 0; i < m; i++)

for (j = 0; j < n; j++)
mset(matt, j, i, mref(mat, i, j));

return matt;

450

double rref(matrix *mat)

double det;
int i, j, k, N = mat->nrows, ncols = mat->ncols;

det = ludecomp(mat);

for (j = 0; j < N; j++)
for (i = j + 1; i < N; i++) {

for (k = N; k < ncols; k++)
mset(mat, i, k, mref(mat, i, k) - mref(mat, j, k)*mref(mat, i, j));

mset(mat, i, j, 0.0);
}

for (j = N - 1; 0 <= j; j--) {
scalerow(mat, j, 1.0/mref(mat, j, j));

for (i = j - 1; 0 <= i; i--)
addcrows(mat, j, -mref(mat, i, j), i);

}

return det;
}

double ludecomp(matrix *mat)
{
double sum, pivot, det = 1.0;
int N = mat->nrows, i, j, k, pivotindex;

if (mat->ncols < N) {
fprintf(stderr, "Error: Matrix has more rows than columns\n");
exit(1);

}

for (j = 0; j < N; j++) {
pivotindex = j;
pivot = fabs(mref(mat, j, j));

for (i = j + 1; i < N; i++)
if (fabs(mref(mat, i, j)) > pivot) {
pivotindex = i;
pivot = fabs(mref(mat, i, j));

}

if (j != pivotindex) {
exchangerows(mat, j, pivotindex);
det *= -1.0;

}

for (i = 0; i <= j; i++) {
sum = mref(mat, i, j);

for (k = 0; k < i; k++)
sum -= mref(mat, i, k)*mref(mat, k, j);

mset(mat, i, j, sum);

451

}

pivot = mref(mat, j, j);

det *= pivot;

for (i = j + 1; i < N; i++) {

sum = mref(mat, i, j);

for (k = 0; k < j; k++)

sum -= mref(mat, i, k)*mref(mat, k, j);

mset(mat, i, j, sum/pivot);

}

if (fabs(det) < TOL)

fprintf(stderr, "Warning: Nearly singular matrix (determinant = %.161g)\n",

det);

return det;

}

void svdecomp(matrix *mat, farray *w, matrix *v)

{
if (w->size != mat->ncols II

v->nrows != v->ncols II

v->nrows != w->size) {

fprintf(stderr, "Error: SVD input matrices have incorrect dimensions\n");

exit(1);

}

dsvdcmp(mat->el, mat->nrows, mat->ncols, w->array, v->el);

}

* Print out a matrix nicely: *

void mprint(FILE *fp, matrix *mat)

{
int nrows = mat->nrows, ncols = mat->ncols, i, j;

for (i = 0; i < nrows; i++) {

fprintf(fp, "Y.161f", mref(mat, i, 0));

for (j = 1; j < ncols; j++)
fprintf(fp, "\t%.161f", mref(mat, i, j));

fprintf(fp, "\n");

}

void mprintf(FILE *fp, char *format, matrix *mat)

{
int nrows = mat->nrows, ncols = mat->ncols, i, j;

for (i = 0; i < nrows; i++) {

fprintf(fp, format, mref(mat, i, 0));

452

for (j = 1; j < ncols; j++) {
fprintf(fp, "\t");
fprintf(fp, format, mref(mat, i, j));

fprintf(fp, "\n");

/***********************

* Little utilities: *
**********************/

double tolerance(void)

return tolerance-value;

void settolerance(double newval)

tolerancevalue = newval;

C.3.31 migrate.c

/**************

* migrate.c *

Change the density of nodes.

#include
#include
#include
#include

<stdio.h>
<math.h>
"gunk.h"
"random.h"

void migrate(int, node *, int, int);
void createboundary(int, node *, int);
double remap.x(double, double);
double remapjy(double, double);
double multiplier(double, double);

main(int argc, char *argv[])

int size, cellcount, realsize;
node *elements;
FILE *fp;

initializerandom();

if (argc != 4) {
fprintf(stderr, "Usage: 's file number-of-new-nodes 1/radius\n",

argv [03);

453

exit (1);

}

sscanf(argv[2], ".d", &realsize);

sscanf(argv [3], ".d", &cellcount);

fp = fopen(argv[1], "r");

if (fp == NULL) {

fprintf(stderr, "Error: Cannot open file \"Xs\"\n", argv[l]);

exit (1);

}

fscanf(fp, "Xd", &size);

fprintf(stderr, "Reading input file (%d nodes)...\n", size);

realsize += size;

elements = (node *)calloc(sizeof(node), realsize);

readelements(fp, size, elements);

fclose(fp);

fprintf(stderr, "Adding %d new nodes...\n", realsize - size);

migrate(realsize, elements, cellcount, size);

create_boundary(realsize, elements, cellcount);

fprintf(stderr, "Writing output file (.d nodes)...\n", realsize);

fp = fopen(argv[1], "w");
write_elements(fp, real_size, elements);

fclose(fp);

fprintf(stderr, "Freeing memory... \n");
freememory(real-size, elements);

return 0;

}

void migrate(int real_size, node *elements, int cellcount, int size)

{
cell *cp, *cp_next;

double x, y, xr, yr, radius = 1.0/cell_count, search_radius;

int n, i, j, p, q;
partition *partition = makepartition(cellcount);

for (n = 0; n < size; n++) {

i = (int)floor(elements[n] .x*cellcount);
j = (int)floor(elements[n].y*cell_count);

partitionadd(partition, i, j, n);

}

for (n = size; n < real_size; n++) {
xr = frandom();
yr = frandom();
x = remap_x(xr, yr);
y = remapy(xr, yr);

elements[n].x = x;
elements[n] .y = y;
elements[n].z = potential(x, y);

/* Free cells first. */

454

cp = elements[n].neighbors;

for (cp = elements[nJ.neighbors; cp != NULL;) {
cpnext = cp->next;
free(cp);
cp = cpnext;

}

elements[n].neighbors = NULL;
set-interiornode(elements + n);

i = (int)floor(x*cell-count);
j = (int)floor(y*cell-count);

searchradius = ceil(multiplier(x, y));

for (p = i - searchradius; p <= i + searchradius; p++)

for (q = j - searchradius; q <= j + searchradius; q++)
if (0 <= p && p < cell-count && 0 <= q && q < cellcount)
for (cp = partitionget(partition, p, q); cp != NULL; cp = cp->next)

introduce(elements, n, cp->index, radius*multiplier(x, y));

partitionadd(partition, i, j, n);
}

freepartition(partition);
}

void createboundary(int size, node *elements, int cellcount)
{
double x, y;
int n;

for (n = 0; n < size; n++) {
x = elements[n].x;
y = elements[n].y;

if ((x <= 0.0) II (1.0 <= x) II
(y <= 0.0) II (1.0 <= y))

setboundarynode(elements + n);

double remap.x(double x, double y)
{

return x;
}

double remapy(double x, double y)
{

return sqrt(y);
}

double multiplier(double x, double y)
{
return 1.0;

}

455

C.3.32 mkbd.c

/***********

* mkbd.c *

Creates a square of gunk, as in the rectangular slot problem in

electrostatics. The boundary nodes are given the correct values,

while the interior nodes can either be initialized with the correct

value or randomized. The nodes are randomly distributed.

#include <stdio.h>
#include <math.h>

#include "gunk.h"

#include "random.h"

/* #define INIT_TOTRUE_VALS */

void make_nodes(int, node *, int, int, double);

void createboundary(int, node *, int);

/* This stuff is used to make the node lists more readable. */

void sort_neighbors(int, node *);

double compute_angle(node *, int, int);

main(int argc, char *argv[])

{
double min_dist = 0.0;

int size, cell_count, bd_size;

node *elements;

FILE *fp;

initializerandom();

if (argc != 4 && argc != 5) {

fprintf(stderr,

"Usage: .s output-file number-of-nodes 1/radius [min-dist]\n",

argv[0]);
exit ();

}

sscanf(argv[2], "%d", &size);

sscanf(argv[3], ".%d", &cellcount);

bd_size = 8*((int)sqrt(size) + 1);

size += bd_size;

elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Creating a square containing %d nodes...\n", size);

if (argc == 5)

sscanf(argv[4], "%lf", &min_dist);

if (mindist > 0)

456

fprintf(stderr, "(Maximum number: %d nodes)\n",
(int)(1/(2*pi*fsquare(min-dist/2))));

makenodes(size, elements, cellcount, size - bd_size, mindist);
createboundary(size, elements, cell-count);
/* sort.neighbors(size, elements); */

fprintf(stderr, "Writing output file...\n");
fp = fopen(argv[l], "w");
writeelements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
freememory(size, elements);

return 0;
}

void make.nodes(int size, node *elements, int cell_count, int int-size,
double min-dist)

{
cell *cp;
double x, y, radius = 1.0/cell-count, bd = 0.0;
double delta = 4.0/(size - int-size);

int n, i, j, p, q, intpart, tooclose, closeencounter.count = 0;
partition *partition = make.partition(cellcount);

for (n = 0; n < size; n += (tooclose ? 0 : 1)) {
if (n >= intsize) {
bd = (n - intsize)*delta;
intpart = (int)bd;
bd -= intpart;

x = int.part%2 ? intpart%3 : bd;
y = intpartX2 ? bd : (intpart + 1)%3;

}
else {

x = frandom();
y = frandom();

#ifdef INITTOTRUEVALS
elements[n].z = potential(x, y);

#else
elements[n].z = 0.0;

#endif

}

i = (int)floor(x*cell_count);
j = (int)floor(y*cellcount);

elements[n] .neighbors = NULL;
elements[n].x = x;
elements[n].y = y;
set-interiornode(elements + n);
too-close = 0;

if (mindist > 0.0 && n < intsize) {
for (p = i - 1; p <= i + 1 && !too-close; p++)

for (q = j - 1; q <= j + 1 && !tooclose; q++)
if ((0 <= p) && (p < cellcount) && (0 <= q) && (q < cell-count))

457

for (cp = partition_get(partition, p, q);
cp != NULL;
cp = cp->next)

if (distance(elements + n, elements + cp->index) < min_dist) {
too_close = 1;
close_encounter_count++;
break;

}

if (!too_close) {
for (p = i - 1; p <= i + 1; p++)
for (q = j - 1; q <= j + 1; q++)
if ((0 <= p) && (p < cellcount) && (0 <= q) && (q < cell_count))

for (cp = partition_get(partition, p, q);
cp != NULL;
cp = cp->next)

introduce(elements, n, cp->index, radius);

partitionadd(partition, i, j, n);
}

fprintf(stderr, "(%.d close encounters.)\n", closeencounter-count);
free_partition(partition);

void create_boundary(int size, node *elements, int cell_count)
{

cell *cp;
double x, y, d, maxd, radius = 1.0/cell_count;
int n;

for (n = 0; n < size; n++) {
x = elements[n] .x;
y = elements[n].y;

if ((x <= 0.0) II (1.0 <= x) II
(y <= 0.0) II (1.0 <= y)) {

max_d = 0.0;

for (cp = elements[n].neighbors; cp != NULL; cp = cp->next) {
d = distance(elements + n, elements + cp->index);
if (d > max_d) max_d = d;

}

if (x == 0.0)
x -= frandom()*(radius - max_d);

else if (x == 1.0)
x += frandom()*(radius - max_d);

else if (y == 0.0)
y -= frandom()*(radius - max_d);

else if (y == 1.0)
y += frandom()*(radius - max_d);

elements[n].x = x;
elements[n].y = y;
elements[n].z = potential(x, y);
set_boundary_node(elements + n);

458

}
}

void sort-neighbors(int size, node *elements)
{

cell *cp;
double *keys, val;
int i, m, n, length, *cells, index;

for (i = 0; i < size; i++)
if (interior-node(elements + i)) {
length = 0;

for (cp = elements[il.neighbors; cp != NULL; cp = cp->next)
length++;

cells = (int *)calloc(sizeof(int), length);
keys = (double *)calloc(sizeof(double), length);
length = 0;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next) {
cells[length] = cp->index;
/* keys[length] = computeangle(elements, i, cp->index); */
keys[length] = -(cp->index);
length++;

}

for (m = 1; m < length; m++) {
val = keys[m];
index = cells [m];

for (n = m - 1; keys[n] < val && n >= 0; n--) {
keys[n + 1] = keys[n];
cells[n + 1) = cells[n];

}

keys[n + 1] = val;
cells[n + 1] = index;

length = 0;

for (cp = elements[il.neighbors; cp != NULL; cp = cp->next)
cp->index = cells[length++] ;

free(keys);
free (cells);

}

double computeangle(node *elements, int i, int j)
{
double x = elements[j].x - elements[i].x, y = elements[j].y - elements[i].y;
double result;

if (x > 0.0)
result = atan(y/x);

else

459

result = atan(y/x) + pi;

if (result < 0.0)
result = 2*pi + result;

return result;

C.3.33 mkgrid.c

* mkgrid.c *
+*++**++**

Serves the same function as mkbd, only the nodes are placed on
a regular grid.

#include <stdio.h>
#include <math.h>
#include "gunk.h"

#define INIT_TO_TRUE_VALS

void make_nodes(int, int, node *);

main(int argc, char *argv[])
{

int size, count, radius;
node *elements;
FILE *fp;

if (argc != 4) {
fprintf(stderr, "Usage: %s output-file number-of-nodes/side radius\n",

argv [01);
exit(1);

}

sscanf(argv[2], "/d", &count);
sscanf(argv[3], "Ud", &radius);
size = SQUARE(count);
elements = (node *)calloc(sizeof(node),

fprintf(stderr, "Creating a /dx/d grid
make_nodes(count, radius, elements);

fprintf(stderr, "Writing output file...
fp = fopen(argv[1], "w");
write_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
free_memory(size, elements);

return 0;

size);

(%d nodes)...\n", count, count, size);

460

void make.nodes(int count, int radius, node *elements)
{

cell *cp;
double delta = 1.0/(count - 1), x, y, a = (radius - 0.5)*delta, b = 1.0 - a;
int i, j, p, q, index, neighbor-index, size = SQUARE(count);
node *nev;

for (j = 0; j < count; j++)
for (i = 0; i < count; i++) {

index = j*count + i;
x = i*delta;
y = j*delta;

elements[index].x = x;
elements[index].y = y;

#ifdef INITTOTRUEVALS
elements[index].z = potential(x, y);

#else
elements[index].z = 0.0;

#endif
elements[index. neighbors = NULL;

if (a < x && x < b && a < y && y < b)
for (p = -radius; p <= radius; p++)

for (q = -radius; q <= radius; q++) {
neighborindex = (j + q)*count + i + p;
setinteriornode(elements + index);

if (0 <= neighborindex && neighbor.index < size &&
neighborindex != index) {

cp = (cell *)malloc(sizeof(cell));
cp->next = elements[index].neighbors;
elements[index].neighbors = cp;
cp->index = neighbor-index;

}
}

else {
elements[index].z = potential(x, y);
setboundarynode(elements + index);

}
}

C.3.34 mksq.c

/***********

* mksq.c *

An obsolete, older version of mkbd.c.

*/

461

#include

#include

#include

#include

#include

<stdio.h>
<stdlib.h>
<time.h>
<math.h>
"gunk.h"

typedef struct {
cell **list;
int size;

} grid;

void makenodes(int, node *, int);

grid *makegrid(int);

void gridadd(grid *, int, int, int);

cell *grid_get(grid *, int, int);

void free.grid(grid *);

void introduce(node *, int, int, doub

int grid_pos_x(int);
int grid_pos_y(int);
void rmbd(int, node *, int);
void create_boundary(int, node *, int

main(int argc, char *argv[])

{
int size, cell_count;
node *elements;

FILE *fp;

srand48(time(NULL));

if (argc != 4) {

fprintf(stderr, "Usage: %s

argv [0]);

exit(1);

output-file number-of-nodes 1/radius\n",

sscanf(argv[21], "Ud", &size);

sscanf(argv[31], "%d", &cell-count);

size = (int)floor((double)size*fsquare(cell_count + 2)/fsquare(cell-count));

cell_count += 2;

elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Creating a square containing %d nodes...\n", size);

make_nodes(size, elements, cellcount);

createboundary(size, elements, cellcount);

rmbd(size, elements, cell_count);

fprintf(stderr, "Writing output file...\n");

fp = fopen(argv[1], "w");
writeelements(fp, size, elements);

fclose(fp);

fprintf(stderr, "Freeing memory...\n");

free_memory(size, elements);

return 0;

void make_nodes(int size, node *elements, int cell_count)

462

le);

);

cell *cp;
double x, y, radius = 1.O/cell_count;
int n, i, j, k, p, q;
grid *partition = make_grid(cellcount);

for (n = 0; n < size; n++) {
x = drand48();
y = drand48();
i = (int)floor(x*cell_count);
j = (int)floor(y*cellcount);

elements[n].neighbors = NULL;
elements[n].x = x;
elements[n].y = y;
elements[n].z = 0.0;

for (k = 0; k < 9; k++) {
p = i + gridpos_x(k);
q = j + grid_pos_y(k);

if ((0 <= p) && (p < cellcount) && (0 <= q) && (q < cellcount))
for (cp = grid-get(partition, p, q); cp != NULL; cp = cp->next)

introduce(elements, n, cp->index, radius);

grid_add(partition, i, j, n);

free.grid(partition);
}

void create_boundary(int size, node *elements, int cellcount)
{

cell *cp, *cp.next;
int n, i, j;

for (n = 0; n < size; n++) {
i = (int)floor(elements[n] .x*cell_count);
j = (int)floor(elements[n] .y*cellcount);

if ((i == 0) II (i == cell_count - 1) II
(j == 0) II (j == cellcount - 1)) {

cp = elements[n].neighbors;

while (cp != NULL) {
cp_next = cp->next;
free(cp);
cp = cp_next;

}

elements[n].neighbors = NULL;

if (j == cell_count - 1)
elements[n].z = 1.0;

else
elements[n].z = 0.0;

}

463

}

void introduce(node *elements, int i, int j, double radius)
{

cell *new_celli, *new_cell2;

if (distance(elements + i, elements + j) < radius) {
new celll = (cell *)malloc(sizeof(cell));
new_cell2 = (cell *)malloc(sizeof(cell));

newcelll->next = elements[i].neighbors;
new_cell2->next = elements[j].neighbors;

elements[i].neighbors = new_celll;
elements[j].neighbors = new_cell2;

new_celll->index = j;
newcell2->index = i;

grid *make_grid(int size)
{
grid *newgrid = (grid *)malloc(sizeof(grid));

new_grid->list = (cell **)calloc(sizeof(cell *), SQUARE(size));
new_grid->size = size;

return new_grid;
}

void grid_add(grid *partition, int i, int j, int index)
{

cell **list = partition->list, *new_cell;
int size = partition->size;

if ((i >= size) II (j >= size)) {
fprintf(stderr, "Error: Grid access out of bounds\n");
exit(2);

}

newcell = (cell *)malloc(sizeof(cell));
new_cell->next = *(list + i*size + j);
*(list + i*size + j) = new_cell;
new_cell->index = index;

cell *grid_get(grid *partition, int i, int j)
{

cell **list = partition->list;
int size = partition->size;

if ((i >= size) II (j >= size)) {
fprintf(stderr, "Error: Grid access out of bounds\n");
exit(3);

}

return *(list + i*size + j);
}

464

void freegrid(grid *partition)

{
cell **list = partition->list, *cp, *cpnext;
int size = partition->size, i, j;

for (i = 0; i < size; i++) {
for (j = 0; j < size; j++) {

cp = *(list + i*size + j);

while (cp != NULL) {

cpnext = cp->next;
free(cp);
cp = cp_next;

free(partition);

int gridpos_x(int n)
{
return n/3 - 1;

int gridpos_y(int n)
{
return n%3 - 1;

}

void rmbd(int size, node *elements, int cell_count)
{

int n;
double ratio;

if (cell_count > 2) {
ratio = cell_count/(cell_count - 2.0);

for (n = 0; n < size; n++) {
elements[n].x = (elements[n]
elements[n].y = (elements[n]

.x - .5)*ratio + .5;

.y - .5)*ratio + .5;

if ((0.0 < elements[n].x) && (elements[n].x < 1.0) &&
(0.0 < elements[n].y) && (elements[n].y < 1.0))

elements[n] .z = potential(elements[n] .x, elements[n] .y);

C.3.35 new2old.c

/**************
* new2old.c *

Converts a binary gunk file to an ASCII file.

465

C.3.35

new2old.c

#include <stdio.h>
#include "gunk.h"

main(int argc, char *argv[])
{

int size;
node *elements;
FILE *fp;

if (argc != 3) {
fprintf(stderr,
exit(1);

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error:
exit(1);

"Usage: 's input-file output-file\n", argv[0]);

Cannot open file \"'s\"\n", argv[1]);

fscanf(fp, "Yd", &size);
fprintf(stderr, "Reading input file (%d nodes).
elements = (node *)calloc(sizeof(node), size);
read_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Writing output file (Yd nodes)
fp = fopen(argv[2], "w");
old_write_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
free_memory(size, elements);

return 0;

}

C.3.36 norm_eqs.c

.\n", size);

.. \n", size);

* norm_eqs.c +
*****+**+*++**++

Input: A gunk file, such as the output of mkbd or mkgrid, and a file of
coefficients, such as the output of approx.

Output: A new gunk file and new coefficients, arranged so that the relaxation
matrix is symmetric.

#include <stdio.h>

466

#include <math.h>
#include "gunk.h"
#include "farray.h"

/* Print debug info? */
/* #define DEBUG */
/* #define TESTKLUGE */

void readcoeff(FILE *, int, farray **);
void write-coeff(FILE *, int, farray **);
void freecoeff(int, farray **);
void normal-eqs(int, node *, farray **);
void sortneighbors(int, node *, farray **);
void checksymmetry(int, node *, farray **);

main(int argc, char *argv[])
{
farray **coeff;
int size;
node *elements;
FILE *fp;

if (argc != 5) {
fprintf(stderr, "Usage: %s gunk-in coeff-in gunk-out coeff-out\n",

argv [03);
exit(1);

}

fp = fopen(argv[l], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"'s\"\n", argv[yll]);
exit(2);

}

fscanf(fp, "'d", &size);
elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Reading input file (%d nodes)...\n", size);
readelements(fp, size, elements);
fclose(fp);

fp = fopen(argv[21, "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"'s\"\n", argv[23);
exit(3);

}

fprintf(stderr, "Reading coefficients...\n");
coeff = (farray **)calloc(sizeof(farray *), size);
readcoeff(fp, size, coeff);
fclose(fp);

/* Sort old neighborhoods first. */
fprintf(stderr, "Sorting neighbor sets...\n");
sort-neighbors(size, elements, coeff);

467

/* Compute normal equations. */
normal_eqs(size, elements, coeff);

fprintf(stderr, "Checking symmetry... \n");
checksymmetry(size, elements, coeff);

fprintf(stderr, "Writing new gunk file...\n");
fp = fopen(argv[3] , "w");
write_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing gunk memory...\n");
free-memory(size, elements);

fprintf(stderr, "Writing new coefficients...\n");
fp = fopen(argv[4] , "w");
write_coeff(fp, size, coeff);
fclose(fp);

fprintf(stderr, "Freeing coefficient memory...\n");
freecoeff(size, coeff);

return 0;
}

void free-coeff(int size, farray **coeff)
{

int i;

for (i = 0; i < size; i++)
farray_free(coeff[i]);

free(coeff);
}

void write_coeff(FILE *fp, int size, farray **coeff)
{

int i, j, N;

for (i = 0; i < size; i++) {
N = fa_size(coeff[i]);
putint(fp, N);

for (j = 0; j < N; j++)
putlf(fp, fa-ref(coeff[i], j));

void read_coeff(FILE *fp, int size, farray **coeff)
{
double val;
int i, j, N;

for (i = 0; i < size; i++) {
getint(fp, &N);

if (N > 0) {
coeff[i] = farray_cons(N);
getlf(fp, &val);

468

faset(coeff[i], 0, val);

for (j = 1; j < N; j++) {
getlf(fp, &val);
faset(coeff[i], j, val);

}
}

}

/**
* Generate normal equations for the system of equations generated by
* gencoeff. This has the distinct advantage that the resulting matrix is
* symmetric positive-definite. This function assumes that neighbor lists have
* already been sorted.
**/

void normaleqs(int size, node *elements, farray **coeff)
{

cell **newneighbors, *cp, *cq, *new, *prev, head;
double sum;
farray **newcoeff;
int count, i, j;

double inner_product(int, int, node *, farray **);

/* First step: For each node, compute the union of its neighbor-set and its
* neighbors' neighbor-sets. */

fprintf(stderr, "Collecting two-hop neighbors...\n");

new-neighbors = (cell **)calloc(sizeof(cell *), size);
new-coeff = (farray **)calloc(sizeof(farray *), size);
head.index = -1;

for (i = 0; i < size; i++) {

/* Copy neighbors first, assuming the list is already sorted. */

head.next = NULL;
prey = &head;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next) {
new = (cell *)malloc(sizeof(cell));
new->index = cp->index;
new->next = NULL;
prev->next = new;
prey = new;

/* Then copy neighbors' neighbors, taking care to sort the list. */

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next)
for (cq = elements[cp->index].neighbors; cq != NULL; cq = cq->next)
if (cq->index != i) {
for (prevy = &head, new = head.next; new != NULL; new = new->next)
if (new->index > cq->index)
break;

else

469

prey = new;

if (prev->index != cq->index) {
new = (cell *)malloc(sizeof(cell));
new->next = prev->next;
prev->next = new;
new->index = cq->index;

}
}

newneighbors[i] = head.next;

/* Next, for each node, compute its new coefficients for each member of its
* newly-computed neighbors' neighbor sets. */

fprintf(stderr, "Computing new coefficients...\n");

for (i = 0; i < size; i++)
if (interiornode(elements + i) && newneighbors[i] != NULL) {

/* Allocate some space for the new coefficients. */

for (count = 1, cp = new-neighbors[i);
cp != NULL;
cp = cp->next, count++);

newvcoeff[i] = farraycons(count);

/* Compute the new coefficients. Do we need to pay special attention to
* boundary nodes? */

for (j = 1, cp = new-neighbors[i]; cp != NULL; j++, cp = cp->next)
fa-set(newcoeff[i], j, innerproduct(i, cp->index, elements, coeff));

#ifdef TESTKLUGE
sum = 0.0;

for (j = 1, cp = newneighbors[i); cp != NULL; j++, cp = cp->next)
sum += fabs(faref(newcoeff[i], j));

fa-set(newcoeff [i, 0, sum);
#else

faset(newcoeff[i], 0, innerproduct(i, i, elements, coeff));
#endif

}

/* Finally, write over the old data structures and free up the
* temporarily-allocated memory... */

fprintf(stderr, "Freeing temporary memory...\n");

for (i = 0; i < size; i++) {
cp = elements[i].neighbors;

while (cp != NULL) {
cq = cp->next;
free(cp);
cp = cq;

470

}

elements i].neighbors = newvneighbors[i];

/* Copy coefficients. */

farrayfree(coeff i]);
coeff i] = ne,_coeff[i];

}

/* Free temporary memory. */

free(newvneighbors);
free(newvcoeff);

* Sort neighbor lists by index.
**/

void sortneighbors(int size, node *elements, farray **coeff)

{
cell *cp;
int i, j;

void sortwithout.coeff(node *);
void sortwithcoeff(node *, farray *);

for (i = 0; i < size; i++)
if (coeff[i] == NULL)
sortwithoutcoeff(elements + i);

else {

#ifdef DEBUG
fprintf(stderr, "\nNode %d (%d neighbors):\n", i, fa.size(coeff i]));

fprintf(stderr, "Before: (%d •lf)", i, faref(coeff[i], 0));
for (j = 1, cp = elements[il.neighbors; cp != NULL; j++, cp = cp->next)
fprintf(stderr, " (%d Ylf)", cp->index, fa.ref(coeff[i], j));

fprintf(stderr, "\n");
#endif

sortwithcoeff(elements + i, coeff i]);

#ifdef DEBUG
fprintf(stderr, "After: (%d 1lf)", i, faref(coeff[i], 0));
for (j = 1, cp = elements[il.neighbors; cp != NULL; j++, cp = cp->next)

fprintf(stderr, " (%d 1lf)", cp->index, faref(coeffCi], j));
fprintf(stderr, "\n");

#endif
}

}

void sortwithoutcoeff(node *node)
{
cell *cp;
int i, m, n, length, *key, index;

471

for (length = 0, cp = node->neighbors; cp != NULL; length++, cp = cp->next);
key = (int *)calloc(sizeof(int), length);

for (i = 0, cp = node->neighbors; cp != NULL; i++, cp = cp->next)
keyli] = cp->index;

for (m = 1; m < length; m++) {
index = key[m];

for (n = m - 1; key[n] > index && n >= 0; n--)
key[n + 1] = key[n];

key[n + 1] = index;
}

for (i = 0, cp = node->neighbors; cp != NULL; i++, cp = cp->next)
cp->index = key[i];

free(key);

}

void sort-withcoeff(node *node, farray *coeff)
{
cell *cp;
double val, *new;
int i, m, n, length, *key, index;

length = fa-size(coeff) - 1;
key = (int *)calloc(sizeof(int), length);
new = (double *)calloc(sizeof(double), length);

for (i = 0, cp = node->neighbors; cp != NULL; i++, cp = cp->next) {
key[i] = cp->index;
newv[i = faref(coeff, i + 1);

}

for (m = 1; m < length; m++) {
index = key[m];
val = faref(coeff, m + 1);

for (n = m - 1; key[n] > index && n >= 0; n--) {
key[n + 1) = key[n];
new[n + 13 = nevwn];

}

key[n + 1] = index;
new[n + 11 = val;

for (i = 0, cp = node->neighbors; cp != NULL; i++, cp = cp->next) {
cp->index = key[i];
faset(coeff, i + 1, new[i]);

}

free(key);
free(new);

}

472

* This procedure assumes that the neighbor lists have been sorted in

* ascending order by index. This implementation does *not* do the right
* thing with boundary nodes: The inner product between an interior and a

* boundary node is automatically zero, and no boundary condition comes in.

* But why should this introduce instability into the system? *Which* matrix

* needs to be positive-definite?
**/

double innerproduct(int i, int j, node *elements, farray **coeff)

{
cell *cp = elements[i].neighbors, *cq = elements[j].neighbors, *cr;

double sum = 0, prod;
int count, k, 1;

while (1)
if (cp == NULL && cq == NULL) {

if (i == j && interiornode(elements + i))
sum += fa-ref(coeff[i], 0)*faref(coeff[j], 0);

return sum;
}
else if (cq == NULL II (cp != NULL && cp->index < cq->index)) {
if (cp->index == j && interior_node(elements + j)) {
prod = fa_ref(coeff[j], 0);

for (1 = 1, cr = elements[j].neighbors; cr != NULL; 1++, cr = cr->next)

if (cr->index == i) {
prod *= fa_ref(coeff[j], 1);
break;

}

sum += prod;

}

cp = cp->next;

}
else if (cp == NULL II (cq != NULL && cp->index > cq->index)) {
if (cq->index == i && interiornode(elements + i)) {
prod = fa-ref(coeff[i], 0);

for (1 = 1, cr = elements[i].neighbors; cr != NULL; 1++, cr = cr->next)

if (cr->index == j) {
prod *= fa-ref(coeff[i], 1);
break;

}

sum += prod;

}

cq = cq->next;
}
else {
k = cp->index;

if (interiornode(elements + k)) {
prod = 1.0;

473

for (count = 2, 1 = 1, cr = elements[k].neighbors;
cr != NULL && count > 0;
1++, cr = cr->next) {

if (cr->index == i) {
prod *= fa-ref(coeff[k], 1);
count--;

}

if (cr->index == j) {
prod *= fa.ref(coeff [k, 1);
count--;

sum += prod;

cp = cp->next;
cq = cq->next;

void checksymmetry(int size, node *elements, farray **coeff)

cell *cp, *cq;
double max = 0, diff;
int i, j, k, count = 0, total = 0;

for (i = 0; i < size; i++)
if (interiornode(elements + i)) {
for (j = 1, cp = elements[il.neighbors; cp != NULL; j++, cp = cp->next)
if (interior-node(elements + cp->index)) {
for (k = 1, cq = elements[cp->index].neighbors;

cq != NULL;
k++, cq = cq->next)

if (cq->index == i)
break;

if (cq != NULL)
diff = fabs(faref(coeff[i], j) - fa-ref(coeff[cp->index), k));

else
diff = fabs(faref(coeff[i], j));

if (diff > max)
max = diff;

if (faref(coeff[i], 0) > 0)
count++;

total++;

}

fprintf(stderr, "Maximum difference from symmetry: %.161f.\n", max);
fprintf(stderr, "Id out of %d diagonal entries are positive.\n",

count, total);
}

474

C.3.37 nstat.c

* nstat.c *

Collects and prints n**eighborhood inf***ormation on a** gunk file.

Collects and prints neighborhood information on a gunk file.

#include
#include
#include
#include

<stdio.h>

<math.h>
"gunk.h"
"stat.h"

main(int argc, char *argv[])
{

int size;
node *elements;
FILE *fp;

if (argc != 2) {
fprintf(stderr,
exit (1);

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error:
exit(2);

"Usage: %s input-file\n", argv[0]);

Cannot open file \"Xs\"\n", argv[1]);

fscanf(fp, "Xd", &size);

elements = (node *)calloc(sizeof(node),
read.elements(fp, size, elements);
fclose(fp);

nstat(stdout, size, elements);
free.memory(size, elements);
return 0;

C.3.38 old2new.c

size);

* old2new.c *
******** ******

Converts the old (ASCII) format of gunk files to the binary format.

#include <stdio.h>

#include "gunk.h"

475

main(int argc, char *argv[])

int size;
node *elements;

FILE *fp;

if (argc != 3) {
fprintf(stderr, "Usage:
exit(1);

}

fp = fopen(argv[i], "r");

if (fp == NULL) {
fprintf(stderr, "Error:
exit (1);

%s input-file output-file\n", argv[0]);

Cannot open file \"'s\"\n", argv[1]);

fscanf(fp, "Ud", &size);
fprintf(stderr, "Reading input file (%d nodes)..
elements = (node *)calloc(sizeof(node), size);
old-read_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Writing output file (%d
fp = fopen(argv[2], "w");
write_elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
free_memory(size, elements);

return 0;

nodes)...\n", size);

C.3.39 order.c

/***********

* order.c *

This is the order in which monomials are used in a polynomial
interpolation method for finite differencing.

#include <stdio.h>

void walk(int, int *, int *);

main(int argc, char *argv[])

int i, n, x, y;

if (argc != 2) {
fprintf(stderr, "Usage: %s n\n", argv[01);

476

.\n", size);

exit (1);

}

sscanf(argv[1], "Xd", &n);

for (i = 0; i < n; i++) {
walk(i, &x, &y);

printf("Xd: (Xd, %d)\n", i, x, y);

}

void walk(int n, int *x, int *y)
{

int i = 0, j = 0, k;

for (; n > 0; n--)
if (i == j) {
i++;

j = 0;
}
else if (i > j) {
k = i;

i= j;

j =k;
}
else {
k=i+

i= j;

j =k;

C.3.40 peek.c

* peek.c *

Take a peek inside gunk.

*/

#include

#include

#include

<stdio.h>
<math.h>
"gunk.h"

void peek(int, node *, int);
void sort_neighbors(int, node *);

main(int argc, char *argv[])

{
FILE *fp;
int size, i, node_count, n;
node *elements;

477

*x = i;

*y = j;

if (argc < 2) {
fprintf(stderr, "Usage: 's file-name [nodel node2 ...]\n", argv[0]);
exit(1);

}

fp = fopen(argv[ll], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"%s\"\n", argv[l]);
exit(1);

}

fscanf(fp, "'d", &size);
elements = (node *)calloc(sizeof(node), size);
readelements(fp, size, elements);
fclose(fp);

sortneighbors(size, elements);
nodecount = argc - 2;

for (i = 0; i < node-count; i++) {
sscanf(argv[i + 2), "%d", kn);
peek(size, elements, n);

}

freememory(size, elements);
return 0;

void peek(int size, node *elements, int node)
{

cell *cp;
int count;

printf("\nNode 'd:\n", node);

if (node < 0 II node >= size) {
printf("Out of range!\n\n");
return;

}

printf("Position = ('lf, 'lf)\n", elements[node].x, elements[node].y);
printf("Value = X1f\n", elements[node].z);
printf("Neighbors = (");

cp = elements[node].neighbors;

if (cp == NULL)
printf(")");

else {
printf("%d", cp->index);

for (count = 1, cp = cp->next; cp != NULL; count++, cp = cp->next)
printf(" %d", cp->index);

printf(")");
}

478

printf("\nCounted ',d neighbors.\n", count);
printf("Node type: ");

if (interiornode(elements + node))
printf("Interior. \n");

else if (boundarynode(elements + node))
printf("Boundary. \n");

else
printf ("Unknown. \n");

printf("\n");
}

void sortneighbors(int size, node *elements)
{

cell *cp;
double *keys, val;
int i, m, n, length, *cells, index;

for (i = 0; i < size; i++)
if (interiornode(elements + i)) {
length = 0;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next)
length++;

cells = (int *)calloc(sizeof(int), length);
keys = (double *)calloc(sizeof(double), length);
length = 0;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next) {
cells[length] = cp->index;
keys[length] = -(cp->index);
length++;

}

for (m = 1; m < length; m++) {
val = keys[m];
index = cells[ml;

for (n = m - 1; keys[n] < val && n >= 0; n--) {
keys[n + 1] = keys[n];
cells[n + 1] = cells[n];

}

keys[n + 1) - val;
cells[n + 1i = index;

length = 0;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next)
cp->index = cells[length++];

free(keys);
free(cells);

}
}

479

C.3.41 peek_coeff.c

/*****************

* peek_coeff.c *

ake a peek insi** ********gunk.

Take a peek inside gunk.

*/

#include

#include

#include

#include

<stdio.h>
<math.h>
"gunk.h"

"farray.h"

void peek(int, node *, farray **, int);

void sort.neighbors(int, node *, farray **);

void read_coeff(FILE *, int, farray **);

main(int argc, char *argv[])

{
farray **coeff;

FILE *fp;

int size, i, node_count, n;

node *elements;

if (argc < 3) {
fprintf(stderr, "Usage:

argv[O]);
exit ();

}

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error:
exit ();

%s gunk-file coeff-file [nodel node2 ... \n",

Cannot open file \"%s\"\n", argv[1]);

fscanf(fp, ".d", &size);

elements = (node *)calloc(sizeof(node), size);

readelements(fp, size, elements);

fclose(fp);

fp = fopen(argv[2], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"'/%s\"\n", argv[2]);

exit(1);

}

fprintf(stderr, "Reading coefficients...\n");

coeff = (farray **)calloc(sizeof(farray *), size);

read.coeff(fp, size, coeff);

fclose(fp);

sort_neighbors(size, elements, coeff);

node_count = argc - 3;

480

for (i = 0; i < nodecount; i++) {
sscanf(argv[i + 31, "Xd", &n);
peek(size, elements, coeff, n);

}

free_memory(size, elements);

for (i = 0; i < size; i++)
farray.free (coeff [i]);

free(coeff);
return 0;

}

void peek(int size, node *elements, farray **coeff, int node)
{

cell *cp;
int count;

printf("\nNode Xd:\n", node);

if (node < 0 I I node >= size) {
printf("Out of range!\n\n");
return;

}

printf("Position = (Xlf, Xlf)\n", elements[node] .x, elements[node] .y);
printf("Value = Xlf\n", elements[node].z);
printf("Neighbors & coefficients:\n");

if (coeff[node] != NULL) {
printf(" (Xd\t/lf)\n", node, fa-ref(coeff [node], 0));

for (count = 1, cp = elements[node].neighbors;
cp != NULL;
count++, cp = cp->next)

printf(" (%d\ttlf)\n", cp->index, fa_ref(coeff [node], count));
}
else {
printf(" (Xd\tn/a) \n", node);

for (count = 1, cp = elements[node].neighbors;
cp != NULL;
count++, cp = cp->next)

printf(" (Xd\tn/a)\n", cp->index);

printf("\nCounted 'd neighbors.\n", --count);
printf("Node type: ");

if (interior_node(elements + node))
printf("Interior. \n");

else if (boundarynode(elements + node))
printf ("Boundary. \n");

else
printf ("Unknown. \n");

printf("\n");

481

* Sort neighbor lists by index.

void sort-neighbors(int size, node *elements, farray **coeff)

{
cell *cp;
int i, j;

void sortwithoutcoeff(node *);
void sortwithcoeff(node *, farray *);

for (i = 0; i < size; i++)
if (coeff[i] == NULL)
sortvithoutscoeff(elements + i);

else
sortwithcoeff(elements + i, coeff[i]);

}

void sortswithoutscoeff(node *node)
{

cell *cp;
int i, m, n, length, *key, index;

for (length = 0, cp = node->neighbors; cp != NULL; length++, cp = cp->next);
key = (int *)calloc(sizeof(int), length);

for (i = 0, cp = node->neighbors; cp != NULL; i++, cp = cp->next)
key[i] = cp->index;

for (m = 1; m < length; m++) {
index = key[m];

for (n = m - 1; key[n] > index && n >= 0; n--)
key[n + 1] = key[n];

key[n + 1] = index;
}

for (i = 0, cp = node->neighbors; cp != NULL; i++, cp = cp->next)
cp->index = key[i];

free(key);
}

void sortwithcoeff(node *node, farray *coeff)

cell *cp;
double val, *new;
int i, m, n, length, *key, index;

length = fasize(coeff) - 1;
key = (int *)calloc(sizeof(int), length);
new = (double *)calloc(sizeof(double), length);

for (i = 0, cp = node->neighbors; cp != NULL; i++, cp = cp->next) {
key[i] = cp->index;

482

nevwi] = faref(coeff, i + 1);
}

for (m = 1; m < length; m++) {
index = key[m];
val = faref(coeff, m + 1);

for (n = m -
key[n + 1)
new En + 1]

}

1; key En]
= key[n];

= new n];

> index && n >= 0; n--) {

key[n + 1] = index;

new[n + 1] = val;

for (i = 0, cp = node->neighbors; cp != NULL; i++, cp = cp->next) {
cp->index = key [i];
faset(coeff, i + 1, new[il);

}

free (key);
free (new);

void readcoeff(FILE *fp, int size, farray **coeff)
{

double val;
int i, j, N;

for (i = 0; i < size;
getint(fp, &N);

i++) {

if (N > 0) {
coeff i] = farraycons(N);
getlf(fp, &val);
fa-set(coeff[i], 0, val);

for (j = 1; j < N;
getlf(fp, &val);
faset(coeff[i],

j++) {

j, val);

}

C.3.42 poly.c

po** *******

* poly.c *

This is pretty much like approx, only it dumps the polynomial coefficients
instead of the operator coefficients.

483

#include <stdio.h>
#include <math.h>
#include "gunk.h"
#include "matrix.h"

#define CACHESIZE 105

void init_op(int, node *, farray **);
void gencoeff(int, node *, farray **);
void checkcoeff(int, farray **);

void lsqfit(int, node *, farray *);
void memovalk(int, int *, int *);
void walk(int, int *, int *);

double monomial(double, double, int, int);
int termcount(int);

main(int argc, char *argv[])
{
farray **coeff;
int size, i, j, N;
FILE *fp;
node *elements;

if (argc != 3) {
fprintf(stderr, "Usage: Xs input-file output-file\n",

argv [0]);
exit(1);

}

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"Vs\"\n", argv[l]);
exit(2);

}

fscanf(fp, ",d", &size);
elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Reading input file (%d nodes)...\n", size);
readelements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Initializing differential operator coefficients...\n");
coeff = (farray **)calloc(sizeof(farray *), size);
init.op(size, elements, coeff);
gencoeff(size, elements, coeff);
check.coeff(size, coeff);

fp = fopen(argv[2], "w");
fprintf(stderr, "Writing output file...\n");

for (i = 0; i < size; i++) {
N = fa-size(coeff [i);

484

fprintf(fp, "1d", N);

for (j = 0; j < N; j++)
fprintf(fp, " %.161g", faref(coeff[i], j));

fprintf(fp, "\n");

fclose(fp);

fprintf(stderr, "Freeing memory... \n");
free.memory(size, elements);

for (i = 0; i < size; i++)
farray.free(coeff il);

free(coeff);
return 0;

void initop(int size, node *elements, farray **coeff)

cell *cp;
int i, length;

for (i = 0; i < size; i++)
if (interiornode(elements + i)) {
length = 0;

for (cp = elements[il.neighbors;
length++;

cp != NULL; cp = cp->next)

coeffli] = farray-cons(length + 1);

void gen-coeff(int size, node *elements, farray **coeff)

int n;

for (n = 0; n < size; n++)
if (interior-node(elements + n))

isqfit(n, elements, coeff[n]);

void check.coeff(int size, farray **coeff)
{
double sum;
int n, i, N, count = 0;

for (n = 0; n < size; n++) {
N = fasize(coeff[n]) ;

if (N > 0) {
sum = 0.0;

for (i = 1; i < N; i++)

sum += fabs(faref(coeff [n), i));

485

int

n;

if (sum > fabs(fa.ref(coeff [n, 0)))
count++;

}

if (count > 0)
fprintf(stderr, "Warning: Matrix not diagonally dominant! (.d/.d)\n",

count, size);

void memo-walk(int n, int *x, int *y)
{

static int xi[CACHESIZE], yi[CACHESIZE], filled[CACHESIZE];
static int first-time = 1;
int k;

if (n < CACHE-SIZE) {
if (firsttime) {
for (k = O; k < CACHESIZE; k++)

filled[k] = 0;

firsttime = 0;
}

if (!filled[n]) {
walk(n, xi + n, yi + n);
filled[n] = 1;

}

*x = xi n];
*y = yi[n];

}
else
walk(n, x, y);

void walk(int n, int *x, int *y)
{
int i = 0, j = 0, k;

for (; n > 0; n--)
if (i == j) {
i++;
j = 0;

}
else if (i > j) {

k =i;
i =j;
j = k;

}
else {
k= i + 1;
i =j;
j =k;

}

*x = i;
*y = j;

}

486

double monomial(double x, double y, int i, int j)
{
double product = 1.0;

for (; i > 0; i--) product *= x;
for (; j > 0; j--) product *= y;

return product;
}

int termncount(int n)
{
n = (int)ceil(sqrt(8.0*n + 1.0)/2.0 - 1.5);
n = ((n + 1)*(n + 2))/2;
return (n > 6) ? n : 6;

}

void lsqfit(int index, node *elements, farray *coeff)
{
FILE *fp;
static int print = 0, first_time = 0;
cell *cp;
double x = elements[index].x, y = elements[index].y, sum;
farray *W;
int i, j, M, N, p, q, other, badcount = 0;
matrix *U, *Ut, *V;

N = fasize(coeff);
M = termcount(N);
U = matrixcons(M, N);
V = matrixcons(N, N);
W = farraycons(N);

if (firsttime) {
fp = fopen("matrix", "w");

fprintf(fp, "1. 161g", elements [index].z);

for (cp = elements[index].neighbors; cp != NULL; cp = cp->next)
fprintf(fp, " .161g" , elements[cp->index].z);

fprintf(fp, "\n");
}

for (i = 0; i < M; i++) {
memovalk(i, &p, kq);
other = index;
cp = elements[index] .neighbors;

for (j = 0; j < N; j++) {
mset(U, i, j, monomial(elements[other].x - x, elements[other].y - y,

p, q));

if (first-time) fprintf(fp, "X.161g ", mref(U, i, j));

other = cp->index;
cp = cp->next;

}

487

if (first-time) fprintf(fp, "\n");

}

Ut = transpose(U);
matrix_free(U);
U = Ut;
svdecomp(U, W, V); /* use -Numerical Recipes_ */

if (print) {
printf("\nSingular values:\n");

for (i = 0; i < N; i++)
printf("X.161g\n", faref(W, i));

printf("\nU =\n");
mprint(stdout, U);
printf("\nV =\n");
mprint(stdout, V);

for (i = 0; i < N; i++)
if (fabs(fa.ref(W, i)) < TOL)
faset(W, i, 0.0);

else {
sum = elements[index].z*mref(U, 0, i);

for (cp = elements[index].neighbors, j = 1;
cp != NULL;
cp = cp->next, j++)

sum += elements[cp->index].z*mref(U, j, i);

faset(W, i, sum/faref(W, i));
}

for (i = 0; i < N; i++) {
sum = 0.0;

for (j = 0; j < N; j++)
sum += mref(V, i, j)*faref(W, j);

faset(coeff, i, sum);
}

if (print) {
print--;

printf ("\nCoefficients: \n");
printf("(%lf, .1f)\t/.161g\n", 0.0, 0.0, faref(coeff, 0));

for (cp = elements[index].neighbors, i = 1; i < N; i++, cp = cp->next)
printf(" (. 161g, .. 161g)\t. 161g\n",

elements[cp->index].x - elements[index].x,
elements[cp->index].y - elements[index].y,
faref(coeff, i));

if (firsttime) {
firsttime = 0;

488

fclose(fp);
fprintf(stderr, "Done dumping.\n");

matrix-free (U);
matrixfree(V);
farray.free(W);

C.3.43 pot.c

* pot.c *

Prints the value of the potential at the specified point.

*/

#include <stdio.h>
#include "gunk.h"

main(int argc, char *argv[])

{
double x, y;

if (argc != 3) {
fprintf(stderr,
exit (1);

"Usage: %s x y\n", argvy0]);

sscanf(argvEl], "Wlf", Ax);
sscanf(argv[2], "%lf", &y);

printf("%.161f\n", potential(x, y));
return 0;

C.3.44 random.c

/* A translation of /scheme/src/runtime/random.scm. */

#include <stdlib.h>
#include <time.h>
#define RANDOMDECLS
#include "random.h"

double frandom(void)

return Irandom()/doubleB;

unsigned long lrandom(void)
{

int index = randomstate.index, indexs;

489

unsigned long borrow = randomstate.borrow;
unsigned long *vector = random_state.vector;
unsigned long t, val = vector[index];

index_s = (index >= S) ? index - S : index + RS;

if (vector[indexs] >= val + borrow) {
vector[index] = vector[index-s] - val - borrow;

random_state.borrow = 0;

else {
vector[index] = vector[indexs]
randomstate.borrow = 1;

+ (B - val - borrow);

if (random_state.index == RI1)
randomstate.index = 0;

else
random_state.index++;

return val;

void initializerandom(void)
{

int i, flag = 1;
unsigned long *vector = random_state.vector;

srand48(time(NULL) + 123456789);

while (flag) {
for (i = 0; i < R; i++)

vector[i] = abs(mrand48());

if ((vector[O] !=
flag = 0;

else
for (i = 1; i <

if (vector[O]
flag = 0;
break;

0) && (vector[O] != B_1))

R; i++)
!= vector[i])

}

randomstate.index = 0;
randomstate.borrow = 0;

for (i = 0; i < TRANSIENT; i++)
lrandom();

C.3.45 relax.c

* relax.c *

490

A simple SOR program on gunk.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"
#include "random.h"

/* const double omega = 1.9390892311242500; */

double relax(int, node *, unsigned long, double);
double randomrelax(int, node *, unsigned long, double);

main(int argc, char *argv[])

{
double omega = 1.0;
int size;
unsigned long count;
FILE *fp;
node *elements;

if (argc != 4 && argc != 5) {
fprintf(stderr,

"Usage: %s input-file number-of-iterations output-file [omega]\n",
argv [03);

exit(l);
}

fp = fopen(argv[1], "r");
sscanf(argv[23, "Xu", &count);

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"/s\"\n", argvyl]);
exit(2);

}

fscanf(fp, "%d", &size);
elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Reading input file (%d nodes)...\n", size);
readelements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Running %u iterations...\n", count);

if (argc == 5)
sscanf(argv[4], "%lf", &omega);

fprintf(stderr, "Maximum residual = X.161f\n",
relax(size, elements, count, omega));

fp = fopen(argv[31, "w");
fprintf(stderr, "Writing output file...\n");
write-elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");

491

freememory(size, elements);

return 0;

}

double relax(int size, node *elements, unsigned long count, double omega)

{
cell *cp;

int n, i, length;
double sum, residual, max_residual;

for (n = 0; n < count; n++) {
max_residual = 0.0;

for (i = 0; i < size; i++)

if (interior-node(elements + i)) {

sum = 0.0;

length = 0;

for (cp = elements[i].neighbors; cp != NULL; cp = cp->next) {

sum += elements[cp->index].z;

length++;

}

if (length > 0) {
residual = sum - length*elements[i].z;

elements[i].z += omega*residual/length;

if (fabs(residual) > max_residual)

max-residual = fabs(residual);

}
}

return max_residual;

}

double random_relax(int size, node *elements, unsigned long count,

double omega)

{
cell *cp;

int n, i, length, index;

double sum, residual, max_residual;

initialize_random();

for (n = 0; n < count; n++) {

max_residual = 0.0;

for (i = 0; i < size; i++) {

index = lrandom()%size;

if (interior_node(elements + index)) {

sum = 0.0;
length = 0;

for (cp = elements[index].neighbors; cp != NULL; cp = cp->next) {

sum += elements[cp->index].z;

length++;

492

}

if (length > 0) {
residual = sum - length*elements[index].z;
elements[index].z += omega*residual/length;

if (fabs(residual) > max-residual)
maxresidual = fabs(residual);

return max-residual;

C.3.46 repos.c

* repos.c *
###########

This program moves

Doesn't do much.

each node closer to the closest regular grid point.

#include <stdio.h>
#include <math.h>
#include "gunk.h"

void reposition(int, node *, int);
double grid.direction(double, double, int);
double round(double);

main(int argc, char *argv[])
{

int size, grid_size;
FILE *fp;
node *elements;

if (argc != 3) {
fprintf(stderr, "Usage:

argv[0]);
exit(1);

}

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error:
exit(1);

}

%s input-file output-file\n",

Cannot open file \"'s\"\n", argv[1]);

fscanf(fp, "%d", &size);
elements = (node *)calloc(sizeof(node), size);

493

fprintf(stderr, "Reading input file (%d nodes)...\n", size);
readelements(fp, size, elements);
fclose(fp);

gridsize = (int)sqrt(size);
fprintf(stderr, "Repositioning elements (%dxd)...\n", gridsize, grid-size);
reposition(size, elements, gridsize);

fp = fopen(argv[23, "w");
fprintf(stderr, "Writing output file...\n");
write-elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Freeing memory...\n");
freememory(size, elements);

return 0;

}

void reposition(int size, node *elements, int gridsize)
{

cell *cp;
double x, y, dist, maxdist, radius = 1.0/(gridsize - 1), angle;
int index;

for (index = 0; index < size; index++)
if (interiornode(elements + index)) {
maxdist = 0.0;
angle = grid-direction(elements[index].x, elements[index].y, grid-size);

for (cp = elements[index].neighbors; cp != NULL; cp = cp->next) {
dist = distance(elements + index, elements + cp->index);
max_dist = (dist > max_dist) ? dist : maxdist;

}

elements[index].x += (radius - max-dist)*cos(angle);
elements[index].y += (radius - max.dist)*sin(angle);

double griddirection(double x, double y, int grid-size)
{
double dx, dy, radius = 1.0/(gridsize - 1);

dx = round(x/radius)*radius - x;
dy = round(y/radius)*radius - y;

if (dx == 0.0)
if (dy > 0.0)
return pi/2;

else
return -pi/2;

else
if (dx > 0.0)
return atan(dy/dx);

else
return atan(dy/dx) + pi;

}

494

double round(double x)

double flr = floor(x);

if (x - flr >= 0.5)

return flr + 1.0;
else
return flr;

C.3.47 reset_val.c

/****************

* reset-val.c *

Reset the nodal values in a gunk system.

*/#include <stdio.h>

#include <stdio.h>

#include <math.h>

#include "random.h"
#include "gunk.h"

void reset-val(int, node *, int);

main(int argc, char *argv[])
{
FILE *fp;
int size;
node *elements;

if (argc > 4 11 argc < 3)
fprintf(stderr, "Usage:
exit(1);

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error:
exit(1);

{
%s input-file output-file [-random]\n", argv[O]);

Cannot open file \"%s\"\n", argv[l]);

fscanf(fp, "%d", &size);
fprintf(stderr, "Reading input file (%d nodes)..
elements = (node *)calloc(sizeof(node), size);
readelements(fp, size, elements);
fclose(fp);

.\n", size);

if (argc == 4 && strcmp(argv[3], "-random") == 0) {
fprintf(stderr, "Randomizing nodal values...\n");
reset_val(size, elements, 1);

else {

495

fprintf(stderr, "Resetting nodal values...\n");
reset_val(size, elements, 0);

}

fp = fopen(argv[21, "w");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \".s\"\n", argv[1]);
exit (1);

}

fprintf(stderr, "Writing output file...\n");
write_elements(fp, size, elements);
free_memory(size, elements);

return 0;

void reset_val(int size, node *elements, int flag)
{

int i;

if (flag) {
initialize_random();

for (i = 0; i < size; i++)
if (interior_node(elements + i))
elements[i].z = frandom();

else
for (i = 0; i < size; i++)
if (interior_node(elements + i))

elements[i].z = 0;

C.3.48 rref.c

* rref.c *

Tests the matrix routines by putting the hard-wired matrix into

reduced row-echelon form.

*/

#include <stdio.h>
#include "matrix.h"

main()
{
matrix *mat = matrix_cons(3, 4);

mset(mat, 0, 0, 1.0);

mset(mat, 0, 1, 2.0);

496

mset(mat, 0, 2, 1.2);
mset(mat, 1, 0, 3.0);
mset(mat, 1, 1, 4.0);
mset(mat, 1, 2, 1.2);
mset(mat, 2, 0, 1.0);
mset(mat, 2, 1, 4.0);
mset(mat, 2, 2, 1.2);

mset(mat, 0, 3, 1.0);
mset(mat, 1, 3, 1.0);
mset(mat, 2, 3, 1.0);

printf ("Before: \n");
mprint(stdout, mat);

rref(mat);

printf ("After: \n");
mprint(stdout, mat);

matrixfree(mat);
return 0;

C.3.49 sample.c

* sample.c *

Fix four neighbor nodes and move center node to see how far we get from a
diagonally dominant matrix.

#include <stdio.h>
#include <math.h>
#include "gunk.h"
#include "matrix.h"

#define CACHESIZE 105
#define SIZE 5

void printcoeff(FILE *, farray *);
void gencoeff(double, double, farray *);
void addcell(node *, int, int);
void lsqfit(int, node *, farray *, int);

void memo.walk(int, int *, int *);
void walk(int, int *, int *);
double monomial(double, double, int, int);
double laplacemonomial(double, double, int, int);

main(int argc, char *argv[])

double delta, sum, offset;

497

farray *coeff = farray_cons(5);
int i, j, k, n;

if (argc != 2) {
fprintf(stderr, "Usage:
exit ();

%s n\n", argv[0]);

sscanf(argv[1], "%d", &n);

delta = 10.0/n;

offset = -5.0;

printf("%d\n", n + 1);

for (i = 0; i <= n; i++) {

for (j = 0; j <= n; j++) {

gen_coeff(i*delta + offset, j*delta + offset, coeff);

sum = fabs(fa_ref(coeff, 0));

for (k = 1; k < SIZE; k++)
sum -= fabs(fa_ref(coeff, k));

printf("%.16lg ", sum);

printf("\n");

farray_free(coeff);
return 0;

void gen_coeff(double x,

{
int i;
node *elements = (node

double y, farray *coeff)

*)calloc(sizeof(node), SIZE);

for (i = 0; i < SIZE; i++) {

elements[i].neighbors = NULL;

elements[i].z = 0.0;

}

for (i = 1; i < SIZE; i++) {

add_cell(elements, 0, i);

elements[i].x = sin(i*pi/2.0);
elements[i].y = -cos(i*pi/2.0);

set_boundary_node(elements + i);

}

elements[0].x = x;
elements[0].y = y;

set_interior_node(elements);

lsqfit(0, elements, coeff, 6);

free_memory(SIZE, elements);

void print_coeff(FILE *fp, farray *coeff)

{

498

fprintf(fp, "\t\tY.81f\n\n", faref(coeff, 3));
fprintf(fp, "7%.81f\t%. 81f\tX%.81f\n\n",

fa_ref(coeff, 4), fa_ref(coeff, 0), fa_ref(coeff, 2));
fprintf(fp, "\t\t%.81f\n", fa_ref(coeff, 1));

}

void addcell(node *elements, int i, int j)

{
cell *cp = (cell *)malloc(sizeof(cell));

cp->next = elements[i] .neighbors;
elements[il.neighbors = cp;
cp->index = j;

void memowalk(int n, int *x, int *y)
{

static int xi[CACHESIZE], yi[CACHE_SIZE], filled[CACHE_SIZE];
static int firsttime = 1;
int k;

if (n < CACHE-SIZE) {
if (first_time) {
for (k = 0; k < CACHE_SIZE; k++)

filled[k] = 0;

first_time = 0;
}

if (!filled[n]) {
walk(n, xi + n, yi + n);
filled[n] = 1;

}

*x = xi[n];
*y = yi[n];

}
else

walk(n, x, y);

void walk(int n, int *x, int *y)
{

int i = 0, j = 0, k;

for (; n > 0; n--)
if (i == j) {
i++;

j = 0;

else if (i > j) {
k =i;

i =j;
j = k;

}
else {
k =i + 1;
i= j;
j =k;

499

*x = i;

*y = j;
}

double monomial(double x, double y, int i, int j)
{
double product = 1.0;

for (; i > 0; i--) product *= x;
for (; j > 0; j--) product *= y;

return product;

double laplacemonomial(double x, double y, int i, int j)
{
double xprod = i*(i - 1), yprod = j*(j - 1);
int k;

for (k = 2; k < i; k++) xprod *= x;
for (k = 0; k < j; k++) xprod *= y;
for (k = 2; k < j; k++) yprod *= y;
for (k = O; k < i; k++) yprod *= x;

return xprod + yprod;

int term-count(int n)
{
n = (int)ceil(sqrt(8.0*n + 1.0)/2.0 - 1.5);

return ((n + 1)*(n + 2))/2;

}

void lsqfit(int index, node *elements, farray *coeff, int M)

cell *cp;
double x = elements[index).x, y = elements[index] .y, sum;

farray *W;
int i, j, N, p, q, other;
matrix *U, *V;

N = fasize(coeff);
U = matrixcons(M, N);
V = matrixcons(N, N);
W = farray-cons(N);

for (i = 0; i < M; i++) {
memowalk(i, &p, &q);
other = index;

cp = elements[index).neighbors;

for (j = 0; j < N; j++) (
mset(U, i, j, monomial(elements[other].x - x, elements[other].y - y,

p, q));
other = cp->index;
cp = cp->next;

}

500

svdecomp(U, W, V); /* use _Numerical Recipes_ */

for (i = 0; i < N; i++)
if (fabs(fa-ref(W, i)) < TOL)

fa_set(W, i, 0.0);
else {

sum = 0.0;

for (j = 0; j < M; j++) {
memowalk(j, &p, &q);
sum += laplace_monomial(x, y, p, q)*mref(U, j, i);

}

fa-set(W, i, sum/faref(W, i));

for (i = 0; i < N; i++) {
sum = 0.0;

for (j = 0; j < N; j++)
sum += mref(V, i, j)*fa_ref(W, j);

fa_set(coeff, i, sum);
}

matrix_free(U);
matrix_free(V);
farray_free(W);

C.3.50 scramble.c

* scramble.c *

Randomize the node positions without changing the connections. (I don't
remember what good this does.)

#include <stdio.h>
#include "gunk.h"
#include "random.h"

void. scramble(int, node *);

main(int argc, char *argv[])
{

int size;
node *elements;
FILE *fp;

if (argc != 2) {

501

fprintf(stderr, "Usage:
exit(1);

fp = fopen(argv[3l, "r");

if (fp == NULL) {
fprintf(stderr, "Error:
exit(2);

}

%s input-file\n", argv[01);

Cannot open file \"'s\"\n", argv[l]);

fscanf(fp, "%d", &size);
elements = (node *)calloc(sizeof(node), size);
readelements(fp, size, elements);
fclose(fp);

scramble(size, elements);

fp = fopen(argv[ll], "w");
writeelements(fp, size, elements);
fclose(fp);

freememory(size, elements);
return 0;

void scramble(int size, node *elements)
{

int i;

initializerandom();

for (i = 0; i < size; i++)
if (interior-node(elements + i)) {
elements[i].x = frandom();
elements[i).y = frandom();

}

C.3.51 slice.c

* slice.c *

Does the same thing as list2grid, only this plots the error.

include <stdio.h*/
#include <math.h>
#include "gunk.h"

void slice(FILE *, int, node *, int);

#define CALCERROR

502

main(int argc, char *argv[])

int gridsize, size;
node *elements;
FILE *fp;

if (argc != 3) {
fprintf(stderr, "Usage: %s input-file grid-size\n", argv[03);
exit(1);

}

fp = fopen(argv[lJ, "r");
sscanf(argv[2], "'d", &gridsize);

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \".s\"\n", argv[l]);
exit(2);

}

fscanf(fp, "%d", &size);
fprintf(stderr, "Reading file (Xd nodes)...\n", size);
elements = (node *)calloc(sizeof(node), size);
readelements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Printing output...\n");
slice(stdout, size, elements, gridsize);

fprintf(stderr, "Freeing memory... \n");
free-memory(size, elements);
return 0;

void slice(FILE *fp, int size, node *elements, int gridsize)
{
double *value, *count, x, y;
int i, j, n;

value = (double *)calloc(sizeof(double), SQUARE(grid_size));
count = (double *)calloc(sizeof(double), SQUARE(gridsize));

for (n = 0; n < size; n++)
if (interiornode(elements + n)) {

x = elements[n].x;
y = elements[n].y;
i = (int)(x*grid-size);
j = (int)(y*gridsize);

if (i == gridsize) i--;
if (j == grid-size) j--;

*(count + i*grid_size + j) += 1.0;
#ifdef CALC_ERROR

*(value + i*gridsize + j) += fabs(elements[n].z - potential(x, y));
#else

*(value + i*gridsize + j) += elements[n].z;
#endif

}

503

fprintf(fp, "'d\n", gridsize);

for (j = 0; j < grid-size; j++) {
for (i = 0; i < gridsize; i++) {

n = *(count + i*gridsize + j);

if (n > 0.0)
fprintf(fp, "%.161g ", *(value + i*grid-size + j)/n);

else
fprintf(fp, "%.161g ", 0.0);

fprintf(fp, "\n");
}

free (value);
free(count);

C.3.52 spect.c

/************

* spect.c *

Attempts to estimate the spectral radius using a random vector.
Doesn't quite work.

*/

#include <stdio.h>
#include <math.h>
#include "matrix.h"
#include "random.h"

int get-size(FILE *);
void getmatrix(FILE *, matrix *);
double spectral(matrix *);

main(int argc, char *argv[])
{
double r;
int size;
matrix *mat;
FILE *fp;

if (argc != 2) {
fprintf(stderr, "Usage: 's input-file\n", argv[0]);
exit(1);

}

fp = fopen(argv[1], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Unable to open file \"'%s\"\n", argv[yl);

504

exit(2);

}

size = getsize(fp);
rewind(fp);

if (size > 0) {
initialize.random();
mat = matrix-cons(size, size);
get-matrix(fp, mat);
r = spectral(mat);
printf("The spectral radius is at least /.161g.\n", r);

}
else

fprintf(stderr, "Error: Invalid input file\n");

fclose(fp);
matrixf ree (mat);
return 0;

double spectral(matrix *mat)
{
double sum, magu = 0.0, magv = 0.0, val;
int i, j, size = mat->nrows;
matrix *u = matrixcons(size, 1);

for (i = 0; i < size; i++) {
val = 2*frandom() - 1;
mset(u, i, 0, val);
magu += val*val;

}

for (i = 0; i < size; i++) {
sum = 0.0;

for (j = 0; j < size; j++)
sum += mref(mat, i, j)*mref(u, j, 0);

mag v += sum*sum;
}

matrixfree(u);
return sqrt (magv/magu);

int getsize(FILE *fp)
{

double x;
int N;

for (N = 0; fscanf(fp, ",%lf", &x) != EOF; N++);
x = sqrt(N);

if (x == floor(x))
return x;

else
return 0;

}

505

void getmatrix(FILE *fp, matrix *mat)
{
double x;
int m = mat->nrows, n = mat->ncols, i, j;

for (i = 0; i < m; i++)
for (j = 0; j < n; j++) {

fscanf(fp, "%lf", kx);
mset(mat, i, j, x);

}

C.3.53 sqstat.c

* sqstat.c *

Collects and prints error information, etc., about a gunk file.

#include
#include
#include
#include

main(int
{

<stdio.h>
<math.h>
"gunk. h"
"stat .h"

argc, char *argvY])

int size;
node *elements;
FILE *fp;

if (argc != 2) {
fprintf(stderr,
exit(1);

}

"Usage: %s input-file\n", argv[0l);

fp = fopen(argv[l], "r");

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"/s\"\n", argv[1]);
exit(2);

}

fscanf(fp, "%d", &size);
elements = (node *)calloc(sizeof(node), size);
read.elements(fp, size, elements);
fclose(fp);

sqstat(stdout, size, elements);
free.memory(size, elements);
return 0;

506

C.3.54 stat.c

/***********

* stat.c *

Routines used to collect statistics about gunk files.

*/

#include <stdio.h>
#include <math.h>
#include "gunk.h"

void sqstat(FILE *fp, int size, node *elements)

cell *cp;
double abssum = 0.0;
node absmax, abs-min;
double relsum = 0.0;
node relmax, relmin;
double pot, err, x, y;
int n, count = 0, j;

abs-max.z = -1.0;
absmin.z = le16;
rel-max.z = 0.0;
relmin.z = le16;

for (n = 0; n < size; n++) {
if (interior.node(elements + n)) {
count++;

x = elementsn]. x;
y = elements[n].y;
pot = potential(x, y);
err = fabs(elements[n].z - pot);

if (err > abs.max.z) {
absmax.x = x;
absjmax.y = y;
absjmax.z = err;

}

if (err < abs-min.z) {
absjmin.x = x;
abs.min.y = y;
absmin.z = err;

}

abs-sum += err;

if (fabs(pot) > 0.0) {
err /= fabs(pot);
rel-sum += err;

if (err > rel-max.z) {

507

rel_max.x = x;
rel-max.y = y;
rel_max.z = err;

if (err < rel-min.z) {
rel_min.x = x;
rel-min.y = y;
rel_min.z = err;

}
}

}

fprintf(fp, "Absolute error:\n");
fprintf(fp, " Maximum = /.161f (x = %.161f, y = %.161f)\n",

abs_max.z, abs-max.x, abs_max.y);
fprintf(fp, " Minimum = X.161f (x = X.161f, y = %.161f)\n",

abs_min.z, abs_min.x, abs_min.y);
if (count > 0)
fprintf(fp, " Average = %.161f\n", abs-sum/count);

fprintf(fp, "Relative error:\n");
fprintf(fp, " Maximum = X.161f (x = %.161f, y = %.161f)\n",

rel_max.z, rel_max.x, rel_max.y);
fprintf(fp, " Minimum = %.161f (x = %.161f, y = %.161f)\n",

rel_min.z, rel_min.x, rel_min.y);
if (count > 0)
fprintf(fp, " Average = X.161f\n", rel_sum/count);

fprintf(fp, "\n");
}

void nstat(FILE *fp, int size, node *elements)
{

cell *cp;
double dist-max = 0.0, dist_min = 1.0, dist, dist_sum;
int n, count = 0, n_count,n_max = 0, nsum = 0, n_min = size + 1;

for (n = 0; n < size; n++) {
if (interior.node(elements + n)) {

count++;
n_count = 0;

for (cp = elements[n].neighbors; cp != NULL; cp = cp->next)
if (interior_node(elements + cp->index)) {
ncount++;
dist = distance(elements + cp->index, elements + n);
dist_sum += dist;

if (dist > dist-max)
dist_max = dist;

if (dist < dist_min)
dist_min = dist;

if (n_count > n_max)
n_max = n_count;

508

if (ncount < numin)
n_min = ncount;

nsum += ncount;
}

fprintf(fp, "File contains %d interior nodes (out of %d):\n",
count, size);

fprintf(fp, " Maximum number of neighbors is .d.\n", nmax);
fprintf(fp, " Minimum number of neighbors is %d.\n", nmin);

fprintf(fp, " Average number of neighbors is .161f\n",
(double)n-sum/count);

fprintf(fp, "Internodal distance:\n");
fprintf(fp, " Maximum = %.161f\n", distmax);

fprintf(fp, " Minimum = X.161f\n", distmin);
fprintf(fp, " Average = ..161f\n", distsum/nsum);

fprintf(fp, "\n");

C.3.55 walk.c

/***********

* walk.c *

An attempt to use random walks to solve Laplace's equation.

(See Adams/Guillemin, _Measure theory and probability_, for a discussion of

this application of random walks to the discrete Dirichlet problem.)

*/

#include <stdio.h>
#include "gunk.h"
#include "random.h"
#include "stat.h"

void dirichlet(int, node *, int);

main(int argc, char *argv[])
{

int size, count;
FILE *fp;
node *elements;

if (argc != 4) {
fprintf(stderr, "Usage: %s input-file number-of-walks/node output-file\n",

argv 03) ;
exit(1);

}

fp = fopen(argv[1], "r");
sscanf(argv [2], "%d", &count);

509

if (fp == NULL) {
fprintf(stderr, "Error: Cannot open file \"'s\"\n", argv[1]);
exit(2);

}

fscanf(fp, "7,d", &size);
elements = (node *)calloc(sizeof(node), size);

fprintf(stderr, "Reading input file (%d
readelements(fp, size, elements);
fclose(fp);

nodes)...\n", size);

fprintf(stderr, "Calling Dirichlet...\n", count);
dirichlet(size, elements, count);

fp = fopen(argv[31, "w");
fprintf(stderr, "Writing output file...\n");
write-elements(fp, size, elements);
fclose(fp);

fprintf(stderr, "Computing statistics...\n");
sqstat(stdout, size, elements);

fprintf(stderr, "Freeing memory... \n");
free_memory(size, elements);

return 0;

void dirichlet(int size, node *elements, int count)
{

cell *cp;
double sum;
int n, i, j, node, *neighbor-count;

initializerandom();
neighborcount = (int *)calloc(sizeof(int), size);

for (n = O; n < size; n++) {
for (i = 0, cp = elements[n].neighbors; cp != NULL; cp = cp->next)

neighborcount[n] = i;

for (n = 0; n < size; n++)
if (interiornode(elements + n)) {

sum = 0.0;

for (i = 0; i < count; i++) {
for (node = n; interior.node(elements + node);

cp = elements[node] .neighbors;
node = cp->index) {

for (j = Irandom()%neighbor-count[node]; 0 < j; j--)
cp = cp->next;

sum += elements[node].z;

510

v

elementsn] .z = sum/count;

free (neighbor_count);

511

Bibliography

[1] Harold Abelson, Tom Knight, and Gerald Jay Sussman. Amorphous Computing (draft).

MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts, 1995.

[2] Harold Abelson and Gerlad Jay Sussman with Julie Sussman. Structure and Interpre-

tation of Computer Programs. The MIT Press, Cambridge, Massachusetts, 2 edition,
1996.

[3] Lars Ahlfors. Complex Analysis. McGraw-Hill, New York, 3rd edition, 1979.

[4] V. I. Arnol'd. Mathematical Methods of Classical Mechanics. Springer-Verlag, New

York, 2 edition, 1989.

[5] T. Balderes. Finite element method. McGraw-Hill Encyclopedia of Science & Technol-

ogy, 1992.

[6] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm

for convex hulls. Submitted to ACM Transactions on Mathematical Software, January

9, 1995.

[7] G. Chesshire and W. D. Henshaw. Composite overlapping meshes for the solution of

partial differential equations. Journal of Computational Physics, 90:1-64, 1990.

[8] James J. Clark, Matthew R. Palmer, and Peter D. Lawrence. A transformation method

for the reconstruction of functions from nonuniformly spaced samples. IEEE Transac-

tions on Acoustics, Speech, and Signal Processing, 33(4):1151-1165, October 1985.

[9] William Clinger and Jonathan Rees, editors. Revised4 Report on the Algorithmic

Language Scheme. MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts,
1991.

[10] Richard Courant and David Hilbert. Methods of Mathematical Physics, Volume II:

Partial Differential Equations. John Wiley & Sons, New York, 1989.

512

[11] C. Armando Duarte and J. Tinsley Oden. H-p clouds-an h-p meshless method. Nu-

merical Methods for Partial Differential Equations, 12(6):673-705, November 1996.

[12] Bjorn Engquist and Andrew Majda. Absorbing boundary conditions for the numerical

simulation of waves. Mathematics of Computation, 31(139):629-651, July 1977.

[13] D. Fox and C. Pucci. The Dirichlet problem for the wave equation. Ann. Mat. Pura

Appl., 46:155-182, 1958.

[14] Victor W. Guillemin and Alan Pollack. Differential Topology. Prentice-Hall, Englewood

Cliffs, New Jersey, 1974.

[15] Hermann A. Haus and James R. Melcher. Electromagnetic Fields and Energy. Prentice-

Hall, Englewood Cliffs, New Jersey, 1989.

[16] Fritz John. Partial Differential Equations. Springer-Verlag, New York, 4th edition,
1981.

[17] Claes Johnson. Numerical Solutions of Partial Differential Equations by the Finite

Element Method. Cambridge University Press, New York, 1987.

[18] James R. Munkres. Elementary Differential Topology. Princeton University Press,

Princeton, New Jersey, 1966.

[19] James R. Munkres. Topology: A first course. Prentice-Hall, Englewood Cliffs, New

Jersey, 1974.

[20] James R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Reading, Mas-

sachusetts, 1984.

[21] James R. Munkres. Analysis on Manifolds. Addison-Wesley, Reading, Massachusetts,
1991.

[22] L. E. Payne. Improperly posed problems in partial differential equations. Regional

Conference Series in Applied Mathematics, SIAM, Philadelphia, Pennsylvania, 1975.

[23] N. Anders Petersson. An algorithm for constructing overlapping grids. Submitted to

SIAM J. Sci. Comput., March 16, 1997.

[24] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes: The Art of Scientific Computing. Cambridge University Press,

1986.

513

[25] Bernard F. Schutz. A First Course in General Relativity. Cambridge University Press,

New York, 1990.

[26] Rafael Sorkin. Time-evolution problem in Regge calculus. Physical Review D,

12(2):385-397, 15 July 1975.

[27] Robert Vichnevetsky. Computer Methods for Partial Differential Equations, Volume

1: Elliptic Equations and the Finite-Element Method. Prentice-Hall, New Jersey, 1981.

[28] Frank W. Warner. Foundations of Differentiable Manifolds and Lie Groups. Springer-

Verlag, New York, 1983.

514

