
Survivable Software Distribution and Maintenance

by

Jeff Breidenbach

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree

of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1997

© Jeff Breidenbach, MCMXCVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

A uthor
A/o Department of Electrical Engineering and Computer Science

May 23, 1997

Certified by
Clifford Weinstein

Group Leader
Thesis Supervisor

Certified by L......:

Thomas M. Parks
Technical Staff

Thesis Supervisor

(
Accepted by...- ----------

Arthur C. Smith
Chairman, Department Committee on Graduate Students

OCT 2 9 1997

,-ý7

..........

Survivable Software Distribution and Maintenance

by

Jeff Breidenbach

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 1997, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes a software distribution and maintenance system that reduces
administration costs while increasing survivability. Contributions include design, im-
plementation, and analysis. The system applies automation wherever possible and
takes maximum advantages of economies of scale.

The implementation extends an existing replication tool to provide multiplatform
support, user assisted cache management, and support for middlemen in the distri-
bution system. Middlemen relieve both system administrators and end users of ad-
ministration and maintenance tasks. This arrangement leads to higher survivability,
lower operating costs, and allows new value added services in software maintenance.

Thesis Supervisor: Clifford Weinstein
Title: Group Leader

Thesis Supervisor: Thomas M. Parks
Title: Technical Staff

Acknowledgments

I would like to acknowledge the many people who made this thesis possible. That

includes my advisors Cliff Weinstein and Tom Parks from MIT Lincoln Laboratory.

Tom deserves special credit for providing detailed feedback and keeping me from going

completely insane. Everest Huang did more little favors than I can ever hope to repay.

Mom, Dad, and the US Air Force footed the bill, and provided encouragement. Steve

Benton and Ravi Pappu helped steer me when I was looking for a topic. Charlotte

Brown is going to be a fine astronaut. People not already mentioned who directly

contributed to this document (no matter in how small a fashion) include Paul Van

Eyk, Richard Stallman, Brian Semmes, Alan "Dr. of Pain" Au, Matt Lennon, Cyrus

P. Master, Boris Raykin, Greg Richardson, Tim Piwowar, and Jean Elien. I also want

to acknowledge Hugh Morgenbessor as an all around good guy and the MIT Nordic

Ski Team for their patience. I was going to dedicate this thesis to all of humanity,

but in the end, decided to save that for my next project.

Contents

1 Introduction

1.1 Software requires maintenance . .

1.1.1 Interoperability

1.1.2 Adding features

1.1.3 Blurring of data and programs

1.1.4 Moore's Law

1.1.5 Bugs

1.1.6 Security

1.2 The onerous burden of maintenance .

1.2.1 Quantifying maintenance costs

1.2.2 Download based distribution.

1.2.3 Shrink wrap distribution .

1.2.4 Central administration .

1.2.5 Package management

1.2.6 Push technology

1.2.7 Summary of distribution technologies

1.3 The ideal world

2 Design

2.1 Design Overview

2.1.1 Design goals

2.1.2 Environment

2.2 Design Issues

25

I I

...........
' ' ' '

2.2.1 Survivability

2.2.2 M obility

2.2.3 Checkpoints

2.2.4 Economics

2.2.5 Access Control and Authentication

2.2.6 Scalability

2.2.7 Version Skew

2.2.8 Push vs. Pull

2.2.9 Redundancy

2.2.10 Network Efficiency

2.2.11 Caching issues

2.2.12 User space versus system space . .

2.2.13 Platform management

2.2.14 Ease of use

2.2.15 Closure

2.3 Tradeoffs

2.3.1 Version skew, mobility, push/pull .

2.3.2 Access control, scalability

2.3.3 Ease of use, efficiency

2.4 Focus

2.5 Putting it all together: an example

3 Implementation

3.1 Technologies

3.1.1 Basic components

3.1.2 Castanet in detail

3.2 Basic distribution systems

3.2.1 Replication from source A to destination B

3.2.2 Combining two sources

3.2.3 Adding a checkpoint

... 28

... 28

. 29

. 30

. 30

.. 3 1

.. 3 1

... 32

. 32

... 33

.... 33

. 34

. 35

. 35

. 3 5

.. 36

. 37

. 37

.. 38

... 38

m

3.2.4 Replicating a large source 50

3.3 Maintenance loops 52

3.4 Implementation components 54

3.4.1 Payload program 54

3.4.2 Transmitter plugin 54

3.4.3 The merge-channels program. 55

4 Analysis 56

4.1 Performance Criteria 56

4.1.1 Physical resources 56

4.1.2 Resource demands on a single machine 57

4.1.3 Resource demands on the system59

4.1.4 When demand exceeds capacity 59

4.2 Comparison of technology bases 60

4.2.1 C astanet . 61

4.2.2 Coda 61

4.2.3 W ebFS 62

4.2.4 W ebNFS 64

4.3 Other maintenance systems 65

4.3.1 Oil Change and Tuneup.com 65

5 Applications 66

5.1 Value added services 66

5.1.1 General software collections 66

5.1.2 Safety checking 66

5.1.3 Specialty distributions 67

5.1.4 Frozen software 67

5.1.5 Retail stores 67

5.1.6 Modifications or customizations 68

5.1.7 Unanticipated services 68

5.2 Future work 68

5.2.1 Production quality implementation 68

5.2.2 Read/W rite 68

5.2.3 Economic model 69

A Athena: an example of a large software collection 70

A .1 outland 70

A.2 graphics 72

A .3 gnu . 73

A.4 sipb 75

B Protocols and Design Standards 76

C Source Code 78

List of Figures

1-1 Maintenance Link

1-2 Download based distribution requires M x N links

1-3 Shrink wrap distribution requires M x N links

1-4 A centrally maintained system requires M + N links

1-5 Centrally maintained systems require (K x M) + N maintenance links.

1-6 Relative performance of distribution technologies. A star (*) denotes

distribution technologies which can be shifted slightly to the left by

applying package management. The dark line represents the focus of

this thesis

2-1 Design tradeoffs. An X denotes two desired features which are in conflict.

2-2 Trickle down software at MIT Lincoln Laboratory

3-1

3-2

3-3

3-4

3-5

3-6

3-7

The xclock program

A two person distribution system . . .

The xeyes program

Distribution system with a middleman.

Adding a checkpoint

A large software source

A two person maintenance loop

. 44

. 44

. 48

. 48

. 50

. 5 1

. 53

B-1 A simplified diagram of the standard multiplatform directory structure.

List of Tables

1.1 Security statistics published by DataPro 14

1.2 Focus of distribution technologies 23

4.1 Feature space of existing systems 64

Chapter 1

Introduction

A survivable system continues to function despite component failures. The human

body is a survivable system: a minor injury to the foot will rarely threaten some-

one's life. The world economy is another survivable system: a single bankruptcy will

not crash the entire world economy - we hope! Computer networks are sometimes

survivable, and sometimes not. A necessary but not sufficient condition for surviv-

ability in a computer network is proper software maintenance. Unfortunately, proper

software maintenance is expensive and difficult. The rapid growth of the internet

has led to more inexperienced users and more misconfigured and poorly maintained

computers, increasing instability.

This thesis examines gross inefficiencies and high costs in current software dis-

tribution and maintenance systems. An alternative system is described, suggesting

improvements in efficiency. A proof-of-concept implementation is presented.

Chapter one describes problems with current software distribution and mainte-

nance systems, and the unequivocal need for a better way.

Chapter two describes design objectives for a replacement distribution system.

This design uses distributed maintenance to prevent redundant work.

Chapter three describes the proof-of-concept implementation. This implementa-

tion builds on several existing software components and programs.

Chapter four analyzes the implementation and compares it to other distribution

systems. A metric is presented to aid in comparison.

L,

Chapter five discusses applications for this new distribution system. Many new

services are possible with a distributed maintenance system; several are discussed.

1.1 Software requires maintenance

"This software is as worthless as yesterday's newspaper." Information and software

programs change rapidly and require constant maintenance. Keeping software and

information current is a difficult and time-consuming task. Rather than talk about

generalities, we will delve straight into a specific example.

The most popular personal computer application released in 1996 was a world

wide web browser called Netscape Navigator. [22] During 1996, fourteen versions of

the program were released to the public, including 2.0b4, 2.0b5, 2.0b6a, 2.0, 2.01,

2.02, 3.0 PR1, 3.0 PR2, 3.0b4, 3.0b5, 3.0b6, 3.0b7, 3.0, and 3.01. [11, 27] In order

for typical users to maintain the latest copy of Netscape Navigator on their local file

system, they would have to manually download, install, and upgrade their software

many times.

Not all software programs change as rapidly as Netscape Navigator. However,

most software programs are dynamic media that are improved, configured, patched,

upgraded, fiddled with, and otherwise changed over time. This change is important,

necessary, and occurs for a variety of reasons.

1.1.1 Interoperability

As new conventions and standards are adopted, software is modified to support them.

For example, there are dozens of popular file formats for storing bit-mapped images.

In 1996, a new file format called Portable Network Graphics (PNG) was selected and

recommended by the World Wide Web Consortium for use on all web pages. [19]

Existing imaging programs are being modified to support PNG to attain operability

with the new standard.

Movement to new standards in file formats, datatypes, and protocols happens

all the time in the software industry. Current large scale transitions include the

movement from HTTP 1.0 to HTTP 1.1 [31] (HTTP is the basic protocol of the

world wide web). Microsoft Corporation just changed the proprietary file format for

Microsoft Word with their latest release of the program. [9] Sun's new Java Virtual

Machine Specification version 1.1.1 contains significant differences from its predecessor

version 1.0.2. [38]

These changes in standards and conventions require updating millions of copies

of software programs if they wish to speak the new common language, file format, or

bytecode specification.

1.1.2 Adding features

Software evolves over time. Developers may wish to improve existing characteristics

or add functionality to software that was not included in the original release. Adding

new features can enhance software and keep it competitive in the market. While

the process is occasionally abused, it is not unreasonable for a developer to make

design changes or improvements over time. "Feature-itis" l is a major driving force

for rapidly changing software.

1.1.3 Blurring of data and programs

At one time the popular perception of the software world was divided into two parts -

data and programs. Data is information that is created, generated, and communicated

all the time. Programs are used to display and otherwise manipulate that data. Data

is dynamic while programs are static.

This mindset is disappearing as programs and data become more and more inte-

grated. Consider a document created with Microsoft Word. Is the document data or a

program? Using a macro language, the document is capable of executing in the right

environment, and computer viruses have been spread in this fashion. Multimedia for-

mats and executable content on web pages further blur the distinction between data

1"Feature-itis" is a common disease amongst software manifested by the continuous addition of
new features, sometimes referred to as software bloat.

and programs. Is the ticker tape Java applet running across a web page a program

or data? As more and more data and programs fall under the heading of "executable

content," software and data become indistinguishable.

It becomes less meaningful to say "I'll update my programs every five years and

deal with new data everyday." When there is no difference between data and pro-

grams, that schedule is equivalent to updating software every day.

1.1.4 Moore's Law

Moore's law states that computer hardware performance doubles every 18 months.

Historically, the computer industry has experienced rapid technological development

and continues to do so. Rapidly changing hardware requires software to change as

well. These changes are required to attain compatibility with new hardware and new

hardware capabilities.2 Often just to keep a program usable over a period of a few

years requires continuous recoding as underlying platforms change. Between 1992 and

1996, MIT's campus information system went through three generations of hardware

revision. Not a single public campus workstation remained in service over the four

year interval. [36]

1.1.5 Bugs

Bugs, bug exploitation, and bug fixes are critical reasons for the revision of software.

It is not clear whether any large and complex piece of software has ever been written

without bugs. These software mistakes and glitches are sometimes systematically

fixed and removed over time. Often the debugging process for a large piece of software

will require several years.

2Virtual machines and emulation are techniques used to lessen the shock of rapidly changing
hardware.

m

1.1.6 Security

Bugs and other programming mistakes are of particular interest in the area of com-

puter security. Apache, the leading web server, commands approximately 40% of the

world market. [15] Up until version 1.0.3, Apache contained a serious security hole

that allowed outside hackers to easily attack a web site. [7] This problem was detected

and corrected over a year ago in the Apache software distribution. Unfortunately, this

security hole will still be causing problems far into the future become some sites will

continue to run older versions of the software.3 Many of the frightening statistics in

table 1.1 stem from exactly this problem. [23]

Estimated number of hacker attacks
on Department of Defense networks in 1996 500,000
Estimated percentage that were successful 65
Average number of potentially damaging hacker
attempts on Bell Labs networks in 1992, per week 6
Average number of less threatening attacks, per week 40
Average rate of attacks in 1996 no longer tracked
Percentage of existing bank web sites found
to have potentially significant security holes 68
Percentage of Web sites in a random selection
with such holes 33

Table 1.1: Security statistics published by DataPro

Another prime example of the relationship between security and maintenance is

sendmail. Sendmail is a Unix program which has a certain notoriety for requiring

frequent security updates. [6, 3, 4, 10, 5] Many systems being attacked were running

obsolete versions of sendmail. This security advisory from 1995 is typical:

The CERT Coordination Center has received reports of a vulnerability in

sendmail version 5. Although this version is several years old, it is still

in use. The vulnerability enables intruders to gain unauthorized priv-

ileges, including root. We recommend installing all patches from your

3The author's computer receives approximately two attempted attacks per month by people
trying to exploit this particular security flaw.

b

m

vendor or moving to the current version of Eric Altman's sendmail (ver-

sion 8.6.12) [5]

Many computer software security breaches fall into this category. A weakness is

publicly known, but due to inability, lack of expertise, or insufficient resources on

the part of the system maintainer, the patch or upgrade is not installed. It takes an

enormous amount of time to keep system software secure; much of that time is spent

keeping track of all the security patches and updates.

1.2 The onerous burden of maintenance

1.2.1 Quantifying maintenance costs

Computer maintenance is expensive. Computer security expert Dan Farmer, when

talking about his own computer system, says, "If it takes an additional 5 percent to

run a really tight ship, I'd just as soon go see a movie or drink some more wine." [24]

Unfortunately, maintenance costs are much higher than five percent and in many cases

are prohibitive. According to the Gartner group, corporations spend approximately

$6,000 per year per personal computer on upkeep - and this is still insufficient to

adequately maintain their systems. [32]

A B

Figure 1-1: Maintenance Link

Software maintenance consists of copying, configuring, and updating many differ-

ent programs. The basic unit of software maintenance, dubbed a "Maintenance Link"

consists of the time and effort required to maintain a piece of software from a source

A to a destination B, as depicted in figure 1-1. Each maintenance link has a cost

associated with it, which corresponds to the dollar amount required for such efforts.

Note that the maintenance link does not represent the cost of licensing a program -

only the overhead costs incurred during administration.

For example, let's consider a maintenance link for the software program Matlab.

Source A might be the developer (Mathworks, Inc.) and destination B is an end

user. The maintenance link describes the cost of copying, installing, configuring, and

updating the software from A to B over its lifetime. These overhead costs are typically

paid for by end user B.

A software distribution system requires many programs to be maintained on many

separate computers. The total cost of a distribution system can be analyzed under

two key criteria: the total number of maintenance links and the cost of each one. In

many distribution systems, administration is expensive, redundant work.

Current distribution systems and technologies worth examining include download-

ing programs from the internet, shrink wrap distribution, centralized administration,

package management, and push technology. Note that some of these technologies can

be used in conjunction with each other. What are the relative strengths and weak-

nesses of these distribution systems? How can they be compared? Keep in mind that

achieving the same results with fewer maintenance links removes redundant work. Re-

ducing the cost of maintenance links makes the administrative work less expensive,

less error prone, and therefore more robust.

1.2.2 Download based distribution

One popular distribution system consists of end users downloading software from

developers over the internet. In this scenario, the customer downloads the software

from a world wide web site, often directly from the original manufacturer.

Consider the case where several software programs are being maintained on sev-

eral different computers. With M sources and N destinations, M x N links are re-

quired. For example, five end users would like to install the software programs Matlab,

Framemaker, Netscape Navigator, Emacs, and Tetris on their machines. The down-

load based distribution system requires each end user to establish five maintenance

links, one to each software source, for a total of twenty five maintenance links in the

M sources

N destinations

Figure 1-2: Download based distribution requires M x N links

Each maintenance link is very expensive, since a high degree of time consuming

human intervention is involved. Each end user must find and individually install every

program she wishes to use. Once a piece of software is located, the user will need to

uncompress it, read the instructions, possibly compile and configure the program, and

decide where it will reside in local storage. When the piece of software is updated,

the end user must first become aware of the update, locate it, download it, and then

repeat the installation process. All this manual labor makes proper maintenance of

a large software collection extremely expensive and error prone for a single end user.

In a distribution system containing many end users, the aggregate cost is enormous.

1.2.3 Shrink wrap distribution

Shrink wrap distribution is a traditional and very popular way of distributing com-

mercial software. In this system a software program is written onto some portable,

physical media such as a floppy disk or a CD-ROM. A glossy manual is packaged with

the software and sealed in a box covered by shrink wrap plastic. These programs are

distributed in a similar fashion to other commodities, in stores, retail outlets, and

mail order chains.

Stores add the notion of a middleman. By collecting large amounts of shrink

distribution system. The result is a connected graph of maintenance links between

the developers and the end users. (See figure 1-2)

I

wrap software together, stores make it easier to locate a particular piece of software;

however, this saving is only a small part of total maintenance costs. Each end user will

have to maintain, upgrade, configure, and install each piece of software separately.

Thus the shrink wrap distribution system still requires M x N maintenance links

despite providing a convenient central repository. (See figure 1-3)

M sources

middleman

N destinations

Figure 1-3: Shrink wrap distribution requires M x N links

Shrink wrap distribution maintenance links are very expensive. One factor driving

up costs is the high degree of human interaction required. An end user will still need

to unwrap a box, read instructions, install, and manually configure every single piece

of software on their machine. These high costs are incurred by every end user in the

distribution system.

The expense of transporting physical media drives up costs as well. Disks, CD-

ROMs and other physical media require mass duplication, packaging, warehousing,

shipment to stores, and other handling. This high distribution cost often translates

into delays in software maintenance. For example, if a developer fixes a bug in a

program, they could send a new copy on CD-ROM to every user via Federal Express;

unfortunately that distribution channel is extraordinarily expensive. Instead new

versions slowly propagate through stores, or are not distributed at all.

Maintenance costs are further increased since store shelves will not necessarily

stock the latest version of a program, possibly imposing additional administrative

headaches for the end user down the road.

1.2.4 Central administration

Many academic environments, research institutions, and corporations use centrally

administered software. Consider Project Athena, MIT's campus computer network.

A student may simply log in to any workstation on campus and run Netscape Navi-

gator. The newest, most stable version of the program will be executed. The student

will not need to do any software administration whatsoever.

This is possible because the software system for Project Athena is centrally ad-

ministered. Using a distributed file system, thousands of users and hundreds of com-

puters access a central master copy of the software, which is maintained by system

administrators. The central administrators perform all the labor intensive installa-

tion, configuration, and upgrading operations directly on the distributed filesystem.

So instead of maintaining and upgrading thousands of copies of Netscape Navigator,

only one copy must be slaved over.

This style of software and information distribution is typically available only to

people connected over a high speed local area network. There is a lot of interest in

popularizing and expanding centrally administered systems from beyond their tradi-

tional domains. The current concept of "Network Computers" being developed by

industry seeks to expand centrally administered systems into the domain of business

software.

Central administration requires only M + N maintenance links, but now some of

the links are automated and cost much less. (See figure 1-4) Central system admin-

istrators wishing to provide M software programs must configure and maintain each

one of them on the system. The N end users, however, need only one automated

m

M sources

central
administrator

N destinations

Figure 1-4: A centrally maintained system requires M + N links

maintenance link apiece to the centralized repository.4 End users are not required to

even be aware of configuration settings, upgrades, or other maintenance aspects of

software.

The distributed file system/local area network solution is very dependent on

economies of scale. Maintaining a large collection still requires a lot of manual labor

on the part of administrators; fortunately this cost can be spread out amongst end

users. The more end users, the lower the administration cost is per end user.

Consider six sample distributed filesystems or computing environments. They

include the General Electric Advanced Technology Lab, the MIT Media Lab, the

MIT Al Lab, a subset of MIT Lincoln Laboratory, Bose Corporation, and MIT's

Project Athena. Most of these organizations provide an essentially redundant set of

basic software, with some variations. The only organization which could maintain

both a wide breadth and current versions of software was MIT's Project Athena.

Athena's success in this regard is due to legions of capable administrators composed

of students, faculty and staff. The approximately 15,000 users of Project Athena

outnumber the other networks by at least an order of magnitude, enough scale to

4 For MIT's Project Athena, this maintenance link takes the form of an ethernet connection
costing $300. [35]

h,

provide adequate support for system maintenance.

Unfortunately, all current centrally maintained systems, including distributed file

systems, suffer from limited scalability. From a macroscopic point of view, many

different central administrators at different sites repeat each other's work. (See fig-

ure 1-5.) Central administrators at Carnegie Mellon, MIT, and Cornell might all

maintain the same popular software packages, duplicating each other's work, thus

driving up costs.

M sources

K centrally
administered
sites

N destinations

SITE A SITE B SITE C

Figure 1-5: Centrally maintained systems require (K x M) + N maintenance links.

1.2.5 Package management

Package management is a tool for reducing the cost of a maintenance link. This

technology can be applied to all distribution methods so far. The idea is to make

it as simple as possible for a user or administrator to install or upgrade a piece of

software. A package manager is a program that does housekeeping for local software.

It keeps track of which files are where, where they came from, and which files depend

on other files.

By employing package management, a lot of the grunge work of the installation

process can be automated. The locations of various program files and configuration

P I% o

settings can be stored in a central machine-specific database. Often the package

manager is built into the operating system (such as the Registry for Windows, or

RPM for linux.) For example, to upgrade the sendmail program using the Red Hat

Package Manager, all one needs to do is obtain the new sendmail package, then type

rpm -U sendmail. The system will then place the files associated with sendmail in

appropriate places and keep track of them.

While package management makes upgrading easier, it still does not eliminate

the process. Typing a single command is a lot easier than reading directions and

making decisions, but the administrator or end user still has work to do. They

are responsible for discovering when an upgrade becomes available, obtaining the

upgrade and installing it. Keeping track of this information requires human effort

that directly scales with number of software packages maintained. Thus, maintaining

a large collection of software can still be quite expensive.

1.2.6 Push technology

A hot topic in software distribution is push technology. Push technology refers to the

ability to subscribe to a piece of software which is periodically updated automatically

over the internet. The update replaces the older version without any participation

from the user.

Push technology is in the early development stage, with several competing com-

mercial implementations and no common standards. One promising implementation

is called Castanet. Castanet provides a very scalable distribution system, which sup-

ports only very limited types of software. 5

Push technology allows a dramatic reduction in the cost of a maintenance link,
since upgrades are automated. However, push technology does not reduce the total

number of maintenance links. If five end users want to subscribe to five different

software packages, there will still be twenty-five maintenance links.

The main cost to a single end user resides in locating and selecting the software

5Castanet only distributes programs which excute on the Java platform, and HTML format web
pages. Many of the Java programs must be modified to explicitly support Castanet. [2]

I

they wish to use. These costs become significant when collections become large;

locating and installing 10,000 different pieces of software requires a lot of human

effort. The main cost in the distribution system stems from the fact that all of the

end users are repeating each other's work.

1.2.7 Summary of distribution technologies

Current distribution technologies can be evaluated for two characteristics - their

reduction of the number of maintenance links, and their reduction of the cost of each

one. Table 1.2 summarizes the approaches of current distribution technologies.

technology number of number of non-automated
maintenance links maintenance links

download from web M x N M x N
shrinkwrap distribution M x N M x N
central maintenance (K x M) + N K x M
"network computers" (K x M)+ N K x M
package management M x N M x N (semi-automated)
push technology M x N 0

Table 1.2: Focus of distribution technologies

Figure 1-6 shows the relative performance of each technology. The chart plots

each technology with the relative number of distribution links along the vertical axis

and the relative cost of each one along the horizontal axis. The ideal operating region

is towards the origin where maintenance is cheap and administrators don't have to

do a lot of redundant work.

Three common distribution technologies skirt the outer edges of the graph. Push

technology makes administration work very inexpensive, but it is extremely redun-

dant. Shrinkwrap distribution with central administration removes a fair amount

of the redundant work, but what's left is expensive. Shrinkwrap distribution alone

inherits the worst of both worlds!

Some distribution technologies can be combined to provide improved performance.

Centralized maintenance tends to lower the number of maintenance links for a partic-

ular technology. Centralized maintenance is usually done on a limited scale, requiring

push
technology

download
from web *

shrink wrap
distribution *

X r--------------------------------------- Xr-----------

I I
I I
I I
I I
I I
I 1
I I
I I
I I
I I
I I
I I

I
I I
I I
I I

I
I I
I I
I I
I I

I
I I
I I
I i
I I

i
00 r--------------------------------------- Xr-----------

push technology
+ centralized
maintenance

download
from web
+ centralized
maintenance *

shrinkwrap
+ centralized
maintenance *

high

lowL)YI

low

low
cost of each maintenance link

high

Figure 1-6: Relative performance of distribution technologies. A star (*) denotes
distribution technologies which can be shifted slightly to the left by applying package
management. The dark line represents the focus of this thesis.

project
target

duplicated efforts at different centrally maintained sites. Downloading from the web

and package management reduce the cost of maintenance links. The improvements

offered by package management or downloading from the web can at most be minor

since they require a human being to be aware of updates and initiate them. People

are expensive, so costs are high.

A logical conclusion from this graph is to marry push technology with a centrally

administered system. This combination would at least get us into the lower left

quadrant of the chart, and is a fairly easy goal. However, we can do even better by

acknowledging that there is a lot of redundant work between centrally administered

systems, and eliminating it. This improvement represents the focus of this thesis.

Older software quickly depreciates in value or expires. As discussed in section 1.1,

maintaining current versions and proper configuration is critical for bug elimination,

security, interoperability, hardware compatibility, and general happiness. The expense

of inadequate maintenance is enormous. This might seem surprising since the current

marketplace is filled with people running older versions of programs. Only a very

small percentage of computer users keep on top of the latest releases of software;

everyone else exposes themselves to the problems associated with poor maintenance.

The reason can be measured in dollars. Running version 5.003 of a program

rather than version 5.002 can make an important difference, but the maintenance

cost is too great. With current distribution systems, the cost of keeping current (i.e.

maintenance and configuration) is even higher than the cost of being out of date.

1.3 The ideal world

An end user should be able to execute Netscape Navigator (or any other program)

and always run the most current and up to date version. The user should not have

to do any software maintenance or upgrading. The user would be able to run the

program from any computer at any location with or without a network connection.

Extended disconnected operation would be possible. The software would be reliable

and available 100% of the time. Absolutely no modifications whatsoever would be

/

required for the Netscape Navigator program itself.

Furthermore, this functionality should be available for every program, including

the operating system and the distribution system itself. In no case should the newer

version of a program be detrimental; the computer should not spontaneously self-

destruct as time passes. The user should be able to run a wide range of software in

this fashion. Individual programs should be both immediately and easily available.

This functionality should work for any sort of information or software. If the

information in question is an electronic newspaper or a military deployment schedule,

the most up to date copy must always be the one available. The distribution system

would not require redundant administrative work by anyone, and all administration

would be very inexpensive. All of these features should be completely transparent to

use. This thesis is dedicated to making this ideal world as real as possible.

b

Chapter 2

Design

2.1 Design Overview

2.1.1 Design goals

This design provides a framework for minimal cost software distribution and admin-

istration. The main focus is to take advantage of automation and economies of scale.

2.1.2 Environment

No design work exists in a vacuum. It is critical to consider the environment for

which a system is being designed. Such a design assumes that individual computers

do not operate in isolation, but can be connected to a global network (the internet)

at least intermittently. Further, we assume that local storage and network bandwidth

are limited resources. Finally, we assume that the wealth of software and information

available far exceeds both bandwidth and local storage capabilities. These assump-

tions are currently true for most computer systems and are not expected to change

in the near future. While computer technology has advanced rapidly, these basic

relationships have been self maintaining. 1

iSoftware demands tend to rise to the occasion to meet increased hardware capability. For
example, an increase of local storage technology will often be accompanied by increased sizes of
computer programs. As system administrators occasionally say, "You can never have too much
memory/speed/disk space/bandwidth."

|

We assume that automation in distribution can be provided by push technology.

We assume economies of scale in maintenance are possible because many people in

the world run, or would like to run, similar sets of software. These assumptions are

both reasonable and unlikely to change with foreseeable advances in technology.

2.2 Design Issues

Design criteria include survivability, mobility, checkpoints, economics, access control,

scalability, version skew, push vs. pull, redundancy, network efficiency, caching, user

vs. system space, platform management, ease of use, and closure.

2.2.1 Survivability

Section 1.1.6 pointed out that software maintenance is necessary for survivable sys-

tems. Thus, a low maintenance software distribution system provides a critical re-

source. Without software updates, a computer system can be compromised; therefore

the distribution system itself must be survivable. The distribution system essentially

becomes a single point of failure.

The distribution system must continue to function despite a wide variety of com-

ponent failures. Some component failures might be human induced, such as from

misconfiguration or a deliberate information warfare attack. Other component fail-

ures might be caused by mechanical damage due to disasters such as malfunctions,

power failures, earthquakes, or nuclear explosions. The system must have enough ro-

bustness and redundancy to continue to function in spite of such faults. Functionality

should degrade gracefully as more and more components fail.

Replication of data provides a degree of survivability.

2.2.2 Mobility

A computer should not have to be continuously tethered to a network to function.

Mobile users will often have an intermittent connection to the network, as they move

I

from place to place. Mobile users should be able to connect to the network from any

location and still make use of this software distribution system.

Varying levels of connectivity need to be accommodated, including low bandwidth

systems. Mobile users are often faced with low bandwidth connections such as a

modem or a wireless connection. These mobile users should still be able to run

programs when their bandwidth drops to zero. This design criteria also applies to

non-mobile users with intermittent or low bandwidth connections.

By using a local cache, programs are available even during disconnected operation.

2.2.3 Checkpoints

An automated software distribution system allows bug fixes and minor improvements

to flow automatically to all users. But what happens when someone pollutes the

source? If someone dumps toxic waste into the water supply does everyone down-

stream get poisoned?

Sometimes users might not want their software programs updated automatically.

A new version might be incompatible with previous work, untrusted, untested, un-

stable, dangerous, or otherwise undesirable. What if the newest version of Microsoft

Word contained a malicious virus? Will compromise at a single point (like Microsoft

Corporation) quickly contaminate all computers everywhere? What keeps the bad

from spreading just as quickly as the good? No amount of authentication or code

signing can save the day if a new version of a program happens to be malicious.

With current distribution systems, the only protection afforded in this arena is

the inefficiency of the distribution system. If the new version of Microsoft Word is

actually a Trojan horse, 2 it might take years for everyone to upgrade to the new copy

and become infected. An efficient but naive design might quickly spread the malicious

program, introducing the possibility of catastrophic failure.

A more intelligent design allows breaks to be placed in the distribution system

at arbitrary points. The flow of updates can be stopped at these checkpoints and

2A Trojan horse is a malicious software program which masquerades as a benevolent one.

m

examined for problems. If the updated version is approved, it can be supplied to

the next point in the distribution chain. If the updated version is unacceptable, the

older version will continue to be supplied from the checkpoint. Continuing with the

river metaphor, we'd like to be able to place shut off valves at any point in the water

supply.

The notion of a value added middleman makes checkpoints possible.

2.2.4 Economics

How might commercial software licensing fit into this system? Will non-repudiation

be a valuable feature?3 Will software be paid for on a limited time subscription basis?

If there are middlemen in a distribution system for commercial software, how might

they be rewarded for their services?

Economic issues are beyond the scope of this design.

2.2.5 Access Control and Authentication

The right information needs to go to the right people. From the software or informa-

tion providers' point of view, this is an issue of access control. Only paying customers

should be getting commercial software. Access control is essential if expensive soft-

ware is going to be distributed globally.

From the user's point of view, authentication is a major issue. Information re-

ceivers need to make sure the goods they are getting (or buying) are authentic. Au-

thentication becomes a crucial issue for those worried about the security of their

systems.

Today, most systems handle authentication and access control by maintaining a

centralized database of users, a password system, and a series of cryptographic tools

designed to verify identities and restrict access to material. Larger authentication

systems make use of digital signatures and authentication certificates. [39, 21]

3Non-repudiation means the receiver can prove that the sender transmitted a particular piece of
software or information.

|

This design uses PGP to provide digital signatures for authentication.

2.2.6 Scalability

This system must be scalable to the millions and higher. Ideally, everyone running

software on the globe should be able to participate. When Microsoft Corporation

makes a minor bug fix to Microsoft Word or Internet Explorer, that change should

propagate to everyone who owns a copy of the software package, with no fuss what-

soever. The system might also disseminate military information to soldiers. For ex-

ample, every soldier in NATO might need to receive a daily copy of a given weather

map. Scalability into the hundreds of thousands (or millions) is required. Economies

of scale can only occur when there is scale.

The base technology of this design, Castanet, is scalable.

2.2.7 Version Skew

Everyone should have access to the latest programs or information. Version skew

occurs when someone has an older copy of a piece of software than they should. For

instance, if the current version of Internet Explorer 3.02 has been released for six

months, and a user is running 3.01, the version skew is six months. In this case the

difference is significant because version 3.01 has a security hole which can compro-

mise an end user's system. Version skew is an enormous problem in conventional

distribution systems.

Ideally there would be no version skew whatsoever; however that is not always

possible, even in a fully automated system. Another possibility is a controlled and

limited amount of version skew. A related issue is whether it is important or worth-

while to retain old versions of programs or files, and if so, how many of them. This

design keeps at least two copies of software around, so that one can be run while

another is updating.

This design is automated to reduce version skew, and middlemen can increase

version skew when desired as in section 2.2.3.

0

2.2.8 Push vs. Pull

The terms "push" and "pull" are commonly confused. In both cases, information is

sent from a server to a client. If the transaction is initiated by the server, it is push. A

transaction initiated by the client is pull. Broadcast radio is push, browsing web pages

is pull. Unfortunately, systems such as Castanet, in which the client periodically polls

a server, are often labeled as push.

Possible designs include push, pull, or combinations thereof. Push allows for

the use of efficient network protocols such as multicast. [17] Pull allows the client

to determine update schedules. A combination could either be efficient or overly

complicated.

This design uses pull, since you can't push information at a disconnected machine.

2.2.9 Redundancy

Redundancy can be a mixed blessing. Redundancy means keeping duplicate copies of

software, doing duplicate work, or maintaining duplicate systems. If one system fails,

there are duplicates to fall back on. Thus, redundancy can provide high availability

and prevent single points of failure. On the other hand, redundancy can be expensive.

Maintaining unnecessary duplicates increases costs.

Current software distribution systems require a lot of duplicated effort at every

stage. For example, in shrinkwrap distribution end users duplicate each other's ef-

forts while maintaining their own machine. An error by a particular end user cannot

harm more than a single machine. Shrinkwrap distribution provides high redundancy

but also increases costs to the point of compromising the quality of software mainte-

nance. In a better design, redundancy is adjustable to meet the needs of a particular

application.

This design employs the concept of value added middlemen to provide adjustable

redundancy.

2.2.10 Network Efficiency

Network bandwidth is an expensive resource and must be used efficiently. Even as

optical fiber capacities exceed terabits per second in the laboratory, I expect soft-

ware bloat to easily keep pace with transmission capacity. Non-network distribution

methods can also be used, but they too must be cost efficient.

Wireless networks have significantly less available bandwidth, often supporting

only tens or hundreds of kilobits per second. Network connections over a phone

line can be equally slow. Caching strategies can drastically reduce the amount of

information being sent across a network. Network efficiency is currently a serious

problem with the world wide web. [26]

One way to dramatically increase network efficiency is through caching. Caching

allows the same data to be stored at multiple points in the a network, eliminating

repeated, redundant transfers of information from one point to another. Another

approach for widely disseminating information is the multicast networking protocol,

which reduces redundant information transfer at the protocol level. [17] Multicast is

only efficient when there are multiple clients receiving information simultaneously.

This design uses caching to increase network efficiency.

2.2.11 Caching issues

The local storage space on the end user's machine is limited compared to the amount

of software that is available. What happens when the user wants to run seven pro-

grams, and there is only room for six of them on the local drive?

One option is to force end users to do their own manual cache management.

Manually deleting and installing new software is possible, and can be efficient from a

bandwidth standpoint, but creates an extra burden for the user.

Another possibility is an automated cache system that works on the least recently

used (LRU) principle. When space runs out, the dustiest 4 piece of software is deleted

and new software is loaded. Other automated cache management algorithms, such

4Metaphorically speaking, of course.

as random replacement and flush when full are possible; a particular algorithm's

efficiency will depend on the end user's patterns of use.

A third alternative matches the features of both. An automated, least recently

used cache management system takes care of making space on the user's system. The

user has the ability to specify a certain software package as sticky and lock it in

the cache. An even more sophisticated approach would allow the user to prioritize

their software. The system would attempt to maintain higher priority software in the

cache, similar to the hoarding technique used in the Coda filesystem. [30]

This design uses the LRU principle and optionally allows the user to lock individual

pieces of software in the cache.

2.2.12 User space versus system space

Local storage is considered an expensive resource and must be used efficiently. Is this

local storage in user space or system space? The question has particular significance

on a multiuser machine where storing multiple copies of programs in user space can

be extremely inefficient.

Imagine two users, both running Matlab on the same Unix workstation, and stor-

ing software in user space. They would have to keep separate copies of the software

in their home directories. Home directories are finite and not really the place to be

storing huge amounts of software. Single user operating systems such as MacOS do

not have this difficulty. Since all local software is accessable, there is no incentive for

multiple users to install duplicate software on a single user machine.

From an implementation standpoint, user space is much easier to work with than

system space. System space requires root privileges and may require modification

to operating systems, [28] which are beyond the scope of this project. However,

system space provides better performance for multiuser machines, and in an ideal

implementation, system space would be used.

This design places the cache in user space.

2.2.13 Platform management

This distribution system should be able to support any number of operating systems

and platforms in a transparent fashion. For lack of a better term this process will

be called platform management. The distribution system must make sure the right

versions of programs or information go to the right machines. All platforms and

operating systems need to be supportable.

Some machines can support multiple architectures; for instance the same computer

might run Solaris, Mac, and Java executables. If a computer can support multiple

architectures, the end user might have a preference list. (Try to get the Solaris

executable, otherwise take the Java executable.) Or the end user might wish to

install multiple executables. (Get the Solaris and the Mac executable.)

This design supports multiple platforms transparently.

2.2.14 Ease of use

A software distribution system should be easy to use. Ideally the end user will not

even know it exists. The user should be able to run programs, and not worry about

where they reside, maintaining them, or where they came from. They should not have

to adjust any parameters or make any decisions if they do not wish to. Customization

should be permitted in an intuitive fashion, if desired.

End users can be completely ignorant of distribution and maintenance tasks per-

formed by middlemen.

2.2.15 Closure

Closure means that the software distribution system can update itself. As mentioned

in section 1.1.6, a program is only survivable if it can be updated. Since the software

distribution system is a critical resource, it is likely to be the target of an attack. As

security holes are discovered, it will be necessary to update the distribution system.

The base technology, Castanet, has the ability to update itself.

2.3 Tradeoffs

Not surprisingly, some of these design criteria are in direct conflict with each other.

Figure 2-1 illustrates where tradeoffs occur.

survivability
mobility
checkpoints
access control
scalability
version skew
push vs pull
redundancy
economics
network efficiency
system vs user space
caching
platform management
closure
ease of use

-7-

Ic

x

X

X

X

Figure 2-1: Design tradeoffs. An X denotes two desired features which are in conflict.

7 -7
i
s

t.
C

L

7777777

L'NR
R

177
R",LXI

2.3.1 Version skew, mobility, push/pull

The amount of version skew, or delay a user might experience in receiving current

information, is heavily tied to the bandwidth of a network connection. This makes

sense since updating software requires bandwidth; a relationship especially important

to mobile or intermittently connected users. More bandwidth allows software to be

transferred with less delay. Thus, higher bandwidth implies quicker updates and less

version skew.

Can the end user run programs if the network fails? If they are in the Wrangell

St. Elias National Park in Alaska and the nearest network connection is hundreds of

miles away? If so, is the end user willing to accept a delay in updating software? In

this design the answers to all those questions are "yes."

All distribution is initiated via client pull. This is the only way for an intermit-

tently connected machine to reliably retrieve information. Pushing information at

a disconnected machine is unlikely to succeed. While the software source may set

the default schedule and frequency of pulls, the software receiver may override that

schedule.

This way, a mobile user can ignore any scheduled updates during disconnected

operation. Upon re-connection to the network, updates may resume. The end user is

permitted to override the update schedule, skipping updates. The choice, however, is

limited to keeping whatever is installed or moving to the newest version of software.

Managing multiple versions of programs and their dependencies is beyond the scope

of this thesis. In general, version issues are handled by the update source, not the

update receiver.

2.3.2 Access control, scalability

The traditional method of access control involves registering everyone on a system

with an identity maintained in a central database. Usually a password is used to

authenticate a user. Unfortunately, a single system authentication is extraordinarily

difficult in a large system. Thus, individual resources will be required to perform their

own authentication and access control. Large scale and distributed access control and

authentication is an active research issue for the world wide web.

2.3.3 Ease of use, efficiency

To attain maximum efficiency, the end user would be able to decide exactly what is

stored locally and what is available from the network. While an automated system of

cache management might be able to do a reasonable job, no system can anticipate a

user's actions. The strategy of automated, but user assistable cache management is

used extensively in the Coda distributed filesystem, [34] which was designed to allow

for disconnected operation.

2.4 Focus

The primary design focus for this thesis is scalability. Secondary considerations in-

clude ease of use, checkpoints, and platform management. Less attention is placed

on economics and authentication.

2.5 Putting it all together: an example

Consider the case of the MIT Lincoln Laboratory internal network. MIT Lincoln

Laboratory is a military oriented research institution with about two thousand em-

ployees. These users are connected on a fast local area network which is connected to

the internet through a firewall. In this scenario, the goal is to give them access to the

following software: Framemaker, a word processing program; Matlab, a mathematics

processing program; and some internal MIT Lincoln Laboratory specific software or

information.

We'd like the original developers to maintain the commercial software. For in-

stance, any bug fixes added to Matlab from the authoring company, Mathworks, Inc.

should propagate directly to the users as they become available. In addition, we de-

sire efficient use of network resources, and easy access for users. Trust is extended to

I

the software developers, but no others.

Sdeveloper

Matlab Framemaker

I
I
I
I
I
I
I
I
I
I
1

I
I
t
I
I
I
I

Radm
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

,____________

Figure 2-2: Trickle down software at MIT Lincoln Laboratory

First we set up a computer (with a really big disk) called Lincoln Labs #1

(LL1). LL1 would subscribe to the outside software sources. Copies of Matlab

and Framemaker would be downloaded directly off the manufacturer's sites. This

would be a subscription-based connection; any changes the developers make would

be replicated on to LL1. In addition, custom MIT Lincoln Laboratory software or

I

I
I
I
I
I
I
I

1

I
I
I

I

I

I
I
I

I

I
I
I
I
I
I
I

I
I
I

information would also be placed on to the machine. (see figure 2-2)

LL1 is now a very valuable computer and a model machine. It contains essentially

all the software that the lab denizens would want to use. Thus the contents are

replicated to a few other machines, LL2 and LL3, which are distributed, redundant

file servers. This replication provides a certain amount of redundancy to increase

reliability, robustness, provides performance benefits for end users via parallelism.

An end user might connect their workstation to LL2. When the user decided to

run Matlab, a copy would be replicated off of LL2 and onto the user's local filesystem.

Such a setup is not very dissimilar to having all these programs stored on a

distributed file system at MIT Lincoln Laboratory. In either case, the end user does

nothing to maintain software. In this particular situation, the information systems

department at MIT Lincoln Laboratory would maintain only their own information

and commercial maintenance would occur automatically. This makes it feasible for a

small organization to provide a much wider range of software, rivaling perhaps MIT's

Project Athena in breadth.

What happens in the case of failure? If the user's machine fails, then the user is out

of luck. The user could go down the hall and run software off of a different machine;

it really depends on whether any personal data was stored locally. If the Lincoln Lab

network fails, then the user will not be able to receive software upgrades. However,

the user will still be able to run software that has been cached to the local machine. If

LL2 fails, the user has a fallback to LL3. If LL1 fails, then MIT Lincoln Laboratory

users will not receive software updates until operation is restored, but will still be

able to run existing versions of software. If the Framemaker master site fails, then

there won't be upgrades to Framemaker. However, all of MIT Lincoln Laboratory

will still be able to operate with the local copy. Presumably the Framemaker master

site can also maintain some redundancy.

I

Chapter 3

Implementation

3.1 Technologies

3.1.1 Basic components

Several technologies are used in the implementation. Since one goal of this proof-of-

concept implementation was to write as little new software as possible, the implemen-

tation builds on existing components. Availability, extensibility and openness were

used as selection criteria. To a degree all of these component software choices are

arbitrary and could be replaced with alternative technology.

Castanet, a product of Marimba, Inc. was chosen for a replication tool since it

is efficient, programmable, and has a strong technology base. Its main drawback is

its proprietary nature and lack of stability. Castanet provides automated file system

replication and scalability to the system. Castanet 1.0 does not provide access control;

a later version will support that capability. Castanet does not provide support for

multiple platforms.

PGP, a freeware cryptography program, provides public key technologies for au-

thentication and access control. PGP is highly respected and stable; its drawback of

non-exportability is not an issue for this proof-of-concept system.

The Athena locker model was chosen for managing executables for multiple

platforms. This model has a proven background on MIT's Project Athena and other

41

large information systems. The Athena locker model provides a standard directory

structure for platform management and executable organization.

Java programs and shell scripts were used to glue these components together as

necessary. Shell scripts are the simplest way to automate tasks in the Unix environ-

ment. Java was chosen where it was necessary to interact with Java based Castanet.

Java programs were used in priority of shell scripts due to Java's portability.

3.1.2 Castanet in detail

The most sophisticated component for this project is Castanet. A description of Cas-

tanet is important to distinguish the work of this thesis from the underlying system.

Castanet provides three essential components, the transmitter, the receiver, and the

repeater. They are the server, client, and a server/client combination, respectively.

These components are used to distribute and maintain channels.

For example, suppose an end user wishes to play the daily crossword puzzle using

the Castanet system. First, the end user would install a tuner on his computer.

The tuner provides a graphical user interface that allows the end user to subscribe to

channels. Then the end user would have to find a crossword puzzle channel. Once the

channel is located, the end user would subscribe. This would replicate a crossword

puzzle from the transmitter to the his local storage. As long as the end user is

subscribed to the channel, his tuner would periodically poll the transmitter to see

if there were any new crossword puzzles available. If there were, the tuner would

download any new files and update the local copy.

From the end user's perspective, once he subscribed to the crossword puzzle chan-

nel, he would always have a reasonably up to date version of the game. Castanet

only supports programs written in Java. To the end user, a Castanet channel would

feel quite similar to a Java applet run through a web browser. The main difference

is that applets are not stored locally while Castanet channels are - thus bandwidth

is only required for updates. Castanet updates are extremely efficient, both in only

transferring files that are not already present, and recognizing when multiple channels

use identical files.

42

Repeaters provide scalability for Castanet. Repeaters are combinations of trans-

mitters and tuners placed throughout the network. This allows caching and scal-

ability. Thus the person subscribing to the crossword puzzle might do so from a

local repeater rather than the master transmitter. Castanet repeaters do not provide

modification, organization, or any other form of intermediary services.

The Castanet system is very extensible, at nearly every stage. The tuner can run

channels which performa administrative functions. The transmitter can run "trans-

mitter plugins" which can also perform administrative functions. Since each compo-

nent is programmable, a channel's content can be tailored to each end user. This

provides a framework to add what Castanet is missing as a distribution system.

There are a lot of missing features. These include tools for organizing software

collections, access control and authentication, multiple platforms support, support

for middlemen, and the concept of automated cache management for the tuner. All

of these things are required for the design presented in chapter 2, and have been

implemented in this thesis with varying degrees of success.

3.2 Basic distribution systems

A complex system can be created using primitives, means of combination, and means

of abstraction. This section presents the essential building blocks of a distribution

system, and describes how to combine them into a more complex system.

Four basic examples are presented.

1. Replication from source A to destination B

2. Combining two sources

3. Adding a checkpoint

4. Replicating a large source

3.2.1 Replication from source A to destination B

Consider the following scenario. A developer wishes to distribute the program xclock.

This is a simple program that displays a clock on the screen as shown in figure 3-1.

The end user wishes to use that program and automatically receive new versions as

they become available. (See figure 3-2)

I I I ?

Figure 3-1: The xclock program

Developer

SEnd user

Figure 3-2: A two person distribution system

There are xclock executables for several platforms, including linux, Solaris, and

IRIX. The developer prepares a standard directory structure, which contains the ex-

ecutables for each supported platform (see Appendix B). The developer then creates

a software channel called xclock.

An end user on a linux workstation subscribes to the xclock channel. The appro-

priate xclock executable (in this case linux) is replicated onto the user's machine and

can now be executed from the command line. As new versions of xclock are created,

updates are automatically replicated onto the end user's filesystem.

Castanet 1.0 provides automated file replication but little else. Custom code

does the work of adjusting the end user's PATH variable, making sure replicated

executables are still marked as executables, and deciding which files get replicated.

Let's examine this process in more detail. The directory of executables is packaged

up as part of a Castanet channel called xclock. That channel also contains two custom

programs to manage the replication process. One runs on the server (or transmitter),

and one runs on the client's machine. The server side program is called a transmitter

plugin,' while the program that runs on the end user's machine is a special Castanet

channel.2 The special channel is named payload in this implementation.

Using Castanet Publisher, the developer places the software channel onto a Cas-

tanet transmitter. When a user subscribes to a channel, the transmitter plugin is

executed on the server machine. The subscription request (along with all subsequent

requests for updates) is intercepted by the transmitter plugin.

The transmitter plugin queries which platform the client prefers to receive. In

this example, linux is the preferred platform. The plugin determines that the linux

executables should be the only files replicated and makes sure to transfer only the

appropriate subdirectories. If there were shared files between platforms, (such as

common libraries or data files between platforms) they also would be replicated.

In addition to the linux subdirectory, the program payload is downloaded and

executed on the client machine. This Java program attends to platform dependent

installation on the end user's machine. In this example, payload adjusts the user's

1A transmitter plugin is a program that runs on the server side every time an update occurs.
2This channel is special, in that it performs administrative tasks for other channels. Incidentally,

the tuner itself is a Castanet channel which performs administrative tasks on other channels.

path, and modifies the file permissions so that the operating system recognizes xclock

as an executable.3 The payload program is platform dependent and does not take

advantage of Java's portability; thus it could also be implemented as a native exe-

cutable.

The actions of setting file permissions and changing important global variables

(such as the executable path) are highly privileged operations. Currently, Java pro-

grams automatically invoked by Castanet are not permitted to make such changes,

due to possible security risks. In a future version of Castanet that supports code

signing, payload could be given the necessary permissions to do its work. For this

implementation, the security manager for the Castanet tuner has been disabled.

Finally, now that replication has occurred, the end user may type "xclock" and

watch the program execute on the screen.

Access control and version skew deserve further discussion. In the xclock scenario,

there is no access control. Anyone who wishes to subscribe to the xclock channel is

permitted to do so. If restricted access were desired (for example, if commercial

software was being distributed, rather than the freely available xclock program) the

transmitter plugin would only authorize replication if a client could prove they were

a licensee.

One way for a client to prove their identity is by supplying an identifying cer-

tificate. This might be as simple as a document stating that the software had been

licensed. This license agreement would be digitally signed by a trusted authority,

either the software providers themselves or a trusted third party.

As always, an access control system must be carefully designed and implemented

to maintain security. In the sample implementation, the client presents a document

stating its identity and permission to access a particular channel; essentially a license

agreement. This document has a validating PGP signature from the provider, which

is checked by the plugin stage. This design has many weaknesses (for example, it is

vulnerable to replay attacks) and only represents a rudimentary access control system.

Any form of access control may be substituted in place of this proof-of-concept

3 Castanet 1.0 unfortunately strips file permissions during replication.

I

implementation, including the access control system to be built into a future version of

Castanet itself. Another possibility, not implemented, is for software to be distributed

in an encrypted or otherwise unusable form, which may only be unlocked with a key

licensed from the software developer.

Another issue is how to handle replication while an executable is running. In this

implementation, the client periodically polls the transmitter to see if there is a new

version available. If a new version is detected, the following strategy is used.

1. copy current version to a temporary location

2. incrementally update the copy

3. move aside the current version

4. move updated copy into place

This allows the possibility of updating xclock while it is being run, without causing

interruption. Each time a new version is received the old version is moved to an

alternate location; eventually creating a large collection of old software lying around.

The payload program is responsible for managing this process.

The user may only access the latest version of the software, unless the program is

already running. To the user, updates appear to happen as dictated by the replication

schedule, except that an update never interrupts a currently running program. This

can be maintained indefinitely, or at least until local cache space is exhausted, in

which case older versions of programs are deleted.

3.2.2 Combining two sources

Suppose now that a middleman is compiling a collection of programs that decorate

a computer screen. She notices that the developer from section 3.2.1 is supplying

xclock. A different developer is supplying xeyes which is a decorative program in

which a pair of eyes follow the mouse cursor around the screen. See figure 3-3. This

middleman would like to combine the two software programs and offer them together,
providing one stop shopping for customers seeking screen decorations. See figure 3-4.

m

Figure 3-3: The xeyes program

Developer

Middleman

id user

Figure 3-4: Distribution system with a middleman.

Developer

I

The middleman subscribes to both the xclock and xeyes channels. Instead of

receiving the executables for a specific operating system, the middleman receives

all the executables. The middleman requests this configuration by customizing a

configuration file.

These two channels are mirrored by the middleman. In addition, the middleman

creates a new channel called screen decorations. When the end user subscribes to

screen decorations, they receive a program that quickly subscribes them to xeyes and

xclock, unbeknownst to the end user! From the system's point of view, the end user is

subscribed to screen decorations, xeyes, and xclock. All three channels are provided

by the middleman.

From the user's point of view the only channel being subscribed to is screen

decorations, which appears to contain two programs, xclock and xeyes. The end

user is saved from having to discover and subscribe to two independent sources. The

payload program and transmitter plugin again work to provide only the correct

executables and to manage directories and files.

This process of merging two channels is crucial to the distribution system. Thus

a custom program was written to automate the process. The name of the program is

merge-channels.

3.2.3 Adding a checkpoint

Consider again the simple A to B distribution system in section 3.2.1. Again, a

middleman is interested in getting involved in the distribution scheme.

This middleman is the National Institute of Standards and Technology (NIST),

and is very concerned that the xclock program is virus free and safe to use in gov-

ernment installations. They wish to sit between A and B, checking to make sure the

program is benevolent. After a thorough examination, the program is then passed

on to B, with a stamp of approval attached ("Approved by NIST for your safety")

Essentially this middleman wishes to stop the distribution stream, modify it, and

then send it on its way. (See figure 3-5)

NIST, acting as a middleman, first subscribes to the xclock channel. Then they

Figure 3-5: Adding a checkpoint

examine the program carefully, spending weeks looking over the code. Once NIST

is satisfied, they add a certificate of approval to the channel and retransmit. The

process repeats with each update of the xclock channel.

The program merge-channels is used to handle the process.

The modifications by NIST are either done by hand or they may automate the

process themselves. Limited support for automation is provided in the extensible

merge-channels program.

3.2.4 Replicating a large source

The previous examples have assumed very small software sources. The implementa-

tion can handle much larger sources, including sources larger than the local storage

of the enduser. This is important because, in general, the amount of usable software

may exceed local storage capacities.

Consider the case where a large collection of software is being distributed. MIT's

Project Athena contains thousands of software programs stored on the Andrew File

Developer

National Institute
of Standards and
Technology (NIST)

SEnd user

System (AFS). (See appendix A) They have been organized by hundreds of people

over thousands of hours. Both end users and perhaps other universities would like to

subscribe to Project Athena and be able to run all of the programs.

Thousands of
maintainers

End user

Figure 3-6: A large software source

Several issues are immediately raised. One is the name space problem. Every file

must be uniquely specified, but with a large collection of software there are likely to be

several files with identical names. Project Athena solves this problem by subdividing

the collection into different logical units called lockers.[29]

For example, there are file lockers called "graphics", "scheme", and "6.034" which

contain programs and directories for image manipulation, the scheme programming

language, and files associated with the introductory artificial intelligence class which

is called 6.034. The end user on an Athena workstation might type add matlab which

attaches4 the appropriate file locker, then type matlab to execute a program inside

that locker.

The same logical division applies in this implementation. The different file lockers

are converted to Castanet channels. One channel is called Athena, to which one may

subscribe. As far as the end user knows, this is the only channel associated with

Athena. Actually there are many channels, one for each for each file locker.

The Athena channel contains a payload that lets you access all of the other file

4 This refers to adding an AFS volume to the directory hierarchy on the end user's workstation.
Executables and man pages are added to the search path, and possibly other initialization occurs.

lockers. In the current implementation the end user is provided with a command line

program where they can type commands like add matlab. This interface was chosen

because it is familiar for current athena users.

Once the user types add matlab they are unknowingly subscribing to the matlab

channel. If there is room, the channel is replicated to the user's computer system. If

there is not room, space is cleared on the local disk and the channel is replicated.

On the transmitter side, there is a similar dilemma. A transmitter contains a local

disk on which channels are stored, and access to MIT's large distributed file system.

Since local storage is insufficient to store all of Athena, the transmitter must generate

channels on the fly. Caching is also used.

This is significant because now Athena is more widely available than just over its

distributed file system (AFS) and no longer requires end users to have a permanent

network connection to run all Athena software.

3.3 Maintenance loops

Consider the following scenario. A student is working on his Master's thesis. The

thesis itself is stored on a central campus computer system. The student wishes to

edit the files while away on spring break on a laptop computer.

This type of collaborative setting, where a set of files can be maintained on both

the laptop and the campus computer, can be accomplished through a maintenance

loop. A transmitter and a receiver are installed on both the laptop computer and

a campus workstation. A modification to the thesis from any point will eventually

propagate to all systems on the loop.

This situation requires additional care. If a solitary student is editing the files,
there is little danger of conflicting modifications. If multiple collaborators are working

with the same files, they must be especially careful not to overwrite each others work.

On a distributed file system, this situation is usually managed through semaphores

or lock files.

A maintenance loop is much more difficult. By definition only one person may

Collaborator

Collaborator

Figure 3-7: A two person maintenance loop

be granted a lock at a particular time. In order to assure unique access to files, one

may still request a lock on a particular file. However, someone else might also have

requested a lock at some other point in the maintenance loop.

The only way to determine if a person can receive a unique lock is to wait until

the lock request has propagated completely around the maintenance loop. If there

are no conflicts or existing locks in place, the lock may be granted. Unfortunately,

the amount of time required to propagate around a maintenance loop (the period)

can be quite long. This period will depend on the allowed version skew between each

maintenance link and the number of maintenance links. If one of the machines in the

maintenance loop can be disconnected from the network for extended periods (e.g.

the laptop), the period can be indefinitely long.

Thus, uncoordinated collaborative file editing requires a tight maintenance loop

in time and may provide unacceptable performance. Coordinated collaborative file

editing (where the users coordinate amongst themselves not to edit files at the same

time) is a more practical use for a maintenance loop. The ideal situation for a

maintenance loop would be a single editor who wishes to work on their files across

multiple systems.

Another possibility is to allow branching in the version sequence. Some version

control systems allow simultaneous edits without file locking, and conflict resolution

upon check-in. This topic is beyond the scope of this thesis.

3.4 Implementation components

All of the custom programs written for this project are built on top of Castanet and

written in Java. Source code for these programs may be found in Appendix C.

3.4.1 Payload program

When someone subscribes to a software channel, they will receive a program called

payload. The payload program is written in Java and takes care of the platform

dependent aspects of replication. The payload program works in conjunction with

auxilary programs, such as shell scripts, on some platforms.

One issue that quickly arose is the incompatibility of different file systems. Sym-

bolic links are handled differently between Unix, Windows, and Macintosh file sys-

tems. Permissions and access control conventions vary widely across file systems, even

for Unix (NFS supports group permissions while AFS makes use of access control lists)

The payload program, in its Unix incarnation, is specifically designed to handle

executable permissions, symbolic links, modifications to the executable path, and

movement and copying of the replicated file system during updates.

3.4.2 Transmitter plugin

The transmitter plugin is responsible for platform management. When an end user

subscribes to a channel, they may specify a preference for a particular platform and

platforms. The tuner plugin makes sure that only the desired platforms are dis-

tributed.

3.4.3 The merge-channels program

The merge channels program is responsible for combining different Castanet Channels.

This program allows a user to subscribe to multiple channels and provide a single

channel; it handles updates automatically and may be extended for custom updates.

|

Chapter 4

Analysis

4.1 Performance Criteria

Efficiency can be measured in terms of how well network bandwidth, local storage,

and computational resources are used. In addition there are more subjective consid-

erations such as waiting time for a program to execute, how often a network com-

munication channel is required, how easy disconnected operation is, and how much

knowledge a user must have of the underlying system. From a systems perspective

we would like to know the ultimate scalability of the system, and how performance

is affected with a large number of users.

4.1.1 Physical resources

Network bandwidth availability has huge variation. Wireless systems run from

zero bits per second to hundreds or thousands of bits per second and can change

instantly depending on environmental conditions. Modem users communicating over

a single standard telephone line are currently limited to 56 kilobits per second, with an

absolute theoretical upper bound of 64 kilobits per second. An Ethernet connection

provides 10 to 100 megabits per second, while ATM networks can provide over 100

megabits per second. The world record for sending information through a single

optical fiber is over three terabits per second; however this is only in a laboratory

setting. [25]

Storage capacity in terms of magnetic disk drives, is also changing rapidly.

A typical new personal computer includes a hard disk of approximately two giga-

bytes. Nine gigabyte disk drives are easily available from vendors on the order of

one thousand dollars. [14] However, "Network computers" are being designed with no

significant local storage at all.

Another resource is processor capacity. Processor speed is difficult to measure,

and many benchmarks are available. In 1998, all new personal computers are expected

to meet or exceed the processing capacity of a single Pentium MMX chip running at

200 megahertz, according to industry recommendations developed by Microsoft and

Intel. [13] The fastest general purpose processor on the market has a 600 megahertz

clock and employs limited parallelism. [8] Multiprocessor machines, containing two

to six processors, are starting to enter the consumer market.

4.1.2 Resource demands on a single machine

Bandwidth is most stringent requirement since the design must support wireless or

temporarily disconnected systems, including modem based personal computers. Thus,

bandwidth considerations received priority when making design tradeoffs. The band-

width required by a particular machine in the distribution system depends on many

things.

First, consider an end user's machine. The end user will likely run several different

software programs. One strategy is to receive software over the network every time

it is used. A better strategy, from a bandwidth standpoint, is to cache software in

local storage. Network bandwidth is only required for cache misses; i.e. software is

requested that is not in the cache, or the software that is in the cache becomes stale.

Bandwidth requirements become to first approximation

TS
B = rC +

C

B bandwidth

S aggregate size of software in user's repertoire

r average rate of update of that software

C local cache size

T miss rate x access rate

This design attempts to keep material in the cache reasonably up to date at all

times. Stale software is updated by the system on a regular basis. The first term, rC,

refers to the amount of bandwidth required to update stale software in local cache.

For example, if the software in the local cache changes 10% per year, and the local

cache is one gigabyte, the updates will require 100 MB/yr of bandwidth. The larger

the cache, the more bandwidth required, assuming the cache is full.

The second term, s has to do with cache misses. If S > C, the end user makes

use of more software than fits on the local cache, and occasionally the machine will

have to fetch a program from the network. Bandwidth requirements increase with S,

the total amount of software used. Bandwidth requirements decrease with C, the size

of the cache. Finally, bandwidth requirements are affected by human usage patterns

T which is the rate at which the user accesses software, times the miss rate.

Note that the first term penalizes a larger cache while the second term rewards a

larger cache. Thus caching only makes sense when the benefits outweigh the costs.

Caching is most successful with slowly changing frequently used software. Caching is

least successful with frequently changing, rarely used software.

Computational resources on a single machine were not a major factor in the design

in this system. From an end user's point of view, computational resources are negli-

gible. The computational cost of running the Castanet tuner is constant. The com-

putational cost of cache management is constant for many replacement algorithms,

such as random replacement.

4.1.3 Resource demands on the system

The concept of middlemen allows tree-like distribution patterns. End users may sub-

scribe to middlemen. Middlemen may subscribe to either sources or other middlemen.

If a middleman can support b subscribers, and there are k layers of middlemen, bk+l

end users may be supported. This scalability is already available through Castanet,

by making use of repeaters.

The system gains additional efficiency because a separate distribution tree for

each piece of software is not necessary. Since software packages can be merged,

separated, or modified by any middleman at any level, distribution trees are likely

to become highly intermingled. For example, consider the software programs Apache

and Analog. Apache is a web server, while Analog analyzes web server logs. These

programs are complementary and might be used together by n end users.

One possibility is to set up two parallel distribution trees with each with bk middle-

men. Another possibility would for a single middleman, at the top of the distribution

tree, to merge the two programs into a single channel. Then, only one distribution

tree size bk would be required. If the programs had only partial overlap, e.g. only

some endusers would want both programs together, the combination might occur

further down the distribution tree.

Since this system supports arbitrary distribution networks, efficient distribution

structures can be achieved. While finding an optimum structure for a large number

of channels might be extremely difficult, market forces should promote efficiency.1

4.1.4 When demand exceeds capacity

Resource allocation for a given machine is performed using the following assumptions.

1. Demand for network bandwidth may exceed capacity.

2. Demand for local storage may exceed capacity.

1This thesis was nearly titled "An Economy of Software Maintenance"

Performance degrades gracefully as demand exceeds resources. We've already seen

this happen when demand for local storage exceeds supply. For example, we'd like

to store copies of software in local storage. Assume that a user has capacity for six

programs in local storage. If the user runs a seventh program, one of the six earlier

programs that was stored on disk will be erased. The penalty for insufficient local

storage is poorer performance by the system as programs are swapped in and out of

the cache.

Overdemand for bandwidth resources are handled in the same fashion. For exam-

ple, a software channel that requires ten megabytes of updates every five minutes may

exceed total available bandwidth. Or, perhaps the aggregate bandwidth requirements

of all the programs stored locally will exceed available bandwidth. When bandwidth

demands outstrip supply, some updates must be dropped.

Castanet already handles the first case, where a channel attempts to update itself

faster than bandwidth can handle. If a channel is being updated, it will cannot

request another update until the current one is completed. This effectively reduces

update rates to a manageable level.

There are several strategies for deciding priority for multiple competing channels.

This design uses least recently used. Thus a channel not used in a long time will be

the most likely to be out of date. Using LRU for updates complements the use of

LRU for local storage.

Since Castanet allows the user is allowed to directly adjust cache management

(both for bandwidth and local storage) greater efficiency may be achieved at the cost

of ease of use.

4.2 Comparison of technology bases

This thesis is about software distribution and maintenance. It is also about managing

collections, automating updates, and taking advantages of economies of scale. To take

advantage of economies of scale, a globally scalable infrastructure is required. Several

candidates exist, and Castanet was chosen. Other candidates would have also worked.

4.2.1 Castanet

Castanet is a replication system developed as a commercial product by Marimba

Corporation. It allows files to be automatically copied from filesystem to filesystem,

at programmable intervals. Castanet supports incremental updating to allow for more

efficient use of bandwidth and allows repeaters2 to provide global scalability.

Because Castanet uses HTTP as it's transport protocol, the system will work

through most existing firewalls.

4.2.2 Coda

Coda [34] is a distributed file system derived from AFS developed at Carnegie Mellon

University. It supports a large-scale distributed computing environment composed

of Unix workstations. Disconnected operation is being developed to support fully

mobile computing.

Much of the caching and disconnected operation strategies used in this thesis were

modeled after Coda. Coda includes automated and user assisted cache operations and

reintegration upon connection; I had to add this functionality to Castanet.

Coda is a filesystem operating at the Unix vnode layer and must be integrated

into the operating system. Simply installing Coda requires root privileges. This make

Coda a little more unwieldy to work with than application layer software like Castanet

for casual development.

Coda is more general than Castanet, allowing the full read-write operation of a

distributed file system. It also takes a different approach to scalability. Castanet

provides replication between different local file systems. Coda, on the other hand,
allows multiple, replicated file servers to provide access to a single file.

Unfortunately, performance degrades with increasing numbers of replicated file

servers; a single replicated server causes a performance drop of 5% [34] and additional

replications further degrade performance. Thus it would not be possible, for example,

2A repeater is a program that receives a channel and rebroadcasts it.

for everyone in the world to access Netscape Navigator from a single location 3 in

the Coda file system. It is not surprising to see performance degrade with the use

of replicated file servers. While replication offers advantages in parallelism, it also

requires overhead for synchronization. Since Coda is a read/write system, the file

servers must be kept closely synchronized. Any changes to a file must be immediately

communicated amongst the file servers. A read only system might not incur these

overhead costs.

Thus it would make sense to copy a given program to several locations in the

Coda name space, as opposed to keeping each piece of software at only one canonical

location. It would certainly be possible to use Coda instead of Castanet as the

underlying namespace for this thesis project.

Finally, in a practical sense, Castanet has an advantage from using HTTP as its

transport layer. For global operation, it will be important for this system to operate

through firewalls. Virtually all firewalls already have a hole in them for HTTP; the

use of Coda would require an additional modification to firewalls.

4.2.3 WebFS

WebFS [18] is a file system being developed at the University of California, Berkeley.

It is a global, cache coherent file system which allows unmodified applications to read

and write to the URL name space. WebFS is built at the Unix vnode layer and

supports HTTP as a transfer protocol. A prototype implementation exists for Sun

workstations. WebFS would make a promising basis for this thesis project if it were

a little more mature.

WebFS is designed to allow simple filesystem manipulation across the URL names-

pace. For example, consider this scenario envisioned by the WebFS developers. [37]

cd /http/www6conf.slac.stanford.edu

cat index.html

cd img

3 A single name in the Coda namespace.

cd logo

xv 200x200.jpg

WebFS works with two protocols when manipulating files. If a machine is running

the WebFS, a WebFS protocol serves files with performance rivaling other distributed

filesystems. If WebFS software is not present, but a (nearly ubiquitous) HTTP server

is, WebFS can serve files through that protocol. Thus WebFS has a strong advantage

in the ability to work with systems supporting HTTP, without requiring WebFS

specific software.

While WebFS does not provide replication tools like Castanet, the filesystem at-

tempts to address scalability difficulties by integrating multicast into the file system.

Multicast is used to make caching more efficient; caches need only flush their con-

tents when receiving an invalidate signal over multicast. This eliminates the need for

polling, increasing the number of clients a WebFS file server can handle. Still, the

load on a WebFS server grows with the number of clients since multicast is not used

for transmitting all data.

WebFS does nopt specify replicated servers like Coda. Thus it would not be

possible for everyone in the world to access a program from a single location in the

WebFS namespace. Like Coda, it would make sense to copy file to several locations.

If a future version of WebFS were able to service global demand from a single lo-

cation in namespace (through judicious use of the multicast protocol), an automated

copying tool would still be required. Middlemen require automated, periodic copy-

ing to provide organizational services. (It will be necessary for middlemen to copy

canonical copies of software into their own collection and namespace if they wish to

provide modifications, checkpoint services, etc.)

Castanet provides a slightly higher level of maturity and very efficient copying

tools. Castanet also supports disconnected operation while WebFS does not explic-

itly do so. WebFS provides a high degree of ubiquity. They both make excellent

candidates for technology bases.

4.2.4 WebNFS

WebNFS [20] is an initiative by Sun Microsystems to use NFS as a transport layer for

the world wide web, as opposed to HTTP. The NFS transport layer has been tuned

over many years and is significantly faster than HTTP. Other speed advantages of

WebNFS come from low connection overhead, and tight integration with the operating

system.

While WebNFS allows faster access to a distributed namespace than HTTP, it

does not provide any additional functionality. In theory anything that is currently

implemented on top of HTTP would also be implemented on top of WebNFS.

The higher performance of WebNFS, including a throughput of over 6MB/s for

some implementations, is not so dramatic as to allow global access for a single file.

WebNFS does not provide automated replication tools, multicast, or other features

that might provide global scalability.

Thus, Castanet, while built on top of the slower HTTP protocol, provides the

tools needed to achieve scalability. It is important to note that HTTP was chosen

as a transfer protocol by Castanet (and therefore this project) not because of speed,

but rather ubiquity. HTTP is supported by an enormous amount of software, and

nearly all firewalls are configured to allow HTTP packets to slip through. WebNFS is

not currently in wide use, which means it is not generally supported in the software

infrastructures. This makes WebNFS limiting and thus poor choice for this design.

access globally efficient disconnected cache
control scalable copying tools operation management

Requirements x x x x x
Coda x x x
WebFS x x x
WebNFS x N/A
Castanet x x x

Table 4.1: Feature space of existing systems

4.3 Other maintenance systems

4.3.1 Oil Change and Tuneup.com

Oil Change [12] and Tuneup.com [16] are some of the first companies to provide value

added services in terms of software maintenance. These are commercial companies

that keep track of thousands of software programs, and allow automation of updates

to locally stored software.

Oil Change and Tuneup.com only offer maintenance services; they do not provide

organization or distribution services. For example, an end user will be required to

locate and install all of their own software, piece by piece. By signing up with these

organizations, the user allows the service to update individual programs. Thus the

number of maintenance links are still M x N for M machines installing N pieces of

software. The cost of the maintenance links are reduced, however.

Neither of these services allow the user to maintain a larger amount of software

than local storage will hold; there is no automated cache management. A user who

only has local storage capacity for six pieces of software will need to install and remove

software manually if they wish to make regular use of seven pieces of software.

Neither organization allows additional levels of middlemen. Tuneup.com and Oil

Change don't distribute software. Thus, there is no way to create specialty distribu-

tions based on their general collection.

|

Chapter 5

Applications

5.1 Value added services

5.1.1 General software collections

The software distribution system as presented provides distributed maintenance. For

instance, the author of each program can maintain and update every copy, everywhere.

Further organization is possible. An organization such as MIT might gather together

a collection of software from various sources and provide access to it in a convenient

way. Instead of subscribing to Framemaker, Matlab, Maple, gnuplot, transgif, emacs,

scheme, gcc, Netscape Navigator, lynx, EZ, gif2tiff, traceroute, xcalc, and five hundred

other channels, I might just subscribe to MIT Project Athena.

5.1.2 Safety checking

Checkpoints can reduce vulnerability to computer viruses, and offer a measure of

quality control. Instead of subscribing directly from the author of individual pro-

grams, someone might subscribe to a special "Virus Safe" distribution point, which

rigorously checks against unsafe programs. Checkpoints might subscribe to a general

software collection and only pass on software that meets security standards. The

introduction of checkpoints allows a host of value added security services.

|

5.1.3 Specialty distributions

Another application would be specialty distributions of software. For instance a

government office such as the Department of Motor Vehicles might have a standard

collection of software, including a spreadsheet, word processor, and custom driver

database software. This set of utilities could be gathered into a single package and

replicated across the state. Another example might be computer manufacturers.

Computer companies such as Gateway 2000, Dell, or Micron often bundle a set of

software with their machines. This package could be made available as a replication

unit. The US Military might be interested in their own special, "military approved"

software distributions.

5.1.4 Frozen software

Any form of maintenance a customer might wish for can take the form of a value

added service. For instance, many people absolutely fear change, and do not for any

reason want software to change out from under them. Completely frozen software sets

(where no updates occur) can be made available. The end user would not receive the

benefit of automatic updates, but would still be able to take advantage of economies

of scale. The end user will also have access to more software than can be stored on

the local disk.

5.1.5 Retail stores

A commercial retailer is already in the business of organizing and selling software.

A retailer taking advantage of this distribution system will blur the line between a

commodity and service based industry. A store which presently sells shrink wrap

or downloadable software of many varieties could sell the same packages, and offer

maintenance services for them.

5.1.6 Modifications or customizations

Another possible service is modification of code. The value added might be a software

patch, a more capable library, or some other customization to a general software

package. Imagine a service which receives an English language version of a newspaper,

makes modifications, and then transmits a French language version of the paper.

5.1.7 Unanticipated services

A large, multi-tier distribution system with arbitrary numbers of middleman will allow

arbitrary organization of programs and maximum efficiency. Many of the services

which can be provided cannot be anticipated; the question is almost akin to predicting

applications for the World Wide Web during its inception.

5.2 Future work

5.2.1 Production quality implementation

The implementation presented in this thesis serves as a proof-of-concept. A more

robust system would be required to gain wide acceptance in the market. Other

factors, such as open design and participation by standards bodies would also be

important.

5.2.2 Read/Write

This thesis has focused on read-only. Returning to the river metaphor, while lots of

tributaries and waterways have been explored, there has little consideration on the

two way flow of water. Important questions of coherency and fragility of data arise

in a bi-directional distribution system.

5.2.3 Economic model

A value added middleman should be able to receive compensation commensurate

with his services. Does the middleman have to resell software or can distribution and

maintenance be provided without the burden of resale? A solid economic model for

value added services is necessary for deploying this distribution system on a large

commercial scale.

m

Appendix A

Athena: an example of a large

software collection

MIT Project Athena maintains a wide range of software. An organized description of

major packages is summarized in online documentation. [1] To provide a feeling for

the sheer number of programs being maintained, this appendix lists a subset of the

programs available. The following programs are available from the outland, graphics,
gnu, and sipb lockers for the linux platform. This listing covers only a fraction of all

the software on Project Athena.

A.1 outland

Mosaic-2.7b5

Mosaic-BETA

Mosaic.real

Mosaicclient

Mozilla301-gold

Mozilla40

acroread3

agrep

arena

linecheck

lynx

lynx-2.4

nc

nedit

nethack-qt

netscape-4.0

netscape-beta

netscape-gold

tupload

txconn

unclutter

uncompface

units

uudeview

uuenview

vosaicbg

vrweb

arena-1.0b2

arena-BETA

bongo

bongo-player

c1541

castanet-admin

castanet-publish

castanet-transmitter

compface

cryptclean

dvi3812

dvilj

dvilj2

dvilj 2p

dvilj4

dviljp

ec

ee

fs2xbm

fvwm95-2

fvwm95-2.old

giftrans

glimpse

glimpseindex

glimpseserver

globe

ikon2xbm

infocom

jmacs

joe

jpico

jstar

octave

octave .bin

ogg

paranoia

pdftops

petcat

pico

pmake

prtgif

pstoedit

qix

qservers

qstat

raplayer

raplayer-3.0

rclock

readcomics

rjoe

rocks

rolodex

slocat

smtpmail

tdownload

term

termidx

texi2html

texi2html-menu

tgif

tgif-2

tgif-2.16pl4

tgifwww

tkfibs

vrweb-1.3

vrweb.real

vrwebnet

vt

wine

wine.real

wine.sym

winestat

x64

xarchie

xbm2ikon

xbmcut48

xbmsize48

xcolor

xdiff

xdla

xearth

xfishtank

xpaint

xpdf

xpmroot

xpr

xquake

xscretched

xshower

xsnow

xsurface

xteddy

xtoolwait

xvclient

xxgdb

xzewd

0

keyboard

keymap

knews

ksh

latex2html

less

lesskey

Iha

tmon

trdate

trdated

tredir

trsh

tshutdown

tudpredir

tuner

xzewd-zephyr-baby

xzewd-zephyr-baby.old

xzewd.old

xzul

xzul.beta

z5

zcrypt

A.2 graphics

anytopnm

asciitopgm

atktopbm

aub

bggen

bioradtopgm

bmptoppm

brushtopbm

cmuwmtopbm

crystile

fitstopnm

fractile

fs2xbm

fstopgm

g3topbm

gemtopbm

gifmerge

giftool

giftopnm

giftoppm

giftoppm~

mpegencode

mpegplay

mpeg_vga

mtv

mtv.real

mtvtoppm

munpack

pbmclean

pbmlife

pbmmake

pbmmask

pbmpscale

pbmreduce

pbmtext

pbmtol0x

pbmto4425

pbmtoascii

pbmtoatk

pbmtobbnbg

pbmtocmuwm

pbmtoepsi

pgmenhance

pgmhist

pgmkernel

pgmnoise

pgmnorm

pgmoil

pgmramp

pgmtexture

pgmtofs

pgmtolispm

pgmtopbm

pgmtoppm

piltoppm

pi3topbm

picttoppm

pixmap

pj toppm

pktopbm

pnmalias

pnmarith

pnmcat

pnmtops

pnmtorast

pnmtosgi

pnmtosir

pnmtotiff

pnmtoxwd

ppm3d

ppmbrighten

ppmchange

ppmdim

ppmdist

ppmdither

ppmflash

ppmforge

ppmhist

ppmmake

ppmmix

ppmnorm

ppmntsc

ppmpat

ppmquant

ppmtoyuv

ppmtoyuvsplit

psidtopgm

pstopnm

pstopnm~

qrttoppm

rasttopnm

rawtopgm

rawtoppm

rgb3toppm

sgitopnm

sirtopnm

sldtoppm

spctoppm

spottopgm

sputoppm

tgatoppm

tifftopnm

transgif

vdcomp

whirlgif

mm

pnmcomp ppmquantall

gouldtoppm

hipstopgm

hpcdtoppm

icontact

icontopbm

ikon2xbm

ilbmtoppm

imanimate

imcombine

imconvert

imdisplay

imgtoppm

imidentify

imimport

immogrify

immontage

imsegment

include

lib

lispmtopgm

macptopbm

mgrtopbm

mpack

pbmtog3

pbmtogem

pbmtogo

pbmtoicon

pbmtolj

pbmtoln03

pbmtolps

pbmtomacp

pbmtomgr

pbmtopgm

pbmtopi3

pbmtopk

pbmtoplot

pbmtoptx

pbmtoxl0bm

pbmtoxbm

pbmtoybm

pbmtozinc

pbmupc

pcxtoppm

pgmbentley

pgmcrater

pgmedge

pnmconvol

pnmcrop

pnmcut

pnmdepth

pnmenlarge

pnmfile

pnmflip

pnmgamma

pnmhistmap

pnmindex

pnminvert

pnmmargin

pnmnlfilt

pnmnoraw

pnmpad

pnmpaste

pnmrotate

pnmscale

pnmshear

pnmsmooth

pnmtile

pnmtoddif

pnmtofits

ppmqvga

ppmrelief

ppmshift

ppmspread

ppmtoacad

ppmtobmp

ppmtogif

ppmtoicr

ppmtoilbm

ppmtomap

ppmtomitsu

ppmtopcx

ppmtopgm

ppmtopil

ppmtopict

ppmtopj

ppmtopjxl

ppmtopuzz

ppmtorgb3

ppmtosixel

ppmtotga

ppmtouil

ppmtoxpm

xanim-BETA

xbm2ikon

xbmcut48

xbmsize48

xbmtopbm

xcmap

ximtoppm

xli

xloadimage

xpaint

xpaint-BETA

xpmtoppm

xroot

xv

xvminitoppm

xwdtopnm

ybmtopbm

yuvsplittoppm

yuvtoppm

zeisstopnm

A.3 gnu

autoconf gcsplit

autoheader gcut

autoreconf gdate

autoscan gdb

autoupdate gdc

gmerge

gmkdir

gmkfifo

gmknod

gmt

gsdj

gsdj500

gsed

gshar

gsize

gwhoami

gxargs

gyes

gzcat

gzcmp

mm

gimp pbmtoepson xanim

bash

bashbug

bdftops

bison

C++

c++filt

cvs

cvsbug

egrep

expect

fgrep

flex

flex++

font2c

g++

g[
gar

gas

gasp

gawk

gbasename

gbc

gcaptoinfo

gcat

gcc

gchgrp

gchmod

gchown

gci

gcksum

gclear

gcmp

gdd

gdf

gdiff

gdiff3

gdir

gdircolors

gdirname

gdu

gecho

ged

genclass

genv

gexpand

gexpr

gfalse

gfind

gfmt

gfold

ggprof

ggrep

ggroups

ghead

ghostname

ghostview

gid

gident

gindent

ginfocmp

ginstall

gjoin

gln

glocate

gmv

gnice

gnl

gnm

gnohup

gnuan

gnuchess

gnuchessc

gnuchessn

gnuchessr

gnuchessx

gnuplot

gnuplotxll

god

gpaste

gpatch

gpathchk

gperf

gpr

gprintenv

gprintf

gpwd

granlib

grcs

grcsclean

grcsdiff

grcsmerge

grecode

gred

greset

grlog

grm

gsleep

gslj

gslp

gsnd

gsort

gsplit

gstrings

gstrip

gstty

gsum

gsync

gtac

gtail

gtar

gtee

gtest

gtic

gtime

gtoe

gtouch

gtput

gtr

gtrue

gtset

gtty

guname

gunexpand

guniq

gunshar

gunzip

gusers

guudecode

gzdiff

gzexe

gzforce

gzgrep

gzip

gzmore

gznew

ifnames

info

ld.bad

makeinfo

objcopy

objdump

pdf2dsc

pdf2ps

postprint

printafm

protoize

ps2ascii

ps2epsi

ps2pdf

rcs21log

runtest

screen

screen-3.6.2

tclsh7.5

texi2dvi

texindex

unprotoize

updatedb

wdiff

wftopfa

m

gco

gcomm

gcp

gcpio

glogname

gls

gm4

gmake

A.4 sipb

Mosaic

Mosaic-2.6

Pnews

Rnmail

archie

bfinger

bwrite

cda

char

cksum

cmmf.new

dclock

descrypt

dscnotify

dvips

enscript

exmh

exmh-async

exmh-bg

fcat

fig2dev

fig2ps2tex

fig2ps2tex.sh

fingerprint

fortune

fptocksum

fptomd5

fptosnefru

freeze

ftp.expect

fwhois

getactive

iap

idraw

inews

latex

latex.new

latex2e

Indir

mcvert

md5

melt

mf.new

nawm

ncftp

ncftp-new

nenscript

newsetup

newsgroups

nex

nvi

oneko

pfrom

pic2tpic

pmail

pop

prtgif

psc

psify

qedx

rcbook.n

rcbook.t

rcextract

rcindex

rcintro

rckeep

rckeepnew

rcnew.n

rcnew.t

rcnroff

rcshow

rctypeset

rn

rrn

sc

scqref

sdate

skill

snefru

snice

tex

tex.new

tgif

tgif-3.0pl7

tgrind

th

thesaurus

tin

transfig

trn

type

unfreeze

unzip

vile

webster

whats

where

wm2xmcd

xarchie

xcal

xcol

xdvi

xfig

xfig.old

xftp

xmcd

xrn

xrn-new

xscreensaver

xshower

xstapler

xvile

xwebster

xzwrite

ytalk

zcat

zpunt

zunpunt

grmdir

gs

gsbj

gsdiff

guuencode

gvdir

gwc

gwho

mm

Appendix B

Protocols and Design Standards

The MIT Athena directory model was adapted for organization of executables. Two

directories have special names: replication and arch. Replication contains every-

thing that a channel might distribute. Arch contains platform specific files, following

Athena's Unix manual page lockers(7) [29], paraphrased below.

In order to avoid any sort of clutter in the top level directory of a

directory, all machine dependent directories are placed under a directory

called arch. Under arch is one directory, for each supported platform.

These directories are named by concatenating Castanet's OSname, OS-

version, and OSarch values (Windows 95 4.0 x86, Solaris 2.x sparc, etc.)

Under each of these directories are directories containing a specific type

of machine dependent data, such as binaries or libraries (bin, lib, etc.).

[]

Linux 2.

bin lih

xclock

replication

arch do

x i386 Solaris 2.x sparc

bin lib

xclock

Figure B-1: A simplified diagram of the standard multiplatform dire

c

__

Bibliography

[1] Summary of available athena software. Athena On-Line Help (OLH), Cambridge,

Massachusetts. <http://web.mit.edu/olh/Software/index.html>.

[2] Castanet white paper. Marimba corporation web site, December 1996. <http:/

/www.marimba.com/developer/castanet-whitepaper.html>.

[3] Sendmail daemon mode vulnerability. Advisory CA-96.24, CERT, CERT Coor-

dination Center, Pittsburg, Pennsylvania, November 1996. <ftp://info.cert.org/

pub/cert_advisories/CA-96.24.sendmailvul>.

[4] Sendmail group permissions vulnerability. Advisory CA-96.25, CERT, CERT

Coordination Center, Pittsburg, Pennsylvania, December 1996.

<ftp://info.cert.org/pub/cert_advisories/CA-96.25.sendmaiLvul>.

[5] Sendmail v.5 vulnerability. Advisory CA-95.08, CERT, CERT Coordina-

tion Center, Pittsburg, Pennsylvania, August 1996. <ftp://info.cert.org/pub/

cert_advisories/CA-95.08.sendmail. 5.vulnerability>.

[6] Sendmail vulnerabilities. Advisory CA-96.20, CERT, CERT Coordination

Center, Pittsburg, Pennsylvania, November 1996. <ftp://info.cert.org/pub/

cert_advisories/CA-96.20.sendmailvul>.

[7] Vulnerability in ncsa/apache cgi example code. Advisory CA-96.06, CERT,

CERT Coordination Center, Pittsburg, Pennsylvania, August 1996. <ftp://

info.cert.org/pub/cert_advisories/CA-96.06.cgiexamplecode>.

I

[8] Alpha fact sheet. Technical Report EC-QP97C-TE, Digital Equipment Corpo-

ration, 1997. <http://www.digital.com/semiconductor/21164-fact.html>.

[9] Microsoft word 97 document converter. Technical report, 1997. <http://

www.microsoft.com/word/freestuff/converters/wrd97cnv.htm>.

[10] Mime conversion buffer overflow in sendmail versions 8.8.3 and 8.84. Advisory

CA-97.05, CERT, CERT Coordination Center, Pittsburg, Pennsylvania, Febru-

ary 1997. <ftp://info.cert.org/pub/cert_advisories/CA-97.05.sendmail>.

[11] Netscape release notes. Netscape Web Site, 1997. <http://home.netscape.com/

eng/mozilla/3.0/relnotes/>.

[12] Oil change. Web site, 1997. <http://www.cybermedia.com/products/oilchange/

ochome.html>.

[13] PC 98 Design Guide. Review Draft Rev. 0.6, Intel Corporation and Microsoft

Corporation, April 1997.

[14] Price Watch, 1997. <http://www.pricewatch.com/>.

[15] The Netcraft Web Server Survey, April 1997. <http://www.netcraft.co.uk/

Survey/>.

[16] Tuneup.com. Web site, 1997. <http://www.tuneup.com/>.

[17] S. Armstrong, A. Freier, and K. Marzullo. Multicast Transport Proto-

col. IETF Request for comments 1301, February 1992. ftp://ftp.cs.tu-

berlin.de/pub/local/kbs/mtp/related_work/RFC/rfcl301.

[18] Eshwar Belani, Alex Thornton, and Min Zhow. Security and Authentication and

in WebFS. Technical report, University of California, Berkeley, December 1996.

<http://now.cs.berkeley.edu/WebOS/>.

[19] Thomas Boutell and Tom Lane et all. PNG (Portable Network Graphics) Spec-

ification. W3C Recommendation 1.0, World Wide Web Consortium, <http://

www.w3.org/pub/WWW/TR/REC-png-multi.html>, October 1996.

80

1

[20] Brent Callagahan. WebNFS. Technical report, Sun Microsystems, April 1997.

<http://www.sun.com/sunsoft/solaris/networking/webnfs/webnfs.ps>.

[21] Wayne W. Chou, Joseph M. Kulinets, Laszlo Elteto, and Frederik Engel. Method

of software distribution protection. US Patent 5337357, Aug 1994. <http://

patent.womplex.ibm.com/details?patentnumber=5337357>.

[22] Netscape Communications Corporation. Netscape Navigator 3.0 reviewer's

guide, 1996. <http://www.plexon.com/nn.html>.

[23] Dan Farmer. Technical report, 1996. <http://www.datapro.com/>.

[24] W. Wayt Gibbs. Profile: Dan Farmer: From Satan to Zen. Scientific American,

276(4):32-34, April 1997.

[25] George Gilder. Fiber keeps its promise. ASAP: Forbes Supplement on the Infor-

mation Age, April 1997. <http://www.forbes.com/asap/97/0407/090.html>.

[26] Van Jacobson. How to kill the internet. In SIGCOMM '95 Middleware Workshop,

Berkeley, California, August 1995. Lawrence Berkeley Laboratory.

[27] Fred Langa. Dribbleware, take 2. Windows, pages 19-20, February 1997. <http:/

/www.winmag.com>.

[28] Microsoft Announces Zero Administration Initiative for Windows, October 1996.

<http://www.microsoft.com/corpinfo/press/1996/Oct96/ZAWinpr.htm>.

[29] MIT Athena. lockers(7), December 1994. Unix manual page.

[30] Lily B. Mummert, Ebling Maria R, and M. Satyanarayanan. Exploiting weak

connectivity for mobile file access. Proceedings of the 15th A CM Symposium on

Operating Systems Principles, December 1995.

[31] Henrik Frystyk Nielson and Jim Gettys. HTTP - Hypertext Transfer Protocol.

W3C Technical Area, World Wide Web Consortium, <http://www.w3.org/pub/

WWW/Protocols/>, 1996.

[]

[32] Salvatore Salamone. Reducing the cost of PC connectivity. Whitepaper, WRQ,

1996. <http://www.wrq.com/whitepap/costsupp/resup.htm>.

[33] M. Satyanarayanan. Fundamental challenges in mobile computing. Fifteenth

ACM Symposium on Principles of Distributed Computing, May 1996. <http://

www.cs.cmu.edu/afs/cs/project/coda/Web/docs-coda.html>.

[34] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, and

D.C. Steere. Coda: A highly available file system for a distributed workstation

environment. IEEE Transactions on Computers, 39(4), April 1990.

[35] Jeffrey Schiller. Personal Interview, 1995.

[36] MIT Information Systems. Athena 8.0 release notes, August 1996. <http://

web.mit.edu/olh/Release/8.0/>.

[37] Amin M. Vahdat, Paul C. Eastham, and Thomas E. Anderson. WebFS: A global

cache coherent file system, 1997. <http://www.cs.berkeley.edu/ vahdat/webfs/

webfs.html>.

[38] Kathy Walrath. Writing compatible programs. JDK 1.1 Documentation,

Sun Microsystems, 1997. <http://java.sun.com/products/jdk/1.1/compatible/

index.html>.

[39] Gidean A. Yuval and Michael Ernst. Method and system for controlling unau-

thorized access to information distributed to users. US Patent 86186, July 1994.

<http://patent.womplex.ibm.com/details?patent-number=5586186>.

