
Incremental Cryptography

by

Yoav Yerushalmi

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1997

@ Yoav Yerushalmi, MCMXCVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part, and to grant others the right to do so.

A uthor-.....................................
Depar nent of Electrical Engineering and Computer Science

/ / Mav 23. 1997

Certified by
Shafi Goldwasser

P.. ssor of Computer Science

- s-. ervispr

Accepted by............
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

MASj ACHil,:',F ;'! p" :r.5,r"-rl ,"i'.,

WITH DR N

MIT LIBRAR*S

.

Incremental Cryptography

by

Yoav Yerushalmi

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 1997, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Computer Science and Engineering

Abstract

Given a cryptographic operation and data to be operated upon, standard schemes
compute the cryptographic operation from scratch. Incremental schemes instead at-
tempt to use a previously computed result if available on a previous version of the
document, along with a list of changes performed to obtain the later document. The
goal is to yield a faster computation.

This technique can be applied to a wide variety of situations. Examples include
creating dynamically updated MACs, digital signatures, or encryptions. Ideally, the
apparent speed improvements will make integrating this feature into a system as a
default viable. Users will not notice the delays inherent in traditional cryptography,
and so will accept it.

The problem of efficiency of computation of ciphers will be analyzed in terms
of perceived speed. A solution for the long delays after editing a document and
waiting for a cryptographic operation to complete will be proposed. Finally, a testbed
implementation of both a MAC generator and a public-key encryptor for emacs is
written and analyzed.

Thesis Supervisor: Shafi Goldwasser
Title: Professor of Computer Science

Acknowledgments

I would like to acknowledge first and foremost, my advisor, Shafi Goldwasser, whose

help and encouragement got me this far, and hopefully further. She was patient with

me even when I did ask some really clueless questions.

Next I would like to thank my extended family for their support and encourage-

ment throughout my educational career. Thanks Mom and Dad, Ella, Freda, Izak,

Yael, Keren, and Liat.

Of course, I couldn't have done this without the support of all my friends, of

which there are far too many to list here, but you know who you are. Special thanks

to Chad who was always there to offer support when I needed it most, who put up

with all my crap, and who helped me get this thesis completed. To Shabby, who

also wasted many late nights talking to me when I needed to take time off from this

endeavor. And to Tal, who sat with me and helped me sort out ideas in my head,

and always had encouraging words.

Last, but not least, I'd like to thank MIT, for making this possible, providing

a wonderful educational experience, and being the hellhole it is (we all need some

encouragement to finish our thesis).

Contents

1 Introduction

2 What is Incremental Cryptography?

2.1 Symbols and Terminology

2.2 Classical Cryptography........

2.3 Incremental Cryptography

2.3.1 Efficiency

2.3.2 Data Representation

2.3.3 Privacy and History

2.3.4 Adversaries

2.4 Key Management

3 The Editor

3.1 Cryptographic Transformations in Emacs ..

3.1.1 The Language

3.1.2 Usage of Modes

3.2 Picking the Right Scheme and Optimizing .

4 Incremental Message Authentication Codes

4.1 M ACs .

4.2 Incremental MACs

4.2.1 Symbols

4.2.2 Designing an Incremental MAC . . .

13

... 13

.. 13

... 15

... 16

... 17

... 18

... 20

.... 2 1

23

23

24

25

26

30

.... 30

... 31

.... 31

. 32

4.3 Description of the Scheme 34

4.3.1 Initial Computation 34

4.3.2 Incremental Computations 35

4.3.3 Security Analysis 36

4.4 MAC-mode for Emacs 37

4.4.1 Internal Representation of Data 37

4.4.2 Operation of the Editor 39

4.4.3 Analysis of Performance 40

4.4.4 Other Ideas That Emerged 42

5 Public-Key Cryptography 44

5.1 Public-Key Cryptography 44

5.2 A Public-key Encryption Scheme 47

5.2.1 The underlying algorithms 48

5.2.2 The appropriately incremental algorithm 51

5.3 Analysis of Scheme 52

5.3.1 Efficiency 52

5.3.2 Security 53

5.3.3 Privacy 55

5.4 Implementation 55

5.4.1 The modules 56

5.4.2 API for Inter-Procces Communication 56

5.4.3 Analysis of Implementation 57

6 Secret Key Cryptography 60

6.1 Symmetric Encryption Schemes 60

6.2 An Incremental Block Cipher Symmetric Scheme 62

6.2.1 Description of Scheme 63

6.2.2 Analysis 67

7 Directions for Incremental Cryptography 72

7.1 Other Related Ideas 72

7.1.1 Incremental Hashing 72

7.1.2 Incremental Digital Signatures 73

7.1.3 Incremental Group Protocols 74

7.1.4 Incremental Keys74

7.2 Possible Uses 74

7.2.1 Filesystem s 75

7.2.2 Blinding 75

7.2.3 W eb Pages 75

7.2.4 Electronic Cash 76

8 Conclusion 77

A Source Code 79

A.1 M AC-m ode 79

A .1.1 M AC.el . 79

A .1.2 M AC-fl 104

A.1.3 M AC-f2 107

A .2 usage.el .. . 110

A.3 Incremental Public Key Encryption Code 117

A .3.1 PK E .el . 117

A .3.2 PK E.c . 123

A.3.3 PKE-keygen.c 137

A.3.4 PKE-decrypt.c 143

List of Figures

3-1 Output of use-mode in emacs 28

4-1 MAC-list datastructure 38

5-1 Incremental Public Key Encryption Description 49

5-2 Appropriate Incremental PKE Description 51

6-1 Incremental OFB-ECB mode for a block cipher 64

List of Tables

2.1 Symbols used in document

3.1 Report on usage patterns for various buffers

3.2 Positions of inserts

3.3 Positions of deletes

4.1 Editor performance on append operations

4.2 Editor performance on random access edits (deletes, inserts, overwrites,

etc.)

5.1 PKE-API specifications

Chapter 1

Introduction

Cryptographers often wonder: "Why aren't more people using cryptography?". It

certainly offers solutions to the problems of authenticity, security, freshness, and other

issues dealing with digital data. However, while cryptography is slowly becoming more

widely used and accepted, it still is not used nearly as much as cryptographers believe

it should and could be.

An analysis of this question reveals several potential factors for this situation.

Those include:

Political restrictions on the import/export of applications with useful cryptogra-

phic code. As it stands right now, companies in the U.S. are restricted from

being able to sell software to clients outside the U.S. if there is support for

'strong encryption' within the program. Many other countries also have restric-

tions, varying from a complete ban on strong cryptography, to various types of

import/export restrictions, to mandatory key escrow.

Difficulty of implementation and integration also worry many project managers.

While the basic concept behind ciphers such as RSA and IDEA are simple,

and the algorithms straightforward to implement, in practice, integrating those

primitives into the software and still ensuring security is not simple. Problems

that were not expected can creep in, and since the algorithm is only a small

part of the protocol, the entire protocol still needs to be analyzed and verified

before it can be called "secure". This requires qualified people which are not

easily available or affordable, and also time, which is an important factor in the

design and implementation stages of software manufacturing.

Speed of the algorithm/protocol can make integration undesirable. Current encryp-

tion techniques are based on either mathematical principles, or else on the hope

that the source plaintext is jumbled well enough to make unjumbling difficult

without prior knowledge of a secret key. Message authentication codes (MACs)

are usually based on hashes (which are fast to compute) and then encrypted

with a scheme that is still somewhat slow. Until the schemes used become fast

enough to not create delays for the user of the product, software manufacturers

are going to worry about the speed issues of these schemes.

Ease of use issues for the user have also been problematic for cryptography. The

problem facing the designers of cryptographic systems is a classical systems en-

gineering problem: Users tend not to use things they feel uncomfortable using.

In the case of encrypted e-mail, the delay while waiting for the encryption, and

the need to actively select to encrypt and under what key and to which recipi-

ents, makes it an act most computer users avoid. While credit-card transactions

on the web are probably as safe as (or safer than) purchasing on the street, peo-

ple still appear to be worried about transmitting credit-card information on

the World Wide Web. Secure HTTP pages are only made possible because it

involves almost no work on the part of the user. PGP[18] has been available for

years, yet few people use it since it is too complicated to figure out for many

people.

Patents can also be a block to the use of specific algorithms. Inventors of the schemes

want to be compensated for the research and idea, but not all companies believe

the benefits of these schemes is worth the cost.

All of the above problems are related to why people or companies tend to not use

cryptography in their software. In some cases, these explain why companies choose

to use weaker cryptography than they would otherwise employ. In other cases, these

problems explain why companies actively chose to not use cryptography at all.

On the other hand, many of these same people recognize the many potential uses

of cryptography, and want to have these benefits. These benefits can be grouped into

three broad categories (extracted from [11]):

Privacy guarantees that only authorized persons (usually by giving them special

keys) can use the data meaningfully. It can be guaranteed by encrypting the

data in ways that prevent unauthorized users from reading it. Encryption,

especially public-key encryption, is unfortunately normally extremely slow, and

is one of the things that must be improved upon before it will be used in

everyday practice.

Authentication proves to participants the identity of other participants. Authen-

tication can be provided by concepts such as zero knowledge proofs and S-key

passwords. This can be used for ensuring valid logins, for key management, and

as a first step in authorization systems. Authentication schemes have also been

used for making sure documents have not been altered.

Authorization is a scheme by which permissions can be granted to perform certain

activities. It can be implemented using securely generated tokens or tickets,

and unlike authentication based security, allows for partial anonymity.

The above categories use cryptographic primitives, including hashing, encryption

(public and secret key), signing, and MACs, to achieve the desired properties. Some

of the listed primitives, and how they are used, will all be discussed in the following

chapters.

When choosing to provide the benefits, the previously mentioned costs are in-

curred. Many programmers and managers choose therefore to forego both the ben-

efits and costs of cryptography. If the costs can be reduced, then it is likely that

cryptography will be integrated into more applications and systems.

Incremental cryptography provides an approach for reducing the costs associated

with ease-of-use, speed, and ease of integration of cryptographic methods into software

products. The way incremental cryptography solves these issues is by embedding the

actual primitives into the system, be it a file system, text editor, web browser, or one

of many other systems in common use today. Furthermore, it can compute in the

background while the object is being modified, instead of after (as with traditional

cryptography), and takes only an amount of time proportional to the length of edits,

which can help speed up the computation considerably. In order to have incremental

cryptography succeed, we need schemes which allow for dynamically re-evaluating

computations based on changes. With these tools, we can solve some of the problems

associated with traditional cryptography.

Incremental cryptography does not tackle other issues, such as political issues and

patents. One can hope that the political problems will be resolved favorably in time.

One can also hope that patent issues can be resolved by the programmers and patent

holders. However, in the worst case, the patents will expire after 20 years. So while

this is a major delay (one that in the technological world feels like an eternity), it is

nevertheless one that will be resolved eventually.

Chapter 2

What is Incremental

Cryptography?

Incremental cryptography is an attempt to change the way most cryptographic trans-

formations are computed. In a standard cryptographic transformation, the compu-

tation is performed on the completed document. Incremental schemes allow for the

document to change slightly, and then they recompute the cryptographic transforma-

tion based on those changes in an efficient manner.

2.1 Symbols and Terminology

Throughout this paper, the symbols in table 2.1 will be used. Where appropriate,

new symbols will be introduced in chapters, and explained within the chapter. If

possible, similar concepts will attempt to use symbols similar to those in the table if

possible (for example EK(D) represents an encryption of a document using key K).

2.2 Classical Cryptography

Under currently used cryptography, there are many basic primitives which achieve

differing purposes. They can all be defined in terms of the following generic definition

Symbol Meaning
A => B a description of changes associated with modifying doc-

ument A to become document B
TK (D) a transformation T (usually an encryption) using key K

on document D
CK(D) a conjugate to transformation T (usually an decryption)

using key K on document encrypted document D

Pj The jth block of plaintext (usually the jt letter).
Ci the jh block of ciphertext.
PPT A() A probabilistic polynomial time algorithm A()

Table 2.1: Symbols used in document

of a cryptographic scheme':

Definition 2.1 A cryptographic scheme can be specified by the triple S = (Gen, T, C)

of probabilistic, polynomial time algorithms.

* Algorithm Gen is called the key generator. It takes as input 1 k (where k is the

security parameter). It outputs a pair (K', K") of keys to be referred to as the

transformation key and conjugate key respectively.

* Both the transformation T and its conjugate C act on E*, using the correspond-

ing key as additional input. We write TK' (D) to indicate the output of algorithm

T on input D and key K'. We call TK' (D) a cryptographic form of D. For every

D E E* and every pair of keys (K', K") possibly produced by Gen(lk), it is the

case that

- CK,,(TK,(D)) = D for all encryption and one-to-one systems.

- CK,,(TK,(D)) = accept for other schemes (such as MAC's and hashes).

This definition says nothing of security which is dependent on the type of oper-

ation. We note that a symmetric cryptosystem has K' = K", while a public-key

system has them set to be usually different.

'definition taken from [2]

Also, the definition does not take into account what the purpose of the scheme

is. For each particular instantiation of a cryptographic primitive, a more specific

definition exists and will be provided if necessary.

2.3 Incremental Cryptography

There are multiple possible types of changes to a document. They can all be grouped

into three categories, however. Those are:

insertions lengthen the document by adding data somewhere. If the addition is at

the end, we commonly refer to it as an append operation.

deletions shorten the document by removing data from within it. If the deletion

occurs at the end, we commonly refer to this as a truncate operation.

modifications keep the length of the document the same, but change a block of

data to a new value. Some systems implement a modify operation is a delete

and insert operation.

Incremental cryptography takes a cryptographic scheme, and introduces an opti-

mization to it, which lets us compute faster given a previous transformation. . We

create an incremental update function which takes as input the kind of change made,

and the old computation, and outputs a new computation based on those values.

Definition 2.2 An incremental cryptographic scheme can be specified by the quad

S = (Gen, T, C, Inc) of probabilistic, polynomial time algorithms.

* Algorithm Gen is called the key generator. It takes as input 1k (where k is the

security parameter). It outputs a pair (K', K") of keys to be referred to as the

transformation key and conjugate key respectively.

* Both the transformation T and its conjugate C act on E*, using the correspond-

ing key as additional input. We write TK' (D) to indicate the output of algorithm

T on input D and key K'. We call TK' (D) a cryptographic form of D. For every

D E E* and every pair of keys (K', K") possibly produced by Gen(lk), it is the

case that

- CKI(TK,(D)) = D for the case of encryption schemes.

- CK" (TK'•(D)) = accept for the case of MAC or hash schemes.

o Algorithm Inc is referred to as the incremental update algorithm, or the incre-

mentor. It takes as input the transformation key K', D (nominally a previous

result of T(old) where old E E*), and a list of changes from the old document:

[old => new]. It outputs a value x such that:

- CK",(x) = [new] for the case of encryption schemes

- CK",,(x) = accept for the case of MAC or hash schemes.

The output of Inc is often fed back into Inc repeatedly to dynamically update

the transformation of a document as it is edited.

2.3.1 Efficiency

Unlike with classical cryptography, incremental cryptography attempts to deal with

the issue of efficiency from the perspective of the user as well as that of the algorithm.

There are several measures of efficiency for an incremental cryptographic compu-

tation:

* The first is the classical measure of order of growth. In the ideal case, we want

the amount of time being spent computing to be proportional to some slowly

growing function of the size of changes. The length of the document should

ideally not affect the amount of time spent computing.

* The second measure is much harder to compute: We want the perceived delay

to be smaller. For example, if this scheme is being used to dynamically create

a signature for a document, we want the user to feel as if he is being slowed

down less than if he were to simply compute the signature at the end. Given

the number of changes to the document may be very large, the total time spent

dynamically creating the signature is probably much larger. However, since

most of that is done using idle CPU time, the user never feels he is being

delayed. On the other hand, computing entirely after finishing the document is

completely user-visible.

* While most incremental schemes target the transformation algorithm, in prac-

tice, the conjugate is usually used without incrementing. What this means is

that schemes should also keep in mind the efficiency of the conjugate algorithm

relative to the speed of non-incremental schemes. This, as usual, depends on

how often the conjugate is used relative to the transformation too.

* Finally, there are space considerations to keep in mind. Some schemes that will

later be proposed take 60 times the storage space of non-incremental equivalents.

While storage space is getting larger and cheaper, and network bandwidth is

also increasing, it is preferable to have a scheme which requires approximately

as much storage as its non-incremental counterpart.

The first, third, and fourth measures are easy to analyze and compute. The second

needs to take into account how fast the machine is, how fast the user types, and what

kind of changes are being made. To help analyze these things, a special mode was

written for emacs which reports useful statistics, and is documented in chapter 3.

2.3.2 Data Representation

While the incremental editor is the main focus of discussion in this thesis, it is impor-

tant to note that incremental cryptography can be used in many scenarios. As such,

it does not always seem easy to decide how changes should be encoded. For example:

say several people are working together on a software project. A common technique

in this case is to use revision control such as CVS, which deals with integrating all

the changes separately. Now say that these coders also want to submit message au-

thentication codes for their source to be kept with each file. Using the concept of

'insert(pos, letter)' would be very dangerous in the MAC scheme, since this could

easily cause problems when multiple people submit changes but have started with

different versions of the file. A much better idea instead is to base the encoding of

changes on a diff-like environment, which both encodes all the changes, plus gives

enough context to figure out what to change where. Incidentally, this works well since

CVS is also uses diff, and so those two concepts can be integrated well.

2.3.3 Privacy and History

There are many ways to achieve incrementality. For example, an incremental encryp-

tion scheme can be made by first encrypting a document, and then for every change

made to the document, merely append to the encryption an encrypted description of

how to change the document. While this works, it has several disadvantages. The

first is speed related. While it is likely to be faster to compute the encryption, de-

cryption (computing the conjugate function), especially if the list of changes is long,

takes a considerable amount of time (proportional to the amount of change). Another

is space related: since the document is appended with lists of changes, the size of the

stored document grows disproportionately to the size of the actual resulting docu-

ment. Both of those problems can be solved by regularly recomputing the function

on the document from scratch, however.

The other real problem with the above scheme is a privacy issue. The history of

a document is encoded into the transformation. Sometimes this is not a problem,

and the above scheme can be used. Often, however, it is not desirable to send a

signed e-mail to somebody which includes the fact that you deleted a line insulting

him egregiously. A new worry of privacy caused by encoded history needs to be

addressed, and for this reason, schemes should be designed to not have a history

where possible.

Finally, another related problem to history encoding is the ability to tell whether

the document was just created or whether it was incremented from another. One way

to deal with the problem is to use datastructures to encode the document which do

not reveal if an element was just added/deleted/modified, or if the datastructure was

created from scratch. Then, build the scheme using this datastructure to encode the

document. Such a data structure is said to be oblivious2 :

Definition 2.3 Let A = (A, EA) be a probabilistic data structure, and let -< be a

congruence relationship over A.

We say that A is oblivious with respect to - if for any two terms t1 and t2, if t -

t2 then t' and t2 define polynomial-time indistinguishable probability distributions.

This suggests that the data structure representing the actual document through

T() is hard to tell from the data structure formed by Updt.

We want the data structures to be oblivious so that the adversary will be unable

to learn how the structure got formed. Since any state corresponds to all possible

ways of achieving that representation, all paths to this data and its corresponding

representation are as likely. Therefore, no history can be extracted from the compu-

tation.

Another side-effect of incrementing is the leaking of external information. While

the transformation can be designed to not encode a history of changes, it may still leak

some information (for example, whether this is a document computed from scratch or

whether it is a document which has been updated at least once). Ideally, therefore,

we can demand perfect privacy:

Definition 2.4 Informally, perfect privacy is achieved when the transformation of

a document is indistinguishable from a documented created by using the Increment

algorithm on a previous transformation:

VM polynomial time probabilistic Turing machines, V(D, E) CE E possible doc-

uments (with 1 being the length of the document), given Y = TK, (D) and Z =

Updt(TK,(E), (D -= E)), VQ() polynomials, we say that a cryptographic scheme

achieves perfect privacy if 3ko s.t. Vk > ko:

1
Pr[M(Y) = accept and M(Z) = reject] < Q(k)

2This definition is extracted from [12], which also discusses many other aspects for oblivious data
structures, and probabilistic data structures

where the probability is taken over the random bits in TK() and Updt(), and the choices

of D and E.

An oblivious data structure (definition 2.3) is guaranteed to achieve this property,

but there may be other techniques. This definition can instead suggest that Z and Y

be identical, which is a stronger requirement on the scheme. Several of the schemes

that will be proposed achieve this requirement anyway.

To make matters worse, even if there is no history, there is a worry that seeing two

different transformations will yield some information about the difference between the

two plaintexts:

Definition 2.5 For all possible (rl, r 2, D, E) E El, indistinguishable privacy is achieved

when, for all polynomial time probabilistic Turing machines M, given Y = TK, (D) and

Z = TK,(E), VQO polynomials, 3ko s.t. Vk > ko:

Pr[M(Y, Z, (D => E)) = accept and M(Y, Z, (rl =: r 2)) = reject] <
Q(k)

where the probability is take over the choice of rl and r 2, D and E, and the random

bits of TKO.

This final requirement ensures that even after seeing an original plaintext and its

transformation, seeing the transformation of another plaintext will not reveal to us

any information about what changed. This is a very strict requirement, and is not

met by all schemes.

With this final requirement, we have all that we need to analyze our schemes in

terms of privacy.

2.3.4 Adversaries

In the non-incremental document scheme. A chosen plaintext or ciphertext attack

assumes the adversary can request that one of the above be used. A passive adver-

sary does not have that advantage, and in many systems, only a passive adversary

can really exist. However, incremental cryptography introduces an adversary that

is passive, and yet might receive a large choice of related messages merely because

over time, the document is changed. An active adversary, on the other hand, can

use weaker attacks and still learn more than he used to, because he no longer needs

to submit complete documents for encryption/decryption or signing. Instead he can

submit changes to the documents and original computations to observe what hap-

pens. This can be especially useful in a scheme that has history, where submitting

the two documents independently will yield a different computation than submitting

the first and instructions on how to reach the second.

All of the above techniques may be used, and should be watched out for, when

designing incremental cryptography schemes. The adversary has at hand all the

classical attacks, plus new ones dealing with the fact that the document is dynamic,

and so is the transformation.

In many cases where analysis needs to be performed, it is very important to know

how much one can expect the passive adversary to see. In some situations, where

incrementality is just being used to make computations of signatures for a single

document dynamically, the adversary is likely to only see the final computation. On

the other hand, if the incrementality is being used in communications between two

people, the passive adversary will see many pairs of related messages. Ideally, we

want to be secure against the latter. Usually, however, we can't guarantee that, but

can usually be more secure than the former.

2.4 Key Management

One more area which will not be tackled in this thesis but that must be understood

well is that of key management. There are many schemes in use today to facilitate

key management, from things such as kerberos [17], to key rings for PGP [16]. The

basic problem is that we wish to make the scheme convenient for the users, and at

the same time offer security which is based on their knowledge (i.e. keys).

In the ideal system envisioned by this thesis, the user will be asked for one pass-

word at login time for authentication purposes, and then have the system perform

these computations automatically and silently for him. For example, at login, the

user will be asked for a username and password, which will then be the key used to

encrypt all his files on the filesystem silently (and using incremental techniques to

prevent major slowdowns).

Chapter 3

The Editor

In order to see how effective these ideas are, and in order to see what else can be

learned from using an actual system which embeds incremental cryptography, we

implemented some of the ideas in an editor. This chapter will discuss specific details,

and then later chapters will discuss the particulars of the implementation with respect

to the scheme used.

3.1 Cryptographic Transformations in Emacs

The editor we chose to put implement these transformations within was Emacs. The

choice was relatively easy, as it was one of the few editors that runs on most operating

systems, has an internal control language which lets one access almost everything the

editor does, and is freely available. A feature which came with this was the fact that

the code (even byte-compiled) would run on any platform. We used Emacs version

19.34, which had several features not available in previous versions, and so the code

will not run on older versions of emacs.

Emacs views the files it is editing as 'buffers', and can have multiple buffers being

edited at a time. Also, buffers do not have to correspond to any file, but can instead

be generated by programs.

3.1.1 The Language

Emacs is programmed in Elisp, which is a Common Lisp derived language. It has

many convenience functions for handling concepts such as buffers, files, and other

objects related to the editor. This language provides access to the buffer, and lets us

track changes made to it. We use this feature to provide two minor modes for it.

Modes

A minor mode in emacs is a function that is enabled or disabled on a per-buffer

basis. Multiple minor modes can be activated in any buffer, each doing some special

task. Common tasks include automatic indentation of text, highlighting of areas, and

automatically wrapping lines when they get too long.

Minor modes operate in conjunction with Major modes. The difference is that

only one major mode can be active in a buffer at any one time. Common major

modes include News Mode (Gnus), Rmail Mode (email), and Outline Mode. By

choosing to implement our feature as a minor mode, we have effectively allowed not

only for the creation of an encryption (for example) in a buffer, but also allowed us

to automatically encrypt our mail or news transactions. Hooks need to be added to

allow these computations to be transmitted along with or instead of the document,

but these are usually fairly easy to do.

Speed of Execution

One unfortunate problem with elisp (and with most lisps) is their inherent slowness.

Elisp offers features such as garbage collection, but at a cost. The original implemen-

tation of the MAC mode had the DES coded written in Elisp. It was incredibly slow

and inefficient.

The solution is to use a feature Emacs provides which allows for asynchronous

communication with subprocesses. Most of the time-critical code could then be coded

in C or assembly, while the main buffer-related functions were left in elisp. While

this did mean that the editors would no longer automatically run on any platform

(they need recompilation for new platforms), the modes ran much faster (by at least

a factor of twenty).

Then, a protocol was designed for talking with the subprocess, and communica-

tions worked back-and-forth until a final computation was achieved. Interesting to

note, the approach used for the MAC mode (see chapter 4) did most of the work

in elisp, collecting data structures internally, and using subprocesses only to do the

DES computations. On the other hand, for the PKE mode (chapter 5), the work

was mostly done in the subprocess, with the elisp just responsible for informing the

subprocess what is going on. These two approaches had different benefits:

* Putting most of the work in emacs let us optimize on using idle-time. Emacs

can tell when the user is not doing anything at the moment, and use that to

dedicate as much of the CPU towards incremental computations. Then, when

the user returns to working, it slows down on the computations, and lets the

user get his edits done (leaving the complex computations until later).

* Putting the work in subprocesses lets us be much more modular, allowing dif-

ferent subprocesses to do varying things for the same mode (for example, the

Public Key Encryption mode could be changed to do symmetric encryption

without any major changes to the elisp code). Also, the same subprocess can

be used by other programs (perhaps another editor or maybe a web browser)

to generate incremental encryptions for them.

As can be seen, both techniques have their advantages and disadvantages. However,

from a user's perspective, after trying out both, it's pretty clear that the former feels

a lot more efficient.

3.1.2 Usage of Modes

Although ideally, I would like all of this to be automatic, the current implementation

requires some intervention from the user and the administrator.

First of all, it needs to be installed, both the binaries and the elisp code. Then,

emacs has to be configured to know where the code is and what to do with it. Finally,

while the mode is automatically activated for any files which have had transformations

computed on the previously, the default (which can be changed), is not to activate it

for all buffers. Finally, the user needs to also intervene: since key management isn't

part of the system, the user may be prompted for a username or the value of a key.

The above only need to happen once, at the beginning of a session, but are still

user-visible. Ultimately, with proper key-management techniques, it may become

much simpler to use and handle, and there will be no user-intervention required.

3.2 Picking the Right Scheme and Optimizing

There are many incremental schemes that will be proposed in this thesis, each tar-

geting a specific aspect of cryptography. Which one to use is usually a matter of

requirements, but even after selecting the scheme, there is a lot of fine-tuning that

can be done to increase performance. Things such as block sizes, or ordering, or

amount of time to wait in idle mode before actually beginning to process are all

variables that need to be set as appropriate.

In order to analyze this, we need to have some way of judging what kind of

editing is being done. Therefore, a small analysis mode for emacs was created which

observes and collects relevant statistics on the kinds of changes made to a buffer.

While this program is in now way a complete measure of usage, it can be very helpful

in determining what to set specific variables to within schemes, and also sometimes

helps determine which variant of a scheme to use.

The source code is in A.2, but the basic idea is:

total changes are collected. This is the sum of all the types of changes that were

performed on the buffer.

inserts are counted, and then a percentage is computed based on the total number

of changes: (inserts * 100)/changes.

deletes are counted, and like for inserts, a percentage is computed.

Table 3.1: Report on usage patterns for various buffers

type of edits percent of changes: percent of inserts percent of deletes
inserts deletes modify that are appends that are truncates

composing a chapter 86 % 14 % 0 % 95 % 85 %
proofing a text file 61 % 38 % 0% 0% 1 %
writing code 73 % 27% 0 % 26 % 12 %

modifications are classified as any buffer change which causes no length changes.

A percentage of total changes is again computed.

appends are counted as inserts made at the end of the buffer. Their percentage is

computed thus: (appends * 100)/inserts.

truncates are counted as deletes made at the end of the buffer. Their percentage is

computed in a similar manner to appends.

subdivisions of insertions are then computed. Each insert is analyzed for its posi-

tion (which quarter of the buffer it occurred in). These values are then converted

to percentages of total inserts.

subdivision of deletes are then also computed in a similar manner to those for

inserts.

Figure 3-1 is the output of calling use-report on the buffer being studied. These

were current numbers while I was making a few modifications to this chapter.

The statistics in tables 3.1, 3.2, and table 3.3 have been collected for different

types of editing of a buffer, for reference and example of what kinds of changes might

be used. The scheme that should be used for the above should be optimized for

appends with many short delays in between. Furthermore, it should use relatively

large blocksizes, since most edits seem to occur in the end.

Given the above statistics, it can readily be determined that for a text composition,

most of the changes occur at the end, which suggests schemes that are optimized for

changes in the latter parts of the document should be chosen. Also, in all these cases,

Use-mode report for buffet

Total number of changes made
inserts
deletes

modifications
appends

truncates
the insertions occurred in:

1st quarter
2nd quarter
3rd quarter
4th quarter

the deletions occurred in:
1st quarter
2nd quarter
3rd quarter
4th quarter

r chap3.tex

: 24
: 50 %
: 50 %
: 0%
: 0
: 83 %

0 %
16 %
0 %
83 %

0%
16 %
0%
83 %

The editing of the buffer took 3802 seconds.
During the editing of the buffer, it was idle for

between 1/2 sec to a sec : 44 times
between 1 sec to 2 secs : 24 times

between 2 secs to a 10 secs : 32 times
over 10 secs : 4 times

Figure 3-1: Output of use-mode in emacs

Table 3.2: Positions of inserts

type of edits 1Stquarter 2" quarter 3 rdquarter 4thquarter

composing a chapter 0% 0% 1% 99%
proofing a text file 12% 44% 31% 13%
writing code 3% 12% 8% 77%

Table 3.3: Positions of deletes

type of edits 1 Stquarter 2adquarter 3 rdquarter 4thquarter

composing a chapter 0% 0% 0% 100%
proofing a text file 24% 35% 28% 13%
writing code 15% 3% 5% 77%

modify operations are nonexistent. This is probably mostly due to the way in which

editing is done within emacs. However, there are situations where modify operations

might be the most common type of operation (for example, in a database where keys

are constant, but data values keep changing).

There is also another aspect to be examined: the amount of delays between

changes. In the case of a text buffer, it is basically a function of how fast the user

types, and what kind of breaks he takes to think. Breaks of longer than ten seconds

are grouped into one category, since it is assumed that in more than ten seconds, it

is probably possible to compute whatever computation is needed from scratch, and

so the buffer will be assumed to be computed.

With the ability to analyze these statistics, the scheme chosen can be optimized

on a per-user or per-application basis.

Chapter 4

Incremental Message

Authentication Codes

Message authentication codes are used to demonstrate the authenticity of a message.

They usually combine a tagging function which generates the MAC, and a verification

function that ensures the MAC is associated with the document.

4.1 MACs

A MAC is defined thus1 :

Definition 4.1 A message authentication scheme is a triplet (KGen, Tag, V f) of

probabilistic, polynomial time algorithms. The first algorithm is the key generator, and

it takes as input a security parameter 1 k and yields a key K = KGen(1k) which is used

in the other algorithms. The second algorithm is the tagging algorithm or the MACing

algorithm and it takes as input a message M, yielding a MAC a = Tag(K, M) -

TagK(M). The last is called the verification algorithm, and it takes as input the key

and the MAC. We require that if a = TagK(M), then VfK(M, a) = accept, and

that:

'Definition provided by [4]

VPPTA() VM E E* possible messages, and a = TagK(M) and VP PPT algo-

rithms, 3ko s.t. Vk > ko:

PR[A(M,a)=M' suchthat VfK(M',u) =accept<

We instantiate this scheme for MACs in the case of deterministic algorithms.

Definition 4.2 A message authentication code is a deterministic, polynomial-time

computable function MAC such that (MAC, V f) is a message authentication scheme,

where VfK(M, a) is defined to compute MACK(M) and accept if and only if this

value is equal to a.

This is how the classical definition of a MAC scheme works, but we need to allow

for incrementality.

4.2 Incremental MACs

Now we explain a scheme2 which creates a MAC for a document using any block

cipher.

4.2.1 Symbols

In the following definitions, the following notations is used:

1. A document D is viewed as a sequence of n blocks, each b bits long, let Bb =

{0, 1}b denote the domain for each block, and Bn be the domain of a document.

2. D[i] is the i-th block of D e Bb .

3. IncM is the incremental scheme being used to update the MAC of a document.

It takes as input (K, MACod, (old =* new)). It corresponds to Inc in the generic

incremental cryptographic scheme definition.

2due to Bellare, Goldreich, and Goldwasser and detailed in [31

4. A change in the document, and the corresponding change in the MAC, is de-

noted by the following requests:

* A replacement is denoted by IncM(D, mac, repl, (j, m)). In this request,

D[j] will now contain m and the rest of D will remain unchanged. We let

D(j, m) be shorthand for the above, where m is the new block.

* A deletion request is denoted by IncM(D, mac, del, j). In this request, D[j]

is removed from the sequence, so D[j - 1] is followed by D[j + 1] in the

document. Stated otherwise, the new document now looks like:

(D[1]..D[n]) if j = 0
D = (D[O]..D[j - 1] -D[j + 1]..D[n]) if 0 < j < n

(D[O]..D[n - 1]) if j = n

n=n-1

shorthand for the above is D(-j).

* An insertion request is denoted by IncM(D, mac, ins, (j, m)). In this re-

quest, the j-th block is now followed by a new block containing m. Oth-

erwise stated:

(m -D[O]..D[n]) if j = -1.

D = (D[O]..D[j] .m D[j + 1]..D[n]) if -1 < j < n.

(D[O]..D[n] -m) if j = n.

n=n+l

shorthand for the above is D(+j, m).

4.2.2 Designing an Incremental MAC

We extend the definition of a message authentication code to allow for incrementality.

We introduce independence (as suggested in [2]) of the security parameter k, the

number of blocks in the message b, and the size of each block n.

Definition 4.3 a family of message authentication codes computing functions is de-

fined by the triple M = (Mgen, Meval, VJ) of algorithms.

* The PPT generator Mgen takes as input 1 k, I b, I n , and returns a string K

(which is used as a key). -K- is related to a polynomial in k.

* The PPT evaluator Meval takes K and a document D e Bn, and outputs a k

bit string that is the message authentication code for the appropriate document.

* the PPT verifier Vf takes a k-bit string a, the key M, and a document D, and

outputs accept if and only if a was generated by Meval working with M on D.

We now need to create an update function that will allow us to incrementally

change the MAC without recomputing from scratch. This is achieved via IncM which

turns the MAC of D into the MAC of D(j, m), D(-j), or D(+j, m) depending on the

change desired. We use ideas presented in previous papers to extend MAC computing

functions.

Definition 4.4 Let M = (Mgen, Meval, Vf, IncM) specify a family of MAC com-

puting functions. We say that IncM is an update algorithm for M with running time

T(., ,) if

Vk, b, n, VM E [Mgen(lk, b, n)] Vj E {1,..., n), Vm E Bb,

if mac = MEval(M, D) then it is the case that:

* IncM(M, D, mac, repl, (j, m)) halts in T(k, b, n) steps with an output that is

polynomial-time indistinguishable from the output of MEval(M, D(j, m)).

* IncM(M, D, mac, del, j) halts in T(k, b, n - 1) steps with an output polynomial-

time indistinguishable from MEval(M, D(-j)).

* IncM(M, D, mac, ins, (j, m)) halts in T(k, b, n+l) steps with an output polynomial-

time indistinguishable from MEval(M, D(+j, m)).

We call the IncM-augmentation of M =(Mgen, Meval, Vf) the quad M+ =(Mgen,

Meval, Vf, IncM).

Note that in this scheme, the verification algorithm is not incremental.

4.3 Description of the Scheme

With the above requirements and definitions, we now describe the actual scheme that

was implemented:

4.3.1 Initial Computation

The scheme proposed in [3] works in the following manner:

There is a key M = (kl, k2) which is held by both the MAC generator and MAC

verifier in secret. Furthermore, there is a pad-generating function rand which adds a

randomizer to every block in the message (i.e. given a string a, it returns a -r where r

is a random value). There are two pseudo-random permutation functions, fi and f2,

which take as indexes (keys) kl, k2 respectively and are used to compute the MAC:

To compute the MAC for message D = (D[1]..D[n]) we prefix it with a special

start block D[0] and postfix with an end block D[n+ 1], yielding D = (D[O]..D[n+ 1]).

Then, for each block, we add a randomizing pad by calling rand() with the value in

each respective block. rand() returns a random number of bits that are necessary

to fill in the pad (this is a variable). This procedure yields a series of n + 2 blocks

containing the data and random pad for each block: R = (R[O]..R[n + 1]).

Now, we use an idea proposed in [3] for generating MACs, which is to block-

cipher-chain the respective R's in the following manner:

mac = f2((f1(R[i], R[i + 1]))
i=O

This is the initial MAC, and from this point on, all changes to it are computed incre-

mentally depending on the type of change. Note that an incremental computation in

this case yields a MAC that is exactly the same as computing it again from scratch

(i.e. there is no history of changes encoded in the MAC), this therefore achieves the

requirements of perfect privacy (definition 2.4).

4.3.2 Incremental Computations

There are two approaches to computing the new MAC. The first method assumes

that space is not a concern and saves all subcomputations for the document. The

second method trades a small amount of computation time for space-efficiency, and

only stores the random pads and the final MAC. The second, however, also requires

that f2 be invertible if the secret key is known. This may or may not be problematic

(in our implementation, it was not, since f2 was invertible). Here are the ways to

deal with changes to the document under both models:

Modifying a block

A change in the data of only one block is easy to deal with. D(j, m)'s MAC is

computed by the following technique:

1. Under this method, all the block pairs already have their fi's computed, so

all that is needed is to find the two blocks whose fi's are affected (block pairs

(D[j - 1], D[j]) and (D[j], D[j + 1])) , and update them. Then, recompute the

final sum.

2. If we do not have the local computations stored somewhere, then we need f2 to

be reversible, and we do the following:

mac = f2(f1(mac) fl (D[j - 1], D[j]) e fi(D[j],D[j + 1])

E fi(D[j - 1], rand(m)) E fi (rand(m), D[j + 1]))

Adding a block

D(+j, n)'s new MAC is computed thus:

1. Under this scheme we compute the fl's associated with the pairs that touch the

block being added (those being (D[j], m) and (m, D[j + 1])). Then, we XOR

these new values with the rest of the fi's already computed to get a new hash

which we call f2 upon.

2. For this scheme, again we perform some more work, and the formula we use is:

mac = f2 (f-1(mac) fi (D[j], D[j + 1])

Sfi,(D[j], rand(m)) (fi (rand(m), D[j + 1]))

Deleting a block

The final type of change that can be made is a deletion of a block. to compute the

MAC for D(-j), the following is done:

1. for a scheme where everything is stored, we just need to recompute one pair,

the (D[j - 1], D[j + 1]) pair, and throw away two old ones.

2. for the less memory-intensive scheme, we compute the following:

mac= f2(f2l(mac) E f(D[j - 1], D[j])

e f (D[j], D[j + 1]) @ fi (D[j - 1], D[j + 1]))

4.3.3 Security Analysis

A formal analysis of XOR-based MACs was performed in [5]. There they demon-

strated that MACs generated by XOR-ing in the manner performed above can be

considered secure3 . Since all that was done here is turn that MAC into an incremen-

tal one, the security still holds, and this was analyzed in [3].

3There are assumptions made about the permutation, see the paper for a complete analysis

4.4 MAC-mode for Emacs

To see how well this concept works when applied to a commonly used system, a

minor mode was written for emacs to do exactly that. The minor mode implements

the scheme described above, using asynchronous communication with an external

program to achieve maximal efficiency. The program has three parts:

MAC.el (A.1.1) is the actual elisp minor-mode definition code. It is responsible

for deciding which buffers to compute MACs for, and is also responsible for

automatically saving and loading the MAC data when a file is loaded.

MAC-fl.c (A.1.2) is an auxiliary program which received the secret fi key, and

then receives the data on the two blocks, outputting the computation of fi (B1, B2),

which is then used by MAC.el to do its work.

MAC-f2.c (A.1.3) is the second auxiliary program. Much less often called, it is re-

sponsible for performing the final encryption, and communicates with MAC.el

in the same way as above.

4.4.1 Internal Representation of Data

When a document is first loaded, or MAC-mode is activated on a buffer, there is a check

to see whether the data representing the buffer, including the computation history, is

available in an auxiliary file (saved as {filename}.sum). If it is there, it is loaded in

and used. Otherwise, the basic datastructure is created thus:

* First, it breaks the buffer (usually an empty one) into blocks of size MAC-blocksize.

This value can be set anywhere from 1, which indicates 1 byte, to however large

the largest string emacs will allow is (usually the size of a page in the operating

system).

* Next, it generates a pad of size MAC-security-padding bytes for each block.

The same restrictions apply as to the data in each block.

* It marks every fi value in the blocks as 'nil, which is reserved to indicate that

the checksum has not been computed yet.

* Finally, it adds an end-block to the linked list, which is used to indicate there

are no more blocks in the list.

Document

startdata

startpad
f, result(O,1)

Block 0

enddata

endpad

'nil

Block n+l

Figure 4-1: MAC-list datastructure

The above steps form the MA C-list datastructure (see Figure 4-1). Elisp linked-list

(car/cdr pairs) with the properties that the MAC-string element for each item in the

list holds a MAC-blocksize-length string which reflects the contents of the buffer. If

all the MAC-strings were laid end-to-end, the exact contents in the buffer will result.

The MAC-pad holds the random pad (that which is gotten from the rand() function.

Finally, the MAC-sum holds the result of the fi function called upon the MAC-string

and MAC-pad of the current block and of the next block. It may also hold the special

value of 'nil to indicate that the computation has not been performed yet.

The above implies that the end-block's sum is always 'nil, and that the start-

block's sum is variable (so it cannot be made into a constant, and is a different

datablock for each buffer). Also, there is one further problem, which lies in the fact

that the last data block may not always contain exactly MAC-blocksize bytes of data.

This is acceptable from a security point of view, but in the implementation, this is

restricted to happening on the last block only. (See section 4.4.4 for a discussion of

variable sized blocks, and other ways to improve this).

data data data

pad pad ------------- pad

flresult(1,2) f result(2,3) f result(n,n-l)

Block 1 Block 2 Block n

4.4.2 Operation of the Editor

Now, we have a datastructure to represent the buffer. From this point on, one of

two things may happen: Either the machine will be idle, or the user will be typing

something. If the machine is idle, the mode will attempt to find fi values that have

not been computed. If the user is typing, then it will attempt to make the MAC-list

datastructure reflect the status of the buffer.

If the machine is idle, then the minor mode will utilize this time to update the

MAC dynamically. Since most users take breaks while typing, and since most users

don't type that quickly anyway, most of the CPU time is spent in this mode. During

this time, the list is traversed until a block is found whose MAC-sum is set to 'nil.

Once a block is found that has this property, its sum is computed based on the

data stored within the current as well as the next block. If all blocks are computed

correctly, then the buffer's MAC is computed and held until the time when the user

requests it, or else the buffer changes again.

If instead of leaving the machine idle, the user types something which causes

changes to the buffer, the internal MAC-list is changed to reflect those changes.

There are many possible types of changes, and since the algorithm is designed to

work in blocks, each of these changes can lead to several possible types of changes in

the structure. Any change is reported as a (startpos, endpos, newlen) triplet, which

is all that is necessary to figure out what has changed:

* A modification usually occurs when in overwrite mode. In this mode, anything

that is typed is typed over previous characters. It can, however, also occur

in some specific modes where some text that is being typed is replaced with

different text (for example, automatic capitalization). In this case, no length

change occurs (endpos - startpos = newlen). This of course means that the

MAC-list structure doesn't change, although the data within the respective

blocks, as well as the respective fi values, do. This is easy to deal with.

* A deletion can occur due to a delete or backspace key. Or on a larger scale,

due to a cut operation (among others). This can be more tricky, as the dele-

tion modifies the length of data in a block, and in some cases, can delete an

entire block or more. The implementation can only use the algorithm's delete

operation when an entire block is removed. In all other cases, the length of a

block changes, and so in the worst case, characters from further blocks need to

be shifted into the current block to fill it to the right length (and so on for the

further ones down). Deletions early on in a document can lead to the entire

document's MAC being recomputed from scratch.

* Insertions are very similar to deletions. They can be brought about by almost

any editing command in emacs, as well as automatically due to things like C-

mode. Like deletions, they cause block data lengths to change, and so require

either pushing data forward through blocks, or in lucky cases, the new data fits

completely into a new block between two other ones.

If any block changes, its data is set to reflect the new data, but the sum is left

as a 'nil. The cryptographic computations are not done until such time as the user

isn't typing anything, or the user forces the computations (for example, by asking for

the MAC, or saving out the file).

An attempt to save the file causes the editor to go through the entire structure

to make sure it is correct (all data blocks contain the right number of bytes of data

from the buffer, and all fi computations have been performed). Then it computes

the xor of all the fi values (if that has not yet been done in idle time), and finally,

computes the f 2 of the xor. The MAC-list datastructure, as well as the result of the

f2 (the MAC) are written out to the filename with a '.sum' postfix.

4.4.3 Analysis of Performance

The above scheme was implemented, and tested using a SparcStation 1 and on a

pentium machine running NetBSD/i386. The emacs used was emacs.19.34.1. For

measurement purposes, we set the fi and f 2 to be DES, although there are many other

alternatives, such as IDEA and combinations of MD5 and DES which would have

worked as well. The typing rate of the person using the software was approximately

80 words per minute.

A basic comparison of apparent performance was done, comparing the integrated

MAC evaluator with differing parameters. Since the timing here isn't usefully mea-

sured in CPU cycles or seconds, it is hard to compare it to a scheme which computes

completely at the end. Instead of measuring using time, we measure what percentage

of the document is precomputed by the time the user wishes to save the buffer. Fig-

ures 4.1 and 4.2 detail the performance on a Sparcstation 1. For the append, a buffer

was simply typed into continuously at a specific rate. For the random edits, three

different speed typing was used to edit a buffer, using cuts and pastes, overwrites,

insertions, and other operations done to files such as code. It was started with a file

that had the MAC fully computed for, and then checked to see how much of the buffer

was uncomputed at the end. Although this measure is very dependent on the exact

types of changes, the typer was not aware of where boundaries were, and inserted,

deleted, and overwrote throughout the buffer.

parameters performance
blocksize = 1 Editor was straining, almost never managing to
pad size = 1 find enough time to compute fl. Approximately

80 WPM 3% of the blocks got computed.
blocksize = 1 could mostly keep up, with only
pad size = 1 about 10% of the blocks uncomputed

30 wpm
blocksize = 64 Editor would have been happier with a few breaks
pad size = 16 in between, but managed to get 40% of the blocks

80 wpm computed by the time a save was requested.
blocksize = 64
pad size = 16 80% of the buffer was computed

30 wpm

Table 4.1: Editor performance on append operations

As can be seen in the above data, the kind of input, as well as the person who is

typing, and the choice of variables, all control the efficiency of the scheme. Further-

more, since this scheme is implemented in elisp,it can be improved upon considerably

Table 4.2: Editor performance on random access edits (deletes, inserts, overwrites,
etc.)

by integrating it using C into a different word processor. While it may seem that only

order of growth of the algorithm is important, it turns out that small optimizations

can make major differences in how well the scheme operates with the user.

One final thing that deserves some analysis is the verification scheme. Theoreti-

cally, verification should be as fast as generation from scratch, and it is. Incremental-

ity as of yet does not offer any speedups in the verification scheme (although should

one choose to use diffs, they are smaller to verify). However, since elisp is rather slow,

the scheme itself, when compared to native-c-code programs such as PGP, appears

much slower. In theory, the scheme should not be any slower (as was demonstrated

in previous papers), but due to the lack of good popular text editors with free source

code in C, it was difficult to test.

4.4.4 Other Ideas That Emerged

After trying it out for a while, we had noticed several interesting problems, and had

alternative approaches to solving them.

* The constant blocksize (initially envisioned to be 1 byte by the authors) can

lead to several slowdowns. If it is set at just one character, then there are a lot of

fi's computed per document. If it is set at a large number, then the probability

of causing incomplete blocks in the middle of a document are increased (leading

to the need to adjust data further down, and invalidating all the fi's further

parameters performance
blocksize = 64
pad size = 16 Only 5% was computed

80 WPM
blocksize = 64
pad size = 16 26% of the buffer was computed

30 WPM

down the list). It turns out that depending on the kind of editing that is done

more often, a different model should be used. Larger blocksizes lent themselves

very well to appending operations, and database-style operations that dealt

with data in blocks. One byte blocksizes were better for random-access edits.

* Another idea noticed was that there really was no need for a constant blocksize.

Allowing the size of the data in a block to vary stops all the problems caused by

data being unaligned. Since nothing in the proof of security contains anything

requiring the blocks to use constant lengths, we can allow for blocks to have

varying sized data.

* These ideas can also be merged with predictive/adaptive algorithms to allow

the computer to try and guess what the user will type, and precompute some

blocks.

Chapter 5

Public-Key Cryptography

This chapter will deal with applying incremental cryptography to the commonly used

cryptographics schemes known as public-key cryptography. It will offer a scheme and

analyze it in terms of efficiency and security.

5.1 Public-Key Cryptography

Talked about initially in [8], private key encryption is often compared to private key

encryption. It is defined in the following manner 1.

Definition 5.1 A public-key encryption scheme is a triple (, E, D) of probabilis-

tic polynomial time Turing machines, together with an indication of key length k,

satisfying the following conditions:

key generation algorithm: a probabilistic expected polynomial time algorithm g,

which on input 1 k produces a pair (e, d) where e is the public key and d is the

private key: (e, d) E g(lk).

encryption algorithm: a probabilistic polynomial time algorithm 8 which takes as

input a security parameter 1 k, the public key e from g(lk) and a string m E

{0, 1}k, and outputs c E {0, 1}* which is the encryption of m using e as the key.

'adapted from [4] pages 67-68

decryption algorithm: a probabilistic polynomial time algorithm D that takes as

input a security parameter 1k, a private key d from g(lk), and a ciphertext c

from g(1k, e, m), and produces m.

We also need to explain the security requirements of this scheme, so, as for sym-

metric encryption, we will use the indistinguishability requirement2 , although it has

been proven to be equivalent to the semantic definition sometimes used instead.

We define it such that it is hard to find any two messages whose encryptions are

distinguishable:

Definition 5.2 A public-key cryptosystem (!, E, D) is polynomial-time indistinguish-

able if for every message length 1, and for every polynomial Q, 3ko s.t. Vk > ko :

Pr [A(1k, e, mo, m, c) =m I (e, d) + R g(1 k); mo, ml R - {, 1}';

m 4- {mo, mi}; c - (e,m)]< +2 Q(k)

Now, we want this to be an incremental scheme, and as it stands, it does not func-

tion as one. So, as before, we have to take this model, and add one more requirement

that lets us make it incremental:

Definition 5.3 An incremental public-key encryption scheme is a quadruple (9, E, D, Z)

of probabilistic polynomial time Turing machines, together with an indication of key

length k, satisfying the conditions set in definition 5.1 (the first three listed), plus one

more dealing with incrementation (the last one):

key generation algorithm: a probabilistic expected polynomial time algorithm 9,

which on input 1 k produces a pair (e, d) where e is the public key and d is the

private key: (e, d) E g(lk).

encryption algorithm: a probabilistic polynomial time algorithm E which takes as

input a security parameter I k , the public key e from g(l1k) and a string m E

{0, 1}k, and outputs c E {0, 1}* which is the encryption of m using e as the key.

2definition from [4]

decryption algorithm: a probabilistic polynomial time algorithm D that takes as

input a security parameter 1k, a private key d from g(1k), and a ciphertext c

from (1k, e, m), and produces m.

incrementation algorithm : a probabilistic polynomial-time algorithm Z which takes

as input a security parameter 1 k, the public key e from G(1k), a previous en-

cryption of a message co = (1k, e, mo0), and a list of changes to the message

m o => mi. It produces a new encryption cl = Z(lk, CO, co,(mo m 1)) s.t.

mi = D(1k, d, cl).

And as usual, extend the security definition to cover this situation:

Definition 5.4 Incremental polynomial-time indistinguishable security holds for an

incremental public-key scheme if the following hold:

* Polynomial-time indistinguishable security holds when the scheme is used non-

incrementally.

* An adversary cannot distinguish between any pair of: encryption formed via the

encryption algorithm, and an encryption formed after using the incrementation

algorithm on a previous encryption.

Let II(S) be a random permutation of the set S. For every PPT A, for every

message length 1, and for every polynomial Q, 3ko s.t. Vk > ko:

Pr [A(1k, e, co,... , c}) = b I (e,d)- g(1k); {mO, nm1 ,-.. ,mj} M(1k);

b R{0,...,j};7--II-({i=0,...,j I i b})

cb = (lk e, ,mo)

Vi e {0,... ,j - 1} : c,1 = I(1k, e, c _ ri, (mi- 1 =* i•i))

] 2+ Q (k)

where the probability is taken over the choice of e, d, b, mis, the permutation,

and the random inputs. The encoding scheme for =: can be any scheme desired

as long as it holds the property that given mi, and (ml =~ m 2), anyone can

compute the value of m2.

That is, we want the scheme when used without incrementing to be as secure

as non-incremental schemes. Furthermore, we want to guarantee that if we incre-

ment, the adversary will learn nothing about what was incremented, or be able to

distinguish an incremented ciphertext. We might also want to add the following

requirement: that given an incrementation to an encryption, the adversary learns

nothing of how the source document changed. Simply stated, given Co = g(1k, e, m 0)

and C1 = I(1k, e, co, (m0 o 1= ie)), the adversary knows nothing of (mo => mi). It

can't even guess where a bit has changed. This requirement is not part of the secu-

rity definition since it is both hard to achieve, and is usually not necessary in most

schemes. However, it is a problem worth studying.

5.2 A Public-key Encryption Scheme

The approach suggested in chapter 6 does not work here for the simple reason that

while it is easy to generate a pad with the private key, having the public key does not

help re-create this pad which is necessary to XOR out of the encryption. One solution

to this is to encrypt a randomly generated session key using a public-key scheme,

and then increment with a symmetric scheme. Since this relies on two different

style-encryption scheme, it will be analyzed later, but we will propose yet another

approach.

Our approach is to simply divide the document into blocks, and encrypt each

block separately. Then, the recipient decrypts each block and concatenates them to

form the plaintext. However, if this scheme is used (as most public-key schemes are

sometimes) in reverse, with the private key being used to encrypt and the public-

key to decrypt, then this scheme becomes weak. Notably, an adversary can move,

duplicate, remove, and substitute blocks in an undetectable manner. Therefore, we

opt for a slightly slower scheme which more closely resembles other commonly used

public-key encryption schemes (such as RSA). However, if encryption is the only

feature this scheme is being used for, then the just-mentioned scheme will suffice.

The scheme which we suggest uses the concept of blocks chained together by

double-pairing a block with its predecessor and successor. This ensures a chain,

while allowing insertions in the middle without renumbering tags. There is a worry

that two blocks will end up being the same, allowing replacements of the chain from

those particular points. To prevent this, a security randomizer is inserted to lower

the probability of this happening. Furthermore, the encryption disguises when these

events actually occur, so the probability of an adversary noticing this is extremely

small.

There is one thing to note about the scheme proposed: It requires that temporary

data be preserved in order to facilitate the computations, and that this temporary

data is never made available to the adversary. This goes against the description of

the incrementation algorithm (which only takes the encryption, and no internal state

data), but is easily workable. While this requirement is usually not a problem, (and

indeed prevents other people from incrementing on your own data unless you permit

them by revealing this temporary data), this may not always be achievable. After

the description of the scheme, an alternative approach which solves this problem will

be explained, but not analyzed in depth.

5.2.1 The underlying algorithms

We describe how to form an encryption of a document using the four basic operations:

CREATE(), INSERT(), DELETE(), and MODIFY().

Create

The following is how an encryption of a document is performed (see figure 5-1). This

is the CREATE() operation, which takes as input the document to be encrypted

P, and yields an encryption of it C, and the structure necessary for incrementing S.

S encodes the T's and C's (we can't increment only based on C, since if our scheme

allowed that, than anyone could tamper with our encryption).

Figure 5-1: Incremental Public Key Encryption Description

* The document is divided into blocks of constant size (Pj)

* Each block is then appended or somehow combined with a randomizer of size

k, where k is the security parameter (Rj).

* a temporary block to encrypt is then formed from respective pairs of blocks

(Tj = Rj -Pj).

* Each of these Tj's is encrypted using a standard public-key encryption scheme to

yield a chain of ciphertexts Cj = Epk(Tj). Those ciphertexts are then combined

to form the final ciphertext, which is the encryption. The encoding necessary

for incrementation is the Tj's.

This ciphertext is then transmitted in the standard way. Then, we can perform

incremental operations on S.

Insert

The first, and probably most common modification, is the INSERT(S, i, b) operation.

S is the structure to be modified, i is the position where the insertion is to take place

(i = 0 means insert at the beginning), and b is the block to insert. The insertion is

performed in the following manner:

1. If i = 0, then we are prepending. This operation is simple:

(a) from T1 get R1- P1 .

(b) generate Ro, and let To = (Ro - b) - (R1 T).

(c) let Co = Epk(TO).

The same concept can be applied to appending.

2. If we are inserting in the middle, then the following is done:

(a) from Ti get Ri - Pi, and Ri+l -Pitl.

(b) shift the reference numbers, so that Vj > i, Tj+l = Tj (so we can replace

Ti with two blocks).

(c) generate a new randomizer R, and let Ti = (Ri - PI) - (R b). let Tj+I =

(R - b) - (Ri,+ - P+1)

(d) recompute Ci = Epk(Ti) and Ci+1 = Epk(Ti+l).

(e) (reorganize the numbers to accommodate the insertion).

This operation can be amortized when several contiguous blocks are inserted.

Delete

We also need to handle a DELETE(S, i) operation. S is the structure, and i is the

position of the block to be deleted.

1. If i = 1 or i = n, then we are deleting the first or last block. Simply remove

T1/Ce or remove Ti_1/Ci 1 respectively.

2. else we're removing in the middle, so we need to recompute some things:

(a) delete Ti and Ci.

(b) from Ti-1 get Ri- 1 " Pi-1, and from Ti+I get Ri+1 -Pi+1 . Let Ti-1 = (Ri-1-

Pi-1) - (Ri+ - Pi+l).

(c) set C0-1 = Epk(Ti-1)

(d) (reorganize the numbers to match the new layout).

Like with the INSERT() operation, DELETE() can be amortized when several

contiguous blocks are deleted.

Figure 5-2: Appropriate Incremental PKE Description

Modify

Finally, the MODIFY(S, i, (old =: new)) operation is the easiest to perform. S is

the same structure to modify, i is the position where the modification will occur, and

(old =: new) are the instructions on how to modify the block (probably just new

contents for the block, but this is up to implementation).

1. generate a new Ri and replace Pi.

2. recompute the values of Ti- 1 and Ti where possible (if it's the first or last block,

only one of those will exist).

5.2.2 The appropriately incremental algorithm

As was mentioned earlier, the above-mentioned scheme requires intermediate state

(notably the values of Ti) in order to increment. This is not always acceptable,

and so a simple solution to this problem is to also encrypt each (RilPi) element

before pairing and merging them into Ti (see figure 5-2). This of course means that

the incrementor can no longer actually know what is in the document, but he can

increment successfully using the methods described above (encrypting in the obvious

places). An immediately obvious disadvantage of this scheme is that it requires more

encryptions and decryptions, which makes it slower. It otherwise is comparable to

the previous scheme, so the following analysis applies to it also. However, since the

temporary data is usually available, the previous scheme is a better idea.

5.3 Analysis of Scheme

Now that the scheme is described, it needs to be analyzed and compared to other

non-incremental schemes to argue for its worth.

5.3.1 Efficiency

The biggest reason for using incremental cryptography is the efficiency gains made in

computing the encryptions. As such, this scheme needs to appear more efficient than

other schemes.

Time

To create an encryption from scratch, or to verify, one needs to compute for each of

the blocks using the underlying encryption scheme n times. Standard schemes do one

of two things: either encrypt a session key for a fast encryption scheme such as IDEA

using the public-key cryptosystem, or else break the document up into manageable

blocks and encrypt those. The first is VERY fast, much faster than the incremental

scheme, but read the later section on security for an analysis of why this could be

bad. The latter is still somewhat faster, since there is less data to encrypt, but now

we have reached a factor of less than two, and this is on creation only.

Incrementing is very fast relative to the second scheme, since only two encryptions

need be computed (at most), and not the entire document as is the case for the

non-incremental scheme. Furthermore, the size of a block is variable, so it can be

optimized as well as any other blocking scheme. This scheme ends up being fast

when used mostly for updating encryptions.

Space

Space considerations are another issue. The incremental scheme is less efficient than

other schemes in terms of space, but it is still on the same order of growth as others.

The first nonincremental scheme described takes a little extra space to store the

session key, but is otherwise the same length as the document. The second scheme

keeps completely to the length of the document. The incremental scheme, however,

functionally doubles the length of the document and then encrypts in blocks.

From a mathematical standpoint, let

5.3.2 Security

The scheme needs to be compared to other commonly used schemes.

* The first scheme to compare to works the following way:

- Create a random session secret key s to use in some secret-key encryption

scheme (say IDEA).

- Encrypt s using the public key in the chosen algorithm.

- Encrypt the document using s in a secret-key encryption scheme.

This scheme has both advantages and disadvantages:

- Advantages:

1. Since secret-key schemes today are much faster than public-key schemes,

there is a general tendency to prefer them for encrypting large docu-

ments. This scheme is several orders of magnitude faster in encryption

and decryption than using a public-key system entirely, and so is often

used in systems that try to offer public-key encryptions (such as PGP).

For the same reason, decryption is always faster than our system, and

encryption is faster when an entire document is being encrypted (in-

stead of dynamically updating an encryption).

2. The same document can be encrypted to multiple recipients without

re-encrypting for each user. Simply encrypt the session key for every

user, and then send the same encrypted document plus the appropriate

encryption of the session key.

- Disadvantages:

1. Since this system is based on two cryptosystems, it has two possible

points of failure: breaking either cryptosystem renders this scheme

useless.

2. Secret-key encryption systems are not usually based on mathematical

principles, so it is impossible to provide security guarantees for this

cryptosystem (such as: "Breaking this is as hard as factoring").

3. This system relies on reliable pseudo-random number generation. This

has turned out to be a big problem for systems-designers, and has led

to many flawed implementations. Notably, the random number is not

critical in our system, but predicting it in this system is enough to

break it.

* Another system avoids using a secret-key system, but at cost. It works by

simply taking the data, and encrypting it wholesale (some breaking up of the

document into blocks may be necessary). This system also has advantages and

disadvantages over our system:

- The advantages include:

1. This scheme is somewhat faster than our scheme, since it basically

encrypts as few times as possible using the public-key scheme. This is

slower than the above scheme, but faster than our scheme unless we

also use blocks that are as big as possible.

2. Being a very simple scheme, it is easier to prove things about this

scheme.

- The disadvantages include:

1. It is not incremental, so minor changes still lead to complex compu-

tations, and it is impossible to design a system that will dynamically

generate an encryption for the user.

2. when encrypting for multiple recipients, since everything goes at the

end and their is no standard optimization for this scheme, it takes

even longer to finish encrypting.

One thing to note about this scheme is that it is fully reliant on the public-key

scheme, which makes it simpler to prove certain properties. For example, If we choose

to use Rabin for our public-key encryption underlying scheme, we can demonstrate

that the scheme is as hard as factoring.

5.3.3 Privacy

Ignoring the random numbers used to pad the blocks, this data structure encodes

only one possible way to encode any document. Since the random numbers can't be

predicted, there is no specific pattern to them. Therefore, it should be impossible

to tell when and how blocks were inserted. This scheme therefore assures perfect

privacy.

There is a worry that the underlying block scheme may leak some information,

especially since it is known that there is a small relationship between subsequent

blocks in the ciphertext. The security of that depends on the underlying public-key

scheme. It was demonstrated in [1] specific bits within RSA and Rabin were 'secure',

but formal analysis of this kind of usage of specific ciphers has not been performed.

Nevertheless, it is highly likely that this usage of a cipher will not significantly weaken

it.

5.4 Implementation

An incremental system was implemented and tested on a Sparc5 running Solaris 2.3.

Four separate modules were written, which together interact to create the PKE mode

for Emacs. Some of the code used RSAREF from RSA labs to achieve the underlying

public-key encryptions. These modules were then used and evaluated to determine

their efficiency. Since it was only meant for forward encryption, the chaining concept

was not added, but a simple doubling of most timing computations are all it takes to

convert for worst case.

5.4.1 The modules

Four specific modules were created which work together in the following way:

PKE.el is the main module. It is elisp code to create a minor mode in emacs which

notices changes to the buffer and deals appropriately. The code is available

in section A.3.1. It is activated by typing M-x PKE-mode within a buffer, or

loading a file for which an old encryption has already been generated.

PKE.c is the code that PKE.el communicates with. It receives information follow-

ing the protocol described in section 5.4.2 and creates the encryption with it. It

is also responsible for saving the encryption and loading old encryptions when

appropriate. Code is in section A.3.2.

PKE-keygen.c is responsible for generating key pairs for users whose names are sup-

plied on the commandline thus: PKE-keygen {username}. It puts the keypairs

in a private directory in the creator's path, where PKE.c and PKE-decrypt.c

can use it. Code is in section A.3.3. To use it, simply run PKE-keygen

{username}

PKE-decrypt.c is the final component. It non-incrementally decrypts the docu-

ment. Source for it lies in section A.3.4. To use it, run PKE-decrypt {username}

{infile} {outfile} .

5.4.2 API for Inter-Procces Communication

Breaking the mode up into modules allows different public-key encryption schemes

to be used as the underlying scheme. All that is required is that the modules com-

municate using the following protocol described in table 5.1.

Once we have modules that communicate using this protocol, we can then analyze

them for user-observed efficiency.

5.4.3 Analysis of Implementation

The scheme runs synchronously to the editor, and as such, the only possible tim-

ing issue is the time from when the user wishes to save the file to the point when

the checksum is computed. This of course varies according to the speed at which

edits were being made, but unlike with some schemes, the position of the edit is

unimportant.

Timing Performance

This implementation uses the RSAREF toolkit (see [15]) which is not as optimized

as it could be. Nevertheless, the incremental encryption works quickly enough that

most editing in a buffer is updated instantly.

However, decryption is another story. Since decryption is performed at the time

of the request, non-incrementally, the user has to wait for O(n) decryptions. On a

sparcl, this translated to about one character decrypted per second, which is very

slow. If decryption is a common enough operation to warrant speeding it up, then

the session key approach might be a better choice, even though it is far less secure.

However, there is another way to balance out the decryption/encryption rate.

Since the size of the public exponent is directly related to the time it takes to encrypt

a block, and the size of the private exponent is directly related to the time to decrypt,

and since the larger the public exponent, the smaller the private exponent, it is

possible to choose values for them that achieve the best tradeoff between the two.

Space Analysis

On average, an encrypted file using this scheme, with a 512-bit RSA key, is about 70

times bigger. The larger the key, the bigger the encrypted file. This works strongly

against the scheme, but in practice, storage space and transmission rates are cheap

and fast, so this is not a major concern in a most practical systems.

If this is a problem, it is possible to merge several blocks together, although this

leads to the same problem as with other such schemes, where one insertion in the

beginning leads to a recomputation everywhere else.

Public-key: This sets the value of the public key being used for
{key value - encoded string} encrypting the file. If there is any data, it is lost.
Create: This creates a new structure, potentially dumping an
{byte 1 - string} older existing one. The bytes are encoded in decimal
{byte 2 - string} ASCII.

End
Insert: This inserts data into the structure at position posi-
{position - integer} tion. 1 makes it the first block in the structure.
{data - encoded string}
Modify: This changes the value at position to data.
{position - integer}
{data - encoded string}
Delete: This removes block number position. 1 is the first
{position - integer} block.
Save: This saves the encryption to the filename. It is rec-
{filename - string} ommended that filename be an absolute pathname.

returns:
Done
when done.

Load: This loads up the data stored in filename. The key
{filename - string} should have already been set by this point, since set-

ting it later undumps all the data.
Quit: This tells the program it is time to quit. NOTE: this

does not bother saving the data!! make sure you save
first!

Every message is composed of a header identifying the message content values, a
carriage return, and then the body expected from the program, followed by a carriage
return. Responses are terminated by a carriage return. Unless stated otherwise,
encoding is converting the ASCII char into its hex value representation.

Table 5.1: PKE-API specifications

Chapter 6

Secret Key Cryptography

This chapter will deal with applying incremental cryptography to secret key cryptog-

raphy. It will suggest a symmetric block cipher scheme, and analyze it in terms of

efficiency and in terms of security.

6.1 Symmetric Encryption Schemes

A symmetric encryption scheme (also known as a private key scheme) is defined thus':

Definition 6.1 An encryption scheme is a pair (G, £, D) of probabilistic, polynomial

time algorithms together with a security parameter 1 k . The first algorithm is the key

generator, which is a PPT algorithm that yields a secret key K = G(1k). The second

algorithm is the encryption algorithm, which takes as input the key, and a message,

and yields an encryption of it C = E(K, M) =_ EK(M). The last is the decryption

algorithm, which takes as input the secret key and an encryption, and yields the

original plaintext message M = D(K, C) =_ DK(C). We require that V(C, M) E E*,

if C = EK(M), then M = DK)(C)

Furthermore, we want to set a security parameter on this scheme so that we can

consider it secure. We use the indistinguishability definition, which [10] has shown to

be equivalent to the semantic definition.

'definition from [41

Definition 6.2 Informally, indistinguishable security is achieved when an adversary,

given a ciphertext C and two messages M0 , M 1, can't tell which of the two was en-

crypted to yield C. Formally:

VM polynomial time probabilistic Turing machines, V(M 0 , M1) E Et possible doc-

uments of length 1, b be a random bit uniformly selected from {0,1},, and let C =

EK(Mb). We require that VQ() polynomial functions, 3ko s.t. Vk > ko:

1 1
Pr[M(Mo, Mi, C) = b] < - +

2 Q(k)

where this probability is taken over the set of possible messages, the choice of keys,

and the choice of b.

Now, we take the definition of a symmetric encryption scheme, and modify it to

create an incremental symmetric encryption scheme:

Definition 6.3 An incremental symmetric encryption scheme is a quad (!, 8, D, I)

of probabilistic, polynomial-time algorithms with these properties:

Key generator G() : takes as input a security parameter 1k, and yields the secret

key K = G(lk).

Encryption algorithm E() : takes as input a key K, and a message M. It outputs

an encryption of this C = E(K, M) - EK(M).

Decryption algorithm D() : takes as input a ciphertext C, and outputs a decryp-

tion of it M = D(K, C) - DK(C).

Incrementation algorithm I() : takes as input a key K, a ciphertext Cold, and

instructions on how to change the document (old =. new). It yields a new

ciphertext C,e, = I(Cold, K, (old = new)) - IK(Cold, (old =* new)).

We require the following properties:

* V(C, M) E E*, if C = E(M), then M = D(C)

* V(Co, C7, Mo, Mi) e E*, if Co = E(Mo), and C, = Z(Co, (Mo •= M1)) then

Mo = D(Co) and M, = D(C1).

Now we have an incremental symmetric encryption scheme. BUT our definition of

security still doesn't take the incrementality into account, so we change it somewhat

now to do just that:

Definition 6.4 Incremental indistinguishable security holds for an incremental scheme

if two properties hold:

* The scheme, when used nonincrementally, provides indistinguishable security.

* When an adversary, given Co = E(Mo) and Ci = I(Co, ((Mo = Mi)), as well

as (Mo, M1) he can't distinguish which Mi was responsible for which Ci for all

possible messages.

One other possible addition which would increase the security of the cipher is that

given Co = 6(Mo) and C1 = Z(Co, (Mo =* Mi)), we learn nothing of (Mo =* M 1),

(i.e. we don't know which bits changed). This is a very strict requirement, which is

not usually needed. However, should this be desired, approaches which use oblivious

RAM (see [13]) can be used (or some other technique).

6.2 An Incremental Block Cipher Symmetric Scheme

An efficient initial approach as proposed in [2] is to preserve an encrypted list of

changes E 2 to the original document D (whose encryption is El). Then, whenever

the encryption is requested, El and E2 are provided. When E2 grows longer than

some variable 1, we integrate those changes back into D and recompute El, setting

E2 to an empty list. This can be pipelined, and the analysis of this scheme is done

in that paper.

The real problem with the above technique is the lack of privacy for the incre-

mental document, and so we propose another method for obtaining an incremental

block cipher secret key cryptosystem.

This method can work with any block cipher. It allows for extremely efficient

modify operations, and also allows for inserts and deletes, which, depending on the

location, can be extremely efficient, or at the worse as costly as simply recomputing

the entire encryption from scratch.

6.2.1 Description of Scheme

Flawed Approach

One possible way to have an incremental scheme is to use the block cipher in electronic

codebook mode (ECB). This scheme divides the document up into blocks which can

be moved around, as well as modified independently from the rest of the document.

Unfortunately, this flexibility also makes the scheme very susceptible to substitution

attacks (replacing one block with another and such). It is also susceptible to some

types of analysis (for example, noticing a long sequence of zeros).

Another approach is to use the block cipher in output feedback mode (OFB).

This again has the distinct advantage of dividing the document into blocks which

are separately computed for, although the hash chain has to be precomputed. While

one can't easily attack this scheme with substitutions and analysis, having just one

plaintext/ciphertext pair is enough to break the entire scheme, easily producing all

other possible pairs (though not knowing the key used).

We therefore want to design an approach that takes the best of both, and hopefully

use their features to protect against the flaws.

Correct Approach

The following is how one generates an encryption C = (IV, {C1i C2 -... Cn- 1 - Cn)

of a plaintext P = {P1 -P2 - Pn-1 " Pn} where each IPjl is the size of a block in the

cryptosystem being used (64 bits in DES). It requires a random initialization vector

IV and a key k.

P C-2
2

k -

C1 C3

Figure 6-1: Incremental OFB-ECB mode for a block cipher

encryption

To encrypt P, perform the following steps (observe figure 6-1):

1. Create the intermediate pad IP in the following manner:

= Ek (IV)

= Ek (Pl)

SEk (IP1)

64

IP1

IP2

IPn

2. Create the intermediate block cipher using ECB mode on the plaintext:

IC1

IC2

ICn

= Ek (P1)
= Ek (P2)

= Ek(P)

3. Now put the two together using XOR's:

C1 = IPI e IC 1

C2 = IP 2 IC 2

On = IPn E IC,

The above technique should yield the desired ciphertext.

decryption

In order to decrypt the above generated text, one needs the IV, the C, and the k.

Then, it's just a matter of running things in reverse (observe figure 6-1):

1. Create the intermediate pad IP as before:

= Ek(IV)

= Ek(IP1)

= Ek(IPn-1)

IP1

IP2

IPn

2. Create the intermediate ciphertext IC in the following manner:

ICI

IC2

ICn

= Dk(C1)

= Dk(C2)

= Dk(C)

3. Finally, extract the plaintext thus:

P1 = IP1 E IC1

P2 = IP2 IC2

Pn = IP, eICn

incrementing

An operation which modifies data in a block requires that entire block be recomputed.

Efficiently done, this requires the new plaintext NP be encrypted, as well as the old

plaintext OP. The new ciphertext block will look like this:

C, - Cn Ek(OP) e Ek(NP)

Operations which add or remove data work in four parts, and this is the high-level

overview of what needs to be done (instructions here are for removal, but easily map

to addition):

* First, remove entire blocks that need to be removed. This only happens if the

delete is bigger than the size of a block AND happens to erase across boundaries.

* keep track of the values of all the IC's, since some will have to be shifted forward.

* Then, shift all the data ahead down. This will look like a modify operation,

done on all future blocks.

* Recompute all the values that have changed.

As can be seen, in the worst case, a deletion of less than a whole block from

the beginning can set off an entire re-computation. It is possible to create special

characters to represent holes to avoid this, but this will create a history, which is

something we wish to avoid.

6.2.2 Analysis

This scheme is analyzed in terms of security, privacy, and efficiency.

security

In order to analyze this scheme, we will assume that the block cipher used is a perfect

pseudorandom permutation (as done in [6]). However, even if it is not, it seems likely

that any attack performable on OFB mode will apply here, as well as cryptanalysis

on ECB mode.

First we need to have a way of talking about the secret-key encryption scheme,

and so we regard it as a pseudo-random permutation. But to define a pseudo random

permutation, we first need to explain a distinguisher. Intuitively, a distinguisher is

a function that attempts to tell whether some "random" string it is viewing is the

output of a pseudo-random function or truly random data, with a limited amount of

resources, but with access to the pseudo-random function.

Definition 6.5 given a family of functions F, the advantage of a distinguisher func-

tion is AdvD(F) = IPD(F) - PD(R)I where:

PD(F) = Pr[D9 = 1 : g F]

PD(R) = Pr[Dg = 1 : g R]

Definition 6.6 F is a (t, q, e)-secure finite pseudorandom function family if any dis-

tinguisher D who makes at most q queries and runs in time at most t has AdvD(F) <

E.

Informally, we want it to be hard to predict the random numbers, and we can

make it as hard as we want by controlling the variables.

Claim 6.1 Assuming the block cipher fk() is chosen from a family of pseudorandom

functions where k is secretly agreed upon. This encryption mode, WITHOUT the

incrementation algorithm, yields a cryptosystem that offers indistinguishable security

if ECB and OFB modes for the block cipher do.

Sketch of Proof (informal argument) The intermediate pad produced (IP) is

the same pad as produced by the standard OFB mode for a block cipher. The only

functional difference is the fact that instead of XORing directly with the plaintext,

we now XOR with the plaintext encrypted in ECB mode.

Any given ciphertext block does not affect the value of the next one (although

there is a relationship based on the chaining). Therefore, given the assumption that

OFB mode is secure, the only way the scheme could be made weak in this system is

through the encryption of the plaintext block before the xor. Given that the blocks

are independent at that point, one need only consider the effect on a per-block basis.

We know that the adversary can't distinguish between ICj E Pj and ICj E

random_data, so if he can distinguish between ICjeEk (Pj) and ICj@Ek (random_data),

there is something inherent to the encryption that gives away this information. BUT

since the cipher scheme is supposed to be a pseudorandom permutation, this can't

be so. Therefore, assuming the OFB mode is secure, and that the block encryption

scheme used is secure, then so is this scheme. U

Although the scheme is at least as secure as OFB when used once, the fact that

is being used incrementally opens up a different venue of attack. The adversary can

attempt to look at multiple revisions of the document in the hopes of gleaning extra

information.

Claim 6.2 The adversary, when allowed to see updates to the encryption, can do no

better with a chosen plaintext attack (where he may query both an oracle for E and

an oracle for I) than having a chosen plaintext attack on the standard block cipher.

Sketch of Proof (informal) The basic idea is to demonstrate that any chosen

plaintext attack can be done by performing a chosen plaintext attack on the block

cipher itself. (i.e. one can simulate the attacks by performing similar subattacks on

the block cipher itself).

Given the underlying block cipher algorithm as a black box, it is simple to choose

a random number as IV and run it through the cipher chaining to get the pad.

Then for any block, simply encrypt the message and XOR it in. This should yield

plaintext/ciphertext pairs as desired.

Note that this is not demonstrable for a chosen ciphertext attack, unless one is

restricted to IV being randomly selected for the chosen ciphertext. (It is impossible to

derive the cipher chain from a chosen IV with a chosen ciphertext attack on the boxes,

and so unless one can allow that to always be random and derive the chain backwards,

this scheme may be weak to a wise chosen ciphertext attack with a specifically chosen

IV). Although it has not been proven, the author suspects that this scheme is still

strong against chosen ciphertext as long as the basic block scheme is not susceptible

to a combination of chosen plaintext AND chosen ciphertext attacks. This is based

on the fact that the choice of IV can give chosen plaintext information even during

a chosen ciphertext attack. U

We also note that if the underlying block cipher scheme offers indistinguishable

security, so does the entire scheme.

Finally, there is one more concern that needs to be addressed with this scheme:

the cipher can be truncated to yield another valid ciphertext. Since we still do not

have MACs to deal with this problem (those will be discussed in chapter 4), we can

instead set the first or last blocks to be the length of the document. Being a block,

they are easy to update when the document length changes, and being part of the

encryption, they are theoretically hard to break (although one can easily derive one

block's encryption from it).

privacy

This scheme encodes no history, so it can be considered private, assuming that the

above security holds (in this sense, our data structure is an oblivious one, since there

is only one possible representation for any data). The privacy of the encryption

however, is still fundamentally tied to the privacy of the block scheme. The OFB

mode will provide some randomization of input to protect equivalent plaintexts from

being immediately identifiable. However, guarantees can only be provided through

the choice of block encryption scheme, not just by examining the usage of it.

efficiency

Not only is the above scheme secure, it is computationally slower than standard

encryption (using CBC, OFB, or ECB mode) by only about a factor of two. This is for

a computation of an encryption/decryption from scratch. As soon as incrementality

is introduced, this scheme becomes much faster than the CBC or OFB mode.

As was mentioned earlier, however, this scheme can become extremely slow of the

prevalent type of operation is an insertion or deletion of date that is not aligned on a

block boundary and whose size is not a multiple of the size of a block. Therefore, it is

recommended that the types of operations normally performed on the document be

analyzed (potentially using the usage analyzer discussed in chapter 3) and appropriate

variables tested. One can easily change the size of a block, pad, and amount of time

waiting before attempting to compute for a block. And by setting those to appropriate

values, achieve optimal efficiency.

Chapter 7

Directions for Incremental

Cryptography

The previous chapters analyzed several cryptographic primitives and how to make

them incremental. This chapter will discuss other ideas that are related to the topic,

and also suggest several possible applications of incremental cryptography.

7.1 Other Related Ideas

Incremental cryptography deals with regenerating valid transformations of modified

documents. There are other similar ideas that come out of this concept, and merit

some discussion.

7.1.1 Incremental Hashing

Another oft-used cryptographic primitive is the cryptographic hash. This primitive

takes a long document and generates a fingerprint of it that has several properties.

Two of the relied on properties include the fact that it is hard to guess any document

with that fingerprint, and also that it is hard to find two documents with the same

fingerprint. This primitive is used in many protocols to commit without revealing

information, or to compute partial checksums.

As with other schemes, this can and should be made incremental so that it is

possible to update these fingerprints without recomputing from scratch. Some work

has been done towards this goal, but there are many properties of hashes, and so not

all schemes fit all these properties. However, this is something that will be examined

over time.

7.1.2 Incremental Digital Signatures

While a signature can be created by using the public key scheme mentioned earlier

(reversing the keys used to encrypt and decrypt), it is nevertheless not as efficient

as it can be given that a signature needs to be a small and hard to forge item, and

not an encryption that can only be created by the writer. As such, research has been

undertaken into exactly how big a signature need be in an incremental scheme, and

also into designing some schemes (one scheme with interesting properties is suggested

in [12]), and which uses an oblivious 2-3 tree to store the document in a manner

which disguises how the document arrived at its current state. However, it has a few

undesired features including a long signature, and several complex computations need

to be performed with every update. It is therefore likely to need some implementation

tests and optimizations to see whether it can work fast enough to be inobtrusive to

the users.

Another potential approach is to use the incremental hashing proposed in sec-

tion 7.1.1, and then to encrypt it with the private key. However, since the encryption

is likely to be the much more expensive operation, this may not be much of a win.

However, there are schemes (such as ElGamal) which allow for some precomputation

ahead of time, thereby leaving just a small amount of work at the end. However,

since incremental hashing schemes weren't covered, it's hard to know how well this

would do too.

7.1.3 Incremental Group Protocols

There are many protocols in the real world which require a set of participants. In

a real-world application, this set may vary with time (an employee leaves, a new

employee joins, etc). Currently, when this happens, most schemes require generating

the respective components from scratch, with everyone meeting together. It should

be possible instead to, given specific security criteria, deal without starting everything

from scratch. This of course can lead to interesting problems with revoking people

who have left, but nevertheless, is an interesting direction to examine.

7.1.4 Incremental Keys

While it is probably more likely that a document changes, it is also possible to have

a system where the key can undergo changes instead of the document. One simple

solution to this idea is to generate a session key, and transform the document using

the session key. Then, encrypt the session key with the main key (the key that will

undergo changes). Then, every time the main key changes, just re-encrypt the session

key.

While this approach is simple, it doesn't always achieve what is desired from a

cryptosystem, and as such, other directions may merit exploring. One such direction

is explored in a paper by Blaze and Strauss (see [7]), where they suggest a proxy

encryption function to later be replaced by another key.

One possible use for this technology is the case of encrypted mail to multiple

recipients. It would be helpful if one could easily modify an encryption to one person

into an encryption for another without recomputing from scratch.

7.2 Possible Uses

Apart from using incremental cryptography to dynamically generate signatures, en-

cryptions, or MAC for buffers as they are being edited, incremental cryptography can

be put to use in many other real-world applications.

7.2.1 Filesystems

One application of incremental cryptography is within filesystems, either as a form of

virus protection, or for the protection of the data. Studies of filesystems such as UFS

(see [14]) indicate patterns among specific paths. Some file tend to be temporary

files created and deleted in their entirety (file in /tmp/ often exhibit this behavior

for example), others (like logs) are appended to mostly. Finally, there are files which

have appends, modifies and deletes performed on them. LFS takes advantage of this

by making all changes on a "log" which they regularly prune. Instead, we can stick

to the UFS semantics, but every time a modification/insertion/deletion occurs, we

generate a MAC or an encryption of the sector or the file.

Using a MAC lets us notice when a file has changed without permission, and

building it into the filesystem will make it automatic. Using encryption allows us to

prevent unauthorized people from reading any data they were not approved for.

7.2.2 Blinding

Since there is nothing in the definition of an incremental scheme that requires the in-

crementor to know the original document, interesting protocols which require that the

source document be changed in a particular way by a party which has no knowledge

of the actual document can be designed. One such application is blind signing, where

the signer can modify the final block of a document with some signature without

actually seeing the rest of the document.

7.2.3 Web Pages

Many types of services on the web now want to implement encryption for data trans-

mitted. While many things that are transmitted are static pages (for example, an

online dictionary), others are not. Many sites have shopping carts that you can load

with things, thereby adding an item at a time. Also, there are pages with fill-out

forms. Both these things seem ideal for incremental encryption. In the first, every

item that is added is functionally one insert(operation. On the other, the fill-out

form is usually a standard form which the web server may have pre-computed an

encryption for a long time ago. Then, for filling it out and sending it back, a few

modify or insert operations will fill-out the form and have it ready to be sent back

encrypted.

7.2.4 Electronic Cash

There are many schemes proposed for conducting commerce on the Internet. Some

are based on the concept of an electronic wallet that is carried around by the user,

and which changes after every sale is performed. Digital signatures are used to make

sure the user is authenticated, and also to make sure that the wallet is valid according

to some bank. Since the wallet changes tend to be of the nature of "add fifty dollars"

or "remove fifty cents", it is possible that incremental cryptography can be used here

too.

Chapter 8

Conclusion

As was stated in the introduction, cryptography is not used much in real-world appli-

cations even in situations where it is an ideal solution to the problem. This problem

has been one that cryptographers have worked hard at solving, and in order to do so,

several problem areas were identified.

Incremental cryptography has been demonstrated to be very effective in reducing

the user-apparent delays, as well as making cryptography more embedded within the

applications. While it does nothing to solve other problems (such as political ones),

it does provide a major step in the direction of a long-term solution to the problems

of ease of use, perceived speed, and ease of integration.

As part of this thesis, several incremental cryptographic transformations were

described and analyzed, and some were implemented to measure performance and

to learn from using an actual system. The speed of the incremental algorithms was

discovered to be efficient enough to allow for constant updating without worry in

both implementations.

Finally, the implementations led to studying different approaches at optimizing

the increment operations, and usage patterns were studied to help figure out values

for specific variables within schemes.

Overall, in conclusion, incremental cryptography appears to be a very solution to

these problems, and it is hoped that in the future, software programmers will integrate

the concepts into their applications, and users will have this features without worrying

about how they work, how to use them, or about waiting for things to encrypt and

decrypt.

Appendix A

Source Code

A.1 MAC-mode

The following is code used to implement a MAC minor mode in emacs. When turned

on for a buffer, it will automatically attempt to compute the MAC for the particular

buffer. Whenever the buffer is saved, the MAC is saved along with it in a file with

the same name and the suffix of '. sum'.

There is documentation within the code to explain what is happening, but the

basic idea is that MAC.el is loaded and used via M-x MAC-mode. Then, for each

buffer, it will ask for keys, and create two subprocesses, one for the fl() and one for

the f2(). These processes do the complex computation in C and communicate back

with emacs to deliver the results. See the chapter on MAC computations (chapter 4)

for an explanation of how it works.

It is implemented as a minor mode in emacs to allow for easy integration with

other features of emacs, such as the mail reader, or cc-mode editing, or any other

major or minor modes that are being used.

A.1.1 MAC.el

This is the main elisp code to achieve the minor mode.

Code to create a minor mode that will notice when the buffer is
;;; edited, and appropriately modify a local MAC code based on the
;;; given keys as is documented in 'Incremental Cryptography and

Application to Virus Protection'. by Mihir Bellare, Oded
;;; Goldreich and Shafi Goldwasser

; Written by Yoav Yerushalmi under the supervision of Prof. Shafi
Goldwasser. August 8, 1996

Permission is granted to use and modify this code as desired, as
;;; long as credit is given to all the above.

;;; MAC Mode
;;; An elisp minor mode to generate a Message Authentication Code as

;;; a buffer is being updated.

To use, simply run MAC-mode on a buffer, and edit it. When
;;; trying to save, the checksum will be written out automatically
;;; to a file named {foo}.sum

This is still NOT a complete product. Please understand many
things still will change and be optimized.

Also, being a minor mode, you can have checksums being computer
;;; for multiple buffers simultaneously (this is untested, but the
;;; code is in). In fact, it will smartly try and keep up with all

buffers in the background, updating checksums as they occur.

;;; For the actual description of the scheme, please pick up a copy
of the paper

This is implementing the XOR scheme, and does so the following
way: a mac-list datastructure is created for the buffer. This is
basically a linked list, with the following properties:

MAC-start- I I MAC I I MAC I I MAC-end- I
block I--->1 datablockl--->l datablock I--->I block I

A MAC-datablock is composed of the following three things:
MAC-string : hopefully a MAC-blocksize length string

representing the part of the buffer this block

80

is holding.
;;; MAC-pad a randomly generated MAC-security-padding

length string
MAC-sum : F(cur-block + next-block). nil means

; ;uncomputed yet.

;;; please note that under this setup, MAC-start-block's checksum
,; ; changes, while MAC-end-block's doesn't.

(require 'timer)

;;; Variables that can and SHOULD be changed depening on usage
; patterns

(defconst MAC-blocksize 64
"number of bytes in a block, not including random padding")

(defconst MAC-security-padding 16 "number of bytes in the security
padding appended to a block -- security parameter")

(defconst MAC-idle-wait 0.5 "number of seconds to let the machine be
idle before trying to process blocks")

(defconst MAC-idle-repeat 0.3 "number of seconds between iterative calls when idle"

(defconst MAC-Fl-proc "/mit/yoav/work/lcs/bin/MAC-f1"
"the process to run to compute the fl function")

(defconst MAC-F2-proc "/mit/yoav/work/lcs/bin/MAC-f2"
"the process to run to compute the f2 function")

(random t) ;;; initialize random seed using emacs shitty random
;;; numbers

(defvar MAC-last-idle-timer 'nil
"a variable to hold the last idle-timer")

(defvar MAC-start-block (vector "start"
"startpad"
'nil)
"first block in any MAC-list, sum changes and so block may change")

(defconst MAC-default-start-block (vector "start"
"startpad"

'nil)
"default value of first block in any MAC-list")

(defconst MAC-end-block (vector "end"
"endpad"
'nil)

"last block in any MAC-list")

(defvar MAC-buffers '()
"A list of all buffers currently using MAC-mode")

(defvar MAC-fl-key 'nil
"The variable used to hold the key for fl")

(defvar MAC-f2-key 'nil
"The variable used to hold the key for f2")

(defvar MAC-fl-proc 'nil
"The process that is used to compute MAC-fi")

(defvar MAC-f2-proc 'nil
"The process that is used to compute MAC-f2")

(defvar MAC-fl-queue 'nil
"The queue being used for encryption of blocks")

(defvar MAC-f2-queue 'nil
"The queue being used for calculating final checksums")

(defvar MAC-mode 'nil
"*Non-nil enables message authentication computations on buffer.

The default value is nil. To change the default, do this:
(set-default 'MAC-mode t)")

(defvar MAC-mode-key 'nil
"The secret key associated with the person doing the edits.
hopefully the same throough all buffers")

(defvar MAC-local-h 'nil
"The variable that holds the current XOR of all block checksums")

(defvar MAC-final-sum 'nil
"The variable that holds the final encrypted checksum")

(defvar MAC-list 'nil
"The list structure representing the entire buffer")

(defvar MAC-list-modified 't
"This variable, when set to 't, implies the MAC-list datastructure
may have shorter or longer strings than MAC-blocksize in them")

(defvar MAC-list-sums-complete 'nil
"This variable, when set to 'nil, implies that if MAC-list-modified
is 'nil, the sums are still not all correct")

(defvar MAC-list-final-sum-good 'nil
"This variable, when set to 't, along with MAC-list-modified and
MAC-list-sums-complete, decide whether the final checksum for the

buffer is valid")

(defvar MAC-orig-require-final-newline 'nil
"This variable holds the original value of require-final-newline")

(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local

(make-variable-buffer-local

'MAC-fl-key)
'MAC-f2-key)
'MAC-fl-proc)
'MAC-f2-proc)
'MAC-fl-queue)
'MAC-f2-queue)
'MAC-local-h)
'MAC-final-sum)
'MAC-start-block)
'MAC-mode)
'MAC-list)
'MAC-list-modified)
'MAC-list-sums-complete)
'MAC-list-final-sum-good)

'after-change-functions)

; a few inline functions to obviate the MAC-list datastructure
(defsubst MAC-string (block)
"return the string associated with the MAC-list structure block"
(aref block 0)

(defsubst MAC-pad (block)
"return the security pad associated with the MAC-list structure
block"
(aref block 1)

(defsubst MAC-sum (block)
"return the sum associated with the MAC-list structure block"
(aref block 2)

(defsubst MAC-set-string (block val)
"set the value of string in block to val"
(aset block 0 val))

(defsubst MAC-set-pad (block val)
"set the value of pad in block to val"
(aset block 1 val))

(defsubst MAC-set-sum (block val)
"set the value of sum in block to val"
(aset block 2 val))

(or (assq 'MAC-mode minor-mode-alist)
(setq minor-mode-alist

(cons '(MAC-mode " MAC") minor-mode-alist)))

set to always check if there is any more updating to do.
this will keep checking constantly.

(run-with-idle-timer MAC-idle-wait
'MAC-idle-repeat 'MAC-mode-idle)

(defun MAC-find-file-hook ()
"hook to call after a file is loaded to
see whether it has been saved with a MAC"
(let* ((name buffer-file-truename)
(sumname (concat name ".sum")))

(if (file-readable-p sumname) (MAC-mode))))

(defun MAC-kill-buffer-hook ()
"hook to call when a buffer is killed"
(if (not (null MAC-fl-proc))

(delete-process MAC-fl-proc))
(if (not (null MAC-f2-proc))

(delete-process MAC-f2-proc)))

(add-hook 'find-file-hooks 'MAC-find-file-hook)
(add-hook 'kill-buffer-hooks 'MAC-kill-buffer-hook)

(defun MAC-mode (&optional arg)
"Minor mode for editing files with automatic MAC
computation"
(interactive "P")
(setq MAC-mode

(if (null arg)
(not MAC-mode)

(> (prefix-numeric-value arg) 0)))
(if MAC-mode

(progn
(if (null MAC-buffers)

(setq MAC-buffers (list (current-buffer)))
(nconc MAC-buffers (list (current-buffer))))

(if (null MAC-fl-key)
(progn

(setq MAC-fl-key (MAC-get-fl-key))
(let ((process-connection-type nil))

(setq MAC-f -proc

(start-process "FI"
(generate-new-buffer-name " Fl")
MAC-Fl-proc))

(if (null MAC-fl-proc)
(error "Couldn't start up " MAC-Fl-proc))

(process-kill-without-query MAC-fl-proc))
(process-send-string MAC-fl-proc (concat MAC-fl-key "\n"))
(setq MAC-fl-queue (tq-create MAC-fl-proc))))

(if (null MAC-f2-key)
(progn

(setq MAC-f2-key (MAC-get-f2-key))
(let ((process-connection-type nil))

(setq MAC-f2-proc
(start-process "F2"

(generate-new-buffer-name " F2")
MAC-F2-proc))

(if (null MAC-f2-proc)
(error "Couldn't start up " MAC-F2-proc))

(process-kill-without-query MAC-f2-proc))
(process-send-string MAC-f2-proc (concat MAC-f2-key "\n"))
(setq MAC-f2-queue (tq-create MAC-f2-proc))))

(if (timerp MAC-last-idle-timer)
(cancel-timer MAC-last-idle-timer)) ;;don't need the timer.

(add-hook 'after-save-hook 'MAC-save-checksum)
(setq after-change-functions

(cons 'MAC-mode-buffer-change-hook after-change-functions))
(setq gc-cons-threshold 3000000)
(setq MAC-list (MAC-prepare-checksum))
(setq gc-cons-threshold 1000000))

(setq MAC-buffers (delete (current-buffer) MAC-buffers))
(setq MAC-list '())
(delete 'MAC-mode-buffer-change-hook after-change-functions)
(remove-hook 'after-save-hook 'MAC-save-checksum)))

(defvar MAC-mode-map nil "Keymap for MAC-mode.")

(if (null MAC-mode-map)
(fset 'MAC-mode-map

(setq MAC-mode-map (copy-keymap (current-global-map)))))

(if (not (assq 'MAC-mode minor-mode-map-alist))
(setq minor-mode-map-alist

(cons (cons 'MAC-mode MAC-mode-map)
minor-mode-map-alist)))

(defun MAC-mode-buffer-change-hook (beg end old-len)
"This function is supposed to be called every time the buffer
changes, and will contain information as to exactly HOW the
buffer changed. This is then used to update the MAC-list
structure"
(if (timerp MAC-last-idle-timer)

(cancel-timer MAC-last-idle-timer))
(setq MAC-list-modified 't)
(let ((prev MAC-list)

(block)
(new-string-start)
(new-string-end)
(new-string)
(pos beg))

(setq pos (- pos (length (MAC-string (car (cdr prev))))))
(while (and (> pos 1)

(not (eq (car (cdr prev)) MAC-end-block)))
(setq prev (cdr prev))
(setq pos (- pos (length (MAC-string (car (cdr prev)))))))

(setq block (car (cdr prev)))
(if (eq block MAC-end-block)

; we're at the last block, so
; we probably want to create
; an empty block to allow for
; things to insert into.
(progn
(setcdr prey (cons (MAC-make-list-block "")

(cdr prev)))
(setq block (car (cdr prev)))
(setq pos (+ pos (length (MAC-string MAC-end-block))))))
(MAC-set-sum (car prev) 'nil)
(MAC-set-sum block 'nil)

; pos points at exactly where
we insert

(setq pos (1- (+ pos (length (MAC-string block)))))
(setq new-string-start (substring (MAC-string block) 0 pos))

; we're deleting some chunk
(if (> old-len 0)

(progn
; we're deleting the first
; chars of the next block
(if (= pos MAC-blocksize)

(progn
(setq prey (cdr prev))
(setq block (car (cdr prev)))

(MAC-set-sum block 'nil)
(setq pos 0)
(setq new-string-start "")))
(while (>= old-len (length (MAC-string block)))

(setq old-len (- old-len (length (MAC-string block))))
(setcdr prey (cdr (cdr prev)))
(setq block (car (cdr prev))))

(setq old-len (- old-len (- (length (MAC-string block)) pos)))
(if (<= old-len 0)

(setq new-string-end
(substring (MAC-string block)

(+ pos
(+ (-

(length (MAC-string block)) pos)
old-len))))
(setq new-string-end (substring (MAC-string block)
old-len)))

(setq new-string
(concat new-string-start
(concat (buffer-substring beg end)
new-string-end))))

(setq new-string (concat new-string-start
(concat (buffer-substring beg end)
(substring

(MAC-string block) pos)))))

; new-string now holds the
; string that should replace
; the one in 'block' need to
; either just put it straight
; in, or else create multiple
; blocks for it.

(if (< (length new-string) MAC-blocksize)
(if (= (length new-string) 0)

(setcdr prey (cdr (cdr prev)))
(MAC-set-string block new-string)
(MAC-set-pad block (MAC-randomizer new-string)))

(if (= (length new-string) MAC-blocksize)
(progn
(MAC-set-string block new-string)
(MAC-set-pad block (MAC-randomizer new-string))
(MAC-calculate-block-sum (car prev) block))

; our string is longer than a
; block, so put as much of it
; in the current block, and

; then insert the rest into a
; future block.
(MAC-set-string block (substring new-string 0 MAC-blocksize))
(MAC-set-pad block (MAC-randomizer (MAC-string block)))
(setq new-string (substring new-string MAC-blocksize))
(setq prey (cdr prev))
(while (>= (length new-string) MAC-blocksize)
(setcdr prey (cons

(MAC-make-list-block
(substring new-string 0 MAC-blocksize))

(cdr prev)))
(MAC-set-sum (car prev) 'nil)

(setq prev (cdr prev))
(setq new-string (substring new-string MAC-blocksize)))

(if (/= (length new-string) 0)
(progn

(setcdr prey (cons (MAC-make-list-block new-string)
(cdr prev)))

(MAC-set-sum (car prev) 'nil)))))))

(defun MAC-mode-cleanup (list)
"This command is called upon a MAC-list datastructure that may be
segmented, with some MAC-strings shorter or longer than the block
length. It attempts to make all the strings (except for the last
one) be of MAC-length size, as well as fix up all the incorrect
sums. Returns the value of 'h' for the list"
(MAC-mode-fix-strings list)
(MAC-mode-fix-sum list))

(defun MAC-mode-fix-strings (list)
"Takes a MAC-list structure where strings may be of wrong

length, and adjusts it so all have MAC-blocksize chars, except for
possibly the last. If any block is adjusted, change the checksum
for it and the previous block to nil to indicate incorrect checksum"

(let ((current (car (cdr list)))
(prev list)
(rest (cdr (cdr list)))
(offset 0)
(extra "")
(work-string)
(len))

(if (not (eq (car rest) MAC-end-block))
(while (not (eq current MAC-end-block))

(setq len (length (MAC-string current)))
(if (= offset 0)

(if (= len MAC-blocksize)
(progn (setq current (car rest))
(setq rest (cdr rest))
(setq prev (cdr prev)))
(MAC-set-sum current 'nil)
(MAC-set-sum (car prev) 'nil)
(if (> len MAC-blocksize)
; truncate current string and
; put the rest in 'extra'

(progn
(setq extra (substring

(MAC-string current) MAC-blocksize))
(MAC-set-string
current
(substring (MAC-string current) 0 MAC-blocksize))
(MAC-set-pad current (MAC-randomizer

(MAC-string current)))
(setq offset (- len MAC-blocksize))
(setq current (car rest))
(setq prey (cdr prev))
(setq rest (cdr rest)))

; else put the entire string
; in extra, and push it into
; the next block, leaving this
; block out of the MAC-list
; structure.

(setq extra (MAC-string current))
(setq offset len)
(setcdr prev rest)
(setq current (car rest))
(setq rest (cdr rest))))

; offset is not zero, so we
; have some extra string to
; insert into the current
; block

(MAC-set-sum (car prev) 'nil)
(while (> offset MAC-blocksize) ; we need to turn as much
; of the 'extra' string
;; into new blocks as we can.
(setcdr prey (cons (MAC-make-list-block

(substring extra 0 MAC-blocksize))
(cons current rest)))

(setq extra (substring extra MAC-blocksize))

(setq offset (- offset MAC-blocksize))
(setq prev (cdr prev)))

(if (= offset 0) ; we got lucky.. exactly sized blocks
; were created...

'()

(MAC-set-sum current 'nil)
(setq work-string (concat extra (MAC-string current)))
(if (> (length work-string) MAC-blocksize)

(progn
(MAC-set-string
current (substring work-string 0 MAC-blocksize))
(MAC-set-pad current (MAC-string current))
(setq extra (substring work-string MAC-blocksize))
(setq offset (length extra))
(setq current (car rest))
(setq rest (cdr rest))
(setq prey (cdr prev)))

(setcdr prev rest)
(setq extra work-string)
(setq offset (length extra))
(setq current (car rest))
(setq rest (cdr rest))))))
; else we have one large block
; in between the start and end
; blocks

(if (> (length (MAC-string current)) MAC-blocksize)
(progn

(setq extra (MAC-string current))
(while (> (length extra) MAC-blocksize)
(setcdr prey (cons

(MAC-make-list-block
(substring extra 0 MAC-blocksize)) rest))
(setq extra (substring extra MAC-blocksize))
(setq prey (cdr prev)))

(if (> (length extra) 0)
(setcdr prey (cons (MAC-make-list-block extra) rest))

(setcdr prev rest)))))
(while (>= offset MAC-blocksize)

(setcdr prey (cons
(MAC-make-list-block (substring extra 0
MAC-blocksize))
(cons current rest)))
(setq prey (cdr prev))
(setq offset (- offset MAC-blocksize))
(setq extra (substring extra MAC-blocksize)))

(if (> offset 0)
(setcdr prey (cons (MAC-make-list-block extra)

(cons current rest)))))
(setq MAC-list-modified 'nil)
(setq MAC-list-sums-complete 'nil))

(defun MAC-mode-fix-sum (list)
"Takes a list of MAC-list-block elements, and sets the value of
MAC-sum wherever it is set to 'nil, otherwise, it leaves the
current value there. returns the xor of all the sums."
(if MAC-list-modified

(MAC-mode-fix-strings list))
(let ((current (car list))

(rest (cdr list))
(final 'nil))

(while (not (eq current MAC-end-block))
(if (null (MAC-sum current))

(MAC-calculate-block-sum current (car rest)))
(setq final (MAC-xor (MAC-sum current) final))
(setq current (car rest))
(setq rest (cdr rest)))

final))

(defun MAC-update-buffer (buffer)
"Attempts to fix the buffer chosen"
(save-excursion
(set-buffer buffer)
(MAC-mode-fix-strings MAC-list)
(setq MAC-list-modified 'nil)
(setq MAC-list-sums-complete 'nil)
(let ((current (car MAC-list))

(rest (cdr MAC-list))
(final 'nil))

(while (not (eq current MAC-end-block))
(if (null (MAC-sum current))

(MAC-calculate-block-sum current (car rest)))
(setq final (MAC-xor (MAC-sum current) final))
(setq current (car rest))
(setq rest (cdr rest)))

(setq MAC-list-sums-complete 't)
(setq MAC-local-h final)
(MAC-f2 MAC-local-h)
(setq MAC-list-final-sum-good 't))))

(defun MAC-mode-idle ()
"The computer thinks it is being exceptionally idle, and so

is ready to compute some of the buffer"
(if (timerp MAC-last-idle-timer)

(cancel-timer MAC-last-idle-timer))
(if (not (null MAC-buffers))

(progn
(MAC-mode-incremental-fix)
(setq MAC-last-idle-timer

(run-with-timer MAC-idle-wait
MAC-idle-repeat
'MAC-mode-incremental-fix)))))

(defun MAC-mode-incremental-fix ()
"Is called often when the machine is idle, in the hopes of updating

the MAC-list datastructures of all buffers. It will do one thing at a
time, and then return, thereby being 'almost' interruptible. It also
cycles through all the buffers in MAC-buffers. There MUST be a buffer
which is in MAC-mode, or this function will fail."

(let ((buffer))
(setq buffer (car MAC-buffers))
(setq MAC-buffers (cdr MAC-buffers))
(while (and (not (null MAC-buffers))

(null (buffer-name buffer)))
(setq buffer (car MAC-buffers))
(setq MAC-buffers (cdr MAC-buffers)))

(if (not (null (buffer-name buffer)))
(progn
(if (null MAC-buffers)

(setq MAC-buffers (list buffer))
(nconc MAC-buffers (list buffer)))

(save-excursion
(set-buffer buffer)
(if (not (null MAC-list-modified))

(progn
(MAC-mode-fix-strings MAC-list)
(setq MAC-list-sums-complete 'nil))

(if (null MAC-list-sums-complete)
(let ((current (car MAC-list))

(rest (cdr MAC-list))
(changed 'nil))

(while (and (not (eq current MAC-end-block))
(not changed))

(if (null (MAC-sum current))

(progn
(MAC-calculate-block-sum current (car rest))
(setq changed 't)))

(setq current (car rest))
(setq rest (cdr rest)))

(if (not changed)
(progn
(setq MAC-list-sums-complete 't)
(setq MAC-list-final-sum-good 'nil))))

(if (null MAC-list-final-sum-good)
(let ((current (car MAC-list))

(rest (cdr MAC-list))
(MAC-local-h 'nil))

(while (not (eq current MAC-end-block))
(setq MAC-local-h (MAC-xor (MAC-sum current) MAC-local-h))
(setq current (car rest))
(setq rest (cdr rest)))

(MAC-f2 MAC-local-h)
(setq MAC-list-final-sum-good 't))))))))))

(defun MAC-compute-buffer (b)
"Select a buffer, and compute the MAC for it, returning the MAC as
output"
(save-excursion

(set-buffer b)
(MAC-prepare-buffer b)
(let ((MAC (MAC-compute-from-list MAC-list)))
(message "The MAC is %s." MAC)
(setq MAC-list-sums-complete 't)
(setq MAC-list-modified 'nil)
MAC-list

(defun MAC-prepare-buffer (b)
"Selects a buffer, and generates a MAC list for it, without filling

in the checksums, hoping that there will be some idle-time used to do
that later"

(save-excursion
(set-buffer b)
(let ((list (MAC-make-list-no-sums (buffer-string))))
(setq MAC-list list)
)

MAC-list

; The MAC-list datastructure is a list of items
; each item contains
; a string of MAC-blocksize letters corresponding to the block

a string of MAC-security-padding letters for random data
a variable corresponding to the current checksum of the block

(defun MAC-make-list-no-sums (str)
"Takes a long string and returns a properly

formatted (as per MAC-list datastructure) item. It doesn't compute
the checksum for each block, instead leaving it a nil."
; because of the way lisp handles lists, it is
; easier to work backwords on the string

(let* ((size (length str))
(blocks (/ size MAC-blocksize))
(remain (% size MAC-blocksize))
(list (cons MAC-end-block '()))

(if (/= remain 0)
(setq list (cons

(MAC-make-list-block (substring str (- 0 remain)))
list))
(if (= size 0) ;; empty buffer

(setq list (cons (MAC-make-list-block "") list))))
(while (> blocks 0)
(setq blocks (1- blocks))
(setq list (cons

(MAC-make-list-block (substring str (* blocks MAC-blocksize)
(* (1+ blocks)

MAC-blocksize)))
list))

(cons MAC-start-block list)

(defun MAC-make-list-block (str)
"Takes a string, and turns it into a MAC-list-block.

the checksum is set to nil"
(vector str (MAC-randomizer str)' nil))

(defun MAC-compute-h-from-list (list)
"Takes a MAC-list datastructure, and computes the temporary h from

it"

(let ((current-block (car list))
(rest (cdr list))
(final))

(MAC-mode-fix-sum list)
(while (vectorp current-block)

(setq final (MAC-xor final (MAC-sum current-block)))
(setq current-block (car rest))
(setq rest (cdr rest)))

final))

(defun MAC-compute-from-list (list)
"Takes a MAC-list datastructure, and computes the final MAC from it"

;; cleanup the actual MAC-list datastructure
(MAC-f2 (MAC-compute-h-from-list list)))

(defun MAC-calculate-block-sum (cur-block next-block)
"Takes a current and next block, and sets the sum for the current

block using it's strings and the next block's strings,
which represents f_l(Ri, Ri+1) in the paper"

(save-excursion
(tq-enqueue MAC-f -queue

(concat
(Fl-encode (concat (MAC-string cur-block)

(MAC-pad cur-block)))
II\nII

(Fl-encode (concat (MAC-string next-block)
(MAC-pad next-block)))

" \n")
".*\n" (vector cur-block (MAC-string cur-block)

(current-buffer)) 'MAC-fl-tq-process)
(accept-process-output MAC-fl-proc)))

(defun MAC-fl-tq-process (closure result)
"This function is called after a transaction is completed and we

have a block checksum. This simply places the checksum in the
appropriate block"

(save-excursion
(set-buffer (aref closure 2))
(if (eq (MAC-string (aref closure 0))
(aref closure 1)) ; check that the string hasn't
changed

(MAC-set-sum (aref closure 0) (Fl-decode result))
(MAC-set-sum (aref closure 0) 'nil)) ; if it has, reset the

; sum, wait to fix later,
; when there is more
; time.

(defun Fl-decode (string)
"Takes a string of the format 03 aa f2 ... and turns it

into an array of number values"
(let ((len (/ (length string) 3))

(result)
(current 0))

(setq result (make-string len ?a))
(while (< current len)

(aset result current (str-to-num
(substring string (* current 3)

(+ (* current 3) 2))))
(setq current (1+ current)))

result))

(defun F1-encode (string)
"Takes a string and turns it into a new string containing
the hex representation of every char in the string, with the
following format: '03 aa f2 ' note the final space.. it is
necessary for this MAC-fl program"
(let ((len (length string))

(result "")
(current 0))

(while (< current len)
(setq result (concat result (format "%02x "

(aref string current))))
(setq current (1+ current)))

result))

(defun str-to-num (string)
"Takes a string of the format 'a3' or '2a' and turns it into the

actual number associated with the value"
(let ((result 0)

(cur-string string)
(char))

(while (> (length cur-string) 0)
(setq char (- (string-to-char cur-string) 48))
(if (> char 9)

(setq char (- char 49)))
(setq result (+ (* 16 result) char))
(setq cur-string (substring cur-string 1)))

result))

(defun MAC-get-fl-key ()
"Prompts the user for the value of the key used for fl"
(read-string
"Please type in a key for the first-pass function (fl): ")

(defun MAC-get-f2-key ()
"Prompts the user for the value of the key used for f2"
(read-string
"Please type in a key for the second-pass function (f2) : ")

(defun MAC-xor (argl arg2)
"computes the appropriate XOR of the two sum values and returns

the result"
(if (null argl) (copy-sequence arg2)
(if (null arg2) (copy-sequence argl)

(let ((lenl (length argl))
(len2 (length arg2))
(common)
(counter 0)
(result))

(setq result (make-string (max lenl len2) ?a))
(setq common (min lenl len2))
(while (< counter common)

(aset result counter (logxor (aref argl counter)
(aref arg2 counter)))

(setq counter (1+ counter)))
(while (< counter lenl)

(aset result counter (aref argl counter))
(setq counter (1+ counter)))

(while (< counter len2)
(aset result counter (aref arg2 counter))
(setq counter (1+ counter)))

result))))

(defun MAC-f2 (h)
"Takes a value of h, and computes f2 on it"
(save-excursion

(tq-enqueue MAC-f2-queue (concat (F2-encode h) "\n")
".*\n" (current-buffer) 'MAC-f2-tq-process)

(accept-process-output MAC-f2-proc))

MAC-final-sum)

(defun F2-encode (a)
"does encoding for string a appropriate to F2 function"
(Fi-encode a))

(defun F2-decode (a)
"does encoding for string a appropriate to F2 function"
(Fl-decode a))

(defun MAC-f2-tq-process (closure result)
"This function is called when the final checksum has just been
queued for processing."
(save-excursion
(set-buffer closure)
(setq MAC-final-sum (F2-decode result))))

(defun MAC-randomizer (str)
"This functions rand(sigma), takes a string as input and computes

a resulting random pad"
(let ((rand-string "")

(num MAC-security-padding))
(while (> num 0)
(setq num (1- num))
(setq rand-string

(concat (char-to-string (random 256))
rand-string)))
rand-string))

(defun MAC-valid-pad-p (str pad)
"This function verifies whether a pad that was submitted is indeed a
valid pad given the string input."
't) ; by this scheme, pads are just random data, so all are valid.

(defun MAC-save-checksum ()
"run after a file is saved.. attempts to save the checksum"
(if MAC-mode

(progn
(message "attempting to save MAC.. please hold")
(MAC-update-buffer (current-buffer))
(setq MAC-orig-require-final-newline require-final-newline)
(setq require-final-newline 'nil)
(let* ((filename buffer-file-truename)

(new-filename (concat filename ".sum"))
(sum (prinl-to-string (MAC-compute-from-list MAC-list)))
(str (prinl-to-string MAC-list))
(buffer (create-file-buffer new-filename))

(save-excursion
(switch-to-buffer buffer)
(erase-buffer)
(insert str ?\n sum)
(write-file new-filename)
(kill-buffer buffer)

(set-file-modes new-filename (file-modes filename))

(setq require-final-newline MAC-orig-require-final-newline))))

(defun MAC-prepare-checksum ()
"This function attempts to create a MAC-list datastructure that

reflects the exact status of the current buffer. This should be called
after one turns on MAC-mode to speed up the creation of the internal
datastructures by using previously saved information. Returns a
MAC-list datastructure that reflects the current buffer's state"

(let ((list)
(pointer)
(m)
(sumfile)
(buffer)

(if (null buffer-file-name)
(progn
(message
"Could not find checksum. generating. please wait")
(setq list (MAC-prepare-buffer (current-buffer))))

(setq sumfile (concat buffer-file-name ".sum"))
(if (not (file-readable-p sumfile))

(progn
(message
"Could not read checksum. generating. please wait")
(setq list (MAC-prepare-buffer (current-buffer))))

(setq buffer (find-file-noselect sumfile))
(setq m (set-marker (make-marker) 1 buffer))
(setq list (read m))
(setq pointer list)
(setq MAC-start-block (car list))
(while (and (not (null pointer))

(not (equal (car (cdr pointer))
MAC-end-block)))

(setq pointer (cdr pointer)))
(if (null pointer)

(progn
(message
"sumfile is incorrect, generating, please wait")
(kill-buffer buffer)
(setq list (MAC-prepare-buffer (current-buffer))))

(setcdr pointer (cons MAC-end-block '()))
(if (MAC-list-matches-buffer-p list (current-buffer))

(message "Found sumfile with good checksum. using")
(message
"sumfile is incorrect, generating, please wait")
(setq list (MAC-prepare-buffer (current-buffer)))))

(kill-buffer buffer)))
(setq MAC-list-modified 't)
list))

(defun MAC-list-matches-buffer-p (list buffer)
"Takes a MAC-list structure and a buffer, and checks whether the two

agree on state. THIS DOES NOT CHECK THE CHECKSUM VALUES, only that the
strings in the buffer and in the MAC-list are the same."

(let ((current (car list))
(rest (cdr list))
(temp-buffer)
(max-for-real)
(max-for-temp)
(valid 't)

(setq temp-buffer (generate-new-buffer "temp"))
(save-excursion
(if (not (eq current MAC-start-block))

(setq valid 'nil))
(setq current (car rest))
(setq rest (cdr rest))
(set-buffer buffer)
(setq max-for-real (point-max))
(set-buffer temp-buffer)
(while (and (and valid (not (eq current 'nil)))

(not (eq current MAC-end-block)))
(insert (MAC-string current))
(setq current (car rest))
(setq rest (cdr rest))
)

100

(setq max-for-temp (point-max))
(if (not

(eq 0 (compare-buffer-substrings
buffer 1 max-for-real temp-buffer 1 max-for-temp)))
(setq valid 'nil))

(if (not (eq current MAC-end-block))
(setq valid 'nil))

(kill-buffer temp-buffer)
valid))

(defun valid-block-p (block next)
"Evaluates whether a block is valid(i.e. the checksum and

the pad match the blocks' data)"
(if (null block)

'nil
(if (and (null next) (not (eq next MAC-end-block)))

'nil
(let ((valid 't)

(first (copy-sequence block)))
(MAC-calculate-block-sum first next)
(if (not (MAC-valid-pad-p (MAC-string block) (MAC-pad block)))

(setq valid 'nil)
(if (not (equal (MAC-sum first) (MAC-sum block)))

(setq valid 'nil)))
valid))))

(defun MAC-check-file (filename)
"Checks the MAC of a supplied filename for validity."
(interactive "fFilename to check the MAC of : ")
(save-excursion

(let ((list)
(final-sum)
(computed-final-sum)
(pointer)
(m)
(sumfile)
(databuffer)
(datapoint 1)
(buffer)
(valid 'nil)
(done 'nil)

(if (null filename)

101

(message "Could not find %s -- BAD checksum" filename)
(setq sumfile (concat filename ".sum"))
(if (not (file-readable-p sumfile))

(message
"Could not read checksum: .s.sum -- BAD" filename)

(setq valid 't)
(setq databuffer (find-file-read-only filename))
(if (null MAC-fl-key)

(progn
(setq MAC-fl-key (MAC-get-fl-key))
(let ((process-connection-type nil))

(setq MAC-fl-proc (start-process "Fl"
(generate-new-buffer-name " Fi")
"/i/yoav/bin/MAC-f 1")))

(process-send-string MAC-fl-proc (concat MAC-fl-key "\n"))
(setq MAC-fl-queue (tq-create MAC-fl-proc))))
(if (null MAC-f2-key)

(progn
(setq MAC-f2-key (MAC-get-f2-key))
(let ((process-connection-type nil))

(setq MAC-f2-proc (start-process "F2"
(generate-new-buffer-name " F2")
"/i/yoav/bin/MAC-f 2")))

(process-send-string MAC-f2-proc (concat MAC-f2-key "\n"))
(setq MAC-f2-queue (tq-create MAC-f2-proc))))
(setq buffer (find-file-noselect sumfile))
(setq m (set-marker (make-marker) 1 buffer))
(setq list (read m))
(setq final-sum (read m))
(setq pointer (car list))
(setq list (cdr list))
(if (null (cdr list))

(setq valid 'nil)
(if (not (string= (MAC-string pointer)
(MAC-string MAC-start-block)))

(setq valid 'nil))
(if (not (string= (MAC-pad pointer)
(MAC-pad MAC-start-block)))

(setq valid 'nil))
(if (not (valid-block-p pointer (car list)))

(setq valid 'nil))
(setq computed-final-sum (MAC-sum pointer)))

(while (and valid (not done))
(setq pointer (car list))
(setq computed-final-sum

102

(MAC-xor computed-final-sum (MAC-sum pointer)))
(setq list (cdr list))
(if (null list)

(setq done 't)
(if (not

(string=
(buffer-substring datapoint
(+ datapoint

(length (MAC-string pointer))))
(MAC-string pointer)))

(setq valid 'nil)
(setq datapoint (+ datapoint (length (MAC-string pointer))))
(if (not (valid-block-p pointer (car list)))

(setq valid 'nil)))))
(if done

(if (not (and (string= (MAC-string pointer)
(MAC-string MAC-end-block))
(string= (MAC-pad pointer)
(MAC-pad MAC-end-block))))

(setq valid 'nil)
(if (not (equal (MAC-f2 computed-final-sum) final-sum))

(setq valid 'nil))))
(tq-close MAC-fl-queue)
(tq-close MAC-f2-queue)
(kill-buffer buffer)
(kill-buffer databuffer)
(if valid (message "Good Checksum for %s." filename)
(message "BAD Checksum for Us." filename))

valid)))))

(defun MAC-percent (&optional arg)
"Computes the percentage of the buffer for which a valid MAC has

been computed. This is useful for timing and optimization tests."
(interactive "b")
(save-excursion

(set-buffer arg)
(let ((good 0)

(bad 0)
(current (car MAC-list))
(rest (cdr MAC-list)))

(while (not (equal MAC-end-block current))
(if (null (MAC-sum current))

(setq bad (+ bad 1))
(setq good (+ 1 good)))

(setq current (car rest))

103

(setq rest (cdr rest)))
(message "The percentage is /.s."

(/ (* 100 good) (+ good bad))))))

A.1.2 MAC-fl

This is C code to do faster computations. It currently use DES in ECB mode.

/* MAC-fl
* This file contains an implementation of whatever it is that
* MAC-fl is deemed to do. In this case, MAC-fl simply takes an
* arbitrary length string and calculates DES(string), returning
* that as output. for security reasons, the program can't be
* called with the key as argument, so instead, it is passed the
* key in as the first string, and all the following strings are
* encrypted under that key.

* Written by Yoav Yerushalmi as part of the MAC.el package, see
* comments in MAC.el for further info.

#include <des.h>
#include <stdio.h>

#include <signal.h>
#include <unistd.h>

#define MAXBLOCK.LEN 256
/* maximum size of input in any one string */

#define min(a,b) ((a) < (b) ? (a) : (b))

void outfun(unsigned char);

int main() {
des_cblock key;
des_cblock input, output;
deskeyschedule schedule;
char strl[MAXBLOCKLEN + 1];
char str2[MAXBLOCKLEN + 1];
unsigned char temp[MAX BLOCK_LEN + 1];
unsigned char outl[MAXBLOCK_LEN + 1];
unsigned char out2[MAX_BLOCKLEN + 1];

104

int ref, outputlen;
int lenl, len2, shorter;

signal(SIGHUP, exit);
if (!fgets(strl, MAX_BLOCKLEN, stdin)) {
perror("failed to get key : ");
exit(l);

}
des_stringto_key(strl, &key);
if (key-sched(&key, schedule)) {
fprintf(stderr, "MAC-fl: Failed to set keyschdule.. exiting\n");
exit(l);}

while (1) {
if ((fgets(strl, MAX_BLOCK_LEN, stdin)) &&

(fgets(str2, MAX_BLOCK_LEN, stdin))) {
lenl = strlen(strl) -1;
len2 = strlen(str2) -1;
lenl = (lenl / 3);
len2 = (len2 / 3);
ref = 0;
while (ref < lenl) {

temp[ref] = (unsigned char)strtol(&strl[(ref * 3)], NULL, 16);
ref++;

}
memcpy(strl, temp, ref);
strl[lenl] = '\0'; /* remove the trailing newline */

ref = 0;
while (ref < len2) {

temp[ref] = (unsigned char)strtol(&str2[(ref * 3)], NULL, 16);
ref++;

}
memcpy(str2, temp, ref);
str2[len2] = '\0'; /* remove the trailing newline */

/* Calculate DES(strl) */
lenl -= 8;
ref = 0;
while (ref <= leni) {

memcpy(input, &strl[ref], 8);
desecb-encrypt(&input, &output, schedule, 1);
memcpy(&outl[ref], output, 8);
ref += 8;

}

105

lenl += 8;
if (ref < lenl) {

desstring_to_key(&strl[ref], &input);
des-ecbencrypt(&input, &output, schedule, 1);
memcpy(&outl[ref], output, 8);
ref += 8;

}
outl[ref] = '\0';

/* Calculate DES(str2) */
len2 -= 8;
ref = 0;
while (ref <= len2) {

memcpy(input, &str2[ref], 8);
desecb_encrypt(&input, &output, schedule, 1);
memcpy(&out2[ref], output, 8);
ref += 8;

}
len2 += 8;
if (ref < len2) {

des-string_tokey(&str2[ref], &input);
desecb_encrypt(&input, &output, schedule, 1);
memcpy(&out2[ref], output, 8);
ref += 8;

}
out2[ref] = '\0';

/* Calculate DES(strl) (xor) DES(str2) */
shorter = min(lenl, len2);
outputlen = shorter + ((8 - (shorter % 8)) % 8);
for (ref=0; ref<outputlen; ref++)

outfun(outl[ref] ^ out2[ref]);
if (lenl>len2)

while (ref < (lenl + ((8 - (lenl X 8)) % 8))) {
outfun(outl [ref]);
ref++;

}
if (len2 > lenl)

while (ref < (len2 + ((8 - (len2 % 8)) % 8))) {
outfun(out2 [ref]);
ref++;

printf ("\n");
fflush(stdout);

106

else
fprintf(stderr, "Problems");

void outfun(unsigned char foo)

printf("%02x ", foo);

A.1.3 MAC-f2

This is the same as fl(), but only has one real input. Again it uses DES in ECB

mode.

MAC-f2
This file contains an implementation of whatever it is that
MAC-fl is deemed to do. In this case, MAC-fl simply takes an
arbitrary length string and calculates DES(string), returning
that as output. for security reasons, the program can't be
called with the key as argument, so instead, it is passed the
key in as the first string, and all the following strings are
encrypted under that key.

Written by Yoav Yerushalmi as part of the MAC.el package, see
comments in MAC.el for further info.

#include <des.h>
#include <stdio.h>
#include <signal.h>
#include <unistd.h>

#define MAX_BLOCK_LEN 256
/* maximum size of input in any one string */

#define parse(a) ((16 * (a)[O]) + (a)[1])

void outfun(unsigned char);

int main() {

107

des_cblock key;
des_cblock input, output;
deskey-schedule schedule;
char str[MAXBLOCKLEN+1];
unsigned char temp[MAXBLOCK_LEN + 1];
unsigned char out[MAXBLOCK_LEN+1] ;
int ref;
int len, outputlen;

signal(SIGHUP, exit); /* terminate when we get sighup */
if (!fgets(str, MAX_BLOCK_LEN, stdin)) {
perror("MAC-f2 failed to get key : ");
exit(1);

}
desstringto.key(str, &key);
if (key-sched(&key, schedule)) {
fprintf(stderr, "MAC-f2: Failed to set keyschdule.. exiting\n");
exit(1);}

while (fgets(str, MAX_BLOCK_LEN, stdin)) {
len = strlen(str) - 1;

len = (len / 3);
ref = 0;

while (ref < len) {
temp[ref] = (unsigned char)strtol(&str[(ref * 3)], NULL, 16);
ref++;

}
memcpy(str, temp, ref);
str[len] = '\0'; /* remove the trailing newline */
outputlen = 0;
len -= 8;

ref = 0;
while (ref <= len) {

outputlen+=8;
memcpy(input, &str[ref], 8);
des_ecbencrypt(&input, &output, schedule, 1);
memcpy(&out[ref], output, 8);
ref += 8;

}
if (ref < (len+8)) {
outputlen += 8;

des_string_tokey(&str[ref], &input);
desecb_encrypt(&input, &output, schedule, 1);
memcpy(&out[ref], output, 8);

}
for (ref=0; ref < outputlen; ref++)

108

outfun(out [ref]);
printf("\n");
fflush(stdout);

void outfun(unsigned char foo)

printf("%02x ", foo);

109

A.2 usage.el

The following code is used to examine the usage patterns of the person typing at the

keyboard. Using these numbers, it becomes easier to pick the appropriate algorithm

or variables to achieve best performance.

Code to figure out what kind of changes a person makes when
editing a buffer. This will attempt to generate variables which
contain the number of all sorts of changes (see the variable
descriptions).

Written by Yoav Yerushalmi as part of his thesis research.
Supervised by Professor Shafi Goldwasser

March 20, 1997

Permission is granted to use and modify the code
long as credit is given to the above people.

as desired as

(require 'timer) ; need the timer package for idleness

(defvar total-changes 0
"The total number of changes made to the document")

(defvar insert 0
"The total number of inserts made to the document (of any length)")

(defvar delete 0
"the total number of deletes")

(defvar modify 0
"the total number of modify operations")

(defvar idle5 0
"the total number of times the buffer was idle for over half a
second")

(defvar idle10 0
"the total number of times the buffer was idle for over a second")

(defvar idle20 0
"the total number of times the buffer was idle for over two
seconds")

(defvar idlelO0 0
"the total number of times the buffer was idle for over ten
seconds")

(defvar start-time 0

110

',,

'I,

''I

'I,

"the time from when the use-mode was turned on")

These variables will be used to figure out what kind of above
operations were made

(defvar append 0
"an insert at the end")

(defvar truncate 0
"a deletion at the end")

(defvar ins-lqr 0
"an insertion in the 1st quarter of the document")

(defvar ins-2qr 0
"an insertion in the 2nd quarter of the document")

(defvar ins-3qr 0
"an insertion in the 3rd quarter of the document")

(defvar ins-4qr 0
"an insertion in the 4th quarter of the document")

(defvar del-lqr 0
"a deletion in the 1st quarter of the document")

(defvar del-2qr 0
"a deletion in the 2nd quarter of the document")

(defvar del-3qr 0
"a deletion in the 3rd quarter of the document")

(defvar del-4qr 0
"a deletion in the 4th quarter of the document")

(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local

(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local
(make-variable-buffer-local

'total-changes)
'insert)
'delete)
'modify)
'idle5)
'idlelO)
'idle20)
'idle100)
'start-time)

'append)
'truncate)
'ins-lqr)
'ins-2qr)
'ins-3qr)
'ins-4qr)
'del-lqr)
'del-2qr)
'del-3qr)
'del-4qr)

111

(defvar use-mode-orig-after-change-functions 'nil
"original value of after-change-functions")

(defvar idle-timers-to-cancel 'nil)

(defvar use-mode 'nil
"*Non-nil enables usage mode on buffer")

(make-variable-buffer-local 'use-mode)

(or (assq 'use-mode minor-mode-alist)
(setq minor-mode-alist (cons '(use-mode " use")

minor-mode-alist)))

(defun use-mode (&optional arg)
"minor mode for figuring out the kinds of usage on a buffer"
(interactive "P")
(setq use-mode

(if (null arg)
(not use-mode)

(> (prefix-numeric-value arg) 0)))
(if use-mode

(progn
(setq use-mode-orig-after-change-functions

after-change-functions)
;reset variables
(setq start-time (current-time))
(setq total-changes 0)
(setq insert 0)
(setq delete 0)
(setq modify 0)
(setq idle5 0)
(setq idlelO 0)
(setq idle20 0)
(setq idlelO 0)
(setq append 0)
(setq truncate 0)
(setq ins-lqr 0)
(setq ins-2qr 0)
(setq ins-3qr 0)
(setq ins-4qr 0)
(setq del-lqr 0)
(setq del-2qr 0)
(setq del-3qr 0)

112

(setq del-4qr 0)

(setq idle-timers-to-cancel
(cons (run-with-idle-timer 0.5 't 'use-mode-5-dsec)

idle-timers-to-cancel))
(setq idle-timers-to-cancel

(cons (run-with-idle-timer 1 't 'use-mode-10O-dsec)
idle-timers-to-cancel))

(setq idle-timers-to-cancel
(cons (run-with-idle-timer 2 't 'use-mode-20-dsec)

idle-timers-to-cancel))
(setq idle-timers-to-cancel

(cons (run-with-idle-timer 10 't 'use-mode-100-dsec)
idle-timers-to-cancel))

(setq after-change-functions (cons
'use-mode-buffer-change-hook
after-change-functions)))

(setq after-change-functions
use-mode-orig-after-change-functions)))

(defvar use-mode-map 'nil "Keymap for use-mode.")

(if (null use-mode-map)
(fset 'use-mode-map

(setq use-mode-map
(copy-keymap (current-global-map)))))

(if (not (assq 'use-mode minor-mode-map-alist))
(setq minor-mode-map-alist

(cons (cons 'use-mode use-mode-map)
minor-mode-map-alist)))

(defun use-mode-5-dsec ()
"Is called after the user hasn't done anything for half a second"
(setq idle5 (1+ idle5))

(defun use-mode-10-dsec ()
"Is called after the user hasn't done anything for a second"
(setq idle1O (1+ idlelO))
(setq idle5 (1- idle5))

(defun use-mode-20-dsec ()
"Is called after the user hasn't done anything for two seconds"
(setq idlelO (1- idlelO))
(setq idle20 (1+ idle20))

113

(defun use-mode-100-dsec ()
"Is called after the user hasn't done anything for ten seconds"
(setq idle20 (1- idle20))
(setq idle100 (1+ idle100))

(defun use-mode-buffer-change-hook (beg end old-len)
"This function is used to keep track of the kinds of changes being
made to the document. It is called every time a change to the buffer
is made, whether an insert, delete, or modify. It then updates the
appropriate variables"
(let* ((new-len (- end beg))

(buffer-len (length (buffer-string)))
(quarter (/ buffer-len 4))

(setq total-changes (1+ total-changes))
;; modification
(if (= new-len old-len)

(setq modify (1+ modify))
;; deletion
(if (> old-len new-len)

(progn
(setq delete (1+ delete))
(if (> end buffer-len)

(progn
(setq truncate (1+ truncate))
(setq del-4qr (1+ del-4qr)))

(if (< beg quarter)
(setq del-lqr (1+ del-lqr))

(if (< beg (* 2 quarter))
(setq del-2qr (1+ del-2qr))

(if (< beg (* 3 quarter))
(setq del-3qr (1+ del-3qr))

(setq del-4qr (1+ del-4qr)))))))
insertion

(setq insert (1+ insert))
(if (= beg buffer-len)

(progn
(setq append (1+ append))
(setq ins-4qr (1+ ins-4qr)))

(if (< beg quarter)
(setq ins-lqr (1+ ins-lqr))

(if (< beg (* 2 quarter))

114

(setq ins-2qr (1+ ins-2qr))
(if (< beg (* 3 quarter))

(setq ins-3qr (1+ ins-3qr))
(setq ins-4qr (1+ ins-4qr))))))))))

(defun use-report (&optional arg)
(interactive "b")
(let ((time (current-time))

(total-time))

(setq total-time (* 65536 (- (car time) (car start-time))))
(setq total-time (+ total-time

(- (car (cdr time))
(car (cdr start-time)))))
(message "--")
(message " Use-mode report for buffer Xs" (buffer-name))
(message "------------------------------------- -----------
(message "Total number of changes made : %s" total-changes)
(message " inserts : %s W."
(/ (* 100 insert) total-changes))
(message " deletes : .s W."
(/ (* 100 delete) total-changes))
(message " modifications : .s W."
(/ (* 100 modify) total-changes))
(message " appends : .s W."
(/ (* 100 append) insert))
(message " truncates : .s WI."
(/ (* 100 truncate) delete))
(message " the insertions occurred in:")
(message " Ist quarter : %s %%"

(/ (* 100 ins-lqr) insert))
(message " 2nd quarter : %s W."
(/ (* 100 ins-2qr) insert))
(message " 3rd quarter : .s W."
(/ (* 100 ins-3qr) insert))
(message " 4th quarter : %s W."
(/ (* 100 ins-4qr) insert))
(message " the deletions occurred in:")
(message " 1st quarter : %s W."
(/ (* 100 del-lqr) delete))
(message " 2nd quarter : %s WI."
(/ (* 100 del-2qr) delete))

115

(message " 3rd quarter : %s Y%"
(/ (* 100 del-3qr) delete))

(message " 4th quarter : %s %%"
(/ (* 100 del-4qr) delete))
(message "")
(message " The editing of the buffer took %s seconds."
total-time)
(message " During the editing of the buffer, it was idle for")
(message " between 1/2 sec to a sec : %s times" idle5)
(message " between 1 sec to 2 secs : %s times" idlelO)
(message " between 2 secs to a 10 secs : %s times" idle20)
(message " over 10 secs : s times" idlelO0)
(message "------------------------------------- -----------
))

116

A.3 Incremental Public Key Encryption Code

The following contains all the source code used to generate an incremental public-key

encryption of a buffer in emacs. For mmore details on this code, refer to chapter 5

A.3.1 PKE.el

This elisp code is used to create the minor-mode in emacs, in a similar way to the

minor mode for MACs listed earlier.

;; Code to create a minor mode that will notice when the buffer is
;;; edited, and appropriately modify an encryption of the doc using
;;; a given key.

;;; The algorithms are described in the thesis "Incremental
;; Cryptography by Yoav Yerushalmi, as part of the requirements for
;; the degree of Masters of Engineering in Computer Science at

;;; M.I.T.

;;; Written by Yoav Yerushalmi under the supervision of Prof. Shafi
;;; Goldwasser. May 20, 1997

;;; Permission is granted to use and modify this code as desired, as
;;; long as credit is given to all the above.

;; PKE Mode An elisp minor mode to generate an incremental encryption
;;; of a buffer using a public key specified.

;;; To use, simply run PKE-mode on a buffer, and edit it. When
;;; trying to save, the encryption will be written out
;;; automatically to a file named {foo}.pke

;;; This is still NOT a complete product. Please understand many
;;; things still will change.

;;; Finally, a note. This scheme works by dealing only with
;; blocksizes of size 1 (unlike the MAc mode which had variable

;;; blocksizes). While it is possible and feasible to analyze the
;;; behavior of larger blocks, a blocksize of one, which generates
;;; the largest encryption, is also the cheapest to increment.

117

;;; At some point in the future, therefore, this may add code to deal
with larger blocksizes.

(defconst PKE_PROC "/mit/yoav/work/lcs/bin/PKE"
"the actual process that does the encrypting and processing")

(random t)

(defvar PKE-key 'nil
"The key being used for the current buffer encryption")

(defvar PKE-proc 'nil
"The process associated with the current buffer's encryption")

(defvar PKE-output ""
"the string associated with the output from the process")

(defvar PKE-mode 'nil
"*Non-nil enables Public-key encryption mode for the buffer. Default

is nil. To change the value do:
(set-default 'PKE-mode 't)")

(make-variable-buffer-local 'PKE-key)
(make-variable-buffer-local 'PKE-proc)
(make-variable-buffer-local 'PKE-output)
(make-variable-buffer-local 'PKE-mode)

(make-variable-buffer-local 'after-save-hooks)
(make-variable-buffer-local 'after-change-functions)

(or (assq 'PKE-mode minor-mode-alist)
(setq minor-mode-alist

(cons '(PKE-mode " PKE") minor-mode-alist)))

(defun PKE-find-file-hook ()
"hook to call when a file is being loaded to tell if it has been

saved with a PKE"
(let* ((name buffer-file-truename)
(sumname (concat name ".pke")))

(if (file-readable-p sumname) (PKE-mode))))

(defun PKE-kill-buffer-hook ()
"hook to call when a buffer is killed"
(if (not (null PKE-proc))

(progn
(PKE-send "quit\n")

(delete-process PKE-proc))))

118

(add-hook 'find-file-hooks 'PKE-find-file-hook)
(add-hook 'kill-buffer-hooks 'PKE-kill-buffer-hook)

(defun PKE-mode (&optional arg)
"Minor mode for editing buffers and generating public key

encryptions of the buffer in the background."
(interactive "P")
(setq PKE-mode

(if (null arg)
(not PKE-mode)

(> (prefix-numeric-value arg) 0)))
(if PKE-mode

(progn

(if (null PKE-key)

(progn
(setq PKE-key (PKE-get-key))
(let ((process-connection-type 'nil))

(setq PKE-proc
(start-process "PKE"
(generate-new-buffer-name " PKE")

PKE_PROC))
(if (null PKE-proc)

(error "Problems starting up " PKE_PROC))

(process-kill-without-query PKE-proc))

(set-process-filter PKE-proc 'PKE-filter)))

(add-hook 'after-save-hook 'PKE-save)

(setq after-change-functions
(cons 'PKE-mode-buffer-change-hook after-change-functions))

(PKE-initiate))
(delete 'PKE-mode-buffer-change-hook after-change-functions)
(remove-hook 'after-save-hook 'PKE-save)
(setq PKE-key 'nil)
(PKE-terminate)))

(defvar PKE-mode-map 'nil "Keymap for PKE mode")

(if (null PKE-mode-map)
(fset 'PKE-mode-map

(setq PKE-mode-map (copy-keymap (current-global-map)))))

(if (not (assq 'PKE-mode minor-mode-map-alist))
(setq minor-mode-map-alist

(cons (cons 'PKE-mode PKE-mode-map)
minor-mode-map-alist)))

119

(defun PKE-mode-buffer-change-hook (beg end old-len)
"This function notices changes to the buffer, and informs the PKE.c

process about them"
(let ((temp)

(message))
(if (and (= old-len 0)
(< beg end))

; We have an insertion
(progn

(setq temp beg)
(while (< temp end)
(PKE-send "Insert:\n")
(PKE-send (format "%d\n" temp))
(PKE-send (concat (PKE-encode

(buffer-substring temp (1+ temp)))
"\n"))

(setq temp (1+ temp))))
(if (and (> old-len 0)

(= beg end))
; We have a deletion.
(progn

(setq temp old-len)
(while (> temp 0)
(PKE-send "Delete:\n")
(PKE-send (format "Xd\n" beg))
(setq temp (1- temp))))

; We have a modification.
(setq temp beg)
(while (< temp end)

(PKE-send "Modify:\n")
(PKE-send (format "%s\n" temp))
(PKE-send (concat (PKE-encode

(buffer-substring temp (1+ temp)))
"\n"))

(setq temp (1+ temp)))))))

(defun PKE-initiate ()
"Initiate communications with the associated PKE.c process"

(let* ((name buffer-file-truename)
(sumname (concat name ".pke")))

(PKE-send (concat "Public-key:\n" PKE-key "\n"))
(if (and

120

(file-readable-p sumname)
(newer-file sumname name))

(PKE-send (concat "Load:\n" sumname "\n"))
(PKE-send "Create:\n")
(PKE-send-buffer)
(PKE-send "End\n"))))

(defun PKE-terminate ()
"Things to do to cleanup after we quit PKE mode"

;; Cleanup whatever is left...?

;; todo

(defun PKE-send-buffer ()
"Sends the current buffer encoded as per pkeapi spec"
(let* ((string (buffer-string))

(len (length string))
(ptr 0))

(while (< ptr len)
(PKE-send (concat (number-to-string (aref string ptr)) " \n"))
(setq ptr (1+ ptr)))))

(defun PKE-decode (string)
"Takes a string of the format 03 aa f2 ... and turns it
into an array of number values"
(let ((len (/ (length string) 3))

(result)
(current 0))

(setq result (make-string len ?a))
(while (< current len)

(aset result current (str-to-num
(substring string (* current 3)

(+ (* current 3) 2))))
(setq current (1+ current)))

result))

(defun str-to-num (string)
"Takes a string of the format 'a3' or '2a' and turns it into the

actual number associated with the value"
(let ((result 0)

(cur-string string)

121

(char))
(while (> (length cur-string) 0)
(setq char (- (string-to-char cur-string) 48))
(if (> char 9)

(setq char (- char 49)))
(setq result (+ (* 16 result) char))
(setq cur-string (substring cur-string 1)))

result))

(defun PKE-encode (string)
"Takes a string and turns it into a new string containing
the hex representation of every char in the string, with the
following format: '03 aa f2 ' note the final space."
(let ((len (length string))

(result "")
(current 0))

(while (< current len)
(setq result (concat result (format ".02x "

(aref string current))))
(setq current (1+ current)))

result))

(defun PKE-get-key ()
"Prompts user for public key to use"
(read-string
"Please type in the name of the public-key to use : "))

(defun PKE-send (string)
"sends the exact content of 'string' to the associated process."
(process-send-string PKE-proc string))

(defun PKE-receive (&optional regexp)
"waits for receiving data from process. We have complete data when

we find a '\n'"
(save-match-data

(let ((begin (string-match regexp PKE-output))
(result)
(end))

(while (null begin)
(accept-process-output PKE-proc)
(setq begin (string-match regexp PKE-output)))

(setq end (match-end 0))
(setq result (substring PKE-output begin end))
(setq PKE-output (substring PKE-output end))

122

result)))

(defun PKE-save ()
"responsible for getting the document's other component saved"

(if PKE-mode
(let* ((name buffer-file-truename)
(sumname (concat name ".pke\n")))

(PKE-send "Save:\n")
(PKE-send sumname)
(PKE-receive ".*")
(message "Done saving checksum")

(defun PKE-filter (process output)
"The filter that is responsible for building the string that will be

returned as the result for PKE-receive"
(setq PKE-output (concat PKE-output output)))

(defun newer-file (filel file2)
"Checks the mod-time on the two files and decides which is the newer

file"
(if (not (file-readable-p filel))

'nil
(if (not (file-readable-p file2))

't
(let ((fileltime (car (nthcdr 5 (file-attributes filel))))

(file2time (car (nthcdr 5 (file-attributes file2)))))
(if (> (car fileltime) (car file2time))

't

(if (= (car fileltime) (car file2time))
(if (< (car (cdr fileltime)) (car (cdr file2time)))

'nil
't)

'nil))))))

A.3.2 PKE.c

This c code implements all the actual computations and the interface exported to

PKE.el. It is implemented in C for efficiency, and works as a module, allowing other

programs to replace it when necessary. This code uses the RSAREF package (see

123

[15]) for more documentation.

PKE.c

The main source-code file:

/* PKE.c
* The code which implements all the routines necessary to
* support the PKE.el routines (see pkeapi). It makes extensive use of
* the RSAREF implementation from RSA Laboratories.

* The datastructure used to represent this is a linked list of
* pkeelt's, where each pke.elt holds a pair of values:
* data : the encrypted item (random + plaintext).
* next : a pointer to the next element in the list

or NULL for the last element.

#include "PKE.h"

#include <stdio.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <pwd.h>

/* Some static variables.... these should be constant throughout
the program */

RRSA_PUBLICKEY key;
int keygood = 0;
R_RANDOMSTRUCT randomStruct;
pkeelt *head = NULL; /* The head of the list */
int currentnum = 0; /* the number of the element we just
looked at */
pkeelt *currentptr; /* a cache pointer to the element we just

dealt with */
char input[MAXINPUTSIZE]; /* Note static size!! bad!! ,/

124

int mainloop(), get-input();
void set_key(), resetstructure(), load_file(), create(),

modify(), delete(), insert(), save_file(),
decode(char *, char *), PKE.encrypt(char *, int, pkeelt *),
padwith_random(char *), gethome(char *), Init_setup();

int main(argc, argv){
/* Setup whatever is necessary... */

if (argc > 1) {
fprintf (stderr,
"This program has NO arguments. See the documentation!\n");
exit(1);

}
Init_setup();

return(main_loop());
}

int mainloop() {
/* loop in this function until the input is 'End' and arbitrate what

to do based on input received here */

int finished = 0;

while (!finished){
switch(get_input() {
case INPUTQUIT:
finished = 1;
break;

case INPUT-KEY:
resetstructure();
setkey();
break;

case INPUT-CREATE:
create();
break;

case INPUTINSERT:
insert();
break;

case INPUT-MODIFY:
modify();

125

break;
case INPUTDELETE:
delete();
break;

case INPUT_SAVE:
save_file();
break;

case INPUT_LOAD:
loadfile();
break;

case INPUT_ERROR:
fprintf(stderr,
break;

default:
fprintf(stderr,
exit (1);

}
}
return (0);

"Got something bad: %s\n", input);

"I'm confused : %s\n", input);

int get_input() {
/* Figure out what needs to be done */

if ((fgets(input, MAX_INPUTSIZE, stdin)) == NULL)
return (INPUT_ERROR);

if (! strncasecmp(input, "public-key",
(sizeof("public-key") - i)))
return(INPUTKEY);

if (! strncasecmp(input,
return (INPUT_CREATE);

if (! strncasecmp(input,
return (INPUTINSERT);

if (! strncasecmp(input,
return (INPUT_MODIFY);

if (! strncasecmp(input,
return (INPUTDELETE);

if (! strncasecmp(input,
return (INPUTSAVE);

if (! strncasecmp(input,
return (INPUTLOAD);

if (! strncasecmp(input,
return (INPUTQUIT);

return(INPUTERROR);

"create",

"insert",

"modify",

"delete",

(sizeof("create") - 1)))

(sizeof("insert") - 1)))

(sizeof("modify") - 1)))

(sizeof("delete") - 1)))

"save", (sizeof("save") - 1)))

"load", (sizeof("load") - I)))

"quit", (sizeof("quit") - 1)))

126

void decode(char *input, char *output){
/* decode a string of form "42 6a" (hex ascii codes) into

appropriate format.. assumes input is a string with enough space
to hold result */

int len, refi, ref_o;

len = strlen(input)/3;

refi = 0;

ref_o = 0;

while (refi < len){
output[refol = (unsigned char)strtol(&input[refi], NULL, 16);
refo++;
refi += 3;

void set_key() {
int fd;
char keyname[MAXPATHLEN] ;

if ((fgets(input, MAXINPUT_SIZE, stdin)) == NULL){
perror("fgets");
return;

}
input[(strlen(input) - 1)] = '\0'; /* strip \n */

get.home(keyname);
strcat(keyname, PKE_PATH);
strcat(keyname, input);
strcat(keyname, ".pub");

if ((fd = open(keyname, 0_RDONLY)) < 0) {
fprintf(stderr, "while trying to open %s \n", keyname);
perror("open");
return;

}
read(fd, &key.bits, sizeof(key.bits));
read(fd, &key.modulus, sizeof(key.modulus));
read(fd, &key.exponent, sizeof(key.exponent));

keygood = 1;

void reset_structure() {
/* This should reset the data structure to empty */

127

pkeelt *next, *pos = head;

if (pos != NULL)
next = pos->next;

while (pos != NULL){

free(pos);
pos = next;

if (next != NULL)
next = next->next;

}
head = NULL;
currentnum = 0;

}

void pad_with_random(char* string)
{ /* Pads the string with appropriate length random data */

char *ptr = string, *end = (string + RANDOM_PAD_SIZE);

srand(time(NULL));

while (ptr < end)
*ptr++ = (char) rand();

void create() {
/* This function implements the Create: operation */
/* Make sure we've cleared everything ,/
pkeelt *ptr, *prev;
char newchar;
int done = 0;

resetstructure();
ptr = head;
prey = head;

/* We need a key value */
if (!key_good) {
fprintf(stderr, "No key supplied!");
return;

}

/* No we read a number which is a decimal ASCII code for the byte
that will go into the structure., Until we read 'End' we keep

128

going */

while (!done) {
if ((fgets(input, MAX_INPUTSIZE, stdin)) == NULL) {
perror("fgets");
exit(1);

}
if (!strncasecmp(input, "end", (sizeof("end") - 1)))
done = 1;

else {
if ((ptr = (struct pke_elt_struct *)

malloc(sizeof(struct pkeelt_struct))) == NULL) {
fprintf(stderr, "malloc failed.. out of memory?\n");
exit(1);

}
ptr->next = NULL;
if (prey == NULL) {

head = ptr;
prey = head;

}
else {

prev->next = ptr;
prey = ptr;

}

/* Decode the byte into a data block with randomizer */
new_char = (char)atoi(input);
pad_with_random(input);
input[RANDOMPADSIZE] = new_char;
input RANDOM_PAD_SIZE + 1] = '\0';

/* Now encrypt it */
PKE_encrypt(input, (int)(DATA_LEN), ptr);

/* update our 'cached value' */
currentnum++;

}
}
/* make the cached value hold the right data */
current_ptr = ptr;

void modify() {
/* This function implements the Modify: operation */

129

int curpos = 1, searching;
pkeelt *curptr = head;
char newdata[DATA_LEN + 1];

if ((fgets(input, MAX_INPUTSIZE, stdin)) == NULL) {
perror("fgets");
return;

}
if ((sscanf(input, ".%d", &searching)) != 1){
fprintf(stderr, "sscanf failure");
return;

}
if ((fgets(input, MAXINPUT SIZE, stdin)) == NULL) {

perror(" fgets");
return;

}
input[(strlen(input) - 1)] = '\0'; /* strip \n */

/* use cache if can */
if ((current_num <= searching) &&

(current_num != 0)) {
cur_pos = current_num;
curptr = current_ptr;

}
while ((curpos != searching) &&
(curptr != NULL)){

curptr = curptr->next;
curpos++;

}
if ((cur_pos == searching) &&

(cur_ptr != NULL)) {
pad_with-random(newdata);
decode(input, &newdata[RANDOM_PAD_SIZE]);
PKE_encrypt(newdata, DATALEN, curptr);
currentnum = cur_pos;
currentptr = curptr;

}
else

if (curptr == NULL){

fprintf(stderr, "modify ran past end of structure\n");
return;

}
else {
fprintf(stderr, "problems modifying\n");
return;

130

void delete() {
/* This function implements the Delete: operation */

int searching, curpos = 1;
pke_elt *prevptr = NULL, *cur_ptr = head;

if ((fgets(input, MAXINPUT_SIZE, stdin)) == NULL) {
perror("fgets");
return;

}
if ((sscanf(input, "%d", &searching)) != 1){
fprintf(stderr, "sscanf failure");
return;

}

/* use cache if can ,/
if ((current_num < searching) &&

(currentnum != 0)) {

curpos = currentnum + 1;

curptr = current_ptr -> next;

prevptr = currentptr;
}

while ((curpos != searching) &&
(curptr != NULL)){

prevptr = curptr;
curptr = curptr->next;
curpos++;

}

if ((curptr != NULL) &&
(curpos == searching))

if (prev_ptr == NULL) { /* we're deleting the first element */
head = cur_ptr -> next;

free(curptr);
currentnum = 0; /* blow away cache ,/

}
else{
prev_ptr->next = curptr->next;
free(curptr);
current_num = curpos - 1;

currentptr = prevptr;

131

}
else{
fprintf(stderr, "error deleting\n");

}

void insert() {
/* This function implements the Insert: operation */
int searching, curpos = 1;
pkeelt *prev_ptr = NULL, *cur_ptr = head, *temp;
char newdata[DATA_LEN + 1];

if ((fgets(input, MAXINPUTSIZE, stdin)) == NULL) {
perror("fgets");
return;

}
if ((sscanf(input, "%d", &searching)) != 1){
fprintf(stderr, "sscanf failure");
return;

}
if ((fgets(input, MAX_INPUTSIZE, stdin)) == NULL) {
perror ("fgets");
return;

}
input[(strlen(input) - 1)] = '\0'; /* strip \n */

/* use cache if can */
if ((current_num < searching) &&

(currentnum != 0)) {
curpos = current_num + 1;
curptr = currentptr -> next;
prevptr = currentptr;

while ((cur_pos != searching) &&
(curptr != NULL)){

prevptr = curptr;
curptr = cur_ptr->next;
curpos++;

}
if (prevptr == NULL){ /* we're inserting at the head */
if ((prevptr = (struct pkeelt_struct *)

malloc(sizeof(struct pke elt_struct))) == NULL){
perror("malloc");
exit(1);

132

pad_with_random(newdata);
decode(input, &newdata[RANDOM_PAD_SIZE]);
PKE_encrypt(newdata, DATA_LEN, prev_ptr);
head = prevptr;
prevptr->next = cur_ptr;
currentnum = 2;
current-ptr = curptr;

}
else {
if (curpos == searching){
if ((temp = (struct pke_elt_struct *)

malloc(sizeof(struct pke eltstruct))) == NULL){
perror("malloc");
exit(1);

}
pad_with_random(newdata);
decode(input, &newdata[RANDOM_PAD_SIZE]);
PKE_encrypt(newdata, DATALEN, temp);
prevptr->next = temp;
temp -> next = cur_ptr;
current_num = searching;
currentptr = temp;

}
else {
fprintf(stderr, "confused!!");
exit ();

}
}

void savefile() {
/* This function implements the Save: operation */
int fd;
pkeelt *curptr = head;

if ((fgets(input, MAXINPUT_SIZE, stdin)) == NULL) {
perror("fgets");
return;

}
input[(strlen(input) - 1)] = '\0'; /* strip \n */
if ((fd = open(input, 0_RDWRIO_CREAT, S_IRUSR I SIWUSR I
SIRGRP I SIWGRP I SIROTH I SIWOTH)) <0) {

perror("failed to open file for writing");
exit(1);

133

while(cur_ptr) {
if ((write(fd, &cur_ptr->datalen, sizeof(int))) < sizeof(int)){
perror("couldn't write");
return;

}
if ((write(fd, curptr->data, cur-ptr->datalen)) <

cur_ptr->datalen) {
perror("couldn't write");
return;

}
curptr = cur_ptr -> next;

}
close(fd);
printf ("Done\n");

void loadfile() {
/* This function implements the Load: operation */
int fd, done = 0;
pke_elt *cur_ptr, *prev_ptr = NULL;

reset_structure();

if ((fgets(input, MAX_INPUTSIZE, stdin)) == NULL) {
perror("fgets");
return;

}
input[(strlen(input) - 1)] = '\0'; /* strip \n */
if ((fd = open(input, O0RDONLY)) <0) {
perror("failed to open file");
exit(1);

}

while (!done) {
if ((curptr = (struct pke_eltstruct *)

malloc(sizeof(struct pkeelt_struct))) == NULL){
fprintf(stderr, "malloc failed to find enough memory");
exit ();

}
if ((read(fd, curptr->data, MAX_ENC_DATA_LEN)) <

MAXENCDATALEN){
done = 1;
free(curptr);

134

if (prevptr == NULL)
head = NULL;

else
prev_ptr -> next = NULL;

}
else {
if (prevptr == NULL){

head = cur_ptr;
prevptr = curptr;

}
else{

prevptr -> next = curptr;
prev_ptr = curptr;

}
}

}
}

/* todo */
void PKEencrypt (char * input, int inlen, pke_elt *output) {
/* encrypt the string in input to the string in output...

assumes output has enough space to store data */
int status, outlen;

if (!keygood){
fprintf(stderr, "no key!!\n");
exit (1);

}
if ((status = RSAPublicEncrypt

(output->data, &outlen, input, inlen, &key, &randomStruct))
!= O){

fprintf(stderr, "Having problems encrypting");
exit (1);

output->datalen = outlen;

void gethome(result)
char *result;
{

struct passwd *pwd;

if (strcpy(result, (char *)getenv("HOME")))
return;

if (pwd = getpwuid(getuid())){

135

strcpy(result, pwd->pw_dir);
return;

}
else{

strcpy(result, "/");
return;

}

void Initsetup() { /* try to initialize things */
static unsigned char seedByte = 0;
unsigned int bytesNeeded =1000;
struct timeval tp;

setbuf(stdout, NULL);
R_RandomInit (&randomStruct);

gettimeofday(&tp);
seedByte = (char)tp.tv_usec;
RRandomUpdate (&randomStruct, &seedByte, 1);

while (bytesNeeded > 0) {
gettimeofday(&tp);
seedByte = (char)tp.tv_usec;
R_RandomUpdate (&randomStruct, &seedByte, 1);
RGetRandomBytesNeeded (&bytesNeeded, &randomStruct);

PKE.h

The associated header file.

/* This file describes all the constants and macros used in PKE.c. */

#include <global.h>
#include <rsaref.h>
#include <rsa.h>

#define RANDOMPAD_SIZE 10 /* number of random bytes to use */
#define DATA_SIZE i /* number of bytes of data */
#define MAX_INPUT_SIZE 256 /* maximal length of a line */

136

#define PKE_PATH "/.pke-keys/" /* extension to $HOME where keys are */

/* Things that need no touching */

#define DATA_LEN (DATASIZE + RANDOM_PAD_SIZE)
/* length in bytes of the .data component */

#define MAXENCDATALEN MAX_RSA_MODULUSLEN
/* length of encrypted data block */

/* for the main loop */
#define INPUT_ERROR 0
#define INPUTQUIT 1
#define INPUT_KEY 2
#define INPUT_CREATE 3
#define INPUT_INSERT 4
#define INPUTMODIFY 5
#define INPUT_DELETE 6
#define INPUTSAVE 7
#define INPUTLOAD 8

typedef struct pkeelt_struct {
int datalen;
char data[MAXENCDATALEN] ;
struct pke_elt_struct *next;

} pkeelt;

A.3.3 PKE-keygen.c

This c code is responsible for generating valid keypairs for the PKE.el mode. It uses

RSAREF extensively, and the random number generator it uses is probably not fully

trustworthy. It relies on PKE.h.

/* Code to generate a key pair for a particular username
* Probably could be better and more random, but
* good enough for our purposes.

#include "PKE.h"

#include <stdio.h>

137

#include <sys/param.h>
#include <unistd.h>
#include <pwd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <macros.h>
#include <sys/time.h>

#include <global.h>
#include <rsaref.h>
#include <nn.h>

static struct termios save_termios;
static int ttysavefd = -1;
static enum {RESET, CBREAK} ttystate = RESET;

void gethome(char *), tty_atexit(void),
InitFile(char *, int *, int *),
OutputKeys(R_RSA_PUBLIC_KEY, int, R_RSA_PRIVATE_KEY, int),
InitRandomStruct (RRANDOMSTRUCT *randomStruct),
PrintError (char *, int);

int ttycbreak(int), tty_reset(int);

int main(int argc, char *argv[]){
int keySize, fpub, fpriv, status;
R_RANDOMSTRUCT randomStruct;
RRSAPUBLIC_KEY keypub;
R_RSA_PRIVATEKEY key.priv;
R_RSA_PROTOKEY protoKey;
char buffer[10];

atexit(tty_atexit);
setbuf(stdin, NULL);
setbuf(stdout, NULL);

if (argc != 2){
fprintf(stderr, "usage %s {username}\n", argv[O]);
exit (1);

}
InitRandomStruct(&randomStruct);
InitFile(argv[11, &fpub, &fpriv);

/* initiate the proto structure */

138

keySize = 0;
while((keySize <512) 11 (keySize > 1024)) {
printf("Please select a keysize (512 - 1024) : ");
fflush(NULL);
fgets(buffer, 9, stdin);
sscanf(buffer, "/,d", &keySize);

}
protoKey.bits = (unsigned int)keySize;
protoKey.useFermat4 =1;
printf("Generating keys. This will take a while. Please wait...\n");
if (status = R_GeneratePEMKeys

(&key_pub, &keypriv, &protoKey, &randomStruct)) {
PrintError ("Generating keys", status);
exit ();

}
printf(" done.... Saving keys\n");

OutputKeys(key_pub, fpub, key_priv, fpriv);
RRandomFinal(&randomStruct);
Rmemset((POINTER)&key_priv, 0, sizeof(key_priv));
return(0);
printf("Thanks for waiting. \n");
close (fpub);
close (fpriv);

void InitFile(char *name, int *fpub, int *fpriv) {
char keypath[MAXPATHLEN]; /* yeah yeah yeah.. constant length */
char *pos; /* where extension goes */

get_home(keypath);
strcat(keypath, PKE_PATH);
/* Test whether there exists a directory for keys */
if (access(keypath, FOK)) { /* failed to find file */
if (mkdir(keypath, SIRWXU)) {
perror("Failed to create directory:");
exit(l);

}
}
strcat(keypath, name);
pos = (&keypath[strlen(keypath)]);

strcpy (pos, ".pub");
if ((*fpub = open(keypath, ORDWRIOCREAT, S_IRUSRISIWUSR)) <0) {
perror("failed to create keyfile:");

139

exit (1);
}
strcpy (pos, ".prv");
if ((*fpriv = open(keypath, 0_RDWR(OCREAT, S_IRUSRISIWUSR)) <0) {
perror("failed to create keyfile:");
exit(1);

}
pos[0] = '\0';
printf("\n Thanks\nWill store in %s.pub and .prv\n", keypath);

void OutputKeys(RRSA_PUBLICKEY key_pub, int fpub,
R_RSAPRIVATEKEY keypriv, int fpriv) {

/* Public Key first */
write(fpub, &key_pub.bits, sizeof(key_pub.bits));
write(fpub, &key_pub.modulus, sizeof(key_pub.modulus));
write(fpub, &key_pub.exponent, sizeof(key_pub.exponent));

/* Private key now */
write(fpriv, &key.priv.bits, sizeof(keypriv.bits));
write(fpriv, &key.priv.modulus, sizeof(key_priv.modulus));
write(fpriv, &keypriv.publicExponent,

sizeof(key_priv.publicExponent));
write(fpriv, &key-priv.exponent, sizeof(keypriv.exponent));
write(fpriv, &key-priv.prime[O0], sizeof(keypriv.prime[O]));
write(fpriv, &key-priv.prime[1], sizeof(keypriv.prime[1));
write(fpriv, &key.priv.primeExponent,

sizeof(key-priv.primeExponent));
write(fpriv, &key.priv.coefficient, sizeof(key_priv.coefficient));

/* Done writing everything */
}

void gethome(result)
char *result;
{

struct passwd *pwd;

if (strcpy(result, (char *)getenv("HOME")))
return;

if (pwd = getpwuid(getuid())){
strcpy(result, pwd->pwdir);
return;

}

140

else{
strcpy(result, "/");
return;

}

void InitRandomStruct (RRANDOMSTRUCT *randomStruct)
{

static unsigned char seedByte = 0;
unsigned int bytesNeeded =1000;
int i= 40;
struct timeval tp;

tty_cbreak(STDIN_FILENO);

RRandomInit (randomStruct);

gettimeofday(&tp);
seedByte = (char)tp.tv_usec;
RRandomUpdate (randomStruct, &seedByte, 1);

printf("Please type in random chars until I tell you to quit\n");
printf("to go ");
while (bytesNeeded > 0) {
if ((read (STDIN_FILENO, &seedByte, 1)) != 1) {
perror("read");
ttyreset(STDIN_FILENO);
exit(1);

}
R_RandomUpdate (randomStruct, &seedByte, 1);

gettimeofday(&tp);
seedByte = (char)tp.tvusec;
R_RandomUpdate (randomStruct, &seedByte, 1);
RGetRandomBytesNeeded (&bytesNeeded, randomStruct);
if (bytesNeeded > 18)
printf(". ");

else
printf("%d", (bytesNeeded/2));

i -= 1;
if (i==O){
printf("\n%5d - ", (bytesNeeded/2));
i = 40;

}
}

141

tty_reset (STDINFILENO);
}

int tty_cbreak(int fd)
{

struct termios buf;

if (tcgetattr(fd, &savetermios) <0)
return (-1);

buf= save_termios;

buf.cf lag &= -(ECHO I ICANON);

buf.c_cc[VMIN] = 1;
buf.c_cc[VTIME] = 0;

if (tcsetattr(fd, TCSAFLUSH, &buf) < 0)
return (-1);

ttystate = CBREAK;
ttysavefd = fd;
return(0);

int tty_reset(int fd)
{

if (ttystate != CBREAK)
return (0);

if (tcsetattr(fd, TCSAFLUSH, &savetermios) <0)
return (-1);

ttystate = RESET;
return (0);

void tty-atexit (void)
{

if (ttysavefd >= 0)
ttyreset (ttysavefd);

}

void PrintError (char *task, int type)
{

char *typeString, buf [80];

if (type == 0) {

142

puts (task);
return;

}

/* Convert the type to a string if it is recognized.

switch (type) {
case RE_KEY:
typeString = "Recovered DES key cannot decrypt encrypted content";
break;

case RE-LEN:
typeString =

"Encrypted key length or signature length is out of range";
break;

case REMODULUS_LEN:
typeString = "Modulus length is out of range";
break;

case REPRIVATEKEY:
typeString = "Private key cannot encrypt.";
break;

case RE_PUBLICKEY:
typeString = "Public key cannot encrypt.";
break;

case RE-SIGNATURE:
typeString = "Signature is incorrect";
break;

default:
sprintf (buf, "Code Ox%04x", type);
typeString = buf;

printf ("ERROR: %s while %s\n", typeString, task);
fflush (stdout);

}

A.3.4 PKE-decrypt.c

This c code is responsible for taking as input the user's name whose private key is to

be used to decrypt with, and also an input and output file (which may be replaced

with "-" to use stdin or stdout). It also relies on PKE.h, and uses RSAREF.

143

/* This file is responsible for decrypting an encrypted file. It
takes the following arguments:

PKE-decode {name} {source} {dest}

{name} : name of person whose private key is to be
used.

{source} : source filename, or '-' for stdin.
{dest} : destination filename, or '-' for stdout.

#include "PKE.h"

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <pwd.h>

void read_key(char *, R_RSAPRIVATE_KEY *),
pkedecrypt(int, int, R_RSA_PRIVATE_KEY),
get-home(char *);

int main(int argc, char *argv[]) {
int fdin, fdout;
RRSAPRIVATE_KEY key;

if (argc != 4) {
fprintf(stderr, "usage: .s {name} {source} {dest}\n", argv[O]);
fprintf(stderr, "\t where {source} and {dest} may be '-' for\n");
fprintf(stderr, "\t stdin or stdout respectively\n");
exit (1);

if (!strcmp("-", argv[2]))
fdin = STDINFILENO;

else
if ((fdin = open(argv[2], O_RDONLY)) < 0) {
perror("input open");
exit(1);

}
if (!strcmp("-", argv[3]))

144

fdout = STDOUTFILENO;
else
if ((fdout = open(argv[3], ORDWRI OCREAT, S_IRUSRIS_IWUSR))<O){
perror("output open");
exit(1);

}

readkey(argv[1], &key);
pkedecrypt(fdin, fdout, key);

void readkey(char *name, R_RSAPRIVATEKEY *key){
/* reads a key in from {name}.prv, and returns the key */
int fd;
char keyname[MAXPATHLEN];

gethome(keyname);
strcat(keyname, PKE_PATH);
strcat(keyname, name);
strcat(keyname, ".prv") ;

if ((fd = open(keyname, 0_RDONLY)) < 0) {
perror("key input open failed");
exit(1);
}

read(fd, &(key->bits), sizeof(key->bits));
read(fd, &(key->modulus), sizeof(key->modulus));
read(fd, &(key->publicExponent), sizeof(key->publicExponent));
read(fd, &(key->exponent), sizeof(key->exponent));
read(fd, &(key->prime[0]), sizeof(key->prime[0]));
read(fd, &(key->prime[1]), sizeof(key->prime[1]));
read(fd, &(key->primeExponent), sizeof(key->primeExponent));
read(fd, &(key->coefficient), sizeof(key->coefficient));

close(fd);
}

void pke_decrypt(int fdin, int fdout, R_RSA_PRIVATE_KEY key) {
/* read from in, decode, output to out */
char enc_data[MAXENCDATA_LEN], out_data[DATA_SIZE],

temp[DATALEN];
int outlen, status, inlen;

145

while ((read(fdin, &inlen, sizeof(int)) == sizeof(int)) &&
(read(fdin, encdata, inlen) == inlen)) {

if ((status = RSAPrivateDecrypt
(temp, &outlen, encdata, inlen, &key)) != 0)

fprintf(stderr, "Error decrypting.. continuing\n");
pke-decode(temp, out-data);
if ((write(fdout, outdata, DATASIZE)) != DATA_SIZE)
fprintf(stderr, "error writing data.. continuing\n");

pkedecode(char *input, char *output){
/* converts an encoded string with randomizer to just string */
char *inptr = (input + RANDOM_PAD_SIZE) , *outptr;
int count = 0;

for (outptr = output;
outptr < (output + DATA_SIZE);
outptr++)

*outptr = *inptr++;
}

void gethome(result)
char *result;
{

struct passwd *pwd;

if (strcpy(result, (char *)getenv("HOME")))
return;

if (pwd = getpwuid(getuid())){
strcpy(result, pwd->pwdir);
return;

}
else{

strcpy(result, "/");
return;

}
}

146

Bibliography

[1] W. B. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA/Rabin bits are

1/2+1/poly(log(N)) secure. In Proc. 25th IEEE Symp. on Foundations of Comp.

Science, pages 449-457, Singer Island, 1984. IEEE.

[2] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography:

the case of hashing and signing. In Yvo G. Desmedt, editor, Proc. CRYPTO 94,

pages 216-233. Springer, 1994. Lecture Notes in Computer Science No. 839.

[3] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography

with application to virus protection. In Proc. 27th ACM Symp. on Theory of

Computing, pages 45-56, Las Vegas, 1995. ACM.

[4] Mihir Bellare and Shafi Goldwasser. Lecture notes on cryptography. for summer

course in cryptography, 1996.

[5] Mihir Bellare, Roch Guerin, and Phillip Rogaway. XOR MACs: New methods

for message authentication using block ciphers. Technical Report RC 19970, IBM

Research Report, March 1995.

[6] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block

chaining. In Yvo G. Desmedt, editor, Proc. CRYPTO 94, pages 341-358.

Springer, 1994. Lecture Notes in Computer Science No. 839.

[7] Matt Blaze and Martin Strauss. Proxy cryptography. Draft made on May 13th,

1997, 1997.

147

[8] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans.

Inform. Theory, IT-22:644-654, November 1976.

[9] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In

Proc. 23rd ACM Symp. on Theory of Computing, pages 542-552. ACM, 1991.

[10] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270-299,

April 1984.

[11] Frans Kaashoek. 6.033 lecture notes. lecture notes for computer systems engi-

neering course, 1996.

[12] Daniele Micciancio. Oblivious data structures: Applications to cryptography. In

Proc. 29th ACM Symp. on Theory of Computing, 1997.

[13] Rafail Ostrovsky. Efficient computations on oblivious rams. In Proc. 22nd A CM

Symp. on Theory of Computing, Baltimore, 1990. ACM.

[14] M. Rosenblum and J. Ousterhout. The design and implementation of a log-

structured file system. ACM Transactions on Computer Systems, 10(1):26-52,

February 1992.

[15] RSA Laboratories. RSAREF(TM): A Cryptographic Toolkit, Library Reference

Manual, 2.0 edition, March 1994.

[16] Bruce Schneier. Applied Cryptography Second Edition: Protocols, Algorithms,

and Source Code in C. John Wiley & Sons, New York, 1996.

[17] J.G. Steiner, B.C. Neuman, and J.I. Schiller. Kerberos: an authentication service

for open network systems. In Usenix Conference Proceedings, pages 191-202,

Dallas, Texas, February 1988.

[18] Philip Zimmerman. PGP(tm) User's Guide. Phil's Pretty Good Software, 1994.

148

