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Abstract

The world is currently experiencing an upheaval in its communications systems. New stan-
dards and technologies are continuously improving the way that people communicate with
each other. This constant development is leading to early obsolescence of the hardware
which is used to perform the communications, such as cellular phones and two-way radios.
While hardware design is well-suited to specific applications, it allows little flexibility for
improvements over time. Software, on the other hand, can be changed much more quickly
and inexpensively. In addition, software solutions have the potential to simplify some of
the challenging design issues facing conventional implementations.

This thesis describes the implementation of a software-based frequency hopping two-
way radio in which dedicated hardware is used only for wideband frequency translation and
A/D/A conversion. The other radio functions, which include modulation, demodulation,
and data transfer protocol, are performed in software. The radio operates in the 2.4-GHz
ISM band with a 625 kbps data rate, parameters shared by a conventional radio from
GEC Plessey Semiconductors. This implementation provides numerous advantages over
the conventional hardware-based one while allowing interoperation between the two.
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Chapter 1

Introduction

The current age of technological innovation has led to an explosion in the field of com-

munications. Vastly improving standards and technologies have allowed users of wireless

communication systems to have virtually unrestricted mobility around the world. However,

current communications systems possess a number of drawbacks, including early obsoles-

cence of devices, lack of flexibility, and incompatibilities between standards.

This thesis describes the implementation of a software-based communications device

which can potentially interoperate with existing hardware devices but provides a number

of advantages over them. These advantages stem from the flexibility provided by software

modules which can be easily updated to meet new guidelines, implement new communication

schemes, and facilitate multi-standard compatibility.

1.1 Motivation

Traditional designs have focused on the use of special-purpose hardware to perform all of the

radio functionality from the RF down to the baseband processing. Recently the trend has

moved toward the use of digital signal processors (DSPs) to perform baseband processing,

as illustrated in Figure 1-1.

While this architecture provides some degree of flexibility, one cannot alter such param-

eters as modulation technique, channel bandwidth, or coding scheme without a major hard-

ware redesign. The costs of such a change would be enormous, as mobile users would have

to replace their handsets and wireless providers would have to replace their base stations.

This has led to a proliferation of new standards and infrastructure, as each improvement



Figure 1-1: Common Radio Architecture.

in wireless technology requires new hardware while the infrastructure of the previous set

of standards must be retained as well. For example, the Advanced Mobile Phone System

(AMPS) standard has been in use since the introduction of public cellular communications

in 1983 [13]. Mobile phones being developed today still require backward compatibility with

AMPS, despite the fact that there have been major leaps forward in cellular technology over

the past 15 years. Today in North America there are a number of new cellular standards,

including D-AMPS, CDMA, and GSM, fighting for control of the market. Each standard

comes with its own mobile phones and base station infrastructure, which means that the

cost of operating all of these incompatible standards is enormous.

1.2 Approach

A software-based radio has the potential to solve these problems by providing tremendous

flexibility of operation. This thesis describes a software-based 2.4-GHz frequency hopping

two-way radio which can potentially interoperate with an existing transceiver made by GEC

Plessey Semiconductors.

The software-based radio employs function calls in the C programming language to per-

form modulation, demodulation, and data synchronization, with customized hardware used

only for frequency translation and analog-to-digital and digital-to-analog conversion. This

arrangement is illustrated in Figure 1-2. The RF front end block contains the application

specific hardware and the A/D/A devices that produce and consume sequences of digital

samples. The GuPPI is a generic direct memory access (DMA) interface that transfers
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Figure 1-2: Software-Based Radio Architecture.

Figure 1-3: Software Subsystem.

these samples between the front end and the memory of the host processor, where they are

accessed and manipulated by the software.

Not only does this device demonstrate the feasibility and flexibility of the software-

based concept, it also demonstrates the potential of this approach to simplify some of

the challenges faced in the conventional design of hardware radios. Frequency hopping, a

modulation scheme in which the carrier frequency changes periodically, is in many ways

challenging to implement in hardware. The software implementation of frequency hopping

demonstrated in this thesis is able to circumvent some of these difficulties.

1.3 Organization of this Report

First, Chapters 2 and 3 provide some background on relevant subjects. Chapter 2 introduces

software radios, frequency hopping, and the 2.4-GHz GEC Plessey Semiconductors radio

transceiver, while Chapter 3 describes the challenges currently faced in hardware design

of a frequency hopping system and ways that a software-based device can facilitate these

issues. The rightmost block of Figure 1-2, pictured in greater detail in Figure 1-3, is the

software subsystem and is described in Chapters 4 and 5. All of the other blocks in Figure

1-2 make up the hardware subsystem, covered in Chapter 6. Finally, Chapter 7 describes

the overall performance and provides suggestions concerning future work.

Transmit Host

FramingByte ModulatorFraming

Receive Host

Byte- Demodulator Deframing
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Chapter 2

Background

This chapter provides general background on topics related to this thesis. Section 2.1

describes the general principles behind the concept of software radios. Section 2.2 defines

the technique of frequency hopping, provides a brief history, and gives some examples of

current uses. Finally, Section 2.3 describes the Plessey frequency hopping two-way radio

which is being emulated.

2.1 Software Radios

Over the past decade wireless communications technology has made a seemingly unstop-

pable march from the analog to the digital domain. As this move occurs, researchers are

implementing more of the radio functionality in software, a trend which is leading to a de-

vice that has been coined the "software radio." Software radios promise to deliver greater

flexibility through programmability.

Software control of radio functionality would allow quick and easy alteration of such

parameters as channel bandwidth, frequency range, and modulation type. The benefits of

such control are apparent when one considers the astonishing multitude of communications

standards currently in place. Just a few of the presently used infrastructures are the Ad-

vanced Mobile Phone System (AMPS), Groupe Speciale Mobile (GSM), and Code Division

Multiple Access (CDMA). Software radios could potentially be able to communicate within

more than one system. In addition, new technologies could be applied without requiring

expensive changes in the existing hardware infrastructure.

The architecture of a basic software radio includes a multi-band antenna and RF con-
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Figure 2-1: Software Radio Architecture.

version, wideband analog-to-digital (A/D) and digital-to-analog (D/A) converters, and the

implementation of data processing functions in programmable processors [20]. Figure 2-

1 illustrates the architecture. Since the receive and transmit portions are essentially the

reverse of each other, let us examine the receive direction only.

The antenna takes in the signal, filters out unwanted frequencies, and passes it along

to the RF downconversion hardware. This circuitry shifts the frequency from the actual

received band down to an intermediate band which is low enough to be sampled by a

wideband A/D converter. The digital data output of the A/D converter is then fed into a

digital processor, which performs the required processing and delivers the data, in the form

of audio, video, or some other form, to the user. Hence the processor actually has access

to the entire frequency band of interest, rather than only being able to work with a single

station at a time.

This diagram demonstrates a distinguishing feature of software radios. The A/D and

D/A converters are placed as close to the antenna as possible. In other words, the optimal

solution would be for the digitization of the incoming signal and the analog conversion of the

outgoing signal to occur just after the antenna and filter. Unfortunately, A/D/A converters

and processors are not yet capable of operation at such high sampling rates, and so the RF

conversion hardware is necessary to bring the signal down to more reasonable frequencies.

The simplicity of Figure 2-1 masks the many challenges currently faced in the design of

software radios. To achieve good wideband performance, the antenna must operate with low

loss through multiple frequency ranges. The RF conversion hardware must offer a reasonable

signal-to-noise ratio over this wide band as well. In addition, processing capability is not

always sufficient to handle the data processing required [20].

Still, these difficulties are outweighed by the inherent possibilities of software radios,

and one would certainly expect the growth of this new radio architecture to continue.

One notable example of software radio design is the Speakeasy Multiband Multimode

Radio Program, an experimental military radio design [17]. In the military environment,



communication at different distances and to different groups could require different RF

frequency bands, modulation techniques, voice coding algorithms, and encryption types.

These features generally prevent any sort of communications compatibility between units.

In a multinational coalition, for example, efficient communications between groups is crucial.

A large multiplicity of radio systems has generally been required in a situation like this to

ensure high-quality communications between the parties involved. This radio proliferation

can become both a logistic and physical nightmare to the military personnel.

The Speakeasy project is attempting to solve this problem with a software radio design.

The antenna subsystem and frequency conversion hardware is multiband and reconfigurable.

Programmable, general-purpose DSPs are used for all functions that can currently be done

with them. For functions which are too complex for implementation in today's DSPs,

application-specific processors and field programmable logic devices are used. The design

is modular and the interface specifications use open standards, which will allow upgrades

to be made easily as the technology advances.

This thesis is part of the SpectrumWare project [28] in the Software Devices and Systems

group of the MIT Laboratory for Computer Science. SpectrumWare is applying a software-

oriented approach to wireless communications and distributed signal processing. The goal is

to use wide-bandwidth A/D technology to vastly extend the reach of software-based systems

by sampling wide bands of data and performing the processing of the samples in application

software. This approach provides tremendous flexibility for these software-based systems,

as system parameters can be changed easily and inexpensively.

2.2 Frequency Hopping

Frequency hopping (FH) is a type of data transmission in which the carrier frequency of the

signal being transmitted changes periodically based on a predetermined "hop" sequence.

It is a specific technique of spread spectrum, which describes any form of modulation in

which a narrowband transmitted signal is spread over a wider frequency range. There are

two major methods of performing spread spectrum transmission: frequency hopping and

direct sequence. In direct sequence systems, the narrowband signal is modulated by a

pseudorandom code which causes the waveform's spectral content to be spread over a wide

range. The wideband spreading causes the signal to appear as low-level noise to other users,
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Figure 2-2: Structure of Frequency Hopping Modulation.

but with the proper code it can be demodulated back to its narrowband form [24].

With frequency hopping systems, there are actually two levels of modulation, as pictured

in Figure 2-2. First the data is modulated by a standard technique, such as frequency-shift

key (FSK) or phase-shift key (PSK). Then the baseband signal is modulated over the

hop frequencies, according to a generated hopping sequence [23]. Therefore the initial

modulation is done without regard to which frequencies are to be transmitted, and the

hopping modulation places the signal at the right channel.

Frequency hopping can be classified as either fast or slow. Fast frequency hopping

is defined as a system in which there is at least one channel hop for each transmitted

symbol. Slow frequency hopping, then, refers to a system in which two or more symbols

are transmitted in the time between hops, known as the hop duration [6].

There are numerous advantages to spread spectrum over other modulation techniques.

The most well-known one is its resistance to interference, whether unintentional or man-

made. Frequency hopping was originally developed by the military as a means of dealing

with enemy jamming. While jammers can disrupt a few frequencies with their equipment,

it would require too much energy to jam the entire frequency band. As frequency hopping

has found use in commercial systems, the interference has taken the form of fading. If

something in the surrounding environment is causing fading on a particular channel, it is

unlikely that the next channel in the hop sequence will be suffering from fading as well [3].

Therefore robust error correction techniques can reduce the effect of fading on the system.



Another advantage of frequency hopping implementations is the fact that there is no

requirement of contiguous spectrum [15]. In techniques such as direct sequence spread

spectrum, the modulated signal is spread over a frequency range which must be continuous.

In frequency hopping, it makes no difference where the hop channels are located.

2.2.1 History

The term "spread spectrum" was coined by a pair of engineers, Madison Nicholson and

John Raney, at the Buffalo, New York division of Sylvania as early as 1954 [26]. However,

the real birth of the technique occurred over a decade earlier.

The concept of spread spectrum was a natural result of the World War II battle for

electronic supremacy, waged with jamming and anti-jamming tactics. Every Allied heavy

bomber, excluding Pathfinders, on the German front was equipped with at least two jam-

mers developed by Harvard's Radio Research Laboratory. On the German side, it has been

estimated that at one time, as many as 90% of all of the available electronic engineers were

involved in a huge, but unsuccessful, anti-jamming program [26].

One major anti-jamming technique applied during the war was to have radio operators

change the carrier frequency of transmission often, thereby forcing potential jammers to

keep looking for the right narrow band to jam [26]. Thus the concept of using frequency

hopping to combat jamming was recognized during the early 1940s. As a matter of fact, at

least two people had considered the use of frequency hopping even earlier.

In mid-1941 an application for an FH patent was filed by Hedy Lamarr and George

Antheil. Neither inventor was an engineer. Lamarr, baptized Hedwig Eva Maria Kiesler,

grew up in Austria, the only child of a prominent Vienna banker. In 1933, at the age of

19, already a well-known actress, she married an arms magnate, Friedrich "Fritz" Mandl.

However, Kiesler saw the threat posed by Hitler's plans for Austria, and so in 1938 she

fled Austria and came to the United States on a seven-year acting contract from Metro-

Goldwyn-Mayer. There she legally changed her name to the stage name of Hedy Lamarr.

Still greatly concerned by the war, Lamarr sought out the volatile symphony composer

Antheil. The two artists jointly conceived of a scheme for radio control of torpedoes in which

the transmitted carrier frequency would jump about via a prearranged, nonrepeating, and

apparently random code. Hence a torpedo carrying a properly synchronized receiver could

be secretly guided from the launch site all the way to its target. After some work, they



arrived at a frequency hopping concept in which synchronization between the transmitter

and receiver frequencies was achieved with two identical paper music rolls similar to those

used in player piano mechanisms. In fact, Antheil had, in his multi-player piano work

Ballet Mecanique, managed to create such synchronization. Their patent for a "Secret

Communication System" was granted on August 11, 1942 [26, 4].

In early January of 1943 another patent related to frequency hopping was filed. US

Army Signal Corps officer Henry P. Hutchinson applied for a patent on frequency hopping

signaling for "maintaining secrecy of telephone conversations" or for "privately transmitting

information," according to the document. His scheme used cryptographic machines to

produce a pseudorandom hop sequence on demand. Although the subject of the patent

is stated to be secrecy and privacy, Hutchinson has said that he was also aware of the

advantage his concept could have for avoiding interference. Due to its military potential,

the patent application was held under secrecy order by the US Patent Office until 1950 [26].

Despite the fact that people were envisioning the potential applications of frequency

hopping in the early 1940s, the first operational frequency hopping system did not appear

until the completion of the Buffalo Laboratories Application of Digitally Exact Spectra

(BLADES) project in 1963 [26]. Begun in 1955 by Madison Nicholson and James H. Green

of Sylvania Buffalo, a key to this project was Nicholson's earlier work in the development

of methods for generating signals having selectable frequency deviation from a reference

frequency. In 1957 this system was demonstrated, operating between Buffalo and Moun-

tain View, CA. It used frequency-shift key modulation followed by frequency hopping. A

code generator was used to select two new frequencies for each channel, the final choice of

frequency being dictated by the data bit to be transmitted. Error coding and interleaving

were also included. The packaged prototype was delivered for shipboard testing in 1962.

In 1963, BLADES was installed on the command flagship Mt. McKinley for operational

development tests, the first working frequency hopping system.

2.2.2 Current Uses

As spread spectrum technology has entered the commercial world, frequency hopping com-

munication has taken a back seat to direct sequence, despite possessing many of the same

advantages [5]. However, frequency hopping is still being used in many applications, both

military and commercial.



One example of the continued use of frequency hopping by the armed forces is the

Milstar system, a military satellite communication (MILSATCOM) system which operates

in the extremely high frequency (EHF) and superhigh frequency (SHF) ranges of 44 and 20

GHz, respectively. The system offers highly secure and robust communications to fixed-site,

mobile, and man-portable terminals through the use of frequency hopping. There are two

generations of the Milstar satellites: Milstar I and Milstar II. The former, made up of two

satellites, employs low data rate transmission of 75 to 2400 bits-per-second (bps). Milstar II

is to be made up of four satellites in near-geostationary equatorial orbits, with medium data

rate transmission capability of 4.8 kilobits-per-second (kbps) to 1.544 megabits-per-second

(Mbps). The first Milstar satellite was launched from Cape Canaveral Air Station, Fla., on

Feb. 7, 1994 [29].

Among commercial applications, frequency hopping is a feature in some cellular tele-

phony standards. Most of the cellular standards currently in existence are based on either

Time Division Multiple Access (TDMA), in which the frequency band is divided up into

time slices, or Code Division Multiple Access (CDMA), which employs direct sequence

spread spectrum techniques. The most popular of the TDMA standards is called Groupe

Speciale Mobile (GSM). While the presence of GSM in the United States is not large, this

standard is the accepted technology for all of Europe, and it is gaining popularity in other

parts of the world as well. One key feature of GSM is its use of slow frequency hopping

in transmission. Another cellular standard, known as DCS1800, is similar to GSM and

employs slow frequency hopping as well [15].

Another popular use of commercial frequency hopping is for wireless local area net-

work (WLAN) applications. In 1985 the FCC designated three frequency bands for use by

equipment that generates, and uses locally, RF energy for industrial, scientific, and medical

applications. These frequency ranges, collectively known as the Industrial, Scientific, and

Medical (ISM) bands, cover 902-928 MHz, 2.4-2.4835 GHz, and 5.725-5.85 GHz. Typical ap-

plications within this band include industrial heating equipment, microwave ovens, medical

diathermy equipment, security alarms, and ultrasonic equipment. Since the RF radiation

of these devices is localized to the immediate vicinity of the devices, it was decided that

the ISM bands could also be used for low-power telecommunications applications, such as

wireless LANs. In order to minimize the effect of interference in these unlicensed bands,

the communication devices are required to use spread spectrum techniques, either direct



sequence or frequency hopping, and the power levels must remain below 100 mW [15, 9].

2.3 The GEC Plessey DE6003

In order to demonstrate the feasibility and utility of a software-based radio, the frequency

hopping system described in this report was designed to interoperate with a currently

used hardware-based radio. The radio chosen for this interoperation is the GEC Plessey

Semiconductors DE6003, a 2.4-GHz frequency hopping spread spectrum transceiver module

that is sometimes used for WLAN applications.

2.3.1 Basic Features

The DE6003 transmits and receives data at a rate of up to 625 kbps over one of 100 channels

spaced 1 MHz apart over the frequency band from 2.4 to 2.5 GHz' [7].

As discussed in Section 2.2.2, low-power unlicensed operation is permitted in the Plessey

radio's frequency range, which means that there could potentially be a great deal of interfer-

ence from a number of sources. This is the perfect situation for spread spectrum technology,

since the frequency hopping nature of the DE6003 inherently allows it to avoid interference.

The data modulation scheme of the DE6003 is baseband frequency-shift key (FSK),

which is a digital form of frequency modulation (FM). In FM, information is sent by mod-

ulating the frequency of the carrier, so that the instantaneous frequency of the transmitted

sinusoid is proportional to the original analog data. With FSK, each value of the original

data is either a 0 or a 1. Therefore there are only two possible frequencies for the sinusoid,

one corresponding to a 0 data bit and the other corresponding to a 1. Therefore for each

channel used by the Plessey radio, there are two FSK frequencies, one just below the carrier

and one just above it [22].

2.3.2 Radio Architecture

A simplified block diagram of the DE6003 is shown in Figure 2-3:

TXD and RXD are the bit serial transmit and receive data lines, respectively [7]. The

seven channel select pins (SDO-SD6) are used to specify a channel number on which to

1'One might notice that this range actually exceeds the 2.4-GHz ISM band for the United States, which
covers 2.4 to 2.4835 GHz. The additional 16.5 MHz is part of the designated transmission bands of some
other nations.
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transmit or receive. The channel number is latched into the radio by applying a pulse to

the active-low LOADB line. The RX/TX and PAOFF inputs tell the radio whether it

should be in transmit or receive mode. To transmit, RX/TX is pulled low and the power

amplifier control should be high (PAOFF=1). For receive, the logic levels of these signals

should be reversed. One important fact to note is that the serial data on the TXD and

RXD pins is not framed in any way. Plessey makes a chip called the WL100 which allows

interaction between the DE6003 and the Media Access Controller (MAC) layer.

In transmit, the radio performs baseband FSK modulation on the data (TXD), yielding

a sinusoid of one frequency if TXD=0 and another if TXD=1. Then it mixes the signal

up to a 350-MHz intermediate frequency (IF). Finally, the DE6003 uses a hopping voltage-

controlled oscillator (VCO) to reach the 2.4-2.5 GHz range. The hopping VCO uses the

channel specifications from SDO-SD6 to synthesize a correct frequency between 2.05 and 2.15

GHz, which, when mixed with the 350-MHz signal, produces a waveform at the specified

channel frequency. This signal is then put through the microwave front end and sent out

through one of the two antennas2 [8].

The receiver section takes in the received signal through one of the antennas and uses

the hopping VCO to mix it down to the first IF of 350 MHz. A second modules contains a

downconverter that reduces the frequency to a second IF of 38 MHz, and an integrated FM

receiver that demodulates the signal, providing data at the RXD output. In addition, there

is an analog output called RSSI (Receive Signal Strength Indicator) whose signal varies

logarithmically from 0 to 3 Volts, according to the strength of the received signal [8].

2Two antennas are used to provide signal diversity.



Chapter 3

Software-Based Frequency

Hopping

One purpose of this thesis is to demonstrate that a software radio possesses some inherent

qualities which simplify the implementation of frequency hopping when compared to the tra-

ditional hardware radio. Section 3.1 of this chapter considers one of the two main challenges

of frequency hopping in hardware, the speed requirement of the frequency synthesizer, and

Section 3.2 considers the other, the requirement of continuous phase modulation. Both of

these aspects are simplified in a software-based approach. There are, of course, advantages

to frequency hopping in hardware which are lost in the software approach, and some of

these are examined in Section 3.3.

3.1 Frequency Synthesizer Speed

3.1.1 Advantages of Fast Hopping

Designers of frequency hopping systems prefer to keep the time between hops, called the

hop duration, as short as possible. The reason for this is that they are trying to maximize

the processing gain, an important parameter in spread spectrum systems:

Gp = BWt/BWi (3.1)

where BWt is the total bandwidth being used, called the transmission bandwidth, and

BWi is the bandwidth of each hop channel, referred to as the instantaneous bandwidth.



The processing gain affects such factors as the number of devices that can use a system

before quality is degraded, the amount of reduction in multipath fading, and the difficulty

in jamming or detecting the presence of a signal.

In frequency hopping systems, the processing gain is given by:

Gp = BWtI/BWi

= (N * BWi)/BWi

=N

(3.2)

where N is the total number of hop channels. In order to increase the processing gain, one

must increase the number of channels over which the hopping takes place, which places

greater demands on the synthesizer [10].

Another way to see how a higher hop rate improves factors such as resistance to inter-

ference, fading, and detection is to consider the following example. Assume that the radio

is sometimes transmitting on a channel suffering from fading. The shorter the hop interval,

the shorter the "burst error" that must be compensated for by error correction techniques.

The hop rate of a frequency hopping system is constrained by the speed at which the

frequency synthesizer can change frequencies. Hence some understanding of the operation

of frequency synthesizers must first be gained.

3.1.2 Frequency Synthesizer Fundamentals

Frequency hopping techniques require frequency synthesizers to upconvert modulated data

to the correct channel, as shown in Figure 2-2. The hop channel is changed by altering

the output frequency of the synthesizer. Hence it is important that the synthesizer is able

to change frequencies as quickly as possible. Today's frequency synthesis is generally done

with phase-locked loop (PLL) designs.

The basic structure of a PLL is shown in Figure 3-1. The phase detector compares the

phase of the input signal to the phase of the VCO output and generates a signal which

describes the difference between the phases. The VCO uses this information to change the

frequency of the output signal. Through feedback, the PLL causes the input frequency and

the VCO output frequency to be equal [21].
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Figure 3-2: Phase-Locked Loop Frequency Synthesizer.

To perform frequency synthesis, the block diagram changes slightly, as shown in Figure

3-2. The input frequency is now a low-frequency reference, generally a crystal oscillator. In

addition, dividers are added to the inputs of the phase detector. By changing the values of

R and N in the figure, different output frequencies can be obtained [11].

The difficulty in using these frequency synthesizers for frequency hopping applications

is the fact that the synthesizer divider variables must be reprogrammed with every hop.

Programming of the dividers is generally done serially with off-the-shelf synthesizers such

as the Harris HFA3524 used in this thesis [11]. Such serial programming takes time, which

constrains the hop rate of the frequency hopping system. The GEC Plessey radio which is

being used for this thesis solves this issue by having a specialized fast-hopping PLL among

its custom application-specific integrated circuits (ASICs) [8]. The disadvantage to this

solution is that custom ASIC design is far more expensive than the use of more general,

readily available parts such as the Harris HFA3524. In addition to the issue of cost, there

is a concern that the reliability of the synthesizer decreases as the hop rate increases [6].

3.1.3 The Solution

The software-based radio design offers a solution by taking control of the frequency hopping

away from the synthesizer. Recall from Section 2.1 that software radios bring such parame-

ters as modulation into software; hence responsibility for the hopping would move from the

synthesizer to the software. The goal of this thesis, to sample a wide band of frequencies

III



Figure 3-3: Solution to Synthesizer Issue.

and manipulate the resulting samples in software, leads to an implementation in which the

frequency synthesizer is programmed to produce a sinusoid of frequency equal to the lowest

frequency of interest. This way the signal is downconverted to a baseband signal and then

sampled into the host processor memory, where software takes control. Hence the frequency

synthesizer would only have to be programmed once, at the start of operation, making it

acceptable one-time overhead.

As an example of this implementation, let us consider operation of the system in receive

mode, shown in Figure 3-3. Set to the bottom of the frequency range of interest, the

output of the frequency synthesizer would cause the desired receive band to be shifted

down to baseband. Then the signal would be digitized and brought into software, where

the processor, which has knowledge of the current hop channel, could demodulate the data.

Additional discussion of this concept takes place in Chapter 4.

Therefore it seems clear that the challenge of designing frequency synthesizers which

can quickly change output frequency can be side-stepped in a software-based radio design

by performing the frequency hopping in software.

3.2 Continuous Phase Modulation

A second major challenge in the design of frequency hopping systems is the achievement of

continuous phase modulation. Continuous phase modulation signifies a type of modulation

in which there are no phase discontinuities between transmitted symbols. Figure 3-4 (a)
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Figure 3-4: (a) Continuous Phase and (b) Non-Continuous Phase.

and (b) show FSK-modulated data with and without the property of continuous phase,

respectively.

The main advantage of a continuous phase system is in the bandwidth of the modulated

signal. Any phase discontinuities add a high-frequency component to the signal. By having

a continuous phase system, these high-frequency components are reduced, and hence the

bandwidth is limited [18]. In a system where bandwidth is precious, continuous phase

modulation provides a great advantage. In addition, limiting the bandwidth allows faster

data rates to be achieved for the same bandwidth [16].

In a hardware implementation, the method of achieving continuous phase modulation

is for each symbol to begin and end at a certain value. For example, let us consider the

modulation technique used in this thesis, FSK. If the FSK frequencies are wo and wl, then

the two transmitted symbols are of the form:

go(t) = Asin(wot), gi(t) = Asin(wit)

Then continuous phase FSK modulation can theoretically be achieved if each pulse traverses

an integer number of cycles. In other words, :

woT/21r = Mo, wIT/27r = M1

where Mo and M 1 are integers and T is the length of the pulse [18]. So there is a constraint

placed on the length of each transmitted symbol.

In a practical implementation of a frequency hopping system, it is very challenging to

achieve continuous phase modulation. While it can be assumed that phase continuity will
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Figure 3-5: Downconversion of Non-Contiguous Bands.

be maintained while transmission is occurring on a particular channel, it is difficult for the

frequency synthesizer to produce continuous phase across a hop boundary.

The software-based implementation described in this thesis greatly simplifies the gen-

eration of continuous phase signals. First of all, by removing the responsibility of hopping

from the frequency synthesizer (Section 3.1.3), the inability of the synthesizer to keep con-

tinuous phase between hops has been made irrelevant. In addition, a novel approach to

frequency generation from software in which a highly oversampled sinusoid produces an ar-

bitrary frequency, described in Chapter 4, allows continuous phase frequency hopping FSK

modulation to be produced with no restrictions on the symbol length.

3.3 Disadvantages of Software-Based Approach

One major advantage of frequency hopping over other forms of multiple-access communi-

cations is that it does not require a contiguous frequency spectrum. Techniques such as

TDMA and direct sequence CDMA need a single continuous frequency band within which

to operate. With frequency hopping, there is no additional difficulty in hopping over diverse

frequencies. As the FCC begins to run out of large contiguous blocks of frequencies to desig-

nate for new forms of communications, it may be useful to have a method of communications

which can operate in smaller, spread-out frequency bands with no adverse effects.

With the software-based approach to frequency hopping, the ability to hop over diverse

bands remains, but it comes at a cost. The software radio downconverts the entire frequency

band of interest and then samples it into software. Due to the limited sampling rates of

today's D/A and A/D converters, the use of separated frequency bands would be inefficient.

Figure 3-5 describes the situation. Two non-contiguous frequency bands, A and B, are used

for hopping. The frequency synthesizer shifts the entire frequency range of interest, from
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Figure 3-6: Intelligent Downconversion of Non-Contiguous Bands.

the smallest frequency in A to the highest frequency in B, down to baseband and samples

it into the processor. So the frequency band between A and B is wasted in the sampling,

since no signal of interest will exist in this range. In fact, if the entire frequency range from

the bottom of A to the top of B is larger than half of the sampling rate, then this approach

will not be able to digitize all of the signals.

A possible solution to this problem would be to intelligently perform the frequency

translation to make more efficient use of bandwidth. For example, consider Figure 3-6. The

current approach would downconvert the entire range by setting the frequency synthesizer

output to the smallest frequency in A. However, there is a more efficient solution. Since

the band between A and B is of no interest, a good deal of bandwidth could be saved by

converting A down to baseband and then shifting B down so that the lowest frequency in B

is just higher than the highest frequency in A. Of course, very good filters will be required

to separate A and B for the downconversion process. The drawback to this solution is that

it will require more hardware than the general software-based approach.

Rather than consider the possibility of separated frequency ranges for hopping, the

software radio developed in this thesis is designed for a contiguous band. If it becomes

necessary to support a feature such as this, a fairly straightforward hardware redesign

could be done.
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Chapter 4

Software Approach

The key to the frequency hopping radio transceiver discussed in this thesis is the software.

Much of the radio's functionality is controlled by software in general-purpose processors,

resulting in more flexible and, in some instances, simpler operation.

4.1 Advantages of General-Purpose Processors Over DSPs

One difference between the software-based radio described in this thesis and the software

radios described in Section 2.1 is that the former operates using general-purpose processors

in desktop computers, while the latter employs digital signal processors (DSPs).

An advantage in the use of general-purpose processors is that they allow temporal de-

coupling of the actual processing from the I/O applications. A requirement of nearly all

DSPs is the need for synchronization of I/O and computation. In order to achieve this

synchronization, DSPs avoid features that introduce uncertainty into the system, such as

caches and virtual memory. In addition, they provide low latency interrupts in an attempt

to minimize the uncertainty introduced by this mechanism. Further analysis shows, how-

ever, that general-purpose processors may be able to perform signal processing computation

without possessing these two properties, by taking advantage of improvements in processor

speed and memory [28, 27].



4.2 Transmission Approach

In conventional frequency hopping FSK systems, modulation occurs in two stages. First

the data bit is modulated at baseband using FSK, and then the signal is converted up to

a particular hop channel. In other words, the modulator uses the value of the data bit to

choose one of two frequencies, and then this frequency is shifted up to the right channel.

While there would certainly be advantages to combining these two steps, it is not feasible

to do so in hardware. Each hop channel in an integrated transmitter would require its

own hardware for the FSK frequencies of that channel. A software-based implementation,

however, allows the system to be changed dynamically, thereby enabling the two-stage

modulation process to be combined into a single module.

The idea is actually quite simple. All of the possible hop frequencies are known in

advance, and so for each such frequency, two sequences of samples can be pre-computed

and stored in memory - one sequence to be sent for a zero symbol and another for a one.

So the modulator functions by examining the value of the user data bit and copying the

required samples into the output payload.

The total amount of memory required to store buffers for the relevant frequencies for

nc hop channels can be easily calculated. Given a sample-per-data-bit ratio of sbit, which

means that each data bit is described by sbit samples, the total number of samples of all of

the stored bit patterns is:

n, = sbit * (2 * nj) (4.1)

Then the total amount of memory (in bytes) required to store 2 * nc frequency generation

buffers is given by the product of the total number of samples and the number of bytes per

sample:

nbytes = n8 * b* (4.2)

The Plessey radio has a bandwidth of 100 MHz, separated into 100 channels with band-

widths of 1 MHz each. In addition, the DE6003 transmits and receives data at a rate of up

to 625 kbps [7]. From these parameters we can calculate the number of samples which will

be transmitted for each data bit, for a system which contains the full functionality of the

Plessey radio. The bit period is determined by the data transmission rate of the DE6003:

tbit = 1/rdata (4.3)



Then the number of samples which describes each data bit is the product of the sampling

rate and the bit period:

sbit = fs * tbit (4.4)

According to the Nyquist criterion, the sampling rate must be at least twice the bandwidth:

f. = 2 * fmax (4.5)

Given fma1 = 100MSPS and rdata = 625kbps, we find that:

sbit = 320 samples/bit (4.6)

Hence each data bit should produce 320 samples when modulated, for a 100 MHz bandwidth.

Using these values and 16-bit samples, the total amount of memory required to store all

of the frequency buffers is 128 kilobytes. Considering the amount of memory in today's

computers, this is a relatively small amount of space. In fact, it could fit entirely within

the Level 2 cache, which would provide very good computational performance.

However, there is one major drawback to the above method of frequency generation: it

is not particularly well-suited for continuous phase modulation, which is used by the Plessey

radio. Each stored buffer contains a sampled sinusoid with the same number of samples as

all of the other buffers. Hence copying buffers into the output payload one after the other

will not generate a continuous phase output.

There is another method of performing frequency generation which is more elegant and

efficient than storage of multiple buffers. It requires storage of one period of a highly

oversampled sinusoid and is nicely suited for continuous phase modulation. The technique

works as follows. First, calculate values for one period of a highly oversampled sinusoid,

known hereafter as the general pattern. Let the number of calculated samples of the general

pattern be called numsamp. Let the sampling rate be f,, and let the desired frequency to

be generated be fd. Then the number of samples in each period of a signal with frequency

fd is given by:

number of samples per period = f,/fd (4.7)

Now define a variable called incr, which equals the ratio of the number of samples in the



general pattern to the number of samples in each period of the desired signal:

incr = numsamp/(f,/ fd) (4.8)

Then the desired sine wave pattern can be generated by taking samples separated by incr

of the general pattern. In order to achieve continuous phase modulation, define an offset os

which uses knowledge of incr, the number of samples per bit sbit, and its previous value to

determine where in the general pattern each output sinusoid should begin:

os = os + ((Sbit * incr) mod numsamp) (4.9)

Hence the desired output pattern is given by:

output(n) = generalpattern(n) + ((os + (n * incr)) mod numsamp) (4.10)

where n = 1, 2, ... , sbit. Figure 4-1 offers a graphical description of this technique. The top

sinusoid consists of 512 samples of one period, and the bottom one shows the generation

of an 800 kHz signal by incrementing through the buffer and wrapping around to achieve

continuous phase. The '*' marks on the top sine wave are the samples of the general pattern

which make up the first few samples of the 800 kHz signal. Then we wrap around the buffer

and get the samples marked with a '+' for the next few samples. Continuing this process

for a total of sbit samples will produce the desired bit period.

This method of frequency generation for modulation offers a number of advantages. The

most important one, mentioned above, is its ability to easily generate a modulated signal

of continuous phase. In addition, the memory used for storage of the general pattern is

minimal. If 512 samples of the general pattern are produced and 16-bit samples are used,

then the total memory usage for storage is only 1024 bytes. A third advantage is that

this method allows the generation of any frequency that might be required. In the stored-

buffer method of frequency generation, a change in a radio parameter such as the number

of channels might involve recalculation of some or all of the buffers.

The transmitter also must know when to frequency hop to the next channel. The

approach used in this thesis is that the modulator will begin by transmitting the packet
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Figure 4-1: Continuous Phase Frequency Generation.

start code at a predetermined start frequency'. After sending the start code, the transmitter

follows a hop pattern until it sends the entire packet, after which it returns to the start

frequency and sends the next modulated start code. A frequency hop occurs after a certain

number of bits have been transmitted.

4.3 Reception Approach

For the demodulation module of the frequency hopping system, it was determined that a

combination downconverter/FSK receiver and knowledge of the current hop channel would

provide satisfactory performance. The software FSK receiver block diagram, based on the

hardware diagram of Figure 4-2, is shown in Figure 4-3. A demodulation block is imple-

mented for each of the two FSK frequencies, and the larger of the two outputs corresponds

to the correct frequency.

Let us first assume that we know the current hop channel. Demodulation occurs by

performing the operations shown in Figure 4-3 and comparing the output values. Each of

1A different starting frequency can be specified for each hop sequence.
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these steps is a straightforward operation in software. Knowing the hop channel means that

there are only two possible choices for the frequency of the received signal. Since the phase

of the signal is not known, however, the steps must be performed twice for each frequency,

once with a sine wave and once with a cosine wave which is 900 out of phase. In the worst

case, the phase of the received signal falls just between the sine and cosine waves, which

means that the amplitude will be reduced by a factor of 1//2. In this way knowledge of

the actual phase of the received signal becomes unnecessary. Then each product is lowpass

filtered, which simply amounts to an averaging of the data. So each frequency produces two

output values. Since these values differ due only to the phase of the received signal, only

the maximum of the two is needed. This leaves one value to describe each FSK frequency.

As shown in Figure 4-3, let us refer to these two values as A0 and A1 , where the subscript

represents the value of the bit corresponding to each FSK frequency.

If it was certain that the receiver was examining the center of the bit period of the

transmitted signal, then the larger of A0 and A1 would correspond to the value of the bit.

Of course, this is not necessarily the case, and hence there is a need for some mechanism

to lock on to the samples corresponding to a bit. The method used in this thesis for

performing this task is to slide the input pointer forward by one sample at a time, applying

the steps of Figure 4-3 for each position of the pointer. The maximum value obtained from

this operation then corresponds to the placement of the input pointer which achieves bit

boundary lock.

After locking on to the bit period, it is necessary to lock on to both the bit and packet

framing. Procedures for performing these operations are described in Section 5.1.

If the receiver does not know the current hop channel, then some form of hop synchro-

nization must take place. The method used in this thesis is to begin transmission of each

packet at a start frequency determined by the choice of hop code. Generation of the hop

code was considered to be beyond the scope of this thesis, but numerous techniques are

available for performing this function. Once the start code has been received on the base

frequency, the transmitter and receiver can begin to hop in synchronization. A frequency

hop occurs after the transmission of a predetermined number of bits. The receiver ensures

that it is in lock by reading the length field of the packet and checking that a stop code

is demodulated after the correct number of data bytes have been received. If the receiver

does not see a stop code at the correct location, then it assumes that hop synchronization



has been lost and returns to the start frequency to wait for the next packet start code.

In reality, most packets are only a few bytes in size. Therefore a hop synchronization

method in which each packet begins at a certain frequency would mean that hopping only

occurs over a few channels before returning to the start frequency. A better method might

involve returning to the base frequency at the start of every nth packet, for example.



Chapter 5

Details of Software Modules

Figure 5-1 shows the five main software blocks which perform the transmission and recep-

tion. The framing module adds start and stop bits to each byte of the input samples, in

addition to providing framing for the entire packet. The modulator then performs frequency

hopped FSK modulation on the data and sends it to the GuPPI for output to the hard-

ware. The receive software operates somewhat differently. Rather than being aligned in a

uni-directional, linear fashion like the transmitter, the receiver software operates in layers.

The reason for this difference is that the receiver must be able to adapt to the transmission.

In other words, it should be able to operate on different transmission parameters, which

points to a more modular approach to the design. The top-level receive program interacts

only with a packet extraction function. This function calls the byte extractor, which in turn

uses only a bit extraction function call. Finally, the packet extractor provides the original

data to the user.

The modulator and receive data extractor blocks are described in detail below. The

framing module, which was implemented by Andrew Chiu at the MIT Laboratory for Com-

puter Science, and the function calls for software control of the GuPPI are explained below

as well.

5.1 Software Framework

A major goal of software radio design is to give the user the ability to easily change such radio

parameters as multiple access technique, modulation method, and data framing protocol.

In order to achieve this goal, the radio software must be designed in a modular manner, so
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Figure 5-1: Software Modules.

that one module could be replaced with another one with little difficulty. In addition to this

interest in the ability to change parameters easily, there are other advantages to a modular

software design. One is that the development of general function calls allows others to use

the same modules for different applications.

As shown in Figure 5-1, the software subsystem of this thesis implements a modular

software design by decoupling the multiple layers of both the transmitter and the receiver.

By doing so, the software subsystem has been broken down into independent function calls

which can be easily replaced with other function calls or used by others in different software-

based transmission/reception systems.

One issue in a modular design is the need for straightforward interfaces for the inputs

and outputs of a function call. This was done by grouping the required variables based

on functionality and creating C structures to describe each group. Structures were defined

for the categories of: "data payload," "multiple access technique," "modulation type," "bit

framing," and "byte framing." The goal was to design the transmit and receive function

calls so that each would operate with only a small subset of these structures. For example,

one function, called FSKDemod and shown in Figure 5-2, performs FSK demodulation on one

bit. Hence the function does not require the structures for frequency hopping and bit and

byte framing. This allows for the same function call to be used for different framing and

access techniques.

The function calls take pointers to these structures as arguments, which allows the

function to edit the members of the structure if necessary. Figure 5-2 shows examples



/* Definition of structure for payload */
struct swPayload {

int payloadType;
short* dataPtr;
short* startPtr;
uint numSamples;
float samplingRate;
int status;

/* Definiton of structure for FSK modulation */
struct swFSK {
float dataRate;
uint bitPeriod;
float freqDeviation;
short* sincoswaves [2] [2] ;
float signalStrength;
int lock;

};

/* Prototype for bit demodulator function */
int FSKDemod(struct swPayload* payload, struct swFSK* fsk)

Figure 5-2: Sample Structure Code.

of structure declarations, function calls, and function definitions. The members of each

structure describe parameters relevant only to that particular structure. For example, a

data payload is described by such parameters as data type, number of samples in the

payload, and sampling rate. Any function calls which implement FSK modulation will

need to know such parameters as the number of samples in each modulated bit and the

data bit rate. By standardizing the input/output interfaces of the function calls, the use of

structures greatly simplifies module use.

Of course, there are instances in which a desire to decouple the functional blocks might

lead to a suboptimal design. An example of this possibility can be seen in the modulation

block. As discussed in Section 4.2, performing frequency hopping and FSK modulation in

a single module allows us to take full advantage of our ability to control an entire wideband

frequency range. This savings in efficiency far outweighs the potential savings from a

modular design. Therefore the transmitter section contains only two blocks, a framer and

a modulator.

On the receiver side, the advantages of modular design are greater than any potential

savings which could be achieved from integration of modules. There are four functional

blocks to consider: access technique, modulation method, bit framing, and byte framing.



Figure 5-3: Interaction Between Receiver Modules.

The software receiver design of this thesis is made up of a function call which deals with

each layer, communicating only with the layers above and below it. The design choice

of each layer is transparent to the other layers, meaning, for example, that changing the

bit framing protocol has no effect on the other function calls. Figure 5-3 describes the

interaction between the four layers.

5.1.1 Frame Extraction

The highest layer of these four functional areas is packet frame extraction. Each data

packet is framed by start and stop codes to allow the receiver to determine the boundaries

of the packet after the received signal has been demodulated. The packet framing used in

this thesis consists of a start code, length field, and stop code. The start code is one byte

long and has hexadecimal value "AC." The length field contains a two-byte quantity which

describes the total number of framed bytes transmitted, including the start and stop codes

and the length field itself. Following the framed bytes of data is a two-byte stop code of

value "BD 22."

The flowchart of Figure 5-4 describes the operations of the packet-level receiver function

call. The first step is to lock on to a start code. So the function passes to the byte extractor,

which is described below, the value of the start code and then waits until a start code is



Figure 5-4: Frame Extraction Flowchart.
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returned. This signifies that the receiver has locked on to a packet. The next two bytes

correspond to the length of the packet in framed bytes. So the byte extraction function

gets called twice more, and then by properly manipulating the two bytes the length is

determined. Now that the length is known, the actual data in the packet can be retrieved

by repeatedly extracting one byte at a time. After obtaining a number of data bytes given

by five less than the length value, the data pointer should be at the stop code. If the byte

extractor returns the two bytes which make up the stop code, then the frame extraction

function returns the deframed data packet to the main procedure. If the stop code is not

found at the correct location, then the packet is assumed to be corrupted, and the function

goes to find another start code.

The key to this frame extraction function call is that it is completely unaffected by

choice of access technique, modulation type, and bit framing protocol. This means that any

of those three parameter choices can be changed without having any effect on this function,

achieving true modularity.

In addition, the use of a structure to describe all of the characteristics of the byte framing

allows generality even in the frame extractor itself. The values of the start and stop codes

are not fixed in the function. Rather, they are members of the byte framing structure

which is passed into the function. Therefore changing the value of a member definition in

the top-level procedure will be carried out with no required changes to the frame extraction

function.

5.1.2 Byte Extraction

Since the packets of the top level are made up of bytes, the byte extraction layer resides just

below the packet extractor. Just as in the previous level, some type of framing is necessary

to allow the receiver to know how to divide the demodulated bit stream into bytes. The

bit framing used in this thesis is the serial data protocol known as 8N1. This means that

there is one start bit, eight data bits, one stop bit, and no parity. The 8N1 protocol is not

the only allowable bit framing protocol in this function, however. It can easily be changed

simply by altering the members of the bit framing structure which is sent as an argument

to the byte extractor.

Figure 5-5 shows the flow of this layer. The first step, of course, is to obtain a demodu-

lated bit. This is done with a call to the bit extraction function described below. If this bit



Figure 5-5: Byte Extraction Flowchart.

47



is not a start bit, then the bit extractor is called again. Once a start bit has been obtained,

the bit extractor is called repeatedly to return the data bits. For the 8N1 protocol, there

are eight data bits, and hence eight calls to the bit extractor. Once the data bits have been

received, the bit extractor is called again to ensure that a stop bit ends the framed byte. If

this is not the case, then the framed byte is not valid. So the data pointer is moved forward,

a "Lock" flag within the FSK modulation structure is set to tell the bit extractor that the

data is not in lock, and the bit extractor is called again. If a stop bit was found, then

the byte is valid. However, it may not necessarily be the byte that the frame extraction

function is looking for. So the byte is compared to a desired byte value sent by the frame

extractor. If they match, then the byte is returned to the frame extractor. If not, then the

function goes back to looking for a start bit.

As in the frame extraction function above, it is easy to see that individual layers are not

affected by design choices made in other layers. The byte extraction function implements

only the bit framing protocol which is defined in the corresponding structure. Byte framing,

modulation type, and access method are not affected in any way by the choice of bit framing

protocol.

5.1.3 Bit Extraction

The next layer down involves the function of bit extraction. Each modulated bit is a sinusoid

whose sample density is given by the ratio of the sampling frequency to the data rate. To

operate over a 100-MHz bandwidth with the maximum Plessey radio data rate of 625 kbps,

each modulated bit would be made up of 320 samples.

The flowchart in Figure 5-6 describes the process for performing bit extraction. First

a procedure, described in the next section, is called to determine the hop channel for this

bit being extracted. Then the bit extractor uses the Lock flag set by the byte extractor to

know whether it is correctly locked on to the bit period. If the flag has been set, then a

procedure is called to lock on to the next bit period boundary. After returning from this

procedure, the receiver should be locked on to the bit period of the modulated bit. Finally,

a function which performs FSK demodulation on one bit can be called to return the bit

value.

The procedure for demodulating a bit was described in Section 4.3. The operations of

Figure 5-7 are performed over one bit period of the data, and then the larger of A 0 and



Figure 5-6: Bit Extraction Flowchart.
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Figure 5-7: FSK Software Demodulation Procedure.

A1 corresponds to the value of the bit. The procedure for locking on to the bit period of

a modulated bit was also described in Section 4.3. The idea is to call the demodulation

procedure for each position of the input pointer over a range of a bit period and to consider

the best match to be a lock. Code fragments for both of these procedures are provided in

Section 5.6.

5.1.4 Channel Selection

The final receiver layer involves the frequency hopping. Before extracting a bit, the receiver

must know what channel frequency has been used to modulate the bit. So each call to the

bit extraction function results in a call to the channel selector. The channel selector simply

determines whether the transmitter has hopped, in which case the channel of the receiver

is changed accordingly.

In this thesis, frequency hop times are based on the number of bits transmitted. The

transmitter begins each packet at a base channel which can be specific to each hop code.

Then the transmitter sends out the modulated signal, hopping after a predetermined number

of modulated bits. By synchronizing with the transmitter at the start of the packet the



receiver can follow its hop pattern. Using the length field in each packet, the receiver knows

how much data should be demodulated before the stop code is reached. If the stop code

does not appear at the correct location in the received data, then the receiver assumes that

it has lost lock and returns to the base channel to await the next packet start code.

The channel selection layer must be told whether it is correctly hopping or not by the

functions above it, specifically the frame extraction function. A member in the frequency

hopping structure acts as a flag for the channel selector to use in determining whether or

not the hopping is synchronized correctly. When the frame extractor fails to see a stop

code at the correct location, the flag is set to tell the channel selector to return to the base

channel until a start code has been found.

5.2 GuPPI Function Calls

There are six C function calls used to operate the GuPPI, a PCI-bus interface described in

Section 6.4, from software. These modules were implemented by Michael Ismert and Vanu

Bose at the Software Devices and Systems group at the MIT Laboratory for Computer

Science. Rather than provide details of the operation of these modules, this section gives

a brief description of each function call and information about its inputs and outputs.

Examples of the function calls are given in Figure 5-8.

guppi-open

The function guppiopen opens and sets up the GuPPI device for use by the programmer.

The function call takes in two arguments, the GuPPI's device name on the machine and

the size of the desired allocation. This size is given in units of "pages," where each page

contains 4096 bytes. The function returns an integer greater than 0 if it was able to perform

the allocation and less than 0 if there was a problem.

guppiget buffer

The function guppi.get-buffer allocates space in memory for a buffer and sets it up for use

by the GuPPI. The function call takes in no arguments and returns a pointer to the newly

allocated memory buffer. The size of the buffer comes from the preceding guppiopen call.



/* Initial GuPPI setup call */
if ((guppi-open("guppiO",pages)) < 0) {

printf("Error: unable to properly allocate buffer");
exit (0);

}

/* Allocate buffer for GuPPI transmit data */
buf = guppigetbuffer();

/* Queue buffer to GuPPI for transmission */
if ((guppiqueue-tx(buffer)) < 0)

printf ("Error: unable to properly queue data for transmit");

/* Initialize GuPPI for receive */
guppistart.rec() ;

/* Get received data buffer from GuPPI */
buf = guppi-rec-buf();

/* Return buffer to GuPPI */
guppi-freebuf (buffer) ;

Figure 5-8: Examples of GuPPI function calls.

guppiqueue tx

The function guppiqueue.tx queues a buffer of modulated data for transmission out

through the GuPPI. The function call takes in one argument, the name of the payload

to be sent out, and returns an integer greater than 0 if it was able to queue all of the data

and less than 0 if there was a problem. Again, the GuPPI already has knowledge of the

size of the buffer from the guppiopen call.

guppi-start _rec

The function guppi.start-rec enables direct memory access (DMA) in preparation for

receiving data. The call then queues up two GuPPI receive buffers for future use by the

caller. The function call takes in no arguments and returns nothing.

guppi-rec-buf

The function guppi.recbuf receives a buffer of data from the GuPPI. If a filled buffer is

available, then a new payload is queued up and the filled one is returned. If the buffer

has not yet been filled, then the function queues up another buffer and returns the first

payload when it has been filled. The function call takes in no arguments and returns the



filled buffer.

guppi-free-buf

The function guppifree-buf frees a memory buffer that was used by the GuPPI and

returns it to the GuPPI library. The function call takes in one argument, the name of the

buffer to be deallocated, and does not return anything. The function only must be used

in receive applications. This can be advantageous in cases when a single buffer is being

transmitted repeatedly, because only one guppigetbuffer call is required and the buffer

can be reused.

5.3 Main Procedure

The main C procedures perform the top-level functionality of the software subsystem. These

procedures, one for the transmit section and another for the receive, control the calling of

the functions described above and in Section 5.5.

5.3.1 Top-Level Transmit Program

The main transmit program takes in user data, calls the byte framing and transmission

modules, and interacts with the GuPPI in order to send the modulated data to the hard-

ware subsystem. It takes as a command-line input the number of 4096-byte pages to be

transmitted. Reasonable values for this parameter are on the order of ten to 100 pages.

Code Description

The first step in the program is to set up the GuPPI with the given number of pages,

using the guppi-open function call.

The next step is to determine how much input data to use so that the correct amount

of data is handed to the GuPPI. Some calculations must be made in order to determine

this. Each user bit to the modulator produces one bit period of modulated 16-bit samples.

Hence the desired number of pages will be generated from many less bits of data:

4096 * pages bytes out = 4096 * pages/(2 * bitPeriod) framed bits in

= 2048 * pages/bitPeriod framed bits in (5.1)



/* Open GuPPI for use */
if ((guppi.open("'guppiO'",pages)) < 0) {

printf ("Error: unable to properly allocate buffer");
exit (0);

}

/* Obtain buffer for transmit data */
buf = (ushort *)guppigetbuffer();

/* Perform frequency hopping FSK modulation on framed data */
if (FHFSKTransmit(&inputPayload,&outputPayload,&fh,&fsk) = 1)
printf ("Problem with modulator. \n");

/* Copy modulated data to GuPPI buffer */
memcpy(buf,outputPayload.dataPtr,4096*pages);

/* Queue buffer for GuPPI */
if ((guppiqueuetx(buf)) < 0)
printf(' Error: unable to properly queue data for transmit'');

Figure 5-9: Main Transmit Program.

The amount of unframed user data for each payload depends on the particular framing

protocol being used1 .

Before going further, the various structures required for the function library must be

defined. The transmitter function uses structures for parameters related to the input and

output payloads, frequency hopping, and FSK modulation. So any members of these struc-

tures which are accessed in the transmitter must be defined here. This includes calculation

of the oversampled sinusoid used by the modulator for frequency generation.

The next step is to obtain a buffer for use by the GuPPI and copy the modulated data

into this buffer, as shown in Figure 5-9. Finally, the buffer of modulated data can be sent

to the GuPPI for transmission.

5.3.2 Top-Level Receive Program

The main receive program takes in buffers of data from the GuPPI, calls the demodulator

and byte deframing functions, and displays the received data. It takes as a command-line

1For the 8N1 protocol used in this thesis, eight bits going into the framer produces ten bits out. In
addition, the byte framer adds five bytes to the payload, for packet framing purposes. Therefore the input
data for each payload to the GuPPI should be of size:

4096 * pages bytes out = (2048 * pages/bitPeriod)/1O - 5 unsigned chars in

= (204.8 * pages/bitPeriod) - 5 unsigned chars in (5.2)



/* Open GuPPI for use */
if ((guppiopen('"guppi0",pages)) < 0) (

printf("Error: unable to properly allocate buffer");
exit (0);

}

/* Initialize GuPPI for receive and get GuPPI buffer */
guppistart-rec() ;
buf = (u.short *)guppirecbuf();

/* Receive packet of data */
inputPayload->dataPtr = buf;
ComputeSin(&fh,&fsk,&inputPayload);
outputPayload = GetFrame (byteFrame ,bitFrame ,fsk,fh, inputPayload);

/* Return buffer to GuPPI */
guppifreebuf (buf);

Figure 5-10: Main Receive Program.

input the number of 4096-byte pages to be received from the GuPPI.

Code Description

The first step, just as in the main transmit procedure, is to open the GuPPI for use

in the program. In addition, the GuPPI must be properly set up for receiving data, using

guppi.start-rec. A call to guppi.start-rec also queues up two receive buffers for use.

Then the function guppi-rec.buf actually brings a filled buffer of received data into the

host memory.

Just as in the transmit program, all of the structure members which the receiver uses

must be defined. In addition to the input and output payloads, frequency hopping param-

eters, and FSK parameters that are defined for the transmit side, the receiver also uses bit

and byte framing structures.

Once the received data is in memory, it can be demodulated. The main receive program

makes two library calls for demodulation. The first, ComputeSin, is used to perform the

initial demodulation overhead of generating sinusoids of particular frequencies. Then the

main procedure calls GetFrame, which returns a framed packet of data. Within GetFrame

are calls to additional functions which lock to byte and bit frames, but these procedures are

transparent to the user. Once GetFrame returns the data, the buffer should be returned to

the GuPPI for future use.



5.4 Modulator Description

The modulator performs an integrated frequency hopping FSK modulation technique on a

sequence of framed bits. As described in Section 4.2, integration of the frequency hopping

and the channel modulation into a single function provide great advantages in efficiency,

due to the ability of the software radio to have control over the entire wideband frequency

range of interest. This efficiency savings outweighs the loss of modularity which comes from

constraining the function call to work only with the combination of frequency hopping and

FSK.

Input/Output Interfaces

The frequency hopping FSK modulator takes input payloads from the byte framing module

that contain the sequence of binary symbols to be transmitted. Each payload is a pointer

to an array of 32-bit entries, and each bit of input is modulated to produce samples cor-

responding to one bit period of output 2 . According to Section 6.1, the sample density

necessary to transmit 312.5 kbps at a sampling rate of 5 MSPS is 16 samples/bit. Hence

each byte of input will produce 128 samples of output. Since output samples are 16-bit

short ints, each byte of input generates 256 bytes of output. Therefore the output payload

is larger (in bytes) than the input payload by a factor of:

payload scale factor = 256 (5.3)

The modulator function call takes four arguments, structures which contain informa-

tion about the input payload, the output payload, frequency hopping parameters, and FSK

modulation parameters. It returns -1 if there is a problem in the modulation, and 1 other-

wise.

int FHFSKTransmit(struct swPayload* inputPayload,
struct swPayload* outputPayload,
struct swFH* fh, struct swFSK* fsk);

Code Description

2In C, these 32-bit entries are "cast" as unsigned ints.



/* Determine value of specific bit */
#define BitVal(ptr,BitNo) ((*(ptr + (BitNo/32)) >>

(31 - (BitNo%32))) & Ox0001);

/* Define FSK frequencies and then change them after a hop. */
#define INCRO fh->txPatternLen * (fh->currChannel

* fh->channelSpacing + fh->channelOffset
- fsk->freqDeviation) / (outputPayload->samplingRate)

#define INCR_1 fh->txPatternLen * (fh->currChannel
* fh->channelSpacing +fh->channelOffset
+ fsk->freqDeviation) / (outputPayload->samplingRate)

/* Initially set indexPtr to the start of the oversampled sinusoid */
indexPtr=fh->txPattern;

/* Calculate increment for initial hop channel */
incr[O] = (int)(.5 + INCR_0);
incr[1] = (int)(.5 + INCR_1);

/* Determine value of bit */
bit = BitVal((u_int*)(inputPayload->dataPtr),bitCount);

/* Copy modulated bit into output buffer. Wrap around oversampled
sinusoid buffer if necessary. */

for (n=l;n <= fsk->bitPeriod;
n++,outputPayload->dataPtr++,indexPtr += incr[bit]) {

if (indexPtr >= fh->txPatternLen + fh->txPattern)
indexPtr = indexPtr - fh->txPatternLen;

*outputPayload->dataPtr = *indexPtr;
}
bitCount++;

/* Frequency hopping */
if (bitCount % fh->hopStep == 0) {
FHHop(fh);
incr[0] = (int)(.5 + INCR_0);
incr[1] = (int)(.5 + INCR_1);

}

Figure 5-11: Sample Modulator Code.



The general procedure for modulation is outlined in Section 4.2. Before the function call

is made, however, the top-level program must generate one period of a highly oversampled

sinusoid which can then be used to produce sine waves of arbitrary frequency. The pointer

to this oversampled sinusoid, which is a member of the frequency hopping structure, is

called txPattern in the code of Figure 5-11.

The modulator operates by placing a sinusoid of some frequency in the output payload

for each bit of input. So we must be able to look at each bit of an input sample individually.

The first define statement in Figure 5-11 extracts bit number BitNo from the data refer-

enced by the input pointer. For example, BitNo0O corresponds to the most significant bit

of the first value of the input pointer, while BitNo=32 corresponds to the most significant

bit of the second input pointer entry.

The next step is to determine the size of the index into the buffer. This value is based on

the current frequency channel and the value of the bit, in addition to radio parameters such

as channel spacing and offset, found in the frquency hopping structure, and the frequency

deviation of each FSK frequency from the channel center frequency, found in the FSK

structure.

At this point a sinusoid of the desired frequency can be written into the output payload.

This is done by moving through the oversampled sine wave and choosing samples separated

by the increment amount. After this loop has been completed, one bit period of a sinusoid

of the desired frequency has been copied into the output payload, and indexPtr points to

the starting value of the next bit, which creates continuous phase.

The above system has simply been an FSK modulator. The last step is to apply fre-

quency hopping to the modulation. The modulator hops after transmitting some predeter-

mined number of bits. So the modulator knows when to hop by counting the number of

bits which have been transmitted and moving to the next channel in the hop sequence when

the bit count reaches the predetermined hop count. In addition, the increment values for

the two FSK frequencies must be updated based on the new hop channel. The function call

FH.Hop applies the desired hop sequence. Hence any user implementing a frequency hopping

system can make use of this function without being constrained by the type of modulation.



Performance Requirements

For the sake of simplicity, let us calculate performance requirements based on two-channel

frequency hopping over a bandwidth of 2.5 MHz and a sampling frequency of 5 MSPS.

The requirement on the processing speed of the modulator is simply that it must operate

fast enough to provide data to the GuPPI, described in Section 6.4. For a sampling rate of

5 MSPS and 16-bit short integer samples, the modulator must be capable of producing an

output signal at a rate of:

required modulator output rate = 5 MSPS * 2 bytes/sample

= 10 x 106 bytes/second (5.4)

The GuPPI expects to receive transmit buffers which are a multiple of the GuPPI "page"

size of 4096 bytes. Typical buffer sizes are on the order of 10 to 100 pages, which means

that typical payload data rates out of the modulator must be on the order of 100 to 1000

payloads per second, depending on the payload size.

In order to produce data at this rate, there is a requirement on the input to the modulator

as well. The payload scale factor of Equation 5.3 shows that the input to the modulator

must operate at a rate of:

required modulator input rate = 10 x 106/256 bytes/second

= 39062.5 bytes/second (5.5)

5.5 Byte/Bit Framer Description

The framing performed in this thesis is the asynchronous bit framing commonly used with

serial ports and modems [1]. Known as the 8N1 protocol, it features one start bit, eight

data bits, one stop bit, and no parity. Since the framing is simply a function call, it is

a straightforward task to use a different protocol if so desired. The framing function call

described below was programmed by Andrew Chiu of the Software Devices and Systems

group at the MIT Laboratory for Computer Science.

The byte framing module takes as its input a payload made up of 8-bit samples. In

accordance with the 8N1 protocol, the byte is framed with single start and stop bits, and
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the 10-bit quantity is placed at the top of a 32-bit entry in the output payload3. Then the

next byte is framed and placed in the next ten bit slots of the entry. In this manner the

input samples are framed and concatenated to form 32-bit output entries.

In addition to data framing, the byte framing module performs packet framing opera-

tions. Each packet is framed with start and stop codes, in addition to a length field which

tells the receiver how much data is in the packet. So the deframing process involves first

finding the start byte to know that a new packet is being sent. Then the length field, a

two-byte quantity, is used for memory allocation of the received packet, and finally the stop

code, which is also two bytes, is sent to mark the end of a packet.

The framing function call, ByteFrame, takes as arguments a u.char pointer for the input

data, the amount of input data, and numBits, an empty pointer which the function uses to

return the number of bits in the output buffer. This third argument is required because the

amount of framed output data depends on the values of the input data. If a byte of input

data equals the packet start or stop byte, then the framer must replace that byte with a

two-byte sequence, a technique known as byte stuffing. So input data which includes the

start or stop byte would produce a larger output data size than input data without either

of those values. By returning numBits, the framer tells the modulator how much data is

being sent.

u-int*
ByteFrame(uchar* source, int sourceLength, uint* numBits)

The performance constraint on the framer module is simply that it must operate at

a high enough rate to provide data to the modulator, which then provides data to the

GuPPI. For a sampling rate of 5 MSPS and 16-bit samples, it was determined above that

the required modulator input rate, which equals the required framer output rate, is:

required framer output rate = 39062.5 bytes/second (5.6)

The required framer output rate then constrains the input rate as well. Each byte

coming into the framer is expanded to ten bits with the 8N1 framing technique, which gives

a required input rate of:

required framer input rate = 39062.5 * 8/10 bytes/second

3 Each entry is cast as an unsigned int.



= 31250 bytes/second (5.7)

5.6 Receiver Description

The receiver takes in samples from the GuPPI and uses four functional layers to demodulate

and deframe the samples, returning the original data to the user.

Input/Output Interfaces

The frequency hopping FSK demodulator takes input payloads from the GuPPI that contain

the received data. Each payload is an array of 16-bit short int samples. The samples

corresponding to each bit period of input axe demodulated down to one output bit. For

a bit period of 16 samples/symbol, corresponding to a data rate of 312.5 kbps and a 5

MSPS sampling rate, 16 input samples produce each bit of output. So one byte of output

is produced for 128 samples of the input. Since the input is made up of two-byte samples,

we find that each byte of output is generated by 256 bytes of input. So the output payload,

which is made up of 8-bit characters, is smaller (in bytes) than the input payload by a factor

of:

payload scale factor = 1/256 (5.8)

The highest-level receive function call, the frame extractor, takes in five structures as

arguments: the input payload, frequency hopping parameters, FSK parameters, bit framing

parameters, and byte framing parameters. It returns a structure corresponding to the

output payload.

struct swPayload GetFrame(struct swPayload* inputPayload,
struct swFH* fh, struct svFSK* fsk,
struct swBitFraming* bitFrame,
struct swByteFraming* byteFrame)

Code Description

The general procedure for reception is described in Section 4.3. The first step is a one-

time function call for overhead calculations called ComputeSin. This function calculates

cosine and sine waves for each of the possible frequencies and places them in a multi-

dimensional array which is a member of the frequency hopping structure.



/* GetFrame returns a deframed and demodulated data packet. Its
arguments are the structures for byte framing, bit framing, FSK
modulation, frequency hopping multiple access, and the input
payload. */

struct swPayload GetFrame {
do {

byte [0] = GetByte(byteFrame->startCode,bitFrame,fsk,fh,inputPayload);
length[0] = GetByte(O,bitFrame,fsk,fh,inputPayload);
length[l] = GetByte(0,bitFrame,fsk,fh,inputPayload);
numBytes = (((length[O1 & Oxff) << 8) I (length[l] & Oxff)) - 5;

for (i=O; i < numBytes; i++, ((u.char *)outputPayload.dataPtr)++) {
*((uchar *)outputPayload.dataPtr) =

GetByte(0,bitFrame,fsk,fh,inputPayload);
outputPayload.numSamples++;

}
byte [0] = GetByte(0,bitFrame,fsk,fh,inputPayload);
byte [] = GetByte(0,bitFrame,fsk,fh,inputPayload);

} while (byte[0] != byteFrame->stopCode[0 II
byte [l] != byteFrame->stopCode [1]);

/* GetByte returns one deframed byte. Its arguments are the structures
sent to GetFrame minus the byte framing. */

u.char GetByte {
do {
bit = GetBit(fsk,fh,inputPayload);

} while (bit != bitFrame->startBit);
for (i=0; i< bitFrame->bits; i++)
bits [i = GetBit(fsk,fh,inputPayload);

bit = GetBit(fsk,fh,inputPayload);
if (bit == bitFrame->stopBit) {
for (n=O;n< bitFrame->bits;n++)

byte = byte I ((bits[n] & OxOl) << (bitFrame->bits-n-1));
if (desiredVal == byte I I desiredVal == 0)
valid = 1;

} else {
fsk->lock = 0;

}

/* GetBit returns returns one bit. It arguments are the structures sent
to GetByte minus the bit framing */

int GetBit {
FindChannel(fh,fsk,inputPayload);

if (fsk->lock) {
bit = FSKDemod(fsk,inputPayload);

} else {
bit = FSKLock(fsk,inputPayload);

}

Figure 5-12: Sample Receiver Code.



The top-level receive program then calls GetFrame, a function call which returns one

frame of the original data. First GetFrame calls GetByte to look for the start code. The

call to GetByte then leads to a number of calls to GetBit, and for each call to GetBit one

call is made to FindChannel, the channel selector function.

Let us first consider GetFrame. After receiving the start code, GetFrame calls GetByte

twice more to obtain the two-byte length field. This packet length information can then be

used in a loop which obtains the packet data through repeated calls to GetByte. Finally,

two more bytes are demodulated and deframed before being compared to the stop code.

If they match, then the function returns an output payload structure to the main receive

procedure. If not, then the packet is dropped, the function raises a flag to tell the channel

selector that lock may have been lost, and a search begins for the next start code.

The GetByte function begins by calling GetBit to look for a start bit. Once a start bit

has been found, the potential data bits are demodulated by repeated calls to GetBit. If the

byte is valid, then the next demodulated bit should equal the stop bit. If this is not the

case, then bit period lock is considered to have been lost, and an attempt to obtain a valid

byte is made with the next start bit. If the byte is valid, then it is compared to a function

argument called desiredVal. This variable is used in situations where the frame extractor

is looking for a specific byte value, such as the start code. If the byte and desiredVal

match, then the deframed byte is returned to the frame extractor. If not, then GetByte

looks for the next valid byte.

The actual bit demodulation takes place in the next layer. The GetBit function call

demodulates a single bit of the input signal and returns it to GetByte. If the signal is known

to be out of FSK lock, then the procedure for obtaining lock is called.

Figure 5-13 contains code fragments for the locking procedure and the demodulation

function. The demodulation function, known as FSKDemod, operates in the same way as

Figure 5-7. First the input is multiplied by a sine and a cosine term. Then the samples are

summed over one bit period. So each of the two FSK frequencies has two values associated

with it, one for sine and another for cosine. The largest of these four values corresponds

to the returned bit value. If none of the four values is larger than a threshold, then the

upper level functions are told that a bit was not received. The locking function, called

FSKLock, operates by calling FSKDemod over an entire bit period of the signal and deciding

that the largest value returned from FSKDemod corresponds to the correct position of the



/* Demodulates one bit period of samples */
int FSKDemod {

for(n=O; n< fsk->bitPeriod; n++,payload->dataPtr++) {
sumCosO = sumCosO + (*payload->dataPtr * *cosOPtr[n]);
sumCosl = sumCosl + (*payload->dataPtr * *coslPtr[n]);
sumSinO = sumSinO + (*payload->dataPtr * *sinOPtr[n]);
sumSinl = sumSinl + (*payload->dataPtr * *siniPtr[n]);
}

/* Establishes bit period lock and demodulates bit */
int FSKLock {

for(n=O; n< fsk->bitPeriod; n++) {
bit=FSKDemod(fsk,payload);
if (fsk->signalStrength > (1.1*oldmax) && bit >= 0) {
oldmax = fsk->signalStrength;
returnBit = bit;
newPtr = payload->dataPtr;

}
}

}

Figure 5-13: Bit Demodulation and Locking Functions.

input pointer.

The other major consideration is hop synchronization between the transmitter and re-

ceiver. In the implementation of this thesis, the hopping protocol was kept as straightfor-

ward as possible. The transmitter and receiver agree on a hop code through some means

which are considered to be beyond the scope of this thesis. The transmitter begins by send-

ing the start code on this frequency. The receiver demodulates the start code to achieve

synchronization and can then follow the hop pattern of the transmitter. The packet length

tells the receiver how many bits should be demodulated before the stop code is reached;

hence the receiver knows when to look for it. If the stop code is not found, then there was an

error in the transmission of the packet. On the other hand, if the stop code is found at the

right time, then the receiver is assumed to still be in synchronization with the transmitter,

and the receiver looks for the next start code.

Performance Requirements

The requirement on the processing speed of the receiver is similar to the requirement on the

modulator. The receiver simply must operate fast enough to receive data provided by the

GuPPI, described in Section 6.4. For a sampling rate of 5 MSPS and 16-bit short integer



samples, the demodulator must be capable of receiving an input signal at a rate of:

required demodulator input rate = 5 MSPS * 2 bytes/sample

= 10 x 106 bytes/second (5.9)

In order to process data at this rate, there is a requirement on the output of the demodulator

as well. The payload scale factor of Equation 5.8 shows that the demodulator output must

operate at a rate of:

required demodulator output rate = 10 x 106/256 bytes/second

= 39062.5 bytes/second (5.10)





Chapter 6

Hardware

Despite efforts to minimize the amount of hardware used for implementation of the software-

based radio, there are some limitations to what can currently be done in software. Current

A/D and D/A technology has not nearly approached the sampling rates needed to sample

data with reasonable dynamic range in the frequency range of operation of the Plessey radio.

Hence hardware is required to perform frequency translation of the signal between the 2.4-

2.5 GHz range and a baseband or low intermediate frequency (IF) range. The frequency

translation hardware makes up part of the block labeled "Front End" in Figure 6-1.

In addition, hardware is used to handle the interface between the analog data of the real

world and the is and Os of the computer's world. This hardware includes A/D and D/A

converters and filters, which complete the "Front End" block of Figure 6-1, as well as the

GuPPI [19], a general-purpose PCI-bus I/O device.

6.1 Analog-to-Digital and Digital-to-Analog Conversion

Figure 6-1: Hardware Block Diagram.



Sampling Rate
Resolution

Commercial Research

2 MSPS 5 MSPS
16 bits (Analog Devices) (Hewlett-Packard)

12-14 bits 41 MSPS 60 MSPS
(Analog Devices) (Hughes Aircraft)

10 bits 100 MSPS 60 MSPS
(Maxim) (Hughes Aircraft)

1 GSPS 3 GSPS8 bits (Maxim) (TRW)

Table 6.1: Comparison of Current A/D Converters.



6.1.1 Current Technology

Figure 6.1 shows the current sampling capabilities of A/D converters, both commercial

products and those currently being explored in research [2]. There is an obvious tradeoff

between the resolution, given by the number of bits used to describe the digitized data,

and the input bandwidth, given by half of the sampling rate. As would be expected, less

quantization states allow faster sampling.

The A/D sampling rates given in Table 1 make it clear that a sacrifice in digital data

resolution would have to be made in order to be able to digitize the entire 100-MHz band-

width of the GEC Plessey radio. Rather than make this sacrifice, it was decided that a

12-bit converter, the Analog Devices AD9042, would be used to provide sufficient signal res-

olution, and the sacrifice would be a different one: reduction in the radio bandwidth. The

range of hop frequencies was reduced from 100 MHz to 2.5 MHz. The advantage of this de-

cision is that the frequency range can easily be increased when the A/D technology reaches

operation at 200 megasamples per second (MSPS) at 12 bits. Using only 8 bits of resolution

and a high-speed converter would allow use of the entire 100-MHz bandwidth, but the cost

of this choice would be that upgrading to higher resolution would require a good deal of

hardware redesign. With the chosen solution, the hardware can be easily upgraded when

the technology becomes available. In fact, this issue demonstrates the immense advantage

provided by software-based radios: ease of upgradability to new technologies.

In addition to current bandwidth constraints, there is also the consideration of data

rate. To operate at the maximum Plessey radio data rate of 625 kbps on a computer with

a processor speed of 200 MHz would require that each bit is processed in a maximum of

320 cycles. This is not always enough time for computation-intensive applications such as

demodulation. Since the Plessey radio can certainly operate at lower data rates, it was

decided that the software-based radio of this thesis would be designed for a data rate of

312.5 kbps. Of course, as computer clock speeds become faster and faster, the number of

cycles per bit will increase, making higher data rates possible.

Radio Parameter Recalculation

The decision to operate in 2.5 MHz of the 100-MHz bandwidth of the GEC Plessey radio

and to transmit and receive at data rates of 312.5 kbps requires some recalculation of radio
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Figure 6-2: Conventional A/D Conversion.

parameters such as the sampling frequency fs, the bit period tbit, and the number of samples

per bit period sbit. Now that the maximum frequency of the sampled receive signal is less

than 2.5 MHz, Equation 4.5 shows that the sampling frequency can be:

f, = 2 * f m ax = 5 MSPS

A data rate of 312.5 kbps equals a bit period of:

tbit = 1/rdata = 3.2 x 10-6 seconds

Then the number of samples in each bit period is:

sbit = fs * tbit = 16 samples

A glance at the other radio parameters show that only one other change is required. This

change is a reduction of the total number of channels from 100 to 5. The fact that major

changes in radio operation such as reduction in total bandwidth and data rate are very

easy to make demonstrates the flexibility of this software-based radio. As described in the

previous chapter, increasing the number of channels when the A/D conversion technology

is ready would require few changes in hardware and very simple changes in software, and

improvements in data rates will come with faster machines.

E L
A/D

Sampling
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6.2 Hardware Design

The next consideration involves the design of the A/D conversion hardware. Figure 6-2

shows the form of ideal A/D conversion. A low pass filter placed before the converter

ensures that the signal is bandlimited with maximum frequency f,. Then it is sampled at

a rate of at least twice fe, according to the Nyquist Theorem. However, there is a problem

with this approach: the anti-aliasing filter does not possess an ideal cutoff at f,. Hence

there will be some amount of aliasing when the signal is sampled. Proper design of the filter

may provide acceptable performance, though [30].

Another problem with sampling a baseband signal is that frequency downconversion

methods may produce a large DC voltage. This large DC component would saturate the

A/D converter and create meaningless output digitized data [25]. This problem, which

occurs due to methods of frequency translation, is discussed in additional detail in Section

6.3.

For the frequency hopping system of this thesis, the problem of large DC components in

the baseband signal can be avoided. The lowest frequency of transmission for this system

is given by:

lowest required frequency = spacing - deviation (6.1)

With a channel spacing of 1 MHz and a frequency deviation of 100 kHz, the lowest trans-

mission frequency is 900 kHz. Therefore the DC component can simply be filtered out with

a highpass filter.

For this project the anti-aliasing filter was designed as a fourth-order Chebyshev band-

pass filter with 0.5-dB passband ripple. The topology of this active filter is given in Figure

6-3 [12]. The upper and lower cutoff frequencies for each second-order filter, denoted by

fhl, fh2, fil, and f12, are governed by the following equations:

fhl = 0.597/(2irRiC1) (6.2)

fh2 = 1.031/(2irR2C 2 ) (6.3)

fil = 1/(0.597 * 27rR 3 C3) (6.4)

fl2 = 1/(1.031 * 27rR 4 C4) (6.5)
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Figure 6-4: A/D Converter Architecture.
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Figure 6-5: Conventional D/A Converter Architecture.

To achieve a bandpass filter of width 100 kHz to 2.5 MHz, the calculated values were:

RI = 10, C1 = 100nF, R 2 = 18, C2 = 10uF, R 3 = 25, C3 = 4.7nF, R 4 = 300, C4 = 220pF

Therefore the A/D hardware architecture takes the form shown in Figure 6-4.

For the D/A portion of the hardware a basic setup, shown in Figure 6-5, was employed.

Since the maximum bandwidth of the signal coming out of the software is less than 2.5

MHz, the D/A converter requires a sampling rate of 5 MSPS. The Analog Devices AD9713,

a high-speed 12-bit D/A converter, was chosen for use. Since the converter output appears

with quantized amplitude values, a lowpass filter is needed to smooth the signal. The rolloff

of this filter is not critical, and so an active Chebyshev lowpass filter of only second-order

was designed, as shown in Figure 6-6. The cutoff frequency is given by [12]:

fe = 1/(1.231 * 2-rRC) (6.6) -
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Figure 6-7: Downconverter Architecture.

Setting a cutoff at 2.5 MHz gives the following values:

R = 47, C = lnF

6.3 Frequency Translation

Sometime in the future one might envision analog-to-digital conversion circuits with sam-

pling rates of five gigasamples per second (GSPS). Until then, however, special hardware

will be required to shift the 2.4-GHz ISM frequency band down to much lower frequencies

before sampling.
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Figure 6-8: A Basic Mixer.

6.3.1 Downconversion

The architecture for the downconversion process is shown in Figure 6-7. The receive signal

goes through the antenna and into a Fujitsu 2.4-2.497 GHz surface acoustic wave (SAW)

filter. SAW filters provide high precision, low loss, high-Q filters in a very small package

[14]. Since the received signal is generally of very low amplitude, the next step is to amplify

the frequency band of interest with a low-noise amplifier (LNA). However, this amplification

stage produces copies, or images, of the desired signal at a number of frequencies above and

below the 2.4-GHz range. If these images are not removed before the next stage, they would

become a problem. So another SAW filter is placed after the LNA. At this point the actual

downconversion takes place, in the mixer. A basic mixer diagram is shown in Figure 6-8.

The cos(wat) term is called the RF, the cos(wbt) term is called the local oscillator (LO),

and the output is called the intermediate frequency (IF). In the frequency domain, each cos

term looks like a pair of impulses, one at the negative frequency of the other. So the product

of cos(wat) and cos(wbt) in time is equivalent to the convolution of two pairs of impulses,

one at +wa and the other at +wb. This simple convolution produces four impulses, at:

(Wa + WOb), (Wa - Wb), (wb - lWa), and - (Wa + wb) (6.7)

Hence a downconverted signal can be achieved by passing through (Wa - Wb) and sufficiently

attenuating the other images.

The decision to be made involved choices for Wa and wb. In Section 6.1, it was determined

that the 2.5-MHz bandwidth should be downconverted to baseband. So (wa - Wb) should

vary between low frequencies and 2.5 MHz. The software-based radio architecture is based

on a single LO frequency, which implies that 1wb is constant. If the 2.5 MHz of frequency
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Figure 6-9: Upconverter Architecture.

hopping bandwidth is between 2.4 and 2.4025 GHz, then wb should be set to 2.4 GHz to

achieve a desired downconverted frequency range.

The mixer is followed by the 100-kHz to 2.5-MHz bandpass filter and A/D converter

-described in Section 6.1.

6.3.2 Upconversion

The upconversion hardware, shown in Figure 6-9, operates in an opposite manner to the

downconverter, with the exception of the downconversion bandpass filter. The lowpass-

filtered D/A output is shifted up in frequency by using another mixer, this one optimized

for the (Wa +wb) frequency. Providing an LO frequency of 2.4 GHz will shift the D/A output

up to the 2.4-2.4025 GHz range for transmission. Again, the mixing creates images which

must be filtered out; a 2.4-2.497 GHz SAW filter follows the upconverter for this purpose.

Before transmitting the signal, its strength must be boosted with a power amplifier (PA)

optimized for 2.4-2.5 GHz operation. Finally, the signal can be transmitted through the

antenna.

Due to the extremely high-frequency signals involved in this portion of the hardware,

the decision was made to use evaluation boards from the IC manufacturers, rather than

developing a printed circuit (PC) board from scratch. RF Micro Devices manufactures a

number of RF ICs for wireless applications, including the RF2431, an integrated LNA/mixer

IC, and the RF9938, a PCS upconverter. The evaluation boards for these ICs contain all of

the discrete components necessary to operate at 2.4 GHz, which greatly simplifies the design

process. The frequency synthesizer being used, the HFA3524 from Harris Semiconductor,

m .



PC[

Figure 6-10: GuPPI Block Diagram.

also comes in an evaluation board form, where programming of the LO frequencies is done

through the parallel port of a PC.

This leaves only the SAW filters and antenna connectors. Small PC boards were designed

and fabricated for these remaining parts. Each board contains one antenna connector and

two SAW filters, which implies that one board on the transmit side and another on the

receive side will be sufficient to complete the hardware.

Interconnections between the various boards are made using SMA connectors, which

offer lower loss at high frequencies than other types of connectors. The evaluation boards are

standard in having female SMA connectors at the inputs and outputs; hence the hardware

is unified with short-length SMA male cable assemblies connecting the various parts.

6.4 The GuPPI

Sections 6.1 and 6.3 describe the hardware which is used to move between baseband digital

data and a 2.4-2.5 GHz analog signal. What is missing is the hardware used to move between

this digitized data and the software environment. This is the function of the GuPPI [19].

The GuPPI, pictured in Figure 6-10 [19], is a general-purpose PCI-bus I/O device devel-

oped by Michael Ismert of the Software Devices and Systems group at the MIT Laboratory

for Computer Science. Its function is to provide an efficient means for moving a continu-

ous stream of sampled data between a workstation's main memory and application-specific

hardware. The GuPPI contains two 32-bit FIFO (first in, first out) banks for buffering

incoming and outgoing data traveling between the PCI bus and the backend bus. This

backend bus is the means for communicating with the user-specific hardware, in this case

the A/D and D/A converters and frequency translation circuitry. These two FIFO banks



include a bus for the data moving between the computer and the external hardware, various

flags related to incoming and outgoing data, and control and status bits which can be set

by the user in software.

Software control of the GuPPI is achieved by using six C library function calls written by

Michael Ismert and Vanu Bose, also of the Software Devices and Systems group. One of the

functions opens the device for use, two others deal with memory management, and the last

three are used for transmitting or receiving data. First, guppi-open opens the GuPPI device

for use by the program. Then, the memory management function calls: guppi_get buffer

handles allocation and setup of a buffer for use by the GuPPI, and guppiifree.buf frees

the buffer for reclamation by the GuPPI library when its use is no longer required. The

other three function calls are guppi-queue_tx, guppi.startrec, and guppi-rec.buf. As its

name implies, guppi_queue tx handles the queueing of buffers for transmit functionality.

The guppi-startrec function initializes the GuPPI so that it can provide pointers to receive

data when requested by a call to guppirecbuf. Further descriptions of the functions in the

GuPPI library are provided in Chapter 5.

More information related to the GuPPI itself can be found at [19].



Chapter 7

Performance and Future Work

The goal of this thesis was to provide a software-based frequency hopping radio that could

potentially interoperate with existing hardware-based devices. Sections 7.1 and 7.2 quantify

the performance of this system and discusses important results for both the software and

hardware subsystems.

However, the results of this thesis provide only a starting point for the study of software-

based IF communications. Potential steps forward are discussed in Section 7.4.

7.1 Software Performance

Experimental Setup

In order to better test software performance, an experimental setup was devised to decouple

the hardware from the software subsystem. Instead of sending the modulated data buffer

to the GuPPI for transmission at 2.4 GHz, the buffer was written to a file. Similarly, on

the receive side the downconversion hardware and GuPPI were kept out of the equation by

reading in the file and applying the software receiver to reproduce the original user data.

This arrangement is shown in Figure 7-1.

The performance testing was done with the following radio parameters:

Figure 7-1: Experimental Setup for Software Testing.



* A sampling rate of 5 MSPS was set for the performance measurements, with a data

rate of 312.5 kbps. This makes the bit period sbit:

Sbit = 16 samples/bit

* The data was frequency hopped over two channels, with a hop occurring after every

32 bits. The hop code simply scrolled through the channels in ascending order. The

channels were centered at 1 MHz and 2 MHz, with an FSK frequency deviation of 200

kHz.

It was important to avoid a best-case scenario when attempting to quantify system

performance. For example, it is extremely unlikely that the receiver will ever immediately

lock on to a start code. It is much more likely that the first data seen by the receiver will

be somewhere else in the packet. In order to account for this near certainty, the test file

contains a sinusoid followed by the actual framed packets of data. This forces the receiver to

go through the locking mechanism at the start of the test, which more adequately simulates

real-world operation than a test in which the transmit data is perfectly aligned for the

receiver.

So the test file is organized as in Figure 7-2. First 20480 samples of an 800-kHz sinusoid

were generated and placed in the buffer1. Then nine framed packets of user data, each

20480 samples long, were written to the file. Each data bit corresponds to 16 samples of the

modulated signal, which means that there are a total of 1280 bits in each frame, including

the framing data.

Measurements were taken using the Pentium cycle counter on 180 MHz Pentium Pro

and 120 MHz Pentium machines. The code of Figure 7-3 demonstrates the method of

measurement. The printf statement prints out the number of cycles that it took to eval-

uate the desired code. The CPUID instruction is used simply to serialize the instruction

stream for the Pentium Pro machine. In order to be consistent, the command was used for

measurements on the Pentium machines as well.

1A sinusoid of this frequency was chosen because one of the frequencies used by the radio for transmission
is 800 kHz.
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Figure 7-2: Organization of Performance Testing File.

/* CPUID is used simply to serialize the instructions */
#define CPUID(cpuid) __asm__(".byte Ox0f,Oxa2" :"=a" (cpuid))

/* TIMER is a macro that returns the number of cycles at that stage */
#define TIMER(low,high) __asm__(".byte 0x0f,0x31" :"=a" (low), "=d" (high))

int lowv,highl,low2,high2,cpuid;

/* Place CPUID and TIMER calls around the code of interest */
CPUID(cpuid);
TIMER(lowl,highl);
<function call of interest>
CPUID(cpuid);
TIMER(low2,high2);

/* Print out the number of cycles used to execute the code of interest */
if (highl != high2)
printf("%d ",(((high2-highl)*(2-32))+low2+((2^32)-lowl)));

else printf("%d ",lov2-lowl);

Figure 7-3: Performance Measurement Sample Code.
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Function Pentium 120 MHz Pentium Pro 180 MHz
FSKDemod 15.0 ps/bit 4.34 ps/bit
FSKLock 0.233 ms/bit 66.3 ps/bit
GetBit (in lock) 15.1 ps/bit 4.62 ps/bit
GetBit (not in lock) 0.233 ms/bit 66.6 ps/bit
GetByte 0.154 ms/byte 46.1 ps/byte
GetFrame 19.6 ms/frame 5.90 ms/frame
FH.1op 0.340 ps/hop 0.46 ps/hop
FH-FSK.Transmit 7.08 ms/frame 2.83 ms/frame

Table 7.1: Performance Measurements.

Results

The results of the performance tests are listed in Table 7.1. For functions which were called

many times during the program execution, the mode is listed, because the times rarely

varied. For outer loop function calls, there are fewer values, and so averages are used to

show the time spent in each of these calls.

Of course, some cycles of the processor are spent in the actual evaluation of the cycle

counter. It was found that approximately 32 and 14 cycles, respectively, are used in this

evaluation on the Pentium Pro and Pentium machines. This corresponds to 0.16 ps on the

Pentium Pro and 0.12 ps on the Pentium.

Transmit Performance

As shown in Table 7.1, the software modulator requires approximately 2.83 ms on a 180

MHz Pentium Pro machine to generate a framed packet which contains 1280 bits. This

translates to a time of 2.2 ps for each bit, which we can then use to calculate the maximum

sustainable data rate:

max transmit sustainable data rate = 1/2.2 x 10-6 bits/second

= 452 kbps (7.1)

While this data rate is not as high as the 625 kbps maximum data rate of the GEC

Plessey radio, it is still high enough to allow fairly high-speed serial data communication.

And as processor clock speeds increase, the data rates which can be achieved in this software

radio will increase as well. Already, in fact, there are PC processors coming to market that



run at 300 MHz. If the transmitter required the same number of cycles on a 300 MHz

processor as it does on the 180 MHz machine, then the maximum data rate would jump up

to 750 kbps.

Receive Performance

The highly layered nature of the receiver software makes a performance analysis quite

straightforward. There are actually only two functions which make no calls of their own:

FHHop and FSKDemod. All of the other function calls do little else but make calls to these

two. Of the two, FH3Iop is a very simple function which is called only once for every 32

received bits. This leaves FSKDemod as the function call which basically constrains the

receive performance.

Table 7.1 states that evaluation of FSKDemod requires approximately 4.34 ps. So the

largest sustainable receive data rate is constrained by this value to be:

max receive sustainable data rate = 1/4.34 x 10-6 bits/second

= 230 kbps (7.2)

Just as for the transmit case, the receive data rate allows communication with the

Plessey radio, albeit at lower rates than the DE6003 can maximally achieve.

The FSKLock function calls FSKDemod a number of times specified by the bit period,

which in this case is 16. Hence the execution time of FSKLock should be approximately

16 times the time for evaluation of FSKDemod, and Table 7.1 shows that this is indeed the

case. Similarly, GetBit either runs FSKDemod or FSKLock, based on whether or not the

receiver is locked on to the bit boundary. Therefore GetBit should take approximately the

same time as FSKLock at the start of the run, while the receiver is searching for the start

code, and then should take approximately the same time as FSKDemod once lock has been

achieved. The next level up is GetByte, whose main task is calling GetBit once for each

bit in a framed byte. For the 8N1 bit framing used in this thesis, there are 10 bits per

byte, which means that GetByte should take approximate an order of magnitude longer

than GetBit. Finally, the top level is at the level of demodulating framed packets. For this

performance test, each frame contains 128 framed bytes, and so GetFrame should be more

time-consuming than GetByte by this factor.
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Figure 7-4: Experimental Setup for Hardware Testing.

The results of Table 7.1 show that the performance difference between the 180 and 120

MHz machines cannot be explained simply by the processor clock speeds. Most of the

function calls seem to take more than three times as long on the 120 MHz Pentium as they

do on the Pentium Pro. This is likely due to the fact that the Pentium Pro architecture

boasts such improvements over the Pentium as larger cache sizes and higher memory access

speeds.

7.2 Channel Performance

Experimental Setup

The test setup for measurements of channel performance is shown in Figure 7-4. Eight-

bit characters are framed and modulated in 128-bit pages on one PC before being passed

through the GuPPI and D/A circuitry. Then the analog baseband signal is upconverted

to 2.4 GHz before being downconverted back to baseband. This signal goes through the

A/D hardware and another GuPPI into a second PC, where it is received, demodulated,

deframed, and returned to the user.

The sampling frequency and data rate of the system were set at 5 MSPS and 312.5 kbps,

respectively. Frequency hops occurred after every 32 data bits, and the hop pattern was

kept simple by incrementing the channel for each hop.

The software radio was tested for three sets of software-defined radio parameters. The

first case is simply frequency hopping over two channels spaced 1 MHz apart, with an FSK

frequency deviation of 100 kHz. In the second case, the frequency deviation is increased

to 200 kHz, with the other parameters kept the same. The final test involves hopping over

four channels with 400 kHz spacing, a 500 kHz offset, and 100 kHz deviation. So for this

third case the four center frequencies are 900 kHz, 1.3 MHz, 1.7 MHz, and 2.1 MHz, with

FSK frequencies 100 kHz on either side of these center frequencies.

GuPPI



Results

Performance of the channel quality was measured by using bit error rates (BERs), which

take the ratio of the number of incorrect bits to the total number of bits. Each frame

contains 128 framed bytes, which corresponds to 1280 bits. The results for the three cases

were:

* For the case of two channels, 1 MHz spacing, and 100 kHz deviation, the average error

ratio is 0.144 bits/frame. Therefore the BER comes out to:

BER = 0.144/1280 = 1.1 x 10- 4

* For the case of two channels, 1 MHz spacing, and 200 kHz deviation, the average error

ratio is again 0.144 bits/frame:

BER = 0.144/1280 = 1.1 x 10- 4

* For the third case of four channels, 400 kHz spacing, 500 kHz offset, and 100 kHz

deviation, the error ratio is approximately 0.211 bits/frame. Then the BER is:

BER = 0.211/1280 = 1.6 x 10- 4

Of course, the error values would be somewhat higher for true wireless transmission.

These measurements do, however, serve the purpose of demonstrating the potential of this

software-based radio.

Since the above performance tests were conducted with the transmit and receive hard-

ware connected through wires, we would expect no bit errors to occur. In fact, performing

these tests without the upconversion and downconversion hardware does result in zero-error

transmission. Hence there are sources of error, discussed in the next section, due to the

hardware.



7.3 Sources of Error

There are a number of factors which contribute to the bit error rates discussed above. One is

that the modulated signal going into the receive PC is not constant in amplitude. Different

frequencies have differing amplitudes out of the RF Micro Devices RF2431 mixer, possibly

due to filtering done within the IC. This may be a problem for the FSKDemod function,

especially in the setting of the threshold. If the threshold is set too low, then the receiver

will find false start bytes; if the threshold is too high, then the receiver will miss the real start

bytes. There are two possible solutions to this problem, one in the hardware domain and

the other in software. The hardware solution is an automatic gain control (AGC) amplifier

which would make the received amplitudes equal at the input to the A/D converter. The

other potential solution is to perform adaptive thresholding on the data samples in software.

A second issue is that the hardware subsystem suffers from noise degradation. Therefore

it is possible that bit errors are occurring because of noise on the received signal going into

the A/D converter. The solution to this problem is to design and fabricate a single PC

board which will carry much less noise than the current hardware, which consists of a group

of evaluation boards. The topic of board fabrication is discussed further in Section 7.4.3.

7.4 Future Work

There is much that could be done to extend and improve the proof-of-concept software-

based radio described in this thesis. These extensions include work in both the software

and hardware domains.

7.4.1 Improved Software Architecture

The software architecture used in this thesis, described in Chapter 5, was designed to make

the function calls as general as possible by using structures for each of the main functional

blocks. The problem is that these interfaces are still somewhat specific to the types of

modulation, access technique, and framing being used.

What is needed is a generic interface which could accept any kind of modulation or

multiple access structure. This would eliminate the need to create different functions with

interfaces for each possible combination of modulation and multiple access. This could be

accomplished by an object-oriented approach in which the interface to each function takes



as arguments the base classes of modulation and multiple access technique. Specific types

of modulation (e.g., FSK, AM, etc.) and multiple access technique (e.g., CDMA, frequency

hopping, etc.) would be represented as subclasses, and run-time type identification could

be used by the function to determine what processing is needed.

7.4.2 Modulation Schemes

The main goal of software radio technology is to provide immense flexibility in the design

of such radio parameters as channel bandwidth, frequency range, and modulation scheme.

Therefore one way to expand the capabilities of the radio designed in this thesis is to replace

the frequency hopping modulation scheme with another variety of channel modulation.

The use of C function libraries provides a framework for applying modularity to the

software portion of the radio. This modular approach allows a major radio parameter such

as channel modulation to be changed by calling different modulation and demodulation

functions in the main procedure. For example, one could write modules to perform quadra-

ture phase-shift key (QPSK) modulation and demodulation, substitute these modules for

the previous ones, and have a working 2.4-GHz QPSK radio transceiver.

Due to heavy spectral crowding in the 2.4-GHz ISM band, the FCC has restricted the

types of modulation which can be used in this frequency range to techniques which minimize

interference across the band. In other words, RF transmissions in this band must use spread

spectrum modulation, either in direct sequence or frequency hopping form. This means that

the software-based radio of this thesis could conceivably be able to interoperate with any

of the wireless LAN devices which operate in the 2.4-2.5 GHz range, simply by writing

modules to perform direct sequence spread spectrum modulation and demodulation.

7.4.3 Board Fabrication

The software radio developed in this thesis was implemented by connecting together a

network of manufacturer-built evaluation boards. While this implementation is sufficient as

a demonstration of the capabilities of this concept, improved performance would probably

be achieved by building a single PC board which contains all of the required hardware. This

hardware includes A/D and D/A converters, an upconverter, a power amplifier, a low-noise

amplifier and mixer, two frequency synthesizers, and a number of filters. In addition, each

of these ICs requires external discrete components in order to achieve proper operation.



These circuit configurations are generally provided by the IC manufacturers.

Due to the high-frequency signals being transmitted and received, special care must be

taken in the layout of the board. A 2.5-GHz signal has a period of only 0.4 ns, and hence

the board designer must be extremely careful to practice good RF layout technique. Such

factors as impedance matching, proper grounding, and minimization of trace lengths are

crucial in avoiding noise and achieving satisfactory performance.

7.4.4 Multiband Radio Architecture

In addition to the incremental improvements to the implementation of this thesis which

are described in the previous section, there is one extension which opens up a whole new

set of opportunities for the concept of software devices: a wideband radio. Such a device

would be capable of transmitting and receiving different types of signals over a wide range of

frequencies. For example, the radio might conceivably be able to transmit and receive signals

over a range of 800 MHz to 2.5 GHz, which includes the frequency bands of operation of

cellular phones, 900-MHz and 2.4-GHz ISM band wireless LANs, Personal Communication

Services (PCS) phones, and the Global Positioning System (GPS). In addition, the radio

could receive some UHF television stations if the LNA and mixer can operate between 500

and 800 MHz. In this way one hardware board could be used to allow software interoperation

with all of these devices. Appendix ?? describes a potential block-diagram architecture for

this multiband radio.

7.5 Conclusion

This thesis offers a glimpse into the future of radio technology by developing a proof-of-

concept software-based radio which can interoperate with existing hardware-based devices

but is able to achieve a number of advantages over these existing radios, not the least of

which is tremendous flexibility of operation. In a world where technology is advancing at

an incredibly rapid pace, there can be no overstating the savings in both cost and effort

which could come from a software-based system, in which such critical radio parameters

as modulation scheme, number of channels, and radio bandwidth can be altered with no

change in existing hardware infrastructure. Future work with this technology may provide

the ultra-flexible, multifunctional communications device that our increasingly high-tech



society is looking for.





Appendix A

Programming Code

A.1 Structure Definitions

enum {SWBITSTREAM, SWBYTESTREAM, SWIFSAMPLES, SWSHORTDATA, SWUSHORTDATA};

/* Structure for input and output payloads */
struct swPayload {

int payloadType;
short* dataPtr;
short* startPtr;
u_int numSamples;
uint bitsPerSample;
float samplingRate;
u int bitCount;
int status;

1;

/* Structure for FSK modulation parameters */
struct svFSK {
float dataRate;
uint bitPeriod;
float freqDeviation;
short* waveform[2][2];
float signalStrength;
int lock;

1;

/* Structure for frequency hopping multiple access parameters */
struct swFH {
float channelSpacing;
float channelOffset;
u-int numChannels;
u-int currChannel;
int hopStep;
int hopCode;
int lock;
short* rxWaveform[11 [2] [2];
ushort* txPattern;
uint txPatternLen;

/* Structure for bit framing parameters */
struct swBitFraming {
ushort startBit;
int bits;
char parity;
ushort stopBit;

};

/* Structure for byte framing parameters */
struct swByteFraming {
u_char startCode;



uchar stopCode[2];
int len;

};

A.2 Top-Level Transmit Program

#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include "../lib/specware/guppi.h"
#include "../lib/specware/specware.h"

void main(int argc, char** argv)
{

int i, n, stat, pages, length, origlength, iterations, numbits;
u_char *origdata,*origtemp;
u_int *data,*temp;
ushort *buf, *temppattern;
int bitPeriod=(int)(5e6/312.5e3);
int returnVal;

struct swPayload inputPayload;
struct swPayload outputPayload;
struct swFH fh;
struct swFSK fsk;

if (argc != 3) {
printf("Usage : tx.toplevel [pages] [iterations]\n");
exit(0);

}
pages = atoi(argv[1]);
iterations = atoi(argv[2]);

/* Initialize GuPPI */
if((guppiopen("guppiO",pages)) < 0 )
exit(0);

/* For each input bit to the modulator, you get 2*bitPeriod bytes
out. So to get 'pages' number of pages to the guppi, you need
4096*pages/2*bitPeriod =2048*pages/bitPeriod bits in. The framer
puts out 10 bits for every 8 bits in, and also adds 5 packet
framing bytes. */

origlength = (int)((2048*pages/(float)(10*bitPeriod))-5);
origdata = (uchar *)malloc(origlength*sizeof(char));
origtemp = origdata;

/* Generate data of ramp for testing purposes */
for (i = 0; i < origlength; i++,origtemp++) {

*origtemp=i;
}

length = (int)(64*pages/bitPeriod);
data = (u_int *)malloc(length*sizeof(int));
data = ByteFrame(origdata,origlength,&numbits);
/* numbits holds the total number of bits out of the modulator */
temp=data;

outputPayload.payloadType = SWUSHORTDATA;
(u-short *)outputPayload.dataPtr = (ushort *)malloc(4096*pages);
(u_short *)outputPayload.startPtr = (u_short *)outputPayload.dataPtr;
outputPayload.numSamples = 2048*pages;
outputPayload.samplingRate = 5e6;

inputPayload.payloadType = SWBITSTREAM;
inputPayload.numSamples = numbits;
(u_int *)inputPayload.dataPtr = (uint *)malloc(numbits*sizeof(int)/32);
(u_int *)inputPayload.dataPtr = data;



fsk.dataRate = 312.5e3;
fsk.bitPeriod = bitPeriod;
fsk.freqDeviation = 1e5;

fh.channelSpacing = le6;
fh.channelOffset = 0;
fh.currChannel = 1;
fh.numChannels = 2;
fh.hopStep = 32;
fh.hopCode = 1;
fh.txPatternLen = 512;
fh.txPattern - (ushort *)malloc(fh.txPatternLen*sizeof(ushort));

/* Create oversampled sinusoid for modulation */
temppattern=fh.txPattern;
for (n=O;n<fh.txPatternLen;n++,temppattern++)

*temppattern=(ushort)(32000*sin(2*PI*n/(float)fh.txPatternLen)
+ 32767);

returnVal=FHFSK_Transmit(&inputPayload,&outputPayload,&fh,&fsk);
if (returnVal != 1)

printf("Problem with modulator.\n");

/* Copy the test data into the GuPPI buffer */
buf = (ushort *)guppigetbuffer();
memcpy(buf,outputPayload.startPtr,4096*pages);

/* Send test data in GuPPI buffer i times */
for (i=O;i<iterations;i++) {

stat=guppiqueue_tx(buf);

A.3 Top-Level Receive Program
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include "../lib/specware/guppi.h"
*include "../lib/specware/specware.h"

static struct swPayload inputPayload;
static struct svPayload outputPayload;
static struct swFSK fsk;
static struct swFH fh;
static struct svBitFraming bitFrame;
static struct swByteFraming byteFrame;

void
init_structs(int pages, int iterations) {

int i,j;

/* Set structures for receive */

inputPayload.payloadType = SWSHORTDATA;
inputPayload.numSamples = 2048*pages;
inputPayload.samplingRate = 5e6;
inputPayload.bitCount = 0;

fsk.dataRate = 312.5e3;
fsk.freqDeviation = le5;
fsk.lock = 0;
fsk.bitPeriod = inputPayload.samplingRate/fsk.dataRate;
fsk.waveform[01 [O1=malloc(fsk.bitPeriod*sizeof(short));
fsk.waveform[O][1]=malloc(fsk.bitPeriod*sizeof(short));
fsk.waveform[1] [0]=malloc(fsk.bitPeriod*sizeof(short));
fsk.waveform[l] [l]=malloc(fsk.bitPeriod*sizeof(short));



bitFrame.startBit = 1;
bitFrame.stopBit = 0;
bitFrame.bits = 8;

fh.channelSpacing = le6;
fh.channelOffset = 0;
fh.numChannels = 2;
fh.currChannel = 1;
fh.hopStep = 32;
fh.hopCode = 1;
fh.lock = 0;
fh.txPatternLen = 512;
fh.txPattern = malloc(fh.txPatternLen*sizeof(u_short));

ComputeSin(&fh,&fsk,&inputPayload);

for (i=0;i<2;i++) {
for (j=0;j<2;j++) {

fsk.waveform [i] [j -
fh.rxWaveform[fh. currChannel [i] [j] ;

}
}

byteFrame.startCode = Oxac;
byteFrame.stopCode[Ol = Oxbd;
byteFrame.stopCode[i = 0x22;

void
main(int argc, char** argv)
{

int i, j, pages, iterations;
uschar *ptr;
short *buf;

if (argc != 3) {
printf("Usage : txtest [pages] [iterations]\n");
exit(0);

}
pages = atoi(argv [1]);
iterations = atoi(argv[2));

init-structs(pages,iterations);

/* Initialize GuPPI */
if((guppiopen("guppiO",pages)) < 0 )

exit(0);

/* Get first two buffers ready for user */
guppistartsrec();

for (i=O0; i< iterations;i++) {
/* Get GuPPI receive data payload */
buf = (short *)guppirecbuf();
inputPayload.dataPtr = but;
inputPayload.startPtr = buf;

do {
/* Call GetFrame until there are no more frames in the input payload */
outputPayload - GetFrame(kbyteFrame ,kbitFrame,fsk, fh,&inputPayload);
switch (outputPayload.status) {
case -1:
break;

case 0:
break;

case 1:
for (j=0,ptr=(uchar *)outputPayload.dataPtr;

j<outputPayload.numSamples;j++,ptr++)
printf ("Yd ",(int)*ptr);

printf("End of Frame at %d\n",
inputPayload.dataPtr-inputPayload. startPtr);



break;
}

} while (outputPayload.status > 0 &&
inputPayload.dataPtr - inputPayload.startPtr
< inputPayload.numSamples - 1);

/* Return GuPPI buffer to GuPPI library */
guppi.freebuf(buf);

A.4 Modulator Function Calls

*include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <string.h>
#include <syscall.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/times.h>
#include "specware.h"

/* Return bit number BitNo in data payload bitStream */
#define BitValue(bitStream,bitlo) (u.char)((*(bitStream + (bitNo/32))

>> (31 - (bitNo%32))) A OxO001)

/* Calculate 0 and I frequencies whenever frequency hop occurs */
#define FREQ0 fh->txPatternLen * (fh->currChannel

* fh->channelSpacing - fsk->freqDeviation)
/ (outputPayload->samplingRate)

#define FREQ1 fh->txPatternLen * (fh->currChannel
* fh->channelSpacing + fsk->freqDeviation)
/ (outputPayload->samplingRate)

void
FHHop(struct swFH* fh) {

/* Simple hop pattern increases the channel by 1 for each hop */
fh->currChannel - (fh->currChannel X fh->numChannels) + 1;
return;

u.int*
ByteFrame(u.char* source, int source-length, uint* numOutputBits)
{

/* WRITTEN BY ANDREW CHIU, MIT LABORATORY FOR COMPUTER SCIENCE */

u-char numDataBits-8;
u-char numStopBits=1;
u-char startBitValue=1;
u-char stopBitValue-0;
char framedLength=1+numDataBits+numStopBits;
float payloadEnlargeFactoriframedLength*i.2/(float)numDataBits;
char currentBit=0;
uchar stuffCode=OxO0;

u.char* ptr - source;
uchar* ptrend - source + sourcelength;

uint outputsize - (uint)(payloadEnlargeFactor*sourcelength)+1;
uint* output.data=malloc(outputsize);



uint* outputptr = output_data;
uint* outputptrend = output-data + outputsize;
ushort framedStartByte;
u-short bitsRemaining;
ushort framedByte;
uchar stopSequence[2J;
short i;
uint numBits,numBytes;
uint* outputDataBegin;
uchar length[2];

memset(outputptr,0O,outputsize);

/* Packet Framing - start byte is AC */
framedStartByte = OxO I (startBitValue <<

(Oxac << numStopBits) I stopBitValue;

if ((currentBit + framedLength) <= 32) {
*output.ptr = *outputptr I
(framedStartByte << (31 - numDataBits

currentBit = currentBit + framedLength;

(numDataBits+numStopBits)) I

- numStopBits - currentBit));

}
else (
/* unless framedLength > 32, should never be here */
bitsRemaining = 32 - currentBit;
currentBit = framedLength - bitsRemaining;
*output.ptr = *output.ptr I (framedStartByte >> currentBit);
output-ptr++;
*outputptr = framedStartByte << (32 - currentBit);

}

/* Leave 2 bytes free for length field */
currentBit = currentBit + 2*framedLength;
while (currentBit >= 32) {

currentBit = currentBit - 32;
outputptr++;

/* We are using network byte order, which is little endian
(low-byte first) */

while (ptr < ptrend) {
/* byte stuffing: AC becomes BD 99, BD becomes BD 55 */
if (*ptr == Oxac) {

*ptr = Oxbd;
stuffCode = 0x99;

} else
if (*ptr == Oxbd) stuffCode = 0x55;

framedByte = (startBitValue << (numDataBits+numStopBits)) I
(*ptr << numStopBits) I stopBitValue;

if ((currentBit + framedLength) <= 32) {
*output-ptr = *outputptr I

(framedByte << (31 - numDataBits - numStopBits -
currentBit = currentBit + framedLength;

}
else {
uchar bitsRemaining = 32 -
currentBit = framedLength -
*outputptr = *outputptr 1
output_ptr++;
*outputptr = framedByte <<

currentBit;
bitsRemaining;
(framedByte >>

currentBit));

currentBit);

(32 - currentBit);

switch (stuffCode) {
case OxOO0:
ptr++;
break;

case 0x99:
*ptr = 0x99;
stuffCode = OxO0;
break;



case Ox55:
*ptr = 0x55;
stuffCode = Ox00;
break;

default:
printf("error: unknown stuffCode %x\n",stuffCode);

}

if (output_ptr >= outputptrend)
printf("Error - not enough outputdata\n");

}

/* Packet Framing - stop sequence is BD 22 */
stopSequence[O] = Oxbd;
stopSequence[l] = 0x22;

for (i=O0;i<2;i++) {
ushort framedStopByte = (startBitValue << (numDataBits+numStopBits))

(stopSequence[i] << numStopBits) I stopBitValue;

if ((currentBit + framedLength) <= 32) {
*outputptr = *outputptr I

(framedStopByte << (31 - numDataBits - numStopBits - currentBit));
currentBit = currentBit + framedLength;

}
else {
bitsRemaining = 32 - currentBit;
currentBit = framedLength - bitsRemaining;
*outputptr = *outputptr I (framedStopByte >> currentBit);
outputptr++;
*outputptr = framedStopByte << (32 - currentBit);

numBits = (output.ptr - (u-int*)outputdata)*32 + currentBit;

numBytes = numBits/framedLength;

/* insert length field - higher order byte first */
outputDataBegin = (uint*)output_data;
currentBit = framedLength;
length[O] = (uchar)((numBytes >> 8) & Oxff);
length[l] = (u_char)(numBytes & Oxff);

for (i=O;i<2;i++) {
ushort framedLengthByte = (startBitValue << (numDataBits+numStopBits))

(length[i] << numStopBits) I stopBitValue;

if ((currentBit + framedLength) <= 32) {
*outputDataBegin = *outputDataBegin I

(framedLengthByte << (31 - numDataBits - numStopBits - currentBit));
currentBit = currentBit + framedLength;

else {
u-char bitsRemaining = 32 - currentBit;
currentBit = framedLength - bitsRemaining;
*outputDataBegin = *outputDataBegin I (framedLengthByte >> currentBit);
outputDataBegin++;
*outputDataBegin = framedLengthByte << (32 - currentBit);

}

*numOutputBits = numBits;
return outputdata;

}

int
FHFSKTransmit(struct svPayload* inputPayload,
struct swPayload* outputPayload,
struct swFH* fh,struct svFSK* fsk)
{

int n,bit;
u-int bitCount=0;



u_short *indexPtr=fh->txPattern;
int incr[2];

if (inputPayload->payloadType != SW_BITSTREAM)
return -1;

fh->currChannel = 1;
incr[O] = (int)(.5 + FREQO);
incr[l] = (int)(.5 + FREQ_1);

while (bitCount<inputPayload->numSamples) {

/* Determine value of bit */
bit = BitValue((u-int*)(inputPayload->dataPtr),bitCount);

/* Copy one bit period of desired frequency into output payload */
for (n=l;n <= fsk->bitPeriod;
n++,outputPayload->dataPtr++,indexPtr += incr[bit]) {
if (indexPtr >= fh->txPatternLen + fh->txPattern)

indexPtr = indexPtr - fh->txPatternLen;
*outputPayload->dataPtr = *indexPtr;

}

bitCount++;

/* If time for frequency hop, change channel and recalculate increments */
if (bitCount == fh->hopStep + 1) {

FHHop(fh);
incr[O] = (int)(.5 + FREQ_O);
incr[l] = (int)(.5 + FREQ_1);

}
}
return 1;

A.5 Receiver Function Calls

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <string.h>
#include <syscall.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/times.h>
#include "specware.h"

#define FSKTHRESHOLD 60e6

void
ComputeSin(struct swFH* fhParam, struct swFSK* fskParam,

struct swPayload* inputPayload) {
int n,m,i;
short *sinPtr, *cosPtr;
float freq[11] [2];

/* Precalculate sine and cosine waves for each FSK frequency
of each channel */

for (n=l;n<=fhParam->numChannels;n++) {
freq n] [0] =(n*fhParam->channelSpacing+fhParam->channelOffset

-fskParam->freqDeviation);
freq[n] [] =(n*fhParam->channelSpacing+fhParam->channelOffset

+fskParam->freqDeviation);
for (m=0;m<2;m++) {



fhParam->rxWaveform[n][0[m = (short*)malloc(2*fskParam->bitPeriod);
fhParam->rxWaveform[n] [11 [ml =(short*)malloc(2*fskParam->bitPeriod);
sinPtr = fhParam->rxWaveform[n] [01 [m] ;
cosPtr = fhParam->rxWaveform[n] [1] [m] ;
for (i=O;i<fskParam->bitPeriod;i++,cosPtr++,sinPtr++) {

*sinPtr - (short)(32767 *
sin(2*MPI * i * freq[n] [m] /

(float)inputPayload->samplingRate));
*cosPtr = (short)(32767 *
cos(2*MPI * i * freq[n] [m] /

(float)inputPayload->samplingRate));
}

}

void
FindChannel(struct swFH* fh,

struct swFSK* fsk,
struct swPayload* payload) {

int i,j;

/* If time to hop, change channel and reset waveform pointers */
if (((payload->bitCount) % fh->hopStep == 0) && fh->lock) {
FHHop(fh);
for (i=0;i<2;i++) {
for (j=0;j<2;j++) {

fsk->waveform[i] [j] = fh->rxWaveform[fh->currChannell [i [j ] ;

return;

int
GetBit( struct swFSK* fsk,

struct swFH* fh,
struct swPayload* inputPayload) {

int bit;

FindChannel(fh,fsk,inputPayload);

/* If in lock, perform standard demodulation. If out of lock, perform
bit boundary locking procedure. */

if (fsk->lock) {
bit = FSKDemod(fsk,inputPayload);

} else {
bit = FSKLock(fsk,inputPayload);

}
inputPayload->bitCount++;
return bit;

I

int
GetByte(u-char* value,

struct swBitFraming* bitFrame,
struct swFSK* fsk,
struct swvFH* fh,
struct swPayload* inputPayload) {

int i,n=O;
int bit;
int bits[8];
u_char byte = 0;
short *startPtr;

while(inputPayload->dataPtr <= inputPayload->startPtr +
inputPayload->numSamples - (bitFrame->bits + 2) * fsk->bitPeriod ) {

startPtr = inputPayload->dataPtr;



/* Find start bit */
bit = GetBit(fsk,fh,inputPayload);
while (bit != bitFrame->startBit) {
fsk->lock = 0;
inputPayload->dataPtr = startPtr;
inputPayload->bitCount--;
bit = GetBit(fsk,fh,inputPayload);
startPtr = inputPayload->dataPtr;

}

startPtr = inputPayload->dataPtr;

/* Extract data bits */
for (i=O; i< bitFrame->bits; i++) {
if ((bits[i] = GetBit(fsk,fh,inputPayload)) < 0)
break;

}

/* If one of the data bits did not meet the threshold, then fall out of
the loop and find the next start code. */

if (bits[i] < 0) {
if (value == 0) {
return -2;

} else {
inputPayload->bitCount -= 2+i;
inputPayload->dataPtr = startPtr;
continue;

}

/* Check for stop bit */
if ((bit = GetBit(fsk,fh,inputPayload)) < 0) {
if (value == O) {
return -2;

} else {
inputPayload->bitCount -= 2+bitFrame->bits;
inputPayload->dataPtr = startPtr;
continue;

}

/* If we have a valid framed byte, return it. */
if (bit == bitFrame->stopBit) {
byte = 0;
for (n=O;n< bitFrame->bits;n++)

byte = byte I ((bits[n] & OxOl) << (bitFrame->bits-n-1));
if (*value == byte II *value == 0) {
*value = byte;
return 0;

}
else {
inputPayload->dataPtr = startPtr;

}
} else {

inputPayload->dataPtr = startPtr;
fsk->lock = 0;
return -2;

inputPayload->bitCount -= bitFrame->bits+2;
}
return -1;

struct swPayload
GetFrame(struct swByteFraming* byteFrame,

struct swBitFraming* bitFrame,
struct swFSK* fsk,
struct swFH* fh,
struct swPayload* inputPayload) {
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int p,q,i,remainingSamples;
u-char byte[2],length[2 ,*ptr;
ushort numBytes;
struct svPayload outputPayload;
short *frameStart;

outputPayload.payloadType = SWBYTESTREAM;
outputPayload.numSamples - 0;
outputPayload.status = 0;

do {
byte[O] = 0;
length[0] = 0;
length[i] = 0;
frameStart = 0;

/* Set flags to tell FindChannel to look for new start code. */
fh->currChannel - 1;
inputPayload->bitCount=O;
fh->lock = 0;
for (p=O;p<2;p++) {
for (q0;q<2;q++) {

fsk->waveform[p] [q] = fh->rxWaveform[fh->currChannel] [p] [q];

byte(0] - byteFrame->startCode;

/* Tell GetByte to return after finding start code. */
if((outputPayload.status -

GetByte(&byte[Ol,bitFrame,fsk,fh,inputPayload)) < 0) {
if (outputPayload.status == -2) {
fsk->lock=0;
continue;

I
else
break;

/* Set start of frame pointer in case it must be saved. */
if (outputPayload.status != -1) {
frameStart - inputPayload->dataPtr -

fsk->bitPeriod * (bitFrame->bits + 2);

fh->lock = 1;

/* Get first length byte */
if ((outputPayload.status =

GetByte(&length[O] ,bitFrame,fsk,fh,inputPayload)) < 0) {
if (outputPayload.status == -2) {
fsk->lock=0;
continue;

else
break;

I

/* Get second length byte */
if ((outputPayload.status =

GetByte(&length [1l,bitFrame,fsk,fh,inputPayload)) < 0) {
if (outputPayload.status == -2) {
fsk->lock=O;
continue;

}
else
break;

/* Calculate number of data bytes in frame */
if ((((length[Ol & Oxff) << 8) I (length[l] & Oxff)) >= 5)
numBytes - (((length[O] & Oxff) << 8) I (length[l] & Oxff)) - 5;

else numBytes - 0;
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remainingSamples = fsk->bitPeriod * bitFrame->bits * (numBytes+2);

if ((inputPayload->dataPtr + remainingSamples
<= inputPayload->startPtr + inputPayload->numSamples) && numBytes) {

outputPayload.dataPtr = (short *)malloc(numBytes);
outputPayload.startPtr = outputPayload.dataPtr;
outputPayload.numSamples = 0;

/* Extract data bytes */
for (i=O; i < numBytes; i++, ((uchar *)outputPayload.dataPtr)++) {
*((uchar *)outputPayload.dataPtr) = 0;
if ((outputPayload.status =

GetByte((u_char *)outputPayload.dataPtr,
bitFrame,fsk,fh,inputPayload)) < 0)

break;
outputPayload.numSamples++;

}

if (outputPayload.status < 0) {
if (outputPayload.status == -2) {
fsk->lock=O;
continue;

I
else
break;

}

byte[O] = 0;
byte[l] = 0;

outputPayload.status = GetByte(&byte[O],bitFrame,fsk,fh,inputPayload);
outputPayload.status = GetByte(&byte[l],bitFrame,fsk,fh,inputPayload);

if (byte[O] != byteFrame->stopCode[O] II
byte[l] != byteFrame->stopCode[l]) {

outputPayload.status = 2;
} else {
outputPayload.status = 1;

}

} else {
outputPayload.status = -1;
break;

} while (outputPayload.status==-2);

if (outputPayload.status < 1) {
inputPayload->dataPtr = frameStart;
outputPayload.numSamples = 0;

}
/* If output payload is complete, return to main procedure. */
outputPayload.dataPtr = outputPayload.startPtr;
return outputPayload;

int
FSKDemod(struct swFSK* fsk,struct swPayload* payload) {

int n;
int bit = 0;
float sumCosO = 0;
float sumCosl = 0;
float sumSinO = 0;
float sumSinl = 0;
short* cos0Ptr = fsk->waveform[l] [0];
short* coslPtr = fsk->waveform[l] [1];
short* sinOPtr = fsk->waveform[O] [0];
short* sinlPtr = fsk->waveform[O] [1] ;
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/* Multiply signal bit period by cosine and sine of correct frequency */
for(n-0; n< fsk->bitPeriod; n++,payload->dataPtr++) {

sumCosO - sumCosO + (*payload->dataPtr * cosOPtr[n]);
sumCosi = sumCosi + (*payload->dataPtr * cosiPtr[n]);
sumSinO - sumSinO + (*payload->dataPtr * sinOPtr[n]);
sumSini - sumSini + (*payload->dataPtr * siniPtr[n]);

}

sumCosO - fabs(sumCosO);
sumCosi - fabs(sumCosi);
sumSinO - fabs(sumSinO);
sunSini - fabs(sumSini);

/* Choose bit based on largest signal
if (sumCosO > sumSinO)
fsk->signalStrength - sumCosO;

else
fsk->signalStrength - sumSinO;

strength */

if (sumCosl > fsk->signalStrength) {
bit = 1;
fsk->signalStrength - sumCosi;

if (sumSini > fsk->signalStrength) {
bit - 1;
fsk->signalStrength - sumSini;

/* If signal strength is below threshold, return bad bit warning */
if (fsk->signalStrength < FSKTHRESHOLD) {
fsk->signalStrength-0;
bit--i;

return bit;

int
FSKLock(struct swFSK* fsk,struct swPayload* payload) {

int n;
float oldmax-0;
int bit-O,returnBiti-1;
short *newPtr - payload->dataPtr;

if (payload->dataPtr-payload->startPtr > fsk->bitPeriod-1)
payload->dataPtr a payload->dataPtr - fsk->bitPeriod +1;

while(returnBit < 0 &&
payload->dataPtr < (payload->startPtr + payload->numSamples)) {

/* Move through bit period and find maximum
for(n-O; n< fsk->bitPeriod; n++) {
bit=FSKDemod(fsk,payload);
if (fsk->signalStrength > (1.1*oldmax) &&

oldmax - fsk->signalStrength;
returnBit - bit;
newPtr - payload->dataPtr;

signal strength */

bit >= 0) {

payload->dataPtr -- fsk->bitPeriod -

if (returnBit !- -1) {
payload->dataPtr - newPtr;

I

fsk->lock - 1;
return returnBit;
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