
Operating System Extensibility Through Event Capture

by

Thomas Pinckney III

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science

and

Master Of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1997
[Mucrc 1og1 9eJ

@ Massachusetts Institute of Technology 1997. All rights reserved.

Author .. /.-r. , .

D U t of Electrical Engineering and Computer Science
February 7, 1997

'/2

Certified by....
I V'

Certified by...

M. Frans Kaashoek
Associate Professor

'hesis Supervisor

. .. .

Dawson R. Engler
PhD Candidate

Thesis Co-Supervisor

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

OCT 291997
LIAi~LEAS

Operating System Extensibility Through Event Capture

by
Thomas Pinckney III

Submitted to the Department of Electrical Engineering and Computer Science
on February 7, 1997, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science

and
Master Of Engineering in Computer Science and Engineering

Abstract

Empirically, operating systems are inevitably faced with application demands that the op-
erating system cannot adequately handle. This thesis addresses how extensibility can be
designed in, so that throughout the system's lifetime it can be extended to meet new de-
mands that were not originally anticipated. A set of guidelines are proposed that help
operating system designers understand which parts of their system will be likely targets of
extensions. These parts can then be exposed as points that applications can attach exten-
sions to. Design principles are also given for how to structure systems so that extensions
may be invoked efficiently and executed safely. Finally, we constructed an extension that
provides application-level process scheduling.

Thesis Supervisor: M. Frans Kaashoek
Title: Associate Professor

Thesis Co-Supervisor: Dawson R. Engler
Title: PhD Candidate

Acknowledgments

I would first and foremost like to thank my parents for their apparently neverending love

and support during my life and more recently my time at MIT. Their listening to me and

being there through good times and bad has made my life vastly more enjoyable than it

would otherwise be. I hope that at some point I can give back a small percent of what they

have given me.

Frans Kaashoek has also made my stay at MIT a much more meaningfull experience

than I think it would have been had I not worked with him during these past four years.

He has always shown a clarity of vision about computer systems that keeps me from getting

lost along the meandering roads and dead-ends of systems research. More generally, he has

been a true role-model of how to lead, motivate, and understand people.

The other members of the Parallel and Distributed Operating Systems group also deserve

my thanks. Notably, Hector Briceno has not only been a person to bounce ideas off of and

to add some semblance of reality to my ideas, but also a great friend during my years at

MIT. I also wish to thank Dawson Engler and Greg Ganger for their tireless efforts to beat

the demons of stupidity from me and for serving as excellent examples of how to do research.

And of course, I wish to thank all the other members of the group for their friendship and

patience with me.

Last, but not least, I would like to thank all the people of First West, my home for four

years, for doing their best to prevent this thesis from ever being written. Without their

continuous attempts to subvert my every effort at work, I would never have spent so much

time watching movies, staying up to all hours of the night talking, and otherwise having

as much fun as I have had with them. Thanks Andy, Chris, John, Sanjay, Elliot, Allison,

Andrew, and all the rest of you. Particular thanks needs to go to Scott Paxton for his

super-human efforts to distract me with horse simulators, movie scripts, and dictionaries of

obscure fictitious languages.

Contents

1 Introduction 5

1.1 The Extensibility Problem 6

1.2 Contributions 6

1.3 Outline 7

2 Designing For Extensibility 8

2.1 Placing Events 8

2.2 Heuristics for Placing Extensions 10

2.3 Maintaining Invariants 13

2.4 Event Delivery 16

2.5 Summ ary 19

3 Experimental Implementation 20

3.1 Experimental Apparatus 20

3.2 Process Scheduling 21

3.3 Requirements for Application-level Scheduling 22

3.4 Extension Mechanism 24

3.5 Evaluation 26

4 Related Work 27

4.1 Spin 27

4.2 Interposition Agents 28

4.3 Metaobject protocols 29

4.4 Hierarchical Scheduling 29

5 Conclusions 30

Chapter 1

Introduction

Modern operating systems are not flexabile enough to meet the needs of many applications.

Performance, reliability, and functionality all suffer due to inflexabile designs that cannot

accommodate unforeseen applications. This thesis explores guidelines that can help in de-

signing an extensible operating system that can support diverse unanticipated applications.

Inflexibility can be encountered at a number of levels in a system. This thesis will

concentrate on operating system level extensibility. For example, a modern non-extensible

operating system (OS) like BSD 4.4 provides a single policy for deciding which memory

pages to page out and for deciding when the application needs a new physical page [10].

The problems with this approach are that the OS may not understand when an application

really needs another page and the OS may make a bad choice about which page to take from

an application. For example, suppose an application is trying to cache objects in memory

rather than reading them over the network from a sever. If the caching of these objects

causes page faults the system may be slower than if the objects were simply re-fetched over

the network. The problems here are that the application is managing its own object cache

on top of the OS which is managing the cache of memory pages under the application. The

OS does not know that the application does not really need a new physical page and the

application can not tell how many physical pages it really has. This +problem is simply

one example of a broader problem with modern OSs. Many operating system abstractions

can be better implemented with access to application-specific information about how the

abstraction is going to be used.

1.1 The Extensibility Problem

In general, there are two key design goals for building systems that can later be extended.

The first goal is to build the system so that it is extendible in ways that were unanticipated

at the time the system was created. Requiring that all extensions be pre-conceived places

massive limitations on the styles of extensions that can be performed. The second problem

is that extensions should not threaten the integrity of the system. Any extension should

be possible so long as it does not violate system integrity. This goal is hard to achieve for

two reasons: obviously malicious or buggy extensions can attempt to subvert the system.

However, more importantly, is that well meaning extensions must have knowledge about

what the system invariants are so that extensions do not violate them. Based on the current

state of software engineering, it is clear that it is very hard to enumerate assumptions, much

less communicate them to a new module that wishes to extend the system while preserving

the invariants.

The goal of allowing any extension that is safe is very difficult to achieve. In practice,

restrictions tend to be overly conservative and disallow broad categories of acceptable ex-

tensions. This thesis addresses this problem by discussing how to reduce the number and

complexity of invariants in a system, thus reducing the restrictions on extensions.

1.2 Contributions

There are three main contributions of this thesis. First, we explicitly identify two key

problems in building an extensible system: the difficulty of defining how and where a system

may be extended and some of the safety problems of extensions, beyond simply guarding

against wild writes and infinite loops. Many existing extensible systems do not directly

address the first problem, but instead simply propose a fixed set of ways their system can

be extended without providing much rational for their decisions.

Second, we propose a set of partial solutions to address these problems. We give explicit

design guidelines for building a system so that future extensions will be possible. While these

guidelines are incomplete they represent a reasonable compromise between implementation,

feasibility, and functionality.

Third, we have implemented an efficient user-level hierarchical scheduling mechanism

based on an extensible system. That this extension could be easily implemented is an

6

indication of the potential of our design principles.

1.3 Outline

The next chapter discusses our approach to dealing with the problems laid out in this chap-

ter. We propose an approximate solution and give some examples of the types of extensions

that we envision being made possible. Then we describe in detail how we have implemented

a reasonably complicated extension that provides efficient application controlled hierarchi-

cal scheduling. Finally, we compare our work against other projects that have similar goals

and finally we conclude.

Chapter 2

Designing For Extensibility

The previous chapter introduced two problems with building extensible systems: determin-

ing what can be extended and what execution environment to provide extensions so that

they do not violate system invariants. This chapter explores these problems in more detail

and provides partial solutions that we feel are good trade offs between complexity of solu-

tion and quality of solution. Finally, we attempt to understand what is gained and lost by

these approximate solutions.

We adopt an abstraction of how extensions are actually attached to systems. We say

that the part of the system being extended raises an event at each point that it can be

extended. The part of the system providing the extension catches the event or handles it

by running its extension. We also refer to this as binding an extension or action or handler

to an event. We call the part of the system that raises an event the generator and the part

that handles the event the client. Finally, we refer to the point that an event is raised in

the generator as an event point. Typically each event will have some default handler that

is provided as the baseline functionality of the system. That is, disk drivers will by default

handle read and write events by reading and writing blocks, timer interrupts will increment

the number of ticks the currently executing process has run for and update the system time,

etc...

2.1 Placing Events

A central question "is what corresponds to an event?". If a piece of code is to be extensible

using events then there must be some way for other applications to detect when the event

has occurred. This may not require additional action on the part of the generator if the

client can observe the generator's state changes and take action when the client notices the

proper event occurring. However, much more commonly the generator will have to perform

some action to notify the client.

This leads to one of the fundamental problems in building an extensible system. There

must be a mapping from the high-level constructs that a client is interested in binding

extensions to and the low-level implementation details of what actually occurs in the gen-

erator. It is these implementation details which are the only operational way of raising

an event. For example, this mapping would allow an application to know that when the

generator was at program counter (PC) 0x803430 it was allocating a new physical page. In

this case, the mapping is from the concept of "allocating-physical-page" to PC 0x803430.

Events may not just be based on execution location but also on state changes. Thus, a

mapping could also be that a process is runnable if memory location 0x853350 is non-zero

and it is sleeping otherwise. The key is that the client must be able to understand how to

map the events it is interested in to concrete structures in the generator.

Ideally, this mapping exists for all events that a client is interested in binding to. The-

oretically this can be accomplished in two different ways. Either the generator can create

a mapping for every event that any client is going to ever need or the client can create

mappings for events that it does need. In general, either of these is hard.

The problem with the generator enumerating all events that a client will ever need is

that it is not known how to tell what events clients will want to bind to. In practice, any

attempt to do this will result in a subset of the events that a client may want. This approach

can lead either to extensions that are not efficiently implemented or inability to implement

an extension if critical events are not exposed.

The alternative is to require clients to create the mappings. The advantage of this

approach is that the client knows exactly which events it needs, so there is no need to

guess what a future client may require while creating the generator. Instead, the problem

is that while the client knows which high-level events it is interested in it does not know

how to map them to the generator. For example, the client may know it wants to bind

to the generator's allocate-physical-page action, but the client may'have no idea what PC

value this action corresponds to. Effectively, the generator and the client each have half of

the information needed to form the mapping and it is not clear how to communicate the

information between the two.

There are specific instances in which this problem can be dealt with more easily than

the above description would imply. For example, if the generator changes slowly or is

well understood then clients may understand the generator's internal structure. If a client

understands the semantics of each line of code in the generator, then the client can form

mappings from the high-level events that it is interested in to the actual instructions and

state configurations of the generator. Kernels are a good example of code like this. Examples

of code not like this are arbitrary applications or servers that might be targets of extensions.

2.2 Heuristics for Placing Extensions

As discussed above, we believe that it is not practical for either the generator or the client to

create'the mappings required for arbitrary extensions. Instead we propose an approximation

in which the generator exports a selected number of mappings for clients to use. We

have developed a set of design principles to help determine what should be event points.

Obviously, the set of mappings exported will not be sufficient for all clients. However, the

hope is that the heuristics below will help authors create programs that will allow most

interesting extensions while at the same time being practical to implement. Mixed in we

have listed some motivating examples of extensions that we imagine being made possible.

Hardware Events Interrupts, traps, faults, and exceptions should all be made into

events. Fundamentally operating systems are about managing hardware resources and so

hardware events are a natural information source for extensions. If applications want to

provide a complete virtual memory system at application-level they need all MMU faults

propagated to them [3]. Further, timers are used heavily for timeouts such as network

retransmissions and buffer cache flushes, periodic sampling such as pc-sampling and dirty

bit simulation/page ageing, and process scheduling. Alignment traps and unaligned pointers

can be used to trap on pointer dereferences for incremental garbage collectors or object

migration systems. Floating point faults can be used to enable saving of floating point

registers on context switches.

Input/Output The points in which a module gathers information from the outside

world or provides information as output should be made event points. An application

can thus interpose itself between the module and the rest of the system. Interpositioning

allows applications to translate information for the module and to enforce invariants on the

behavior of the module.

For example, an emulator that allows programs for one operating system to run on

another operating system might trap all the system calls an application makes. Then

the emulator could map the system calls onto the underlying system. Additionally, an

application could impose compression or encryption code on the output paths of the module,

such as calls to read and write blocks to disk. Other transparent mutations of the data

streams used by a module are also possible, such as automatically sub-sampling a video-

stream being sent over a slower-network than the application was designed to work with.

Expensive Operations Operations that are expensive in terms of hardware resources

or time are frequently good place to insert events. An expensive operation provides a good

target for replacement or specialization in order to optimize it. For example, operations

involving the disk are good candidates since improvement is potentially significant. When a

block is inserted into the pending-operations queue for the disk applications can reorder the

block list or enforce write-orderings so that data blocks are written before meta-data blocks.

When a disk operation completes the initiating process can be woken so it can continue.

Block allocation can be an event so applications can enforce layout policies on other appli-

cations, such as requiring an FFS-like layout. Page faults or buffer cache replacements for

one application can be trapped by another application to transparently change the paging

policy.

Resource Management Applications may be interested in the resource allocation and

usage decisions made by other parts of the system. Further, hardware resource allocation

is fundamentally what operating systems are about. Thus, allocating, protecting, unpro-

tecting, and deallocating resources are useful event points so that other applications can

modify these decisions. Information regarding usage of resources is also important so that

processes can make global resource optimization decisions based on how many resources

are being used by which processes. Further, resource shortages are frequently of interest

and so should be made events since policies for dealing with shortages are often targets for

specialization.

For example, an extension attached to an resource-idle event could be used to schedule

servers when the disk or network is idle. Processes performing global resource management

want to know when there are not enough pages in the system so that pages can be revoked

from applications. They also want to know about how applications are using the resources

they have allocated so they can make decisions about whom to revoke from. Resource

deallocation is also usually interesting so that, for example, extra pages can be used as soon

as they become available, servers can garbage collect state when client processes terminate

and parents can synchronize, and consistency checks can be performed when files are closed.

Notification of dropped packets due to insufficient buffer space is also useful in applying

back-pressure to applications. Finally, if applications can be invoked when memory pages

are mapped and unmapped, applications can implement their own arbitrary coherency

protocol for the objects stored in those memory pages.

Shared State Operations Creating, updating, or destroying shared state is often a

useful place to extend systems. Shared state can be shared memory or it can be disk space

that several applications use, perhaps at different times. Frequently, applications want to

wait until some update to shared state has taken place, such as waiting for a buffer in the

file cache to be released or for a process to wakeup and become scheduable again.

Another usage of events on shared state is to impose invariants. If several non-trusting

applications are sharing the same state the applications may not trust each other to make

well-formed updates to the state. Thus, applications may wish to verify the contents of

shared state before it is written to disk or after every update that some other application

makes. Usage of imposed invariants such as this reduces the need for trusted servers that

would guarantee well-formed updates. This is useful since trusted-servers may be large

pieces of non-extendible code in a system.

For example, consider a group of processes reading and writing a common file. Each

process is responsible for updating the modification time on the inode for the file before the

inode is written back to disk yet each process may not trust the other processes to actually

do this. So, each process can interpose assertion code on the disk driver to verify the inode's

modification time before the block containing the inode is written back to disk. The disk

driver can detect duplicate assertions and optimize the duplicates out.

Imposing invariants like this is more useful when failures can be repaired, when many

updates can be verified at once, and when the types of objects are well known so it is clear

which assertions need to hold. In the case of the modification time assertion described

above this means that if the modification time is invalid the assertion can easily fix it rather

than having to worry about rolling back the state. Similarly, the assertion can be applied

once before the disk block is written back rather than after each update to the inode in

memory. Of course, some applications may require that the modification time be correct at

all times in which case the assertion would have to be applied after every update. Further,

if the assertion is explicitly bound to the disk block the disk driver can easily determine

which assertions need to be applied to each block.

Finally, a third type of usage for detecting updates to shared state is to transparently

provide shadow views of some data structure. For example, rather than use a buffer cache

addressable by block number applications may wish to maintain a content addressable cache

indexed by CRC of the block. If applications can attach to insertion and removal updates on

the original buffer cache they can maintain their own shadow copy of the cache addressable

by CRC. Another example is maintaining a free page bitmap for the system if the kernel

only provides a free-list of pages. Finally, if resource usage events are exposed applications

can maintain their own data structures describing priorities for which resources to give up

first during resource shortages. For example, an application may shadow the systems LRU

page-replacement list with it's own page list based on a different priority scheme.

2.3 Maintaining Invariants

The second major problem with building extensible systems is guaranteeing that unforeseen

extensions are safe while not being unduly restrictive. Safety is not simply that extensions

do not infinite loop or perform wild writes but that they respect all of the assumptions in

the system being extended. Each module in a system is going to have pre-conditions and

post-conditions about what the state of the system is and what procedures are invoked next

and which have already been invoked. Arbitrarily adding new extensions can cause havoc if

the extensions violate these assumptions by making state updates that were not anticipated

or by altering the flow of control through the system in unanticipated ways.

We divide extensions into several overlapping categories based on their behavior. Each

extension may do one or more of the following to the event that caused the extension to run:

process the event and propagate it, consume the event, or generate new events. Processing

the event and propagating it means that the extensions do something in response to the

event but does not alter the normal execution of the system being extended. The extension

can be thought of as processing the event and allowing the normal flow of control in the

system to continue. Examples of this would be a compression or encryption extension

on a disk driver's read and write interfaces. The compression code does not affect the

read or write requests as far as the disk driver's normal flow of control is concerned. All

the extension does is process the data associated with the event transparently to the disk

driver. Of course, the extension can still violate invariants, such as the disk extension above

not respecting a driver requirement that all requests be multiples of the sector size.

Consuming the event means that the extension does not allow control to continue

through the system after the extension has executed. That is, the event is signaled, the

extension runs, and instead of control leaving the extension and returning to the point

after the event, control moves to some other location in the system. The extension has

effectively extended the flow-of-control through the system. For example, consider another

disk extension on the read and write interface. However, this extension, unlike the com-

pression and encryption extension described above, redirects disk requests over the network

transparently. This means that the disk driver is invoked, this extension is then invoked,

but control does not resume in the disk driver but instead is transfered over to the network

driver.

Control transfers such as this can wreak havoc on systems that do not expect to have

control transfered around at arbitrary locations. For example, the disk controller might

allocate temporary storage before invoking the extension and plan to free the space after

the extensions returns only to have the space never freed because the extension did not

return. Partial and incomplete state updates may have taken place before the extension

and control transfers at arbitrary locations could leave the system in an inconsistent state.

Finally, extensions may generate new events while handling existing events. The ex-

tension above that directed disk requests over the network was an example of this since

generating a network request is an event in and of itself. Potentially harder to deal with

are extensions that require re-entrancy by causing a module to invoke itself. For example,

continuing the disk driver extensions, consider an extension that duplicates disk requests

for fault-tolerance. This extension would be invoked on each read and write request and

generate a new disk request which would require the driver be invoked while control was

already in the driver.

The ideal solution to the the problems listed above has two parts. First, the generator

needs to understand the semantics of each extension so that it can determine whether it is

a legal extension for the event point it is bound to. For example, the generator would need

to be able to tell if the extension tries to re-enter a non-reentrant function. Second, the

generator should be written in such a way that minimizes the number of invariants that an

extension must respect.

In practice, the generator is likely to be too conservative in enforcing the first point and

thereby disallow legal extensions while also forcing extensions to respect more invariants

than may be strictly necessary in some optimal implementation. For example, a disk driver

may perform a long series of state updates to the controller card and so not allow any

extensions that are going to transfer control out of the driver while this series of update is

being made so that the controller is not left in an inconsistent state. In theory, however, it

may be possible to back out any commands partially in progress with the controller before

invoking an extension that is going to perform a control transfer.

Again, we propose a partial solution to these problems that makes a reasonable tradeoff

between difficulty of implementation and completeness of solution. We propose approaching

this problem by limiting the points at which events can be generated and in what context the

extensions execute. Fundamentally, we want to guarantee that the only state transitions

that the system makes, with or without extensions, are legal ones. Thus, we only allow

extensions to run when the system is in a consistent state and the only operations we allow

the extensions to use are trusted to only make legal state transitions [8].

We do this by forcing all extensions to logically run as if they were running at user

level. The kernel, servers, and any other extensible code has a set of interfaces that allow

manipulating the objects that the system exports. Events are simply notifications to the

user-level code that something has happened. Any extensions running at user level may

invoke these exported interfaces. There is nothing special in a piece of code running in

response to some event rather than running as a normal part of the application. This

allows events to run and do whatever they like since there's no state in the system being

held that would constrain them. For example, there is no requirement that they resume at

the point where the event occurs or that they perform/undo some state updates. Of course,

this is going to primarily be of use to complicated extensions.

This goal can be accomplished in several different ways. The first way is to have the

event detection/generation can take place early on in any code path so that the system is

still in a consistent state before the extension is invoked. The second way is to queue the

event and deliver it at some later time when the system state is consistent. An example

of the first is generating a file-modified event at the start of a file write system call. An

example of the second is for a kernel to remember that it has just killed a process and then

to deliver that event right before returning back to user-level.

2.4 Event Delivery

Up to this point events have been described without reference to their implementation.

Fundamentally, the client of an event can be synchronously notified that an event has

occurred or asynchronously notified. Synchronous notification means that the client is

in some way notified about the occurrence of the event as soon as it occurs and that

the generator of the event does not continue until the received has finished handling the

event. This requires care as described above to assure that the extension does not violate

any system invariants since it is being invoked from the middle of a system operation.

Asynchronous handling means that the client can process the event notification at some

arbitrary point in time after the event has occurred and that the generator need not wait.

It must be remembered that these divisions are guidelines and not hard and fast rules.

The actions associated with synchronous events will almost always be running down-

loaded code or an RPC or upcall. By definition a synchronous event must be handled

immediately and the only way to do is to execute an action on behalf of a client. Each ex-

tension will have different requirements as to how heavily it interacts with its environment.

Some extensions may simply want access to the address space of some process while other

extensions may want to RPC into servers and make system calls. If an extension does not

consume the event and does not invoke any procedures external to itself there is no need to

take the precautions described above to guard extensions from violating invariants.

Asynchronous events are frequently state updates that the client can later poll. For

example, timer events can be accumulated as a count of ticks that each process has gotten

so far. Or reading in a buffer may be exposed as an event by setting an exposed field in

the buffer structure showing the buffer is now full. An asynchronous event can also be a

piece of downloaded code that is run in a separate thread of control or it can be queued

as a pending event that the client can later poll for. The key point is that the event is

handled when it is both convenient for the generator and for the client since the generator

can decide when to deliver the event and the client can decide when to handle the event.

The mechanism for delivering events must also deal with the potential for multiple

extensions being bound to the same event. We allow extensions to run in one of three

orderings relative to other extensions. First, an extension can specify at bind time that it

does not care about the order it runs in relative to other extensions. Second, an extension

can specify that it should run after all other extensions currently bound to the event,

though future extensions could themselves request to run after this extension and they

would become the new last extension. And third, an extension can specify that it should

run first of the current extensions, but again future extensions can request that they run

first and they will run ahead of the current first extension.

The idea is that these orderings are simple to understand and allow extensions to be

stacked on each other. The users of applications that make extensions should understand

these orderings. For example, a user should be responsible for starting an encryption ex-

tension first and then a disk-to-network redirecting extension second so that data will be

encrypted before being sent over a network. Further, most extensions are expected to spec-

ify that they do not care what ordering they run in since most extensions on the same

event are expected to be independent of each other. For example, ten different applications

might want to extend the timer interrupts behavior but they are each extending it for their

one application and so can be run in any relative order. Finally, certain events may have

a customized method of dealing with multiple extensions. For example, the filters in a

packet-filter can be merged together so that conflicts between filters are resolved based on

the order in which the filters are downloaded.

We envision roughly three ways of notifying a client than an event has occurred. These

range in complexity quite a bit so hopefully simple solutions can be used in most cases and

the more complex solutions used only when necessary. Below we give a description of each

mechanism.

Explicit Scheduling In many cases the clients simply wants to sleep until some event

occurs, such was when waiting for I/O to complete, for a child to terminate or for a signal

to be delivered. In these cases the client can simply suspend itself and rely on the generator

to wake it when the event arises. The advantage of this solution is that it works quite

frequently, it is simple to implement, and it is efficient in terms of signaling, waiting and

registering for an event. In many cases the client does not need to explicitly bind to

some event in the generator, but instead can rely on the generator implicitly binding. For

example, when the client starts a disk request the generator can remember who should be

woken when the transfer completes. Then when the transfer completes the generator can

check if the client is sleeping on the event of the disk transfer completing and if so wake the

client.

Polling Another simple way for the client to be notified about events is to have the

client poll the generator. This is not necessarily slow. As long as polling is fast and if most

polls return the event having occurred, polling will be efficient. Further, polling does not

require that the received pre-bind to an event in the generator so the originator may have

no concept of the event that the client is polling on. For example, the kernel may expose

its disk-request queue with the intention of letting applications determine if a request on

a particular disk block is pending or not. However, applications might also use this data

structure to determine if the disk is idle or not which is an event that the driver may have

not planned to export. Further, a large number of clients can poll on shared state of a single

client efficiently since the generator does not need to keep track of each potential client. A

common use of polling is for processes to get event counts on things like number of page

faults, number of ticks of time spent executing, and number of physical pages owned so that

they can make resource scheduling decisions for their children.

Control Transfer Finally, the most general way to notify a client about the occurrence

of an event is to actually execute the client when the event occurs. This can take many

different forms from a cross-address space call via a kernel upcall to a remote-procedure

call (RPC) to invoking downloaded code. Code shipping can be more efficient than a cross-

address space call for several reasons. First, protection boundary and address space changes

are expensive on many machines. Second, mini-languages designed for one particular style

of event can be used which can make it easier to provide protected access to generator state

from within the client than providing access to this state through an RPC interface. Third,

event-specific optimizations can be used. For example, applications could download scripts

that run in response to page faults. The mini-language would be designed only to support

mapping physical pages to virtual pages and performing array operations across page tables.

Finally, fourth, shipped code can be arbitrarily inspected/modified by the acceptor as well

as being provided with a separate thread of control/address space from the client. This

means that the code acceptor can accurately control what the shipped code does along with

allowing the code to run in situations which might otherwise be difficult to do in the original

address space. Examples include a process swapping itself back in, flushing buffers after a

process is already dead, or initially demand paging a process in.

2.5 Summary

This chapter has discussed the problem of how to allow arbitrary clients to extend generators

in arbitrary ways. The fundamental tension is that the generator has semantic information

about its structure, such as what the code between PC values 0x80400 and 0x80500 is trying

to do while the client has full knowledge about what sort of events it wants to bind to in

the generator. Without the client's knowledge, the generator cannot provide event points

at the right locations and without the generator's knowledge the client cannot determine

how to map the high-level events it wants to bind to the low-level structure of PCs and

memory locations of the generator.

We have presented two guidelines to help resolve this tension. We propose a set of

heuristics to help the designers of a generator understand which of its operations are going

to be likely targets of clients' extensions. We also advocate building systems as libraries of

orthogonal simple primitives that require few inter-primitive invariants to be maintained.

This allows extensions the flexibility to have low-level access to the system and to manipulate

the control flow and state of the system without being restricted by having to maintain

numberous invariants for correctness.

Finally, we described three principle methods of signaling the occurrence of an event,

each offering its own tradeoff in terms of efficiency, complexity, and flexibility.

Chapter 3

Experimental Implementation

This chapter describes a set of extensions to a particular extensible operating system. The

extensions allow applications to control the scheduling decisions of other applications, thus

allowing different categories of applications to be scheduled differently. Describing the

implementation details and the issues involved provides concrete examples of some of the

principles discussed in the prior chapter.

This chapter would ideally demonstrates that following the guidelines provided in this

thesis will actually result in a usable extensible system. However, this is as much a large-

scale sociological experiment as an operating system experiment since what matters in the

end is how many people are able to use extensions to benefit their applications and how

much easier this is made by our guidelines than if an ad-hoc system had been created. We do

not hope to answer this question. Instead, we investigate the more constrained problem of

whether the extension framework we have described is sufficient to support application-level

scheduling extensions.

3.1 Experimental Apparatus

We built our extensions on an exokernel-based system. The exokernel is one extensible

system being developed [4]. Exokernels are a new way of structuring operating systems that

allow applications to adapt the system to their needs. An exokernel securely multiplexes the

hardware resources of a machine and does not abstract them. For example, a conventional

operating system would provide protected access to the disk and at the same time force

applications to access the disk through whatever filesystem abstraction the OS chose to

provide. An exokernel would simply export the disk as a set of blocks that could be

allocated by different applications. Applications would then be responsible for deciding

how to use the blocks and what abstractions to use for accessing those blocks.

The kernel has no knowledge about processes, priorities, or even time quantums. The

current exokernel, XOK which runs on the x86, manages page allocation, disk extents,

address spaces, network interfaces, and a simple buffer cache. An experimental library

operating system named ExOS is used by most applications that want a 4.4 BSD like en-

vironment. ExOS provides a local filesystem, TCP/IP, file descriptors, and process and

memory management. An unfortunate artifact of these abstractions being implemented at

application-level is that different applications may not trust each other's implementations.

Thus, the process management code in one application may not trust the process man-

agement code in another application to adhere to the same policies that it does much less

to implement them correctly. Thus, some policies that were relatively easy to implement

in conventional systems require new implementations to work among non-trusting library

operating systems. Scheduling is a good example since a scheduling decision is made across

several processes and so may require some form of trust as to who gets to make decisions

about whom. Further, scheduling require global information so that scheduling decisions

can be based on knowledge of other application's resource usage patterns.

3.2 Process Scheduling

Individual processes or groups of processes may need or want to be run at certain times and

under certain conditions. Typically, operating systems have implemented a few schedul-

ing policies that all applications must follow. For example, a system might implement a

fixed-priority round robin policy and a feed-back Unix-like scheduling system that balances

between compute and I/O bound processes. Frequently, applications want other policies.

For example, a make utility may want to manage the scheduling of the compilation processes

that it starts. Or a shell might want to schedule its child processes along a pipeline. Even

more simply, a user could wish to roughly control the amount of his collective processor time

that each of his applications receives. In any event, we would like to let applications make

their own scheduling decisions as well as allow scheduling policies be enforced on groups

of processes. For example, a user may want to force applications that have just faulted in

several pages to run at a higher priority than applications that have just lost pages so that

the work of faulting in the pages is not wasted.

We propose to do this via hierarchical scheduling [5, 9]. Ordinary applications will be

able to efficiently yield the processor to other applications, thus allowing applications to

perform arbitrary scheduling. These scheduling applications will be arranged in a hierarchy

so that different scheduling applications can submanage their own group of processes. For

example, a top-level scheduler could divide processor time evenly between all the users of a

machine. A lottery-scheduler could be integrated into each users shell to decide how to use

the processor time given it by the top-level scheduler. For example, users could optionally

enter a percent of CPU time that each process should be given when they type a command

to the shell.

3.3 Requirements for Application-level Scheduling

There are two requirements for application-level scheduling. First, the scheduling applica-

tion must be able to gather any information it needs to make its decisions. Second, the

application must have some means to preempt processes when a new process should be

run and it should have the means to actually start a new process executing. We rely on

applications to perform their own register saves and restores.

As part of building ExOS we have been trying to build a 4.4BSD like environment on top

of XOK. Providing Unix-like scheduling is a part of this. By Unix-like scheduling we mean a

scheduler that runs the highest priority process at any instant and adjusts priorities upward

for sleeping and downward for time spent executing. Reschedule operations take place either

periodically from timer interrupts or when a process wakes up and has a higher priority

than the currently executing process. We would like to implement similar functionality in

an application level scheduler.

Under ExOS, applications put themselves to sleep when they are waiting for I/O, signals,

or a child to terminate. The application is awakened when the event occurs. The application

can be awakened either by some other process or by being awakened periodically so that

it can poll and then go back to sleep if it still needs to wait. Some schedulers may not

wish to rely on applications putting themselves to sleep. A scheduler might wish to force

applications to sleep when they invoke an event that requires waiting or which places too

much load on some part of the system. Applications that queue too many packets to be

transmitted, trigger a page fault, or initiate a disk request could be forced to sleep until the

request has completed or the load on the resource has fallen.

Our scheduler requires attaching to two different events: it must intercept hardware

timer interrupts and it must be notified when applications change state from runnable to

sleeping and vice versa. The scheduler may wish to attach to other events such as resource

shortage events so that the scheduler can force an application to sleep if contention becomes

too high. However, for simplicity, we will assume that our scheduler is not doing this. The

timer event is exported by the kernel while process state changes are exported by the process

that is actually going to sleep and waking up. By catching timer interrupts the scheduler

can accumulate counts of how much processor time each process has received along with

deciding to preempt the currently running process after a certain number of ticks. Attaching

an extension to state changes from runnable to sleeping and vice versa allows two things.

First, the scheduler can compute how much time a process spends sleeping and so adjust

that process' priority upward. Second, when the process is awakened it may now the be the

highest priority process and so the scheduler may need to preempt the current process and

run the newly awakened process instead.

The other requirement is that the scheduler be able to preempt the currently running

process and be able to start a new process running. The kernel exports two principle

system calls for controlling execution: sys..revokeprocessor and sys..grantprocessor.

sysrevokeprocessor generates an upcall to the currently running process notifying the

process that it is about to lose the processor and that it should save any processor state it

needs. The kernel then allows the current process to continue executing for a small number of

ticks during which time the process must call sys.yield to notify the kernel that it is done or

be killed by the kernel for not returning control when told to. sys_grant _processor simply

upcalls to the named process. The process restores any saved state that it saved in response

to sys.revoke_processor and continues on its way. In order to guard who can revoke the

processor and grant the processor, each process is guarded by a capability. This capability

must be specified on each call to sys.revoke-processor or sys_grant-processor.

3.4 Extension Mechanism

This section describes the envisioned design of the scheduling system. We have not yet fully

implemented all the functionality described herein. The following section describes exactly

what has been implemented and what we have learned so far.

Each scheduler is an unprivaledged application. Logically, the scheduling applications

collectively call sysr.evoke.processor when they decide that the current process should

stop running and then call sys.grantprocessor to start a new process running. In prac-

tice, one scheduler is privilege by virtue of being the first scheduler to attach itself to the

system. Other schedulers may then attach themselves under this first one. This process may

be repeated recursively to form a tree of schedulers. Each scheduler, except the top one, will

periodically receive an offer of the CPU from it's parent. The scheduler may then accept

the CPU for one of it's children (either more schedulers or a non-scheduler application) or

it may refuse the CPU offer. If the scheduler accepts the CPU the scheduler is responsible

for somehow deciding who to give it to. For example, a Unix scheduler would maintain

a list of run queues and give the processor to the first process on the highest priority run

queue.

In reality each scheduler downloads a small fragment of code into the kernel that is

responsible for making the decision of whether to accept the CPU and if so who to give

the CPU to. The scheduler proper typically maintains data structures that the fragment

can then quickly check to determine who to give the processor to. For example, our Unix

scheduler would maintain a list of priority queues and update them periodically. The Unix

scheduler's fragment would then be responsible for checking these queues and removing the

highest priority process from them and yielding the processor to that process.

Each fragment is a stylized piece of code. A fragment is invoked if some higher-level

fragment yields the CPU to this fragment's scheduler. Control can then leave the fragment

along two predefined exit points: one for accepting the processor and specifying who should

receive the processor and the other for refusing the processor and returning to the fragment

that invoked the current fragment.

Multiple scheduling fragments will exist in the system at once, and they will be installed

and removed dynamically. Thus some form of late binding is required so that one fragment

can yield the processor to a sub-fragment by invoking it. We do this by using a simple

jump table. When a fragment decides to accept the current quantum it returns along the

"accept" return path and returns an integer that names which of it's children should be

invoked next. Thus, whenever a new fragment is installed it must register itself as a child

of some existing fragment so that the proper jump tables can be updated.

Each of these fragments is written in the machine language for an abstract risc-like

machine. The language is a thin veneer on top of VCODE. VCODE is a fast portable

method of generating native machine code at runtime [2]. We call our language SCODE.

It is designed to to be customized to different extension environments by the addition of

new macro-instructions, for pieces of code being passed through memory buffers, and for

easy extension of how potentially unsafe instructions are handled. The macro instructions

used by the scheduler extension are ssub-sched, s.app.sched, and s_refuse in order to yield

to an another sub-scheduler, to another application, or to refuse the time quantum. If

an extension needs to use potentially dangerous SCODE operations like backward jumps,

loads, or stores they can each be augmented with guarding code. For example, backward

jumps are augmented with a count. The extension can be aborted if the count reaches some

threshold. Loads and stores can be limited to addresses that can be statically checked at

download time, to physical addresses that are checked dynamically, or to virtual addresses

that are checked dynamically by simulating the MMU. Currently a full page table walk is

performed for each virtual address referenced, but a TLB could be simulated that would

greatly speed this process. Further, some types of errors cannot be expressed. For example,

jumps refer to labels that are placed by the kernel so it is impossible to express a wile jump.

Registers are named through a table that maps SCODE registers to real registers. Thus it

is impossible to overwrite a register that the kernel has not given the extension access to.

Finally, rather than running arbitrary user code for most of the timer events, we export

timer events using a more limited method. The timer interrupt handler records for each

environment each tick of processor time received. Further, the handler maintains a queue

of timeouts. Each timeout is marked with a type field that determines what action should

take place when it occurs. One of the types is to invoke a piece of downloaded code, which

in this case is a procedure that first calls sys.revoke_processor and then calls the top-level

scheduling fragment which will decide who gets the processor, probably by invoking several

sub-fragments.

3.5 Evaluation

The current system uses fixed sized time-quantums rather than the timer-interrupt handler

maintain arbitrary timeouts. When a quantum expires the top-level scheduler is invoked.

SCODE as described above is full implemented. The current scheduler does not actually

compute priorities based on accumulated timer ticks, but instead implements plain round-

robin scheduling.

Invoking downloaded scheduler code is indeed faster than requiring cross-address space

RPCs between the different scheduling applications. However, the amount of time is trivial

(on the order of several microseconds saved) for a time quahtum of 100ms. However, if

scheduling events were attached to more frequent events such as resource allocation or I/O

requests in order to enforce applications sleeping when contention for resources gets too

high, the low-latency of invoking downloaded code could be critical.

It is hoped that other extensions that require downloaded code can take the current

SCODE library of functions and quickly adapt it to their particular needs. In general, we

have found that VCODE makes it easy to construct mini-languages for expressing extensions

at a higher level than would be possible without a specialized language. This makes it easier

to perform extension-specific operations and to guarantee the safety of operations since in

many cases the languages can be constructed so that most illegal operations cannot be

expressed.

More importantly, extensions for process scheduling are not trivial. Proper implemen-

tation requires knowledge about resource allocation decisions, timer interrupts, and appli-

cation state changes. That our scheduling extensions' requirements fit within our guidelines

is reasonable evidence that there is some merit to our classifications.

Chapter 4

Related Work

The goal of building extensible systems has been around for quite a while. This sections

compares the work described in this thesis to other approaches to building extensible sys-

tems.

4.1 Spin

This work is most closely related to Spin which is another extensible operating system [1].

Spin's extension mechanism allows binding extensions written in a safe language to proce-

dure entry points in the kernel. Fundamentally, Spin has not appeared to deal with the

problem of what events should be generated. Instead the view seems to be that by exposing

all procedure events, enough opportunities for extension will be exposed. Further, the kernel

is relatively static so applications will be able to rely on having semantic information about

what it means when each kernel procedure is invoked. Spin can therefore avoid the problem

of an extension provider not understanding where to bind to Spin in order to capture the

right events.

The limitation with this approach is that applications that were not foreseen when the

kernel was designed may not be extensible. For example, a multi-cast router may be installed

on a Spin machine and other applications may want to extend its behavior by executing

extensions whenever the machine enters or leaves a multicast group. The kernel has no

understanding of multicast groups and so provides no means for these extensions to take

place. In general, Spin tries to provide only low-level operations and requires applications

to build more complicated abstractions on top of these primitives. Many extensions will

want to manipulate these higher-level abstractions though and Spin does not seem prepared

to deal with this.

A more minor difference with Spin is that under Spin all extensions are implemented in

the same manner: as pieces of Modula-3 code that are compiled into the kernel. This means

that significant work has had to go into building this extension mechanism so that it works

in all situations that it may be needed in. For example, a complicated system of guards

and run-time code generation is used to determine when extensions can run and making

their invocation efficient [11]. We want to use a small amount of mechanism if we can, such

as having events simply record counts such as timer ticks and page faults by default along

with using explicit scheduling of applications waiting for events. These techniques should

work in quite a few places and promise to be simple to implement and understand.

4.2 Interposition Agents

There have been systems that allow system call interception, most notably Mike Jone's

work [6]. This is close in spirit to the work in this thesis. A key difference is scope. These

efforts have all focused on intercepting system calls while we advocate exposing more of

the system as events. System call interception only allows a program to be encapsulated.

However, in many cases extensions need to have access to the inner workings of the system

they are trying to extend.

With only system call interception it is hard to change the internal workings of a system.

For example, system call interception does not lend itself to controlling cache replacement

policies, resource allocation/deallocation policies, or reflecting internal state changes to

other applications. And of course system call interception does nothing to help extend

something besides the kernel.

For example, implementing a user-level scheduler would be very difficult since the under-

lying operating system already implements a scheduler. But assuming that the underlying

scheduler could be disabled in some way and that a directed yield call could be used to

explicitly schedule other application, writing a user-level Unix-like scheduler would still be

very difficult using only system call interception.

As described in the previous chapter, a user level scheduler needs timers and notification

of when a process becomes runnable or goes to sleep. If the system supports timers of

sufficient resolution, SIGALRMs could be used to notify when time quantums expired. It

would not be possible to tell when a process blocked on some event or was woken up since

the kernel does not expose this information. Even more difficult would be forcing a process

to sleep when it began placing too much load on some part of the system. It would be

possible to detect when a process called read or write, but not possible to tell when an

actually physical I/O was required, or a page fault, or overloading the network transmission

buffers.

4.3 Metaobject protocols

The programming language community has been trying to make programming languages

more flexabile and extensible. Specifically, the idea of using metaobject protocols has been

proposed as a means for exposing the internal structure of object-oriented languages [7].

Programs written using these languages can then extend the functionality of the language

primarily to add new functionality.

Roughly, the metaobject community advocates allowing extensions to be attached to

events related to state updates such as creating, modifying, or destroying objects. We

advocate allowing extensions to a broader range of pieces of the system, such as I/O events,

hardware events, and potentially time consuming operations. It is not clear whether it

makes sense to incorporate such information into a programming language.

4.4 Hierarchical Scheduling

Hierarchical scheduling has been proposed by several different sources. Notably, Hydra in-

tended to allow ordinary applications to make scheduling decisions for descendent processes.

More recently, Ford et al have written about optimizing scheduling decisions. However, they

did not fully implement their work and instead simulated it using a user-level thread pack-

age. We provide an an implementation along with a sample scheduler. Additionally, our

scheduler is potentially more efficient than other hierarchical scheduling systems since the

actual operation of picking the next process to run is made by downloaded code.

Chapter 5

Conclusions

This thesis discusses why it is hard to build systems that are truly extensible. This does

not mean that people should give up on building extensible systems. Rather, partially

extensible systems must be constructed, with the goal of supporting extensibility while

keeping implementation complexity to a reasonable level. To this end, we have developed

a set of guidelines that can help operating system designers understand what parts of their

systems are likely targets of future extensions. OS writers may then focus their limited

energy on providing extensibility in these areas.

We also offer several design principles for developing systems that are amenable to exten-

sions. We propose that operating systems and system-level servers should be constructed as

a library of orthogonal primitives that provide low-level trusted updates to system state. We

believe that this structure imposes fewer invariants that extensions are forced to maintain

and thus be aware of.

Finally, we have implemented an application-level scheduling mechanism that allows ar-

bitrary applications to implement their own processor scheduling policies. The extensibility

support outlined above is sufficient to enable significant extensibility in processor scheduling

policies.

Bibliography

[1] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eggers,
and C. Chambers. Extensibility, safety and performance in the SPIN operating system.
In Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles,
December 1995.

[2] D. R. Engler. VCODE: a retargetable, extensible, very fast dynamic code generation
system. In Proceedings of the SIGPLAN '96 Conference on Programming Language
Design and Implementation, May 1996.

[3] D. R. Engler, S.K. Gupta, and M. F. Kaashoek. AVM: application-level virtual memory.
In Proc. of the Fifth Workshop on Hot Topics in Operating Systems, May 1995.

[4] D. R. Engler, M. F. Kaashoek, and J. O'Toole Jr. Exokernel: an operating system
architecture for application-specif ic resource management. In Proceedings of the Fif-
teenth ACM Symposium on Operating Systems Principles, December 1995.

[5] B. Ford and S. Susarla. Cpu inheritance scheduling. In Proc. of the Second Symposium
on Operating Systems Design and Implementation, October 1996.

[6] Michael B. Jones. Interposition agents: Transparently interposing user code at the
system interface. In Proceedings of the Fourteenth ACM Symposium on Operating
Systems Principles, 1993.

[7] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The art of the metaobject protocol.
MIT Press, 1991.

[8] B. W. Lampson. Hints for computer system design. In Proceedings of the Eighth A CM
Symposium on Operating Systems Principles, pages 33-48, December 1983.

[9] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism seperation
in HYDRA. Proceedings of the Fifth A CM Symposium on Operating Systems Principles,
pages 132-140, 1975.

[10] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The Design and
Implementation of the 4.4 BSD Operating System. Addison Wesley, 1996.

[11] P. Pardyak and B. Bershad. Dynamic binding for an extensible system. In Proceedings
of the Second Symposium on Operating Systems Design and Implementation, October
1996.

