
Decentralizing UNIX Abstractions in the Exokernel Architecture
by

H6ctor Manuel Bricefio Pulido
Submitted to the Department of Electrical Engineering and Computer Science in partial

fulfillment of the requirements for the degrees of

Bachelor of Science

and

Master Of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1997

© Massachusetts Institute of Technology 1997. All rights reserved.

A uthor
Departnmc e&E trical Engineering and Computer Science

February 7, 1997

Certified by ,..,,... .,. .,,. ,.,, .. , ..

Certified by

.................................

M. Frans Kaashoek
Associate Professor

Thesis Supervisor

7...........................
Gregory R. Ganger

Postdoctoral Associate
Thesis Supervisor

Certified b) ..-
Dawson R. Engler

Ph.D. Candidate
Thesis Supervisor

Accepted by
,Artnur C. Smith

, - Chairman, Departmental Committee on Graduate Students

OCT 291997

/-'"32L~F-L·-~

Decentralizing UNIX Abstractions in the Exokernel Architecture

by

H6ctor Manuel Bricefio Pulido

Submitted to the Department of Electrical Engineering and Computer Science on February 7, 1997
in partial fulfillment of the requirements for the degrees of

Bachelor of Science
and

Master Of Engineering in Computer Science and Engineering

Abstract

Traditional operating systems (OSs) provide a fixed interface to hardware abstractions. This interface
and its implementation hurts application performance and flexibility. What is needed is a flexible
and high-performance interface to OS abstractions that can be customized to each application's
needs.

To provide more flexibility and performance to applications, the exokernel architecture decen-
tralizes OS abstractions and places them in libraries. This thesis investigates how to decentralize
OS abstractions while maintaining proper semantics. It also describes the implementation of a
prototype library operating system - ExOS 1.0 - that has enough functionality to run a wide variety
of applications from editors to compilers. ExOS 1.0 serves as an excellent tool for OS research and
as a step toward the full understanding of how to design, build, and use library operating systems.

Thesis Supervisor: M. Frans Kaashoek
Title: Associate Professor

Thesis Supervisor: Gregory R. Ganger
Title: Postdoctoral Associate

Thesis Supervisor: Dawson R. Engler
Title: Ph.D. Candidate

Acknowledgments

The work presented in this thesis is joint work with Dawson Engler and Frans Kaashoek. It goes

without saying that the discussions with Tom Pinckney and Greg Ganger greatly increased the

breadth and depth of this work.

I thank the members of the Parallel and Distributed Operating Systems group for withstanding

me (Costa and Rusty, why are you smiling?) and providing a joyful research environment.

The painstaking task of reading the whole thesis was endured several times by Dawson Engler,

Frans Kaashoek and Greg Ganger. Their invaluable feedback is greatly appreciated.

Dawson Engler is thanked specially for questioning many of the issues covered in this thesis,

and poking my brain with his questions and suggestions. Without his feedback, this would have

been a truly different thesis.

Tom Pinckney is thanked for answering my numerous questions and listening to all my comments

(including the random ones).

My parents are thanked for all their encouragement throughout life and their example of hard

work and excellence.

A special thanks goes to the Fundaci6n Gran Mariscal de Ayacucho and the Venezuelan Gov-

ernment for making it possible to enrich my education at MIT.

This research was supported in part by ARPA contract N00014-94-1-0985, by a NSF National

Young Investigator Award to Prof. Frans Kaashoek, and by an Intel equipment donation.

Contents

1 Introduction 9

1.1 Decentralization Advantages 10

1.2 Decentralization Challenges 10

1.3 Solution and Contribution 11

1.4 Thesis Overview 11

2 Decentralizing OS Abstractions 13

2.1 OS Abstractions 13

2.2 OS Abstractions Semantics 15

2.3 Centralized OSs Services and Features 17

2.4 Decentralizing OS Abstractions 20

3 ExOS 1.0 25

3.1 Design 25

3.2 Experimental Framework: XOK 26

3.3 Implementation of Major Abstractions and Mechanisms 27

3.3.1 Bootstrapping, Fork and Exec 27

3.3.2 Process Management 28

3.3.3 Signals 29

3.3.4 File Descriptors 30

3.3.5 Files 31

3.3.6 Sockets 33

3.3.7 Pipes 34

3.3.8 Pseudo-Terminals 34

3.4 Performance Evaluation 35

3.5 Discussion 36

4 Future Work: ExOS 2.0 39

4.1 Design Goals 39

4.2 Design Description 40

4.2.1 Local Directories and Files . 40

4.2.2 Sockets 42

4.2.3 Pseudo-Terminals42

4.2.4 Signals 43

5 Related Work 45

6 Conclusion 47

List of Tables

3-1 Supported File Descriptor Types 31

3-2 Application Benchmark Results 35

Chapter 1

Introduction

It has been widely recognized that traditional operating systems (OSs) should provide much more

flexibility and performance to applications [2, 3, 4, 14]. The exokernel architecture is intended to

solve the performance and flexibility problems associated with traditional OSs by giving applications

protected, efficient control of hardware and software resources. Exokernels simply protect resources,

allowing applications to manage them. Libraries implementing OS abstractions can be linked with

applications to provide programmers the same interfaces as traditional OSs under this architecture.

Two major questions of this thesis are "can library operating systems provide the same abstractions

as traditional OSs?" and "if so, how?". This thesis explores mechanisms for providing a common

OS interfaces while simultaneously maintaining the flexibility and performance advantages of the

exokernel architecture.

Traditional OSs enforce abstractions on hardware resources and the software structures used for

resource management. They enforce these abstractions by using a well-defined system call interface

and keeping all system state centralized in a privileged address space. Centralization simplifies the

sharing of system state because all system state is available to all processes when a system call

is being serviced. The system call guarantees that the state will not be corrupted or maliciously

modified. Unfortunately these advantages come at the cost of flexibility and performance, since ap-

plications are forced to use specific abstractions with specific policies to access hardware resources.

For example, disk blocks in UNIX systems are cached, and the cache uses a least-recently-used

policy for cache block replacement. Applications that benefit from either eliminating caching or

using a different policy cannot replace this policy under traditional UNIX systems.

1.1 Decentralization Advantages

The exokernel OS architecture gives applications more control over resources by decentralizing

resource management from the OS into unprivileged libraries (called library operating systems). In

contrast to conventional OSs, in which a central authority both protects and abstracts hardware re-

sources, exokemels only protect resources, leaving their management to applications. For example,

exokernel "processes" manage their own virtual memory. Processes handle page faults, allocate

memory and map pages as necessary. This control allows for the implementation of mechanisms

such as copy-on-write and memory mapped files all at user-level. Thus, any of these traditional

abstractions can be optimized and customized on a per-process basis.

With the exokernel's powerful low-level primitives, traditional OS abstractions can be imple-

mented in library operating systems. Applications can use a specific library OS depending on their

access patterns, usage of abstractions, and desired policies. Additionally, if none of the available

abstractions are suited for a particular application, unprivileged programmers can safely implement

their own abstractions. In this way, libraries provide maximum flexibility and performance to

applications.

1.2 Decentralization Challenges

To decentralize OS abstractions many problems must be addressed: state that was previously

persistent across process invocations may no longer be; shared state can be corrupted by other

applications if not properly protected; resources can be accessed concurrently, so there must be

mechanisms to guarantee a minimum amount of concurrency control; finally, since all names

manipulated by an exokernel are physical names such as physical page number or a physical disk

block, there must be mechanisms to map these names to the logical names commonly used by

applications.

The main question then becomes how to implement library operating systems on exokernels.

To answer this question, this thesis will explore an implementation of the application programming

interface (API) provided by OpenBSD, a BSD-like UNIX OS. This interface provides a widely

used set of OS abstractions that, in addition to allowing us to explore the issues in decentralizing

OS abstractions, will provide the exokernel prototype with a large application base to test and

evaluate the exokernel and library OS architectures. The main challenge of this implementation is

conforming to the API while at the same time maintaining the flexibility and performance of the

exokernel OS architecture.

1.3 Solution and Contribution

This thesis addresses the challenges of decentralizing OS abstractions by first exploring what se-

mantics they have and how their state is shared. With this information as a foundation, mechanisms

for decentralizing OS abstractions are described. Two main approaches are identified: duplicating

the mechanisms used under centralized schemes and using mechanisms inherent to decentralized

schemes. The insights gained are applied to OpenBSD to create a library operating system called

ExOS 1.0 that provides the same OS abstractions as OpenBSD. ExOS 1.0 provides enough func-

tionality to run a variety of applications from compilers to editors.

1.4 Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 describes the issues and mechanisms

used to decentralize OS abstractions. Chapter 3 describes the design, implementation and evaluation

of ExOS 1.0. Chapter 4 discusses planned future work with library operating systems, including a

partial design of ExOS 2.0. Chapter 5 discusses work related to library operating systems and the

decentralization of UNIX abstractions. Finally, Chapter 6 concludes.

Chapter 2

Decentralizing OS Abstractions

This chapter discusses the issues that arise when decentralizing OS abstractions. In order to provide

better insight, centralized and decentralized approaches will be contrasted. Although this thesis

does not cover all possible OS abstractions, this chapter gives a high-level overview of common

OS abstractions in order to make concrete the issues. Semantics define an important part of

OS abstractions, therefore the most important semantic issues will be enumerated. In order to

contrast centralized and decentralized approaches, the features or abilities of centralized OSs will

be described along with examples of how to implement the major abstractions. At this point, the

issues and methods to decentralize OS abstractions can be better understood.

This chapter is divided into four sections. Section 2.1 describes the general OS abstractions.

Section 2.2 describes the major semantics characteristics of such abstractions, including protection,

atomicity, and concurrency. Section 2.3 presents some of the features and abilities of centralized

OSs and how they relate to the semantics of abstractions. Section 2.4 concludes with the mecha-

nisms and issues related to decentralizing OS abstractions.

2.1 OS Abstractions

To focus the discussion of decentralizing OS abstractions, it is useful to first describe some common

OS abstractions. This section describes OS abstractions, including some invariants that are enforced

in most systems. The abstractions described are divided into four categories: processes, virtual

memory, file systems, and communication.

* Processes: A process is basically a program in execution. It consists of the executable

program's data and stack, its program counter, stack pointer, and other registers, and all

other information needed to run the program [17]. Processes can be suspended and resumed

to allow multiple processes to timeshare a machine. There are usually a set of credentials

associated with each process that define the resources it is allowed to access. Typically a

process can create another process creating a family tree of processes.

* Virtual Memory: The abstraction of virtual memory simulates access to larger memory

spaces and isolates programs from each other. This is usually done by moving memory

pages back and forth between physical memory and a larger backing store (e.g. a disk),

and using hardware support to remap every memory access appropriately. For example,

when two different processes access memory location 5, that location will correspond to a

different physical memory addresses for each process, which provides isolation of memory

between the processes. The only way processes can share regions of their address space is

via explicit sharing. Most OSs provide ways to explicitly setup regions of memory that are

shared between processes. The credentials held by the processes can be used to validate the

sharing of these memory regions.

* File System: File system abstractions permit data to be made persistent across reboots.

Information is stored in entities called files. Files are usually hierarchically named to simplify

and organize file access. These names are unique and persistent across reboots. Additional

information is stored about each file, like access times and ownership, to allow accounting

and to restrict access to the file. File system abstractions usually involve strong semantics and

invariants, because of the many requirements needed to guarantee persistence. For example,

all meta-data (information about files) must be carefully written to a stable storage to guard

against inconsistency in case of a power failure.

* Communication: Communication abstractions allow processes to exchange information

with other processes on the same machine and on other machines in the network. The

communication abstractions may have varying semantics, such as guaranteed delivery, best-

effort, record-based, etc. Most current OSs do not protect against spoofing of communication

channels that go over a network, but they do protect communication channels on the same

machine. For example, they generally prevent the interception of information sent between

two programs by a third program on the same machine. Also, most OSs restrict access to

incoming data from the network to only the processes holding that connection.

2.2 OS Abstractions Semantics

Now that some common OS abstractions have been laid out, their semantics can be understood. This

section explores seven of the main semantic characteristics that OS abstractions deal with in varying

degrees: protection, security, concurrency control, naming, coherence, atomicity, and persistence.

These semantic issues have to be considered in order to properly implement these abstractions under

any scheme, be it centralized or decentralized. In some cases, the actual semantics are more strict

than necessary and relaxing them will not change the behavior or the correctness of programs.

Protection: Protection prevents unwanted changes to state. Protection can lead to fault-

isolation, and to an abstraction barrier. Fault-isolation is the containment of faults within processes.

For example, the process abstraction has fault-isolation, in that the failure of one process does not

directly affect any unrelated process. The abstraction barrier protects the state of an abstraction

from changes due to methods outside the abstraction. For example, the internal state of most, if not

all, UNIX abstractions is protected from processes. Processes are not able see or directly change

this state, they can only call the procedures exported by the abstractions.

Access Control: Access control defines the kind of actions and entities that are allowed to

perform these actions. For example, UNIX associates a <uid,gid> pair with each process. When a

process wants to write a file, the OS compares the <uid,gid> pair that is allowed to write with that

of the process to determine if the operation is allowed.

Concurrency: Concurrency defines the behavior of abstractions when they are simultaneously

accessed or acted upon by programs. There are various degrees of concurrency, from none to

complete serializability. For example, if files had no concurrency, it would be acceptable for two

simultaneous writes to the same region of the file to produce the effect of writing any mixture of the

two regions written. In contrast, most UNIX OSs use an absolute time semantics, specifying that

the later write is what would be seen by the next read of the same region of the file (if both readers

and writers are on the same machine). This absolute time concurrency can be said to be serializable

- its outcome can be recreated from some ordering of all file writes.

Concurrency semantics provide invariants about abstractions that make it easier to reason about

their possible states.

Naming: Naming permits unrelated processes to access an object or to communicate with each

other. By agreeing on the name, two processes at different times or simultaneously can access the

same object.

Naming is used under UNIX for files, pipes, and sockets. For example, by agreeing on a name

beforehand, one process can write to a file any mysterious events that it detects, and another process

later in time can read the same file and display the results to a user. This behavior is possible because

the name associated with the file does not change through time.

Coherence: Coherence defines when and how the abstraction state is well-defined. For example,

lack of coherence could imply that a change to a file by one process will not be seen by another

process unless the other process explicitly synchronizes the file. UNIX OSs typically provide strong

file coherence. If one process writes to a file, the change can immediately be observed by other

processes on the same system.

Atomicity: Atomicity describes the behavior of abstractions interruptions. Strong atomicity

guarantees make it easier to reason about and to restore the state of an abstraction after an unexpected

interruption (e.g. a power failure).

For example, most UNIX abstractions are atomic with respect to explicit interruptions such as

signals. Additionally, UNIX abstractions strive to be atomic with respect to unexpected interruptions

such as power failure (although they do not always succeed). For example, file delete is atomic

with respect to unexpected interruptions - the file is either removed or not. On the other hand,

long file writes are not atomic - if an unexpected interruption occurs only part of the write may be

completed.

Persistence: Persistence refers to the lifetime of an object. Objects may have longer lifetimes

than their creators. For example, system V shared memory segments persist until explicitly removed.

Even if these memory segments are not mapped by any process, the data in them will be available to

any process that subsequently maps them. This organization allows processes to share information

in memory across invocations. Another more useful example is the exit status of processes. Even

after a process has terminated, its exit status will be available until the parent process is ready to use

it. In contrast, the data memory of a process is not persistent; it vanishes when the process exits.

2.3 Centralized OSs Services and Features

Centralized OSs have certain abilities and features that help in implementing OS abstractions and

in guaranteeing their semantics. This section summarizes the relevant characteristics of centralized

OSs and describes how they are used to implement the semantics discussed in the previous section.

The relevant features include:

* Controlled Entry Points: Calls into centralized OSs can only occur at well-defined entry

points (i.e., system calls), thus guaranteeing that all the guards and proper checks have been

executed before changing the state of any abstraction state. Processes in general do not have

this characteristic; procedures can be entered at any point.

* Different Protection Domains: By executing in a different protection domain, abstraction

state can be protected against wild reads and writes. Preventing wild reads ensures that no

extra information is revealed about the internal state. Preventing wild writes guarantees that

the state is not modified by methods external to the abstraction. This organization provides

fault-isolation, because faults outside the abstraction are not propagated into the abstraction

except (possibly) through the exported interfaces, which can guard against inconsistent data.

Different protection domains combined with controlled entry points allow one to implement

protection by separating the abstraction state from its client and by controlling the methods

that modify the abstraction state. Processes can not intentionally or unintentionally modify

the state of an abstraction, except through the well-defined methods. If a process has a fault,

it will not affect the abstraction, except for the fact that the abstraction has to detect the

termination of the process and properly clean up its state.

* Well-Formed Updates: By having controlled entry points and different protection domains,

centralized abstractions can enforce well-formed updates. The abstraction methods are the

only ones that can modify the object, and they can only be called at specific starting points.

Thus, if they are correct, all updates to the abstraction state will be well-formed.

* State Unification: All of an abstraction's state can be unified in a single location. Preventing

multiple copies eases the task of maintaining coherence. For example, in most centralized

OSs, only the file system caches file blocks, so that no two processes see a different view of

the file (unless they explicitly request this).

Abstractions can control what state processes see and when they see it. The state can be made

inaccessible while it is incoherent. For example, file blocks are usually cached in an OS to

avoid repeated access to disk. If one process writes to a cached file block, other processes

that want to read the block will wait for the ongoing write to complete and then read the copy

cached by the file system abstraction.

Atomicity can be implemented in a similar way to coherence. State is not allowed to be seen

if an atomic operation affecting that state is in progress. Additionally, UNIX systems provide

the notion of signals, a way to interrupt processes. Certain system calls should appear atomic

even if interrupted by signals. Abstraction implementations usually wait until all resources

for a given operation are available, then they check for any signals. If any signals are pending,

the operation is aborted and no state is changed. Otherwise, the operation is carried through

until fully completed. For example, if a large file write request is made, the file abstraction

first checks for the available disk space. If there is enough and it does not have any signals

pending, it will start the large write operation. Any process trying to look at the file at that

point will be blocked until the write completes. Additionally, if any signals are posted after

the write has started, they are ignored, because undoing the writes is difficult on traditional

UNIX file systems. This "guard-action approach" guarantees that the write will appear atomic

to all processes. Even the midway point is atomic (unless the system crashes) because no

other process will be allowed to see the file.

* Single Point of Serialization: With unification, the centralized OS is a single point for

serialization. Using standard mechanisms such as locks and critical regions, a centralized OS

enforces concurrency semantics of abstractions. Because centralized OSs live longer than

most processes, they can release locks even if the relevant process terminates.

Concurrency control can be easily implemented with a single point of serialization. Processes

accessing an abstraction do so through one or more well-defined entry points. The abstraction

can block requests if there are requests in progress. For example, if two file writes operations

to the same region of a file are requested, the file system abstraction blocks the second until

the first is finished, thus, the behavior of concurrent write accesses to files is well-defined.

* Global Information: With unification of all abstractions in a centralized location, abstractions

now have access to information about all processes. This information includes access to

information across time. This eases the job of naming and persistence.

In addition, all name resolution takes place at one location: the centralized OS. Together with

access to global information, the names can be quickly translated to the underlying object.

For example, if a process wants to access a shared memory segment, it will query its virtual

memory manager for the segment. This manager in turn can communicate with the shared

memory abstraction to locate the segment. Once located, the virtual memory manager for the

process can map the segment in the process's address space.

* Expanded Authority: Centralized OSs generally have an expanded authority that regular

processes do not have. This authority allows protected and controlled access to powerful

resources.

Security is enabled by the fact of global information and strict checks for access. The

centralized OS is the holder of all resources and process credentials. It can use these

credentials to validate access to resources. The drawback is that improper or missing checks

will allow unauthorized access to a resource. This is in contrast to a scenario where the

resources and credentials are separated and checks are always done.

Single Point of Update: The centralized OS provides a single point of modification to improve

the system and add abstractions. Once this modification has been made, all processes benefit

from the change.

Unfortunately, while centralization can simplify the implementation of OS abstractions, it limits

flexibility and performance. Flexibility is limited by providing only one fixed set of abstractions

to resources. Thus, any program that could benefit from a different abstraction for a resource are

unable to do so. Performance is limited by inflexibility and strong invariants. For example, if two

writes are requested to two different regions of the same file, the UNIX file system abstraction

will not allow the two writes to take place at the same time in order to guarantee coherency and

atomicity. If the processes doing the writes do not require these semantics (e.g. if it is a temporary

file), they cannot take advantage of this fact to improve their performance.

This problem can be solved by decentralizing of OS abstractions. With appropriately decen-

tralized control, abstractions can be better controlled, customized and specialized by applications

according to their needs.

2.4 Decentralizing OS Abstractions

There are two ways to decentralize OS abstractions: partially duplicate the features and abilities

of centralized schemes or use the inherent abilities of decentralized schemes to implement the OS

abstractions and their semantics in libraries. In some cases, the nature of the semantics required by

an abstraction may limit the choices for implementation to centralized schemes. For example, in

order to provide absolute coherence, it may be necessary to locate the state in a centralized location

to avoid any communication with other holders of the same state. To better explain how semantics

and abstractions can be implemented in a decentralized manner, this section presents mechanisms

that can be used in decentralized settings and discusses possible implementations of the semantics

properties described in 2.2.

The relevant abilities of decentralized OSs are:

* Separation: In contrast to centralized operating systems' unification, abstraction state is

maintained separately for each process. This organization allows each process to hold and

protect its own abstraction state. As in microkernels, a practical consequence is that errors in

the OS code no longer crash the system, only the application they are associated with.

* Minimized Authority: Minimized authority follows the principle of least-privilege. Each

abstraction has control over only its own internal state. Any modification to other abstraction

state must be done through explicit interfaces with that abstraction.

* Decoupled-changes: In contrast to centralized operating systems' single-point-update, de-

centralized OSs decouple changes. This means that changes in the implementation of an

abstraction for one process do not directly affect other processes. This structure gives room

for flexibility and performance improvements, since the implementation of an abstraction can

be optimized and customized for its specific usage.

* Local Information: If implemented properly, decentralized abstractions work mostly with

local information. This organization has the advantage of reliability and scalability. Abstrac-

tions rely less on and have less contention for a central repository of information.

Until the bulk of the OpenBSD implementation can be done with decentralized state, there

are many cases that local information is not enough to implement decentralized OS abstractions.

For such cases, state must be shared either across different instances of the abstraction (state

unification) or across different abstractions (global information). There are three mechanisms that

can be used to share this state: shared memory, exoservers, and in-kernel mechanisms. With shared

memory, processes using an abstraction map the abstraction state into the process' address space

and act upon it directly. Exoservers are servers that follow the exokernel precept of separating

protection from management: they limit their functionality to that required to guarantee invariants

and protection, and leave resource management to applications. Finally, in-kernel mechanisms can

be used to provide protection that would be impossible with servers and to enhance the performance

of commonly used services.

Shared memory is an efficient way for processes to communicate with each other and share state.

Enforcing semantics on updates to state in shared memory is hard, because there are no guarantees

about the code used to modify this shared state (this is not the case for a privileged server or an in-

kernel interface). However, some important semantic properties can be achieved. Concurrency can

be achieved by using critical regions in conjunction with non-blocking synchronization mechanisms.

Some degree of protection can be achieved by mapping the pages read-only. Additionally, partial

copies of the state in shared memory can be stored in each process in case it needs to be reconstructed

or to detect corruption. Fault-isolation can be achieved by verifying the validity of data before using

it and mapping errors to possible errors under the same UNIX API if data is inconsistent.

Exoservers can provide minimal protection for resources, allowing applications to decide what

semantics to use on their abstractions. In this way, flexibility is achieved because programs decide

the semantics and ways to access the resources. Performance is achieved, because applications

know best how to access the resources and are not fixed by one specific interface. For example, a

trusted file server can be used to manipulate the name space for files, and hand-off permission for

further access to that file to other processes. Processes can then coordinate with the server access to

the file if they want to maintain properties such as atomicity and concurrency, or can directly access

the file, if these semantics are not required by the process.

In-kernel support can be provided for commonly-used functionality to increase efficiency and

to increase the trust on data held in the kernel or other processes. In-kernel support should only

be used for commonly-used mechanisms and should be bypassable by processes. Otherwise, the

mechanism could limit future unenvisioned usages of the resource. For example, in-kernel support

can be added in order to allow safe, efficient sharing of cached disk blocks. In the XOK exokernel,

a kernel-maintained buffer cache registry keeps track of mappings between <device number, block

number> pairs and physical pages. This registry is mapped read-only by everyone. For example, a

process that wants to read disk block number 38 can query the registry for its location. If the block

is in memory the process can map the physical page it is on. Otherwise, it can fetch the block from

the disk and optionally ask the kernel to include it in the cache registry. Note that a process is not

forced to use the registry. It is a service that can be bypassed, but it is likely to be used by most

processes.

With these abilities and mechanisms for sharing state, the important characteristics of centralized

OSs can be duplicated, and the semantics of OS abstractions can be implemented:

* Protection: Protection can be achieved by storing abstraction state in different protection

domains. Either a separate protection domain is used per abstraction as a whole, or processes

can hold multiple protection domains each containing partial state of the abstraction. For

example, a process could have four different protection domains for the state of the four

general classes of OS abstractions. In this way, the states for each abstraction could be

completely isolated from each other. Furthermore, the state of the network abstraction for

one process could be isolated from that of another process. This organization provides more

fault-isolation within the same abstraction.

* Access Control: Access Control can be provided via minimized authority. Each process

or abstraction only has access to its own state. If it needs to modify or act upon another

abstraction, it must do so through explicit interfaces and have credentials that allow it to do

so. This approach would provide even better security than is provided in a centralized system,

because a bug is restricted to the authority of the associated abstraction [11].

* Concurrency Control: Concurrency control can be achieved either using standard distributed

algorithms or duplicating the single-point serialization of centralized OSs via mechanisms

such as critical regions and non-blocking synchronization [7]. Locks should be avoided under

decentralized schemes because it is hard to reason about the current state of the abstraction

when a lock holder fails to release the lock (e.g. it crashes before releasing the lock).

* Naming: Name resolution can either take place in a centralized location, or queries can be

passed around until the name fully resolved. A centralized name server can be used, where

different processes and abstractions register the names they can resolve. Conversely, only the

roots of the names may be registered, and it would be up to the servers to pass any unresolved

part of a name to another process for resolution.

* Coherency: The easiest way to achieve coherency is by keeping only one copy of the data.

Either all of the data is placed in a centralized location, or a registry can be used to allow

the data to be in different locations. When an application needs to access new data, it can

check the registry. The registry can point to the holder or location of the data or respond that

it has no knowledge of it. In the first case, the application fetches the data from the location

or holder. In the latter case, the application fetches the data directly from the source (e.g., a

disk) and registers itself as the new holder of it.

* Atomicity: Atomicity can be implemented similarly to how it is implemented in a centralized

scheme. Under centralized schemes atomic semantics are provided by hiding abstraction state

until an atomic operation has completed. By their global information and expanded authority

properties, if the atomic operation is aborted they can roll-back any abstraction state. The

lack of these properties make it difficult to implement atomic semantics under decentralized

schemes should multiple abstraction need to be updated.

* Persistence: Persistence of state beyond the lifetime of a process can be achieved either by

using a centralized approach or some form of token passing. Under a centralized approach, a

server can hold any persistent state, either through the lifetime of the state or at the point that

no one else has access to it. For example, system V shared memory segments are persistent

even when no process has them mapped. A server can be used to hold the segments that are

not currently mapped. Processes will hold the pages of the shared memory region while they

are in use. Alternatively, a token passing mechanism can be used. The state can be passed

around when the process holding it dies. For example, the exit status of a child process is

persistent after the child dies. This status can be passed to the parent at the time of the child

process's death. Therefore the parent will have access to the status at any time after the child's

death.

Chapter 3

ExOS 1.0

Considerable insight regarding decentralization of OS abstractions can be gained from designing

and implementing a simple library operating system. This chapter describes ExOS 1.0, a library

operating system that implements OpenBSD abstractions for the XOK exokernel. Section 3.1

describes the high-level design of ExOS 1.0. Section 3.2 describes the kernel on top of which ExOS

1.0 is implemented. Section 3.3 goes into details about how major abstractions are implemented;

section 3.4 evaluates the performance of ExOS 1.0 compared to that of OpenBSD. Section 3.5

provides a short discussion of what we have learned so far.

3.1 Design

In order to keep the implementation focused, it is important enumerate the design goals of ExOS

1.0:

* Proof of concept: The central design goal was to demonstrate that a library OS could provide

enough functionality to run many existing applications.

* Simplicity: In order to implement ExOS 1.0 quickly, no fancy algorithms are used. This

reduces the time required to debug the code and makes it easier to change which is important

because the initial implementation is changed frequently.

* Performance: performance should be similar to that of OpenBSD for common cases. Inferior

performance should only be a result of an immature implementation rather than fundamental

problems.

* Flexibility: It should be easy to customize the abstractions for particular applications.

* Sacrifice some semantics: There is a tension between flexibility and strong semantics. This

initial implementation was designed to sacrifice some semantics such as protection in order

to increase flexibility. It is arguable if the additional protection that OSs provide is important

when considering the powers of the traditional "root" user, and the relative ease with which

unauthorized programs obtain this credential on today's UNIXes.

Providing a full implementation of OpenBSD, along with all the semantics, was not the goal

of ExOS 1.0. It is an implementation that gives enough functionality to run a wide variety of

applications, like vi, gcc, make, and common benchmarks such as Andrew [9] and Lmbench [12].

Although it was not a design goal, ExOS 1.0 has also supported the implementation of an emulator

that can run some statically-linked OpenBSD binaries unchanged.

ExOS 1.0 is implemented as a user-level untrusted library that is linked with each application.

It has procedure calls for most of the system calls of OpenBSD . The system does not use servers

to implement any UNIX functionality. Shared memory is used as the main way that the UNIX

abstractions for each process communicate with each other. A in-kernel mechanism is used to

provide coherence of cached disk blocks. This provides a system that is very customizable and

optimizable per application, without affecting other applications (except via faulty implementations).

3.2 Experimental Framework: XOK

ExOS 1.0 is implemented as the default library OS for the XOK (pronounced "zawk") exokernel.

The fundamental idea of exokernels is to decouple resource management from protection. The

abstractions and policies that once resided in the OS are moved to libraries. The OS only protects

the resources. This allows applications to specialize and customize OS abstractions according to

their needs.

XOK protects the various hardware resources, including environments (i.e., protection domains),

time quantums, hardware page tables, network devices, the block registry, and the console. These

resources are protected by the use of hierarchically-named capabilities composed of two parts:

properties and names. The properties define attributes such as valid, modify/delete, allocate,

write, and name length. Capabilities have variable-length names. The names are used to define a

dominance relationship between capabilities. That is, the dominating capability can do anything

that the dominated capability can. A capability is said to dominate another capability if its name is

a prefix of the other.

There is a list of capabilities associated with each process and with each resource. Whenever a

process wants access to a resource, it presents a capability. If that capability dominates any of the

capabilities associated with the resource, the process is granted access.

The networking device is protected by a packet filter engine [13]. The XOK implementation

of the packet filter engine, DPF [5], uses dynamic code generation to obtain high performance.

3.3 Implementation of Major Abstractions and Mechanisms

3.3.1 Bootstrapping, Fork and Exec

A recurring problem with any OS implementation is bootstrapping: how to initialize and setup the

system when it starts. After the first process is started, other processes can be created using fork

and exec. Fork makes a duplicate image of the running process, with a different process identifier.

Exec is used to create a new process by overlaying the image of the running process with that of

an executable from disk. The problem is that XOK has no concept of UNIX processes and file

systems to start the processes from disk. XOK only has concepts of environments (i.e., context

where programs execute in) and time quantums.

To solve the problem of bootstrapping, the very first process image is linked into the kernel. A

simple loader in the kernel creates an environment, copies the image of the first process into that

environment, and allocates a time quantum for it. This first process detects that it is the first process

and initializes all of the major ExOS 1.0 data structures that live in shared memory. For usability,

the first process also acts as a login server, allowing users to use the system via a simple telnet-like

program. When other processes start, they can detect that the data structures have been already

initialized and simply map them into their address space at the agreed upon virtual address.

Implementing fork and exec for ExOS 1.0 can be tricky because abstractions may need to be

updated in special ways. To solve this problem, ExOS 1.0 provides mechanisms for abstractions to

be notified of fork and exec calls with a handler of the new environment. In this way, abstractions

can modify their own state and modify the state of the new process at fork and exec times. Fork

works by creating a new environment, initializing its memory (including shared memory segments),

calling any registered abstraction functions, and granting the new environment a time quantum so

it can run. When the parent process sets up the memory of the child, it maps its own memory on

the child's environment and sets the mappings to be copy-on-write. When the child writes to the

first time to an untouched page, a page will be allocated, the touched page will be copied to the new

page, and the new page will be mapped into the location of the old page.

Exec is implemented similarly to fork. For simplicity, exec is implemented by creating a new

environment, setting its memory from an executable file from disk, calling any registered abstraction

functions, granting the new environment a time quantum, and freeing the environment of the parent.

The interesting part of the exec implementation is having the child inherit the parent's resources

and keeping the same process identifier number. The first problem is solved by the abstraction

handler functions, which are aware that the parent environment will be deallocated and therefore do

not increase the reference count for the resources. The second problem is solved with a table that

maps XOK environments to UNIX process identifiers. Remapping the new environment's process

identifier to that of the parent has the desired effect.

3.3.2 Process Management

UNIX processes use process ids to send signals and identify all process relationships. Process

relationships form when a process (parent) forks off another process (child). The problem is that

XOK does not use process ids to identify environments. This problem is solved by using a table that

maps environments ids to process ids. Additionally, there is a structure bound to each environment

called the "Uenv" structure that holds important information. This structure is used to store the

process id of the parent process. In this way, processes know who their parent is and can determine

the environment ids of other processes from their process ids. This information is necessary when

processes need to communicate with each other using any of the XOK primitives. For example, if

they need to read or write another environment's "Uenv" structure.

The "ps" program is implemented by using this table. The program locates all of the environ-

ments running as UNIX processes and reads their Uenv structures. From these structures, it can

learn each process's process id, parent process id, arguments with which the process was called,

and running status among other information.

3.3.3 Signals

Signals are the equivalent of software interrupts. They can be sent between processes explicitly and

generated internally by a process in response to exceptions (e.g., division by zero). When a signal is

received, it is ignored, a default action is taken, or a registered handler is executed. After handlers

are executed, program execution resumes at the point of interruption (such as after a hardware

interrupt).

The problem is that XOK does not directly support signals. Instead, processes can explicitly

communicate with each other via IPC or shared memory. For the implementation of signals, neither

IPC nor shared memory was used. Instead, when a signal is sent to a process, the sender writes to

the Uenv structure of the target process's environment. This approach has the advantage of being

simple and allowing the other process to handle signals when is safe to do so (an IPC would interrupt

the current execution flow of the target process). By default, a process only checks for any pending

signals at the beginning of the time slice.

Currently, it is possible for signals to delivered at inappropriate times. For example, although

locks are discouraged, they do exist in ExOS 1.0 . Therefore, if a signal is delivered while holding

a lock for an important table, like the file table, the lock might never be released. This problem is

temporary, since it can be fixed in two ways: Completely remove locks from the library in favor of

critical regions or disable signals while locks are held.

3.3.4 File Descriptors

File descriptors are small integers used to access resources such as files, sockets, pipes, and terminals.

They are returned as handles when resources are accessed for the first time (e.g., when calling open,

socket or pipe). An important feature of file descriptors is that they can be shared across processes

when they fork or exec. Among other important state, file descriptors hold the current byte offset

were read or write calls to a file should start. At the completion of any these calls the byte offset is

incremented according to the number of bytes read or written.

There are two major challenges with the implementation of decentralized file descriptors under

XOK. The first is correctly sharing the offset and attributes associated with the file descriptor. The

second is that, since each application has its own implementation of OS abstractions, they could use

different procedures for accessing the underlying object. So, for example, different processes may

have different communication needs and may therefore have different implementations of sockets.

However, processes should still be able to inherit a socket from their parent process. Therefore,

there must be some way to flexibly manipulate objects (like files and sockets) that are inherited from

other processes.

The first problem is solved by using a file table shared among all processes. The second problem

is solved by using an object-oriented interface to access the objects. The file table contains offsets,

attributes and other information about underlying objects that are shared and mapped at the same

virtual address by all processes. By mapping it at the same virtual address, pointers can be inherited

via fork and exec with no changes. This solution solves the problem of byte offset sharing. With

each file table entry, there is also an integer type for the particular descriptor. Table 3-1 shows the

file descriptor types currently supported. When processes start, each file descriptor abstraction type

registers a set of functions to be called for each high level file descriptor function. Therefore, when

a process inherits a file descriptor, it will know what kind of file descriptor and which functions to

use to manipulate it.

FD type Description
NFSTYPE file objects from remotely mounted volumes
CFFS_TYPE local file system objects
UDPSOCKETTYPE UDP internet family sockets
TCPSOCKET_TYPE TCP internet family sockets
PIPETYPE for file pipes.
PTY-TYPE Simple non-conforming pseudo-terminal
CONSOLETYPE PC3 terminal emulation on console
DUMB-TYPE line oriented access to console
NPTYTYPE POSIX conforming pseudo-terminal
NULL-TYPE for /dev/null access

Table 3-1. Supported File Descriptor Types

3.3.5 Files

ExOS 1.0 supports both a local and a remote file system. The local file system is based on the

Collocating-FFS (C-FFS) [6]. The remote file system is based on Sun's Network File System

(NFS) [16].

The NFS implementation is simple. The first process mounts the root file system from a

statically-determined server and places in shared memory a socket handler (see 3.3.6) to be used

for all communication with the NFS server. Processes map each remote file operation to NFS

requests. Each process starts and waits for each NFS request it initiates. Currently, no file block or

attribute caching is done, but it would not be difficult to add it.

The advantage of using a simple NFS implementation is that all the burden (dealing with the

file system semantics) is placed on the server. Additionally, processes can optimize the handling of

NFS requests according to their needs, because the NFS client is part of the ExOS 1.0 library.

The C-FFS implementation is somewhat more complicated. Block caching is needed for per-

formance reasons to reduce the number of accesses to the disk. Additionally, C-FFS is implemented

as a library in a decentralized manner, so there is no single server to deal with concurrency and

coherency.

Coherency is the major challenge of the C-FFS implementation. There are two types of

coherency problems associated with UNIX file systems: block coherency and file information

coherency. The first relates to other processes being able to see file writes immediately after they

take place, and the second relates to other processes being able to accurately query the attributes

of the file. These challenges are solved with a kernel-maintained block registry and using shared

table of inodes (an inode is the structure containing accounting information as well as disk location

information for a particular file or directory).

The block registry allows applications to implement the traditional UNIX buffer cache with

coherency properties in a decentralized manner. Whenever a process needs to read a block, it

checks with the block registry first. If the block has been read by another process or is in memory

somewhere, the block registry returns the physical page where the block resides. The process then

maps this physical page. If the block is not in the registry, the process fetches the block and records

its physical page with the registry. In this way, all accesses to disk blocks are guaranteed to be

coherent because only one memory copy of it is used at any time by UNIX processes. Although,

should a process not need this property, it can bypass the block registry (which results in the same

behavior as user-level caching).

The inode structure contains a reference count and a pointer to disk blocks containing the actual

information (i.e., owner, type, length, etc.) of the file. A shared table of all the inodes currently

in use is shared and mapped by all processes. The reference count is used to keep track of how

many processes are accessing the underlying file. This reference count helps to solve the additional

problem of dealing with the UNIX semantic that allows processes to access a file even after its

name has been removed. If the process holds a file descriptor associated with the file when the file

is removed, it can still access the file until the file descriptor is closed. Processes that want to query

the attributes of a file use the inode table to locate the disk block containing the full attributes of the

file. The use of the block registry guarantees to processes who use it properly that there is only one

in-memory copy of the inode. Therefore the attribute information in that copy is guaranteed to be

coherent.

In order to use multiple file systems, UNIX has the idea of mounting and unmounting. The

mount action connects two file systems at a specific directory in the base file system. If a pathname

includes this directory, it will be taken from the mounted file system. For example, if NFS is the

root file system and a C-FFS file system is mounted at "/mnt", then the file "/mnt/foo" identifies

the file "Ifoo" in the C-FFS file system. This abstraction is implemented by using a shared "mount

table" that maps directories from one file system to another. This table is used when names are

resolved in order to identify which file system the files reside on.

3.3.6 Sockets

Sockets permit bidirectional communication between two or more processes, on the same machine

or across a network. There are two important classes of networking sockets: unreliable (based on

the user-datagram protocol -UDP) and reliable (based on the transmission-control protocol - TCP).

There are three interesting actions regarding socket communication: connection setup, packet

reception, and packet sending. Each is discussed below.

The problems with connection setup are usually intrinsic to the protocol itself. UDP is very

simple, requires little space for connection state, and involves no communication in setting up a

connection. The file table associated with file descriptors has extra space for application-defined

data. This space is used to hold UDP connection state: the source and target destination. At

connection time, this information is setup and a DPF filter is inserted into the kernel to receive

packets destined for the new socket. The TCP implementation is somewhat more complicated,

because of protocol-specific differences. Among other things, connection state is held in a separate

table of TCP connections because TCP's data structures are much larger than UDP's.

XOK does not understand anything about network protocols. It simply provides packet filtering

and raw send interfaces. Packet sending consists simply of passing a buffer to the network driver,

which sends the packet directly onto the network. Packet reception is more difficult because sockets

and therefore network connections can be shared between processes via file descriptors. To permit

the sharing of sockets among processes, network buffers are mapped in shared memory. This

permits any process sharing a UDP or TCP socket to read data from the network buffers.

3.3.7 Pipes

Pipes allow unidirectional data transfer between processes. One end of the pipe is used for reading

and the other end for writing. They are commonly used to inject the output of one program to the

input of another. For performance reasons, in transit data is held in memory, usually in a fixed

size buffer. The important feature about pipes, is that all read and write requests regardless of size

will complete successfully unless an exceptional condition arises (i.e., there are no more writers or

readers). The challenge with the implementation of pipes is satisfying this behavior when reading

or writing data that is larger than the size of the intermediary buffer.

The solution is to do partial reads and writes and block until there is more data or space. Pipes

are implemented using a table of queues, that queues contain head and tail pointers, buffers, and

locks. When a large read request needs to be satisfied, the queue is locked while as much data

as possible is read. If the request is not satisfied, the operation waits until more data is available.

This procedure repeats until the read request is satisfied. The same is done for writes. By the use

of partial reads and partial writes, any amount of data can be transfered in one "read" or "write"

operation.

3.3.8 Pseudo-Terminals

Hardware terminals like the computer console allow human interaction with the system. A terminal

OS abstraction provides an interface between hardware terminals and processes. A pseudo-terminal

OS abstraction is like a terminal abstraction except that instead of interacting with a keyboard and

screen, it interacts with another process that is simulating a terminal device. Pseudo-terminals are

used for remote logins to emulate the capabilities of a terminal, such as interrupts (for example,

pressing control-C) and the ability to delete characters. The main problem with pseudo-terminals

is that they are very complicated.

ExOS 1.0 addresses this problem by borrowing the implementation used for OpenBSD and

incorporating it directly by implementing the surrounding functionality that it expects. In this way,

very little understanding about the abstraction is needed in order for it to work. There are two

major services that had to be implemented: allocation of memory and blocking primitives to allow

Test OpenBSD I ExOS1

wc a 4.4 MB file 0.28 sec 0.28 sec
hello program 0.0025 sec 0.08 sec
copy a 57 MB directory using pax -rw 53.2 sec 51.28 sec

Table 3-2. Application Benchmarks Result. Units are in seconds (smaller is better).

processes to sleep while there is no "user" input. Allocation of memory is avoided by statically

allocating the memory for pseudo-terminals in shared memory. It is necessary to store the terminals

in shared memory, because they are shared across processes most of the time. The necessary

blocking primitives are implemented using blocking primitives supplied by XOK.

This implementation allows us to run applications like vi over telnet connections. However, no

effort has been made to make this pseudo-terminal software extensible.

3.4 Performance Evaluation

A wide variety of benchmarks have been run to test the functionality and performance of ExOS 1.0

Performance is not as great as it could be due to the slow process creation time (this is explained

in the next section).

All performance comparisons were made on a 200 Mhz Pentium Pro computer with 64 MB

of memory. The OpenBSD measurements were done on the same machine using OpenBSD 2.0

(current). All measurements were done using the local file system. The times for the first and

third benchmark are the wall-clock times (via the csh's time command); the time for the second

benchmark is calculated using the time system call before and after "exec"ing the "hello" program.

Measurements for three simple application benchmarks are given in table 3-2. The first

benchmark consists of using the wc utility to count the number of words in a 4.4 MB file. The

second benchmark consists on timing the execution of a program that prints "hello world". The

third benchmark duplicates a 57 MB directory using "pax -rw". The results show that ExOS 1.0

I/O performance is comparable to that of OpenBSD .There are still some deficiencies with process

creation time demonstrated by the results of the second benchmark.

ExOS 1.0 can also successfully execute the Andrew Benchmark [9] and most of the Lmbench

benchmarks [12] (except those using mmap and RPC which are not currently supported). Again,

the benchmark results are not great: ExOS 1.0 has not been optimized at all - simplicity was one of

the main design goals.

3.5 Discussion

At this point we are satisfied with the functionality of ExOS 1.0 . It allows us to execute a wide

variety of applications, from compilers to editors. It is still missing some important functionality,

including job control, mmap, and demand loading. In terms of performance, there is considerable

work to be done. Process creation is currently very slow for several reasons, including large

executable sizes, lack of demand loading, and suboptimal implementation of exec. The executable

size is large because an entire operating system is statically linked to each application. This problem

can be solved with shared libraries. The lack of demand loading means that the whole executable

has to be read and mapped at process creation time. The implementation of exec is suboptimal

because it has to create an extra environment and abstractions have to properly pass objects that are

inherit. By using the same environment, it will be simpler to inherit objects across exec. It should

not be hard to fix these problems in the future.

The current system is insecure. The unix credentials for a process are held in the process's

memory and XOK capabilities are seldomly used. Although programs that are unaware of these

security flaws will behave as if the system was secure, fixing the security problem is a high priority.

The system provides some minimal protection to data structures. They are protected by being

mapped at very high addresses. This has been enough to protect against some wild writes.

Concurrency control is partially provided. For remote files, access is serialized by the server. For

local files, concurrency is discouraged because the synchronization and concurrency functionality

has not been fully added. Sockets and pipes fully satisfy their concurrency semantics by the use of

locks.

Coherency for the file system is fully provided. For remote file systems like NFS, it is not a

problem because no remote file or attribute caching is currently performed. For the local file system,

coherency is implemented via the in-kernel block registry.

We believe that, although the system has many deficiencies at this point, it provides an excellent

framework for OS research and an important stepping stone toward a good implementations of library

operating systems. It is very easy to customize the interfaces and the underlying implementations

of the UNIX abstractions. Additionally, most policy decisions, like page allocations etc., take place

in the ExOS 1.0 library, leaving a significant room for experimentation and exploration.

Chapter 4

Future Work: ExOS 2.0

The ExOS 1.0 library operating sytems represents a significant step towards understanding how to

build library OSs, but many directions remain to be explored. This chapter describes the ideas and

motivations behind ExOS 2.0. Section 4.1 describes the design goals of ExOS 2.0. Section 4.2

outlines the current vision for the future implementation of the major UNIX abstractions.

4.1 Design Goals

ExOS 1.0 provides much of the functionality of OpenBSD and maybe sufficient for environments

like research institutions where it is generally assumed that there are no malicious users. ExOS 2.0

will be designed to show that the concepts of library operating systems and decentralization scale

even to more stringent semantics and functionality. For example, ExOS 2.0 should be usable in

multiuser time-shared environments, where there are potentially malicious users and where many

buggy programs are used. In order to build a robust system, increased levels of protection, security

and functionality are needed. There are four fundamental goals for ExOS 2.0 :

* More Protection and Fault-Isolation: A single process should not be able to render the

system useless unintentionally by simply writing to locations in its virtual address space.

* Security: The security policies of UNIX must be enforceable. For example, processes should

not be able to masquarade as other users.

* Performance: Performance should be similar to, if not better than, that of modern OSs (e.g.,

OpenBSD) for unaltered UNIX applications. For specialized cases where knowledge of the

applications is exploited, performance should be significantly better.

* More Functionality: ExOS 2.0 should have full functionality including mmap, job control

and demand loading of executables. Additionally, the functionality that is currently available

should more closely match the semantics defined by their underlying abstractions.

The next section describes how these goals can be achieved.

4.2 Design Description

Compared to ExOS 1.0 , ExOS 2.0 will make more use of user-level servers and in-kernel mech-

anisms to provide more protection and security for the abstractions. Furthermore, shared memory

structures will not be mappable (or writable) by all processes, only to those that need to use the

underlying data structures. In this section, the invariants and semantics that the ExOS 2.0 design

will focus on are presented for each of the major abstractions.

4.2.1 Local Directories and Files

The most important (for ExOS 2.0) invariants and semantics associated with local directories and

files are:

* The link count of the file must match to the number of names for the file, both in memory and

on disk.

* Access, modification, and create times of files and directories must be updated whenever they

are accessed, modified or created.

* All "live" files should be accessible by a pathname, except those that have been removed but

are still being referenced by some process in the system.

* For directories with particular permissions, mandatory locking must be observed. That is to

access a region of a file, either there is not a lock for it, or the process is the holder of the lock.

* For directories with particular permissions, any user can create files on it, but they can only

delete files if they satisfy certain conditions (i.e. the user is the owner of the file).

* Users, identified by a user id and a list of group ids, must only be able to access, create and

remove files or directories for which they have explicit permissions.

* All file operations must be atomic to signals. All file create, unlink, link operations are atomic

to unpredictable interruptions like power failures (in this case assuming the "fsck" utility is

ran when the power is restored).

In order to guarantee all these invariants, all namespace manipulations will be handled by a user-level

server. Read operations on directories and file attributes can be optimized by allowing processes to

map some of the server's data structure read-only.

* All file system operations to files must be serializable.

* All programs have the same coherent view of the file (execpt for a special case of mmap)

By using the block registry and a synchronization protocol, these last two invariants can be satisfied.

The block registry permits processes to have the same view of the files at all times. The synchro-

nization protocol will serialize file system operations. Additional in-kernel mechanisms will be

used to optimize read and write access to the disk. A proxy permission can be setup by the owner

of the file (the user-level server) to allow other processes to directly read and write specific regions

of a file. In this way, applications can be allowed to customize and specialize access to individual

files, while at the same time maintaining the semantics associated with UNIX files.

The ability to mount file systems on top of each other can be achieved by using the user-level

server. Processes can register with the user-level server where they want to mount file systems, and

how the requests should be served. So, for example, the initial process can mount NFS file systems

on top of the C-FFS file system. When processes access files from the NFS file system, they will

handle the requests themselves.

4.2.2 Sockets

The most important (for ExOS 2.0) invariants and semantics associated with sockets are:

* The data in the incoming network buffers must have been received from a network interface.

* Network packets must be accessed in a FIFO manner. Once read, they cannot be read again.

If two processes are reading from the same UNIX socket, only one copy of any data will be

read.

Although sockets can be shared, the most common case is either use by a single process or a hand-off

from one process to another (this is done by doing a fork and then closing the socket on the parent

process). These cases can be implemented directly by a process, by keeping the socket privately, and

marking it "to be handed-off" when a fork takes place. Then the next process to access the socket

will take control from then on. For the uncommon case of the socket actually being shared, this

functionality can be migrated to a user-level server that will coordinate access to network packets.

* No two sockets can be bound to the same address. For unconnected sockets, the address is

the local port number. For connected sockets, the address is the port number if a connection

has not been established. Otherwise, the address consists of the port number and the <port

number,network address> of the other side of the connection. This implies that packets

received from the network belong to at most one socket.

This problem is already solved by the packet filter used in the kernel. It will not allow a packet to

be delivered to two filters. If the filters are not shared, the packets can be delivered safely.

* UDP and TCP Network ports below 1024 can only be bound by priviledged processes.

This invariant can be enforced by having a server own all filters that accept packets for these port

ranges. Whenever a process wants to use a port in this range it most obtain the filter from this server.

4.2.3 Pseudo-Terminals

The most important (for ExOS 2.0) invariants and semantics associated with pseudo-terminals are:

* Pseudo-terminals must be accessed in a FIFO manner (except for some special cases like

unputc).

* It must be possible to open the two ends of a pseudo-terminal (called master and slave) at

different times.

* It must be possible to revoke access to a pseudo-terminal while it is in use. This functionality

is needed to guarantee the safety of login sessions.

Pseudo-Terminals are not performance critical. In addition to these invariants, they have many

features and options. For these reasons, pseudo-terminal functionality will be placed in a user-

level server. If a privileged user needs to revoke access to a pseudo-terminal, it can simply notify

the server. Additionally, centralizing pseudo-terminal functionality simplifies the name resolution

needed by the second invariant.

4.2.4 Signals

The most important (for ExOS 2.0) invariants and semantics associated with signals are:

* Signals from a given process must only be sent to processes in a defined group or to processes

owned by the same user.

* Processes must not be allowed to ignore certain signals (e.g., KILL) that are specific to

terminate the receiver process.

* Once a signal has been sent to a process they cannot be cancelled.

These invariants can be implemented in a protected way by using IPC to post signals. Processes

receiving a signal will mark the signal pending when they receive the IPC. They will deliver the

signal, when it is safe to do so. Processes can validate the sender of the signal from the environment

id of the IPC request. For those signals that cannot be ignored under UNIX (i.e. SIGKILL), they

will be sent as other signals. If no action is taken in part by the receiving process, then a process

termination can be forced by deallocating the environment of the misbehaving process.

* Signals must be able to interrupt some potentially long lasting "system calls" (they are

procedure calls in ExOS 1.0). The action of the system call will be aborted. For example,

when reading from an empty pipe, the reader will block until some data is written to the pipe

or a signal aborts the read.

Care must be taken when writing "system calls" to check for pending signals if the process is to

potentially block for a long time. If a signal is pending and the process is waiting for data, any action

will be unrolled if needed and the signal will be delivered. This guarantees the atomic property of

system calls with respect to signals.

Chapter 5

Related Work

There has been previous work in the area of decentralizing shared protected state. The related work

can be divided into two areas: The idea of library operating systems, which is the context of this

thesis, and mechanisms for decentralizing shared protected state.

Library operating systems were first proposed by Anderson [2] in a two-page position paper.

In that paper, Anderson proposes "an application-specific structure where as much of the operating

system as possible should be pushed into runtime library routines linked in with each application."

Although the paper presents the ideas, it does not present any platform or mechanisms to carry them

about.

Microkernels like Mach [1], Chorus [15], and QNX [8] move many of the structures of

traditional kernels into user-level servers. In contrast to the user-level servers discussed throughout

this thesis, their user-level servers are privileged, and therefore hard to replace and processes

are forced to use them. A closer approximation of the mechanisms described in this thesis was

proposed by Maeda [10]. In this paper, system calls like recvfrom and sendto were handled

directly by the process itself and only in exceptional cases, like when sockets are being shared,

would they be handled by a server. This paper did not describe how this approach could be used

for other operating system abstractions and missed an opportunity to handle more cases directly

by the process. Finally, the SPIN operating system [3] also addresses the problem of protected

sharing. SPIN exploits type-safe languages and protected environments to guarantee that state is

only modified by specific code.

Chapter 6

Conclusion

Empirically centralized resource management can significantly hurt application performance and

flexibility [3, 4]. To solve these problems, this thesis shows how to decentralize resource manage-

ment using unprivileged library operating systems.

Unfortunately, while decentralization is has many advantages, it is can be difficult to implement

well. To aid implementors, this thesis has made three main contributions:

1. It enumerates the different semantics and invariants that abstractions can provide and identifies

stylized methods of enforcing these invariants in a decentralized setting, thereby easing the

task of system implementors.

2. It enumerates the abilities provided by a centralized scheme, allowing a library operating

system implementor to explicitly choose which abilities to duplicate and which to replace

with decentralized mechanisms.

3. It presents a library operating system (ExOS 1.0) that makes these principles and observations

concrete. ExOS 1.0 is not a toy system: it implements the bulk of a common Unix API and

can run many complex applications (e.g., gcc, perl, vi, etc.).

While further work remains, this thesis demonstrates both that library operating systems are

feasible and that building them does not require heroic efforts.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach:

a new kernel foundation for UNIX development. In Proceedings of the Summer 1986 USENIX

Conference, pages 93-112, July 1986.

[2] T.E. Anderson. The case for application-specific operating systems. In Third Workshop on

Workstation Operating Systems, pages 92-94, 1992.

[3] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eggers, and

C. Chambers. Extensibility, safety and performance in the SPIN operating system. In Pro-

ceedings of the Fifteenth ACM Symposium on Operating Systems Principles, December 1995.

[4] D. R. Engler, M. F. Kaashoek, and J. O'Toole Jr. Exokernel: an operating system archi-

tecture for application-specific resource management. In Proceedings of the Fifteenth ACM

Symposium on Operating Systems Principles, December 1995.

[5] D.R. Engler and M.F. Kaashoek. DPF: fast, flexible message demultiplexing using dynamic

code generation. In ACM Communication Architectures, Protocols, and Applications (SIG-

COMM) 1996, pages 53-59, Stanford, CA, USA, August 1996.

[6] Gregory R. Ganger and M. Frans Kaashoek. Embedded inodes and explicit grouping: Ex-

ploiting disk bandwidth for small files. Proceedings of the Winter 1997 USENIX Conference,

pages 1-17, January 1997.

[7] Michael Greenwald and David Cheriton. The synergy between non-blocking synchronization

and operating system structure. In Proceedings of the Second Symposium on Operating Systems

Design and Implementation, October 1996.

[8] D. Hildebrand. An architectural overview of QNX. In Proceedings of the Usenix Workshop

on Micro-kernels and Other Kernel Architectures, April 1992.

[9] Howard, J.H. Kazar, M.L. Menees, S.G. Nichols, D.A. Satyanarayanan M. Sidebotham R.N.,

West, and M.J. Scale and performance in a distributed file system. ACM Transactions on

Computer Systems, 6(1):51-81, February 1988.

[10] C. Maeda and B. N. Bershad. Protocol service decomposition for high-performance network-

ing. In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles,

pages 244-255, 1993.

[11] David Mazibres and Frans Kaashoek. Secure applications need flexible operating systems.

submitted, February 1997.

[12] Larry McVoy and Carl Staelin. Imbench: Portable tools for performance analysis. Proceedings

of the San Diego USENIX Conference, pages 279-294, 1996.

[13] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet filter: An efficient mechanism for user-

level network code. In Proceedings of the Eleventh ACM Symposium on Operating Systems

Principles, pages 39-51, November 1987.

[14] J. K. Ousterhout. Why aren't operating systems getting faster as fast as hardware? In

Proceedings of the Summer 1990 USENIX Conference, pages 247-256, June 1990.

[15] M. Rozier, V. Abrossimov, E Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann,

C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. Chorus distributed operating system.

Computing Systems, 1(4):305-370, 1988.

[16] Inc. Sun Microsystems. NFS: Network file system protocol specification. RFC: 1094, March

1989.

[17] Andrew S. Tanenbaum. Modem Operating Systems. Prentice Hall, 1992.

