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ABSTRACT

The problem of electromagnetic wave scattering by rough surfaces is of great interest

in many fields of applied science and engineering, such as the microwave remote sensing

of ocean surface and geophysical terrain. Different numerical approaches have been used

in the remote sensing community to compute electromagnetic scattering from random rough

surfaces, but their use is limited since they are highly computational intensive. In order to

minimize the computational time, this thesis investigates the key parameters required by the

Method of Moments (MOM) in solving the backscattering from random rough surfaces.

One-scale profiles using the commonly used Gaussian correlation function are compared to

profiles with an exponential correlation function, known to be a more realistic description
of natural surfaces.

A review of the analytical rough surface scattering theories, as well as the numerical
approaches is first given. Three classic analytical theories, Small Perturbation Method
(SPM), Physical Optics (PO) approximation and Geometrical Optics (GO) approximation,
are applied to derive the backscattering coefficients from a one-dimensional random rough
penetrable surface, for both Gaussian and exponential profiles.

The use of Method of Moments to the rough surface scattering is also presented and
applied to the problem of a tapered electromagnetic incident wave impinging upon a
penetrable profile of finite length. A point-matching approach is used to convert the
integral equations in a matrix equation. The matrix equation is then solved using a fast
algorithm called Banded Matrix Iterative Approach (BMIA). Ensemble averaging is carried



out in the Monte-Carlo simulations that solve the backscattering coefficients numerically.
Gaussian and exponential profiles are generated by a Moving Average Process.

The effects of numerical parameters such as the length of profile, shape of the incident
wave, BMIA bandwidth, and the number of unknowns per wavelength, on the
convergence process are investigated. This sensitivity study is given both for TE and TM
cases, and for different relative dielectric constants. Excellent agreements (less than 0.5
dB) are found between Method of Moments solutions and analytical models within their

respective domain of validity. A number of 10 unknowns per wavelength is found to be

satisfactory in all cases considered. The length of the profile, as well as the BMIA

bandwidth chosen to perform the numerical simulations increase with the correlation length

of the surfaces considered. Because of their finest scale-roughness, exponential profiles

require longer profiles or more realizations than Gaussian profiles, and are therefore more

exigent in computational time. The results depend neither on the polarization nor on the
relative dielectric constant of the surface.
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Title: Professor of Electrical Engineering

Thesis Supervisor: Dr. Kung Hau Ding
Title: Research Scientist
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Chapter 1

Introduction

1.1. Background and Motivation

The problem of electromagnetic wave scattering from random rough surfaces is a

problem of interest in many different fields of applied physics, such as the remote sensing

of ocean surface or earth terrain [1-3]. For instance, the backscattering coefficients

measured by electromagnetic sensors have been used to determine the volumetric moisture

content of soil [3]. The advantage appeared to be considerable. This air-borne or space-

borne method allowed quick and periodical measurements on large areas, which was

impossible to perform with classical methods. In Sections 1.1 and 1.2, a general survey of

some classical method of measurements of soil moisture will be presented to outline the

importance of remote sensing techniques.

This soil moisture is an important parameter in such different areas as agriculture,

hydrology and meteorology [4]. In agriculture, the growth of vegetation, cultivated crops,

range and forest, is related to soil moisture. Drought or excessive moisture deviations from

optimum levels will reduce immediate and future yields. In hydrology, there are several

factors pertaining to the hydrologic cycle that are related to soil moisture. For climate and

weather forecasting, the ability of soil to store and release water through evapotranspiration



is an important parameter. The temporal variations of soil moisture are then used in flux

studies.

These numerous applications lead the remote sensing community to develop inversion

models to retrieve this crucial information from the measurement of backscattering

coefficients. In Sections 1.3 to 1.4, a review of the existing numerical and analytical rough

surface scattering models will be made.

1.2. Standard Methods

1.2.1. Direct Methods

The determination of water content may be accomplished by measuring the amount of

water removed from a given sample by evaporation or chemical reaction. Measurements

based on the gravimetric method involves weighting a wet sample before and after the

water is removed. The water content is then equal to the difference between the masses of

the wet and dry samples, divided by the mass of the dry soil. The ratio S is obtained as [6]

S = (mass of wet sample - mass of dry sample)/mass of dry sample (1.1)

where the soil moisture is then expressed on a weight basis (g/100 g studied). Water

content may be removed in different ways, but oven drying the sample at 105"C is the most

common method. However, this temperature seems to have been chosen without adequate

consideration of the drying characteristics of soil.

The main problem of the above method is the wide variability of results depending on

the definition of this "dry" state. In most of the procedures used, the "dry" state is defined

when the sample reaches a constant weight. Hence, to obtain accurate and reproducible

water content measurements, the sample must be dried at a specified temperature to



constant weight with nothing being lost but water. Unfortunately, soil is not a

homogenous medium. It is made of organic materials, colloidal and non-colloidal mineral

particles, volatile liquids, chemical substances dissolved in water, and, of course, water.

Hence, after having dried the sample, there is no certitude that the loss of weight was only

due to the removed water.

The case of the colloidal fraction is complicated since the water present in these

particles may either be structural water or adsorbed water. The term "structural water"

refers to water that is part of the mineral lattice itself, and "adsorbed water" is water

attached to this lattice [6]. It is very difficult to tell them apart in most of the cases.

Moisture content is a function of adsorbed water not structural water. According to Nutting

[5], it is always possible to find a range of temperatures where the loss of weight due to the

structural water is low. According to Black [6], the range between 165"C and 175"C

should give more accurate results.

The problem of defining a dry condition for the organic fraction of a soil is even more

difficult. Indeed, this fraction is composed of volatile liquids, undecomposed fragments

such as roots, and resistant decomposition products such as polysaccharides or

polyuronides. If the temperature is higher than 50"C, these organic materials will be

decomposed or oxidized. Since the drying temperature used is over 100"C, decomposition

and oxidation should be expected and taken into account when reporting data.

Furthermore, when precise measurements are required, precautions must be taken to insure

that all samples are dried under the same conditions.

Hence accuracy in determining water content using the standard method depends on

the mineral and organic composition of the soil, and on a very subjective definition of a dry

state. The time needed to reach constant weight depends on the size of the sample, the size

of the oven, and the nature of the soil. The standard procedure advises a drying time of

between 10 and 24 hours to reach a relative dry state, and many investigators often observe



weight loss over periods from days to weeks. The oven drying method cannot be used,

then, when measurements are required on a hourly basis, as in most agricultural or

hydrological applications.

In addition to being time consuming, this method is destructive, requiring that each

sample be taken from a different place in the soil under study. This may increase the

possibility that a change in water content with position in the sampling area may be

interpreted falsely as a change with time, at a particular location.

1.2.2. Indirect Methods

The lack of reliability, the time required, and the destructive sampling of the oven

drying method have led researchers to develop indirect methods. These methods allow

frequent or continuous measurements. Certain physical or chemical properties of the soil

vary with water content. The indirect methods measure these variations and relate them to

the water content. Numerous techniques have been devised for measuring soil moisture

such as gamma-ray attenuation [7], neutron scattering [7], thermal conductance [6],

electrical capacitance [6] and ultrasonic energy [6]. Of these, the first two have gained the

greatest acceptance, according to Collet [8].

a. Neutron scattering

The neutron scattering method uses the property of the hydrogen nuclei for scattering

and slowing neutrons. Neutrons with high energy (0.1 to 10 Mev) emitted from a

radioactive substance such as radium-beryllium are slowed down and scattered by atomic

nuclei. This process is called "thermalization", the energy lost by the neutrons becomes the

thermal energy of atoms in substance at room temperature. The two key factors involved in

this thermalization are the transfer of energy at each collision, and the statistical probability

of collision. Since hydrogen nuclei are of the same size and mass as neutrons, they have a

greater thermalizing effect than most of the other elements such that they are qualified as



efficient "themalizers". Therefore, the slow neutron count provides a measure of the

hydrogen content of the soil and then of the water [7].

The nature of the thermalization process and neutron scattering implies important

restrictions on the resolution of the measurements. For example, experimental work with

radium-beryllium sources indicates that the practical resolution at best is 15 cm; i.e., the

volume of soil affecting the neutrons scattering is a sphere of 15 cm in diameter.

Furthermore, this resolution decreases when the water content decreases. Hence, at lower

water content, the diameter of this sphere increases to 60 cm. This lack of resolution will

then prevent us from measuring strong variations or any discontinuities in water content

inside this volume. Another limitation is due to the presence in the soil of other nuclei with

as efficient thermalization characteristics as hydrogen, such as cadmium, beryllium,

lithium, or chlorine. Their presence may lead to erroneous estimations of the amount of

hydrogen, and then of the water content.

b. Gamma-ray attenuation

The degree to which an energetic beam is attenuated depends upon the overall density

of the soil. If the density of the soil less its water content is constant, variations of

attenuation between a dry soil and a wet soil represent changes in the water content. The

difference between gamma-ray and neutron scattering methods differ in the way teach

measures the amount of hydrogen. The gamma-ray attenuation uses the ratio of the

transmitted to incident flux for a column of wet soil and the same ratio for the dry soil.

The attenuation equation for the wet soil is given by [7]

Nm 0No = exp[-S(msrs + m,Q) - 2S'mrc] (1.2)

where

Nm = transmitted flux,



No = incident flux,

m• m,. mc = attenuation coefficient for the soil, water, and container material, respectively

Q = mass of water per unit bulk volume of the soil,

r, = density of the soil,

rc = density of the container wall,

S' = thickness of the container wall,

S = thickness of the column of soil.

The corresponding equation for the dry soil is

N No = exp[-Sm,r, - 2S'mr, ] (1.3)

where Nd is the transmitted flux for the dry soil case. The ratio of these two measures will

provide the mass of water per unit bulk volume of the soil, Q.

The gamma-ray attenuation method requires expensive equipment and cannot be

applied directly in the field, but only in a laboratory. Even if it provides unequaled

accuracy in the measurements, the complexity of this method make it impracticable for

general use.

Even if the precision of soil moisture measurements increased by using indirect

methods, such as neutron scattering or gamma-ray attenuation, none of them can provide

frequent or continuous measurements on a large field of study. Remote sensing methods

from aircraft or satellite appear then to be a solution to this problem.



1.3. Active Remote Sensing Method

1.3.1. Radar Equation

The key equation in active remote sensing is the radar equation that relates the output of

the radar to the properties of the target. Any electromagnetic wave sent by radar is indeed

reflected by the surface under view. If we assume that the receiver and the transmitter are

in the same location, the received power Pr of polarization r is then given by [9]

Pt Gt2 12A AP, = o-4"•g •n (1.4)
r (4;r)3 R4

where

P,= transmitted power at polarization t (W),

G, = gain of the transmitting antenna in the direction of the target at polarization t,

A = area of the cell illuminated by the transmitted antenna pattern (m2 ),

R = distance between radar and target (m),

S= wavelength (m),

ao= backscattering radar cross-section describing the target.

The design of the radar is such that P, ,G, , , and R normally remain constant or are

known during use of the radar. Therefore, the received power characterized by the

response of the target varies only with a"ot.

The radar cross-section crt is generally a function of radar parameters, such as the

incident angle Oi, and wavelength ~, and a function of the geometric and electromagnetic

properties of the target, 4, such as shape, conductivity and dielectric constant. Hence, by

measuring the variation of these coefficients, we may deduce the properties of the target.



Application to the Remote Sensing of Soil Moisture

For a natural surface, the backscattering cross section is governed by its geometrical

properties and its dielectric constant e,. Moreover, this dielectric property is strongly

dependent on the volumetric soil moisture content, mainly because of the large dielectric

contrast between dry soil (typically equal to 2-3) and water (approximately equal to 80).

Hence, the use of electromagnetic active sensors to retrieve the soil moisture content

appeared theoretically logical, and the first experiments done by NASA in June 1970

confirmed this assumption [10]. During the flight, several fields were observed by the

scatterometer, which observed sharp change as it flew between irrigated and dry sections.

As mentioned above, a, depends on both the geometrical properties of the illuminated

area and its dielectric constant. Generally, it can be expressed as,

Crot = f[Er, ] (1.5)

when all the other parameters constitutive of radar equation are fixed. The retrieval of soil

moisture can be achieved by using scattering models that estimate the backscattering

coefficient as a function of the characteristic parameters of a given natural soil surface.

The modeling approach is generally a two-step process. The first step consists of

describing the dielectric properties and the roughness characteristics of the soil surface. In

the past, several models were developed to relate the dielectric constant to soil parameters.

De Loor [11], Hoeckstra and Delaney [12] considered a soil-water mixture, whereas

Dobson [13] developed a semi-empirical model for a four component mixture (soil solid,

air, free water, and bound water). However, the most widely used for non saline soil

moisture is the empirical model of Hallikainen [14], which gives the dielectric constant as a

function of volumetric soil moisture and soil texture (percentage of sand, loam and clay).

This model will be used throughout this work. The roughness of a natural surface is

1.3.2.



generally described by three different models. The first one is a deterministic description,

where profiles are characterized by periodic shapes, such as sinusoidal functions. The

second model uses a stochastic description to represent the surface as one-scale random

rough surfaces. The height distribution is characterized by a Gaussian probability density

function, a correlation function in the horizontal direction, often chosen as Gaussian, and

the standard deviation, a, of the height distribution. The third model is a combination of

the first two, and has been studied by Shin et al [15]. However, recent studies [16-18]

underlined the presence of different scales of roughness for the natural surface, which was

not taken into account in these three models. Different attempts have been made to set up

more realistic soil surface descriptions. Hence, Church [16] considered a natural surface as

the result of random changes affecting an initial surface, and used the multi-layer stacks

approach in his model [19]. The fractal approach is an alternative approach to treat this

multi-scale effect. This description is well known for vegetation [20], and is also

investigated for the geometry of soils [22-23]. The height profile is described by

Weierstrass functions as in Jaggard [24].

The second step consists of applying electromagnetic scattering theories to the selected

surface description. The objective of the following section is to review the currently

existing theories leading to analytical models, as well as their respective range of validity.

1.4. Analytical Rough Surface Scattering Models

Relatively simple analytic solutions exist that have different domains of validity, in

terms of roughness conditions. Back in 1951, Rice [25] developed a theory to obtain the

polarization dependence of the scattering from slightly rough surfaces, which is in a way

similar to the more generalized Small Perturbation Method (SPM). This perturbation

theory requires small surface rms height and slopes, with respect to the wavelength. In

1967, Valenzuela extended Rice theory to the second order for the estimation of the



depolarization of electromagnetic waves from slightly rough surfaces [26]. When the

surface roughness is such that the correlation length and the radius of curvature are much

larger than the wavelength, the basic assumption of the Kirchhoff approximation can be

made. The surface is then approximated by a series of small planar facets [3]. This

approximation is the basis for two other models, the Physical Optics (PO) and Geometrical

Optics (GO), which requires additional simplifications to lead to explicit analytical

expressions. The domain of validity of these widely used models have been studied in the

past and their analytical definitions are available [3]. These three classical models, SPM,

PO and GO, will be considered in this thesis and the backscattering expressions for a one-

dimensional penetrable rough surface will be given in Chapter 3. Ishimaru and Chen [27]

extended the domain of validity of the Kirchhoff approximation to very rough surfaces with

the second order approximation coupled with shadowing effects. In addition to these

classical models, the last decade has spawned the two-scale scattering [28-29], the phase

perturbation methods [30-32], the momentum transfer expansions [33-34], the full wave

theory [35], the magnetic field integral iterations [36], and the Integral Equation Method

[37-38].

In spite of the wealth of theories, the regime of application of each theory and its

validity domain have not been fully determined. The main reason is the absence of exact

solutions for the rough surface scattering problem and the lack of experimental results for

comparison. Even with experimental results available, problems of calibration and

variations of the local statistics of surfaces make this comparison difficult. These

considerations, associated with the increasing computational power of computers, have

suggested the comparison of these theoretical approximations with numerical solutions

obtained by solving exactly the problem of scattering upon an ensemble of simulated rough

surfaces. The following section reviews the numerical approaches developed in the remote

sensing community, in particular, the Method of Moments that will be used in this thesis.



1.5. Numerical Methods

In order to validate the analytical approaches, the exact calculation of scattered field

from a rough surface, either Perfectly Conducting (PEC) or penetrable, is required.

Numerical methods, such as the Method of Moments (MOM) [39] or the Finite Difference

Time Domain (FDTD) algorithm of Yee [40], have been developed in the 1960's to solve

this problem. Beside these classical methods, there are other approaches including now the

finite element, boundary element, multipole, transmission line, and numerous other

methods [41]. However, throughout the years MOM has proved to be the most widely

used to solve the single frequency surface scattering problem. The first to follow this

direction were Axline and Fung [42], and subsequently Fung and his collaborators [43-

45]. Contributions to assess the validity of SPM and Kirchhoff theories for Gaussian

height correlation function have been made by Thorsos [46], Thorsos and Jackson [47],

Soto-Crespo et al [48], and Sanchez-Gil and Nieto-Viesperinas [49]. Broschat et al [50]

conducted a similar study for the phase perturbation theory. Rodriguez et al [51] presented

a numerical evaluation of the domain of validity of theories, such as SPM, Kirchhoff

approximation, two-scale expansion, momentum transfer expansion, and the unified

perturbation method. MOM was used in his study to solve the scattering from a PEC

Gaussian random surface described by a power law spectrum. The following sections

review the derivation of the Method of Moments and give some examples of numerical

methods for efficient matrix inversion.

1.5.1. Method of Moments

The problem of simulating the wave scattering from a one-dimensional, random rough

surface was first reported in 1978 by Axline and Fung, using the Method of Moments [42].

This method is applied to obtain the numerical solutions of unknown tangential fields on



the given illuminated surface. The scattered field at any observation point can be then

easily obtained by applying the Huygen's principle.

The MOM converts an integral equation in the spatial domain into a matrix equation.

These integral equations result from the standard dyadic Green's function formulation of

Huygen's principle for a semi-infinite half space [2]. For the problem of Figure 1.1, it

yields, for the region 1 above the profile,

nx El(F)
=x Fin) ()+ x ds{io!1iG 1 (F,f'). ['XH(F')

2 s'

+ Vx .[n-'x E(~')]} (1.6)

= x Hinc(F) +Ax Jds{-iOeIG, (F,f')-['x E(F')]
2 S'

+ Vx G, - ' x H(')]} (1.7)

where the integral is performed as a principle value integration along the profile, G1 is the

dyadic Green's function of medium 1, and n is a unit normal vector to the surface S'. For

the region 2, below the surface profile, the integral equations are

XE2( = - x (ds{-iwl 2G2r (F, F') [h' x (')]

2 S"

+ Vx .[n' x '(F')] (1.8)

i= x H (F)X 2  -Vix Jds-iwe G2 ((,F').d' XE(F')]
2 S"

+ Vx G -['x H(F') (1.9)
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Figure 1.1. Geometry of electromagnetic wave scattering from a rough surface profile.
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where G2 is the dyadic Green's function of medium 2. The continuity of both electric and

magnetic tangential fields is implicit in these four equations, since the total fields above and

below the profile are created by the same sources. We note that these equations are not

independent, and the use of one or combination of (1.6)-(1.7) with one or combination of

(1.8)-(1.9) is required to solve this problem. In the Method of Moments, unknown

tangential fields are first expanded into a sum of weighted basis functions. These basis

functions can be non-zero over a small portion of the domain ("sub domain" functions) or

may range over the entire domain ("entire" functions). Exact expansions are limited to very

few cases, and higher order solutions are often required to achieve higher accuracy.

Among the standard basis functions are pulses (equal to one over a small domain and zero

everywhere), triangular (linear over a small domain and zero everywhere) or sinusoidal for

"entire" functions. Substitution of these expansions into the integral equation (1.6)-(1.9)

converts these equations into summations of integrals over the domain of basis functions.

An inner product is then defined as the multiplication of the integral equations by

weighting functions k (F), followed by an integration over the domain of the weighting

functions. These inner products give the following matrix equation,

Zx = V (1.10)

where the vector V is given by the inner product of the incident fields with the weighting

functions, whereas the elements of the matrix Z are the results of a double integration over

the domains of the weighting and the basis functions. Solutions of this equation will yield

the unknown vector X, which contains the unknown expansion coefficients of the surface

fields. The scattered field at the observation point can be calculated from . and Huygen's

principle. The use of pulse functions as basis functions together with the delta functions as

weighting functions is a technique known as "Point Matching Method" [39].



Matrix Inversion Methods

The limiting factor inherent to this inversion process is the size of the impedance matrix

Z. Standard inversion techniques appeared rapidly to be unable to perform efficiently this

inversion for long profiles involving thousands of unknowns [53]. The analysis with full

matrix inversion was therefore limited to one-dimensional case, that required O(n3 )

number of operations, where n is the number of unknowns. For large-scale rough

surfaces requiring many unknowns, various iterative algorithms of order n2 operations

were developed to solve this kind of problems. Most of the commonly used iterative

approaches are derived from conjugate gradient algorithm [54]. In this thesis, a variant

called bi-conjugate gradient-stabilized algorithm (BICGSTAB) will be used. However,

these approaches may still be highly computational intensive, depending on the number of

iterations required. Since most of the computational time spent was on the multiplication of

the matrix with a vector for each iteration, new techniques were therefore developed in

recent years to increase the performance of matrix multiplication. The Banded Matrix

Iterative Approach (BMIA) [54], or the Sparse Matrix Iterative Approach (SMFSIA) [55]

enables us to extend the domain of application of the Method of Moments [56]. This

approach will be applied in this thesis in Chapter 2 to solve the integral equations in the

case of a one-dimensional penetrable rough surface based on the BMIA method.

1.6. Overview of Thesis

The following thesis is composed of four other parts.

In Chapter 2, the electromagnetic surface scattering problem is solved by using the

Method of Moments. The surface is a one-dimensional random rough profile of finite

length, characterized by a dielectric constant. The incident TE wave is a Gaussian tapered

wave, chosen to avoid edge effects due to the finite length of the profile. The matrix

equations are derived, and inverted using the Banded Matrix Iterative Approach (BMIA).

1.5.2.



The expression of the backscattering coefficients is based on the Monte-Carlo simulations,

which perform the ensemble average numerically.

In Chapter 3, three analytical models, Small Perturbation Method, Physical Optics

(PO) and Geometrical Optics (GO) approximation, are described for the one-dimensional

case, in their respective domain of validity. The random rough surfaces considered are

one-scale surfaces, with Gaussian probability density height distribution, characterized by

Gaussian or exponential correlation functions.

In Chapter 4, the numerical results obtained by the MOM are validated through

comparisons with the analytical models. A sensitivity study is performed to underline the

different numerical requirements for solving electromagnetic scattering from rough surfaces

with Gaussian or exponential correlation functions.

Chapter 5 summarizes the work and concludes this thesis.



Chapter 2

Backscattering by a Random Profile
Solved using Method of Moments

As underlined in Chapter 1, there are many different approaches to numerically compute

the electromagnetic scattering from a one-dimensional profile. For a sinusoidal or periodic

profile, a decomposition in Floquet modes of the unknown scattered field is possible, as it

has been studied by Chuang and Kong [58] and others [59,60]. Another approach uses a

finite length of random rough profile and a tapered incident wave [61,62] where, to avoid

edge effects, the incident field falls off slowly near the ends of the surface segment. This

approach is applied and described in this chapter to solve the electromagnetic wave

scattering from a one-dimensional rough surface problem.

2.1. Integral Equation Formulation

We consider an incident plane wave impinging on a one-dimensional random rough

surface, whose profile variation in one direction is given by z = f(x) as shown in Figure

2.1. The plane of incidence is perpendicular to the surface profile. In the one-dimensional

case, equations (1.6)-(1.9) can be simplified, since the transversal magnetic and electric

fields, H, and E,, are sufficient to determine all other field components [63].
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Figure 2.1. Geometry of the electromagnetic scattering problem for TE case.
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We thus need to obtain these two field components along the surface profile to fully solve

the surface scattering problem. Furthermore, for the incident field impinging upon the

profile in the x - z plane, Maxwell's equations can be decomposed into dual equations for

both TE and TM fields. Applying the Huygen's principle and the extinction theorem [63]

to the regions above and below the surface respectively, we obtain the following, for the

TE case,

1
En = -E,• - Jds'[E,in'.VG, -Gi'.VE,,] (2.1)

2 S"

0=-Ey2 + fds'[Ey2i'VG 2 -Gn'.VsEy2] (2.2)
2 s?

where S' denotes the rough surface on which the surface integration is carried out,
d d

V, = -- ++-, ii' is the normal vector to the surface S', Ey, and E,2 are
dx' dz

respectively the fields above and below the profile, and Gi , (j=1,2), is the two-

dimensional Green's function for each medium,

Gj (F,F')-= -H((kjIF - ') (2.3)
4

here H(1) is the Hankel function of the first kind and the zeroth order, and
- X' =  _(x-x')2 + (z- z')2.

In equations (2.1)-(2.2), the differential element dsf' can be expressed in terms of

Cartesian coordinates, as

dsh"' = dx'(. - dz)
dx (2.4)



The continuity of tangential fields gives the boundary conditions on the surface S',

E.2 = Ey2

dE2 dEy
dn' dn'

An incident wave is chosen to be a tapered plane wave as [45]

S= -exp[ik-. F(1+ w())-(x + ztan 0i )
2 /g2] = Eyi=

where k1= oM)IIEl is the wavenumber of the incident wave, g is the factor controlling

the tapering, and

w(F) =
2(x+ z tan O)2/g2-1

(k gsin e,)2
(2.8)

This form of the tapered incident wave has been shown to satisfy the scalar Helmholtz

wave equation to the order of 1/(k,gsin 0i )2 [45].

Similarly for the TM case, the corresponding integral equations for the surface magnetic

fields are

1
-h

ly 1- fds*[Hyiii'-VsG1 -Gnii'.V-H 1] (2.9)
2 s·

1
0=-H + YJ2+ds'[H,in' ,vG2 -G2' VsHy2]

2 S'
(2.10)

(2.5)

(2.6)

(2.7)



and the boundary conditions are, at the surface,

HyI = Hy2  (2.11)

dHyl 1l d H y2
-= e2 2 (2.12)

dn' dn'

The following section derives the matrix equation that is used in the Method of

Moments to solve the surface fields , in equations (2.1-2.4).

2.2. Conversion of the Integral Equation to Matrix Equation

The integral equations (2.1)-(2.2) can be converted to a matrix equation using the Point

Matching Method [39]. In this method, the unknown function, X, is decomposed using a

set of basis functions, (fn(x))n= 0,1....} , such that

X = 1:anfn(x)

n (2.13)

with a,, being the unknown expansion coefficients. The basis functions of the Point

Matching Method are chosen as pulses functions f, (x), defined by

1 for xe[-%L/ 2 +(n-1,Ax;-L/ 2 +nAx]
fn(x) =0 elsewhere (2.14)

where the profile S' has been limited between - L/ and L/, and discretized into N

subsegments, each of length Ax= L/N. The inner product is next performed, with

weighting functions chosen as delta functions, defined by



wn(x')= 8(x- xn) where xn =-L/ 2 +(n- 2 )Ax, n= 1,2,3....N

The integral equations (2.1) and (2.2) are thus replaced by sums over the discretized profile

as

Eyi(xn)=I Fl(xn)+ [Gi(rnm)F 2 (xm)- F(xm)DI(rnm)]Ax
m=1

(2.16)

N

0 = Fl(Xn) - Y[G2(nmFG(x)[m=G(rnm
m=1

)F2 (xm) - F (xm)D2 (rnm )]A

rmn = (Xm - Xn)2 + (f(Xm) - f(Xn ))2

G (rmn)=-- H (kj(x -mxn )2(f(mn)-f(Xn)) 2

ik·
Dj(r mn ) = 4= r

mn
- Xn )2 + (f(Xm) - f(Xn ))2

x (f(Xn) - f(Xm) - f'(Xm )(X n - Xm))

for j=1,2, and

F, (Xm)= Ey(xm)

F2 (Xm) Vd (xm)

are the surface unknowns.

where n = 1,2,3....N,

(2.17)

(2.18)

(2.19)

Hl) (k (m

(2.20)

(2.21)

(2.22)

\

(2.15)



As a result, a matrix equation is formed as

zOX=V (2.23)

where X, and V are vectors of 2N x 1 dimension, whose components are, respectively,

for 15n<N
for N+15 n <2N

for 1• n < N
for N+1 n< 2N

The impedance matrix, Z, is

with the matrix elements given by

Amn = 4rmn 1) (k (Xm - Xn )2 + (f(xm) - f(xn ))2)

x (f'(Xm)(Xn - Xm) - f(xn) - f(Xm))

Brn = 'Ho')(k (Xm X n,4

x H(fk (x)(X- Xm) -+(f(xm)- -f(Xm))

x (f'(xm)(Xn - Xm)-- f(x )-- f(Xm) )

F,(xn)
F2(x.)

and

(2.24)

Vn = {Eyi(xn) (2.25)

Z =[ AC (2.26)

(2.27)

(2.28)

(2.29)

I I

I



Dmn =4 Ho'k2 mn(k (f(m)- f(xn))2 )

where f'(x) is the first derivative of f(x). It is noted that in the TM case, the matrix

elements D. become

(2.31)(xm - xn)2 +(f(xm)- f(x)) 2)

The diagonal elements need particular attention and are obtained by using the small

argument approximation for both H" ) and Hi' ), the Hankel functions of the first kind, of

the zeroth and first order respectively, [2]

Ho(')(kp) = 1- i-1nl ] when kp<<l

H ')(kp)~-i 2 when kp<<l
7rkp

(2.32)

(2.33)

with e = exp(1), In y=

the diagonal elements,

0.5772156649, and y, = (1 + f'(xn) 2 ). Thus, we have for

1 f"(Xn)Ax
Ann =2 47rYn2

i2 [ 2 kIrn 4e i

S 1 f"(xn)AL
C 2 4 Yn2

(2.30)

(2.34)

4 (2.35)

(2.36)

i %

D = HO*'))mn" 4 el (k

Bnn- ix 'TJO k, Ax y,,e



(2.37)D e x 4 )k [rk2 LI 4eDnn = I H4 0 kbrY2e 4 kx

The following section presents the numerical method, BMIA, used to perform

efficiently the matrix inversion.

23. Banded Matrix Iterative Approach

The evaluation of the unknowns X in (2.23) is obtained by using the Banded Matrix

Iterative Approach (BMIA) that is much more computationally efficient and faster than an

exact matrix inversion technique [54,56].

In the BMIA method, the two sets of unknowns F, and F2 are first labeled

alternatively in a new unknown vector XBMY defined as

XBMIA

FI(x,)
F2(x1)
F1(x2)
F2(x2)

F2(XN)-

(2.38)

Thus the corresponding matrix equation becomes

ZA * XB =VBuEMIA EMJA BMMA

where

(2.39)



V =BUM"

and zBMIA

All

Cll
A21

BI,

l21
B21

CNl DNI

Eyi(x )

0

Ei (X2 )

Eyi (x2)

0

EYe (x,)

A12 B12

C12 D12

A22 B22

CN2

(2.40)

AIN

C1N

C2 N

BIN

D1N
D2N

S. CNN DNN

(2.41)

with the elements (Amn),(Bmn),(Cmn) and (Dmn) given by (2.27)-(2.30). This new

impedance matrix Z,.. is further decomposed into a strong matrix, Z , which contains the

elements within a band centered around the diagonal, and a weak matrix ZW that contains

the remaining elements. The half-bandwidth of this banded matrix is called b.

The k-th order solution, Y(k) of equation (2.23) is computed iteratively with

(2.42)

zs * y(k) = V •- (k-1)and (2.43)

until convergence is reached. The vector E(k) in (2.42) is defined as E(k) = Zw *•(k)

The error criteria is stated [54] by defining a "residual"



R(") = V - IA X(n) (2.44)

Using equation (2.42)-(2.43), it is easy to show that R(')=-E(1),and

R(n) = (n-1) -_ E(n). The truncation criterion of the iterative procedure is then defined to be

[54]

x 100 < e (2.45)
v.V

This iterative method is much faster than the conventional matrix inversion in solving

equations. Furthermore this BMIA method does not require to store the entire impedance

matrix Z,,, which saves the computational memory requirements. In this method, only

the strong matrix Zs is stored, and the elements of the weak matrix Zw are calculated for

each iteration. This method allows then to solve the backscattering problem from very

rough surfaces that involves large number of unknowns, and so large impedance matrix.

2.4. Scattered Field

When the fields on the surface are known, we can use the Huygen's principle to

calculate the scattered field at an observation point 7 [63]

E,(F) = Jds'[Eyi '.-VsG1-G - '.VsEy,] (2.46)
S'

The observation point defined by the vector F, when far from the surface, can be defined

by a distance r to the center of the profile and by a polar direction s9 as shown in Figure

2.1. For any point on the surface defined by the vector F', we can then make the

following approximation,



IF - F'I) = r -x"cos 0, - z'sin 0,

By using the far field approximation for the two-dimensional Green's functions,

Hm"' e)- ~expgi - -L - -L) 9when 4 -+ +oo

for m = 0,1, with = kF - F' = kr - kx' cos 0, - kz'sin 0s, we obtain the expression for

the scattered field,

iAhx 2 exp(ikr)k exp(-i-•-)

N

x exp(-i m )[iki [f'(Xm )sin Os - cos0 s ]F1 (xm) - F2 (xm)]
m=l

(2.48)

with m = k, (xm cos 0 + f(Xm )sin e,), and x. defined in (2.15).

2.5. Backscattering Coefficient

The incoherent backscattering coefficient for a TE wave upon a one-dimensional rough

surface is defined by analogy with the two-dimensional case as [2],

COS OY21
(2.49)6hh =

Ph,inc

where
where 01 = - is the impedance of the medium above the profile, and Ph,inc is the

incident power. In equation (2.49), ( ) stands for an ensemble averaging performed over

many realizations in the Monte-Carlo simulations.

(2.47)

21rR((,Esl)_I(ES)12)



The power of an incident TE tapered wave is defined as the average projection of the

incident Poynting vector, Si,n, along the normal of the profile, taken to be constant and

equal to Z^. We have then

+00 +00

Ph,in= f(Sinc)-dx= J()inc - dx (2.50)
- -00 z=O

If E = -5exp[ik. F(1+ w(F))- (x + ztan Oi)2/g2], along only, the averaged Poynting

vector has its component along z as

(SincZ)=-· i dEyi. (2.51)

where * denotes the complex conjugate, 91 and stands for the real part. Then, the power

Ph,inc is

1 I c [ 0.5(1+2tan2o)
Ph,in =  cos2 1 k2g2 cos 2  J (2.52)

Substituting (2.52) into (2.49), and averaging over M realizations to perform the ensemble

averaging, we obtain the numerical expression of the one-dimensional backscattering

coefficient for a tapered incident TE wave on a one-dimensional rough penetrable surface

2 xR 1 M 1 M 2It_, =E I----I : IEm) (2.53)
h 0.5(1+2tan 2 i) M (=5M =1

= 

M m= 

1-

Sk2g2 COS2 oe

where E(m) is the scattered field from the m-th realization.



Similarly, the backscattering coefficient for the one-dimensional rough penetrable

surface in the TM case is given by

0
Sv

2rR((IHs2)I(Hs 2), 1Cos60,2
Pv,inc

(2.54)

and the numerical expression based on Monte-Carlo simulations is

2 rR

0.5(1 + 2tan2 Oi)
1-

k2g2 COS2 6i

1 M 1M 2
IIHsm)I2 --- Hxs
M M H(m)=

0avv (2.55)

F-g-



Chapter 3

Analytical Rough Surface Scattering
Models

Three different analytical models of rough surface scattering, the Small Perturbation

Method (SPM) [2], the Physical Optics (PO) approximation [3] and the Geometrical Optics

(GO) approximation [2], will be used to validate the numerical scattering model described

in Chapter 2. The profiles considered in the following sections are random rough surfaces

that obey Gaussian distributed heights and slopes. These one-scale profiles are statistically

characterized by the correlation length 1, the root-means-square (rms) height a, and the

correlation function in the horizontal dimension C(x').

3.1. Small Perturbation Method

The Small Perturbation Method [2] is based on perturbation approach to compute

analytically the backscattering cross-section of an incident wave on a slightly rough

surface. This perturbation theory expands field solutions in perturbation series assuming
that klizf(x'), k2zf(x'), and 3f(x')that kfj(x'), k,2f(x'), and x', are small parameters. kliz is the z component of the

incident wave vector in medium 1, and k2z the z^ component of the transmitted wave vector

in medium 2 (Figure 2.1). Thus, the SPM model requires the surface heights be much

smaller than a wavelength and small surface slopes for rough surfaces with smoother

profiles. The zeroth order solution consists of the specularly reflected waves, and the first



order term contributes only to the incoherently scattered fields. In the following section

will be presented only the first order SPM results for backscattering coefficients, which

were proved to be valid through comparison with numerical methods for surfaces with

Gaussian correlation function [50].

Ulaby et al [3] gave the analytical expressions for the SPM range of validity in terms of

the rms height a and the slope as
k, a < 0.3

(3.1)rms slope < 0.3

Following [2], a backscattering cross-section for the one-dimensional case of rough

surface scattering is defined as the ratio of the scattered power of polarization q in the

direction ks, to the intercepted incident power of polarization p by the profile in the

direction-ks , and averaged over 2 i. For the geometry of Figure 2.1, and HH

polarization, the backscattering coefficient is given as,

h = 8lrk 3 cos 4 sRhhI2 W (2k sin 0) (3.2)

with W(q) being the Fourier transform of the autocorrelation function C(x') of the profile

,2 +*
W(q) = a I C(x')exp(-iqx')dx' (3.3)

IRhhI is the Fresnel reflection coefficient for the TE wave, as expressed in equation (3.10).

For the VV polarization, we have

a,• = 8 rk 7 cos 4 s AI'2 W(2k, sin 0i ) (3.4)

where



(k22-k 12 )(k 22 sin Oi+k 2
2 -k1

2 sin 2 
i .)

A = (3.5)
(k22kl cosOi+k 1

2 k2
2-k 2 sin 2

2  2

3.2. Physical Optics Approximation

In the Kirchhoff approximation, the rough surface is described as a succession of

infinite planes, which scatter energy in the specular direction. The tangential surface field

on the surface profile is assumed to be that would exist on a plane tangent to each point on

the surface [2]. Thus, given the incident wave, the height and the first derivatives of the

profiles, we can determine in each point the TE and TM components of the reflected field.

The total tangential field on the surface, sum of the incident and reflected waves, is then

known, and constitutes the solution of the integral equations (1.6)-(1.9). This theory is

applicable to surfaces with gentle undulations whose "average horizontal dimension is large

compared with the incident wavelength" [3]. When considering one-scale surface profiles,

their correlation length must be larger than the wavelength, and with a large radius of

curvature relative to the incident wavelength at every point on the surface. Another

approximation is made in the Physical Optics that leads to a simpler analytical solution.

This approximation applies to profiles with small slopes and a rms height, such that

2k1 cos Oi is moderate or small [57]

The validity range for this model has been given by Ulaby et al [3] and is stated as

follows for a Gaussian correlation function,

k1l> 6

12 > 2.76aA1  (3.6)

rms slope < 0.25



For a random rough surface with a correlation function C(x'), under the Physical

Optics approximation, the co-polarized backscattering coefficient for polarization pp is
composed of two terms, aonc,pp and olope,pp, as [3]

ao =ao +a o(3.7)

pp inc,pp slope,pp

where

o, = kR c Cs 2 0, exp(-Ko) rn-Cn'(u)cos(qxu)du (3.8)
n=1 0

and

a°lope,pp = i2k, qza2[ IRP2 sin Oi cosOi+9t(RpRpp*)cos2 i

S +- (3.9)

xexp(-Ko) n! dCu (u)cos(qxu)du)
n=O 0

In the above expressions,

R 12 COS i --1 COS ,t
Rhh = (3.10)

172 Cos 0i 6+ 1 cos 80

771 cos , - 2 Cos0 t
RvV = (3.11)

o2 COS Oi + r7, cos Ot

q2 sin 6, + 01 sin 0t
Rhhl = -Rhh (3.12)

72 COS i, + -71 COS 8t

R [ 1 sin Oi - 72 sin 0, - R, (1, sin Oi + 12 sin t)](3.13)

1 COS Oi+ -72 COS Ot



with Ot the transmitted angle, and fl = E the impedance of medium j, for j= or 2,

qx = -2k, sin Oi, qz = -2k, cos Oi, K0 = 4k,2 cos 2 6i a 2, and * stands for the complex

conjugate.

In Appendix, the Physical Optics model will be implemented for both Gaussian and

exponential profiles.

3.3. Geometrical Optics Approximation

The Geometrical Optics approximation is another analytical rough surface scattering

theory derived from the Kirchhoff approximation [2]. Two further approximations are

made, the "stationary-phase approximation" and the "deep phase modulation" [57]. The

use of the "stationary-phase approximation" means that the scattering can occur only along

directions for which there are specular points on the surface. Hence, local diffraction

effects are excluded. The "deep phase modulation" assumption means that only profiles

with large rms height are considered, such that 2k, cos Oi is large. This model does not

include multiple scattering and shadowing, and yields a surface scattering that is purely

noncoherent, and a cross-polarized backscattering coefficient equals to zero. When the rms

height decreases, some scattered energy begins to appear in the coherent component, and

the PO approximations must be made.

The conditions of validity of this theory are given by Ulaby et al [3]

k, 1>6

12 > 2.761aA

(2k1 cos Oia) 2 > 10 (3.14)

(2k2 cos Oi )2 > 10



The backscattering coefficients for one-dimensional rough penetrable surface, under

the Geometrical Optics approximations is given as, [57]

Ir 2  1 tan2 0i
oh = R, exp(- ) (3.15)

2 mcos3 1i  2m2

where Rpp(O) is the Fresnel reflection coefficient evaluated at normal incidence, and

m = a• IC"(O)j is the rms slope of the given profile.

We can see that the expression does not apply to rough surfaces for which the second

derivative of the correlation function, C(x'), at the origin is not defined. Hence, only the

case of a Gaussian profile will be studied, whose rms slope is simply given as

= 
(3.16)

which can be substituted in equation (3.15) to obtain the backscattering coefficients.



Chapter 4

Numerical Simulation and
Comparison

Several numerical works have been done in the past with perfectly conducting surfaces

[21]. These numerical calculations for perfectly conducting profiles need only half as many

unknowns as for the penetrable case, since the tangential electric field on the surface must

be set equal to zero to match the boundary conditions. But this impenetrable case that

results in a limited CPU times, does not apply to the study of soil moisture where the

ground surface is characterized by the finite permittivity of the soil.

In the study of penetrable case [64], profiles with Gaussian auto-correlation function

were considered to limit the CPU time in calculation too. Indeed, in Ogilvy [65], the

Gaussian profile is shown to be less rough than the exponential profile with the same

correlation length and rms height. The CPU time and the available computer memory

appear to be the factors that limit the use of the Method of Moments as a tool to study the

backscattering for penetrable rough surface case. The information about the parameters

leading for a given profile to a minimum CPU time or memory storage, would be hence

helpful to the study of rough surface scattering.

The following work will provide an idea of the parameters needed to use efficiently

the MOM in the remote sensing of soil moisture problem. Both Gaussian and exponential

profiles with different roughness will be investigated in the penetrable case. In each of the



three domains of validity for the SPM, PO and GO analytic models, the HH an d VV

backscattering coefficient will be computed both by the Method of Moments and the

analytical expressions, and comparisons will be performed to validate the numerical model.

In each case, the issues considered are the effect of the window parameter g, of the finite

length of the profile on the convergence of backscattering results. The necessary number

of realizations and the influence of the bandwidth, b, in the BMIA method are investigated

too.

4.1. Profile Generators

The profiles are generated by a code using a Moving Average Process described by

Ogilvy [66]. This method allows to generate one-scale profiles statistically defined by: the

correlation length 1, the rms height a, and the correlation function C(x) (Gaussian, or

exponential). Furthermore, they obey Gaussian distributed heights and slopes. A brief

description of this method is given below.

A given rough profile is represented by a set of 2N+1 correlated points, (zi)i=-N,N'

giving the height of the profile relative to the flat plane at z = 0. This correlated set of

points is obtained from an initial set of uncorrelated random number (ri )=-N,N' with a

Gaussian distribution of zero mean. The desired rms height a is defined by

1
0a= Iri2  (4.1)

2N+1 i

where (ri)i=-N,N are correlated by applying a sliding discretized weighting function

(wi )i=-MM of length 2M+1 (M<<N), such as

M
Zi = I wjri+j  (4.2)

j=-M



These weights (wi )i=_m, depend on the given correlation function C(x). The Fourier

transform of the correlation function, or power spectrum W(k), is first computed

according to

+00

W(k) = - C(x)exp(ikx)dx (4.3)

Then, the moving average weight are determined by computing the inverse Fourier

transform of the square-root of W(k). The following table gives this process for both the

Gaussian and exponential case.

Correlation Function Power Spectrum W(k) (wj)Fourier Transform of

C(x) -W(k)
exp(- ) exp1 (-k c exp -2(iAx) 2

Iexp(--) (l1+ k2 /_2) K

Table 4.1.1. Moving Average in Gaussian and exponential case.

where Ko is the modified Bessel function of the zeroth order.

According to Ogilvy [64], the sampling interval Ax of a profile must be less than one

tenth of the considered correlation length to record the short-range difference between

Gaussian and exponential profiles. This requirement will be met in all our simulations. In

Figure 4.1 two samples of a Gaussian and an exponential profile are plotted. We observe

that the fluctuations of the two profiles, even with identical correlation length and rms

height, are quite different. The exponential surface has been characterized by "short-range,

small amplitude fluctuations" [64], whereas the Gaussian profile appears to be smoother on

this scale length. In Figure 4.2 and 4.3, the correlation functions deduced from sets
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of computer generated profiles, shown as dotted curves, are compared with their theoretical

forms shown as solid curves, for both Gaussian and exponential cases. In Figure 4.2, the

profile is for a Gaussian correlation function; a profile length of 80 , correlation length

1=13.2 cm, and rms height o==1 cm are used for the simulation. The number of sampling

points per profile is 800 corresponding to an equal sampling length of Ax= 3. In Figure

4.3, the profiles are defined by the same parameters as Figure 4.2, but with an exponential

correlation function. We observe that the exponential function falls off faster, implying a

loss of correlation more rapid. On the other hand, the Gaussian curve falls off slower,

leading to a longer scale of correlation. The exponential surfaces appear thus to have

roughness on a finer scale than Gaussian profiles, even with identical rms height, and

correlation length.

From a numerical point of view, in both Gaussian and exponential cases, the

synthesized correlation function is computed by averaging over 80 realizations. We note

that the numerical results agree very well with the theoretical results, both for Gaussian and

exponential profile. The small discrepancy is due to the finite length of the profile used that

leads to a spectral leakage. The statistical properties of these profiles can be improved by

generating either longer profiles, or more realizations at a given length.

This small discrepancy between the nominal statistical parameters and the estimated

statistical parameters from the set of generated realizations must be taken into account when

the analytical models for rough surface scattering are used. Hence, in the following

comparison process, the statistical parameters chosen as input for analytical models are not

the theoretical one, but those computed numerically from the generated profiles.

We define the estimated rms height 6& as

2 = 2(x)dx (4.4)
L 2
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Figure 4.3. Correlation function of a generated exponential profile compared to the
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and the estimated rms slope Az as

AM =1 _ 2 2,(4.5)

where the angular brackets denotes ensemble average. In the case of Gaussian correlation

function, the rms slope is related to the correlation length by

m = cr "(0)= (4.6)

By substituting (4.4) and (4.5) in (4.6), we obtain an estimate of 1 for Gaussian profile.

For the exponential profile, the correlation function will be computed numerically from the

ensemble of realizations, and the estimated of the correlation length will be derived

graphically. The ensemble averaging in (4.4) and (4.5) is performed over many

realizations.

4.2. Simulations and Results

These simulations were performed on a DEC 3000-M 400 workstation with 416 Megabytes

of RAM and an ability to perform approximately 375 MFLOPs per second.

4.2.1. Small Perturbation Method

The first set of profile considered has its statistical property within the approximate

domain of validity of the Small Perturbation Method as stated in Section 3.1. The statistical

parameters of the studied surface are listed in the Table 4.2.1.



Frequency 3GHz

Correlation function exponential/Gaussian

l 4cm

o Imm

E2 (3,0.1) or (9,1.0)

Table 4.2.1. Frequency and statistical parameters of the profile.

For a given set of parameters, (length of the profile, number of unknowns, BMIA

bandwidth, windowing parameter) the number of realizations used increases until the

convergence is reached. Figure 4.4 shows the variations of the HH backscattering

coefficients, for different incident angles, as a function of the number of realizations.

These results are for a profile length of 80A, up to 160 realizations, and a level of

discretization of 10 unknowns per wavelength. We can observe easily the convergence of

our results when the number of realizations increases. Therefore, when there is

convergence, a minimum number of realizations required can be defined. This same study

has been made for the profile length of 20 and 40 A, both for exponential and Gaussian

correlation functions.

The bandwidth used in the BMIA approach is increased from 80 to 170 points without

noticing any variations of the backscattering coefficients. This parameter sets the number

of points that influence the current sources around a given point M. The minimum

bandwidth b necessary to reach convergence should logically depend on the correlation

length of the profile. We will see in the next two sections that this assumption is verified.

In this case where 1 = 4 cm, a bandwidth of 201 or 80 points was found to be sufficient.

The profile length is increased from 10A to 1001. In Figure 4.5, a comparison is

illustrated between the numerical results for three different lengths of profile L=20A,

L=40A, and L=80A, with respective 200 and 160 realizations, for the exponential case.
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Study of convergence f=5/3GHz kl=1.396 ks=0.035 eps=(3,0.1)

20 30

Incident angle (deg)

Figure 4.5. TE case: Study of convergence as a function of the length of surface for an
exponential profile with kl =1.396, kar=0.035, and e2 =(3,0.1).
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We can observe that there is no significant difference greater than 0.4 dB on the whole

range of incident angle. Our estimation is then stable when we increase the length of the

profile. The comparison with the analytical model is then made with the shortest profile of

20X. However, between 20X and 40X, the results of 40X profile shows better

estimation only for the zero degree incidence angle. But this slight improvement

corresponds to a four-times increase in CPU time used. It may therefore not be judged

necessary to use so long profile depending on the applications considered. For a profile

length of 20A,, 200 realizations are sufficient to reach a 0.2 dB difference from the

analytical values, except for the normal incident angle. Indeed, in this case, we have a

difference of 0.5 dB between them. However, in practical applications, the normal

incidence case is never studied, since the non-coherent backscattering is difficult to separate

from the specular reflection.

The study of convergence leads then to the following choice of parameters for the

MOM solution of exponential rough surfaces in the SPM range

length of the number of window BMIA

profile unknowns parameter g bandwidth b
L

20 A /90 1 20 per A 4 80 pt. or 201

Table 4.2.2. Parameters used for the numerical simulations for Gaussian case.

The one-dimensional analytical SPM results are calculated using the following

estimated values of the correlation length, graphically determined, and rms height computed

by (4.4).



" 1.055mm

1 4.1cm

Table 4.2.3. Estimated surface statistical parameters.

Figure 4.6 compares the MOM results calculated using the parameters in Table 4.2.2 to

those values obtained using the analytical SPM model, for the exponential profile case.

These values are given in the Table 4.2.4. We note that the numerical results and the SPM

results match very well, since they are within 0.2 dB difference for all angles considered,

except for the normal incidence.

Incident Angle Numerical results Analytical results

0 -29.90 -29.4

10 -30.67 -30.52

20 -33.09 -32.95

30 -35.54 -35.52

Table 4.2.4. TE backscattering coefficients of the MOM and the analytical SPM method for
the exponential correlation function case.

The study of the Gaussian case leads to the same numerical parameters as stated in

Table 4.2.2. The only difference concerns the minimum number of realizations required to

reach convergence. Figure 4.7 shows the convergence of the numerical backscattering

coefficient with the number of realizations for a Gaussian profile of L= 20A. We note that

a smaller number of realizations is needed for this Gaussian profile to reach the desired

level of convergence. Indeed, after 140 realizations, compared to 200 realizations for the

exponential case, the difference between MOM results and SPM results is less than 0.2 dB.

In this case, the one-dimensional analytical SPM model is used with the following

estimated values of the correlation length and rms height, computed from (4.2) and (4.6).
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^ 1 mm

1 4cm

Table 4.2.5. Estimated surface statistical parameters.

Figure 4.8 compares the MOM results obtained with the parameters given in Table

4.2.2 to the values obtained with the analytical SPM model for the Gaussian profile case.

Theses values are summarized in the Table 4.2.6. As for the exponential case, the MOM

results and the SPM results match well, their difference being within 0.3 dB for all angles

considered.

Incident Angle Numerical results Analytical results

0 -30.61 -30.32

10 -30.98 -30.82

20 -32.07 -32.07

30 -33.85 -33.69

Table 4.2.6. TE backscattering coefficient of the MOM and of the analytical SPM method
for the Gaussian correlation function case.

For "smooth surfaces", with short correlation length and small rms height, the

influence of the auto correlation function on the choice of numerical parameters does not

appear clearly. A greater number of realizations needed to reach convergence is the only

difference between the exponential and Gaussian profiles. However, it seems to be logical

since these profiles differ only in the short-range. Indeed, the wavelength acts like a

yardstick on the profile, and is unable to see finer details than its own length. In our case,

the correlation length, equal to 0.22 A, is not long enough for the wavelength to see such a

difference in the short-range scale.
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Similar sensitivity studies are performed for the one-dimensional TM case and give

similar results. In Figures 4.9 and 4.10 analytical SPM results and numerical MOM results

are compared for a length of 20 X, with Gaussian and exponential profiles respectively.

The characteristics of the profiles are given in Table 4.2.1. The MOM results match the

analytical SPM values, with a difference less than 0.3 dB, for angles between the normal

incidence and 40 degrees. It seems that the polarization, for smoother surfaces, does not

affect the choice of the numerical parameters.

The effect of the dielectric constant on the choice of the numerical parameters is also

assessed by considering different values of 82. We have found that the same choice of

parameters leads to similar level of convergence compared to SPM. In Figures 4.11 and

4.12, can be observed the comparison between MOM results and SPM estimations, for

e2=(9,1), for HH polarization, respectively for Gaussian and exponential case. In the next

section, we examine another type of profile, with a longer correlation length in term of

wavelength, taken into the domain of validity of the Physical Optics Approximation.

4.2.2. Physical Optics Approximation

The second set of profiles considered has its statistical property in the Physical Optics

domain of validity as described in Section 3.2. The rough surface statistical properties that

will be considered are given in the Table 4.2.8.

Frequency 3GHz

Correlation function exponential/Gaussian

1 13.2cm

a 1cm

E2 (3,0.1) or (9,1.0)

Table 4.2.7. Frequency and statistical parameters of the profile.
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Profiles with an exponential correlation function will be examined first.

The profile length is increased from 20 A to 100 A, to determine the minimum length

required for the MOM. In Figure 4.13, the convergence of the HH backscattering

coefficient, ar, is shown as a function of the number of realizations, for three different

profile lengths 40 A, 80 A, and 100 A, up to 100 realizations, and the angle of incidence at

20 degrees. These convergence studies are also made for other incidence angles.

However, a profile of length 20 A, or 15 correlation length, leads to divergent results.

This study shows us that the profile chosen must be long enough compared to the

correlation length in order convergence to be reached. A length of profile of 80 a appears

to be satisfactory, since after 160 realizations, we have less than 0.2 dB in difference for all

the angles considered except at normal incidence. In Figure 4.14. the MOM results for

L=40 A and L=80 A are compared with the analytical PO for the HH backscattering

coefficients. It shows that the length 40 a is not long enough to capture the statistic of

these exponential profiles.

The BMIA bandwidth is increased from 80 to 300 points, and 170 points is found to

give acceptable results. It is interesting to note that in the SPM case we needed 80 points as

BMIA bandwidth that corresponded to 201 with the corresponding sampling, while in this

case, the bandwidth is still in this scale, since it corresponds to 151. As we has assumed in

the Section 4.2.1, the BMIA bandwidth appears to be related to the correlation length.

The study of convergence leads then to the following choice of parameters for the

MOM solution of exponential rough surface in the PO range:

length of the number of window BMIA

profile unknowns parameter g bandwidth b
L

801 /60 1 10perA 4 151

Table 4.2.8. Parameters used for numerical simulations for exponential case.
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Figure 4.14. TE case: Study of convergence for L=40 a and L=80 , for an exponential
profile of kl =8.29, ko =0.62, and e2 =(3,0.1).



The one-dimensional analytical PO results are calculated using the following estimated

of the correlation length and rms height,

C^ 1.03cm

1 13.2cm

Table 4.2.9. Estimated surface statistical parameters.

In Figure 4.15, the MOM results based on the parameters of Table 4.2.6 are plotted and

compared with the analytical PO results obtained using the estimated statistical parameters

of Table 4.2.7. Table 4.2.8 summarized the numerical results and the analytical PO

results. The numerical and PO results of the backscattering coefficients are consistent

within 0.2 dB difference , for all angles considered except at the zero degree incidence

angle.

Incident Angle Numerical results Analytical results

0 -1.50 -2.11

10 -8.52 -8.56

20 -13.24 -13.02

30 -15.84 -16.02

Table 4.2.10. TE backscattering coefficients of the MOM and the analytical PO method for
the exponential correlation function case.

A similar sensitivity study is also made for profiles with Gaussian correlation function.

The study of convergence leads then to the following choice of parameters for the MOM

solution of Gaussian random rough surfaces in the PO range:
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Figure 4.15. TE case: Comparison between MOM results and Physical Optics Model for an
exponential profile of kl =8.29, ka =0.62, and E2 =(3,0.1).



Table 4.2.11. Parameters used for numerical simulations for Gaussian case.

The one-dimensional analytical PO results were calculated using estimated values of

the correlation length and rms height, computed from (4.4) and (4.6).

^ 1.03cm

[" I 13.2cm

Table 4.2.12. Estimated surface statistical parameters.

In the following

Table 4.2.11 and

table and Figure 4.16, the numerical results based on the parameters in

analytical PO results based on the Table 4.2.12 are listed and compared.

Incident Angle Numerical results Analytical results

0 -1.78 -1.78

10 -7.40 -7.82

20 -18.56 -18.69

30 -32.10 -32.04

Table 4.2.13. TE backscattering coefficients of the MOM and the PO analytical method for
the Gaussian case.

length of the number of window BMIA

profile unknowns parameter g bandwidth b
L

40A /30 1 10 per A 4 201
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The numerical results match the P O results within 0.4 dB difference for the whole range of

incidence angles considered. Similar studies are also performed with the TM case, and

leads to the same numerical parameters as for the TE case. In the PO range, similar to the

SPM case, both TE and TM case yield same conclusions, namely a longer length for the

exponential profile is needed to reach the same criteria of convergence, and the same

parameters lead to the same level of convergence.

When the dielectric constant of the profile is increased to 2 = (9,1), no difference on

the required numerical parameters are observed, as can be seen on Figures 4.17 and 4.18.

For the choice of numerical parameters in Tables 4.2.8 and 4.2.11, the backscattering

coefficients predicted by MOM and PO match within 0.3 dB difference for all angles

considered, and both for Gaussian and exponential cases.

This shows that when statistical parameters are identical, the numerical requirements

for a Gaussian or an exponential profile are different in the PO range. As recalled from the

discussion of Section 4.2.1, the correlation length considered now being equal to 1.23 A),

the wavelength used now can see the difference between a Gaussian and an exponential

profile in the short-range. This short-wavelength roughness, which characterized the

exponential profile, asks for longer samples in the numerical computation in order to reach

the required convergence criterion. Similar to the case of smoother surfaces, these

requirements do not depend on either the wave polarization or the relative dielectric

constants of the surfaces.

In the following section, very rough profiles with rms height large compared with the

wavelength are considered.

4.2.3. Geometrical Optics Approximation

The Geometrical Optics model applies to the case of high frequency measurement or

very rough surfaces, whose rms height is much larger than the wavelength. We will
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consider the following parameters that are in the domain of validity of this model as stated

in Section 3.3

frequency 9.5 GHz

Correlation function Gaussian

l 9cm

a 3cm

Table 4.2.14. Frequency and statistical parameters of the profile.

In this case we use the nominal parameters I and a for the GO calculations. Indeed, the

backscattering results obtained under GO approximation by using the estimated statistical

parameters or the nominal ones show no more than 0.05 dB difference.

The same study as in the SPM and PO cases is performed. The length of the profile is

increased from 40 A to 120 A. The simulations for profile length less than 100 A lead to

divergent results with whatever the number of unknowns chosen. It may be explained if

we express this profile length in term of the correlation length. In this case, 40 A

corresponds to only 141 that is not long enough to capture the variability of the profile and

its long-range correlation. The results for 100 A and 120 A are found to be within the 0.5

dB convergence criterion, after averaged over 160 realizations. In this case, where the

surface profile is very rough, we need up to 160 realizations to reach the desired

convergence of 0.5 dB for all angles considered. The actual difference is, in fact, less than

0.2 dB for angles except the zero degree incidence angle. A minimum length of 100 A

appears then to be satisfying.

The BMIA bandwidth is increased from 70 pts to 300 pts. A value of 111 is found to

give satisfactory results. The BMIA bandwidth b, as in the SPM and PO case, is within

the interval of [101,15 1]. It is logical that the longer the correlation length of a profile, the



larger is this parameter. Indeed, from the description of the BMIA method presented in

Section 2.3, we recall that b is the half-bandwidth of the strong Matrix ZS which contains

the elements within a band centered around the diagonal. Spatially, this decomposition

means that we consider only in this matrix the interactions of neighboring points. Hence,

when the correlation length is longer we must consider more interactions, and then larger

BMIA bandwidth b.

The study of convergence leads then to the following choice of parameters for the

MOM solution of Gaussian rough surface in the GO range:

Table 4.2.15. Parameters used for the numerical simulations for the Gaussian case.

In Figure 4.19, the MOM results based on the parameters of Table 4.2.15 are plotted

and compared with the analytical GO results obtained using the nominal statistical

parameters of Table 4.2.14. Table 4.2.16 summarized the numerical results and the

analytical GO results.

Incident Angle Numerical results Analytical results

0 -6.60 -7.18

10 -7.00 -7.28

20 -7.79 -7.66

30 -8.59 -8.56

Table 4.2.16. TE backscattering coefficients of the MOM and the analytical GO method for
the Gaussian case.

length of the number of window bandwidth b

profile unknowns parameter g
L
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In Figure 4.19, we note that the values differ within 0.6 dB, in the whole range of

incident angles considered.

It is worthwhile to note that the minimum profile length needed is longer in terms of

wavelength than for the PO and SPM cases. But if expressed in term of correlation length,

this minimum profile length is still in the range of 30/601. The correlation length appears

then clearly to be the factor to use to fix the profile length required for convergence of the

Method of Moments. Similar to the case of SPM and PO cases, these numerical

requirements do not depend on either the wave polarization or the relative dielectric

constants of the surfaces.



Chapter 5

Summary

The purpose of this study is to investigate the necessary numerical requirements when

applying Method of Moments to solve the problem of electromagnetic wave scattering by a

random rough penetrable surface. One-scale profiles with Gaussian or exponential

correlation function are considered, and their numerical requirements compared.

In the first part, we present the direct or indirect classical methods of measurement of

soil moisture before the development of radar, and underlined the advantages of active

remote sensing. The remote sensing method can process large areas such as agricultural

fields, often. A review of the classical and more recent analytical models developed in the

past is also given.

In the second part the problem of a electromagnetic wave impinging on a one-

dimensional penetrable rough surface is studied and solved with the Method of Moments.

This method leads to a matrix equation that is solved numerically using a fast algorithm

called Banded Matrix Iterative Approach.

Three different analytical models Small Perturbation Method, Physical Optics

approximation and Geometrical Optics approximation are presented in the third part. These

three analytical models are based on three different hypothesis of the roughness of the

surface, leading to three different domain of validity.



In the last part, Monte-Carlo simulations are performed to compute numerically the HH

and VV backscattering coefficients using the MOM. Surface profiles with three different

roughness are studied corresponding to the three domains of validity of the analytical

models. In each domain, two types of correlation functions, Gaussian and exponential,

and two different dielectric constants are considered. A study of convergence is performed

for each case in terms of the numerical parameters: length of the profile, number of

unknowns, windowing parameter g, and b the bandwidth of the BMIA. The results are

validated to be within 0.5 dB difference compared to the analytical results in all three cases

for the range of incidence angles considered, 0 to 30 degrees. This precision is of 0.2 dB

if we exclude the normal incidence case.

The numerical parameters required to reach such a convergence criterion appear to be

independent on either the polarization or the relative dielectric constant. The length of the

profile required depends on the roughness of the profiles. Hence, when the product of

correlation length and wavenumber is increased, we need to use longer profiles measured

in wavelengths to perform the numerical simulations. However, in terms of the scale of

correlation length, these profiles all are in the range 30 to 60 times of their correlation

length, depending on the autocorrelation function. Hence, for the Gaussian case, a profile

length around 301 is satisfactory both in PO and GO range. The fact that the minimum

profile length to reach the convergence criterion increases with the correlation length is

logical, since the correlation length characterizes the correlation between remote points.

The longer the correlation length is, the longer the profile length considered must be to

capture this statistic. We must therefore consider not only the wavelength, as it is

commonly done, but also the correlation length when applying the Method of Moments.

The minimum profile length depends also on the autocorrelation function considered,

when the profile correlation length is long enough compared to the wavelength. Hence, in

the PO range, a profile as long as 601, twice as long as for the Gaussian case, is required



for the exponential case. But in the SPM range, the profile lengths are equal. These results

are consistent with the intuitive perceptions we had when observing two profiles as in

Figures 4.1.a and 4.1.b. The exponential profiles can be seen as the superposition of a

Gaussian surface in the long-range while with short-wave-length roughness. When the

correlation increases in term of wavelength, the electrical field is able to see this short-range

fluctuation, and Gaussian and exponential profiles become differentiable. In the SPM case,

the electromagnetic wave is unable to "see" such a difference at a scale less than its own

wavelength. Hence the HH backscattering coefficients in the SPM range are found to be in

the same range at 2 dB for all angles considered. But in the PO range, the correlation

length is now of the order of the wavelength, and the differences between HH

backscattering coefficients for the Gaussian and exponential case are then as large as 15 dB

at a 30 degree incidence angle. In the SPM case, the difference between Gaussian and

exponential profiles were however marked by the number of realizations required to reach

the convergence criterion. Hence, we observe that in the SPM domain of validity,

exponential profiles require more realizations than Gaussian profiles to reach the desired

level of convergence.

The number of unknowns, 10 points per wavelength, is satisfactory for all profiles.

The windowing parameter g gives convergent results when sets equal to 4 in all cases.

The BMIA bandwidth b is found to be within 111 and 151, whatever the roughness,

or the correlation function. This dependence on the correlation length I is logical when we

recall the spatial meaning of this numerical parameter. Spatially, the strong matrix in the

BMIA method take into account only the interactions of neighboring points. Hence, when

the correlation length is large, i.e. remote points are correlated, we must consider more

neighboring interactions, and then increase the BMIA bandwidth b.



Appendix

Under the Physical Optics approximation, the backscattering coefficient for one-

dimensional rough surface is, as stated in Chapter 3,

opp = Cinc,pp + lope,pp (A.1)

where

incpp = 2k, Cos 2 0i exp(-K o ) JCn (u)cos(qxu)du
n=1 0

(A.2)

astope,pp = i2k, qa2 [Rpp, 2 sin Oi cos Oi +(R,R, * )cOS2 o]I

/7.7 \l

xexp(-Ko) -

n=O

dC n (u)cos(qx u)du)du

For one-scale profiles with either exponential or Gaussian autocorrelation function, we find

+** 2nl
Io = JCn (u)exp(qxu)du = for exponential case (A.4)

n" +(qx 1)

o = J Cn (u)exp(qxu)du = - exp for Gaussian case
I= Cn (u)exp(qu)d4n

and

(A.3)

(A.5)

-00



+" dC -2iqx l
du C (u)exp(qu)du for exponential case

S-du (qxl)2 +(n+1)2

+1 , dC -iqx l-
I =  du Cn(u)exp(qxu)du= ---i 13/2
-0 (n + 1)3/2

(qx 12 for Gaussian case
4(n + 1)2

(A.6)

(A.7)
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