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Abstract

Broadband (fiber optic or coaxial cable) systems are becoming more common as the con-
sumer's demand for more bandwidth to the home increases. This thesis presents the results
of a study into the dynamic and static stability properties of the networks used to power
such systems. An RC tree is used to model the network itself, and a constant-power (P)
model is used to represent the loads at each node of the network.

Given an RCP-tree network that satisfies a set of layout constraints, we show that it can
be modeled as a gradient system. From this fact, we conclude that the system must end up
at one of the possible equilibria of the system. Simple sufficient conditions for the system
to end up at a desirable equilibrium are derived from the study of these equilibria. Finally,
the application of these results to network and load design is demonstrated, and a proposed
approximation model for estimating total current consumption and power dissipation is
evaluated.

We show in this thesis that the sufficient stability conditions derived are good guidelines
for network design, and that the proposed approximation model is effective in obtaining
good estimates.
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Chapter 1

Introduction

1.1 Background

Broadband (fiber optic or coaxial cable) systems are becoming more common as the con-

sumer's demand for more bandwidth to the home increases. The analysis of broadband

networks to obtain accurate cost and performance predictions becomes correspondingly

important. This thesis focuses on issues of "broadband power," namely those associated

with delivering power to broadband networks, and is concerned mainly with the dynamic

and static stability properties of such networks. Very little analytical work has been done

so far on this in the literature. In this thesis, an RC-tree is used to model the network itself,

and a constant-power (P) model is used to represent the load at each node of the network

once the load voltage exceeds a certain critical level.

There are two broadband architectures that are currently being implemented [1]: the

Hybrid Fiber Coax (HFC) architecture and the Fiber-To-The-Curb (FTTC) architecture.

For the HFC architecture, fiber serves a group of many homes and coaxial cable is used to

provide both power and RF to the homes via amplifiers and Network Interface Units (NIUs)

at each home. For the FTTC architecture, Optical Network Units (ONUs) are powered

by a network that is independent of the data network. Topologically, HFC networks are



either bus-like or tree-like networks, while FTTC networks are either bus-like or point-to-

point networks. Since a bus-type network requires a shorter total length of fiber than a

corresponding point-to-point network, the former is generally a more attractive approach

for a FTTC network.

Examples of HFC and FTTC networks discussed in [1] are reproduced in Figures 1-1

and 1-2. In these examples, the cables have the following resistances per unit length: Type

860 - 0.724 mQ/foot, Type 715 - 0.997 mQ/foot, Type 750 - 0.75 mQ/foot and Type 540

- 1.61 mQ/foot. The power ratings for typical NIUs and ONUs are 7 W and 100 W respec-

tively; typical capacitances associated with these loads are about 10 to 20 HF/watt, i.e. a

100 W load might have a capacitance of 1000 MF to 2000 pF. Current safety regulations

prohibit the power source voltage from exceeding 150 V and the typical power source is

rated at 90 V, though this value can fall to about 75 V at the end of the battery life for these

sources.

Figure 1-1: Diagram showing an example HFC powering network.



- Power Source

( Optical Network Unit (ONU)

Figure 1-2: Diagram showing an example FTTC powering network.

1.2 Interesting Problems

Since there is presently very little analytical knowledge of the properties of broadband

networks, there is a whole spectrum of questions that are of interest to a network designer.

This section outlines a variety of relevant problems of interest.

At a very basic level, it is straightforward to obtain an analytical solution for a first-order

system, but with higher-order systems there is too much nonlinearity to obtain analytical so-

lutions. As a result, the equilibria for higher-order networks are only obtained numerically.

The questions of interest include: how many equilibria are there for arbitrary higher-order

network topologies? How many of these are stable operating points? We will show later

in Section 3.2.2 that for any arbitrary RCP-tree network at least one stable equilibrium is

guaranteed to exist.

Also of interest is the dynamic behavior of a network. Basically, given the initial con-

dition of a network, it would be useful if the dynamical evolution of the system can be

modeled accurately. This would allow for the prediction of the eventual steady state of the

system, if such a state exists. It is known that the operating point of a network depends

critically on the cutoff voltage of the constant-power load. Empirical observations from



low-order network topologies suggest that for a reasonable network with real equilibria,

there exists at least one stable and desirable equilibrium and one undesirable equilibrium.

It is clear that if the cutoff voltage is chosen carefully, all the undesirable equilibria can be

eliminated and the network can be guaranteed to reach a desired stable equilibrium, but it

is unclear if there is a systematic way to arrive at a good choice, or even what constitutes a

good choice. Do we want the system to settle at the desired operating point in the shortest

amount of time from any initial state? Do we just want a guarantee that a desired operating

point is reached at steady state? For the purposes of this thesis, we focus on guaranteeing

that the system will end up at a desired operating point, starting from any initial conditions.

In this thesis, a network will be termed stable if it will end up at a desired steady-state

equilibrium starting from any initial conditions.

For a first-order system, it is obvious from some elementary analysis (see Section 1.5)

that L is the optimal cutoff to guarantee stability, where V is the voltage of the power

source. With this cutoff voltage, the system is guaranteed to reach the desirable operating

point from any initial state. The appropriate choice of cutoff for higher-order systems is not

obvious. In fact, it is unclear whether there always exists a cutoff that guarantees stability

for an arbitrary network topology. At present, the recommended cutoff for constant-power

nodes in existing broadband power networks is E, but no one can say anything more than

"it seems to work." The analytical justification that this is a good choice under certain

conditions is a major result for this thesis.

As mentioned in Section 1.1 above, bus-like networks are common in both HFC and

FTTC architectures. Regular ladder networks, where all resistances, all capacitances and

all loads are identical, are of particular interest in network design, because many practical

networks are well modeled this way, and also because the results for this case form a bench-

mark and guide to the behavior of more general networks. This thesis devotes particular

attention to regular ladder networks.



1.3 Constant-Power Load

The loads in a broadband power network typically comprise high-efficiency regulated swit-

ching power supplies that maintain essentially constant voltage across the components that

they feed. Such loads are therefore well-modeled as constant-power loads. A constant-

power (P) load is a component that dissipates a constant amount of power independent of

the voltage across it. Ideally, the voltage-current characteristic would look like the curve

shown in Figure 1-3.

_ VT.

Figure 1-3: Current versus voltage characteristic for ideal constant-power load.

In practice, however, it is impossible and impractical to have an ideal constant-power

load because there is an upper limit on the current that can be supplied. Limits on voltage

are naturally imposed by the fact that the source voltage is fixed at V. A more realistic

model of a practical constant-power load would be one with a low-voltage cutoff, Vc, such

that the load turns off and draws close to zero current once the voltage across it drops below

the cutoff voltage, i.e.

P', 0 < V* <I 0iL = VL

0, vL < VC*

A typical input current versus voltage characteristic for such a load is shown in Fig-

ure 1-4. Henceforth, a load with the characteristic in Figure 1-3 will be referred to as a

"ideal constant-power load" while the load in Figure 1-4 will be referred to as a "non-ideal

constant-power load" or simply as a "constant-power load."



VL

Figure 1-4: Typical input current versus voltage characteristic for constant-power load with
voltage cutoff V,.

In practice, some hysteresis is designed into a constant-power load, i.e. the voltage at

which the load turns "on" and draws current is set a little higher than the voltage at which it

shuts off once turned "on." In this thesis, we will assume that loads behave ideally, and that

the cutoff voltage is the same when the system moves in either direction. Also, we assume

that when VL = V, it is possible for the load at operate at any current between 0 and imax

(e.g. by switching between the "on" and "off" states with the appropriate duty cycle). We

will refer to this region of operation when the current-voltage characteristic is vertical with

VL = V, as the metastable region. Similarly, we will refer to the region when the load is

"off' as the cutoff region. When the load is operating past the metastable region, we will

refer to the load as being on.

1.4 Circuit Models

In the network topologies to be analyzed, the constant-power load elements are modeled

as described in Section 1.3, with current-voltage characteristics as shown in Figure 1-4.

In addition, the dynamics of the systems are modeled by introducing a suitable capacitor

across each constant-power load. Figure 1-5 shows a typical second-order example. The

main network topologies studied in this thesis are RCP trees, with particular emphasis on



ladder networks since they effectively model bus-like networks common in both HFC and

FTTC architectures.

Figure 1-5: Modeling of system dynamics.

In [1], networks are modeled with another resistor along the return path instead of

having all the constant-power loads attached to a common ground. An example of a second-

order system modeled in this way is shown in Figure 1-6. A closer look, however, reveals

that the two circuit models in Figures 1-5 and 1-6 are in fact entirely equivalent in terms of

dynamic behavior and steady-state current flow and power dissipation when R1 = Ri,a +

Rl,b and R2 = R2,a + R2,b. The model in Figure 1-5 is simpler, however, since there are

fewer resistors, so it is the model of choice for this thesis.

P2

Figure 1-6: Equivalent second-order model.

1.5 First-Order System

Before diving into the detailed analysis of general RCP networks, we present the analysis

of the simplest possible RCP configuration - a first-order RCP system. This analysis will

provide some preliminary insight into the dynamics of RCP networks. We begin with the

simpler ideal constant-power model and then later extend the results to the non-ideal model.



1.5.1 Basic System

We analyze the dynamics of a simple network with one constant-power load by modeling

the load as a capacitor in parallel with an ideal constant-power load of the sort described

in Section 1.3; it draws a constant amount of power regardless of the voltage across it.

Figure 1-7 shows this first-order model.

R

V P

Figure 1-7: Circuit diagram for first-order system.

By Kirchhoff's Current Law,

dv V - v P
C-- = - - v (1.1)dt R v

1= (v 2 - Vv + PR) (1.2)Rv

Solving for the roots of the quadratic expression, we obtain

V JVV 2 - 4PR
v = - =. (1.3)

2 2

Assuming V 2 > 4PR, there are two real roots. Defining v+ = + 4PR and v =

v - ,PR (1.2) can be written as

dv (v - v+)(v - v_)
(1.4)dt CRv

From (1.4), we deduce that the sign of the derivative is negative when 0 < v < v_, pos-

itive when v_ < v < v+, and finally negative when v+ < v < V. Figure 1-8 is a graphical

representation of this result. The interpretation of this result is straightforward: v_ is an



unstable equilibrium point, while v+ is a stable equilibrium point. If the system starts at an

initial condition such that v_ < v < V, the system will come to rest at v+, while an initial

condition where 0 < v < v_ will result in v falling to 0.

V0 v_ . - v+ V

Figure 1-8: Dynamic behavior for first-order system.

1.5.2 Non-Ideal Constant-Power Load with Voltage Cutoff

From the analysis of the system dynamics in the previous subsection, it is that apparent that

there is no obvious way for the system to make a transition from a zero initial condition

to the desired stable operating equilibrium. If the system were to start off at the origin, it

would stay stuck at the origin. We can get around this problem by replacing the ideal load

with a non-ideal load that has a voltage cutoff, V, chosen higher than v_.

With this new load, the circuit is equivalent when v < V, to a simple DC voltage

source charging a capacitative load. The behavior of the system when v > V, is the same

as that described in the previous subsection. With this, we effectively remove the lower

equilibrium and the system ends up with a single stable static equilibrium at the desired

level. Figure 1-9 is a graphical representation of this result. We know that v_ < , so

choosing V = , guarantees that the system has a unique stable equilibrium. Of course,

there is also our assumption of V2 > 4PR to ensure that the roots in (1.3) are real. If

V2 < 4PR, then the right-hand side of (1.2) is always negative. As a result, < 0 V v

and so the voltage across the load will be decreasing for all values of v. The introduction of

a cutoff will simply create a stable equilibrium at the cutoff voltage. Since this equilibrium

actually corresponds to the load operating in the metastable region, we refer to it as a

dynamic equilibrium. The graphical representation of this situation is shown in Figure 1-

10.



V0 v_ v 4 V
I :r 1 : I + ( Ivc

Figure 1-9: Dynamic behavior for first-order system with cutoff Vc.

O V
I ) I( I

Vc

Figure 1-10: Dynamic behavior for situation with no real roots.

1.6 Summary of Contributions of this Thesis

Chapter 2 is arguably the most important chapter of this thesis; it lays the analytical foun-

dation for the thesis with the detailed analysis of a simple second-order network. The

modeling of an RCP-tree network as a gradient system is introduced. The properties of

gradient systems are then used to derive dynamic properties, as well as some sufficient

conditions for a desired operating point to be a stable static equilibrium of the system. The

chapter also presents a worked example of how the analysis of possible steady states may

be used to derive simple sufficient conditions to guarantee that a system will end up at a

desired operating point in the steady state.

Chapter 3 builds on the results of Chapter 2 and derives corresponding results for

higher-order systems. It presents a method for constructing the energy function of the

gradient system for any arbitrary network topology, as well as a detailed analysis of the

energy function thus derived. The identification and characterization of both static and dy-

namic equilibria are discussed in detail. Finally, the chapter wraps up with a general way

of deriving simple sufficient conditions for system stability from the characterization of the

equilibria. In particular, the specific results are applied to regular ladder networks.

From the fact that all RCP-tree networks can be modeled as gradient systems, we know

that the state of an RCP-tree network will eventually settle down at a static or dynamic

equilibrium point within the region W, where 0 < vi < V for i = 1,..., n. Thus, the



computation of equilibria for a system is a very important issue. In Chapter 4, we present

a survey of the methods that can be employed to obtain both the static and dynamic equi-

libria of an RCP-tree network. An aggregated-model approximation that allows us to quite

accurately approximate the steady-state behavior of a high-order network with a first-order

network is also introduced.

In Chapter 5, the theoretical results from Chapters 2 to 4 are applied to the actual

process of designing a network. Some important issues in network design are discussed

and our theoretical results are evaluated in the context of a broadband power network. In

particular, a proposed benchmark model is examined in detail and our conditions for guar-

anteeing stability are evaluated. The effectiveness of the aggregated-model approximation

as a means for estimating total operational current and power dissipation is also discussed.

Finally, the chapter concludes with an evaluation of the merit of choosing y as the cutoff

voltage.

Chapter 6 concludes this thesis with a summary of the major results presented and

proposes some interesting questions that can be the basis for future work on RCP-tree

networks and broadband power network design.





Chapter 2

System Modeling and Dynamics:

Second-Order System

This chapter lays the analytical foundation for the thesis with a preliminary analysis of a

simple second-order RCP network. We first analyze a system with ideal constant-power

loads. Next, we obtain gradient system representations for both a system with ideal loads

and one with non-ideal loads. We then present an analysis of the dynamics of the system

with non-ideal loads and derive conditions sufficient to ensure convergence to a desired

stable equilibrium. As mentioned in Section 1.2, the network will be simply termed stable

if it will end up at a desired steady-state equilibrium starting from any initial conditions.

Finally, we analyze the steady state in detail to obtain simple sufficient conditions for sta-

bility. Overall, this chapter illustrates the major results of this thesis in the context of a

simple second-order system. Generalizations of the results described here for higher-order

systems are given in Chapter 3.



2.1 Preliminary Analysis

We repeat the analysis in Section 1.5.1 on a second-order RCP system with ideal constant-

power loads. As before, the idealized assumption simplifies the analysis by allowing us to

avoid dealing with discontinuities. A second-order system is obtained by cascading two

first-order systems, as shown in Figure 2-1. The parallel configuration is not considered

here because it can essentially be decoupled into two independent first-order systems.

V P2

Figure 2-1: Circuit diagram for second-order system.

To analyze this circuit, we apply Kirchhoff's Current Law to the two intermediate nodes

to obtain

V - v1  dvl P1  V 1 - V2
C1 + +-  (2.1)

R, dt vl R2
Ul - U2 dv2 P2= C2 +P 2  (2.2)

R2 dt v2

Equations (2.1) and (2.2) are evidently nonlinear, and an explicit solution is not to be

expected. Instead, we rewrite (2.1) and (2.2) into the following state-space form:

dvl 1 (V - P1  - V2) (2.3)
dt C1 R1 vl R2

R, + R2 2 VR2 + v 2R 1  P1 R 1R 2
( vl + ) (2.4)

C1 RIR 2V1  R1 + 2 R1 + R2
1 V +2
= - (vl - , II ( )vl + P1RII)  (2.5)

C1RIlVl R1 R
dv2  1 vl V- 2  P2-= - ( )(2.6)dt C2 R2 V2

= 1 (v -- v1v2 + P2R 2) (2.7)
C2 R 2•12



where RII = RIR 2 . Next, we solve for -dt = 0 (assuming vi : 0) and d'
2 = 0 (assuming

v2 # 0) to obtain the following equilibrium points:

Vi = V V2 1 V V )2 P1R (2.8)
2 RR R2  4 R1 R 2

2 4

The equations (2.8) and (2.9) define two curves in the vI-v 2 plane. Figure 2-2 is a plot

of these curves. The turning points of the two curves respectively are

(a0,Y) = yPR,2_- -lRII- _ -2V,) and (2.10)

(,6) = (2P 2R2 , ,P 2R2) (2.11)

It is observed that there are two points of static equilibrium for the system; one point is

near (V, V), while the other is closer to the origin. Graphically, the dynamics of the system

can be represented as a vector field. Figure 2-3 shows the directions of the field along the

curve where R' = 0 and similarly along the curve where 42 = 0. For the given example,

it can be deduced from the direction of the field lines that the equilibrium nearer to (V, V)

is stable while the one near the origin is not.

There can also exist configurations of parameters for which the two curves do not in-

tersect and there is no real solution to (2.8) and (2.9). Physically, this represents a situation

where the current drawn by the loads is so large that the current supplied by the source

cannot ever charge up the capacitors, and hence the equilibrium state will be one where all

nodal voltages are stuck at zero. In practice, this is not a particularly interesting or desir-

able situation. For the remainder of this chapter, we will assume that the system is such

that (2.8) and (2.9) have a pair of real solutions.
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Figure 2-2: Plot of i 1 = 0 and b2 = 0 loci for second-order system.

2.2 Gradient System Representation

In this section, we demonstrate that it is possible to express a RCP second-order system

as a gradient system [2, 3]. Such a system has many well-understood properties which are

useful in characterizing the dynamics and stability properties of the system.
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Figure 2-3: Vector fields for second-order system.

2.2.1 Gradient System

Definition

We begin with the definition of a gradient system.

defined by
dv
dt = -grad E(v)

A gradient system is a vector field

(2.12)

Ri R2

I
I

I

V

II~'"vl = ~( R,

L



where E(v) is a scalar function referred to as the energy function and grad E(v) is defined

by the following fundamental equality:

dE = < grad E(v), dv>

with < x, y > denoting an inner product for the vectors x and y. The rate of change of

E(v) along the field is given by

E(v) dv
=< grad E(v), dv

dt

= -|grad E(v) |2'
(2.13)

(2.14)

so, E(v) 5 0 , V v, and E(v) = 0 iff v = V is an equilibrium point, i.e. a point where

grad E(v) = 0 and correspondingly ,y = 0.

Weighted Euclidean Inner Product

For the models in of this thesis, we need to use the following weighted Euclidean inner

product for the definition of the gradient:

Ci > 0 for all i (2.15)<x, y > = Cixiyi,
i=1

We can verify that this constitutes a valid inner product since the following properties are

satisfied:

<ax+/3y, z>

<x, y>

<x, x> > 0

= a<x, z> +<y, z>

= <y, x>

+ x0O

With this definition,

grad E(v) =
1dE

C- dv
(2.16)



where

C =

C1 0

0 C2

0 0 ...- C

Vi

V2

Vn

If C is the identity matrix, the inner product reduces to the usual Euclidean inner product,

and the definition of the gradient becomes the conventional one.

2.2.2 Energy Function for Ideal Loads

Consider the second-order system with ideal loads as described in Section 2.1. First, we

rewrite (2.5) and (2.7) as

dvl
dt

dv2
C2 dtdt

1
= -- vi1

R1 l

V v2  P1
+ 1 ( +  ) v

, l P2

(2.17)

(2.18)-- -R 2 -
R2 R2 V2

Our goal is to express (2.17) and (2.18) in the following form, for an appropriate E(vl, v2):

dvl

dt
dv2

C2 dtdt

(2.19)

(2.20)

O9v
1E

Ov2

Integrating the right hand sides of (2.17) and (2.18) yields

E(v, v2) = -

E(vi, v2 )

f Cdvl

- J C2 dv 2

1 v2

2Rll1

1 2

2V2

V

R,
V1 V2- + P2 ln(v2) + g(v1)

Matching f(v 2) and g(vi) yields

V1 - VV P1 In(v)-- R--1v l --12-+'P 22-ln1-Pl(2.23)1 2
+ 2R2 v2

P ln(vi) + f(v2) (2.21)

(2.22)

V2 )V -
R2

1
E(vl, V2) 2R Vz!•ll + P2 In(v2) (2.23)



Hence, we can write the system of equations as

dv dE
C -= d- (v) (2.24)dt dv

where

C= 1 v= [-
0 C2 V2

Comparing (2.16) and (2.24), we conclude that

dvd = -grad E(v) (2.25)

which shows that that this second-order system is in fact a gradient system with respect to

a weighted Euclidean inner product. If the capacitances C1 and C2 are equal, the system

reduces to an ordinary Euclidean system where flow lines are normal to the level surfaces;

if the capacitances C1 and C2 are not equal, the flow lines are normal to the level surfaces

in the generalized sense defined by (2.15).

2.2.3 Energy Function for Non-Ideal Loads

The derivation of the results in the previous section assumed that the constant-power loads

in the system were ideal, but a small modification yields the energy function for a system

with non-ideal loads. We define

KI(vl) = { 1, vl > Vi* > 0 (2.26)
S0, V1 < Vi*

K2(v 2) = { V2 > V2* > 0 (2.27)
S0, v2 < V2*

where V,* and V2* are the cutoff voltages for the first and second loads respectively. Then

notice that Ki(vI) and ) are exactly the currents flowing through the two loads for all

values of v, and v2. Replacing S- and - in (2.17) and (2.18) respectively by i) and



KV, we can repeat our earlier derivation to conclude that now
V2

1 1 2 V v1v2 vl V2E(vi, v2) = • l + v2 - vl - + Ki(vL) In(• ) + K2 (v) In( ) (2.28)

It is easily verified that the energy function remains continuous at the cutoff boundaries,

although its gradient is discontinuous at the boundaries.

With this modification to E(v), the equation

dE(v)
d- = -grad E(v)dt (2.29)

holds even for a system with non-ideal loads, except that a more detailed analysis is re-

quired at the cutoff boundaries. Figures 2-4 and 2-5 show a 3-dimensional plot of an

example of a typical energy function from two different angles.

Figure 2-4: Example plot of E(vl, v2).



Figure 2-5: Example plot of E(vl, v2) (different angle).

2.2.4 Application

The fact that the system is a gradient system allows us to draw several conclusions about

the system [2, 3]. For example, in any region in which the energy function has continuous

second-order partial derivatives, any (strict) local minimum of E(v) is an asymptotically

stable equilibrium point of the system.

It is also possible to characterize the equilibria of the system by examining the Hessian

(i.e. the matrix of second partial derivatives) of the energy function, as long as the equi-

libria are not on the boundary lines defined by the cutoff voltages. Although our energy

function is non-differentiable at these boundary lines, it is continuously twice-differentiable

everywhere else in the region 0 < vl < V, 0 < v2 < V.

Consider a regular second-order system with identical components, i.e. R 1 = R2 = R,

P1 = P2 = P and C1 = C2 = C, and identical cutoff voltages of V, for both loads. From

(2.28), we find that the Hessian of the energy function at any point (vl, v2) in the quadrant



V, < vl < V, V, < v2 < V is given by

d2  d2E d2E P 2 1
(v) - dv 1dv v- 1 R (2.30)

dv 2  d2E d2E  1 P 1
dv2dvl V Jv2  R 2 RR

Note that for vl > V,, v2 > V, we have

d2E d2E
dv 2 (V, v2) - dv 2 (Vc, Vc) > 0 (2.31)

where '> 0' here denotes positive definiteness, and the notation d2(V, V) is used to

denote the rightmost matrix in (2.30) evaluated at vl = V½, v2 = V,, but not to imply that

this is actually the Hessian of E(v) at vl = v2 = V,. Hence if

d2E (V, VC) > 0, (2.32)
dv2

then any equilibria in the region vl > Vc, v2 > V, must be asymptotically stable, because

the matrix - d! (v) evaluated at any such equilibrium governs the small-signal dynamics

at this equilibrium, and (2.31) and (2.32) together imply that - d (v) is negative definite,

i.e. has all its eigenvalues real and negative. It is easy to show that any convex region where

the Hessian is positive definite can have at most one equilibrium (which must be stable).

The condition (2.32) is equivalent to requiring

P 1
-- + > 0, (2.33)

Vc2 R
P 2 P 1 1( >  o

V2 R V2 R R2

From inequality (2.34), we obtain

3 - V2  V2
R< C< (2.34)2 P P

The following condition therefore guarantees that for a regular second-order system with

cutoff voltages set at V, any equilibrium in the box bounded by (Vc + e, Vc + c) and (V, V)



will be stable and unique:
2

v2 > PR (2.35)

There is also a possibility that equilibria may occur at the cutoff boundaries. These

equilibria cannot be characterized by considering the Hessian of the energy function be-

cause the function is non-differentiable at these points. In order to understand the dynamic

behavior of the system at these points, more detailed analysis is required. The following

section follows up on this analysis.

2.3 Boundary Behavior

In this section, we examine a second-order system much like the one discussed in the

Section 2.1, but with the ideal constant-power loads replaced by non-ideal loads. To make

the analysis more tractable, we assume that both loads have the same cutoff voltage, V,.

Figure 2-1 is still the relevant circuit diagram for this discussion. For this analysis, we

divide the v1-v2 plane into 4 regions: {v1 < V, v2 < Ve), {v1 > Ve, V2 < VK}, {vI <

Vc, v2 > V,} and {vi > VK, v2 > Ve}, and consider each of these cases separately.

Region I: vl < Vc, v2 < V,

In this region, both constant-power loads are in cutoff. The equivalent circuit is one with a

voltage source V charging up the two capacitors, C1 and C2, through resistors R 1 and R2.

The corresponding state equations are

dv1 R 1 R RRd _ 1 (V - (1 + .1)v1 +_. v2 (2.36)
dt C1R1  22.36)

dv2  1= (v1 - v2) (2.37)
dt C2R2

40



Region II: vl > Vc, v2 < Ve

In this region, P1 is on, but P2 is still in cutoff. The corresponding state equations are

dv _ 1 V v2
dVl - (v 1 -2  ( + 2~ )V + PIRII)  (2.38)
dt C1Rivl R1 R2

dv2  1= C2R(vI - v2) (2.39)dt C2R2

Region III: vl < VK, v2 > V

In this region, P2 is on, but P1 is still in cutoff. The corresponding state equations are

dvldt CIR1 ( R1 R 1)dv = - (1 + )Vl -+ RV2) (2.40)
dt C2 1R2

v - 1 ( VlV2+ P2R2) (2.41)
dt C2R 2vU2

Region IV: vl > V,, v2 > V,

In this region, both constant-power loads are functioning normally and the overall behavior

of the system is identical to that of the system analyzed in Section 2.1. The corresponding

state equations are (2.5) and (2.7).

Piecing together the dynamics in these four regions for an example of a second-order

system, we obtain the phase-plane portrait shown in Figure 2-6. In this particular example,

having a cutoff at Vc has effectively eliminated the unstable equilibrium point near the

origin that was presented in Figure 2-3, creating a steady transition from zero initial state

to the final stable equilibrium point. In order to more fully appreciate the effect of the

cutoff voltage on the dynamics, it is essential to examine the boundary of the above regions

of operation in more detail.

It is found that the steady state operating point for a second-order system is intrinsically

tied to the behavior of the system at the cutoff boundaries vl = V, and v2 = V,. We analyze
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~i>odt

(V + 2)

Figure 2-6: Phase-plane portrait for second-order system with cutoff.

the system in detail and find that the behavior of the system at a cutoff boundary is the limit

of the behavior of the system on both sides of the boundary. More specifically, when the

cutoff voltages of both loads are equal to V, it is possible for a dynamic equilibrium to

occur on the boundary vl = V, iff

P1R2  R2Vc+ (1+ , > (2.42)



Hence, to ensure that this does not happen, we require

P 1R 1
V > + VC (2.43)

Similarly, it is possible for a dynamic equilibrium to occur on the boundary v2 = V iff

+ a + ( + )2 - 4( + )Pi P2R2SR2 R < + V (2.44)

but we can prevent this if

P2R 1R2  P1R1
V > V + + (2.45)

where RII = RR2 . For the case where Vc = , R 1 = R2 = R and P1 = P2 = P, this

condition simplifies to

V2 > 4(1 + v3)PR (2.46)

The details for these derivations are found in Appendix A.

The exact details of the derivations of the above conditions are not important. The es-

sential point is that, through a detailed algebraic analysis of the dynamic behavior at the

cutoff boundaries, we can derive sufficient conditions that guarantee that dynamic equilib-

ria cannot exist for the system. However, this technique is not practical for higher-order

systems. Later in Section 3.4.1, we will demonstrate that although the system is only a

conventional gradient system in a piecewise sense, the system is well-behaved at the cut-

off boundaries. In particular, the system satisfies the property that the energy function is

monotonically decreasing with time even on the cutoff boundaries, if the system is not

in equilibrium. This observation together with the fact that the energy function is lower

bounded within W, the region of R2 such that 0 < vk < V for k = 1, 2, allow us to

conclude that limit cycles cannot occur and the system must eventually settle at an equilib-

rium. Hence, sufficient conditions to ensure that the system ends up at a desired equilibrium

can be obtained simply from studying the steady-state behavior. We will demonstrate this



concept for the second-order case with identical cutoff voltages in the following section.

2.4 Steady-State Analysis

In Section 2.3 we derived general conditions that ensure a second-order system will not

get stuck at the cutoff voltages of the loads by examining the dynamics of the system at

the boundaries defined by the cutoff voltages. Here, for a regular second-order system

where all the resistances, all the capacitances and all the loads are identical, we present an

alternative approach that involves examining possible steady states. The circuit diagram

for the system to be analyzed is given in Figure 2-7.

R R

P

Figure 2-7: Regular second-order system.

We will define an operational equilibrium as an equilibrium where all the constant-

power loads are on. We begin with the assumption that the component values have been

chosen such that there exists an operational equilibrium where vl > v2 > !. The associ-

ated equations are

2v2 - (V + v2)v1 + PR = 0 (2.47)

v - vIv 2 + PR = 0 (2.48)

which we can solve to obtain

= V 2 + (V + v 2 2 - (2.49)
4 16 2

v2 = - + - PR (2.50)
2 4



Since we know that the roots are real, the expressions under the square root signs must be

positive. Hence,

v > 4PR, (2.51)

which implies V 2 > 4PR, since V > vl.

We assume that both loads have cutoff voltage V,. We now attempt to find conditions

on V, P, R and V, which will guarantee that the system cannot get stuck at the cutoff

boundaries. If the system is in dynamic equilibrium, there are only two possible situations:

either both vl is pinned at V or vl is operating above V, while v2 is pinned. In the former

case, since both cutoff voltages are equal and voltages are non-increasing with distance

from the source, v2 is also pinned at V,.

Case I: v, = v2 = Vc Under these circumstances, il = VVc while i2 = 0. We next

observe that if that ii > E = E, then this situation cannot occur. Hence, we impose the

condition

V- V Pv- > P (2.52)
R ½

Vc2- VV +PR < 0 (2.53)
V V 2 - 4PR V V2 - 4PR(2.54)

2 < V < - + (2.54)2 2 2 2

Since V2 > 4PR, if ½ = , this situation cannot arise. Hence, we choose V = .

Case II: v > v2 = Considering the current at the first node,

V - Vl P V1 v
V- - + 2 (2.55)
R vl R

2 3V
2v -- vi + PR = 0 (2.56)

3V 3V PR Vv, = + ( )since vl > (2.57)
8 8 2 2



(2.58)

A condition which prevents this case from occurring is

V
V1 2

R
V

V1 -
2

3V PR
8 2

9V 2  PR
64 2

V2

8

V2

V2

2P
V
2PR

V
2PR V

V 2

2PR V
V 8
PR PR V 2

> +
V 2 64

PR
> 4( P) 2 + PRV

32( )2 + 8PR
V

> 4(1 + f)PR

Hence, if (2.66) holds and if the cutoff voltages are set at v, we can guarantee that the

system cannot get stuck at the cutoff boundaries.

In summary, we have shown that under the following conditions:

* The resistances, capacitances and loads are identical,

* There exists an operational equilibrium such that vl > v2 > i,

* The cutoff voltages for both loads are set at !, and

* V2 > 4(1 + v)-)PR,

a regular second-order ladder system is guaranteed to have all its equilibria constrained

within P, the region of R2 such that E < Vk < V for k = 1, 2, not including its boundaries.2 -

If we compare this result with the sufficient condition for stability obtained in Section 2.3

(see equation (2.46)), we find that the results are identical. This is important because the
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3V
8

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)



detailed analysis of the system dynamics at the boundaries is extremely involved and hence

becomes impractical for higher-order systems. On the other hand, the results for this section

can be generalized quite easily for higher-order systems.

In Section 3.2.2, we will prove that there must be at least one stable equilibrium in W,

the region of R2 such that 0 < vk < V for k = 1, 2, and that all static equilibria must

occur in P when the cutoff voltages for all loads are equal. We have shown that dynamic

equilibrium cannot occur in W, and that there must be at least one stable equilibrium in P.

So since the condition

V 2 > PR (2.67)

as derived from (2.34) in Section 2.2.4 is satisfied, the operational equilibrium found is

guaranteed to be globally stable and unique and the system is guaranteed to end up at this

equilibrium starting from any initial conditions.

2.5 Summary of Results for Second-Order System

In summary, we have presented in this chapter the detailed analysis of a second-order RCP

network. In general, a second-order system is found to have at most 2 equilibria, at least

one of which is stable. We have also shown that it is possible to express a second-order

system as a gradient system. From this fact, we know the the system is guaranteed to end

up at an equilibrium in steady-state since there cannot be limit cycles. This is easy to see in

the second-order case because the cutoff boundaries are straight lines which partition the

phase-plane into 4 rectangular quadrants. We will show that this is true even for higher-

order systems in Section 3.4.1.

Using the analytical properties of the gradient system, we can derive conditions for

stability for a given equilibrium. In particular, for the second-order system shown in Fig-

ure 2-7, where cutoffs voltages set at V, all equilibria in the box bounded by (V, + E, V, + c)



and (V, V) are guaranteed to be stable if

V 2 > -- 5PR (2.68)

is satisfied.

Although the energy function fully characterizes the dynamic behavior of the system,

the non-differentiability of the function at the cutoff voltages made the analysis of the

behavior of the system at these points particularly tricky. After much detailed analysis of

the system at these boundary points, it was found that in order to guarantee that a second-

order system does not get stuck at these boundaries, the following stability condition must

be satisfied:
P2R 1R 2  P1R 1

V > VR+ + (2.69)

where R11 = R . In particular, for a regular second-order system with cutoff voltages

set at v, this condition simplifies to:

V2 > 4(1 + V/3)PR (2.70)

Finally, a steady-state analysis was performed and it was found that we can relatively

easily derive conditions that guarantee a second-order system does not get stuck at cutoff

boundaries. The conditions obtained for a regular second-order system with cutoff voltages

set at were found to be identical to those obtained with detailed boundary analysis. We

conclude that steady-state analysis is a more practical way of obtaining simple sufficient

conditions for stability, even though the results obtained by boundary analysis may possibly

be more general.



Chapter 3

System Modeling and Dynamics:

Higher-Order Systems

In this chapter, we will generalize the results presented in Chapter 2 for higher-order sys-

tems. We will demonstrate that any higher-order system can be expressed as a gradient

system by presenting a method for constructing the energy function for a general RCP

network. We showed in the previous chapter that both static and dynamic equilibria can

exist. Here, we will discuss the identification and characterization of each of these types

of equilibria in detail. Since the steady-state operating point of a network is completely

determined by these equilibria, we present a general way of deriving simple sufficient con-

ditions for system stability from the characterization of the equilibria. In particular, we

derive specific results for regular RCP-ladder networks.

3.1 Gradient System Representation

In the previous chapter, we showed that we can express a second-order system as a gradient

system. In fact, there is a systematic way to construct the energy function for any arbitrary

network topology, as long as it satisfies some layout constraints. More specifically, each



node in the network is connected to only one capacitor and one constant-power load, and all

loads share a common ground connection. There is no constraint on the number of resistors

attached to each node. Figure 3-1 is an example of an nth-order tree with branching that

satisfies the above constraints.

Figure 3-1: An nth-order tree network with branching.

We can apply Kirchhoff's Current Law to find the current flowing through the capaci-

tors. The system of equations obtained is of the following form:

dvk Kk (vk) + z Vj,k - Vk fork n
dt Vk RjER Rj

(3.1)

where Rk is the set of all resistors connected to node k and vk - Vj,k is the potential

difference across resistor Rj. Notice that if we define the partial sums

(3.2)En Vk)+(E 1 2 1 Vkej,k
En,k(v) = 2Kk(vk)ln( , ) + ( k -R. 1

k RjE5k0 RjETIZ R
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then the energy function is simply given by

En(v) = En,k(v) (3.3)
k=l

Thus, the energy function of any arbitrary network takes the following form:

n Vk 1 1 V2 n1
En(v) = Kk(Vk)ln( ) + - )k - -VkVj,k) (3.4)

k=1 k k= RjER2k  k=1 RjERk R

where Rk is the set of all resistors connected to node k and Vk - Vj,k is the potential

difference across resistor Rj. This is proved simply by partial differentiation of (3.4) which

yields the negative of expressions of the form given on the right side of (3.1).

3.2 Characterizing Equilibria

In this section, we study the equilibria of a general higher-order system in detail. Let us

first define W as the region of Rn such that 0 < vi < V for i = 1,..., n. It is easy to show

that W is the positive-invariant bounding box for the state of any higher-order system. The

rationale here is that voltages cannot be negative and they also cannot exceed the source

voltage. We show in this section that there is at least one stable equilibrium in W, and

that all equilibria must be contained within W and cannot occur on the upper or lower

boundaries, i.e. where Vk = 0 or vk = V for some node k.

3.2.1 Types of Equilibria

At this point, it is important to note that there are two classes of equilibria for RCP-tree

networks: static (asymptotically stable and unstable) equilibria and dynamic (stable) equi-

libria. In both cases, the voltages at the nodes of a system in equilibrium are constant in the

absence of perturbation; the difference between these two classes of equilibria lies in the

operating point of the constant-power loads.



When a system is in static equilibrium, all the loads are either on or in cutoff and their

voltages are constant over time. In contrast, when a system is in dynamic equilibrium,

at least one of the loads is operating in the metastable region with its voltage at cutoff.

In the context of the energy functions, static equilibria occur over continuously twice-

differentiable regions, while dynamic equilibria occur in the hyperplanes defined by the

cutoff voltages on which the gradient is not continuous. As a result, static equilibria are

substantially easier to identify and characterize from the energy function.

3.2.2 Boundary Conditions

We show that an equilibrium cannot occur at the boundary of the bounding box except at

the origin, by showing that E, (v) is decreasing in the direction of W at the boundaries.

We consider
dE(v) - Kk(vk) +( ~- 1 1j,- k (3.5)

dv Vk RjER~ki RjEk Rj

At the lower boundaries,

dEn(v) 1d~ ( k=0=- -,k < 0 (3.6)
dvk RjeRk -, k

since Vk* > 0. This shows that En (v) is non-increasing in the direction of W along the

boundary. Consider the case when equality holds. This means that vj,k = 0 V Rj E

Rk. So instead we repeat the above argument with each vj,k in lk. Eventually, we end

up with a situation where dE(v) can be shown to be negative for some j E {1,..., n},

or else the entire network is at zero voltage. In the latter case, we know that En (v) is

strictly decreasing in the direction of W since the network simply looks like a static source

charging up a network of capacitors and resistors.

At the upper boundaries,

dE(v) k= = Pk+ )V- ,k > (3.7)
dvk V RjEV RZkRjJVJ6k
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The inequality is apparent because E > 0 and vj,k < V. This inequality shows that En (v)

is strictly decreasing in the direction of W along the boundary.

These results, together with the observation that E, (v) is finite at the boundary of W

and that E, (v) is lower bounded within W, allow us to conclude that there exists at least

one stable equilibrium within W and that the stable equilibrium cannot lie on the boundary

of W. We will show in Section 3.4.1 that we can rule out limit cycles and other kinds of

oscillatory behavior because the system behaves like a gradient system even at the non-

differentiable cutoff boundaries.

3.3 Static Equilibria

3.3.1 Constraint on Cutoff Voltages

We define P as the region of n' such that Vk • Vk < V for k = 1,... , n. Within P, all

loads are on. We now show that dE,(v) < 0 for some vk < Vk* under the cutoff voltagedvk

constraint where the cutoff voltages of the loads all equal, i.e. V1* = V2* = ... = V*, as

long as the system is not on a cutoff boundary. In other words, we want to show that when

all the cutoff voltages are equal, static equilibria can only occur within P.

From the topology, we know that any equilibrium must satisfy the condition that nodal

voltages are monotonically decreasing with distance from the source, since the only source

of current in the system is the voltage source. As current flows away from the voltage

source, it induces voltage drops across the resistors, so nodal voltages must be monotoni-

cally non-increasing. If the system is in a state which does not satisfy the above condition,

some of the capacitors in the system will be discharged, and eventually the system will

satisfy this voltage constraint.

If the system is not in ', there will be a node k with a load in cutoff, since Vk < Vk.



So,

dE,(v) 1 1dE =(v) )ZUk- -jk (3.8)
dvk RjE1Zk 3 RjElZki

Next, we observe that (v) is identically equal to the total current entering node k, which

can only get stored on the capacitor since the load at that node is in cutoff. Assuming that

the condition V > vl _ v2 > ... > v_ is not violated, we do in fact know the direction

of flow for the current. Since the network has a tree structure, current flows into node Vk

through only one neighboring node, say vk-1, as shown in Figure 3-2.

R•k+1

Vk-1 ) k k
Rk+2

Uk+2

Figure 3-2: An example of current flow.

As long as Vk-1 > Vk, current flows into Vk, but Vk < Vk* implies that the nodes

downstream of node k will all have their loads in cutoff, and so the current flowing in will

charge the some capacitor in the subtree and hence dE() < 0. This will only stop ifdvk

Vk-1 = Vk. If this is true, we move down the chain and consider vk-1. Eventually, since all

cutoff voltages are equal and the system is not at a cutoff boundary, we find that there has

to be some node which is charging up. With this, we conclude that even though vk-1 = Vk,

the system is not in equilibrium.

In summary, we conclude that under the condition that all cutoff voltages are equal, all

static equilibria must occur in P.

3.3.2 Characterization of the Hessian

We have established that there is least one stable equilibrium point in W, and also that

static equilibria must occur within P if all cutoff voltages are equal. We can characterize



the stability of equilibria within P using a fundamental result from system theory: given a

static equilibrium point V9 E P such that d (9) = 0, a fundamental condition for stability

is
d2E
dv2 () > 0 (3.9)

In other words, the Hessian of the energy function En(v) evaluated at the equilibrium

point must be positive definite for the equilibrium to be stable. As mentioned previously,

dynamic equilibria that occur in the hyperplanes corresponding the cutoff voltages of the

constant-power loads cannot be characterized in this way since the energy function is non-

differentiable within these hyperplanes.

In principle, given the static equilibria of a system, we can compute the Hessian for each

equilibrium point and then test for positive definiteness. There are two common methods

to check if a symmetric square matrix is positive definite. One way is to check that all the

eigenvalues of the matrix are positive; the other is to invoke Sylvester's Test:

Theorem 3.1 (Sylvester's Test) Let A be a symmetric square matrix, i.e.

all a 12  "' aln

a12  a22  "' a2n

aln a2n "' ann

then A > 0 iff the determinant of every leading principal submatrix of A is positive, i.e.,

all > 0

all a 12 > 0
a12 a22

all a12 a13

a 12 a22 a23  > 0

a13 a23 a33

etc.

A =



In the event where the exact location of an equilibrium is known, the testing of the

Hessian for positive definiteness is straightforward. However, this test is useful even in

the event where the exact location of the equilibrium is not known exactly, but we know

that the equilibrium lies in a box, Q, bounded by the points i- and (V, V,..., V), where

i" = (vl, v1,. .. , i ), ik < V V k = 1,..., n. The reason for this is that we can decompose

the Hessian at any point within Q in the following way:

d2En d2En
dv2 ) = dv2 ) +

S-P 0 ... 0

0 P P 0
V2  2

0 0 P P

whereik kVk= 1,...,n. Clearly P - > 0Vk= 1,.. ., n. Hence, if we can
where k = 1,...,. Clearly

show that ()d2E (ý is positive definite, we can conclude that d 2 E (v) must also be positive

definite, since it is the sum of a positive definite matrix and a positive semidefinite matrix.

We will use this result in the next section to derive conditions sufficient for stability in a

regular ladder network.

3.3.3 Guaranteeing Stability for Regular Ladder Network

General Ladder Network

The energy function of a generalized ladder network takes the following form

n- 1 1 2 1 2 n-1 VkVk*i n
En(v) = (2  +-k )Vk+ V - Vi - +k Kk(Vk)n( n ) (3.11)= 2Rk 2Rk+ 2Rn R, Rk+1I k=

where

Kk (vk) Pk, Vk > Vk* > 0

0 , v k < Vk*

(3.10)



and Vk* is the cutoff voltage for the kth load. From this equation, we obtain

d2En
dv (v)=
dV2

K(vi) + 1 + 1
V2  R1  R 2

1
Ra

11 0 ...R2

K v2 + I +Rv2 R3 R

S. 1 -K(vn)+-0R, v2 Rn

(3.12)

Assume for now that we do not know the exact location of the equilibrium, but we do

know that it lies in P. So, we apply Sylvester's Test to evaluate positive definiteness of

the Hessian at the lower corner. This involves the computation of the determinant for the

Hessian at that point. We define

.i + 1 + 1
v; 2 •1 R2

1

R2

1 1
+1 1 R1 R2

1
R2

0

1 0

V2' R2  R3  R3

0. 
. .

1 0
R 2

1 1 1

V2 R2  R 3  R 3

0

0

0

1 P 1
R -I'

(3.13)

0

0

1 Pn 1 1-, - + +S V(3. R R 14)
(3.14)

By expanding the determinant along the nth column, we obtain

Ao = B = 1,
P1 1

A1 = V2+2 R1

P, 1 1
B2 = v -*2  +  R2'

P R 1 1
An = (- V2 +  )Bn Bn-1, n > 2,

n~ Rn R~n

and

Bn+l

(3.15)

(3.16)

(3.17)

(3.18)

I



Pl 1 1 1
B,1 =()B n-1~ , n > 2 (3.19)

By Sylvester's Test, the condition for stability is

d2E2 (v) > 0iffAi > 0Vi = 1,..., n (3.20)dv2

Regular Networks

Let us consider a regular ladder network where all the resistors, all the capacitors and all

the loads are identical. Let R be the resistance of the resistors, C be the capacitance of the

capacitors, V be the supply voltage, V* be the common cutoff voltage and P be the power

rating of the loads.

From the results of Section 3.3.1, we know that all static equilibria must occur within

P. In order to ensure positive definiteness, we must have Ak > 0 V k = 1,... , n, where

Ak is evaluated at the point (V*, V*, ... , V*). We apply the recurrence relation defined by

equations (3.15) to (3.19) to derive conditions on V* sufficient to guarantee that (2 v) is

positive definite at any static equilibrium point within P. These conditions were found to

take the following form, where f (n) is a function that is monotonically increasing with n:

V*2 > f(n)PR (3.21)

The values of f(n) for n = 1,..., 15 are listed in Table 3.1.

Empirically, it is found that for n > 3, f (n) can be approximated by a quadratic func-

tion f'(n), where

f'(n) = 0.4n 2 + 0.5n - 0.3 (3.22)

Hence, we propose the following as sufficient conditions:

n =1 : V*2 > PR (3.23)



Table 3.1: Cutoff Voltage Coefficients for Regular Ladder Networks (Static Equilibria)

Order, n f (n)
1 1.0000000
2 2.6180339
3 5.0489077
4 8.2908599
5 12.3435379
6 17.2068587
7 22.8807819
8 29.3652984
9 36.6603989
10 44.7660837
11 53.6823401
12 63.4091685
13 73.9465573
14 85.3179715
15 97.4530641

n=2

n>3n '> 3
: V*2 > 2.62PR

: V*2 > f'(n)PR

(3.24)

(3.25)

To summarize, a regular ladder network which satisfies inequality (3.21) is guaranteed

to have at most one stable static equilibrium in P. As mentioned in Section 2.2.4, it is

easy to show that any convex region where the Hessian is positive definite can have at most

one equilibrium (which must be stable). So, if it is known that an equilibrium does indeed

exists in P, then it is both stable and unique within P. The details for the computation and

approximation of f (n) are given in Appendix B.



3.4 Dynamic Equilibria

3.4.1 Boundary Behavior of Modified Gradient System

As noted in Section 2.2.3, equation (2.29) holds at all points except for those on the cutoff

boundaries, and hence we do not have a gradient system in the global twice-differentiable

sense. Here, we will show that like a conventional gradient system with no discontinuities,

our modified gradient system is well-behaved even at the cutoff boundaries.

For a general nth-order system, we know that the dynamic behavior of the system at all

points not on the cutoff boundaries is determined by the set of n state equations

dv dE
C- = d- (v) (3.26)

dt dv

We define Vk*, k = 1,..., n to be the cutoff voltage of the kth load. In order to understand

the behavior of the system at the boundary vk = Vk*, we consider the dynamic behavior of

the system at vk = Vk* + c and vk = Vk* - E to obtain

dEn(v)iVk +R( )V* - V R k (3.27)
dVk RjER1k RjERRk A

dEn(v) 1 1
drIv,=Vk- = (* -)V*- •E i (3.28)

dvk RjER Rj RjeR. ij

where R7k is the set of all resistors connected to node k and vk - Vj,k is the potential

difference across resistor Rj.
There are two possible scenarios: dE(),=Y+ and dE k= - KV •• f are either of the

same polarity, or they are of opposite polarity. In the former case, the field lines that hit

the non-differentiable boundary leave the boundary in the same general direction at the

opposite side. A graphical representation is shown in Figure 3-3.

If instead, we have a condition where k 1 vk=-, < 0, but dE(vk=V > 0,

or vice versa, field lines are instead converging at the discontinuous boundary from two



11- -41Id Vk = Vk
Figure 3-3: Field lines moving in the same general direction.

opposite directions. This effectively causes the system to be pinned on the boundary. The

dynamic behavior of the system is then governed by the remaining n - 1 equations from

(3.26) for vi, i = 1,..., n, i = k. We recognize this new set of n - 1 state equations as

a gradient system of order n - 1, and that En(v) ,,k=v is the appropriate energy function.

This reduced-order gradient system is a conventional gradient system where all components

of the energy function are twice-differentiable and hence satisfies (2.14), i.e.

En(v)Ivk=v = -1 grad En(v)|,,kv 12 < 0 (3.29)

where grad E,(v) IVk=vk is evaluated in the the set of n - 1 vector components which

excludes vk. We conclude that the energy function En(v) is strictly decreasing on the

boundary vk = Vk* unless grad E,(v) lvk=v = 0 for some v, which occurs only at a

dynamic equilibrium point.

In general, the net effect is a sliding motion along the cutoff vk = Vk*, where the

direction of flow depends on the voltages of the adjacent nodes. This situation may produce

a stable but undesirable dynamic equilibrium when grad En(v) vk=V: = 0, as illustrated in

Figure 3-4.

Dynamic Equilibrium

ff t Ik = Vkt

Figure 3-4: Converging field lines at the non-differentiable boundary.

At the same time, there is also a possibility that the state of the system will simply

slide along the non-differentiable boundary to a point where dE,,(v) Ik=V*+, changes sign.dvk



At this point, the state of the system will leave the discontinuous boundary, as illustrated

in Figure 3-5. Since the abovementioned cases are exhaustive, it is clear that all dynamic

equilibria arising from the cutoffs are stable and undesirable.

boundary

Vk = Vk

Figure 3-5: Sliding effect along non-differentiable boundary.

There is also the possibility that the system ends up at the intersection of two or more

cutoff boundaries. In this case, the situation is analogous to the single boundary case de-

scribed above. If the system is pinned to the region of intersection, the dynamic behavior

is determined by the other non-constrained components and there is again a corresponding

reduced-order conventional gradient system for this region. If the system is not pinned to

this region, the dynamic behavior would be determined by the state equations for the new

region that the system moves into.

The situation where all nodal voltages are at cutoff is a special case, i.e. vl = V,*, v2

V2*,..., vn = V,. In this case, the behavior of the system depends on the cutoff voltages

and the system parameters. If the cutoff voltages are not monotonically non-decreasing

from the source, the system will not stay at this point since there will be a capacitor

charging up at some intermediate node. If the cutoff voltages are indeed monotonically

non-decreasing from the source, the system can exhibit one of two possible behaviors. If

V 2 < 4PR 1, the system will be stuck at vl = V1*, v2 = V2*,..., v, = Vn*, since the source

cannot produce enough current to cause even the first load to turn on fully. On the other

hand, if V 2 > 4P1R1, we can easily show that the system is not at steady-state and that the

first load will eventually be turned on.

What this discussion leaves us is that if we consider one boundary at a time,

S R k V- Rj Vj,k = 0 (3.30)



defines the locus of the set of points in the hyperplane vk = V* where V Vk=V,*+

changes sign. By checking the partial derivatives in the other components, it is concep-

tually possible to determine all the dynamic equilibria arising from the non-differentiable

boundary much as it was done in Section 2.3. In practical terms however, this is a non-

trivial analytical feat for higher-order systems. With this note, we conclude that the obvious

way to ensure that a system does not get stuck at these dynamic equilibria is to derive the

conditions necessary for dynamic equilibria to exist and then adjust system parameters to

ensure that these conditions are not met. Since we have shown that any RCP system will

eventually settle at an equilibrium, a more practical way to obtain sufficient conditions is

to simply consider all the possible steady states.

3.4.2 Application of Steady-State Analysis to Regular Ladder Net-

work

The analysis of all the possible steady states is in general a computationally expensive task.

For an nth-order system there are 2n possible combinations of on/off states for the loads.

If we were to have to examine all these possibilities, the task would be take an exponential

amount of computation.

Fortunately, under the condition where cutoff voltages are non-decreasing with distance

from the load, i.e V7* < V2* < ... < Vn, the number of possibilities is reduced to a linear

function. The reason is this: given that a load at node k is in cutoff, all loads further down

the tree are guaranteed to be at a voltage no higher than vk; this means that they would

all have to be in cutoff too. Hence, under this assumption, the systematic approach to this

problem would be to start from the load nearest the source and then work down branches

of the tree. This concept will be used in the following section to derive conditions to

guarantee that a regular ladder network with cutoff voltages set at !v does not get stuck at

any dynamic equilibria. This idea has already been demonstrated for the second-order case

in Section 2.4.



Regular Third-Order System

Now, we repeat the derivation of a sufficient condition to avoid dynamic equilibria for a

regular third-order RCP-ladder system, as shown in Figure 3-6, because the results from

Section 2.4 do not generalize directly. We assume that all loads have a cutoff voltage of .

i3

P

Figure 3-6: Third-order system.

First, the following is the system of associated equations

2v -(V+v 2)vl+PR = 0 (3.31)

2v - (v + v 3)v2 + PR = 0 (3.32)

v - v2v3 + PR = 0 (3.33)

This equations yield

V + 2 ± (V + 2 2 PR (3.34)
4 16 2

vl + 1 ) PR
v2 = 4l U 2 2 (3.35)4 16 2

V v2 V2 - PR (3.36)
2 4

We assume that the system satisfies the following conditions:

* All the resistances, all the capacitances and all the loads are identical,

* There exists an operational equilibrium such that vj > v 2 > v3 > ,



* The cutoff voltages for the loads are set at ,

* V2 > 4(1 + )PR.

As such, there are only three possible states of dynamic equilibrium for the system:

1. V1 = V 2 = V3 -=

2. V1 > v2 = V3 =

3. Vl > V2 > V3 = V

The analysis of the first two of these cases is identical to that performed in Section 2.4. The

net result is V 2 > 4(1 + v3)PR. Hence, we examine the last case, where vi > v2 > v3

v. Considering the second node, we obtain from (3.35),

V V v ) 2  R (3.37)
8 4 8 4 2

since v3 = > and v2 > . We impose the condition that the current entering the third node

exceeds the current drawn by the third load, which is

v2 - 2P2 >2P (3.38)
R V

This yields
2PR V PR V2

l(-( + -) > 8( )2 + + 4PR (3.39)V 2 V 4

after some algebraic manipulation. Since vl > v2 > L and so each load can draw at most

a current of 2PR, we observe that vl > V - 6PR under equilibrium conditions. Hence, a

sufficient condition is

6PR 2PR V PR V2

(V- )( + -) > 8( ")2 +  + 4PR (3.40)V V 2 V 4

which yields

V 2 > 21.41640787PR > 4(1 + v/3)PR (3.41)



after some algebraic manipulation. We notice here that this is more stringent than the

condition:

V 2 > 20.196PR (3.42)

as derived from (3.21). So, if (3.42) is satisfied, the operational equilibrium found is guar-

anteed to be stable and unique. and the overall system is guaranteed to be stable, i.e. it is

guaranteed to end up at this equilibrium starting from any initial conditions.

Generalization for Regular Ladder Networks

We can repeat the above exercise with an nth-order ladder like the one shown in Figure 3-7.

We only have to consider the situation when vi > v2 > ... > vn-1 > vn =L since the

first n - 1 situations are exactly the same as that for the n - 1 shorter ladder networks.

R R R

P
P

Figure 3-7: Example nth-order system.

As before, the voltage at node n - 1 is

V1 V n-2 + V  n- )2 - P R  (3.43)
8 4 8 4 2

Next, we impose the condition that the current entering the last node exceeds the current

drawn by it:
Un -l 2Pv1 2 > (3.44)

R V

which yields
2PR V PR V 2

vn-2i( t > 8( 2 +- + 4PR (3.45)
V 2 V 4

after some algebraic manipulation. Again, we observe that the maximum current draw by

Wffi
C =L  V1 PIT-9___



any load in the system is bounded by 2P and thus conclude that vn- 2 > V - h(n) E where

h(n) = n2 + n - 6. To obtain the bound for the nth-order network, we solve

PR 2PR V PR 2  V2

(V - h(n) + -) > 8 ( )2 +- + 4PR, for n > 3 (3.46)V V 2 V 4

The bound obtained is

V2 > g(n)PR (3.47)

where g(n) is given by the larger root of

g(n)2 - (2h(n) + 8)g(n) - (8h(n) + 32) = 0 , forn > 3 (3.48)

A little algebra yields

g(n) h(n) +4+ h(n)2 + 16h(n) + 48, forn > 3 (3.49)

Results for n = 1,..., 15 are given in Table 3.2. We observe, by comparing these results to

that of Table 3.1, that the bound to ensure that the given static equilibrium is stable is less

stringent than the corresponding sufficient condition to guarantee that dynamic equilibria

do not occur. Hence, in general, if a given regular ladder network with an operational

equilibrium satisfies this bound given in inequality (3.47), the equilibrium is guaranteed to

be globally stable and unique.

It is found that g(n) can be approximated very well with a quadratic function for n > 3.

In particular, g(n) ~ 2h(n) + 10. Hence,

n = 1 : V2 > 4PR (3.50)

n = 2 : V 2 > 10.928PR (3.51)

n > 3 : V 2 > g'(n)PR (3.52)



Table 3.2: Cutoff Voltage Coefficients for Regular Ladder Networks (Dynamic Equilibria)

Order, n g(n) g'(n) 4f(n)
1 4.0000000 4 4.0
2 10.9282032 12 10.5
3 23.4164079 24 20.2
4 39.6333077 40 33.2
5 59.7490157 60 49.4
6 83.8178046 84 68.8
7 111.8619046 112 91.5
8 143.8918128 144 117.5
9 179.9130023 180 146.6
10 219.9285486 220 179.1
11 263.9402852 264 214.7
12 311.9493590 312 253.6
13 363.9565166 364 295.8
14 419.9622508 420 341.3
15 479.9669399 480 389.8

where

g'(n) = 2n 2 + 2n (3.53)

It should be noted at this point that the above method for deriving these sufficient con-

ditions is applicable to any network that satisfies the condition that cutoff voltages are

monotonically non-decreasing from the source. The only reason why the above analysis

was restricted to regular networks is that it simplifies the algebra involved without losing

the essence of the whole exercise. All cutoff voltages were assumed to be equal so that we

can use the result that all static equilibria must occur in P. The entire exercise can easily

be repeated with a different choice of cutoff voltage. In fact, the equation corresponding to

(3.46) for a cutoff of aV is

PR 2PR V PR
(V - h(n) )(PR 2PR+ -) > 8( )2 2 V2 + (6a + 1)PR2aV V 2 V (3.54)



3.5 Summary of Results for Higher-Order Systems

We have shown in this chapter how the results for second-order systems in Chapter 2 may

be generalized for higher-order systems. We presented a method for constructing the energy

function for any arbitrary network topology that satisfies a common layout constraint. Since

the stability of a system is intrinsically related to the static and dynamic equilibria, we

examined these two classes of equilibria in detail.

It was shown that for any given network there exists at least one stable equilibrium

within W, and that no equilibrium can lie on the boundary of W. In fact, when the cutoff

voltage of the loads in the system are equal, we are able to constrain the location of static

equilibria to an even smaller region. In particular, under the cutoff voltage constraint VI* =

V2* = ... = V, all static equilibria must occur in P, the region of R" such that Vk* < vk <

V fork = 1,..., n.

The stability of static equilibria was characterized through the Hessian of the energy

function. We observed that if 2 (iv) is positive definite, where ,r = (D1, '1,..., v•, <

V, k = 1,..., n, the Hessian evaluated at all points in Q, the box bounded by - and

(V, V,... , V), is also positive definite. From this, we are able to derive simple sufficient

conditions to ensure that any static equilibrium in Q is guaranteed to be stable and unique

within Q. In particular, this was applied to a regular ladder network with cutoff voltages

set at V* to derive sufficient conditions for stability in Q of the form:

V*2 > f(n)PR (3.55)

where V* is the cutoff voltage of the loads and f (n) is a monotonically increasing function

in n.

The final step to ensure system stability is to ensure that dynamic equilibria do not

occur. We first presented a brief overview on the formation of dynamic equilibria. Next,

under the condition that cutoff voltages are non-decreasing with distance from the load,



we demonstrated how systematic steady-state analysis may be used to derive sufficient

conditions to ensure that dynamic equilibria are prevented from occurring. In particular,

we applied steady-state analysis to regular ladder networks with cutoff voltages set at L to

derive sufficient conditions to avoid dynamic equilibria:

V2 > g(n)PR (3.56)

where g(n) is a monotonically increasing function of n that is dependent on the cutoff

voltage. The results for n > 3 are only sufficient conditions. In contrast, the result for

n = 2 is a necessary and sufficient condition.

Finally, we put both pieces of the puzzle together for regular RCP-ladder networks

and conclude that if conditions given in (3.55) and (3.56) are simultaneously satisfied by

a ladder network with one known static equilibrium, that equilibrium is guaranteed to be

the globally stable and unique equilibrium and the system is stable. Empirically, it was ob-

served that the condition (3.56) tends to supersede condition (3.55) and that the coefficients

for both conditions are close to within an factor of 2 for networks of order less than 15.



Chapter 4

Computing Equilibria for a Network

From earlier discussions that any arbitrary RCP-tree network can be modeled as a gradient

system, we know that the state of any system will eventually settle down at an equilibrium

point within the region W, where 0 < vi < V for i = 1,..., n. Hence, it is imperative in

the study of system stability to be able to compute the equilibria for a given system. We

present in this chapter a survey of the methods that can be employed to obtain both the static

and dynamic equilibria of an RCP-tree network. We also introduce an aggregated-model

approximation that allows us to approximate the steady-state behavior of a higher-order

system with a first-order network.

4.1 Static Equilibria

4.1.1 Direct Numerical Solution

From the properties of gradient systems as presented in Section 2.2, we know that we

can obtain the operational equilibria of the system by finding solutions to the system of

equations
dE,
dv (v) = 0 (4.1)dv

__



where v is assumed to lie in P, the region of R" such that V* < vk < V for k = 1,... , n.

Each equation in the system will be quadratic in vi, i = 1,..., n. By recursively perform-

ing substitutions, we eventually end up with a 2nth-order polynomial equation in vi. A

numerical package like Maple V [5] can then be employed to solve for the roots numeri-

cally. In general, it will be true that most of the roots thus obtained will be complex and

can hence be ignored. We then substitute the real roots obtained to produce a set of new

equations of order 2n - 2 on another variable vj, j = i.

Recursive numerical root finding and substitution will eventually produce several sets of

solutions. Substitution of these sets of solutions into the original system described by (4.1)

will allow us to eliminate the inadmissible solutions generated by the squaring operation.

Also, we can use the fact that any equilibrium must satisfy the condition that nodal voltages

are monotonically decreasing with distance from the source, i.e. V > vl > v2 > ... > vn,

to prune away intermediate results. We can also use the fact that v E 1, to eliminate

the solutions incompatible with the cutoff voltages. This procedure is demonstrated with

examples in Appendix C.

It should be clear at this point that the static equilibria for the system outside P can be

obtained in a similar fashion. In general, to obtain all the static equilibria of an nth-order

system involves computations for 2" regions. However, if the cutoff voltages of the loads

are equal, all the static equilibria must occur in P (see Section 3.3.1) and we can avoid this

extra work.

For a second-order system, it is also possible to find the equilibria graphically by plot-

ting the curves defined by (4.1); the resulting equilibria may then be characterized graphi-

cally with a field plot. This method is good because it also provides us with some insight

into the dynamic evolution of the system as well. Appendix C contains examples of such

plots obtained with Maple V. For higher-order systems, the most practical method of char-

acterizing the equilibria obtained is to evaluate the Hessian of the energy function at the

equilibrium and test it for positive and negative definiteness.



4.1.2 Small-Resistance Approximation

Under normal operating conditions, a typical network will generally have a stable oper-

ational equilibrium. Under certain conditions, it is possible to obtain a reasonably good

approximation of the stable equilibrium. More specifically, if the resistances in the net-

work are small relative to the source voltage and the power ratings of the constant-power

loads, a "Small-Resistance Approximation" may be made. The following example will

illustrate this point.

Second-Order System

P2

Figure 4-1: Second-order system.

For the second-order system shown in Figure 4-1, if the resistance R2 is small relative

to the supply voltage V, the voltage drop across R2 will be small. Hence, vl - v2. With

this assumption,

Hence,

PI P2
il i2

P2 .
i2 •1 •1

(4.2)

(4.3)

Since the current il + i2 flows through R 1,

vl = V - (il + iz)R1

P1  = ilvi

= il(V - (il + i2)R1)

(4.4)

(4.5)

(4.6)



Sii(V -(1 + P-)iR) (4.7)

We can rewrite (4.7) as

(1+ P2)Ri -2 Vii + P1 = 0 (4.8)

Applying the quadratic formula, we obtain

il =

V - V2 - 4(P1 + P2)R1
2(1 + -- )R1 (4.9)

which we call a first-guess equation. Now that we have an approximation for il, we con-

sider the next node to obtain

V2 = vl - i 2R 2

= V - (il + i2)R1 - i 2R 2

= V- ilR1 - (Ri + R 2)i2

P2 = i2v 2

= i2 (V - ilR 1 - (R 1 + R 2)i 2)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Now we rewrite (4.14) as

(4.15)

Finally, we have

(V - ilR1) - (V - i )Ri)2 - 4(Ri + R2)P2
(4.16)

2(R1 + R2 )

Once we find il and i2, we have effectively solved for vl and v2 since P1 = ilvl and

P2 = i2v2 . Applying the above results to a case where all resistances and loads are equal:

(R1 + R2)i2 - (V - ilR1)i2 + P2 = 0



V = 90V, Ri = R 2 = 2Q and P1 = P2 = 100W, we obtain

vl = 85.311V, v2 = 82.826V

We can compare these results with the results obtained by solving for the equilibrium nu-

merically in Section C. 1, which are

vl = 85.23889858V, v2 = 82.82414376V

Actually, we can do even better than this. We can substitute the numerical result ob-

tained with (4.16) back into (4.6) to obtain an even better approximation for il. We rewrite

(4.6) as

R li2 - (V - i2R,)i 2 + P1 = 0 (4.17)

Finally, we have
(V - i 2 R1) - V(V - i2R1 ) 2 - 4R 1 P1  (4.18)

il = (4.18)2R,
With this further iteration, we obtain

vl = 85.239V, v2 = 82.826V

In fact, it should be apparent now that we have an initial guess and an iterative algorithm for

computing il and i2 and hence indirectly vl and v2. A further iteration for i2 with Equation

(4.16) yields

vl = 85.2390V, v2 = 82.8241V

We refer to (4.16) and (4.18) as iterative equations. Notice that we have arrived at an

accuracy of 5 significant figures within two iterations.

Third-Order System



P3

Figure 4-2: Third-order system.

Now we repeat the procedure with the third-order ladder shown in Figure 4-2. Given

that vl - v2 " v3 because the resistances R2 and R3 are small, we obtain the following

first-guess equations:

V - /VV2-4(P + P2 + P3)R1  (4.19)il = (4.19)2(1 + + ))Rj
V - i 1- R - (V - )2  4(P1 + P2)(R 1  R 2) (4.20)

i2 = (4.20)2(1 + ) (R 1 + R 2)

The following are the iterative equations for il, i2 and i3

i= V- - 4P1 R1  (4.21)
2R1

V2- V2,2 - 4P21(R + 2R
i2 V2 - 2 - (R 2) (4.22)2(R1 + R2)

i3 V3' - V2 - 4P 3 (R + 2 + R) (4.23)
2(R1 + R2+ R3)

where

V1' = V- (i2 + i)R 1  (4.24)

V2 = V - (i + i3)R 1 - i3 R 2  (4.25)

V' = V - (i + 2 )R -i2 R 2  (4.26)

The details for the derivations of these equations are found in Appendix D.

Applying the above results to a case where all resistances and loads are equal: V =



90V, R 1 = R2 = R3 = 2Qi and P1 = P2 = P3 = 100W, we obtain the following solution

after two iterations:

vl = 82.28900156V, v2 = 76.99294897V, v3 = 74.29875511V

We compare these results with that obtained in Section C.2:

vl = 82.27967469V, v2 = 76.99008334V, v3 = 74.29822913V

In general, to derive the first-guess and the iterative equations, we first divide the set

of currents drawn by the loads into two sets: one set with known values and one set with

unknown values. Next, we consider one current loop at a time and model it as a first-order

network. The "known" set has a Source Voltage Reducing Effect while the "unknown" set

has a Resistor Multiplying Effect on the result. Once we obtain the equivalent first order

network, we have effectively derived the required equation. An example to illustrate this

process is given in Appendix D.

Robustness and Convergence

In order to examine the robustness of the above algorithm, we repeat the above process

with a range of different values for R 1 and R2, especially for rather large values of R2.

Table 4.1 lists the results for various values of R 1 and R 2, as well as results when P1 , P2

and V are varied. The approximations listed are obtained after two iterations.

Table 4.2 shows the convergence for the algorithm on a third-order system where all

resistances and loads are equal: V = 90V, R1 = R2 = R3 = 2Q and P1 = P2 = P3 =

100W. The results from direct numerical solution obtained in Section C.2 are

vl = 82.27967469V, v2 = 76.99008334V, v3 = 74.29822913V



Table 4.1: Table of Approximation Results for a Second-Order System

Exact Exact Approx. Approx.
R 1 R 2  P1  P2  V vl v2 vl U2
1 1 100 100 90 87.7044 86.5490 87.7044 86.5490
1 2 100 100 90 87.6879 85.3444 87.7200 85.3449
1 4 100 100 90 87.6517 82.8221 87.7200 82.8230
1 8 100 100 90 87.5626 77.1999 87.7200 77.2023
1 10 100 100 90 87.5057 73.9904 87.7200 73.9939
1 12 100 100 90 87.4356 70.3870 87.7200 70.3920
1 14 100 100 90 87.3444 66.1947 87.7200 66.2021
1 16 100 100 90 87.2133 60.9715 87.7200 60.9837
1 18 100 100 90 86.9634 53.0032 87.7200 53.0338

2 2 50 100 90 86.4650 84.0865 86.4650 84.0865
2 2 100 100 90 85.2390 82.8241 85.2389 82.8241
2 2 200 100 90 82.6668 80.1720 82.6667 80.1720
2 2 300 100 90 79.9046 77.3176 79.9043 77.3175
2 2 500 100 90 73.5848 70.7571 73.5834 70.7568
2 2 650 100 90 67.7072 64.6085 67.7028 64.6072
2 2 800 100 90 60.0000 56.2182 59.5686 55.9970

2 2 100 50 90 86.5166 85.3449 86.5166 85.3449

2 2 100 100 90 85.2390 82.8241 85.2389 82.8241
2 2 100 200 90 82.3928 77.2114 82.3920 77.2114

2 2 100 300 90 78.9528 70.4282 78.9473 70.4280

2 2 100 400 90 77.0156 61.3035 74.2190 61.1327

2 2 100 100 75 69.0769 66.0485 69.0766 66.0485

2 2 100 100 90 85.2390 82.8241 85.2389 82.8241

2 2 100 100 110 106.1989 104.2809 106.1988 104.2809

2 2 100 100 130 126.8260 125.2289 126.8260 125.2289

2 2 100 100 150 147.2712 145.9004 147.2712 145.9004



Table 4.2: Demonstration of Convergence

Error in Error in Error in
Vl V2 V3 Vl V2 V 3

1 82.74917217 77.22351918 74.33132085 0.46949748 0.23343584 0.03309172
2 82.28900156 76.99294897 74.29875511 0.00932687 0.00286563 0.00052598
3 82.27979473 76.99012810 74.29823648 0.00012004 0.00004476 0.00000735
4 82.27967626 76.99008376 74.29822919 0.00000157 0.00000042 0.00000006
5 82.27967422 76.99008352 74.29822913 -0.00000047 0.00000018 0
6 82.27967490 76.99008311 74.29822913 0.00000021 -0.00000023 0
7 82.27967490 76.99008311 74.29822913 0.00000021 -0.00000023 0

It is interesting to note that the algorithm converges to a solution which differs from the

solution obtained with direct numerical solution in the last two decimal places. It is likely

that the error is due limited floating point precision. The error convergence is reproduced

in graphical form in Figure 4-3. From the figure, it is apparent that the rate at which the

error converges is approximately 2 orders of magnitude per iterative cycle.

It should be noted here that we do not have a proof that this algorithm always converges

when a real solution exists. Empirically, it was found that when a real solution does not

exist, one of more of the expressions under the square root signs in some of the first-guess

or iterative equations will turn out be be negative.

Finally, the derivation of the results above also yields a necessary condition for oper-

ational equilibria to exist. As an example, consider the second-order example shown in

Figure 4-1. Given that a stable operational equilibria does indeed exist for the system, it is

obvious that the first-guess for il, as given in (4.9), is a lower bound on the actual opera-

tional current. Hence, ii must be real and so the expression under the square root sign in

(4.9) must be non-negative. So,

V 2 > 4(P1 + P2)R 1  (4.27)

In general, we can conclude that an operational equilibrium can exist for an nth-order
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Figure 4-3: Error convergence.

ladder network only if

V 2 > 4(E Pn)R1  (4.28)
i=1

4.1.3 Approximation Using Aggregated Models

Th6venin and Norton models are extremely useful for analyzing resistive DC circuits. This

section proposes two aggregated models for modeling simple second-order RCP configu-

rations. The studied series and parallel configurations are shown in Figures 4-4 and 4-5

respectively. Essentially, we would like to find a first-order network as shown in Figure 4-6

which approximates these configurations in terms of steady-state behavior and loosely in

terms of dynamic behavior.

Assumptions

Unlike the Thevenin and Norton models, the nonlinearity in these circuits make it impos-

sible for two RCP networks of differing order from being exactly equivalent, but under the

following assumptions, we can obtain rather good approximations:



* The voltage drops across resistors R 1 and R2 are small compared to the voltage

source. This condition ensures that the power dissipation in the aggregated model is

close to the power dissipation in modeled configuration. This is the most important

assumption in the derivation of the results for the models.

* The cutoff voltage for both constant-power loads are equal, or at least very close, i.e.

Vj* - V2*. This condition ensures that both loads will turn on at approximately the

same time.

* Time constants (R 1C1 and R2C2 in the parallel case; R1C1 and (R1 + R2)C 2 in

the series case) are of similar magnitude. This condition supplements the above

condition to ensure that both loads will turn on at approximately the same time. With

widely differing time constants, one load would turn on before the other.

* The voltage source is a low frequency source.

If the above conditions are satisfied, the following aggregated models are reasonably good

first-order approximations for the total steady-state current drawn from the source, the total

power dissipation and transient rise times. A detailed evaluation of these models with some

worked examples is given in Appendix E.

Series Model

The assumptions above imply that V n vl - v2 . Hence, the currents through P1 and P2

respectively are -P and P. It is intuitively reasonable to assume that P' in the aggregated

system is the sum of P1 and P2. Similarly, we assume a small voltage drop across the

resistor in the aggregated system so i' = . Now, we try to match the power dissipation

through the resistances:

(il + i2) 2R +i2 R 2  i'2R (4.29)
P1  P2 P2 P + P2 2

V V V V



R' = R + (4.31)
(P1 + P2)2

Hence, the approximation of the second-order series configuration in Figure 4-4 by the

first-order configuration shown in Figure 4-6 yields the following parameters:

R2P,2R' = R + 2  (4.32)
(P1 + P2)2

C' = C1 +C2 (4.33)

P' = P1 + P2  (4.34)

Since the cutoff voltages of the two original loads are equal, the resultant cutoff voltage of

the aggregated model is taken to be the same as that for the two original cutoff voltages.

Parallel Model

By matching power dissipation in the resistors of the second-order system to that in the

first-order aggregated model, we obtain the approximation of the second-order parallel

configuration as shown in Figure 4-5:

R' R + R2P2 (4.35)
(PI + P2 )2

C' = C+ C2 (4.36)

P' = P1 + P2  (4.37)

As above, the resultant cutoff voltage of the aggregated model is taken to be the same as

that for the original loads.

Application

By repeated application of the series and parallel models, it is possible to reduce any arbi-

trary higher-order RCP-tree network into a first-order network, which is relatively easy to



Figure 4-4: Second-order series configuration.

Figure 4-5: Second-order parallel configuration.

solve. With this first-order approximation, the resultant simple system is solved to produce

an approximation for the total current drained from the source. This value is then used to

compute the resistive drop across the resistor closest to the load in the original network to

estimate the voltage of the node nearest the source. Next, we then repeat the above process

by considering the original network with the source removed and the first load replaced

by a voltage source of value equal to the obtained estimate. Eventually, we will obtain

approximations to all the nodal voltages for the original network. Simple examples of this

procedure performed on second-order and third-order networks are given in Appendix E.

Iterative equations, as described in Section 4.1.2, may be employed to further reduce

the error. Overall, this technique is useful to obtain a quick back-of-the-envelope estimate

for the total current drained from the source, as well as the first-order rise times for the
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Figure 4-6: Aggregated model.

system during network design.

4.1.4 Iteration and Circuit Simulation

We can also compute equilibria using computer software like a spreadsheet that support

iterations (such as Microsoft@ Excel) or a general purpose circuit simulator (such as

PSPICE®). For a spreadsheet, the solution can be found simply by defining the nodal

voltages and currents in cells and then letting the system converge to a solution; for a cir-

cuit simulator, we simply define the circuit with its initial conditions and let the software

perform the simulation.

There are two main drawbacks for these methods: firstly, given an arbitrary system,

we cannot tell if the program will converge to a solution; even if convergence occurs,

we cannot systematically guaranteed that all possible equilibria are found. Empirically, it

was found that a spreadsheet will always tend to converge on an operational equilibrium

when it exists. On the other hand, the solution that a circuit simulator will converge to is

dependent on the chosen initial conditions. The other problem is that we will not be able to

find unstable equilibria since it is not likely that simple iterative methods will converge on

them. In fact, this problem is common to both the methods described in the previous two

subsections as well. It seems likely that direct numerical solution is the only feasible way

to find such equilibria.

Finally, it must be commented that in the event that we are only interested in solving

for one operational equilibrium and we need to do this for several systems with the same



layout but different parameter values, a spreadsheet may actually be the most convenient

and efficient way for doing so, if it converges to the required solution. Most of the other

methods require much more book-keeping.

4.2 Dynamic Equilibria

The set of analytic equations which define a dynamic equilibrium is exactly that defined

in (4.1) with some equations replaced by constant-voltage constraints. Overall, the task of

computing dynamic equilibria is no different from that for static ones once these constraints

are recognized.

To obtain all possible equilibria, we would essentially have to solve (4.1) once for each

of the 2n possible permutations of constraints imposed by different subsets of the loads

operating in the metastable region. Fortunately, in practical situations, we usually deal with

networks where all the loads have the same cutoff voltage. It can be shown easily that the

direction of current flow in equilibrium is fixed, so if the cutoff voltages are monotonically

non-decreasing with distance from the source, any load that is downstream of a load in

cutoff must also be in cutoff (see Section 3.4.2). This reduces the number of cases that we

have to examine to a polynomial number.

Once we know the constraints, we can either solve for the equilibria numerically in

a manner similar to that described in Section 4.1.1, or use software like a spreadsheet or

circuit simulator, as described in Section 4.1.4. For a spreadsheet, this simply involves

setting certain the voltages at constrained nodes equal to the cutoff voltage of the load at

the node; for a circuit simulator, it simply involves replacing the each constrained load with

a voltage source.

After we have obtained the solutions to the constrained system mentioned above, we

identify dynamic equilibria by checking the currents entering the voltage-constrained nodes

for each solution obtained. The dynamic equilibria are the solutions where the currents



drawn by the loads do not exceed the maximum current capacity of the loads at the corre-

sponding nodes. If none of the solutions satisfy this last condition, then dynamic equilibria

do not exist for the system.



Chapter 5

Network Design

In this chapter, we attempt to reconcile the theoretical results from the previous chap-

ters with the actual process of designing a network. We discuss some important issues

in network design and then proceed to evaluate our theoretical results in the context of a

broadband power network. In particular, we examine a proposed series model in detail and

evaluate our conditions for guaranteed stability. Also, we discuss the effectiveness of the

aggregated-model approximation as a means for estimating total operational current and

power dissipation. Finally, we evaluate the merit of choosing 3 as the cutoff voltage.

5.1 Background

The fundamental goal in the design of a broadband power network is to guarantee that the

network is functional when powered up, i.e. when the source turns on, all the constant-

power loads get turned on after a finite-length transition period. More specifically, we want

to ensure that there exists a stable and desirable operational equilibrium. Furthermore, we

want to guarantee that the network will reach this equilibrium point from zero initial con-

ditions. There is also a fundamental constraint on the total current drawn by the network,

since a practical power source can only supply a finite amount of current.



Given that the above conditions are satisfied, other conditions are sometimes imposed.

For example,

* minimization of power dissipation by parasitic resistance in the conducting cables,

* minimization of cable length,

* minimization of total costs (cable costs + energy costs), and

* minimization of total current drawn from the source.

Ultimately, these are only secondary issues, so this chapter focuses on the main design

concern of ensuring system stability and evaluates a network design in this light. We will

assume for the purposes of this thesis that the current-limiting constraint on the source can

always be satisfied.

One last practical consideration is that constant-power loads are mass-produced with

identical power ratings and cutoff voltages. Resistances may vary according to the cable

length and type. As mentioned previously, ladder networks are of particular interest since

bus-type architectures are commonly implemented.

In essence, network design is the process of making compromises among a variety

different factors that are often conflicting. It is clear from the results presented in previous

chapters that by increasing the supply voltage and the cutoff voltages, we can give stronger

guarantees on the stability of the resultant system. Unfortunately, the voltage of the power

source is often limited by safety regulations that prohibit the voltage from exceeding a

certain fixed limit. Also, since voltage falls monotonically along the network, the size of

a network is limited by the cutoff voltage. In practical terms, having a high cutoff voltage

provides better stability properties, but limits the range of the network, while having a

low cutoff voltage increases the maximum range, but possibly at the expense of system

stability. Similarly, it is clear that it is possible to increase the range of a network by

reducing the resistance in the cables. However, this involves the use of thicker cables,

which will increase the total cost of laying the network.



5.2 Benchmark Model for a Practical Broadband Power

Network

A benchmark model of a broadband power network as proposed by the engineers at Lucent

Technologies is shown in Figure 5-1. In this model, a string of identical Optical Network

Units (ONUs) arranged in series are powered by a single power node. The distances be-

tween ONUs are identical and equal to d; the distance between the power node and the first

ONU is d2

Figure 5-1: Schematic for practical series broadband network layout.

We assume that the cable carrying the power from the power node to the ONUs is of

the same type throughout the network and of uniform resistance per unit length. Hence, a

circuit model for the network is shown in Figure 5-2. The cables between the ONUs are

modeled as resistors and the ONUs themselves are modeled as constant-power loads.

P

Figure 5-2: Practical model for broadband network.



5.3 Stability Conditions

In Chapter 3, by analyzing the static and dynamic equilibria of a system, we discussed

methods that can be used to derive sufficient conditions for stability. In this section, we

apply these results for the RCP-ladder network modeled by the circuit shown in Figure 5-2.

5.3.1 Static Equilibria

If we apply the results of Section 3.3 to the network in Figure 5-2, we can obtain condi-

tions on the cutoff voltage that guarantee the uniqueness and stability of the operational

equilibrium, in much the same way as that for regular networks.

As before, a sufficient condition for an nth-order network with the configuration shown

in Figure 5-2 to have only one stable static equilibrium in P , the region of R~ such that

V* < vk < V for k = 1,..., n is of the form:

V*2 > f(n)PR (5.1)

where V* is the cutoff voltages of the loads. The coefficients, f (n), are shown in Table 5.1.

5.3.2 Dynamic Equilibria

In a similar manner, we repeat the analysis in Section 3.4.2, assuming a cutoff voltage of

v-, where V is the source voltage, to obtain the following sufficient condition to ensure that

dynamic equilibria do not occur:

V 2 > g(n)PR (5.2)

With some algebra, we obtain

g(n) = h'(n) + 2 + h'(n)2 + 16h'(n) + 48 , forn > 3 (5.3)



Table 5.1: Cutoff Voltage Coefficients for Broadband Power Network Model (Static Equi-
libria)

Order, n
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

f(n)
0.5000000
1.7071069
3.7320508
6.5685356
10.2158646
14.6738702
19.9424954
26.0217174
32.9115239
40.6119094
49.1228718
58.4444074
68.5765134
79.6444671
91.2724465

where h'(n) = n2 - 6. Values of g(n) for n = 1,.. ., 15 are given in Table 5.2.

Also given in Table 5.2 are the corresponding values of the coefficient sufficient for

ensuring that there can exist only one stable operational equilibrium (see equation (5.1)).

It should be noted here that the sufficient condition on V to ensure that dynamic equilibria

do not occur is more stringent than that which is sufficient to guarantee the uniqueness and

stability of the operational equilibrium.

5.4 Application of Results

5.4.1 Guaranteeing Stability

We can summarize the results from Section 5.3 in the following way: if an RCP-ladder

network of the form shown in Figure 5-2 with the cutoff voltages of its loads set at L is



Table 5.2: Cutoff Voltage Coefficients for Broadband Power Network Model (Dynamic
Equilibria)

Order, n g(n) 4f (n)
1 2.000000 2.000000
2 7.291503 6.828428
3 17.246951 14.928203
4 31.549929 26.274142
5 49.702060 40.863458
6 71.788887 58.695481
7 97.842895 79.769982
8 127.878676 104.086870
9 161.903558 131.646096
10 199.921539 162.447638
11 241.934942 196.491487
12 287.945195 233.777630
13 337.953210 274.306054
14 391.959592 318.577868
15 449.964755 365.089786

known to have an operational equilibrium, and the condition

V 2 > max(g(n), 4f(n))PR (5.4)

is satisfied, the given operational equilibrium is the unique and globally stable equilibrium

of the system. The system will eventually end up at this equilibrium in steady state starting

from any initial conditions.

Next, we consider the network shown in Figure 5-2 with the following parameter val-

ues: V = 90V, V* = 45V, d = 240' and P = 100W. The resistance per unit length of the

cable is 1.9 mQ/foot, so R = 0.456Q. With these parameter values, we obtain

V2
-- = 177.63

PR
(5.5)

Comparing this value with the coefficients in Table 5.2, we find that we can guarantee that

any network of order 9 or lower will be stable, provided that an operational equilibrium



Table 5.3: Steady-State Voltages and Currents for 9th-order System

Node, k Vk ik it,k
1 87.10 1.15 12.72
2 81.82 1.22 11.58
3 77.10 1.30 10.35
4 72.97 1.37 9.06
5 69.47 1.44 7.69
6 66.62 1.50 6.25
7 64.45 1.55 4.75
8 63.00 1.59 3.19
9 62.27 1.61 1.61

exists.

It is found that operational equilibria exist for systems with these parameters up to

the 10th order. This computation was performed with a spreadsheet as described in Sec-

tion 4.1.4. The nodal voltages and currents for a 9th-order system and a 10th-order system

are found in Tables 5.3 and 5.4 respectively, where vk is the voltage of the kth node and ik

is the total current flowing through the kth resistor. From these results, it comes as no sur-

prise that the sufficient conditions we derived cannot guarantee stability for the 10th-order

system, since the voltage of the last node dips to a mere 49.02V, which is just 3.02V higher

than the cutoff voltage. On the other hand, the last node for the 9th-order system is some

17.3V higher than the cutoff voltage.

One possible design decision is to replace the cable with a thicker one so that the resis-

tance is lower. In the above example, the results from Table 5.2 suggest that if we want to

guarantee stability for a 10th-order network, we should pick

R < 0.405SQ (5.6)

Effectively, this implies that if we replace the present cable with a new type that has a

resistance per unit length less than 1.69 mQ/foot, we can again guarantee stability.



Table 5.4: Steady-State Voltages and Currents for 10th-order System

Node, k vk ik it,k
1 86.21 1.16 16.62
2 79.16 1.26 15.46
3 72.69 1.38 14.20
4 66.84 1.50 12.82
5 61.68 1.62 11.32
6 57.25 1.75 9.70
7 53.63 1.86 7.96
8 50.85 1.97 6.09
9 48.97 2.04 4.12
10 48.02 2.08 2.08

5.4.2 Estimating Operational Current Load and Power Dissipation

It was mentioned in Section 4.1.3 that aggregated models may be used to provide back-of-

the-envelope calculations for the total current drawn from the power source by the network

in equilibrium. We will evaluate the effectiveness of the approximate model for the network

shown in Figure 5-2.

We find that we can approximate an nth-order network with the first order network

shown in Figure 5-3 by successive application of the series aggregate model. With some

algebra, we obtain the following parameters:

Rn

P,

2n 2 + 1
6n

= nP

(5.7)

(5.8)

(5.9)Cn = nC

With this, we conclude that

V - /V 2 - 8(2n2 1+) PR
S"6
2n 2+1 T

3n
t est = (5.10)



i

Pn

Figure 5-3: First-order aggregated-model approximation.

Table 5.5: Steady-State Currents and Aggregated-Model Estimates

Order, Fractional Fractional
n it,n lest Error nimax Error
1 1.114256 1.114256 0.000000 2.22222 0.994354
2 2.241349 2.241311 -0.000017 4.44444 0.982933
3 3.395345 3.394975 -0.000109 6.66667 0.963473
4 4.593119 4.591302 -0.000396 8.88889 0.935262
5 5.856816 5.850362 -0.001102 11.11111 0.897125
6 7.218385 7.199149 -0.002665 13.33333 0.847135
7 8.729326 8.676949 -0.006000 15.55556 0.781988
8 10.486231 10.346575 -0.013318 17.77778 0.695345
9 12.723293 12.322140 -0.031529 20.00000 0.571920
10 16.619012 14.858297 -0.105946 22.22222 0.337157

Table 5.5 compares the estimates made with the aggregated model with the actual cur-

rents drawn. Here, it,n is the actual total current drawn by an nth-order network and iest

is the estimate of the current drawn by an nth-order network using the aggregated-model

approximation; nimax is a naive estimation of the current drawn, obtained by simply mul-

tiplying the maximum current drawn by a load (imax) by the total number of loads.

From the results in Table 5.5, it is apparent that although the aggregated-model ap-

proximation tends to underestimate the total current drawn, it does give a reasonably good

estimate. In fact, it is good to within 3% up to the 9th-order network. If we follow the

above design guidelines and limit the network to 9th-order, we have a very simple but good

method for estimating the total current. It is also apparent from the table that the naive

estimate obtained by simply multiplying the maximum current capacity of the loads with



the total number of loads is very bad.

Since the power dissipated by the network is intrinsically equal to the power drawn

from the source, Vi, and V is fixed, the power dissipated is totally dependent on the current

drawn. This means that the error in the estimation of power dissipation using the aggregated

model is identical to the error in the estimation of the current. Since we have shown above

that the estimation of the current drawn is good, we conclude that the estimation of power

dissipation is equally good, i.e. the error is to within 3% for a network with up to 9 loads.

5.5 Varying the Cutoff Voltage

It is clear from Table 5.1 that, given the parameter values above, the minimum cutoff volt-

age that we know will guarantee the uniqueness and stability of the operational equilibrium

for a 10th-order system is given by

V* > 43.0337V (5.11)

The natural question is then: is it possible to do any better if we can vary the cutoff

voltage of the load, instead of fixing it at 3. In order to find the coefficients for a cutoff of

aV, we need to solve

PR 2PR V PR
(V - h'(n) )( + 2) > 8( )2 + 2V 2 + (6a + 1)PR (5.12)2aV V 2 V

where h'(n) = n2 - 6 for n > 3. From here, it is quite straightforward to obtain

+ n
(n) 6a - 1 + (n)+ (6a - 1 + (n) 2 + 4a(1 - a)(8 + h'(n)

g (n) =2 2( - ) (5.13)

With (5.13), we proceed to minimize g,(n) over a for each value of n. The results are

shown in Table 5.6. From this table, it is clear that the coefficient obtained with a cutoff of



Table 5.6: Minimization of Coefficient g,,(n).

Order, n 90.5 (n) mina g, (n) a aV
3 17.246951 15.980833 0.35808172 32.227
4 31.549929 30.964361 0.43116569 38.805
5 49.702060 49.351048 0.45782074 41.204
6 71.788887 71.552601 0.47126013 42.414
7 97.842895 97.672305 0.47910339 43.119
8 127.878676 127.749479 0.48409902 43.569
9 161.903558 161.802212 0.48748635 43.874
10 199.921539 199.839864 0.48989177 44.090
11 241.934942 241.867692 0.49166262 44.250
12 287.945195 287.890918 0.49300460 44.370
13 337.953210 337.905272 0.49404615 44.464
14 391.959592 391.918350 0.49487085 44.538
15 449.964755 449.928877 0.49553509 44.598

I is very close to the optimal solution for n > 5. Hence, a cutoff of V is a good choice.

5.6 Summary

In this chapter, we applied the results from Chapters 2 and 3 on a proposed RCP-ladder

network to produce a set of sufficient conditions to guarantee system stability. We then

showed how these sufficient conditions may be used as a guide for network design.

We also investigated the use of the series aggregated model for the approximation of

the total operational current load on the source as well as the total power dissipated. The

estimate obtained was found to be reasonably good.

Finally, we concluded that is a good choice for the cutoff voltage. Although we can

sometimes do a little better with a slightly lower cutoff voltage, the improvement in the

results obtained is numerically insignificant.





Chapter 6

Conclusion

In this thesis, we demonstrated that an RCP-tree network satisfying a set of layout con-

straints can be modeled as a modified gradient system with non-differentiable boundaries,

but a continuous energy function En (v). We showed that even though the gradient is dis-

continuous across these boundaries, the dynamic behavior of the system on a boundary is

governed by the limiting behavior on both sides of the boundary. The net effect is that as

long as the state of the system is confined to a discontinuous boundary, its dynamic be-

havior is determined by a reduced set of state equations, which can in turn be expressed

as a lower-order gradient system. Hence, the energy function E,(v) can be shown to be

monotonically decreasing with time as long as the system is not in equilibrium.

We also established that all equilibria in the system must be contained within W, the

region of R" such that 0 < vi < V for i = 1, ... , n, and cannot occur on the upper or lower

boundaries, i.e. where vk = 0 or vk = V for some node k. We showed that the system

must eventually settle down at an equilibrium, and that the bounding box for the state of

the system is positive-invariant. As a result, by studying the static and dynamic equilibria

of a system in detail, we were able to derive simple sufficient conditions to guarantee that

the system ends up at a desired stable equilibrium.

In particular, for a regular RCP-ladder network where all resistances, all capacitances



and all loads are identical, we found sufficient conditions to ensure the uniqueness and

stability of an operational equilibrium. This was done by evaluating the Hessian of the

associated energy function and ensuring that it is positive definite in the region of interest.

In addition, for the same network, we found sufficient conditions that ensure that dynamic

equilibria cannot occur. From these two results, we concluded that a sufficient condition to

guarantee stability for an nth-order regular RCP-ladder network is

V 2 > g(n)PR (6.1)

where g(n) is a monotonically increasing function with n that is determined by the chosen

cutoff voltage.

We introduced two aggregated models that allow us to approximate quite accurately,

with a first-order network, the steady-state behavior of a high-order network. In the same

way that Th6venin and Norton models are used to replace complex resistive DC circuits

with simpler equivalent circuits, our aggregated models allow us to recursively reduce a

higher-order RCP-tree network into a simpler network which has the same approximate

steady-state behavior if certain conditions are satisfied.

Finally, we applied the derived sufficient stability conditions to a benchmark model for

a broadband power network to demonstrate how these sufficient conditions may be used as

a guide for network design. The model we used was proposed by the engineers at Lucent

Technologies. The series aggregated model was applied to the network to approximate the

operational current load on the source as well as the total power dissipated. The estimate

obtained was found to be reasonably good. With a little analysis, it was also found that _2

is a good choice for the cutoff voltage.

In conclusion, we have answered several important questions regarding the design of

broadband powering network and we have acquired a deeper understanding of both the dy-

namic and static behavior of RCP-tree networks. However, even more interesting questions

which demonstrate potential for research into this field have been raised in the process.
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6.1 Future Work

In our model of the constant-power load, there is an implicit assumption that there is no

hysteresis in the cutoff voltage. This assumption is crucial in our analysis of dynamic

equilibria. It would be good to know how our results would change for an RCP-tree network

in the case where there is hysteresis in the cutoff voltage. Adding hysteresis to the model

of the constant-power load would undoubted cause the analysis to become more complex.

More importantly, it is still unclear how the hysteresis should be modeled.

We have found sufficient conditions that ensure that a given RCP-tree network will end

up at a desired equilibrium, independently of its initial conditions. However, it is sometimes

possible to exert limited control over the intermediate states of a system. For example, a

given RCP-tree network can be powered up in stages. As such, it is conceivable that the

conditions sufficient to ensure that the network will end up at the desired equilibrium can

be made less stringent. The questions of interest here include the following: what are the

implications of a multi-stage powering scheme? Is it possible to quantitatively obtain some

sufficient conditions for stability in such a situation? It is clear that such a scheme would

impose a cost in terms of addition control and monitoring required, but would the additional

cost incurred offset the benefits derived?

At a more practical level, it would be valuable to understand how we can design net-

works which would minimize one or more of the following factors:

* power dissipation by parasitic resistance in the conducting cables,

* cable length,

* total costs (cable costs + energy costs), and

* total current drawn from the source,

without compromising stability. The nonlinearity of the problem makes optimization using

traditional mathematical techniques particularly difficult [1]. It would be interesting to
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know if the aggregated approximation models proposed may be applied in some way to

these problems.

Several methods for obtaining static and dynamic equilibria were presented in Chap-

ter 4. Of these, the direct numerical method is evidently the most reliable. Unfortunately,

it is extremely cumbersome and it would be impractical to use it to compute the equilibria

for a large network. Although the iterative methods are easier to program and more conve-

nient, we do not yet understand the convergence properties of such methods. It would be

extremely helpful in network design to have a good iterative algorithm that is guaranteed

to converge in a finite number of steps, if an equilibrium does exist. It would also be useful

to have a simple method for determining the existence of static equilibria in a given system

that does not require too much explicit computation.

Finally, another possible research area is the modeling and study of component failure

within an RCP-tree network. For example, it would be useful to analyze the effect of a short

circuit that occurs at a load in the network while the network is in operation. Reliability is

a critical issue for broadband networks, so it is important that isolated component failures

within a network can be contained and do not cause the entire network to fail.
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Appendix A

Detailed Boundary Analysis for

Second-Order System

This appendix contains the detailed analysis for the behavior of a second-order system, as

described in Section 2.3, at the cutoff boundaries v1 = V, and v2 = V,. The following

arguments can actually be applied to the more general case of different cutoff voltages, but

doing so simply makes the analysis more complicated without yielding any more insight.

Also, in practical terms, having the same cutoff voltages for all the loads in the system

is a reasonable assumption since the loads that we have in mind (the ONUs and NIUs

mentioned in Chapter 1) are usually mass-manufactured. We will restrict the region of

interest to one where v,1  v2. The reason for doing so is that when vi < v2, capacitor C2

will discharge and the system is obviously not in equilibrium; eventually, the system has to

end up in a state where v1 > v2.
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A.1 Boundary: vl = V

Considering the currents in the first node when v, = Vc, we obtain

* V-vc v-v 2S- -

R1 R2

We observe that once the system reaches the boundary vi = Ve, it will remain on

this boundary as long as 0 < ii < -. Physically, under this condition Pi operates in

the metastable region and capacitor C1 is prevented from charging or discharging. The

inequality ix < - implies-Vlý

P1 R2 2v2 < PIR±--V2 < + (1 + ) V
Vc RI

2
RV
R1

(A.2)

To see that the system is constrained to move along v1 = Vc when 0 < il -• , consider

d"at v, = Vc - E and at vl = Vc + E:dt

dvl

dt
dv
dt +E

= l(
Ca R,

R1
-- (1 + 2)v1 +

VRI (R,

RH

R2

+ )vl + PIRII)
R2

We find that for vl = V - e, d - > 0 whendt

v2 > (1 + ) Vc
RI

R2- V = k2 < k,
Ri

where k1 = • -2 + (1 + R- )V - 11V. Similarly, for vl = Vc -+, dv- < 0 when
v, Ri R dt

v 2 <
P R2 R2+ (1 + )vc R2V = k

R1
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1
= -(v -

C1Rvi 1

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)



Now, we consider the dynamics for v2. From (2.37) we have

dv2  1
dv2I= = (V -V2)dt I = =C2R2

(A.8)

This implies that =I ,, > 0 when v2 < VC. This gives rise to two possible scenarios, as

shown in Figure A-1.

V1 = Vc

V2 =Yc

-kl

Sk2

V1 = VC

k

V 2 = V c

Figure A-1: Diagram of boundary vl = Vc.

In the scenario where kl > Vc, there is a distinct possibility for the system to get stuck

at v1 = v2 = VC. Hence, to ensure that this does not happen, we require kl < VC, which

implies
P1R1V > - -+vc

V/
(A.9)

A.2 Boundary: v2  Vc

Next, we consider the boundary v2 = V1.

obtain

Considering the currents in the last node, we

(A.10)
vl - Vc

i2 =-
R2
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Again, if 0 < i2 < E, the system is constrained to move along v2 = V,. This condition is

equivalent to
P2 R2V4,<-v < - V( (A 11"•

Now, at v2 = Vc - E and at v2 = V, + c, we have

dv2
|di v2 =Vc-Edt

dv2
dt IV2=Vc+Edt

We find that for v2 = V, - ,- > 0 when

v1 > V,

Similarly, for v2 = Vc + e, t2 < 0 when

P2 R2
vl < + VC = k3

Ve

Since we are considering the situation when vi > v2, we consider - dv 2=y

vl > Ve, which yields

dv 1SCR(v-
dt CiRIIV

VRI (R,
V
R1

1 1

R 1 R 2

Vl <
R1 R2 RI+

V
+ -c)vi

R2
2, - 4( + 1)PI

Again, there are two possible scenarios. From Figure A-2, it is obvious that to ensure that

the system does not get stuck at vl = v2 = Ve, we require that k4 > k3 , which yields after

much algebraic manipulation the stability condition

P2R 1R2V > Vc+
VcRII

(A.19)
P1 R1

+ ___ e
+Vc
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C2R2 (v - 2) and

- (V 2 - V1UV P2R2)
C2R2V2 (2

(A.12)

(A.13)

(A.14)

(A.15)

> 0, for

V
+ c ))vi + PlRII) > 0

R2

+ P1) < 0

(A.16)

(A.17)

(A.18)

c v S.•



where R = RR For the case where V 1 = R = R 2 = R and P1 = P2 = P, thiscondition simplifies to+R2

condition simplifies to

V 4 - 8PRV2 - 32(PR)2 > 0 (A.20)

which gives

V 2 > 4(1 + v)PR (A.21)

Comparing this result with the condition in Section 1.5.2 for stability for a simple first-order

system, namely V 2 > 4PR when the cutoff voltage is E, we notice that the second-order

condition is more stringent, as expected.

L A

- 1
V2 =-V *k3

I
V2 = Vc

IV1 = Vc

Figure A-2: Diagram of boundary v2 = VC.
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Appendix B

Determinant Calculations

This appendix shows the detailed computations for obtaining the determinants of the Hes-

sian for the energy functions of regular ladder networks as described in Section 3.3.3. The

Hessian for the energy function of a regular nth-order ladder network takes the following

form:

d2E
(v) =

v-  R

R

0

0

1
R

- v2 + 2

1
R

0

0 ... 0
-± -.- 0

R 0
K(V3) + 2 .

1 _ K(v)
R v2

(B.1)

where

K(vk) = { vk > V* > 0

vk < V*

Here, R is the resistance of the resistors, C is the capacitance of the capacitors, V is the

supply voltage, V* is the cutoff voltage and P is the power rating of the loads. We are

interested in the case where vk > V*, k = 1,... , n, so for the remainder of this appendix,

there is an implicit assumption that we are dealing with systems where vk > V* holds for

k = 1,..., n.
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We are interested in the determinants of the Hessian because we want to check for

positive definiteness using Sylvester's Test. We define P as the vector subspace of R" such

that V* < vi <_ V for i = 1,..., n. Basically, we are interested in finding the conditions

that will guarantee positive definiteness in P. We make this observation: if d2-E (v) is

positive definite at vi = V*, i = 1, ... , n, then d2 E• (v) is positive definite in P. Let

1
R

P 2

1
R

0

P P

0

0

0 ... 0

1 0-. O

R

1 P 1... .i • v, + R

0

0

P P
V• 2 - -2

P
v-

0

Clearly, - P > 0 for i = 1,...,n and the sum

positive semidefinite matrix is positive definite.

(B.2)

(B.3)

a positive definite matrix and a

B.1 Second-Order System

For a second-order system, we have

P 2

1
R

1
R

P

P 2

1
R

1
R

P
v---- +

(B.4)

P 2 P 1 1

V*2 R V*2 R R2
R
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1
R

0

0

Then,

d2EndV2 (v) = Dn +
dv2

Hence,

(B.5)
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For d2Ea (v) > 0 to hold, we require

P 1
V R> 0, (B.6)

P 2 P 1 1
(-V +  -) + () R2 > 0 (B.7)V*2 R V*2 R R2

Let
P 2

a V, - (B.8)

From inequality (B.7), we obtain

1 1
a(a - ) (B.9)R R2
(aR)2 - aR-1 > 0 (B.10)

(aR) > 1 (B.11)
2

PR 1+
2- 1-> (B.12)

V*2 2
P 3-V•S< (B.13)

V*2 2R

Inequality (B.7) yields the more stringent condition:

2
V*2 > PR (B.14)

B.2 Third-Order System

For a third-order system, we have

- + -+

D3 = n- - + (B.15)
01 _P +-1

Rlll



Hence,

ID31
P 1 - +

R
= ( + 2 ) 2

V*2 R R2

(1 1
= (a•2 _ )(a - )-R2 R R2

1
R

P 2
v,-- + f

P
V*2

1

R

+2 1

0 1R
1 P

R2 V*2

We can now solve this inequality

(aR)3 - (aR)2 - 2(aR)+ 1

PR
2 •

V * 2

PR
V*2

> 0

> 1.802

< 0.198

V*" > 5.049PR

B.3 Higher-Order Generalization

Now generalize the above results for an nth-order system. Applying (3.13) and (3.14), we

obtain
1
R

P 2+

0

1
R

0

1 0
R

.+

0

1 0
R

1 P 2
R V- *2+ R

(B.23)

(B.24)
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(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

1
R

and

Bn+1 =

1 P 2
R - v**+R



Then,

Ao = B =1
1

A1 = a-
R

B 2 =a
1 1

An = (a - )Bn, - B_1, n > 2
1

Bn+l = aBn - 1Bn-1, n > 2

Now, we can obtain the sufficient condition for n = 4:

A4

1 1
(a - )B4 - B3R R2

1 2 1 2 1
a(a - ) (a2 R2 - 21

(aR)4 - (aR)3 - 3(aR)2 + 2(aR) + 1

PR
2--

V*2
PR
V*2
V*2

> 0

> 0

> 0

> 0

> 1.879

< 0.121

> 8.291PR

In the same way, the coefficients for higher-order systems can be obtained from solv-

ing the inequality for the respective determinant. There is nonlinearity in the process, so a

closed form solution is not readily available, but in principle, the coefficient can be com-

puted for a system of any arbitrary order.
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(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)



B.4 Computing the Inequality Coefficient

The results from the previous sections can be generalized into the following algorithm for

generating the inequality coefficient: let ao(x) = 1, bo(x) = 1 and bi (x) = x. We define

an(x) = (x - 1)bn(x) - bn,_(x), for n > 1 (B.37)

b,(x) = xb,_l(x) - bn, 2 (x), for n 2 2 (B.38)

Let on be the largest real root of an (x) such that 1 < On < 2. The coefficient of the

inequality for an nth-order ladder is 1

B.5 Approximation for Sufficient Condition Coefficient

From above, it is apparent that the condition for an nth-order system is of the form:

V*2 > f(n)PR (B.39)

The computation of the coefficient, f (n), is rather cumbersome. Table B.1 shows a list of

coefficients for n = 1,..., 15. A plot of f(n) is shown in Figure B-1. From the figure, it

is apparent that the resulting function is convex. We try to approximate this curve with a

simple quadratic function. After some experimentation,

f'(n) = 0.4n 2 + 0.5n - 0.3 (B.40)

was found to be a reasonably good approximation. Table B.1 also shows the error in the

approximation. The fractional error is also plotted in Figure B-2. We find that the error

is within 5% for n = 3,..., 15, so the following is a reasonably good approximation for

a sufficient condition to ensure that a regular ladder system can have only one unique and
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Table B.1: Errors for Approximation of f(n)

Order, n f(n) f'(n) Error Fractional
Error

1 1.0000000 0.6 0.4000000 0.400000
2 2.6180339 2.3 0.3180339 0.121478
3 5.0489077 4.8 0.2489077 0.049299
4 8.2908599 8.1 0.1908599 0.023021
5 12.3435379 12.2 0.1435379 0.011629
6 17.2068587 17.1 0.1068587 0.006210
7 22.8807819 22.8 0.0807819 0.003531
8 29.3652984 29.3 0.0652984 0.002224
9 36.6603989 36.6 0.0603989 0.001648
10 44.7660837 44.7 0.0660837 0.001476
11 53.6823401 53.6 0.0823401 0.001534
12 63.4091685 63.3 0.1091685 0.001722
13 73.9465573 73.8 0.1465573 0.001982
14 85.3179715 85.1 0.2179715 0.002555
15 97.4530641 97.2 0.2530641 0.002597

stable operational equilibrium:

n =1 : V*2 > PR

n=2 : V*2 > 2.62PR

n > 3 : V *2 > f'(n)PR
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Figure B-1: Plot of f (n) against n.

O 5 10

Figure B-2: Error for approximation of f (n).
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Appendix C

Numerical Solutions with Maple V

This appendix demonstrates the use of Maple V Release 3 as a tool for obtaining the static

equilibria for a second-order system with constant-power loads.

C.1 Second-Order System

First, we consider a network where all the resistances and all the loads are identical: V =

90V, R 1 = R2 = 2Q and P1 = P2 = 100W. We assume the cutoff voltages of both loads

to be 45V. The circuit diagram is shown in Figure 2-1.

:= (1/2)*(1/R1+1/R2)*v1^2 + (1/2)*(1/R2)*v2^2

- (V/R1) *vl -

En := -2 R1

vl*v2/R2 + P1*log(vl/V)14+ IR2 v 1 v2 2

2 R2

+ P2*log(v2/V);
V v1 v2 v1
R1 - R2 V

+ P2 :=-diff(Envl) = ;
> Eq1 := -diff(En,vl) = 0

Eql := - ( R1+ v1 +

> Eq2:= -diff(En,v2) = 0 ;
v2

Eq2:=- -
R2

V v2 P1

R2 vl

v1 P2
+ =v2

R2 v2
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> System := subs({V=90,

System :=

P1=100, P2=100, R1=2, R2=2},

S1 1 1 1-vl + 45 + - v2 - 100- = 0,- - v2 + - vl
2 vi 2 2

> Solnl := solve(System,

Solnl := v2 = - 100
So 1 100

1
- 100 --

v2

{Eql, Eq2});

= 0

(vl, v2}) ;

+ 27 %12
20

85
- -%1 + 90, v1

2
= %1

%1 := RootOf( _Z 4 - 135 _Z3 + 4450_Z2 - 18000_Z + 20000)

> V1 := evalf(allvalues(Solnl[2]));

Vi := vi = 85.23889858, vl = 45.27187414,

vl = 2.24461364 + .3801326891 I,

vl = 2.24461364 - .3801326891 I

> vla := rhs( V1[l]);

via := 85.23889858

> vlb := rhs( V1[2]);

vlb := 45.27187414

> Systeml := subs(vl=vla,

Systeml :=

1- v2 +

System);

1 1
42.61944929 - 100 -- = 0, -41.41207188 +v2 2v2 = 0}

> v2a := solve(Systeml[2], v2);

v2a := 82.82414376

> Seti := {vl=vla, v2=v2a};

Seti := { v2 = 82.82414376, vl = 85.23889858 }

> System2 := subs(vl=vlb, System);

System2

-2.480751106 + -
( 1 2

1 1
v2 = 0, - - v2 + 22.63593707 - 100 -

2 v2

> v2b := solve(System2[1], v2);

v2b := 4.961502212

> Set2 := {vl=vlb, v2=v2b};

Set2 := { v2 = 4.961502212, vl = 45.27187414 }
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> subs(Setl, System);

{ -.1 10-8 = 0, .2 10-8 = 0}

> subs(Set2, System);

{0 = 0, -.6 10-7 = 0}

> with(plots);

[animate, animate3d, conformal, contourplot, cylinderplot, densityplot,

display, display3d, fieldplot, fieldplot3d, gradplot, gradplot3d,

implicitplot, implicitplot3d, loglogplot, logplot, matrixplot,

odeplot, pointplot, polarplot, polygonplot, polygonplot3d,

polyhedraplot, replot, setoptions, setoptions3d, spacecurve,

sparsematrixplot, sphereplot, surfdata, textplot, textplot3d,

tubeplot]

> implicitplot({System[1], System[2]}, vl=O..90, v2=0..90);

> with(DEtools);

[DEplot, DEplotl , DEplot2, Dchangevar, PDEplot, dfieldplot,

phaseportrait]

> dfieldplot([lhs(System[1]), lhs(System[2])], [vl, v2],

0..90,vl=0..90, v2=0..90);

For a system with ideal loads, the two equilibria are (85.2, 82.8) and (45.3, 5.0), which

correspond to the higher stable equilibrium and the lower unstable equilibrium respectively,

as described in Section 2.1, respectively. However, since we have assumed that we are

dealing with non-ideal loads with a cutoff voltage of 45V, the lower static equilibrium

point at (45.3, 5.0) is inadmissable.

As mentioned previously in Section 4.1.1, a graphical way to obtain the solutions to

the system is to plot each equation for the system and find the intersections, as shown in

Figure C-1. The field plot for the system with ideal loads in the case where Ci = C2 is

shown in Figure C-2. We repeat the field plot for the system where loads are assumed
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Figure C-1: Graphical method for obtaining solutions to a second-order system.

to be non-ideal with a cutoff voltage of 45V in Figure C-3. We observe in the latter case,

the lower unstable equilibrium is eliminated, and the system is left with a single globally

unique and stable equilbrium.

C.2 Third-Order Ladder

We repeat the exercise described in Section C. 1 with a third-order ladder network where

all resistances and loads are equal: V = 90V, R 1 = R2 = R 3 = 2Q and P1 = P2 = P3 =

100W. The circuit diagram is shown in Figure 3-6.

> En := (1/2)*(1/R1+1/R2)*vl^2 + (1/2)*(1/R2 + 1/R3)*v2^2

+ (1/2)*(1/R3)*v3^2 - (V/R1)*v1 - v1*v2/R2 - v2*v3/R3

+ P1*log(vl/V) + P2*log(v2/V) + P3*log(v3/V);
1 ( 1 1 1 ( 1 1 1v32 Vv1 vv2En := + v12 + 2
2 R R2 v 2 R2 R3 2 R3 R1 R2
v2 v3 V1 v2 v3
R3 + P1 In + P2 In + P31n
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Figure C-2: Example field plot for second-order system (ideal loads).

> Eq1 -diff(En,vl) = 0 ;
(Eq 1 +1 V v2 P1

Eq := +- vl + =0
1 R2 R1 R2 v1

> Eq2 := -diff(En,v2) = 0 ;
(1 1 v v3 P2

Eq2 := - - v + v 0
R R3 R2 R3 v2

> Eq3:= -diff(En,v3) = 0 ;
v3 v2 P3

Eq3 := + - = 0
RS RS v3

> System := subs({V=90, P1=100, P2=100, P3=100, R1=2,

R2=2, R3=21, {Eql, Eq2,Eq3l);
1 1 1 1 1

System:= v1 - 45 - 1 v2 + 100 = 0, v2 - v v- v3 + 100 = 0,
2 v1 2 2 v2

1 1 1S- -v2+ 100 = 0
2 2 v3
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Figure C-3: Example field plot for second-order system (non-ideal loads).

> SolnI := solve(System, {vl, v2, v3});

Solnl := v2 = - 1 % + 3 %1,6 11 %
48000000 1600000 240000

3 31 9 19
+ 13 %14 _ 31%13 + 9 %12 _ %1 + 30, v3 = %1, v1 =

1600 1200 20 6
28 27 3 33 428 %1 + 27%12 + 3 %1 + %1 - %17
3 20 320000 4000 9600000

13 %5 5 %1 + 60
60000 48

%1 := RootOf(_Z 8 + 2200 _Z6 + 1240000 _Z4 + 200000000 _Z2

+ 9600000000 - 90 _Z7 - 90000 _Z5 - 21600000 _Z3

- 1440000000 _Z)

> V1 := evalf(allvalues(Solnl[2]));

V1 := v3 = .1681877825 - 10.84475727 I,

v3 = .1681877825 + 10.84475727 I,

v3 = .9240691622 - 25.89511604 I,
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v3 = .9240691622 + 25.89511604 I,

v3 = 2.089068762 - 13.06918538 I,

v3 = 2.089068762 + 13.06918538 I, v3 = 9.339119458,

v3 = 74.29822913

> v3a := rhs( Vl[7]);

v3a := 9.339119458

> v3b := rhs( V1[8]);

v3b := 74.29822913

> Systeml := subs(v3=v3a, System);

System1 := v2 - v - 4.669559729 + 100 = 0,
2 v2
1 1 1

15.37720732 - v2 = , vl - 45 - 1 v2 + 100 = 02 2 v1
> Soll := solve({Systeml[l], Systeml[2]}, {vl,v2});

Soll := { v2 = 30.75441464, vl = 58.67284124 }

> Setl := {v3=v3a} union Soll;

Set1 := { v3 = 9.339119458, v2 = 30.75441464, vl = 58.67284124 }

> System2 := subs(v3=v3b, System);
{ 1 1

System2 := v2 - vl - 37.14911457 + 100 = 0,
2 v2
1 1 1

38.49504167 - - v2 = 0, vl - 45 - v2 + 100 = 0
2 2 v1

> So12 := solve({System2[l], System2[2]}, {vl,v2});

Sol2 := { v2 = 76.99008334, vl = 82.27967469}

> Set2 := {v3=v3b} union Sol2;

Set2:= { v3 = 74.29822913, v2 = 76.99008334, vl = 82.27967469 }

> subs(Setl, System);

{0 = 0,-.710 -8 = 0,-.1 10-8 = 0

> subs(Set2, System);

{.310 - 8 = 0, -. 310 -8 = 0, -. 1 10-8 = 0}
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Again, when the loads are assumed to be ideal, there are two equilibria: (82.3, 77.0, 74.3)

and (58.7, 30.8, 9.4).
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Appendix D

Small-Resistance Approximation

In this appendix, we will provide the details for the derivation of the first-guess and iterative

equations for a third-order ladder network. We will also illustrate the generalized method

for an arbitrary higher-order network with an example.

D.1 Third-Order System

Figure D-1: Third-order system.

We repeat the procedure outlined in Section 4.1.2 with the third-order ladder shown in

Figure D-1. Given that vl " v2 - v3 because the resistances R2 and R3 are small, we

obtain
P1  P 2  P3

il i2 i3
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Hence,

P 2 °i2 1• 21
Pi
P3

i3 P, tip

Under these assumptions, we obtain

P2  P3
(1+ + )Ri2 - Vi + Pi = O

P1 P1

(D.2)

(D.3)

(D.4)

which yields
V - VV2 - 4(P +P2 + P3)R1

2(1+ -P + &)R,i i = (D.5)

Now that we have an approximation for il, we take il as given and consider the next

stage:

v2 = V - (il + i2 + i 3)R1 - (i2 + i3)R 2

= (V - iiRi) - (i2+ i3)(Ri + R2)
__ (V - iiRi) -

(D.6)

(D.7)

(D.8)
P3(1 + )(R1 + R2)P2

Finally, we obtain

(1 + A)(Ri + R2)i 2 - (V - iiR1)i 2 + P2 = 0P22

which yields

V - iR 1 - (V - iR) 2 - 4(P + P2 )(R + R 2)

2(1 + -)(R1 + R2)

Finally, the equation for the last node is

(R + R2 + R3 )i- V -(i + i2)R -i 2R2)i3 + P3 = 0
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which yields

V3 -V/V3' - 4P3(R 1 + R2 + R 3)
i R2 R 3 )

2(R1 + R2 + R3)

where

V = V - (il + i2)R -i) 2R2

Repeating the above process, we obtain the iterative formulae for il and i2:

Vi' - V1'2 - 4 PI R 1

2R 1

V2 - V y - 4P2(R + R 2)
i2  R 2 )

2(R1 + R2)

where

= V - (i2 +i 3 )R1

= V- (il +i 3)R1 - i3 R 2

D.2 Generalization

If we examine the process of obtaining the first-guess equations and the iterative equations

carefully, we will note that the process is really one of considering one current loop at a

time, reducing it to an equivalent first-order system, and then solving the simpler system.

First, let us state the results for a simple first-order circuit as shown in Figure D-2. In

equilibrium, we have:

P
V-iR =

Ri2 -Vi + P = 0
V

z =

(D.16)

(D.17)

(D.18)
S/V2 - 4PR

2R
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R

i

P

Figure D-2: Circuit diagram for first-order system.

The process of obtaining the first-guess and iterative equations is best demonstrated

with the following example. Consider the third-order system with branching shown in

Figure D-3. First, consider the current loop including the source and P1 , as shown on the

left in Figure D-4. The first fundamental idea is that vl _ v2 2 v3, so

P2i2 •• and (D.19)
P1
P3.

i3 -i1 (D.20)
P1

If we consider only this loop, we obtain:

P1
V - (i i2 + i3)R1 = (D.21)

il

P2 P3 P1(D.22)v- (1 + l + P )Rlil  - (D.22)
P1  P1  i

Hence, it is apparent that the loop is in effect equivalent to the first-order system on the

right in Figure D-4, where R' = (1+ - + )R 1. We apply the result to (D.18) to obtain

V - /V2 - 4P 1(1 + P + )R (D.23)
il (D.23)

2(1 + + _ )R

V - yV2 - 4(Pf + P2 + P3)R1  (D.24)
(D.24)

2(1+ -2+ P )R1

We will call this the Resistor Multiplying Effect.
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P2

P2

i3

P3

Figure D-3: A third-order example with branching.

R

V

il

P1V

Figure D-4: Example loop with equivalent circuit.

Now, we consider the current loop as shown on the left in Figure D-5:

V - (il + i2 + i3)R1 - i 2 R 2 = (D.25)
i2

(V - iR) - ((1+ P3 )R + R2)i 2  P2  (D.26)
P2 i2

Hence, it is apparent that the loop is in effect equivalent to the first-order system on the

right in Figure D-5, where R' = (1 + )R 1 + R 2 and V2 = V - ilR 1. The contribution of

P to R1, we recognize as the Resistor Multiplying Effect. We notice here that the source

voltage is also effectively reduced. We call this the Source Voltage Reducing Effect. We

apply the result from (D. 18) to obtain

V - V2 - 4P2 R 2
i2 2

2  (D.27)
2R9
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where

Pa
R' = (1 + P )R1 + R2

SP2

Figure D-5: Example loop II with equivalent circuit.

Similarly, by symmetry, for i3 we have

V - V3;2 - 4P 2 R
i32R

2R'3

where

P2
R' = (1 + )R 1 + RP3
V3 V - ilR1

Lastly, by the Source Voltage Reducing Effect, we derive that the effective source volt-

age seen by ii given that both i2 and i3 are known is V - (i2 + i3 )R1 to obtain

V' - V1
' 2 - 4 P2 R 1

2R 1
(D.33)

where

(D.34)

In summary, in order to derive the first-guess and the iterative equations, we first divide
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V3 = V - (i2 + i3)R1



the set of currents drawn by the loads into two sets: one set with known values and one set

with unknown values. Next, we consider one current loop at a time and reduce the result

to an equivalent first-order system. The "known" set has a Source Voltage Reducing Effect

while the "unknown" set causes a Resistor Multiplying Effect. Once this is clear, we can

apply the result from (D.18) directly to obtain the required solution.
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Appendix E

Evaluation of Aggregated Models

In this appendix, we evaluate the use of the following aggregated models by applying these

models to some specific networks and comparing their input/output characteristics as well

as the total power dissipation. First-order transients are also compared.

E.1 The Models

E.1.1 Series Model

The approximation of the second-order series configuration shown in Figure 4-4 by a first-

order configuration as shown in Figure 4-6 yields the following parameters:

R2P,
01+P2

(P1 + P2)2

= C + C2

= P1 + P2

(E.1)

(E.2)

(E.3)
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E.1.2 Parallel Model

The approximation of the second-order parallel configuration shown in Figure 4-5 by a

first-order configuration as shown in Figure 4-6 yields the following parameters:

(R R,+ P22 (E.4)
(Pi + P2 )2

c' = c + C2 (E.5)

P' = P1 + P2  (E.6)

E.2 Evaluation of the Series Model

In this section, we evaluate the effectiveness of the series model for approximating second-

order and third-order networks.

E.2.1 Approximation in Second-order System

Consider the second-order series network and its associated aggregated model shown in

Figure E-1. The cutoff voltage for all the constant-power loads is 45V.

i 2L 22M i, 2.51

i0

200W

Figure E-1: Second-order series configuration with aggregated model.

Table E. 1 shows the results for the series configuration and the aggregated model. Fig-

ures E-2 and E-3 show the plots of total current drawn from the source for the second-order

configuration and its aggregated model respectively. It is apparent from these results that

the approximation are reasonably good. To first-order, the transient currents look almost

identical and the final steady-state results are correct to 3 significant figures.
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Table E. 1: Table of Results for Series Configuration (Second-Order)

Fractional
Parameter Series Aggregated Error

ii 1.173 - -

i2 1.207 - -

it 2.381 2.380 0.0004
v1 85.239 - -

v2 82.824 - -
v' - 84.051 -

Power, P 214.250 214.155 0.0004

We can use the result for

vl in the original model:

it from the aggregated model to obtain an approximation for

v, !- V - 2it = 85.24V

Next, we consider vl to be fixed at 85.24V and consider the remainder of the network as a

first-order system. From (1.3), we obtain

vi± v-4PR
V 2  

+ - 4 PR

2

= 82.8V

These approximations compare well with the actual values of the second-order system

shown in Table E. 1.

E.2.2 Approximation in Third-order System

We repeat the above analysis with the third-order system shown in Figure E-4. The first-

order and second-order systems resulting from applying the series model successively are

shown in Figure E-5.

Table E.2 shows the results for the series configuration and the aggregated models.

Figures E-6 and E-7 show the plots of the voltage at the first node for the third-order series
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Figure E-2: Plot of current vs time for second-order series configuration.

configuration and its second-order aggregated model respectively. It is apparent from these

results that the approximation are reasonably good. To first-order, the transient behavior

of the voltage at the first nodes look almost identical and the final steady-state results are

quite close - less than 0.05 % for the second-order approximation and about 0.5 % for the

first-order approximation.

As before, we can use the first-order aggregated model to estimate the voltage of the

first node:

vl , V - 2it = 82.31V

Next, we approximate v' as

v1 + v -4PR

- 75.71V
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Figure E-3: Plot of current vs time for series aggregated model (second-order).

i3

1001Wp

Figure E-4: Example third-order series configuration.

We approximate v2 with

V2 ~ v - 2 .
2.5

= 77.03V

v2 + - 4PR
V 3 =

2
= 74.34V
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Figure E-5: Aggregated models for third-order series configuration.

Table E.2: Table of Results for Series Configuration (Third-Order)

Aggregated Fractional Aggregated Fractional
Parameter Series (2nd) Error (1st) Error

il 1.215 - - -
i2 1.299 - - -
i2 1.346 - - - -

i- 1.215 - - -
i' - 2.643 - - -

it• i t, i" 3.860 3.858 -0.00052 3.844 -0.0041
vi, v' 82.280 82.284 4.8x10 - 5  - -

v2 76.990 -
v3 74.298 - - - -

v2 - 75.677 - - -
v" - - - 78.04 -

Power, P 347.415 347.232 -0.00052 345.975 - -0.0041

In summary, approximation with the aggregated model yields:

vl = 82.31V, v1 = 77.03V, v1 = 74.34V

which compares favorably with the actual nodal voltages. The errors are within 0.1%.

E.3 Evaluation of the Parallel Model

In this section, we evaluate the effectiveness of the parallel model for approximating second-

order and third-order networks.
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Figure E-6: Plot of v1 vs t for third-order series configuration.

E.3.1 Approximation in Second-order System

We consider the second-order parallel network and its associated aggregated model shown

in Figure E-8. The results for the parallel configuration and the aggregated model are shown

Table E.3. It is apparent from these results that the approximation is reasonably good.

Table E.3: Table of Results for Parallel Configuration (Second-Order)

Fractional
Parameter Parallel Aggregated Error

il 1.375 - -
i2 0.917 - -

it, i' 2.292 2.292 0
vl 87.249 -
v2 87.249 -
v' - 87.249 -

Power, P 206.305 206.306 4.8x10 - 6
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Figure E-7: Plot of v' vs t for series approximation (third-order).

E.3.2 Approximation in Third-order System

We repeat the above analysis with the third-order system shown in Figure E-9. The first-

order and second-order systems resulting from applying the series model successively are

shown in Figure E-9.

Table E.4 shows the results for the parallel configuration and the aggregated model.

Figures E-11 and E-12 show the plots of the voltage of the first node for the third-order

configuration and its aggregated model respectively. It is apparent from these results that

the approximation are good. To first-order, the transient responses in the voltages are very

similar and the final steady-state results are extremely close.
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Figure E-8: Second-order parallel configuration with aggregated model
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120W

i3

80W

Figure E-9: Example third-order parallel configuration.

i"t

300W

Figure E-10: Aggregated model for third-order parallel configuration.
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Table E.4: Table of Results for Parallel Configuration (Third-Order)

Aggregated Fractional Aggregated Fractional
Parameter Parallel (2nd) Error (1st) Error

i_ 1.211
i2 1.509
is 1.006 -

i - 1.211 - - -

- 2.515 - -

itz i, if" 3.726 3.726 0 3.724 0.00054
vl, v 82.548 82.548 0 - -

v2 79.530 - -

v3 79.530 - -
v - 79.530
v" - - - 80.567 -

Power, P 335.359 335.358 -3.0x10 - 6 335.125 -0.00070

Figure E- 11: Plot of vl vs t for third-order parallel configuration.
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Figure E-12: Plot of v' vs t for parallel approximation (third-order).
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