
Adding Backchannel and Turn-Taking Behavior to a

Typing Interface
.OCT 2 " 1997

by

Adrian Banard g ,

Submitted to the Department of Electrical Engineering
and Computer Science in Partial Fulfillment of the

Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineer-
ing and Master of Engineering in Electrical Engineering

and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 23, 1997

© Adrian Banard, 1997. All Rights Reserved.

The author hereby grants to M.I.T. permission to repro-
duce and to distribute publicly paper and electromic cop-

ies of this thesis and to grant others the right to do so.

A uthor--...
Departmnt of Electrical Engineering and Computer Science

I ,h 1 May 23, 1997

Certified by
Justine Cassell

AT&T Care -- lopmentta tanqrofessor
./ ,_ ~•iJ4• u---- ec ner'isor

Accepted by --............-
Arthur C. Smith

Chairman, Department Committee on Graduate Theses
Department of Electrical Engineering and Computer Science

Adding Backchannel and Turn-Taking Behavior to a
Typing Interface

by

Adrian Banard

Submitted to the Department of Electrical Engineering and Com-
puter Science, on May 23, 1997, in Partial Fulfillment of the

Requirements for the Degrees of Bachelor of Science in Computer
Science and Engineering and Master of Engineering in Electrical

Engineering and Computer Science

Abstract

A simple backchannel and turn-taking system was added to a storytelling agent. This
project improved upon a typical typed-input interface by incorporating ideas from dis-
course theory. It sought to create meaningful backchannel and turn-taking behavior while
working within the problematical limitations of the usual computer interface consisting of
a monitor and keyboard. The storytelling agent gained a responsive and engaging set of
behavior, altering the paradigm and feel of a typing interface.

Thesis Supervisor: Justine Cassell
Title: AT&T Career Development Assistant Professor

Table of Contents

1 Introduction 4
B ackground 6
Textual Computer Interface ... 6

2 A Flexible Backchannel and Turn-Taking System.. 10
B ackground W ork 10
Capabilities of the Program .. 12

3 Technical Design of System 13
Actions Taken by the System ... 14
Parameters Observed by the System... 15
A Sample Set of Backchannel and Turn-Taking Rules 17

4 Evaluation ... 19
5 F uture R esearch 2 1
6 C onclusion 23
7 A cknow ledgm ents... 25
8 R eferences 26

Appendix A Backchannel and Turn-Taking Sample Rule Set 28
Appendix B Lisp Code for the Backchannel and Turn-Taking System 30

Introduction
This project is a modification of the typing input system for SAGE, Marina Umaschi's

project, "Soft Interfaces for Interactive Storytelling: Learning about Identity and Commu-

nication" (Umaschi, 1997). SAGE is a storytelling agent program which is graphically

programmable. Users create and program characters in SAGE which can converse and tell

stories. The new interface uses cues such as pause length and conjunctions to determine

feedback and turn-taking behavior. It brings the person's interaction with SAGE "closer"

(though it is still textual) to human-human interaction, making the interface more usable.

Background
One of the current challenging problems in designing computer interfaces is allowing

people to use the skills they have developed in interpersonal discourse. The original com-

puter interfaces were not designed to be comfortable for people, but simply to make the

computers work. Recently, much more attention has been paid to trying to make the inter-

face communicate in a way which people find more natural.

Computer users are generally quick to anthropomorphize computers and expect dis-

cursive interaction with them, even in obviously artificial situations. In a serious of studies

conducted by Reeves and Nass, users have ascribed gender or submissiveness (among

other qualities) to computers even when given only minimal cues (Moon, 1997, and Nass,

1997).

To capitalize on the anthropomorphizing expectations of users, various attempts have

been made to introduce personae into the computer interface. By persona, I mean the char-

acterization of a computer program as having a personality. Programs talk, have faces, and

attempt a general simulation of personality. Much of the work on improving these perso-

nae tries to make them more "intelligent" or personable. Other work focuses on the inter-

face, trying to create a computer which attains its personality by behaving as a person

would behave.

Creating a more discursive and comfortable interface is very important for programs

with personae, but also for any program that tries to interact with a computer user. Bring-

ing the human-computer interface closer to interpersonal discourse will help satisfy user's

expectations of the computer.

Recent research in the Media Lab has focused on multimodal interfaces, such as the

Gandalf project (Thorisson, 1996). While these multimodal interfaces are very likely the

future of computer interface, the current level of speech recognition systems (as well as

vision systems and robotics) tends to make this sort of project very difficult. No current

speech recognition system can provide a topic-independent, speaker-independent gram-

mar, and they also tend to fail to recognize accented language or the speech of children.

(Markowitz, 1996) While multimodal projects such as Gandalf are being completed and

speech recognition systems are being improved, the question of what can be done to

improve the old paradigm of the keyboard and monitor interface becomes important.

Agent programs often have text-only interfaces, avoiding the technical problems of a

multimodal interface. Julia (Maudlin, 1994), one the most famous Chatterbots, was built

in a MUD environment. In a MUD Julia can imitate a user fairly well, but only because the

environment is primarily limited to text messaging and text-based simulated location and

movement. If Julia were in an environment where visual and verbal cues were present,

imitating a user would be much more difficult. The Turing Test (Maudlin, 1994), as

embodied in the Loebner Prize, similarly tests a program's ability to operate in a testual

environment only. If agents are going to be believable characters, their interfaces must be

improved, both by adding modalities of communication and by improving the emulation

of human behavior in the interfaces.

Textual Computer Interface
In the era of the technological paradigm, the favored computer interface is text-in

(through the keyboard) and text-out (through characters printed on the monitor). This has

not changed since the early days of the computer use, though personal interaction with the

computer has become much more varied and rich. The interface has adapted in some

ways, such as through the creation of pointer systems like the mouse. However, the basic

paradigm of the computer interface remains a dyadic messaging system. The user types in

a message and then hits the return key to signal that the message is complete. The pack-

aged message is then "sent" to the computer system, which processed it and sends a mes-

sage back to the user, in the form of displayed text. Sometimes the user messaging is done

with mouse events instead of keyboard input, or the computer messaging is done using

synthesized speech or animations, but the dyadic messaging (or input/output) paradigm

still applies.

Unfortunately, this paradigm does not simulate interpersonal communication well.

First, talking between people is often not dyadic. Lecture situations, overhearers, and mul-

tiple-person conversation all involve more than two people, and are important as discourse

situation (Goffman, 1983). Second, conversation is much more complex than discrete

back-and-forth messaging. All or most of the participants in a given interaction provide

feedback even when they are not speaking, in the form of side utterances, gaze, gesture, or

body stance (among other modalities) (Cassell et al, 1994). Specifically, backchannel is

the term given to a listener's habit of using gaze, facial expression, short words, and other

methods to indicate attention or inattention, or to attempt to release or take the turn. (Sche-

gloff, 1982) Turn-taking is the process of negotiating who is the speaker and who is the

listener. (Goodwin, 1981, and Sacks et al, 1974)

Computers fail to provide this feedback while the user is entering text, and computers

fail to interpret user feedback while it is the computer's "turn" to speak. Both of these are

problems which need to be addressed in basic computer interface, but this thesis will focus

on the first, namely the question of producing adequate feedback for a computer user who

is attempting to communicate with the computer.

A number of agent programs, such as ELIZA (Weizenbaum, 1966) and SAGE (Umas-

chi. 1996) use typing as their input form. ("Agent" is being used here in the sense of any

program which takes on a character or persona, but see Foner, 1993.)As a messaging sys-

tem, this input form does not help the believability of the agent. When the program stops

talking or printing, it halts and waits for the person to write a full piece and press the enter

key. It will wait forever (and often does wait for a very long time) for the user to respond.

Unlike a person, it will not get bored, or make small sounds to indicate that it is waiting, or

walk away. Similarly, it will not encourage the typist or notice when they have provided

cues that they are finished (aside from the return key). This is especially important for

SAGE, as it was designed to be used by children as an educational tool. I have seen chil-

dren stop typing at SAGE and then sit back without pressing return, expecting the com-

puter to interpret their actions as finishing their turn. When these expectations are

disappointed, the believability of the computer character is hurt. By "believability", I

mean the degree to which users can pretend they are interacting with a person instead of a

program. When a computer system is not believable enough, users stop interacting with it

like a person and treat it like a computer, which tends to remove the advantages a program

gets by taking on a persona.

Improving such typing interfaces by satisfying the expectations of users is not an easy

or one-time task, however. First, it is hard to predict how the user's experience conversing

with other people will influence their expectations of the computer's actions during typing,

as typing is very different from speaking. Users do have some expectations, but determin-

ing which backchannel and turn-taking behaviors map from speech to typing is an open

question. For example, will children using a computer expect it to be able to interpret their

pauses? These expectations will also differ depending on how much familiarity a person

has with a typing interface. Experienced users of computers have become familiar with the

typical typing interface of a computer, so they are less likely to expect it to exhibit human-

like conversation dynamics.

Second, conventions of backchannel and turn-taking vary widely across cultures and

even across parts of the same culture, including variations in pause length, word frequency

and choice, and responsiveness, among other things. So when designing some sort of

behavior for an agent or program, the specific situation may change the required behavior

drastically, depending both on who is using the program and what sort of persona the pro-

gram is emulating. For instance, the SAGE program assumes the personae of various cul-

tural storyteller figures (Umaschi, 1997), and it should be expected that each storyteller

should have its own feedback and turn-taking behavior. Similarly, it seems reasonable that

people from different cultures or subcultures or of different ages would expect different

backchannel behaviors from a computer. Any system attempting to provide this feedback

will have to be flexible or adaptive enough to accommodate these different styles.

There are situations where it is possible to study backchannel in all-text formats. A

prime example is the talk program on most UNIX systems, which allows two people to

type simultaneously into two parts of a terminal as a method of communication. Each user

sees the other's keystrokes as they occur. At any point, either person can (and often does)

leave the terminal, which is only indicated by the absence of keystrokes. Thus, to indicate

that they are still present, people tend to insert dots or short words, take quick turns, or

type simultaneously. In this way a form of backchannel is maintained. Another type of

backchannel which occurs in the talk program is the simultaneous query. One person will

ask a short question (such as "How?") while the other is in mid-statement. Similarly, turn-

taking is often negotiated by simply stopping typing, hoping the other person picks up the

flow, and querying if the other person does not. Using talk demands a certain attention, as

it is considered rude to do something else while the other person is on the line. There has

been little or no research on programs such as talk. Cherny describes talk as a "simulta-

neous", "two-way" interaction in the introduction to her dissertation on MUD interaction,

but she does not closely examine backchannel and turn-taking behavior with the program

(Cherny, 1995). While many of the directions in this project will be motivated by personal

experience with talk, an in-depth study of the program and the styles users take with it

should be undertaken to better understand user expectations.

Cherny has also done significant research on backchannel and turn-taking strategies on

MUDs (Cherny, 1995). MUDs are multi-user text messaging chat spaces. It is not possible

to take the turn from another person on a MUD, as users enter messages simultaneously.

But some turn-taking behavior has been developed for MUDs. This usually takes the form

of other modalities expressed through text. Characters can nod, direct their comments

(replacing some of the function of gaze in face-to-face conversation), and express paraver-

bals. Users also tend to restrict their statements to a certain length, providing space for

backchannel or interruption. Similarly, frequent short backchannel actions or comments

are used to indicate attention, comment on what is being said, or negotiate turn-taking.

Most of this backchannel is in the form of simulated action, but some backchannel is the

textual equivalent of verbal backchannel. Cherny also comes to the conclusion that face-

to-face backchannel and turn-taking behavior do not map well to MUD situations, due to

the lack of simultaneous composition and reception of communication.

A Flexible Backchannel and Turn-Taking System
The purpose of this project was to try to improve a typical typing interface by adding

backchannel and turn-taking behavior, based on discourse theory and type of interaction

characterized by the talk program. It operated within the (admittedly problematical) limi-

tations of a typical computer interface consisting of a monitor and a keyboard. The back-

channel project was therefore a mix of a non-speaking interface (typing) and discourse

phenomena from speaking situations.

The project was limited to the user's typing time, and did not address the other half of

the backchannel problem (namely having the computer respond to the backchannel behav-

ior of the person sitting in front of it). This other half would require that the computer be

able to detect the user's gaze, discussion with other people, and gesture, among other

things, and these sensors are not found in a typical computer setup. Agents such as Gan-

dalf are currently developing such backchannel response. Dealing with user interruption

(when the person starts typing while the computer is still talking or outputting) is its own

larger problem. It should be dealt with very differently by various agents and various non-

persona systems (see Klein, 1996, for one example), so this project will not include user-

initiated interruption in its domain.

Background Work
A number of backchannel systems have already been produced. Gandalf (Thorisson,

1996), uses facial expression, gesture, body stance, and other modes of feedback to indi-

cate attention and to guide turn-taking. Gandalf also tries to interpret similar cues given by

the person conversing with it. Cassell's (Cassell, 1994) Animated Conversation project

uses facial expression and gestural backchannel. In systems such as these, backchannel is

expected and useful, and the interface is therefore much more believable (Thorisson and

Cassell, 1996). Julia has some programming regarding when to speak and when to listen

(in order to survive in MUDs, where users can speak at any time), but she does not negoti-

ate turn-taking or provide explicit backchannel (Maudlin, 1994). In general, backchannel

and cued turn-taking has not been implemented in text-to-text interfaces or agents.

SAGE (Umaschi, 1997) stands for Storytelling Agent Generation Environment. Chil-

dren use SAGE to create storytelling agents which they can then interact with. These

agents follow a conversation script, asking the user various questions and then telling them

an appropriate story based on their answers. As these agents are produced by various chil-

dren, they take on personae from a wide variety of situations. A couple of examples are a

Rabbi, a basketball player, and a French grandmother.

SAGE undertakes a variety of educational tasks. When children create their own

SAGE characters, they get a strong feel for computer programming. Working on a detailed

description of the interaction (and testing the results) gives the kids an understanding of

the complexity involved in everyday communication. Also, the children assemble the nar-

ratives for the storytellers, an exercise which prompts them to research the background

and culture of the persona.

Children also explore their own identity through SAGE. First, when they interact with

a SAGE character, the persona typically asks them to describe a problem or story in their

lives, and then tries to relate their input to a story, asking the children to reflect on the con-

nection between the story and their life. Second, kids tend to pick sage figures that they are

familiar with when creating their own SAGE avatar, giving them a chance to explore their

own social circle and identity.

While a given agent is operating, input is from the keyboard, and output is either tex-

tual or text combined with speech (either synthesized or recorded). Until now, the program

simply freezes while the person is typing, not offering feedback until after the user presses

the return key. Comic-style text "balloons" are used to identify the text produced by the

SAGE persona and by the user.

A SAGE persona is embodied in a stuffed animal, which complicates and enlivens the

output. While output is always textual, speech output can be piped out through the stuffed

animal, and it can express certain body movements as well.

The backchannel and turn-taking system was built as an addition to the SAGE pro-

gram. Unlike other facets of SAGE, it is not modifiable from within the graphical pro-

gram, because we would need a better understanding of simple ways to parameterize and

explain the backchannel process before children could alter it easily. Instead, a set of back-

channel behavior is loaded in with each SAGE character, and that character will exhibit

the behavior.

Capabilities of the Program
One of the basic tasks of the backchannel system is to provide textual cues which show

that the computer is listening. The agent says short words such as "yes", "okay", or "uh

huh" while the user is typing, preferably during appropriate pauses. There are other textual

cues which the system can provide as well, most notably ellipsis (a series of periods).

The program also provides some feedback which is specific to what the person has

already typed in. A high-level version of this would detect information that the user has

entered, and ask appropriate questions or make appropriate comments. However, due to

the limitations of current text parsing and the relatively small computation time available

to the system, it can only be able to make obvious comments, such as rephrasing the last

word of the input as a question when appropriate. For instance, if the typist has just

entered "and", the system can ask "And?".

When users do not start their turn at an appropriate time, the backchannel system

prompts to make it obvious to the person sitting in front of the computer that it is his/her

turn to communicate. Similarly, the character provides appropriate hints or sayings when

the user pauses for too long, or interprets this pause as the user finishing.

The second primary goal of the backchannel project is to pick up enough cues from the

typist to determine when they have decided to end their turn and let the SAGE character

continue speaking. The traditional user-computer cue (the return key) still functions,

because people are often used to it. The persona also ends turns based on significant

pauses in typing. (What qualifies as an appropriate pause is problematic, as people use a

variety of cues to negotiate turn-taking. The system just uses a slightly longer than normal

pause.) There are cues available in textual input that are not available in speaking, most

obviously punctuation. The turn-taking system includes punctuation in its decision to

interrupt or not. For instance, it decides to not end the turn if the user last entered a

comma, implying they wish to continue.

Another way the user might indicate continuation is through the use of certain cue

words. Specifically, words such as "and" and "but" are not intentionally placed at the end

of a turn, and evince a wish to continue (Schiffrin, 1987). When the user has recently

entered one of these cue words, the system knows that they wish to continue, and does not

interrupt their turn, perhaps prompting them instead.

Technical Design of System
The operation of the backchannel system is controlled by an event-based rule system.

There are certain events, or outputs, created by the system, primarily outputting textual

backchannel and ending the user's turn. Similarly, the backchannel and turn-taking pro-

gram are able to look at various parameters such as timing or word choice to determine

when these events should occur.

Each SAGE character can load a load a file containing a set of backchannel rules.

These rules determine the backchannel behavior while that character is running. Each rule

is an action and a set of requirements. The action is performed when the set of require-

ments is satisfied. The rules are logically complete, so any logical combination of require-

ments can be used to satisfy an event.

There are two main advantages to this event/requirement structure. First, it is easy to

modify the backchannel rules for a given SAGE character, changing or adapting its behav-

ior with only a small bit of editing. Second, instead of growing as rules are added (there

are a very large number of possible backchannel rules), the system grows as requirements

or event types are added, and it is relatively easy to add these units. (It can be done simply

by implementing the appropriate check or functionality).

Actions Taken by the System
Currently there are four actions that the system can perform. The first is to say one of a

set of words or phrases. (Which word or phrase is said is randomly determined.) There can

be any number of these sets of words, each with its own set of requirements, and they can

interleave or otherwise combine seamlessly. Specifically, it is possible to ensure that the

actions do not occur to close together, avoiding collisions where two feedback words or

phrases are given at almost the same time.

The second action is rephrasing the last word as a question. This is a conveniently easy

backchannel comment that reflects the user's own words back, essentially asking them to

clarify or continue. So, for instance, if the person says, "I am going to the store", the sys-

tem could ask "Store?" While this sounds simple, it is not far from the sort of one-word

question feedback we give each other, such as "Really?" However, determining out when

it makes sense for the backchannel system to reflect words in this manner is difficult, so

the current system only reflects certain cue words, such as "because".

Ending the user's turn is the third type of action. The user loses the ability to type into

the window, and the SAGE character starts speaking. While this is a simple action to take,

determining when it should happen is very difficult.

The fourth action is ending the user's control. By control, I mean the person who is

leading the conversation (Whittaker and Stenton, 1988). The person "in control" typically

initiates a section of dialogue, and holds a position of activity as long as the section contin-

ues, no matter who is talking. Control is associated with a given topic. So, for example, if

one person asks a question about a particular subject, they would be considered to have

control while the subject is discussed. While ending control (as opposed to ending turn) is

was considered for the backchannel system, SAGE is currently unable to utilize it, because

the user never takes strong control of the conversation during most SAGE interactions.

This is because SAGE typically initiates sections of dialogue, to focus the conversation

into a tight domain, making it easier for the program to interpret input. Computer-con-

trolled initiation is very common in computer interfaces.

Parameters Observed by the System
One of the most important parameters which the backchannel and turn-taking program

monitors is timing. Currently, timing requirements can check against three different times:

since the last keystroke, since the beginning of the user's turn, and since the last verbal/

textual feedback given by the backchannel system. The first timing variable is used to

determine pause length. The second facilitates interactions during the beginning of the

user's turn (especially when they are not typing) and can be used to limit the total turn

length. The third parameter (which is effectively the time between feedback comments) is

present so the backchannel program can avoid feedback collisions, and space feedback

appropriately.

SAGE often asks very direct questions, and is looking for certain things in the answer.

The backchannel and turn-taking module also checks for a sufficient input while the user

is typing, by simply calling the same functions SAGE calls. Thus, one parameter of the

system is whether or not the SAGE character considers the user's turn to be sufficient. This

sufficiency or lack of sufficiency is used to alter the likelihood of the character ending the

user's turn, for example. For example, if SAGE is looking for a name, then, the input is

considered sufficient if it could be a name, or a sentence containing a name.

The backchannel program also checks for words anywhere in the current typing string,

or check the last word. The computer determines if the user has just entered a cue word

that signals continuation by checking the last word. The current SAGE backchannel sys-

tem checks for "and", "but", "or", "because", and "so" for this purpose. Also, it can check

the last word to see if it is appropriate as a reflective question, such as "And?" Presently,

only the cue words listed are used for this reflective questioning, but there are others which

could be added after some examination.

The system checks for some simple typographic parameters, such as if the user has

started typing in their turn at all, or what sort of punctuation they have recently used.

While such simple cues are not conceptually complex, they can be very useful for eliciting

backchannel behavior. These checks allow the system to make certain prompts if the user

has not started typing, or to include punctuation in determining if a person has finished

typing.

A Sample Set of Backchannel and Thurn-Taking Rules
A prototype set of backchannel and turn-taking rules (currently implemented and

functioning) is included in Appendix A as an example of the backchannel program. The

Lisp-style pseudocode in the Appendix bears some explanation, however.

The first rules deal with creating appropriate end of turn scenarios. The basic end of

turn occurs when SAGE is satisfied that the input is sufficient:

(done (end-user-turn)
((not empty-input)
(time 2 keystroke)
(time 2 feedback)
(not punctuation #\,)
(not last-word "and" "but" "or" "because" "so")
(input-satisfied)))

This rule ends the user's turn, but only triggers if the input criterion has been satisfied.

A number of other conditions are checked for to help ensure that ending the turn is appro-

priate, namely that the user has entered something and that the last input was not a comma

or a cue word. A two-second pause is also required, and a feedback pause is included to

keep the SAGE from ending the turn right after prompting.

A second turn-ending rule ends the turn even if the user has not entered a satisfactory

input, but requires a much longer and more obvious pause of four seconds. The SAGE

input checker sometimes does not have a criterion to check the input against, and always

returns failure, necessitating this rule. Once again, it checks a number of other conditions:

(done-unsatisfied (end-user-turn)
((not empty-input)
(time 4 keystroke)
(time 2 feedback)
(not punctuation #\,)
(not last-word "and" "but" "or" "because" "so")))

The third turn-ending rule checks to see if the typist has ended with a period. The com-

bination of a period and a pause is considered sufficient to end the turn.

(period-end (end-user-turn)
((not empty-input)
(time 2 keystroke)
(time 2 feedback)
(punctuation #\.)))

A fourth criteria that could be used to end the turn is the time since the user began. If

the user takes too long, then the SAGE would interrupt after a shorter pause. This is not

included in the Appendix, but would be a simple matter of adding this requirement to the

sort of rule listed above (for a 14-second turn):

(time 14 user-turn)

The simplest backchannel is prompting during pauses, using various words as feed-

back. This can be done by directly checking the pauses in the rule.

(pause-feedback (word-feedback " Go on. "" Okay. "" Oy vey, continue. "
" Uh huh. ")

((not empty-input)
(time 2 keystroke)
(time 3 feedback)))

Another backchannel situation arises when the user doesn't start typing at the begin-

ning of the turn, and should be prompted.

(prompt (word-feedback " Nu?" " Yes? " " Do not be uncomfortable. ")
((empty-input)
(time 3keystroke)
(time 3 feedback)))

Notice that the word-choice is obviously specific to the SAGE Rabbi character. While

pause lengths are not obviously specific here, they would definitely alter if this set of rules

was applied to a different personae. (A good example would be pauses between feedback

in Japan, which are generally shorter than pause lengths within the U.S.)

A more complex situation is a response to a user's cue words. Typically when some-

one uses one of these cue words and pauses, it is an appropriate time to interject a com-

ment. Here the comments are the cue words rephrased as questions, to prompt the person

to type more:

(cue-word-feedback (ask-last-word)
((time 1 keystroke)
(time 2 feedback)
(last-word "and" "but" "or" "because" "so")))

This short list of rules creates a set of complex behaviors, through interacting with the

user and interacting with each other. While typing, it can be difficult to assign which

response came from which rule or to predict when rules are triggered. An uncomfortable

rule can be altered or removed by editing this set, and then tested again, creating a close

feedback loop for the developer of the backchannel and turn-taking system.

Evaluation
First, the system as described above works. It does not interfere with the user's ability

to type, because it is running as a background process and not taking very many computa-

tional cycles. It provides interactive feedback through the normal SAGE output channels

while the user is typing, and ends the user's turn when the rule set dictates.

Some of the functionality of this system was not useful. The ability to end user control

is not appropriate to SAGE because the user rarely if ever gains a control position in the

SAGE interaction. Also, while it is possible to check a word against the entire input, this

functionality is currently unused. The check could perhaps be used in the future to look for

certain types of words, such as deictics or time words, but I have not looked into the possi-

bility of using such information to determine appropriate feedback.

Even though I was expecting the interface to feel different with the feedback and turn-

taking behavior, I was surprised by how different it felt. The turn-taking behavior espe-

cially adds a feeling of immediacy to the interaction, because (as in a normal conversation)

the user will lose control if they stop producing communication. Thus, one has to pay

close attention when interacting with the persona, something that is not true of most com-

puter interactions. Also, the habitual response to short queries such as "ok" or "uh huh" is

to move one's attention to the speaker of the short word or words, adding to the effect of

the turn-taking.

In addition to demanding attention, the feedback creates a feeling of liveliness that is

missing from typical typing interfaces. Getting reminders of the computer's attention

every couple of seconds or during pauses really creates a feeling of a presence behind the

screen, like occasional comments or simultaneous typing are used to establish a presence

over the UNIX talk program.

Even though I wrote the rule set myself (and indeed the entire implementation), I still

found myself unable to predict its behavior from situation to situation, or determine which

rule caused a certain action. The reactions are too quick or depend on complex interactions

between the timing parameters or cue parameters of various rules. I take this as a good

sign. The level of interaction with the computer is moving out of the realm of the con-

scious and purposeful action and into the realm of habitual response, where discourse cues

and responses actually occur. However, it meant I had to add extra diagnostics to be able to

edit the rule set effectively.

A further level of complexity in the interaction surprised me. I found myself develop-

ing strategies to hold the turn. I knew that cue words and commas could be used to hold

the turn, so I would put them in when I wanted to pause. My typing would occasionally

look like, "I have a lot of work to do and it will take a lot of time, but when I finish it I will

be really happy." My development of turn-taking strategies is good in that in indicates a

much more interactive input format, but the necessity of creating such strategies tells us

that the system is still a far ways from being able to interpret the usual human-human turn-

taking cues.

However, the monotony of the feedback tended to get annoying if the user decided to

stop typing for some reason. Unlike people, the computer cannot interpret gaze to deter-

mine if the user has stopped paying attention. Also, the program is incapable of using

semantic and intonational cues to determine the mode of the conversation, and thus cannot

tell if the user has stopped listening.

Appropriate timing is difficult to determine. I would pick a time and test it. Often the

same pause time would feel too long in one instance or too short in another. This is further

confused because typing speed tends to run significantly slower than speaking speed, so

pauses and pause relations that make sense in speaking do not map directly to typing.

Determining when to give feedback, and integrating more cues into the decision, should

be one of the next step in improving this backchannel system. Also, the timing should start

adapting to the individual users, based on their typing speed or average typing pause

length.

Future Research
A possible follow-up project to SAGE would connect certain backchannel and turn-

taking behaviors to certain parts of the conversation, so that as the interaction changes

modes from greeting to questioning to storytelling, the feedback system reflects each

mode of conversation. Also, if the relevant parameters of the backchannel system can be

determined (pause range and word choice among others), it may be possible to allow the

children to modify backchannel and turn-taking behavior in the SAGE storytellers they

build. Such an introduction between discourse theory and children should be well-

designed, but is well within the goals of SAGE project (Umaschi, 1996).

Pause timing could be improved in a number of ways. First, the system could have a

number of interaction modes and the capability to switch between them. So, if the user

does not type for five seconds, the computer could switch into an "ignored by user" mode,

and slow down the rate of feedback. Second, an adaptive system such as the one designed

by Klein could be used to have the interface adapt to a user's typing speed and pause

lengths as they are working with the program. (Klein, 1996)

The backchannel system can currently search for words, but is unable to check for

entire phrases. Detecting phrases that the user enters would allow the system to reply to

certain phrases with appropriate quick feedback. This would be similar to the way it cur-

rently checks for and responds to cue words.

If time limitations are dealt with, then the system could get access to some more lin-

guistic or semantic information. Linguistic or semantic cues (among other discourse cues)

help shape backchannel and turn-taking, so a good system should be able to catch these

cues. A part of speech tagger or dictionary lookup could be used to determine parts of

speech. Similarly, a partial parsing process could be applied to input as it arrives to deter-

mine various grammatical relations between words. For instance, a lot of information can

be gained simply by finding the tense, subject, or object of a verb. Perhaps this informa-

tion could be used to find appropriate feedback or to help negotiate turn-taking. (One

example is the use of part of speech information to determine whether it is appropriate to

reflect the last word as a question. Verbs are more appropriate than nouns or adjectives.

This would keep the program from replying "Now?" to the input "I am going to the store

now," along with other simple mistakes. Another example would be checking to make sure

the user is not in the middle of a verb phrase or other unfinished construction before end-

ing the user's turn.) A step down from this computationally intense work could be checks

for wording around time, or deictic wording. In general, some mechanism should be writ-

ten to make it easy to link higher-level discourse analysis into the system, and to deal with

the analysis if it is too slow for the program to run while it is accepting input.

Now that a backchannel and turn-taking rule set has been written for a typing inter-

face, it needs to be tested and modified, to determine things like exact pause timing. Also,

testing should be done to determine how these relevant parameters change across situa-

tions and cultural backgrounds. Also, there will likely be a difference between novice and

experienced computer users in their comfort level with the new interface, and this should

be tested for. It may take the experienced users longer to adapt to the new interface, for

instance.

Also, there is a lack of research on conversational backchannel and turn-taking

between people, especially in cross-cultural comparison. This research would allow a

much more informed exploration of interactions affected by people's expectations of inter-

personal discourse, such as human-computer interaction.

Conclusion
While the basic computer interface paradigm of dyadic input/output messaging is con-

sidered by many to be a settled and proven matter, this textual messaging system largely

fails to take into account user expectations of the computer, especially in cases where a

program assumes a persona or character of some sort. In particular, there is a problem with

the lack of responsiveness while a user is typing in text, and this problem can be partially

fixed by some relatively minor programming around the text input paradigm.

As demonstrated by the relative simplicity of the coding needed for this project, add-

ing a basic set of backchannel and turn-taking rules into an interface is a feasible task both

in terms of coding time and processing time. This basic set of discourse rules improves the

textual input interface in a number of ways. First, it reduces the traditional dependence on

the return key as "sending" input to the program, breaking down the back-and-forth mes-

saging paradigm to a large extent. Second, both the backchannel and turn-taking behavior

add a certain responsiveness or feeling of life to the computer interface, making it feel

drastically different from the traditionally unresponsive or "dead" input activity. This new

"feel" of a traditional input form (typing) makes the SAGE program feel more "alive", by

animating the persona of a SAGE avatar. Third, backchannel behavior can be used to

encourage, discourage, or direct user input while the user is entering it, much in the same

way that people will keep a continuous line of communication open during conversation,

no matter who is actually doing the speaking at any moment.

The domain of backchannel and turn-taking behavior is of course highly applicable to

multimodal agents such as Gandalf, and any other system seeking to obtain speech input

from a person. But this domain is also relevant to many other forms of input, even though

they do not include the speech recognition that is generally considered necessary for a

simulation of conversational behavior. This relevance is partially due to the tendency of

people to anthropomorphize the computer, and to go out of their way looking for human-

like characteristics in communication with a computer. Even in the supposedly well-estab-

lished area of typing input, simple application of this domain sharply alters the feel of an

interface.

Cultural, situational, and personal differences in backchannel and turn-taking expecta-

tions form one of the major hurdles in designing these systems, as each instance of a back-

channel or turn-taking program could demand a slightly different set of behaviors. This

was well-demonstrated by the situation with the SAGE characters (which are culturally

diverse) from the beginning of this project. One easy solution to this dilemma, as demon-

strated by the approach of this project, is to create a very flexible base system which is eas-

ily modifiable from one persona or situation to another, and perhaps even within the same

interaction.

Timing was more difficult than expected, due to personal and situational differences in

typing speed and pause style, and the lack of many cues used for timing in normal conver-

sation. More development is required before feedback and turn-ending occur at the proper

juncture. A couple of ideas are listed below.

While it is easy to put together a system which can do surface backchannel, actually

giving feedback that recognizes and uses the content of what is being entered is a very dif-

ficult problem, and likely will not be solved for a long time. However, until this area is

investigated much more thoroughly, computers will not be able to effectively reproduce

person-to-person backchannel behavior. Similarly, moving the computer away from the

discourse situation addressed in this paper will create entirely new problems. For example,

if the computer is one participant in a many-person conversation, how does it start to

address the (much more complex) turn-taking dynamics of the situation?

Acknowledgments
My eternal gratitude to Marina Umaschi, who designed the SAGE system that I built

on, and guided me through this thesis. Also, a heartfelt thank you to Professor Justine Cas-

sell, who taught me all of the discourse theory I know and put up with my foibles for the

year that I've been in her research group. All the other people in the Gesture and Narrative

Language group at the MIT Media Lab have been very supportive, and without them this

would have been much more difficult: Jennifer Glos, Hannes Viljalmsson, Obed Torres,

Nick Montfort, Scott Prevost, Matthew Sakai, and Erin Panttaja.

Cassell, J., C.Pelachaud, N.I. Badler, M. Steedman, B. Achorn, T. Becket, B. Douville, S.
Prevost, M. Stone. (1994) "ANIMATED CONVERSATION: Rule-Based
Generation of Facial Expression, Gesture, and Spoken Intonation for Multiple
Conversation Agents." Siggraph '94, Orlando, USA.

Cherny, L., (1997) "The MUD Register: Conversational Modes of Action in a Text-Based
Virtual Reality." Submitted to The Program in Media Arts and Sciences, Dec 1997.

Foner, L. N. (1993) "Agents Memo 93-01", Agents Group, MIT Media Lab.

Goffman, E. (1983) Forms of Talk. Philadelphia, PA: University of Philadephia Press.

Goodwin, C. (1981) Conversational Organization: Interaction Between Speakers and
Hearers. New York, NY: Academic Press.

Klein, J. (1996) "'Speak as You are Spoken To': A software agent that learns aspects of
turn-taking and other elements of conversational style." Final Project Paper,
Discourse class, MIT Media Laboratory.

Markowitz, (1996) J. A. Using Speech Recognition. Upper Saddle River, NJ: Prentice-Hall,
Inc.

Maudlin, M. L. (1994) "Chatterbots, Tinymuds, and the Turing Test: Entering the Loebner
Prize Competition." 12th Conference on AI.

Moon, Y., C. I. Nass. (1997) "How 'Real' Are Computer Personalities? Psychological
responses to personality types in human-computer interaction." Communication
Research (in press)

Nass, C. I, Y. Moon, N. Green. (1997) "How Powerful Are Gender Stereotypes? An
experimental demonstration." Journal of Applied Social Psychology (in press).

Sacks, H., E. A. Schegloff, G.A. Jefferson. (1974) "A Simplest Schematics for the
Organization of Turn-Taking in Conversation." Language, 50, pp. 696-735.

References

Schegloff, E. A. (1982) "Discourse as an Interactional Acheivement: Some Uses of 'uh
huh' and Other Things that Come Between Sentences." In Deborah Tannen, (eds.)
Georgetown University Round Table on Languages and Linguistics 1981:71-93.
Washington, D.C.: Georgetwon University Press.

Schiffrin, D. (1987) Discourse Markers. Cambridge, MA:Cambridge University Press.

Thorisson, K. R., J. Cassell. (1996) "Why Put an Agent in a Body: The Importance of
Communicative Feedback in Human-Humanoid Dialogue." Presented at Lifelike
Computer Characters.

Thorisson, K. R. (1996) "Communicative Humanoids: A Computational Model of
Psychosocial Dialogue Skills." Submitted to The Program in Media Arts and
Sciences.

Umaschi, M. (1997) "Soft Interfaces for Interactive Storytelling: Learning about Identity
and Communication." Submitted to The Program in Media Arts and Sciences.

Umaschi, M. (1996) "Soft Interfaces for Personal Stories: Storytelling Systems for
Children's Learning of Self and Communication." Proposal submitted to The
Program in Media Arts and Sciences.

Weizenbaum, J. (1966) ELIZA - a computer program for the study of natural language
communication between man and machine. Communications of the ACM 9.

Whittaker, S., P. Stenton. (1988) "Cues and Control in Expert-Client Dialogues."
Proceedings of the 26th Annual Meeting of the Association for Computational
Linguistics.

m

Appendix A: Backchannel and Turn-Taking Sample
Rule Set

;; first, appropriate end-of-turn
;; don't end on a continuing cue word... or a comma
(done (end-user-turn)

((not empty-input)
(time 2 keystroke)
(time 2 feedback)
(not punctuation #\,)
(not last-word "and" "but" "or" "because" "so")
(input-satisfied)))

;; end-of-turn when input conditions haven't been (necessarily) satisfied
(done-unsatisfied (end-user-turn)

((not empty-input)
(time 4 keystroke)
(time 2 feedback)
(not punctuation #\,)
(not last-word "and" "but" "or" "because" "so")))

;; if they don't say anything, prompt them
(prompt (word-feedback " Nu? " "Yes? " " Do not be uncomfortable. ")

((empty-input)
(time 4 keystroke)
(time 3 feedback)))

;; if they have ended with a cue word, ask it back to them
(cue-word-feedback (ask-last-word)

((time 1 keystroke)
(time 2 feedback)
(last-word "and" "but" "or" "because" "so")))

;; general pause feedback - if they stop, prompt them
(pause-feedback (word-feedback " Go on. "" Okay. " " Oy vey, continue."

" Uh huh. ")
((not empty-input)
(time 2 keystroke)
(time 3 feedback)))

;;; sometimes people indicate end with period - check here
(period-end (end-user-turn)

((not empty-input)
(time 2 keystroke)
(time 2 feedback)
(punctuation #\.)))

Appendix B: Lisp Code for the Backchannel and Turn-
Taking System

;;backchannel.lisp

(defclass backchannel ()
((interpreter :accessor interpreter :initarg :interpreter :initform nil)
(backchannel-event-list :accessor bevent-list :initform nil)
(backchannel-process :accessor bprocess :initform nil)
(back-process-kill :accessor bprocess-kill :initform nil)
(state :accessor state :initform (make-instance 'backchannel-state))
(callbacks :accessor callbacks :initform

(make-instance 'backchannel-callbacks))))

(defclass backchannel-callbacks ()
((end-user-turn :accessor end-user-turn :initform nil)
(end-user-control :accessor end-user-control :initform nil)
(send-output :accessor send-output :initform nil)))

(defclass backchannel-state ()
((original-time :accessor original-time :initform 0)
(last-time-checked :accessor last-time-checked :initform 0)
(current-time :accessor current-time :initform 0)
(feedback-time :accessor feedback-time :initform 0)
(typing-start-time :accessor typing-start-time :initform 0)
(control-start-time :accessor control-start-time :initform 0)
(keystroke-handoff :accessor keystroke-handoff :initform nil)
(keystroke-time :accessor keystroke-time :initform 0)
(user-typing :accessor user-typing :initform nil)
(user-control :accessor user-control :initform nil)

;; does the user have control?
(current-input-req :accessor current-input-req :initform nil)
(current-input :accessor current-input :initform nil)
(current-input-parsed :accessor current-input-parsed :initform nil)
(punctuation :accessor punctuation :initform

'(#\, #\. #\' #\", #\(#\) #\? #\!))
(whitespace :accessor whitespace :initform

'(#\Space #\Tab #\Newline))))

(defclass backchannel-action ()
((name :accessor name :initarg :name :initform "")
(activated :accessor activated :initform t)
(backchannel-req-list :accessor breqs :initarg :breqs :initform nil)))

(defclass back-action-words (backchannel-action)
((word-list :accessor word-list :initarg :word-list :initform nil)))

;; word-list is currently just a list of strings

(defclass back-action-turn (backchannel-action) ())
;; ends the user turn

(defclass back-action-control (backchannel-action) ())
;; ends the user control

(defclass ask-last-word (backchannel-action) ())
;; rephrases the last word as a question: "because" --> "Because?"

(defclass backchannel-req ()
((negate :accessor negate :initarg :not :initform nil)))

(defclass time-req (backchannel-req)
((tim :accessor tim :initarg :time :initform 0)

;; the time involved
(keystroke :accessor keystroke :initform nil)
(feedback :accessor feedback :initform nil)
(user-turn :accessor user-turn :initform nil)
(user-control :accessor user-control :initform nil)))

(defclass punctuation-req (backchannel-req)
((character-list :accessor character-list :initarg :character-list

:initform nil)))

(defclass correct-input-req (backchannel-req) ())

(defclass word-req (backchannel-req)
((word-list :accessor word-list :initarg :word-list :initform nil)))

(defclass last-word-req (backchannel-req)
((word-list :accessor word-list :initarg :word-list :initform nil)))

(defclass empty-input-req (backchannel-req) ())

;;;;;;;;;;;;;;;;;;;;;;;;;;; Package Interface.................

;; creation and action manipulation

(defun stream-to-backchannel (stream &optional interpreter)
(let ((the-back (make-instance 'backchannel :interpreter interpreter)))

(when (not (null stream))
(setf (bevent-list the-back) (stream-to-backchannel-list stream)))

the-back))

(defun create-backchannel-system (interpreter &key end-user-turn
end-user-control
send-output
stream backchannel)

(let ((the-back (make-instance 'backchannel :interpreter interpreter)))
(when (not (null stream))
(setf (bevent-list the-back) (stream-to-backchannel-list stream)))

(when (not (null backchannel))
(setf (interpreter backchannel) interpreter)
(setf the-back backchannel))

(when (not (null end-user-turn))
(setf (end-user-turn (callbacks the-back)) end-user-turn))

(when (not (null end-user-control))
(setf (end-user-control (callbacks the-back)) end-user-control))

(when (not (null send-output))
(setf (send-output (callbacks the-back)) send-output))

the-back))

(defmethod get-action-list ((b backchannel))
(copy-list (bevent-list b)))

(defmethod get-action-name-list ((b backchannel))
(mapcar #'(lambda (elem)

(name elem))
(bevent-list b)))

(defmethod add-action ((b backchannel) &key stream
input action name action-list)

(when (not (null stream))

(setf (bevent-list b)
(append (bevent-list b)

(stream-to-backchannel-list stream))))
(when (not (null input))
(setf (bevent-list b)

(append (bevent-list b) (list (input-to-backchannel input)))))
(when (not (null action))

(setf (bevent-list b)
(append (bevent-list b) (list action))))

(when (not (null action-list))
(mapcar #'(lambda (act)

(add-action b :action act))
action-list))

(when (not (null name))
(activate-action b name)))

(defmethod delete-action ((b backchannel) &key action name
action-list)

(when (not (null action))
(setf (bevent-list b) (filter (bevent-list b)

#'(lambda (elem)
(not (eq action elem))))))

(when (not (null action-list))
(mapcar #' (lambda (act)

(delete-action b :action act))
action-list))

(when (not (null name))
(setf (bevent-list b) (filter (bevent-list b)

#'(lambda (elem)
(not (eq name (name elem))))))))

(defmethod deactivate-action ((b backchannel)
&key action name action-list)

(when (not (null action))
(setf (activated action) nil))

(when (not (null action-list))
(mapcar #'(lambda (act)

(deactivate-action b :action act))
action-list))

(when (not (null name))
(mapcar #'(lambda (elem)

(when (eq (name elem) name)
(setf (activated elem) nil)))

(defmethod activate-action ((b backchannel) &key action name action-list)
(when (not (null action))
(setf (activated action) t))

(when (not (null action-list))
(mapcar #' (lambda (act)

(activate-action b :action act))
action-list))

(when (not (null name))
(mapcar #'(lambda (elem)

(when (eq (name elem) name)
(setf (activated elem) t)))

(bevent-list b))))

;; interaction with running interpreter

; calls into backchannel system

(defmethod run-backchannel ((b backchannel))
(setf (bprocess-kill b) nil)
(setf (original-time (state b)) (get-local-time))
(setf (user-typing (state b)) nil)
(setf
(bprocess b)
(process-run-function
"backchannel"
#'run-backchannel-background b)))

(defmethod user-start-control ((b backchannel))
(setf (user-control (state b)) t)
(setf (control-start-time (state b)) (get-local-time))

(defmethod user-start-typing ((b backchannel) current-input-fun)
(setf (typing-start-time (state b)) (get-local-time))
(setf (keystroke-time (state b)) (get-local-time))
(setf (current-input (state b)) "")
(setf (current-input-parsed (state b)) nil)
(setf (current-input-req (state b)) current-input-fun)
(setf (user-typing (state b)) t))

(defmethod keystroke-callback ((b backchannel) current-text)

(bevent-list b))))

(setf (keystroke-time (state b)) (get-local-time))
(setf (current-input (state b)) current-text)
(setf (current-input-parsed (state b)) (parse-to-word-list b current-text)))

(defmethod user-stop-typing ((b backchannel))
(setf (user-typing (state b)) nil))

(defmethod user-stop-control ((b backchannel))
(setf (user-control (state b)) nil))

(defmethod stop-backchannel ((b backchannel))
(setf (bprocess-kill b) t))

;;;;;;;;;;;;;;;;;;;;;;;; Backchannel Watchdog Process ;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun run-backchannel-background (b)
(loop

(when (or (not (user-typing (state b)))
(not (time-check b)))

(process-wait "user input disabled" #'backchannel-background-wait b))
(when (bprocess-kill b) (return-from run-backchannel-background nil))
(run-requirements b)
(setf (last-time-checked (state b)) (get-local-time))))

(defun backchannel-background-wait (b)
(or (and (time-check b) (user-typing (state b))) (bprocess-kill b)))

(defun time-check (b)
(> (get-local-time) (+ 1 (last-time-checked (state b)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;; Saving and Loading ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun stream-to-backchannel-list (stream)
(let ((back-list '()))

(do ((inp (read stream nil nil) (read stream nil nil)))
((null inp) (reverse back-list))

(setf back-list (cons (input-to-backchannel inp) back-list)))))

(defun input-to-backchannel (inp)
(dassert (= 3 (length inp)) "in input-to-backchannel: wrong length input")
(let ((the-action (translate-action (second inp))))
(setf (name the-action) (first inp))
(setf (breqs the-action)

(mapcar #'(lambda (imp)
(translate-req imp))

(third inp)))
the-action))

;;;;;;;;;;;;;;;;;;; Requirement Checking ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defmethod run-requirements ((b backchannel))
(update-state b)
(dolist (action (bevent-list b))

(run-action b action))

(defmethod update-state ((b backchannel))
(setf (current-time (state b)) (get-local-time)))

(defmethod run-action ((b backchannel) action)
(let ((reqs-satisfied t))

(dolist (req (breqs action))
(when (not (check-req-not req b))
(setf reqs-satisfied nil)
(return nil)))

(when reqs-satisfied (do-action action b))))

(defmethod do-action ((a back-action-words) b)
(when (not (null (send-output (callbacks b))))
(setf (feedback-time (state b)) (get-local-time))
(funcall (send-output (callbacks b)) (choose-random (word-list a)))))

(defmethod do-action ((a ask-last-word) b)
(when (and (not (null (send-output (callbacks b))))

(not (null (current-input-parsed (state b)))))
(setf (feedback-time (state b)) (get-local-time))
(funcall
(send-output (callbacks b))
(concatenate
'string

(string-upcase
(first (last (current-input-parsed (state b))))
:start 0 :end 1)
"? "))))

(defmethod do-action ((a back-action-turn) b)
(when (not (null (end-user-turn (callbacks b))))

(setf (user-typing (state b)) nil)
(funcall (end-user-turn (callbacks b)))))

(defmethod do-action ((a back-action-control) b)
(when (not (null (end-user-control (callbacks b))))
(setf (user-typing (state b)) nil)
(setf (user-control (state b)) nil)
(funcall (end-user-control (callbacks b)))))

(defmethod check-req-not ((r backchannel-req) b)
(if (negate r)

(not (check-req r b))
(check-req r b)))

(defmethod check-req ((r time-req) b)
(let* ((critical-time (- (current-time (state b)) (tim r))))

(when (not (null (keystroke r)))
(when (not (> critical-time (keystroke-time (state b))))

(return-from check-req nil)))
(when (not (null (feedback r)))

(when (not (> critical-time (feedback-time (state b))))
(return-from check-req nil)))

(when (not (null (user-turn r)))
(when (not (> critical-time (typing-start-time (state b))))

(return-from check-req nil)))
(when (not (null (user-control r)))

(when (not (> critical-time (control-start-time (state b))))
(return-from check-req nil)))

t))

(defmethod check-req ((r punctuation-req) b)
(let ((last-non-whitespace (get-last-char b (current-input (state b)))))

(member last-non-whitespace (character-list r) :test #'eql)))

(defmethod check-req ((r correct-input-req) b)
(if (null (current-input-req (state b)))

t
(funcall (current-input-req (state b)) (current-input (state b)))))

(defmethod check-req ((r word-req) b)

(let ((the-input-words (current-input-parsed (state b))))
(dolist (a-word (word-list r) nil)

(when (member a-word the-input-words :test #'equalp)
(return-from check-req t)))))

(defmethod check-req ((r last-word-req) b)
(let ((the-input-words (current-input-parsed (state b))))

(when (not (null the-input-words))
(when (member
(first (last the-input-words))
(word-list r) :test #'equalp) t)))

(defmethod check-req ((r empty-input-req) b)
(null (current-input-parsed (state b))))

;;;;;;;;;;;;;;;; Action and Requirement Translation ;;;;;;;;;;;;;:::::::::::::::

(defun translate-action (inp)
(dassert (<= 1 (length inp)) "in translate-action: empty input")
(when (eq 'word-feedback (first inp))

(dassert (<= 2 (length inp)) "in translate-action: no words")
(return-from translate-action

(make-instance 'back-action-words :word-list (rest inp))))
(when (eq 'end-user-turn (first inp))

(return-from translate-action
(make-instance 'back-action-turn)))

(when (eq 'end-user-control (first inp))
(return-from translate-action

(make-instance 'back-action-control)))
(when (eq 'ask-last-word (first inp))

(return-from translate-action
(make-instance 'ask-last-word)))

(dassert nil "in translate-action: unknown action type"))

(defun translate-req (inp)
(dassert (<= 1 (length inp)) "in translate-req: empty input")
(let ((new-inp (if (eq 'not (first inp)) (rest inp) inp))

(negation (eq 'not (first inp))))
(dassert (<= 1 (length new-inp)) "in translate-req: empty input")
(when (eq 'time (first new-inp))

(dassert (<= 3 (length new-inp)) "in translate-req: short time input")
(dassert (numberp (second new-inp)) "in translate-req: bad time input")

(let ((the-req (make-instance 'time-req
:time (second new-inp) :not negation))

(type-list (nthcdr 2 new-inp)))
(when (not (null (member 'keystroke type-list)))
(setf (keystroke the-req) t))

(when (not (null (member 'feedback type-list)))
(setf (feedback the-req) t))

(when (not (null (member 'user-turn type-list)))
(setf (user-turn the-req) t))

(when (not (null (member 'user-control type-list)))
(setf (user-control the-req) t))

(return-from translate-req the-req)))
(when (eq 'punctuation (first new-inp))

(dassert
(<= 2 (length new-inp))
"in translate-req: short punctuation input")

(mapcar #'(lambda (char)
(dassert (characterp char)

"in translate-req: bad character for punctuation"))
(rest new-inp))

(return-from translate-req
(make-instance 'punctuation-req :character-list (rest new-inp)

:not negation)))
(when (eq 'input-satisfied (first new-inp))

(return-from translate-req
(make-instance 'correct-input-req :not negation)))

(when (eq 'word (first new-inp))
(dassert (<= 2 (length new-inp)) "in translate-req: short word input")
(mapcar #'(lambda (word)

(dassert (stringp word)
"in translate-req: bad character for punctuation"))

(rest new-inp))
(return-from translate-req

(make-instance 'word-req :word-list (rest new-inp)
:not negation)))

(when (eq 'last-word (first new-inp))
(dassert (<= 2 (length new-inp)) "in translate-req: short word input")
(mapcar #'(lambda (word)

(dassert (stringp word)
"in translate-req: bad character for punctuation"))

(rest new-inp))
(return-from translate-req

(make-instance 'last-word-req :word-list (rest new-inp)

:not negation)))
(when (eq 'empty-input (first new-inp))

(return-from translate-req
(make-instance 'empty-input-req :not negation)))

(dassert nil "in translate-req: unknown requirement")))

:::::::::::::::::::::::::::::: utilities ::::::::::::::::::::::::::::::::::::

(defun choose-random (1st)
(nth (random (length Ist)) 1st))

(defun get-local-time ()
(/ (get-internal-real-time) internal-time-units-per-second))

(defmethod get-last-char ((b backchannel) strng)
(let ((last-char (- (length strng) 1)))

(loop
(when (> 0 last-char) (return-from get-last-char nil))
(when (not (member (char strng last-char)

(whitespace (state b))))
(return-from get-last-char (char strng last-char)))

(setf last-char (- last-char 1)))))

(defmethod parse-to-word-list ((b backchannel) strng)
(let ((len (length strng))

(begin-index 0)
(end-index 0))

(loop
(when (<= len begin-index) (return-from parse-to-word-list nil))
(when (not (or (member (char strng begin-index)

(whitespace (state b)))
(member (char strng begin-index)

(punctuation (state b)))))
(return nil))

(setf begin-index (+ begin-index 1)))
(setf end-index (+ 1 begin-index))
(loop

(when (<= len end-index)
(return-from parse-to-word-list

(list (subseq strng begin-index))))

(when (or (member (char strng end-index)
(whitespace (state b)))

(member (char strng end-index)
(punctuation (state b))))

(return-from parse-to-word-list
(cons (subseq strng begin-index end-index)

(parse-to-word-list b (subseq strng end-index)))))
(setf end-index (+ end-index 1)))))

