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Abstract

This thesis describes the design and implementation of a planner/optimizer/executioner
(POE) for the COntext INterchange (COIN) system, . The POE takes a context-
mediated query from the Mediation Engine of the system and returns the results of
the query to the user of the system. Since context-mediated queries are composed of
sub-queries to multiple data-sources, the POE plans the execution order of the sub-
queries , executes each sub-query, composes the results and returns this as the answer
of the mediated query. The thesis also describes the design of helper components of
the POE such as the Capability Checker. Finally, the thesis describes a preliminary
performance analysis study which was used to determine the allocation of costs in
the COIN system.
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Chapter 1

Introduction

Context Interchange is a novel approach to the integration of heterogeneous data-
sources which was developed at the MIT Sloan School of Management. It seeks to
integrate a wide variety of data-sources in a seamless manner, not only at the physical
level, but also at the semantic level. The Context Interchange approach attacks
the problem of semantic integration by proposing the idea of contexts associated
with the sources and users of data. A context can be defined as “the assumptions
underlying the way an agent represents or interprets data” [4]. The rationale behind
this approach is that once all the assumptions about the data have been explicated and
clarified, it would be easy to resolve the conflicts that arise because of the discrepancies
in these assumptions.

The COntext INterchange (COIN) project proposes the use of a context mediator
[1], which is a component that sits between the users of data and the sources of
data. When a user sends a query to any of set of data-sources, the context mediator
analyzes the query to identify and resolve any semantic conflicts which may exist
in it. It resolves the conflicts by rewriting the query with the necessary conversions
to map data from one context to another. The rewritten query is referred to as a
context mediated query. This idea has been implemented in the COIN system which
integrates standard relational databases and other sources which have been wrapped
to give a relational interface. Examples of wrapped data-sources are web-sources and
user-defined functions which provide arithmetic and string-manipulation features.

The diagram in Figure 1-1 shows the architecture of the COIN system. It is
a three-tier architecture. Users interact with the client processes which route all
requests to the context mediator. An example of a client process is the multi-database
browser [7]. The second set of process in the COIN system are the mediator processes
which consist of the context mediator, the planning components, and the execution
engine. These processes provide all the mediation services. Together, they resolve
the semantic conflicts which exist in the query and also generate and execute a plan
for the query. Finally, the server processes provide the physical connectivity to the
data-sources. They provide a uniform interface for accessing both relational databases
and wrapped web-sources. Special components called wrappers provide the relational
interface to the web-sources. The mediator processes are therefore insulated from the
idiosyncrasies of different database management systems.
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This thesis describes the items labelled Planning Components and Ezecutioner
in Figure 1-1. Together, they form the Planner/Optimizer/Executioner (POE). The
POE is responsible for decomposing the mediated query into its sub-queries, and
for planning the order of execution of these sub-queries. It is also responsible for
executing the sub-queries to retrieve the result of the mediated query. The POE
does not perform context mediation per se. It is a standard multi-database back-end
with the added functionality of handling non-relational query operators, and access
to non-standard data-sources.

1.1 Background

A lot of work has already been done in the area of ordering, decomposing, optimizing
and executing queries to multiple data-sources. Significant among these are the work
in [9] which proposes an algorithm for ordering the subgoals of a query and [3] which
discusses query optimization in heterogenous database systems. There are also a num-
ber of current efforts to develop languages for describing the capability restrictions
imposed by sources. Examples of research projects which are tackling these problems
are the Information Manifold (IM) Project at AT & T, the Tsimmis Project at Stan-
ford, and the Garlic Project at IBM. IM uses the notion of a capability record [8]
for representing source capability restrictions. Tsimmis uses a language called the
Query Description and Translation Language (QDTL) [10] while Garlic uses a lan-
guage called the Relational Query Description Language (RQDL) [11]. Both QDTL
and RQDL are capable of describing arbitrary schemas. However, to our knowledge,
the algorithms they use for integrating source capability descriptions in the query
planning phase only plan among the different components of a single sub-query and
not among different sub-queries. For example, they do not consider the possibility
of using information from one source to provide the information required by other
sources. They only use information to remove restrictions within a single source.

1.2 Motivational Example

An example will help us clarify some of the issues involved in planning and executing
context mediated queries.

In this example, a hypothetical user wants the names, net incomes and last selling
prices of all companies with net income greater than 2,500,000. This information is
provided by the two relations DiscAF and secapl. DiscAF provides historical data
on a variety of international companies, while secapl provides market information on
companies. DiscAF is in the context c_ds. In this context, all financial figures have a
scale-factor of 1, and are published in the currency of the country where the company
is located. secapl is in the context c_ws, in which all financial figures have a scale-
factor of 1,000 and are published in US Dollars. The hypothetical user is also in the
context c_ws. The export schemas and the contexts of all the relations used in our
example are listed in Appendix B. [5] gives a more complete discussion of contexts
and mediation.
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To obtain his/her answer, the user would input the following query to the COIN
system.

context = c_ws

select DiscAF.COMPANY_NAME, DiscAF.NET_INCOME,
secapl.Last

from Ticker_Lookup, DiscAF, secapl

where Ticker_Lookup. TICKER = secapl.Ticker

and Ticker_Lookup.COMP_NAME = DiscAF.COMPANY_NAME
and DiscAF.NET_INCOME > 2,500,000;

After mediation, the Context Mediator will output a list containing the datalog [2]
queries shown on in Table 1.1.

answer(V20, V13, V8):-
Ticker_Lookup(V6, V5, V4),
Name _Map(V6, V20),
DiscAF(V6,V3, V10, V2, V9,V18,V12),
2,500,000’ < V13,
V13 is V2 * 0.001,
secapl(V5, V8, V1, V7),
V12 = 'USA’.

answer(V20, V17, V8):-
Ticker Lookup(V6, V5, V4),
Name_ Map(V6, V20),
DiscAF(V6, V3, V10, V2, V9, V18, V12),
2,500,000’ < V17,
secapl(V5, V8, V1, VT7),
V12 <> "USA’,
Currencytypes(V12,V14),
olsen(V14,V15,V13,V19),
V15 ='USD’,
V16 is V13 * V2,
V17 is V16 * 0.001.

Table 1.1: Mediator Output for Motivational Example.

A datalog query is a logical rule of the form A:-B, where A is the head of the rule
and B is the body. B is usually a conjunction of facts. The procedural reading for
the rule A:-B is: “To answer the query A, we must first answer B.” In Table 1.1, the
head of each query is an answer() predicate. This predicate represents the result of
the query. Each fact in B is either a relational predicate, a boolean statement, or a
conversion function. We refer to all non-relational functions as conversion functions.
Typically, these functions are introduced into the query to map data from one context
to another. However, the user can also add such functions into the initial query to
the COIN system. Since B is a conjunction, we need to answer all the facts in B
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before we can get the result of the mediated query. Once we have an answer for B,
A will have an answer and therefore the mediated query would have an answer.

Relational predicates represent queries to data-sources. For example, the predi-
cate Ticker_Lookup(V6,V5,V4), represents the relation Ticker_Lookup in the source
Disclosure. Each argument in the predicate represents an attribute of Ticker_Lookup.
The order of the arguments correspond directly to the order of the attributes in the re-
lation, as shown in Appendix B. Thus, V6 represents Ticker_Lookup. COMP_NAME,
V5 represents Ticker_Lookup. TICKER and V4 represents Ticker_Lookup. EXCHANGE.
Variables which are shared by different facts must instantiate to the same value. In
our example, the first attribute of Ticker_Lookup and the first attribute of Name_Map
must instantiate to the same value because they are both represented by the variable
V6. Thus, shared variables in the relations represent equijoins among the relations in
the query. Shared variables are also used to show which attributes must be returned
to the user as part of the answer. In our example, V8 is shared by secapl() and an-
swer(). Therefore, the second attribute in secapl() would have to be returned as part
of the answer to the query. Finally, shared variables are used to show which attributes
in the query are arguments to boolean statements and conversion functions.

Boolean statements represent selection conditions on attributes in the query. A
statement like V15 = "USD’ restricts the value of the second attribute of the re-
lation olsen() to 'USD’. Conversion functions represent the operations needed for
context conversion. In our example, the first datalog query has the conversion func-
tion V13 is V2 * 0.001. V2 is the fourth attribute of the relation DiscAF(). V13 is
the third argument in the answer() predicate. The conversion function represents the
fact that in order for the fourth attribute of DiscAF() to be returned to the user, its
value would have to be multiplied by a scale-factor of 0.001.

Each datalog query in the output of the context mediator resolves a possible
semantic conflict in the original query. In our example, the two queries represent the
two kinds of conflicts that could occur. The first datalog query handles the conflicts
which arise when the company is incorporated in the USA, while the second handles
the conflicts which occur when the company is incorporated in another country other
than the USA. In the first datalog query, the boolean statement ensures that the
value of DiscAF.LOCATION_OF INCORPORATION is "USA’. There is no need for
a conversion of the currency of financial figures once this condition is satisfied. The
only conversions that needs to be performed are a translation of the name of the
company from the format of c.ds to the format of c_ws, and a conversion of the
scale factor. In the second datalog query, the boolean statement ensures the value of
DiscAF.LOCATION_OF INCORPORATION is not "USA’. In that case a currency
conversion is needed in addition to the conversions mentioned previously.

We will use the second datalog query in the list to outline the issues involved in
retrieving an answer to a query. The reader can extend the explanations we provide
to the first datalog query.

The relational predicates Ticker_Lookup(), DiscAF(), and secapl() represent the
relations which were identified by the user in the original SQL query. Name_Map(),
olsen() and Currencytypes() are auxiliary relations that provide information for me-
diation. Since the user in in the c_ws context, she expects all financial figures to have
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a currency of US Dollars and a scale-factor of 1. olsen() provides the current exchange
rate from the currency of the location of incorporation of the company to US Dollars.
Name_Map() provides a translation of the company name from the format of the Dis-
cAF() context to the user context, and Currencytypes() provides a mapping between
countries and their currencies. The query also consists of a boolean statement and
two conversion function.

Any execution of this query would involve an access to DiscAF() to retrieve the
information which the user needs. Here, we can take advantage of the fact that we
do not require all the attributes from DiscAF. We can just project out the attributes
which we need from this relation. Since the query also asks for information from
secapl(), we would also have to access that relation. Unfortunately, secapl() cannot
be accessed in the same way as DiscAF because it imposes a restriction on queries
sent to it. Every query to secapl() must have the attribute secapl.Ticker bound
to a constant. The only place where we can get these bindings is from the relation
Ticker_Lookup(). We first have to access Ticker_Lookup() and for each ticker symbol,
retrieve the required data from secapl(). Alternatively, we could restrict the number
of tickers by using only the tickers of companies which were returned from DiscAF.

Because the user expects all financial data in US Dollars, each financial figure
requested by the user will have to be converted to US Dollars. This conversion requires
the exchange rate between the currency of the financial figure and US Dollars. The
relation olsen() provides this information. However, it imposes the restriction that
the olsen.Exchanged and olsen.Expressed attributes have to be bound. To get around
this restriction, we use the LOCATION_OF_INCORP attribute of DiscAF to retrieve
the currency from Currencytypes(). Once we have the currency, we can retrieve the
exchange rate and use it to convert the DiscAF financial figures to US Dollars. We
can then apply the scale-factor conversion function to the result. Finally, we can
apply the user-imposed conditions on the converted results. This marks the end of
execution for the query, and the results can be returned to the user.

This relatively simple example provides us with some insight into some of the
steps necessary for retrieving an answer for the user. To answer a context mediated
query, the POE needs to ensure that queries that are sent to sources can be handled
by the sources. The POE also needs to make the implicit order of execution of sub-
queries explicit. This involves the transformation of the logical description provided
by the context mediation engine into an operational description which describes the
order of retrieval of data from the remote source. The operational description would
also have to describe the manner in which data are combined to provide the answer
that the user expects. Finally, the operations specified by the operational description
of the context mediated query have to be executed. An execution of the operations
involves accessing the remote data-sources and retrieving the information required
for the query. The information then has to be composed into the answer requested
by the user.

13



1.3 Organization of the Thesis

The remainder of this thesis provides a more in-depth look at the POE components
of the COIN architecture. Chapter 2 presents an overview of the design and im-
plementation of whole the POE. The next two chapters present a description of the
two major components of the POE. In Chapter 3 the Execution Engine is described
while Chapter 4 provides a description of the Planner. Finally, Chapter 5 describes a
framework for performance analysis studies in the COIN back-end and presents the
results of a preliminary study. Chapter 6 concludes the thesis with recommendations
for future work in this area.
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Chapter 2
The COIN system Backend

This chapter presents an overview of the design and implementation of the whole

POE.

2.1 Architectural Design

CONTEXT INTERCHANGE BACKEND ARCHITECTURE

7
To External
. Sources
Mediated
Query
AN

Capability
Checker

Planner

Local Data Store

Figure 2-1: The Context Interchange Backend Architecture

The backend is divided into two main modules: the Query Planner and the Multi-
Database Executioner. Together, they ensure that the answer to the mediated query
is retrieved from the remote data-sources and returned to the user.

The Planner checks the query to ensure that a plan which will produce an answer
to the initial query exists. Once the planner determines this, it generates a set of
constraints on the order in which the different sub-queries can be executed. These
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constraints are sometimes necessary because some data-sources in the COIN system
impose restrictions on the kinds of queries which they accept. Typically, some sources
require that bindings must be provided for some of their attributes. Sources might also
have restrictions on the types of relational operators which they can handle. Under
these constraints, standard optimization heuristics are applied to generate the query
execution plan. The planner is subdivided into three separate submodules. These are
the capability checker, the subgoal ordering submodule, and the plan construction
submodule. These submodules will be discussed in Chapter 4.

The execution engine executes the query plan. It dispatches the sub-queries to
the remote sources and combines the results obtained from the external data-sources.
Intermediate results are stored in a local data store.

The decision to separate the planning issues from the issues involved with retriev-
ing and composing the of answer to queries increases the modularity of the system
and ensures that our infrastructure is extensible. For example, plans can be stored
and reused by the execution engine without the need for intervention from the plan-
ner. Also, changes can be introduced into either the planner or the execution engine
without having adverse effects on other parts of the system. More importantly, the
execution engine is isolated from the context mediator itself, ensuring that changes
in the output language of the mediator will have no effect on it. Thus, we can design
and implement the execution engine, keeping only the actual relational operations in
mind.

2.2 Implementation Decisions

2.2.1 Implementation Language

The COIN system was developed on the ECLiPSe! platform which is a parallel
constraint logic programming environment with database capabilities. The kernel of
ECLiPSe is an implementation of Standard Prolog [13]. The main reason for choosing
Prolog as our implementation language was because of the adequacy of Prolog for
implementing problems which involve a significant amount of symbolic manipulation.
Moreover, this specific Prolog implementation gave us the added bonus of a multi-
indexing temporary data store called BANG. BANG provided the system with an
efficient way to access intermediate query results of ad hoc queries.

2.3 Communication Protocol

We relied on the Hypertext Transfer Protocol (HTTP) for the physical connectivity
between the remote data-sources and the execution engine. This protocol provided a
general, widely used communication medium which facilitated the integration of new
data-sources into the COIN system. Moreover, because our querying paradigm is

'ECLiPSe: The ECRC Constraint Logic Parallel System. More information can be obtained at
http://www.ecrc.de/eclipse/.
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very similar to the stateless design of the HTTP protocol, this protocol meshed well
with our system, and did not have to be customized.

17



Chapter 3

The Execution Engine

Let us consider the first datalog query presented in the motivational example in
Section 1.2. To answer this query, we would need to execute all the operations
specified in the body of the query. These operations can be described by a Query
Execution Plan (QEP). For our example, the QEP would have to specify how each
of the sources would be accessed, and what data would need to be retrieved from
each data-source. Moreover, the QEP would have to specify how data retrieved form
each of the three data-sources would be combined. Finally, it would need to show
when the conversion function and the boolean conditions would be applied, and which
attributes they would have to be applied to. The QEP also specifies which attributes
would be returned to user as the answer to the query.

The multi-database execution engine implements all the operations specified by
the QEP. Figure 3-1 shows a diagram of the engine. It takes a QEP as its input. The
engine executes all the operations that are specified in the QEP. An example of a QEP
is shown in Figure 3-2. It retrieves data from the data-sources, processes the data,
and returns the answer to the user. In addition to the standard select, project, join,
and union relational operators, it implements a cvt operator for conversion functions,
and a join-sfw operator for access to sources whose input binding restrictions have
to be satisfied by data from other relations in the query plan. These bindings can be
provided only at run-time.

Apart from the project operator, each relational operator corresponds to a node
in the QEP. The project operator is implicitly provided in each node as we will show
in the discussion below.

3.1 The Query Execution Plan

The Query Execution Plan (QEP) is a data structure that specifies execution of the
operations in the query. It is in the form of an algebraic operator tree in which each
operation is represented by a node. We classify the nodes into two groups. These are
access nodes and local nodes. Access nodes are nodes which represent access to some
data-source, while local nodes represent operations in the local execution engine.

18
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* Local DBMS : : (e.g., web-pages)

Figure 3-1: The Multi-Database Execution Engine

3.1.1 Access Nodes

There are two access nodes. These are the sfw node and the join-sfw node. The
sfw node represents access to data-sources that do not require input bindings from
other sources in the query.! join-sfw nodes on the other hand represent access to
data-sources which require bindings from other data-sources in the query.

The sfw Node

The data-structure for the sfw node has the following form:
sfw(Relation,Sourcename,Maplist,Projectionlist,Conditionlist)

Each component of this data structure is described below.

Relation - The name of the relation.

Sourcename - The name of the source containing the relation.

lsfw nodes do not always adhere to this access/local categorization of nodes. This is because in
queries which have constants that are not grounded in any relation, a temporary relation is created
during execution and the constants are inserted into this relation. In that situation, the sfw node
associated with this temporary relation represents a local operation. We will clarify this issue in the
last section.
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Maplist - This is a list of the actual names of the attributes in the relation. The
Maplist is required by the multidb executioner when it is composing the SQL
query to access the relation.

Conditionlist - This is the list of conditions that can or must be pushed to the
data-source. We need to remember that not all conditions relevant to the data-
source can be pushed to it. Sometimes, relevant queries have to be applied at
the local database because they cannot be handled at the actual data-source.

Projectionlist - This is the list of variables which have to be projected from the
relation. The membership of this list depends on attributes involved in the
the implicit join conditions in the query, attributes which are arguments of
conversion functions, and attributes in the final projection list of the query. It
also depends on attributes which are arguments in the relevant conditions that
could not be pushed to the data-source. All such attributes have to be projected
out of the data-source.

Each attribute in the Conditionlist and the Projectionlist is replaced by an index
into the Maplist. An index is of the form att(X,Y) where X is the number of the
child data-structure and Y is the position of the attribute in the Maplist of that
data-structure. In the case of the sfw node all indices are of the form att(1,Y). In
nodes which have two child data-structures, the indices are att(1,Y) and att(2,X)
depending on which child data-structure the attribute belongs to.

The join-sfw Node

The data-structure for the join-sfw node is shown below.
join-sfw(Relation,Sourcename, Tree,Maplist,Projectionlist,Conditionlist)

This node can be thought of as representing a nested-loops join. The values for the
attributes that require bindings are projected out of the data-structure represented by
Tree and incorporated into the condition list of the SQL query to the data-source. The
Maplist is the same as the Maplist for an sfw node. Attributes in the Projectionlist
and the Conditionlist are replaced by indices into the Maplist and the Projectionlist
of Tree. An index into Maplist is of the form att(1,X) while an index into the Tree is
of the form att(2,Y).

3.1.2 Local Nodes

There are four local nodes. These are the join node for joining intermediate query
results, the cvt node for applying conversion functions to map data from one context
to another, the select node for applying conditions to intermediate results and the
union node for taking the union of the results of queries.
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The join Node

The data-structure for a join node is
join(Treel,Tree2,Projectionlist,Conditionlist)
Treex - The data-structure for a subtree being joined in.

Conditionlist - A list of the join conditions. Each attribute is replaced by an index
into the Projectionlist of Treel or Tree2.

Projectionlist - This is similar to the projection list of an access node. The only
difference is that attributes are replaced by indices into the Projectionlists of
Treel and Tree2.

The select Node

select(Projectionlist, Tree,Conditionlist)

The select node is used to apply conditions to intermediate results. Usually, these are
usually conditions that could not be applied at the remote data-source, or conditions
which act on the output of conversion functions. The Projectionlist and Conditionlist
are similar to those for the join node. Each attribute is replaced by an index into
the Maplist of Tree.

The cvt Node

cvt(Predicate, Tree,Projectionlist,Special Conditionlist)

The cvt node is just used to apply conversion functions to intermediate query results.
It has two components which make it different from the other nodes.

Predicate - This represents the conversion function to be applied. 2

SpecialConditionlist - This is a list which maps the arguments of the conversion
functions to indices into the projection list of the subtree.

The union Node

union(Querylist)

The union node represents a union of the results obtained by executing the members
of the list Querylist.
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JOIN-SFW:Secapl
Source: Secapl
MapL: [(secapl, Ticker), (secapl, Last), (secapl, Date), (secapl, Shareout)]
ProjL:[ att(2, 2), att(2, 3), att(1, 2),]
CondL: [att(1, 1) = att(2, 1)]
SELECT
ProjL:[att(2,2), att(2,3), att(2,1)]
CondL: [att(2,1) > 2,500,000]
CVT
ProjL:[att(1,1), att(2,1),att(2,2)]
SpecialCondL:[att(1,1) is att(2,3) * 0.001]
JOIN
ProjL:[att(2, 1), att(1, 1), att(1,2)]
CondL: [att(1, 1) = att(2, 2)]
SFW:DiscAF
Source: Disclosure
MapL:[(’DiscAF’, 'COMPANY_NAME’),
('DiscAF’, 'LATEST_ANNUAL_DATA’),
('DiscAF’, '"CURRENT_SHARES_OUTSTANDING’),
(’DiscAF’, 'NET_INCOME’),
('DiscAF’, 'NET_SALES’), ('DiscAF’, "TOTAL_ASSETS’),
('DiscAF’, 'LOCATION_OF INCORP’)]
ProjL: [att(1, 1),att(1, 4)]
CondL: [("'USA’ = att(1, 7))]
JOIN
ProjL: [att(2, 2), att(1, 2)]
CondL: {[att(1, 1) = att(2, 1)]
SFW Name_map
Source: Disclosure
MapL: [(Name_map, DS NAMES), (Name_map, WS_NAMES)]
ProjL:[att(1, 1), att(1, 2)]
CondL: [ ]
SFW:Ticker Lookup
Source:Disclosure
MapL: [(Ticker_Lookup, COMP _NAME), (Ticker_Lookup,
TICKER), (Ticker Lookup, EXCHANGE)]
ProjL: [att(1, 1), att(1, 2)]
CondL: [ ]

Figure 3-2: Plan for first query from Section 1.2
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JOIN-SFW:Secapl
Source: Secapl
MapL: [(secapl, Ticker), (secapl, Last), (secapl, Date), (secapl, Shareout)]
ProjL:[ att(2, 2), att(2, 3), att(1, 2),]
CondL: [att(1, 1) = att(2, 1)]
SELECT
ProjL:[att(2,2), att(2,3), att(2,1)]
CondL: [att(2,1) > 2,500,000]
CVT
ProjL:[att(1,1), att(2,1),att(2,2)]
SpecialCondL:[att(1,1) is att(2,1) * 0.001]
CcvT
ProjL:[att(1,1), att(2,1),att(2,2)]
SpecialCondL:[att(1,1) is att(2,3) * att(2,4)]
JOIN-SFW:olsen
Source: Olsen
MapL: [(olsen,Exc),(olsen,Exp),(olsen,Rate),(secapl, Date)]
ProjL:[ att(2, 1), att(2, 2), att(2,3), att(1,3)]
CondL: [att(1, 1) = att(2, 4), att(1,2) = "USD’)
JOIN
ProjL:[att(2, 1), att(2,2), att(2,3), att(1,2)]
CondL: [att(1, 1) = att(2, 2)]
SFW:Currencytypes
Source: Currencytypes
MapL:[(’Currencytypes’, '"COUNTRY’),
(’Currencytypes’, '"CURRENCY")]
ProjL: [att(1, 1),att(1, 2)]
CondL: [ ]
JOIN
ProjL: [att(2, 1), att(1, 1), att(1,2)]
CondL: [att(1, 1) = att(2, 2)]
SFW:DiscAF
Source: Disclosure
MapL: [('DiscAF’, '"COMPANY_NAME?’),
('DiscAF’, 'LATEST_ANNUAL_DATA’),
('DiscAF’, 'CURRENT_SHARES_OUTSTANDING"),
('DiscAF’, 'NET_INCOME'),
('DiscAF’, 'NET_SALES’), ('DiscAF’, "TOTAL.ASSETS’),
('DiscAF’, 'LOCATION_OF_INCORP’)]
ProjL: [att(1, 1),att(1, 4),att(1,7)]
CondL: [("USA’ <> att(l 1))
JOIN
ProjL: [att(2, 2), att(1, 2)]
CondL: [att(1, 1) = att(2, 1)]
SFW:Name.map
Source: Disclosure
MapL: [(Name_map, DS NAMES), (Name_map, WS_NAMES)]
ProjL:[att(1, 1), att(1, 2)]
CondL: [ ]
SFW:Ticker Lookup
MapL: [(Ticker Lookup, COMP_NAME), (Ticker_Lookup,
TICKER), (Ticker Lookup, EXCHANGE)]
ProjL: [att(1, 1), att(1, 2)]
CondL: [ ]
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3.2 Executing a Query Plan

We will ground our discussion of how the execution engine executes a plan with the
example presented in Section 1.2.

Figure 3-2 shows the query plan for the first datalog query while Figure 3-3 shows
the query plan for the second query. After executing both of these query plans, their
results would be combined together with a union node which is not shown. I will only
consider the execution of the plan shown in Figure 3-2 for the following discussion.

Starting at the root node of the query plan, the execution engine begins the
execution of the operation associated with each node. It first executes the operations
associated with the subtree or subtrees of each node. Then it applies the operation
for the node on the result of executing the subtree. The execution engine descends
the query plan in a depth-first manner until it encounter an access node. For each
access node in the plan, an SQL query is composed. This query is sent to the remote
data-source which the access node represents. Any results returned by the query
are inserted into temporary relations in the local data store. Once all the sub-trees
of a local node have been executed, the operation associated with the local node is
applied to the temporary relations which were created from the results of the sub-
trees. This procedure continues until the root of the query plan is executed. The
execution engine then takes the next query in the union node and executes it in the
manner just described. Once all the results from the queries in the union node have
been inserted into temporary relations, a union is done of all the relations. The result
of the union is the answer to the query, and this is sent back to the user.

For our example query, the execution engine begins at the join-sfw node secapl().
This has only one sub-tree. The sub-tree also executes its child sub-tree. Subtrees
are executed recursiverly until a leaf is reached. In our example, the first leaf node
is the sfw node for Ticker_Lookup(). The node is translated into an SQL query
which is then submitted to the source which contains Ticker_Lookup. The query to
Ticker_Lookup is

select Ticker_Lookup.COMP_NAME, Ticker_Lookup. TICKER
from Ticker_Lookup;

The next node is the sfw node for Name Map(). This results in the following
query:

select Name_Map.DS_NAMES, Name_Map. WS_NAMES
from Name_Map;

These two nodes are sub-trees of a join node, and once they have been ex-
ecuted, the join node itself is executed. The join node represents an equi-join
Name_Map.DS_NAMES and Ticker_Lookup. COMP_NAME. Name_Map.WS_NAMES
and Ticker_Lookup.TICKER are projected out of the result of this join as the result
of the executing the join node.

2An example of a conversion function would be X is Y « Z
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The next node to be executed is the sfw node which represents a query to the .
relation DiscAF(). The resulting SQL query from this node is

select DiscAF.COMPANY _NAME DiscAF.NET_INCOME
from DiscAF
where DiscAF.LOCATION_OF INCORP = "USA’;

The results of this query are joined in with the results of the join mentioned pre-
viously. As the result of each subsequent sub-tree becomes available, the operation
associated with the node which covers it is executed. Thus, the conversion function
is executed on the result of the join node. A selection is made on the result of
executing this cvt node, and finally the join-sfw node is executed. The execution
of the join-sfw node needs special mention. All through the execution of the pre-
vious nodes, it can be seen from examination of the query plan, that the attribute
Ticker_Lookup.Ticker is always projected up. In the join-sfw node, this attribute
is joined to the attribute secapl.Ticker. This node represents an operation similar
to a nested loops join, in that each Ticker_Lookup.Ticker which is projected up is
incorporated into a query to secapl(). Thus, the query to secapl() would be of the
form

select secapl. Ticker
from secapl
where secapl.Ticker = Ticker.Lookup. Ticker value;

and Ticker_Lookup. Ticker value will be replaced by one value of Ticker_Lookup. Ticker.
The query will be executed for as many values of Ticker_Lookup.Ticker as there are
in the result of the select node.

Finally, attributes are projected out of both the result of the select node, and
the result of this “nested-loops join”. The result of the projection is the result of the
query.

Once all the queries in the list of the union node have been executed, their
results are unioned together to give the result of the mediated query. This result is
then returned to the user.

3.3 Constants in the Head and Existential Queries

In the previous section, we described the standard way that the execution engine
implements the relational operators. However, there are two instances when the
execution engine uses alternate interpretations for some of the algebraic operators.
These situations arise when there are constants in the head of the datalog query, or
when some of the facts in the body of the datalog query are purely existential.

3.3.1 Constants in the Head

Let us imagine that our hypothetical user from our example in Section 1.2 decides
to modify his/her query. She now wants to know the country of incorporation of the
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companies that are returned in the answer to his original query. She would input the
following query to the COIN system.

context = c_ws
select DiscAF.COMPANY _NAME, DiscAF.NET_INCOME,
secapl.Last, DiscAF.LOCATION_OF_INCORP
from Ticker_Lookup, DiscAF, secapl
where Ticker_Lookup. TICKER = secapl.Ticker

" and Ticker_Lookup.COMP_NAME = DiscAF.COMPANY _NAME
and DiscAF.NET_INCOME > 2,500,000;

The new output from the mediation engine will be a list containing the following
two queries.

answer(V20, V13, V8, "USA"):-
Ticker Lookup(V6, V5, V4),
Name Map(V6, V20),
DiscAF(V6,V3, V10, V2, V9,V18,V12),
‘2,500,000’ < V13,
V13 is V2 * 0.001,
secapl(V5, V8, V1, VT7),
V12 = 'USA’.

answer(V20, V17, V8, V12):-
Ticker Lookup(V6, V5, V4),
Name_Map(V6, V20),
DiscAF(V6, V3, V10, V2, V9, V18, V12),
‘2,500,000’ < V17,
secapl(V5, V8, V1, V7),
V12 <> 'USA’,
Currencytypes(V12,V14),
olsen(V14,V15,V13,V19),
V15 = 'USD’,
V16 is V13 * V2,
V17 is V16 * 0.001.

Table 3.1: Mediator Output for Constants in the Head Example.

The change in the second datalog query in the list is not significant. It only
reflects the fact that one more attribute has been requested by the user. However,
the change in the first datalog has some serious implications because the value of the
new attribute requested by the user is already known. Instead of using a variable in
the answer() predicate to represent the attribute, the mediation engine inserts the
actual value of the attribute into the predicate. Thus, the head of the query becomes
answer(V20, V13, V8, 'USA’). We refer to "USA’ as a constant in the head.

None of the nodes presented in the the QEP can be used to express the constant
in the head. This is because the Projectionlists of the nodes are written in terms of
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indices into the Maplists of access nodes, or indices into the Projectionlists of local
nodes. Because the constant in the head is not ground in any relation, it cannot be
found in any Maplist or Projectionlist, and therefore cannot be projected out by any
of the standard nodes of the QEP.

To circumvent this problem a new kind of node was introduced into the QEP.
This node represents a relation which contains all the constants in the head of the

query.
sfw(Maplist)

The standard nodes of the QEP can now refer to these constants using indices into
the relation which the node represents. We refer to this node as an sfw node because
the operation associated with it is very similar to the operation of a standard sfw
node. When the execution engine encounters this node in a query plan, it creates
a relation in the local data-store and inserts the constant values into this relation.
Standard relational operations such as joins and projections can then be applied to
this relation in order to get the answer of the datalog query. The only difference
between this node and a standard sfw node is that the values that are inserted into
the relation are provided in the QEP and not retrieved from a remote data-source.
The Maplist in the node contains the type and value of each constant in the head
and is used to create the relation in the local data-store.

3.3.2 Existential Queries

To motivate our discussion on the problems associated with executing existential
queries, we will need to present a completely new example. Let us suppose that
the hypothetical user wants to sell off Microsoft stocks in order to invest in German
companies which have a net income greater than 2,500,000, but will do so only if the
selling price for Microsoft stock is favorable. At this point, the user is not interested
in specific companies. She only wants to know if an investment opportunity with the
desired characteristics exists. With regard to the COIN system, the user would like
to know if the relation DiscAF has entries for German companies with net income
greater than 2,500,000. If such companies exist, then the user would like to know the
last selling price for Microsoft stock. To obtain this answer, the user would input the
following query to the COIN system.

context = c_.ws

select secapl.Last

from DiscAF, secapl, Ticker_Lookup

where DiscAF.LOCATION_OF INCORP = 'GERMANY’
and DiscAF.NET_INCOME > 2,500,000

and Ticker_Lookup. COMPANY_NAME = 'MICROSOFT’
and Ticker_Lookup. TICKER, = secapl.Ticker;

The output from the mediation engine will be a list containing the datalog query
shown in Table 3.2.
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answer(V20):-
secapl(V1, V20, V3, V4),
Ticker_Lookup(V5,V1,V13),
DiscAF(V6,V13, V10, V2, V9,V18,V12),
‘2,500,000’ < V13,
V13 is V2 * 0.001,
V12 = 'GERMANY’,
V5 = 'MICROSOFT".

Table 3.2: Mediator Output for Existential Queries Example.

The operational translatation for this query would be the QEP shown in Figure
3-4.

An execution of this query in the manner described in Section 3.2 will sometimes
return the wrong result. To clarify the issue we will rewrite the datalog query in Table
3.2. The rewritten query is shown in Table 3.3. We have split the original query into
two parts. These are the existential query which we refer to with the predicate test(),
and the query to secapl() and Ticker_Lookup().

answer(V20):-
secapl(V1, V20, V3, V4),
Ticker Lookup(V5,V1,V13),
V5 = '"MICROSOFT".

test:-
DiscAF(V6,V13, V10, V2, V9,V18,V12),
‘2,500,000’ < V13,
V13 is V2 * 0.001,
V12 = "GERMANY".

Table 3.3: Mediator Output for Existential Queries Example.

We can see from Table 3.3 that the original datalog query is actually composed
of two disjoint queries which do not share variables. test() only ensures that there
exist tuples which satisfy the conditions in the query. Since the user does not require
answer from the relations in test() and none of the attributes in test are required in
the rest of the query, the projection from test() should be either the empty relation ®,
or {e}, the relation which contains no tuples. The former result should be returned
if no tuples satisfy test(), while the latter should be returned if some tuples satisfy
test().

We run into a problem with existential queries because BANG does not distin-
guish between ® and {e}. It interpretes both relations as ®. Thus, when the ex-
ecution engine tries to perform a join between the relation created from accessing
Ticker_Lookup() and the result of test() the result of the join would always be ®.
Obviously, that should not be the answer if the existential query is non-empty. If
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JOIN-SFW:Secapl
Source: Secapl
MapL: ((secapl, Ticker), (secapl, Last), (secapl, Date), (secapl, Shareout)]
ProjL:{att(1, 2)]
CondL: [att(1, 1) = att(2, 1)]
JOIN
ProjL:[att(1,1)]
CondL: [ ]
SFW :Ticker_Lookup
Source:Disclosure
MapL:[(Ticker_Lookup, COMP_NAME), (Ticker Lookup,
TICKER), (Ticker Lookup, EXCHANGE)]
ProjL: [att(1, 2)]
CondL: [att(1,1) = 'MICROSOFT’]
SELECT
ProjL: []
CondL: [att(1,1) > 2,500,000]
CcvVT
ProjL:[att(1,1)]
SpecialCondL:[att(1,1) is att(2,1) * 0.001]
SFW:DiscAF
Source: Disclosure
MapL:[('DiscAF’, "COMPANY_NAME'),
(’DiscAF’, 'LATEST_ANNUAL_DATA’),
('DiscAF’, "CURRENT_SHARES_OUTSTANDING’),
(’DiscAF’, 'NET_INCOME’),
(’DiscAF’, 'NET_SALES’), ('DiscAF’, 'TOTAL_ASSETS’),
('DiscAF’, 'LOCATION_OF_INCORP’)]
ProjL: [att(1, 4)]
CondL: [(GERMANY’ = att(1, 7))]

Figure 3-4: Plan for Existential Query Example
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the existential query is non-empty, then we would want the rest of the query to be
executed as usual. A join between any non-empty relation A and {¢} should result
in A and not in the empty relation ®.

We solve this problem by extending the execution engine to handle the existential
queries. The engine can identify existential queries from the fact that their projection
lists are empty. When the engine discovers an existential query, it executes the query
to determine if the answer to the query is empty. The execution engine creates a
dummy relation R to simulate the result of the existential query. If the answer
to the existential query is the empty relation, then R is empty. The result of the
mediated query would therefore be ® as discussed above. However, if the answer to
the existential query is non-empty, then the execution engine inserts a dummy tupple
into R to signify the fact that the existential query succeeded. Because no attributes
are projected out of the existential query, we can insert any values into the dummy
relation without fear of contaminating the result of the query. We can therefore join
this dummy relation to other relations in the query. Even though no attribute is
projected out of the dummy relation, BANG can join it to other temporary relations
because it is non-empty.
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Chapter 4

Planner

The Planner takes a union of datalog queries as input and produces a query plan
for the execution engine to execute. It consists of three submodules. The Capability
Checker, The Subgoal Ordering Submodule, and the Plan Construction Submodule.

PLANNER
Mediated > Subgoal Plan
Query Ordering Constructioy
/ 4

\

Capability
Checker

A
i
Registry

(With Capability Records)

Figure 4-1: The Planner

4.1 The Capability Checker

The COIN system mediates queries to a variety of data-sources, including relational
databases and web sources which have been wrapped to provide a relational interface.
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Due to the nature of some of the data-sources in the COIN system the wrappers can-
not provide the full relational capability. Therefore, restrictions are placed on the na-
ture of the SQL query which can be dispatched to the wrappers. For example, the rela-
tion olsen() in the source Olsen has the schema olsen(Expressed,Exchanged,Rate,Date).
However, olsen() requires that the attributes Expressed and Exchanged need to be
bound whenever a query is sent to it. It also requires that the attribute Rate has to be
free. These restrictions cannot be inferred from the export schema. The Capability
Checker is a module which takes a description of the capability restrictions imposed
by a data-source, and determines if the sub-query destined for the data-source satis-
fies the restrictions imposed by it. The description of a source’s capability restriction
is called a capability record.

4.1.1 Capability Records

Our capability records are very similar to those described in [8] in that we create
separate records for the binding restrictions, and the operator restrictions of the
source. Each record of binding restrictions consists of a list of all the possible binding
combinations of the attributes in the source. The combinations are represented as bit
fields with an entry for each attributes in the source. The bits have a value of one
for attributes which must be bound, and a value of zero for attributes which must
be free. The records for operator restrictions are a list of the operators which the
source cannot handle.!We show two examples of capability records below. The first
is for olsen(), which has only one possible combination of binding restrictions, and
the second is for dateXform(), which has two.

Example 1
olsen: cap([[1,1,0,1]],[<') > = <> =<} >=]).

Example 2
dateXform: cap([[1,1,0,1],[0,1,1,1]], <) >'/ ="/ <>/ =<' >=)).

For olsen(), the first, second and fourth attributes have to be bound and the third
has to be free. For dateXform(), the first and second attributes always have to be
bound, and either the third attribute has to be bound and the fourth has to be free,
or the third has to be free and the fourth has to be bound. Neither of these sources
accepts the relational operators listed in the capability record.?

4.1.2 Capability Checking

The capability checker takes a component sub-query (CSQ) as its input. A component
sub-query is a query destined for a single data-source. It consists of the predicate

!We only handle the following operators in our system. =, <,>, <>, >=,=< . The list of oper-
ators which a source cannot handle is taken from this set.

’In an SQL query to the data-sources, attributes would be bound to constants in an ‘=’ condi-
tional statement. However, this will be the only situation where both of these sources would accept
the ‘=" operator. Therefore, we cannot really say that the sources accept the ‘=’ operator’
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for the data-source, and all the selection conditions which need to be applied to
attributes in that source. The capability checker uses the capability record of the
source to determine if the CSQ can be handled by the source. Let us look at the
situation where @, a CSQ, is input to the capability checker. The capability checker
will return one of the following answers:

1. @ is directly supported by the data-source.

2. Q is indirectly supported by the data-source. Therefore, it must be decomposed
into a directly supported query @' and a filter query f.

3. @ is not supported in the current form and needs extra conditions C in order for
it to be supported. Presently, all such conditions are conditions which satisfy
binding requirements.

The three CSQs shown below illustrate the three possible responses from the
capability checker.

1. olsen(V1, V2, V3, V4),
V1 ="USD’

2. olsen(V1, V2, V3, V4),

V1 ='USD’,
V2 ="DEM’,
V3i=11

3. olsen(V1, V2, V3, V4),
V2 = 'DEM’,
V3i=11

The CSQ shown in the first example is directly supported by olsen(). The two
boolean statements provide the required bindings for the attributes olsen.Expressed
and olsen.Exchanged. The second CSQ is indirectly supported by olsen(). The con-
dition V3 = 1.1 cannot be handled at the data-source and would have to be executed
locally in the execution engine. This is because olsen() requires that the attribute
olsen.Rate which is represented by V3 must be free. The selection V3 = 1.1 filters
the result of the query obtained by accessing the relation olsen() and is therefore
called a filter query. Finally, the third CSQ shows an unsupported query. This query
is not supported by olsen() because it violates the binding restrictions which the
source imposes on all queries to it. Specifically, the attribute olsen.Expressed is not
bound in the query. To access the relation we would have to provide the binding for
olsen.Expressed at run-time, using the result obtained by querying another source in
the plan. In the event that no source can provide the required binding, the query
would fail. The issue of planning the query to ensure that bindings are provided for
all queries which require them is discussed in Section 4.2.
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4.2 Subgoal Ordering Submodule

This submodule determines if an execution order should be imposed on the sub-
queries in the input query. The order is determined by the capabilities of the sources
accessed in the query. If the subgoal ordering submodule cannot find an order that
satisfies the restrictions imposed by the sources, then the query cannot be answered
and an error is generated. This submodule first decomposes the input query into a set
of component sub-queries (CSQ). Each CSQ is then sent to the Capability Checker
which determines if the source can accept the query it represents.

When the capability checker determines that a CSQ cannot be executed at the
data-source because of the violation of a binding restriction, the subgoal ordering
submodule attempts to create an executable plan which would obey the restriction.
It tries to determine if some subset S of the other CSQs in the query can provide
the required binding. If it can make this determination, then it restricts the order of
the CSQs. If Q is the CSQ which violates the binding restriction, then the subgoal
ordering submodule would ensure that ¢ cannot be executed before any element
of S, by imposing an order on the CSQs. We will use a section of the example
from Section 1.2 to clarify this point. Suppose the mediated query consisted only
of the predicates secapl(V5, V8, V1, V7), DiscAF(V6,V3, V10, V2,V9,V18,V12) and
Ticker_Lookup(V6, V5, V4) as shown in Example 3. We already know that secapl
requires that all queries to it should have the attribute secapl.Ticker bound to a
constant.

Example 3

answer(V6, V5, V7) :-
DiscAF(V6,V3, V10, V2, V9,V18,V12), Ticker_Lookup(V6, V5, V4),
secapl(V5, V8, V1, V7)

In the example, the binding can be provided by Ticker_Lookup because of the implicit
join condition on V5. Thus, the Ticker_Lookup predicate would have to precede the
secapl predicate. Valid orderings of the body are:

1. DiscAF(V6,V3, V10, V2, V9,V18,V12), Ticker_Lookup(V6, V5, V4),
secapl(V5, V8, V1, V7)

2. Ticker_Lookup(V6, V5, V4), secapl(V5, V8, V1, V7),
DiscAF(V6,V3, V10, V2, V9,V18,V12)

3. Ticker_Lookup(V6, V5, V4), DiscAF(V6,V3, V10, V2, V9,V18,V12),
secapl(V5, V8, V1, V7)

4.2.1 Algorithm for Ordering

The algorithm for ordering the CSQs is shown in Algorithm 4.2.1. When we feed the
input of Example 3 to this algorithm, we get the following behavior. The algorithm
starts our with U and O in the following state:
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Input :
U, The unordered portion of the body (minus conditions). Initially the whole
body minus conditions L.
O, The ordered part of the query. Initially | |.

Result :An ordered combination of U and O that constitutes a valid ordering for
the query.

Method :

order(U,0){
For each predicate P in list U
If P requires bindings
get list R of attributes requiring bindings from registry
If 3 E € R such that
1. Either E is not bound in query or
2. E is not in some predicate in O
then append P to NewU
else append P to O
If NewU is empty
then return O
If length(U) == length(NewU)
then return 'Error’
else return(order(NewU,0))

Algorithm 4.2.1: Algorithm for ordering CSQs

U = [DiscAF(V6,V3, V10, V2, V9,V18,V12) secapl(V5, V8, V1, V7),
Ticker Lookup(V6, V5, V4)]
0=1];

Initially, DiscAF has no binding restrictions and so is inserted into O. At this point,
the bound variables are [V6,V3, V10, V2, V9,V18,V12]. secapl has a restriction that
V5 be bound. Since this restriction is not satisfied, secapl gets appended to NewU.
Ticker_Lookup has no restrictions and so can also be appended to O. This ends the
first iteration of the algorithm.

NewU = [secapl(V5, V8, V1, V7)].
O = [DiscAF(V6,V3, V10, V2, V9,V18,V12), Ticker_Lookup(V6, V5, V4)]

Because NewU is neither empty nor equal to U, we must go through a second

iteration of the loop. In this iteration, all the attributes needed to access secapl()
have been bound in O. We can therefore add the secapl predicate to O. At the end
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of this iteration NewU is empty. The algorithm returns the predicates in the order
shown in O.

NewU =[].
O = [DiscAF(V6,V3, V10, V2, V9,V18,V12),Ticker Lookup(V6, V5, V4),
secapl(V5, V8, V1, V7)].

4.3 Plan Construction Submodule

This submodule takes the output of the Subgoal Ordering Submodule, which is a
partially ordered list of relations and conversion functions and creates a full algebraic
query plan from it. It traverses the ordered list, folding in each predicate into a query
plan. Again, I will use the first mediated query from the example in Section 1.2 to
explicate the process of constructing the query plan from the output of the ordering
submodule.

4.3.1 Example Plan

When the ordering submodule is given a query such as the following:
it orders the body in a way that satisfies all the restrictions imposed by the sources.

answer(V20, V13, V8):-
Ticker Lookup(V6, V5, V4),
Name Map(V6, V20),
DiscAF(V6,V3, V10, V2, V9,V18,V12),
2,500,000’ < V13,
V13 is V2 * 0.001,
secapl(V5, V8, V1, VT7),
V12 = "USA’.

One such order could be the one shown below.

Ticker Lookup(V6, V5, V4),
Name_Map(V6, V20),

V12 = 'USA’,

DiscAF(V6,V3, V10,V2, V9,V18,V12),
2,500,000 < V13,

V13 is V2 * 0.001,

secapl(V5,V8, V1, V7)]

The plan construction submodule traverses the list provided by the subgoal or-
dering submodule and produces the query plan. The first entry in the list gives us an
sfw node.
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SFW:Ticker_Lookup

MapL:[(Ticker_Lookup, COMP_NAME), (Ticker_Lookup,
TICKER), (Ticker_Lookup, EXCHANGE)]

ProjL: [att(1, 1), att(1, 2)]

CondL: [

This sfw node tells the execution engine to send a query to the relation Ticker_Lookup
to retrieve the attributes COMP_NAME and TICKER. Even though the original
datalog query only asks for the COMP_NAME attribute, the plan projects out the
TICKER attribute because it is used in a condition. There are no conditions on
the query to Ticker_Lookup. A similar sfw node is created for the next predicate
Name Map(V6, V20) and this is folded into the sub-tree which consists only of the
sfw node for Ticker_Lookup. A join node is used for folding in sub-trees.

JOIN
ProjL:[att(2, 2), att(1, 2)]
CondL: [att(1, 1) = att(2, 1)]
SFW:Name_Map
Source: Disclosure
MapL: [(Name_Map, DS_.NAMES), (Name_Map, WS_NAMES)]
ProjL:[att(1, 1), att(1, 2)]
CondL: [ ]
SFW: Ticker_Lookup
MapL: [(Ticker_Lookup, COMP_NAME), (Ticker_Lookup,
TICKER), (Ticker_Lookup, EXCHANGE)]
ProjL: [att(1, 1), att(1, 2)]
CondL: [ ]

The sfw node for Name_Map tells the execution engine to retrieve from Name_Map
the attributes DS_INAMES and WS_NAMES. The join node then tells the exe-
cution engine to join the two temporary relations retrieved from Name_Map and
Ticker_Lookup on the condition that Ticker_-Lookup.COMP_NAMES = Name_Map.DS_NAMES.
It also tells the engine to project (Ticker_Lookup, TICKER) and (Name_Map, WS_NAMES)
out of the result of this join. We will skip an explanation of the processing for the
entry for the DiscAF predicate since we already discussed the construction of an sfw
node. The only difference between the node for DiscAF and those of the previous
two predicates is that the condition V12 = "USA’ can be sent as part of the query to
DiscAF. It is therefore put in the condition list of the DiscAF node. After processing
the DiscAF predicate, the conversion function is folded in.

This converts the NET_INCOME attribute of DiscAF from the DiscAF context
to c_.ws by applying the right scale-factor conversion. The result of this conversion
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CVT
ProjL:[att(1,1), att(2,1),att(2,2)]
SpecialCondL:[att(1,1) is att(2,3) * 0.001]
JOIN
ProjL:[att(2, 1), att(1, 1), att(1,2)]
CondL: [att(1, 1) = att(2, 2)]
SFW:DiscAF
Source: Disclosure
MapL:[('DiscAF’, '"COMPANY_NAME’),
('DiscAF’, 'LATEST_ANNUAL_DATA’),
('DiscAF’, "CURRENT_SHARES_OUTSTANDING’),
('DiscAF’, 'NET_INCOME),
('DiscAF’, 'NET _SALES’), ('DiscAF’, 'TOTAL_ASSETS’),
('DiscAF’, 'TLOCATION_OF_INCORP’)]
ProjL: [att(1, 1),att(1, 4)]
CondL: [("USA’ = att(1, 7))]
JOIN
ProjL: [att(2, 2), att(1, 2)]
CondL: [att(1, 1) = att(2, 1)]
SFW: Name_Map
Source: Disclosure
MapL: [(Name_Map, DS NAMES), (Name_Map, WS_NAMES)]
ProjL:[att(1, 1), att(1, 2)]
CondL: [ ]
SFW: Ticker_Lookup
MapL: [(Ticker_Lookup, COMP_NAME), (Ticker_Lookup,
TICKER), (Ticker_Lookup, EXCHANGE)]
ProjL: [att(1, 1), att(1, 2)]
CondL: [ ]

is projected out with (Ticker_Lookup, TICKER) and (DiscAF, COMPANY_NAME).
(Ticker_Lookup, TICKER) is kept because it is required in a join condition. At this
point, the single selection condition in the query can be applied to the correct value of
NET_INCOME. Once this is done, the access to olsen can be made and the final result
can be returned to the user. The order of these last two nodes does not affect the
answer we get for the query. However, we try to plan so that the sizes of intermediate
results are reduced as much as possible. Therefore, we push selections as far from the
root node of the plan as is possible. The final query plan is as shown in Figure 3-2.
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4.4 Optimizations in the Planner

The planner applies some standard optimization heuristics to the query plan. For ex-
ample, it plans for the executioner to send as many relevant conditions to the remote
data-sources as their capabilities would allow. In the event that the relevant condi-
tions cannot be executed at the data-source, the planner ensures that the conditions
are applied at the earliest possible point in the execution. Furthermore, it ensures
that only attributes that have been requested by the user as part of the answer to
the query, or which are required as inputs to conversion functions and boolean opera-
tors are projected out of data-sources and intermediate relations. These optimization
efforts are based on the assumptions which we made about the time-cost of sending
queries to the data-sources. The next chapter presents a discussion of these assump-
tions, and presents the details of a performance analysis study which was used for a
preliminary investigation of the validity of the assumptions.
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Chapter 5

Performance Analysis

5.1 Motivations for Performance Analysis

Our attempts at optimizing the query execution and our ideas for future optimizations
in the system have been based on some assumptions we made about the distribution
of the time involved in executing queries. The query response time is composed of the
retrieval time and the insertion time. The retrieval time is the difference between the
time the execution engine opens a connection for a query request to the data-source,
and the time when that connection is closed. The insertion time is the difference
between the time when the connection to the data-source is closed, and the time when
all the tuples in the result have been inserted in the local store. The assumptions we
made are:

1. Retrieval time consists of the communication time between the executioner and
the data-source, and the execution time of the query at the data-source.

2. The communication time depends on the size of the response to the query.

3. The execution time on the data-source depends on the number of relations
selected from.

4. Communication time commands a larger fraction of the retrieval time than the
remote execution time does.

5. Insertion time depends on the size of the response to the query.

Based on these assumptions, our optimization efforts have been aimed at reducing
communication between the COIN backend and the data-sources, and at reducing
the size of the results returned from the data-sources. For example, we ensure that
any condition which reduces the size of the result of a query is pushed to the data-
source. Furthermore, we cache intermediate results so that we do not access the data-
sources for multiple results. Some of our future optimization plans are also aimed
at dispatching as much of a query to a data-source as we can in a single connection.
This would reduce the amount of communication needed between the COIN system
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and the data-source. In order to include this optimization in the POE, we will need
to know whether the reduction in communication time will be offset or overwhelmed
by the increase in execution time on the data-source. Moreover, our assumptions
about time costs in the system need to be verified. To this end, the performance
analysis study described in this chapter was designed. This study intends to lay the
framework for future investigations into the allocation of time resources in the POE.
The techniques which we used for performing this study were provided by [6].

5.2 Project Plan

This section presents the project plan which was created for the performance analysis
study.

System Definition The goal of this study was to determine estimates for the effect
of various factors on the retrieval time for queries in the COIN system. The
response variables for the study are the insertion time, and the response time.
Our system under test (SUT) consists of the subset of the COIN execution
engine which deals with communication and insertion of results into the local
data-store, the channels connecting the remote sources to the COIN engine,
and the database engines on the remote data-sources. The study was designed
so that the effects of all other components are minimized.

Services Provided By the System The service provided by the system is infor-
mation retrieval access to a data-source, and insertion of query results into the
local data-store. We assumed that the system is reliable and we do not consider
the cases of unreliable data, or unavailable services. Our proposal states that
the resources used during the system operation depend on the expected cardi-
nality of the query, and the number of relations accessed in the data-source.
The application for this study is "response to queries” and will be classified
using the notions of query response time and result size.

Metrics For each service we wanted to know the how much time it took for the
service to be rendered. This gave us the following metrics for our study.

1. Remote query response time

2. Insertion time
Parameters The system parameters that affect the performance of a query are:

Cardinality of the result.
Speed of the network
Amount of network traffic

Load on the data-source

O W

Actual processing power available on the data-source
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6. The distance of the site from the POE.

Factors The factors of this study are the parameters which were varied in the ex-
periment. These were the expected cardinality of queries to the sources, and
the number of relations accessed by the query.

1. Expected Cardinality: We calculate this factor using information from the
query itself, and catalog information on the data-sources. A listing of the
catalog for the relations used in this study is give in Appendix A. Four
levels were chosen for this factor; 0, 2000, 4000, 6000.

2. Number of relations accessed: We only used two levels for this factor, 1
and 2.

Evaluation Techniques Our evaluation technique was a direct measurement of the
response variables in the experiment. We chose to use measurement evaluation
because we already had a working implementation of the whole system.

Workload The workload was a set of stored queries of different expected cardinal-
ities and which accessed different numbers of relations. These queries were
executed by a program which monitored the resources consumed and logged all
the results. The unit of measurement for the time resources is milliseconds. To
determine the amount of resources used by the monitoring and logging func-
tions, we also monitored and logged null query requests which did no actual
work, but served to provide us with a measure of the overhead involved with
the measurements and logs.

Experimental Design We used a two-factor full factorial design for the study of
the retrieval time. The two factors were the expected cardinality of the query,
and the number of relations accessed in the remote data-source. Since we had
two levels for the number of relations accessed and four levels for the expected
cardinality, the total number of experiments run was eight. The design for the
insertion time study was a one-factor design. Here, the factor of interest was the
expected cardinality of the query. We replicated the experiment four times at
each level of the factor to get a total of sixteen experiments. Our models for both
studies were linear regression models. A linear regression model attempts to fit
a straight line to the experimental observations so that the residual between
the experimental results and the model line are minimized. We used the least-
squares criterion for minimizing the residual errors. This criterion states that
the best linear model is given by the parameter values which minimize the sum
of the squares of the errors. Since the sum of the squares cannot be a negative
number, the minimum value for it is zero. This model assumes that the effects of
the factors of the experiment add and that the errors are additive. We analyzed
the models to estimate the values of the model parameters. These estimates
were then used to determine the effect of each factor on the variability in the
response variables of the study. Descriptions of the analyses for the studies are
given in the next two sections.
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5.3 Data Analysis for Retrieval Time Study

We run the experiment in the manner proposed in the plan, and analyzed the data
using the model shown below. The model is a multiple linear regression model. In
the ensuing discussion, Factor A is the number of data-source relations accessed in
the query and Factor B is the expected cardinality of the query result.

5.3.1 Model

We used the following model for our experiment.
Yij = B+ 05+ fi + ey

Yi; is the measurement of the retrieval time in the experiment in which Factor A is
at a level j and Factor B is at a.level 7. p is the mean response. «; is the effect of
Factor A at level 7, §3; is the effect of Factor B at level ¢ and e;; is the error term for
the experiment. a is the number of levels of Factor A and b is the number of levels
for Factor B. For this experiment, a is two and b is four.

5.3.2 Computation of Effects

We compute the values of i, @; and §; such that the following conditions hold:
Z O = 0
> Bi=0
1.
—2.6;=0
The first two conditions do not affect the model but only serve to decrease the com-
plexity of analyzing the experimental measurements. The third condition comes from
the fact that we use the least-squares criterion to find a line of best fit for the re-
sponse variable. For the experimental analysis, we insert all the measured responses
in a two-dimensional array with four rows and two columns. The columns correspond

to the levels of Factor A and the rows correspond to the levels of Factor B. Averaging
along the jth column produces

— 1 1
y.j“—‘u'*‘aj'*‘gZﬂi-*-gZeij
i i

where 7 ; is the column mean for column j. The last two terms of this equation
are zero, and so we get the following relationship between 7 ;, 4 and o;.

Jj=btao;

A similar analysis along the ith row produces
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U =p+ 06

where 7; is the row mean for row 7. Averaging all the responses should gives us
7, the grand mean of all our responses.

g.=u

We can calculate the parameters for our model using the following formulas.

<

u:

The measured retrieval time in milliseconds, is shown in table 5.3.2. For each row
and column, we computed the mean of the measurements. We also computed the
grand mean. The difference between the row or column mean and the grand mean is
the row or column effect. For example, the effect of the expected cardinality on the
retrieval time when the expected cardinality is 2000 is 309.63 milliseconds.

Expected Cardinality | OneRel | TwoRel | RowMean | RowEffect
0 2269 3081 2675 -1645.38
2000 3880 5380 4630 309.63
4000 3881 4950 4415.5 95.13
6000 3821 7301 5561 1240.63
ColumnMean 3462.75 | 5178 4320.38
ColumnEffect -857.63 | 857.63

Table 5.1: Computation of Effects for Retrieval Time

5.3.3 Data Interpretation

We can use the results from the previous section to find out what proportions of the
retrieval time (our response variable) are due to Factor A, Factor B or to errors. If
we use the sum of the squares of each parameter to estimate its contribution to the
variation of the response, then we can derive equations for the variation due to each
parameter, and from that find out the contribution of each parameter to the variation
of the response variable. The total variation in the measurements of the retrieval time
is SST and is given by the following equation.

SST =SSA+SSB+ SSE
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SSA is the sum of squares for Factor A, SSB is the sum of squares for Factor B
and SSE is the sum of squared errors. If we can compute SSA, SSB and SSE, then
we can find SST. The contribution of each parameter to the variation in the response
variable can then be determined by finding its percentage of SST.

Experimental Errors

The sum of squared errors SSE can be computed directly from the model. According
to our model the retrieval time can be predicted using the following equation.

Gij = p+o5+ Gi
where g;; is the predicted retrieval time. The difference between the predicted retrieval
time and the actual measurement can be attributed to the experimental error. For
every ¢ and j the error e;; is

€ij = Yij — Yij = Yij — b —a; — i
We can then find the SSE from the following formula:
b a
SSE=3> €
i=1j=1

The SSE for this experiment was 2197087.375 milliseconds?.

Allocation of Variation

Squaring both sides of the model equation and adding across all the observations
gives us the following equation for the sum of squares:

Tivs = ab? 4+ bY;af + Y87 + Tijey
SSY = SSO + SSA + SSB + SSE

SSY is the variation in the response variable and SSO is the variation in the means.
We can therefore calculate the SSA and SSB directly from the model parameters
and g and b. For this experiment the SSA was 4413123.84 milliseconds? and SSB was
8702651.37 milliseconds®. Total variation SST, was therefore 15312862.59 milliseconds?.
The percentage of variation due to Factor A was

SSA
1 — = 28.
00 x SST 28.82%
and that due Factor B was
SSB
100 x ST = 56.83%
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According to this experiment, 56.83% of the retrieval time is due to the expected
cardinality of the query, while 28.82% is due to the number of relations accessed by
the query. 14.35% of the variation cannot be explained and is due to other factors,
or to experimental errors.

5.4 Data Analysis for Insertion Time Study

A similar analysis on a slightly different model yields results for the effect of the
expected cardinality of the query on the insertion time of query results. In the ensuing
discussion, Factor A is the expected cardinality of the query result. As mentioned
in previous discussions, we conducted the study using four levels for the expected
cardinality.

5.4.1 Model
Yij = p+ a; + &5 (56.1)

In the sth iteration of the experiment in which Factor A is at level j, y;; is the
measurement for the insertion time, u is the mean response, and ¢; is the effect of
level j and e;; is the error term. Again, the effects and the error terms are computed
so that they add up to zero.

5.4.2 Computation of Effects

We conducted sixteen experiments in this study. This consisted of four replications
for the experiment at each of the four levels of the expected cardinality. From the
results obtained, the values of 4 and «; were computed in the following manner.
Substituting the observations into equation 5.1 and adding up all the equations gives
us

T a T T a
DD Y =arp+ry ai+y. Y ey
j=1

i=1j=1 i=1j=1

Since the effects of a; and e;; should add up to zero, we get

1 r a
M=Ezzyij

=1 j=1

where p is the grand mean of all the measurements.
The mean 7 ; for each column is

1 T
Y;=-= Z Yij
T i=1

Substituting u + a; + e;; for y;;, we get
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We can therefore calculate the parameter o; using the following formulas:

The results of this analysis are shown in table 5.4.2. Each column corresponds to
four replications of the experiment at one of the four levels of the expected cardinality
factor. We calculate the mean for each column, and also calculate the grand mean
for all the observations. The difference between a column mean and the grand mean

is the column effect.

T

=1

1
;Zu+aj+e,-j

1 T
- (ru +ra; + E e,-j)
i=1

1+ o

Cj=Y;—H

Table 5.2: Computation of Effects for Insertion Time

| Tteration | 0 | 2000 | 4000 | 6000 | ]

1 0 20 30 101

2 10 20 31 109

3 0 21 59 90

4 0 20 41 111
ColumnMean 2.5 20.25 40.25 | 102.75 | 41.44
ColumnEffect | -38.9375 | -21.1875 | -1.1875 | 61.3125

According to this analysis, the average insertion takes 41.44 milliseconds.

5.4.3 Data Interpretation

We use a similar analysis to the one in the retrieval time study to determine the effect
of the expected cardinality on the insertion time of queries. Again, the sum of the
squares of each parameter is used to estimate its contribution to the variation of the
response. The total variation in the measurements of the retrieval SST is given by

where SSA is the sum of squares for the expected cardinality and SSE is the sum
of squared errors. Once SSA and SSE have been computed, the contribution of each

SST =SSA+ SSE

parameter to the variation in the response variable can be determined.

47



Experimental Errors

Our model makes the following prediction for the insertion time of queries.
9 =p+o;

The difference between the predicted insertion time §;, and the actual measure-
ment is the error and can be calculated using the equation

€ij =Yij —VYis = Yij — h— Q5

The SSE can then be computed from the following formula:

i=1j=1

The SSE for this study was 891.25 milliseconds?.

Allocation of Variation

Squaring both sides of the model equation and adding across all the observations
gives us the following equation:

Zijy?j = arp® + TZfCY,g + Zijezgj
SSY = SSO + SSA + SSE

SSA for this experiment was 22902.69 milliseconds?. Therefore, total variation SST
was 23793.9375 milliseconds®. The percentage of variation due to the expected car-

dinality is therefore

SSA
100 x 53T = 96.25%

5.5 Conclusions and Future Work

The results of these two studies look quite promising, and if we were confident of
their validity, we could proceed with some of our planned optimizations. For the
retrieval time study, we determined that 56.83% of the retrieval time is due to the
expected cardinality of the query, while 28.82% is due to the number of relations
accessed by the query. Increasing the number of relations accessed in a query by one
only increases the retrieval time by 28.82%, while decreasing the expected cardinality
by 2000 decreases the retrieval time by 56.83%. We can therefore try to access as
many relations on a data-source as we can in one query, and also to push as many
conditions to the data-source as possible. According to this study, the benefits of
reducing the expected cardinality of query results outweighs the extra processing
needed for accessing relations. Furthermore, reducing the expected cardinality of the
query reduces the insertion time for the query by quite a significant amount. All
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of these results could also be incorporated into a cost model for doing cost-based
optimization in the COIN system.

Despite these promising results, more investigations must be done before the re-
sults can be confidently utilized in the COIN system. First, a more exact distribution
for the data in the data-sources should be developed. The assumption we used in this
study was that the data is uniformly distributed between the max value and the min
value of each attribute [12]. Observations of the data-sources have shown that that
this assumption does not hold. Secondly, a larger study with a bigger sample size
needs to be done in order for us to be able to establish valid confidence intervals for
our results.
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Chapter 6

Conclusions and Future Work

The POE described in this thesis has been successfully deployed in a variety of im-
plementations of the COIN system. It has proved to be both versatile and effective
in providing answers to users in a variety of application domains. Two such applica-
tions have come from the areas of finance and defense logistics. There are a number
of improvements which can be made in the POE to improve its execution. These
improvements are mainly in the areas of capability checking, and optimization of the
query execution.

6.0.1 Capability Improvements

The capability records in the current POE describe source operator restrictions at
the level of the whole source. However, there are situations in which data-sources will
restrict the operators on a per attribute basis. For example, olsen() places a binding
restriction on two of its four attributes. These are the attributes olsen.Expressed and
olsen.Exchanged. These bindings must be sent to olsen() as an ‘=’ condition in an
SQL query. However, this is the only situation where olsen() will accept the ‘=’ oper-
ator in a query. Thus, olsen() accepts the operator ‘=", but only on the condition that
it binds olsen.Expressed and olsen.Exchanged to constants. Our current capability
records cannot express this conditional capability restriction.

6.0.2 Optimization Improvements

There is a lot of room for further improvements in the execution of mediated queries.
For example, the planner could aggregate all the queries to relations in the same
data-source, so that the source would need to be accessed only once. Secondly, the
execution engine could store some of the intermediate query results in main memory
rather than in the local data-store. This would improve the query time by reducing
access to disk. There are also opportunities for parallelizing the execution of queries.
At the moment this can be done for any node which has multiple child data-structures.
Examples of these nodes are the join node and the join-sfw node. However, because
the current planner only produces left-deep trees, these opportunities are currently
limited. A concerted effort to extend the space of the QEP to bushy trees, and
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to parallelize the executioner would probably introduce dramatic improvements in
the execution time of queries. Finally, some interesting optimization issues exist
in the area of semantic query optimization. However before any semantic query
optimization can be done in the POE, there would have to be re-specification of the
functions of some of the processes in the COIN system. Because the context mediator
performs some semantic query optimization as part of the mediation process, a clear
cut demarcation will have to be made between optimizations which should occur in
the mediation engine itself, and optimizations which should occur in the POE.

Most of these optimizations will involve a coordinated effort among many different
components of the COIN system. For example, in order to plan for a query which
accesses all the relations in a data-store, the registry will have to be redesigned to
remove the current notion that relations and data-sources have a one-to-one mapping
relationship.

6.0.3 Conclusion

In general, the POE has achieved its aim of providing a stable execution environment
for context mediated queries. We demonstrated the abilities of the system at the
“ACM SIGMOD/PODS Conference on Management of Data” in May 1997, and
presented a paper on the implementation of the system at the “Fifth International
Conference and Exhibition on the Practical Applications of Prolog.” in April 1997.
It was well received at both conferences.

o1



Appendix A

Selectivity Formulas and Relation
Catalogs

Selectivity Formulas.

[ Condition | Formula 1 Constant Expression ]

Columnl = Const J S I

DistinctVals r 10
Columnl = Column2 | F = 5 NamDif [V aii)
Columnl > Const F=

(MazVal—Const)
(MazVal—MinVal)
Columnl < Const F = faaVa Vel

(Const—MinVal)

||
oi"‘

The Constant Expression is used in a situation where the formula is not applicable.
Weak bounds have the same selectivity values as the above tight bounds. Also,
we assume independence of column values that is why we do not have conditional
cardinalities.

Using the selectivity of a query, the expected cardinality of a query is computed
as follows: If P; is the product of all the selectivities of the conditions, and P, is the
product of all the cardinalities of the relations accessed in the query, then

EzxpectedCardinality = P; x P,

IThese formulas assume uniform distribution of attributes values between minval and maxval.
See [12] for a more complete discussion.
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Table A.1: Catalog for Performance Analysis Relations

| Relation Name | Number of Tuples |

WorldAF 10633

DiscAF 1005

DstreamAF 312

Attribute Name | RelName | Type | MaxVal | MinVal | Distinct |
COMPANY _NAME WorldAF string - - 10624
LATEST_ANNUAL

FINANCIAL DATE | WorldAF string - - 346
CURRENT

-OUTSTANDING

_SHARES WorldAF number | 1.0333E+11 0 9951
NET_INCOME WorldAF number 5280000 -8101000 9788
SALES WorldAF number | 171962154 -48878 10520
TOTAL_ASSETS WorldAF number | 530401911 0 10570
COMPANY _NAME DiscAF string - - 505
LATEST

_ANNUAL_DATA DiscAF string - - 86
CURRENT_SHARES

_OUTSTANDING DiscAF number | 6211439761 0 482
NET_INCOME DiscAF number | 6606000000 | -878000000 987
NET_SALES DiscAF number | 3.5798E+12 31594 1004
TOTAL_ASSETS DiscAF number | 4.0398E+12 0 998
LOCATION

-OF_INCORP DiscAF string - - 37
AS_OF DATE DstreamAF | string - - 5
NAME DstreamAF | string - - 71
TOTAL_SALES DstreamAF | number | 2.0610E+10 0 310
TOTAL_EXTRAORD

JTEMS_PRE_TAX DstreamAF | number -1 -1 1
EARNED

FOR_ORDINARY DstreamAF | number | 431449856 | -166054000 307
CURRENCY DstreamAF | string - - 4
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Appendix B

Description of Contexts and
Relations

Table B.1: Context Descriptions

Context | Currency Scale Factor

C_WS US Dollars 1000
Currency of

c.ds Country of Incorp. 1
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Table B.2: Relation Schemas and Contexts

Relation

Context

Schema

Currencytypes

COUNTRY’ string],
'CURRENCY’ string]

Currency.map

"CHAR3.CURRENCY’ string],
"CHAR2_CURRENCY’ string]

dateXform

'Datel’, string],
[Formatl’, string],
[Date2’, string],
'Format2’, string]

olsen

C_WSs

"Exchanged’ string],
['Expressed’,string],
['Rate’ real],
'Date’,string)

Ticker Lookup

c.ds

"COMP_NAME’, string],
[TICKER, string],
'EXCHANGE'’ string]

DiscAF

c.ds

"COMPANY _NAME’ string],
LATEST_ANNUAL_DATA’ string],
CURRENT_SHARES_OUTSTANDING’ integer],
NETINCOME',integer],

NET_SALES’ integer],

PTOTAL_ASSETS’ integer],
LOCATION_OF INCORP’ string]

WorldAF

[COMPANY _NAME’ string],
[LATEST_ANNUAL_FINANCIAL_DATE’ string],
PCURRENT.OUTSTANDING_SHARES'’ integer],
'NET INCOME’ integer],

’SALES’ integer],

PTOTAL_ASSETS' integer],
COUNTRY_OF_INCORP’, string]
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