
A Multigrid Relevance Filtering Technique for

Distributed Interactive Simulation

by

Harry Tsai

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical [Computer] Science and Engineering
and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology
June 1997

@ 1997 Harry Tsai. All rights reserved.

The author
distribute

hereby grants to MIT permission to reproduce and
publicly paper and electronic copies of this thesis
and to grant others the right to do so.

D
Department of Electrical Engineering and Computer Science

May 23, 1997

Certified by -

David Brock
. Thesis Supervisor

Accepted by

Chairman, Department
F. 1R:" Morgenthaler

Committee on Graduate Theses

WJ T 2 1997

Author1` ---1-

/

A Multigrid Relevance Filtering Technique for Distributed

Interactive Simulation

by

Harry Tsai

Submitted to the
Department of Electrical Engineering and Computer Science

May 23, 1997

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical [Computer] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

Distributed Interactive Simulation (DIS) is an emerging technology for large-scale
networking of real-time virtual-reality simulators. Scalability of the network commu-
nications system is currently a major stumbling point in its development. This paper
opens with an overview of DIS and the scalability problem then surveys the field of
solutions, focusing on research in the area of relevance filtering.

In the remainder of the paper, we present a new technique for relevance filtering
which significantly reduces data flow by emulating the attenuation of visual resolution
with distance. This technique is implemented as an extension to existing grid-based
methods and offers a more than 3-fold reduction in data rate for less than a 2-fold
increase in multicast group demands.

Thesis Supervisor: David Brock
Title: Research Scientist, MIT Artificial Intelligence Laboratory

Acknowledgments

For their support and guidance, many thanks to Jim Calvin, Dan Van Hook, and

Steve Rak of the Lincoln Laboratory Distributed Simulation Systems group.

Contents

1 Introduction 9

2 Distributed Interactive Simulation (DIS) 11

2.1 DIS Background 11

2.2 DIS Scalability 13

2.2.1 Dead Reckoning 14

2.2.2 Bandwidth Improvements 16

2.2.3 Relevance Filtering 17

3 A Multigrid Algorithm for DIS Relevance Filtering 27

3.1 M ultigrid Principles 27

3.1.1 Visual Acuity Model 28

3.1.2 M ulti-resolution AOI 29

3.1.3 Rethresholding 30

3.1.4 Discrete Multi-resolution (Multigrid) AOI 33

3.2 Single-grid Design Parameters 35

3.3 Multigrid Design Parameters 39

3.4 Multigrid Conclusions 41

List of Figures

2-1 Dead Reckoning 15

2-2 Relevance Filtering and the Area of Interest (AOI) 18

2-3 Grid-Based Relevance Filtering 21

2-4 Alternative Grids for Relevance Filtering 22

2-5 Aggregation 23

2-6 Routing Space 25

3-1 V isual A cuity .. . 27

3-2 M ulti-resolution AOI 30

3-3 Data Reduction by Rethresholding. 31

3-4 Square-grid Multi-resolution AOI 33

3-5 Two-level Multi-resolution AOI 34

3-6 Cell Size vs. ROI Optimization 36

3-7 Optimal Grid Cell Size vs. ROI 38

3-8 M ultigrid Optimization 40

Chapter 1

Introduction

Distributed Interactive Simulation (DIS) is a standard protocol which enables groups

of computer-based simulators to interact in a common virtual world. At present, the

technology is too underdeveloped for anything but military wargames, but potentially,

DIS could allow people scattered across the world to share a wide range of experiences

via a sophisticated synthetic environment.

However, much work needs to be done before that vision can become a reality. Ex-

isting versions of DIS suffer from insufficient communications capacity. "Worlds" are

currently limited to the size of small counties, and their "populations" are restricted

to a few thousand. Beyond these limits, the amount of data that passes between

computers is simply too great for any present technology.

Of course, much effort is being expended to solve this problem. One major ap-

proach consists of finding ways to decide what data doesn't actually need to be ex-

changed between computers. This isn't as easy as it sounds; in the real world, it's a

trivial matter not to see everything in the world at once. Computer simulations, how-

ever, are much simpler affairs than the real world. We have to explicitly decide what

we do and do not want to see, and the more intelligently we consider the decision,

the less computing power we have left for more serious matters.

In the course of our work, we have discovered that a significant portion of the

data in the typical DIS exercise is so finely detailed that it can be safely ignored in

most cases. We have developed a data-filtering technique that takes advantage of the

fact that small motions become less noticeable at greater distances. Our method is

based on an previous work which organizes the world along the squares of a map grid.

We improve on this method by using grids of differing granularities to organize data

by its level of detail. Our multigrid filter achieves a 31/2-fold reduction in data traffic

while suffering less than a 2-fold increase in communications complexity.

For those unfamiliar with DIS, the first section of Chapter 2 provides a general

introduction to the subject. In the second section, we discuss the problems limiting

the growth of DIS and some solutions to those problems. This discussion culminates

with a survey of current research in the field of relevance filtering (§2.2.3).

In Chapter 3, we go into the technical details of our multigrid algorithm. Briefly,

it uses rethresholding techniques in grids of varying granularity to simulate the at-

tenuation of visual perception at a distance. In the course of this work, we find that

a significant fraction (~30%) of the data packets in a DIS exercise are of low magni-

tude and limited consequence. We also investigate the relationship between the size

of one's area of interest and the granularity of a grid appropriate to that area.

Chapter 2

Distributed Interactive Simulation

(DIS)

2.1 DIS Background

Since their inception, computers have been used to simulate real-world phenomena.

The earliest computers were put to work calculating ballistics tables for artillery

gunners. In a later era, computers became fast enough to respond to events in real

time. This capability led to the development of interactive simulation, a technology

now familiar in the form of flight simulators and similar devices. Today, the state of

the art has advanced to the point where individual computers can exchange data in

real time. This distributed technology enables people to use simulators in coordinated

group exercises.

The main issue in transforming interactive simulation into distributed interactive

simulation is devising a scheme for communication between the individual simula-

tors. The difficulty lies in the fact that inter-computer communication channels are

more restricted than the internal channels within each computer. Even though every

computer has a sophisticated, highly detailed model of the world, there is simply not

enough capacity to communicate all of the details between separate computers.

The Distributed Interactive Simulation (DIS) system addresses the issue through

a system of abstract descriptions, where information is expressed in purely symbolic

terms. This concept can be understood in terms of an everyday analogy. In essence,

DIS is very much like a running commentary on a football game. Picture a radio

sportscaster, who observes the complex, fast-paced interaction between two teams,

then must convey the entire scene with just a few choice words. Players are identified

by name or number instead of by appearance; the positions and movements of each

play are captured in brief phrases. By the time it reaches the listener, the game exists

only as a streaming monologue. The graphic imagery is resupplied by the listener's

imagination.

In a strikingly similar fashion, DIS condenses the progression of a war exercise into

a relatively compact form. Of course, there are some obvious differences in going from

the football field to the battlefield. The playing area is much larger (typically about

50km on a side instead of 100 yards), as are the players (tanks and other vehicles

instead of small, solitary humans.) But in spite of the differences, the fundamental

concept remains the same.

In DIS, the players are entities, where each entity is single, independent vehicle

such as a tank, a jeep, an airplane, or, occasionally, a human on foot. Each entity is

identified by a short code indicating model, serial number, and other distinguishing

characteristics. The movements of the entities translate into vectors denoting po-

sition, velocity, and other basic physical parameters. Other actions (such as radio

transmission, weapons fire, repair, resupply, etc.) have their own particular codings,

as well.

In technical terms, each type of simulation event is encoded as a specifically-

formatted data packet, known as a Protocol Data Unit (PDU) [5]. The sequence of

events in a simulation is encoded as a stream of PDUs which is delivered to all of

the computers participating in a particular distributed simulation. Upon receiving a

PDU, each simulator is free to interpret the enclosed data in any manner it wishes.

For example, an ordinary vehicle simulator would produce a realistically-rendered

image, while a simulated command post might generate icons on a tactical display,

instead.

There is one notable discrepancy between the football analogy and the actual

workings of DIS. Instead of a single sportscaster summarizing all the action, each

entity reports on itself. Furthermore, the entities play the roles of both commentator

and listener; the monologue becomes a dialogue, which is what makes the simulation

interactive. Still, the radio broadcast analogy can be made to work. All parties send

their reports to a common channel and listen to the same channel. Anyone tuning in

to that channel can take all the individual accounts and piece together the whole of

the action.

2.2 DIS Scalability

The radio broadcast analogy maps well to the broadcast transmission mode available

in practically all computer networking systems. (The other usual mode is point-to-

point transmission, where data is routed from one particular computer to another.

This mode is impractical for DIS, since it would require a transmitting entity to repeat

its "story" to every single entity joining into the exercise.) In the broadcast mode,

computers submit data to be delivered to every other computer on the network. It's

a simple, easy scheme, and it worked well enough in the early days of DIS, when

exercises were relatively small. There were only a few, tightly-coordinated entities

maneuvering in close quarters, a situation comparable in complexity to the average

football game.

As time went by, people became more ambitious about DIS, and exercises grew

dramatically in scale. Highly realistic battle scenarios demanded thousands of entities

spread out over thousands of square kilometers. In addition, great quantities of

auxiliary data were introduced to model various environmental effects (e.g., weather,

minefields, terrain damage [4, pp. 44-45]). These demands quickly overloaded all

available communications resources. Returning to our analogy, imagine our radio

program, but now a thousand people are trying to speak at once; clearly this is an

unworkable situation. To make DIS practical on a large scale, the flow of data needs

to be seriously constrained [1].

2.2.1 Dead Reckoning

One way to cut back on the communications load is to eliminate PDUs which can be

easily anticipated. In our analogy, note that a sportscaster doesn't have to comment

on every player on the field at every instant during a game. Players who are just

standing around on the field become uninteresting. We simply assume that they'll

keep standing there. Similarly, if a player starts walking straight across the field, we

don't need to be constantly reminded of the fact for every half-second thereafter. Only

when a player makes a significant change in course do we need an explicit update.

Then, and only then, the sportscaster makes a comment, and we update our mental

picture.

In DIS, a method called dead reckoning performs the same function. (see Figure 2-

1) Each simulator keeps a "mental picture" of all the entities in the exercise. This

picture exists as a collection of dead-reckoning models (DRMs), each of which is a

simple, linear model of an entity's physical state. A DRM records an entity's last

known position and velocity and extrapolates the current position based on that

information.' As long as an entity's actual position doesn't deviate too far from that

of its dead-reckoning model, it doesn't need to send out any updates. However, when

the discrepancy exceeds a predetermined threshold, the entity sends out a new PDU,

1 More complex models incorporating acceleration, angular motion, and other parameters exist,
but are not yet widely used [6, pp. 147-150].

Dead reckoning uses simple linear extrapolation to reduce PDU transmission rates. For the curve
below, regular sampling produces many data points, (o). A dead-reckoning model (DRM) uses
position and velocity to generate a local linear approximation to the curve (A). PDUs (.) are
then needed only when the dead-reckoned position diverges from the true position by more than an
established threshold. At that time, the DRM resynchronizes with the true model (resulting in the
"sawtooth" edges) then continues normal operation.

In the example above, dead reckoning condensed a 100-point curve into an 8-point approximation.
However, this is an unrealistic gain, as we have exaggerated the threshold for purposes of illustration.
The example below, shows a more typical usage, where the dead-reckoned curve is virtually identical
to the true curve but includes only 19 of 100 points.

Figure 2-1: Dead Reckoning

causing all the simulators to update their DRMs.

This relatively simple scheme proves remarkably effective in practice. Entities

typically need to produce only a few (less than 10) updates per second rather than

several dozen (full-motion video rate).

Of course, there's always the possibility that nothing will change for a significant

period of time, as for example, when a timeout is called. In this case, sportscasters

feel obliged to fill the time with background commentary to let the listeners know

that they're still there and, also, for the benefit of new listeners who are just tuning

in. This has its analog in the DIS "heartbeat." If an entity hasn't sent out any PDUs

within a certain timeout period (on the order of several seconds), then it is required to

send out an update anyway [12, p. 4]. This makes it possible to distinguish between

an entity which have stopped changing course (a quiescent entity) and an entity which

has malfunctioned or lost its network connection.

Thus far, dead reckoning is the only data management technique actually included

in the DIS standard[6, pp. 147-150], but research is under way in several other areas,

as discussed in the sections below.

2.2.2 Bandwidth Improvements

Network bandwidth2 is the scarce resource in DIS economics. Efforts to increase the

available bandwidth in DIS network systems have met with some limited degree of

success. For instance, data compression can be used to eliminate redundant data

in the PDU stream, and improved network hardware can increase the underlying

channel capacity [11]. While effective to a point, these methods offer only incremental

improvements to the overall situation. Furthermore, it has been determined that, at

2The term bandwidth is used loosely here as an all-encompassing term for overall communications
capacity. In actuality, capacity encompasses many and varied components including throughput,
latency, packet rate, bit rate, etc.

this time, the DIS bottleneck hinges on the issue of PDU delivery rate, rather than on

overall bandwidth [12, p. 19]. So for the time being, efforts are being concentrated on

techniques which focus on PDU-level traffic and which offer more than simple scaling

gains.

2.2.3 Relevance Filtering

Relevance filtering describes a general class of techniques which seek to filter out all

PDUs which are irrelevant to the simulation "dialogue." The fundamental principle

is that no individual simulator truly needs to know the entire state of the entire

world at any time. For example, a single tank cannot observe a 50km battlefield from

edge to edge. Even if it could make out other vehicles at that range, it would be

fruitless to try to keep track of the individual movements of each and every one of

the thousands of entities inhabiting the battlefield. An ideal filter would, therefore,

adjust the operation of the network system so that the tank simulator would receive

only the PDUs that were relevant to its current situation.

As a specific example, a tank driver can realistically detect vehicles at a range

of about 4km [9, p. 2]. Furthermore, human vision is restricted to a forward-facing

cone. Combining these two constraints gives us the filed of view illustrated on the

left of Figure 2-2.

You may be concerned that our illustration only shows a two-dimensional field of

view, while our simulations take place in a full three-dimensional space. The truth is

that practically all current applications of DIS are limited in this manner. For reasons

of practicality, DIS exercises tend to be limited to ground-based vehicles (and, on

occasion, ground-support aircraft.) Airplanes are simply too fast and far-reaching to

be accommodated by current technology.3 Accordingly, most DIS simulator programs

3 Note however, that the DIS protocol itself has no such limitations. This limitation is imposed
only by the state of the art.

Relevance filtering defines an area of interest (AOI) for each simulation entity then limits the entity's
reception to the PDUs that fall within its AOI.
Ideally, your current AOI is the exact region you can see at the present moment in time. For a
human eye, this is a roughly conical region. Ideally, the cone extends infinitely, but it is typically
truncated to some "maximum visual range," or radius of interest (ROI). We also use a flat, planar
AOI since practically all DIS simulators are limited to ground-based action.
In practice, AOIs are circular rather than conical, since current technology can't handle the speed at
which a sensor rotate. A practical AOI covers all the fields of view which could possibly be reached
in the next several seconds; i.e., a 3600 sweep extending to to the ROI, which is slightly increased
to include any possible vehicle motion.

Figure 2-2: Relevance Filtering and the Area of Interest (AOI)

orient themselves to a ground-based coordinate system with a limited dimension of

altitude. We follow current practice with our planar representations.

Practicality intrudes again when we define our actual area of interest (AOI). An

AOI represents the region of the world for which a relevance filter should deliver PDUs

to a particular entity. Ideally, the typical entity's AOI should simply be the field of

view presented above, but in practice, computer network systems are too slow to keep

up with such a rapidly-changing AOI. In particular, a tank driver takes only half a

second to turn and look in a new direction, but a network routing system can take

half a minute or more to reconfigure its data paths. To work around this problem, a

practical AOI must cover all the fields of view that could possibly be reached during

the network reconfiguration delay. The typical AOI is produced by sweeping the ideal

field of view in a full circle about an entity and slightly increasing the ROI to account

for vehicle motion, resulting in the circular AOI on the right of Figure 2-2.

Now we have an AOI, but how are we going to explain it to the network system? To

sensibly implement relevance filtering, we need a network transmission mode which is

subtler than broadcasting, yet more versatile than point-to-point transmission. This

need can be filled by most network multicast schemes. Return once again to our

radio analogy. Broadcast transmission corresponds to a single station being received

by a universal audience, while point-to-point corresponds to everyone having a walkie-

talkie tuned to a different channel. Multicast transmission corresponds to multiple

stations operating on different channels, with listeners free to pick and choose amongst

them. Each channel corresponds to a multicast group - transmitting on the channel

corresponds to sending to the multicast group, and tuning in to the channel equates

to subscribing to the group.4

4 This analogy actually describes one-to-many multicasting, where a single multicast address
maps to multiple individual receivers. (i.e., There is one commentator but many listeners for each
channel.) This happens to be the only model supported by the now-standard TCP/IP protocol.
Other technologies support the many-to-one (a group of commentators with an audience of one)
and many-to-many (a group of commentators speaking to many listeners) modes of multicasting,
which may be of interest in the future.

With this underlying infrastructure, it is now possible to construct a complete

relevance filtering scheme. The essential problem is to find a method which can

correlate locations of events with areas of interest and produce a corresponding system

of multicast sendings and subscriptions. Many approaches are possible:

Organizational Relevance

In organizational schemes, PDUs are sorted based on the affiliation of the entity pro-

ducing them. Each affiliation (team, platoon, army, etc.) gets its own multicast group

to send to, and entities subscribe only to groups in which they are interested. For

example, a tank making precision maneuvers might be interested only in keeping for-

mation with its own platoon. That tank would subscribe exclusively to the platoon's

group. Then, the network system would deliver only those PDUs and could dispense

with any from other sources.

As another example, note that in all but the rarest cases tanks are completely

oblivious to the actions of air combat fighters, and vice versa. If each type of vehicle

has its own multicast group, then neither tank nor airplane needs to see the other's

PDUs at all.

Geographical Relevance

In the geographical scheme, multicast groups are tied to physical regions of the world.

As a simple example, picture a map with a grid overlay. Each square in the grid is

assigned a different multicast group. When an entity enters a grid square it sets its

"transmitter" to the channel corresponding to that square and sets its "receiver" to

the same channel (and perhaps a few of the surrounding squares as well, depending

on the entity's sensory range.) Thus, all the PDUs sent by the entity are limited to

a single channel, or grid square, and are delivered only to other entities who are "in

the neighborhood" and have specifically subscribed to that grid square's channel.

Ideally, an AOI describes a circle extending to the ROI. In practice, free-form circles are too complex
to manage efficiently, so we approximate them with discrete grid cells.
In the diagram above, each entity (o) has a circular AOI which is approximated by an irregular
square outline. Every grid cell within the outline corresponds to a particular multicast group to
which the entity subscribes in order to receive updates on events within the corresponding cell.
The smaller, rectangular outlines surrounding each entity's location indicate the area in which an
entity produces updates. Each entity transmits PDUs to the grid cells within this outline. When
one entity lies within the AOI of another, their transmission and subscription groups overlap and
they receive PDUs from one another.

Figure 2-3: Grid-Based Relevance Filtering

r r
i if L "

r

·-·· ·*·······;-··-;····-
ii i

% \ii BI i

i r
i

i P I L
t

r\
t

r

i 1 f S
r i B
: I

i r

Square grids are popular for their simplicity, but grids may also take on many other forms, such as
the hexagonal and triangular examples shown here.

Figure 2-4: Alternative Grids for Relevance Filtering

Of course, square grids are only one option. Hexagonal grids have been used in

some systems, and irregular grids are also a possibility. The only guideline is that

the grid cells partition the data in a useful way.

Organizational/Geographical Relevance

We have seen that both organizational and geographical relevance schemes have their

uses. How does one choose between the two? The Distributed Systems Group at

Stanford says you don't have to choose; the two systems can be combined [10]. In

their projection system, organizational and geographical divisions are mapped against

each other to form new subgroupings. In other words, if you have "Team A" and

"Team B", moving through "Area 1" and "Area 2," then the projection system would

combine these parameters to form four multicast groups.

If you want to use organizational relevance, you can subscribe to Groups Al and

A2 for Team A, or to B1 and B2 for Team B. If, on the other hand, you opt for

geographical relevance, you can subscribe to Groups Al and B1 for Area 1, or to A2

and B2 for Area 2. Furthermore, you can pick and choose groups to get more specific

Team A Team B

Area 1 Group Al Group B1

Area 2 Group A2 Group B2

....... --........ ...

Y'
;P'

:"8;4·.

;··.;

l,*~,*,,L,,,,,,,b,*,*,,,,i,,i ... : ?~*w~-id

B
*

Aggregation is a more complex method of data management, which actually reinterprets data instead
of simply filtering it. The basic assumption of an aggregation system is that, we will often just be
interested in group behavior rather than in the actions of individual entities.
In that case, we can summarize the individual behaviors, replacing them with a single pseudo-
entity which contains a statistical model of the entities within the group. At the receiving end, the
super-entity can be reexpanded into a reasonable approximation of the original group.

Figure 2-5: Aggregation

areas of interest. For example, if you only wanted to pay attention to Team A and

you only wanted to monitor Area 1, then you would subscribe only to Group Al.

There is one glaring flaw in the projection scheme, namely its order of growth. The

number of multicast groups required increases with O(mn), where m is the number

of teams and n is the number of areas. When m and n are doubled, the number of

groups required quadruples; and as m and n grow even larger, the situation becomes

progressively worse. The Stanford system actually has another component keeps this

expansion under control. The second component is known as aggregation and is

described in the next section.

Aggregation

Aggregation is a more sophisticated method of filtering than the ones we have covered

thus far. Instead of simply picking out existing PDUs, the aggregation system actu-

ally modifies them. Specifically, the system picks out certain groups of entities and

replaces their collective PDU streams with a single new PDU stream which summa-

rizes the original data. Of course, some detail is lost when the many original PDUs

are condensed into one, but in many cases, the loss is unimportant. If properly ex-

ecuted, aggregation should produce a functionally equivalent, though not identical,

record of events.

Aggregation works by replacing a group of entities with single aggregated entity.

Obviously, this doesn't work in all cases, only those in which the behavior of the whole

group is more important than the behavior of the individual members. For example,

a platoon of tanks may be traveling in formation, using no personal initiative, acting

only as a coherent whole. Alternatively, a group of vehicles may be so far away that

the exact positions of the individuals are inconsequential. In such cases, the entities

in the group may be aggregated.

When a group of entities is aggregated, the individual entities disappear (as far as

the receiving simulators are concerned) and an aggregate entity appears in their stead.

This aggregate has all the properties of a regular entity but has, in addition, a number

of parameters which describe the original entities from which it was composed. For

example, the aggregate entity of Figure 2-5 records the number of original entities,

their centroid position, their mean distance from that position, and their standard

deviation that distance. These parameters may subsequently be used to construct a

reasonable facsimile of the original entities.

Aggregation is a promising, but challenging, area of research. Existing systems

which utilize aggregation include the projection aggregation project[10] at Stanford

and the observer-based multiresolution architecture[7] at MIT.

Miscellaneous Relevance Parameters

Relevance filtering can be based on almost any criteria imaginable. For example, all

sensors have lower limits on their sensitivity - in order to be detectable, objects

must fall above a certain minimum brightness, cross-section, etc. Sensors respond to

different types of energy, such as ultraviolet (UV), visible, and infra-red (IR) light,

radar, and sonar. Some sensors, like Doppler radars, are sensitive to the relative

speed of a target. In short, the possibilities are endless.

location

wavelength

Routing space allows arbitrarily-formed AOIs to be defined within an abstract space whose dimen-
sions are formed from arbitrary bits of PDU data. This diagram illustrates an AOI which models a
typical optical sensor operating in the visible light range. The model follows the inverse-square law
by raising the bottom of the AOI as distance from the observer increases. Points A, B, C, and D
illustrate the limits of the AOI. See text for details.

Figure 2-6: Routing Space

Future DIS systems will have to be far more versatile in their handling of relevance

criteria. To this end, the design specifications for the next generation of DIS technol-

ogy includes an interface for specifying arbitrary filter criteria within a generalized

routing space.

Routing space is an abstract construct, a "space" whose dimensions consist of

arbitrary bits of DIS data. Anything that can be extracted or calculated from the

contents of a PDU is fair game. In the example of Figure 2-6, we have chosen

[electromagnetic] wavelength, brightness, and location.

Once we have defined this space, entities are free to subscribe to AOIs of arbi-

trary shape within the space. In our example, we have a chosen a non-trivial form

which represents a typical optical sensor. On the wavelength axis, the AOI spans the

spectrum of visible light. Along the location-brightness plane, the AOI's sensitivity

to brightness tapers off with distance; i.e., the further an object is from the observer

(located at the origin), the brighter it must be to remain visible.

Finally, entities may restrict the distribution of their PDUs to specific regions

within the routing space. In a manner analogous to AOI subscription, entities define

arbitrary areas in which they wish to publish their PDUs. At present, these regions of

publication have no formal nomenclature; but for symmetry, we shall refer to them as

areas of presence (AOPs). In our example, the four points A, B, C, and D represent

simple, point-shaped AOPs. Their interpretation will be discussed with the next

point.

Once the network system5 has been informed of both AOIs and AOPs, it correlates

them to determine where data needs to be transported. Wherever an AOP and AOI

overlap, data is transferred from the former to the latter. In our example, point A

represents an nearby object of moderate brightness. It falls easily within the AOI.

However, if the object moves out to point B, the distance is too great for it to remain

visible. Only objects as bright as point C can be seen at that distance. Finally,

consider an object at point D, which is as bright as point C, but can only be seen by

radar. (Imagine an unlit airplane at night, for example.) This object, again, does not

fall within the AOI.

The overall benefit of routing space is that entities have the ability to declare

AOIs and AOPs to suit any need. Furthermore, once they have declared their AOIs

and AOPs, they have no further worries over data delivery, and the network is fully

informed when it gets around to making its routing decisions.

5To be specific, routing space is implemented within the new DIS component known as the
High-Level Architecture Run-Time Interface (HLA RTI) [2]. The RTI serves as an interface layer
separating the simulators from the actual network mechanisms.

Chapter 3

A Multigrid Algorithm for DIS

Relevance Filtering

3.1 Multigrid Principles

The multigrid relevance-filtering algorithm developed in this paper is based on the

grid-filtering work done at Lincoln Laboratory [9]. That system uses square grids to

approximate circular AOIs about each entity. Our multigrid scheme further limits

the AOI through a model of decreasing resolution with increasing distance. In other

In our model, we assume that visual acuity is limited only the angular resolution of the eye (or
other sensor). Thus, as distance from the eye increases, the size of the smallest discernible detail
increases proportionately. Values for these parameters may be found through simple trigonometry,
as illustrated below and performed in the text.

d

Figure 3-1: Visual Acuity

words, the more distant an object is from an observer, the less finely its details can

be perceived.

3.1.1 Visual Acuity Model

We begin with a simple' model of visual acuity. The only assumption is that the eye

(or any other sensor, for that matter) has a lower limit to its resolving power which

can be expressed as a constant angular measure. If we follow that angle from the

eyepoint out, we see that it describes a cone in space, as illustrated in Figure 3-1. By

tracking the width of the cone, it is apparent that details must be larger at greater

distances in order to be visible.

The relationship between these parameters can be found by simple trigonometry,

as shown in the lower diagram in Figure 3-1. The cone forms a pair of congruent right

triangles where the inner angle is half the arc resolution (0/2), the near side is the

distance from the eye (d), and the far side is half the size of the smallest discernible

detail (s/2). Using the tangent relationship (tangent = far side / near side), we obtain

the following relationship:

0 s/2tan -= d
2 d

0 = 2tan_ 1 s/2 (3.1)
d

0 = arc resolution
s = size of detail
d = distance to detail

Equation 3.1 is not a useful form, since the arc resolution 0 of the human eye is

actually a constant with the generally-accepted value of 1 arc minute (1/6o degree) [8,

p. 50]. By solving for s, we obtain a more useful relationship.

'The model is "simple" because it takes only the geometric consideration into account. We
disregard inverse-square light propagation, atmospheric attenuation, and all other optical effects.

0
S= 2d tan -

2
01'

s = 2d tan -
2

= 2.91 x 10-4 d (3.2)

s = size of detail
d = distance to detail

Equation 3.2 shows that the size of the smallest discernible detail is directly pro-

portional to distance. For example, we can make out a 1-inch detail at about 290

feet. At twice the distance (580 feet), we can only make out details twice as large (2

inches), and at half the distance (145 feet), we can see details twice as fine (1/2 inch).

At the typical ROI of 4km, the smallest discernible detail is 1.16m (-3.82ft)

3.1.2 Multi-resolution AOI

Now that the visual-acuity model is complete, we can begin work on our AOI. In

Figure 3-1 and Equation 3.2, we saw that the "threshold" of detail size increases

linearly with distance from the eyepoint. If we now define [linear] "resolution" to be

the reciprocal of the threshold (1/s), then we can draw the picture in Figure 3-2.

On the left is the ideal AOI for an ordinary grid-based scheme. The base of the

AOI extends from an entity's position out to the entity's ROI. Resolution is constant

across the entire range, giving us a cylindrical form in geography-resolution space.

The volume of this cylinder can be interpreted as a rough estimate of the amount of

data that will be received by this AOI. Increasing the base area brings in more data

by including more of the surrounding entities, and increasing the resolution brings in

more data by giving the dead-reckoning mechanism less leeway to suppress PDUs.

Now consider the right side of the figure, which shows the form of our desired

multi-resolution AOI. At the center of the base, resolution is at a maximum, but it

iFI 4

I/am

The traditional AOI maintains a constant resolution from the center all the way out to the ROI. We
believe this technique to be wasteful and propose a multi-resolution AOI in which resolution tapers
off as distance from the observer increases.

Figure 3-2: Multi-resolution AOI

tapers off as distance increases, eventually reaching zero at the ROI. It is apparent

that this shape has a much smaller volume than the traditional cylinder. It was our

hope that this reduction in abstract volume would be reflected in the volume of PDU

traffic.

3.1.3 Rethresholding

To test our ideas, we obtained a PDU log file from the large-scale DIS engineering

demonstration test known as ED-1A. This test involved a series of exercises operating

at the limits of DIS technology - each exercise included on the order of 5,000 semi-

automated2 entities distributed across seven sites nationwide [12, pp. 1-2]. Many

experimental technologies were in operation, including the Lincoln Laboratory grid

filtering system.

Our data sample consisted of a representative 10-minute segment from the un-

classified portion of the test. We wrote our own software to replay the log file. The

resultant PDU stream was passed through an idealized network model, and periodic

statistics were collected on PDU rates and multicast subscription levels.

2In staging large-scale exercises, it is often difficult or impossible to find enough human pilots
to operate all of the required entities. Semi-Automaied Forces (SAF) technology employs artificial-
intelligence techniques to allow computers to substitute for many of the human controllers [3].

Humans are still required at the command level, since the computer is not intelligent enough
to perform complex tasks. However, a single human can supervise many more entities when the
lower-level tasks are all handled by the computer.

Traffic Reduction under Rethresholding
4 t~ t•. '• ."O

IVU

90

80

70

60

0 50

g 40

30

20

10

n

0 100 200 300 400 500 600
simulation time elapsed (seconds)

Significant portions of PDU traffic can be filtered out by rethresholding (i.e, applying an extra pass
of dead-reckoning filtering.) We experimented with thresholds ranging from 10-9m to 109m by
powers of 10. We find large gap in traffic levels for any non-zero threshold. That is, in the range of
thresholds between 0 and Im, traffic drops to 70% of the original level. The rest of the graph has
little utility to us; see text for details.

Figure 3-3: Data Reduction by Rethresholding

The results of the first relevant analysis are presented in Figure 3-3, a graph

suggesting the effectiveness of rethresholding, a technique which thins out a PDU

stream by passing it through an additional layer of high-threshold (low-resolution)

DRMs. Rethresholding was used in the Lincoln Laboratory work as an aid to data

collection [12, p. 3]; for completeness of the logs, PDUs from outside the AOIs were

included, but only after being subsampled at a low rate. In our work, we apply

rethresholding in the other direction, instead of including PDUs from outside the

AOI, we will eliminate them from inside it.

To produce the graph, we applied many different levels of rethresholding to the

log data. Specifically, we resampled the data at thresholds which ranged from 10-'m

to 109m by powers of 10. We also included a threshold of 0, for reference. The

.

A A

Sle+03m

l e+04m
l e+08m

horizontal axis of the graph denotes time elapsed into the simulation - we monitored

the progression of the exercise to ensure that there were no transient anomalies. We

found none, so all subsequent analyses will use time-averaged values instead.

Now note the vertical axis, which denotes the percentage of total PDU traffic

which is not rejected by rethresholding. The top graph line sits at the 100% traffic

level. This is not surprising, since its threshold is 0, so it filters out nothing at all. The

second line down is more interesting. It seems that any non-zero threshold results in

an immediate drop to about 70%, which implies that about 30% of the PDUs involve

absolutely no change in entity location. In other words, a significant amount of PDU

traffic is spent in describing relatively minor events.

It is also interesting to note, in passing, that the "second line down" is actually

composed of ten overlapped lines, corresponding to the thresholds from 10- 9 m to

im. The fact that these lines are virtually identical implies that the threshold for the

underlying data was about im.

Traffic level continues to fall off at 10 and 100 meters, then it makes another jump

between 100 and 10,000 meters. Actually, the center of the gap changes as evidenced

by the rising inflection of the 1000m line. This is to be expected - as the simulation

progresses, more and more vehicles manage to travel across distances of that mag-

nitude. Unfortunately, this gap isn't of much use to us, since 1km details become

negligible only at distances exceeding 3500km (-2000mi), which is well beyond the

typical 50km battlefield size. 3 Going the rest of the way down the graph, we note

that the traffic level falls to zero at 105m. This is not surprising, either, given the

50km-size of the battlefield.

We conclude that the zero to non-zero gap in the graph holds great promise for

the effectiveness of a multi-resolution AOI. After all, our visual model tells us that

zero-size movements should be observable only at zero distance. In practice, this

fine-detail traffic should be easily constrained.

3 Future DIS exercises may reach transcontinental scales, but for now, this observation is useless.

As mentioned in Figure 2-3, smooth curves are computationally impractical. Just as we approximate
circular AOIs with square grid cells, we can substitute a series of steps for the smooth slope of the
AOI's sides.

Figure 3-4: Square-grid Multi-resolution AOI

3.1.4 Discrete Multi-resolution (Multigrid) AOI

The first step in implementing our algorithm is to translate the circular, ideal AOIs

a more tractable form. While circles are highly appealing for their geometric simplic-

ity, they don't mesh easily with the computer's highly rectilinear coordinate systems.

Regular grid squares are much easier to handle than free-floating circles, so we ap-

proximate the ideal AOIs using the cells of a square grid, as shown back in Figure 2-3.

For every entity, we calculate the intersection of its circular AOI with the cells of the

grid and include any squares which overlap the circle.

The standard geographical grid system takes care of our ideal AOI's base area,

but for the "vertical" resolution component, we need to come up with another way

to approximate the resolution/threshold curve. In a manner similar to the square

gridding of the spatial component, we will choose discrete threshold levels at which

to form "steps" along the sides of the AOI. Figure 3-4 gives a rough idea of our goal.

Looking back at Figure 3-3, we recall the rethresholding gap just above 0 (and

forget the useless one around 1000m.) It would seem most effective to arrange our

threshold levels such that the "step" fell into the gap, maximizing the differential

between traffic levels at different step levels. Since we only have one gap, we decide

Aa

Looking back at the graph of Figure 3-3, we find a threshold gap just above 0. A threshold chosen
in this region would represent the lowest "step" of the AOI shown in Figure 3-4.
We also find a gap above 100m, but this second gap is of no use to us. For a 100-meter detail to be
unnoticeable, we would have to be much further away than the usual ROI of 4km. Thus, we decide
to concentrate on a two-level AOI with one threshold at 0 and the other slightly higher.

Figure 3-5: Two-level Multi-resolution AOI

that we only need one step (not including the 0-threshold step which is always required

at the innermost region of the AOI.) Thus, a two-level multigrid will be most suitable,

and our AOI will take the form shown in Figure 3-5.

Now we can begin to discuss the actual operation of the multigrid system. So far

we know we have grids on two distinct resolution levels. Let's refer to them as the

hifi and lofi grids (abbreviations for high-fidelity and low-fidelity, respectively.) The

hifi grid is represented by the tall central spire in Figure 3-5. This grid should have

small cells to better accommodate the narrowness of regions it will have to cover.

These small cells will carry high-resolution data, which must be confined to small,

highly-restricted areas. The lofi grid is represented by the broad base in the diagram.

This grid should have larger cells to more efficiently attain its greater coverage. Since

low-resolution data is generated at slower rates, we don't have to be as concerned

about the inevitable "spillovers" caused by the larger cells sticking out beyond the

ideal AOI.

In operation, each grid runs DRMs at different levels of resolution (i.e., with

different thresholds).4 Before being sent, every PDU is checked against the lofi grid.

If the PDU describes an movement whose magnitude which exceeds the lofi threshold,

4Actually, the hifi grid doesn't really have to run DRMs, since its threshold is just zero. But for
consistency, imagine that it does.

then it is dispatched to the lofi grid. (More precisely, it is sent to the multicast group

corresponding to the lofi grid cell containing the originating entity.) Otherwise, the

packet describes a "fine-detail" event, and the data is passed along to the hifi grid.

In this way, data is sorted into low and high-fidelity categories.

On the receiving end, entities subscribe to the hifi grid for the small region in

their immediate vicinity and fill in the rest of their ROI with subscriptions to the lofi

grid. Thus, high-fidelity events only arrive from within a limited area, while the more

infrequent low-fidelity events arrive throughout the whole of the AOI. Collectively,

the low and high-fidelity data form the desired two-level AOI. Note that the hifi grid

doesn't actually carry all the data; it suffers occasional "skips" when a packet is

rerouted through the lofi grid. So it is necessary to subscribe to both grids to get true

"full-fidelity" data. In essence, we have two quasi-independent grids, one with high

fidelity over a small ROI, the other with low fidelity over a large ROI. We've just

arranged things such that combining the data from the two grids happens to give you

the standard, full-fidelity DIS data stream.

3.2 Single-grid Design Parameters

The multigrid algorithm sounds straightforward enough, doesn't it? However, there

are certain details that must filled in before we proceed. First, we have to deal with

what is, essentially, a single-grid issue. As stated in the original grid filtering paper

[9], there is a fundamental question of what cell size should be used. Our problem is

compounded by the fact that we will be trying many ROIs (We haven't yet decided

on the exact ROI of the small-radius, hifi grid.) in addition to the standard 4km one.

At this point, we repeat the optimization procedure from the single-grid paper

[9]. For each of our candidate ROIs, we test a set of cell sizes, ranging from 1/8ROI to

ROI. Figure 3-6 shows the results. For each ROI, we generate a curve by plotting the

number of multicast subscriptions per host computer against the normalized PDU

Single-grid Optimization

0.14 0.16 0.18 0.2 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
data fraction

ROI 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000
cell size 500 1000 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 10000
data fraction 0.115 0.119 0.121 0.127 0.128 0.136 0.135 0.138 0.162 0.175 0.180 0.192 0.212
subscriptions 1567 425 204 122 85 63 51 42 29 22 19 15 11

ROI 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
cell size 375 750 1125 1500 1875 2250 2625 3000 3750 4500 5250 6000 7500
data fraction 0.101 0.104 0.108 0.110 0.114 0.117 0.118 0.123 0.126 0.136 0.146 0.153 0.159
subscriptions 1889 521 254 154 107 79 60 48 36 27 22 18 13
ROI 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
cell size 250 500 750 1000 1250 1500 1750 2000 2500 3000 3500 4000 5000
data fraction 0.083 0.086 0.089 0.092 0.093 0.096 0.097 0.102 0.104 0.110 0.111 0.116 0.122
subscriptions 2405 663 323 193 138 105 80 64 48 38 29 23 18
ROI 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
cell size 125 250 375 500 625 750 875 1000 1250 1500 1750 2000 2500
data fraction 0.058 0.060 0.062 0.064 0.066 0.068 0.070 0.071 0.074 0.077 0.080 0.083 0.088
subscriptions 3703 1005 489 299 203 152 121 97 73 55 46 38 29

ROI 500 500 500 500 500 500 500 500 500 500 500 500 500
cell size 62 125 187 250 312 375 437 500 625 750 875 1000 1250
data fraction 0.041 0.042 0.043 0.044 0.046 0.047 0.048 0.050 0.052 0.055 0.056 0.058 0.062
subscriptions 6237 1718 824 500 342 257 199 164 113 87 70 61 44

One major design parameter is the size of the grid cells in relation to the size of the AOI (as
represented by the ROI.) We optimize our relationship by minimizing the per-host PDU reception
and multicast subscription rates. The most efficient operating points (o) are marked above.
The plotted curves indicate PDU rate vs. number of subscriptions for various cell sizes and ROIs.
Each individual curve represents a grid operating at a particular ROI, and the points along the curve
represent various cell sizes for that ROI. Our optimization function is represented by distance from
the origin (zero traffic with zero subscriptions), as illustrated by the concentric circles emanating
from the origin. (In the graph on the left, these circles actually appear circular. On the right side,
the circles are distorted, by semilog axes.) For each curve, the point closest to the origin is indicated
with a circle.

Figure 3-6: Cell Size vs. ROI Optimization

o00

1000

2000

0 0.02 0.04 0.06 0.08 0.1 0.12
data fraction

.qinnia-nri n)ntimi7nti-n

' ~~ ~"U"~-~

rate. We have labeled this the data fraction, since it represents a fraction of original

data volume. 5

The resulting graph gives us a sort of cost-benefit diagram which we use to opti-

mize our choices. The objective of our optimization is to minimize the data fraction

without incurring an exorbitantly high subscription rate. We decided to keep things

simple and use an obvious distance metric as a guide. Assuming that the origin is

perfect (zero data load using zero multicast groups), we try to find the closest point

to it. The dotted lines in the background of the graph indicate the distance isoclines,

which are scaled along both axes to fit the range of the graph data. The graph on the

left has linear axes and shows a natural rendition of the isoclines. The graph on the

right uses a logarithmic y-axis to improve the detail in the curves, but the isoclines

appear far less intuitive. Use both graphs to get a proper feel for the data.

The optimal (closest-to-origin) points are marked with circles on the graph.6 By

going back to the data and extracting the ROIs and cell sizes for those points, we

acquired the basis for forming a relationship between optimal cell size and ROI. This

data is graphed in Figure 3-7, along with a best-fit line.

For the sake of verification, we note that our cell size for the 4km ROI is in the

same ball park as the Lincoln Lab figure[9, p. 5] (1000m vs. 1500m). Given Lincoln's

caveat that this figure is highly situation-dependent, we are satisfied with our result.

As for the rest of the graph, it shows that the optimal cell size is directly proportional

to the ROI in question. This is not surprising, since smaller squares should provide

better approximations to smaller circles. 7

5This is equivalent to the download ratio used in the Lincoln Laboratory paper.
6 Interestingly enough, they seem to form a horizontal line (i.e., the optimal points coincide with

a particular subscription rate). This may worthy of further study.
7It is somewhat interesting that the line doesn't go through the origin, but instead crosses above it.

One possible explanation is that at some point, the savings realized through better approximations
become outweighed by the savings of entities sharing groups, putting a lower practical bound on cell
size.

c = 0.209r + 136

r = radius of interest (m)

The data presented in Figure 3-6 leads us to this relation for cell size as a function of ROI. By taking
the optimal points from the previous graph, we obtain the best-fit line shown above.

Figure 3-7: Optimal Grid Cell Size vs. ROI

1
'---

00

This is the formula we chose for the relation between cell size and ROI.

c = 0.209r + 136m (3.3)

c = cell size
r = radius of interest

3.3 Multigrid Design Parameters

With the single-grid parameters out of the way, we can start on the main problem

- how to set up the multigrid for optimal results. We have one major decision -

how should we set the transition between the two levels of the multigrid? There are

actually two related quantities involved in this decision: the "intermediate" ROI of

the hifi grid and the corresponding threshold for the lofi grid. To link these two values,

we go back to our visual acuity model of Equation 3.2. For any choice of intermediate

ROI r, the corresponding threshold t is equal to the size s of the minimal discernible

detail at that distance d = r. Because this threshold is equal to the size of the

minimum discernible detail, it is valid to use it for the lofi grid. Since everything

closer than the intermediate ROI will be handled on the hifi grid, the lofi grid doesn't

ever need to cover details smaller than

t = 2.91 x 10-4 r (3.4)

t = threshold value
r = radius of interest(intermediate)

Now we are ready to construct the multigrid. We have found ways to calculate all

the design parameters except one, the intermediate ROI. But we do know enough to

find that value empirically. The following table summarizes all the other parameters

going into our design.

u7000

6000

5000
80

a4000

- 3000

E
2 0 00

1000

n

Multgri OptmiztionMuligri Opimiztio

....-Z Ix Md.~ ·':·: 1.': I : ·:I. · · ·............. 00jii~ i: .: :\ :: ': : : .
10

3

S102

E

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
data fraction data fraction

ROI 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250
data fraction 0.035 0.044 0.053 0.061 0.069 0.075 0.082 0.087 0.091 0.096 0.100 0.104 0.108
subscriptions 775 916 963 982 990 998 1003 992 981 973 959 949 937

ROI 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000
cell size 500 1000 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 10000
data fraction 0.115 0.119 0.121 0.127 0.128 0.136 0.135 0.138 0.162 0.175 0.180 0.192 0.212
subscriptions 1567 425 204 122 85 63 51 42 29 22 19 15 11

The multigrid analysis adds a curve to the graph of Figure 3-6, showing that the multigrid filter
achieves much better traffic reduction than the 4km single grid, and it does it with only a modest
increase in the number of required multicast subscriptions.
Quantitatively, the multigrid algorithm offers a more than three-fold (3.41, to be exact) reduction
in traffic at a cost of less than twice (1.82) the original number of multicast subscriptions.

Figure 3-8: Multigrid Optimization

The multigrid algorithm was run with intermediate ROIs ranging between 0 and

4km. The results are shown in Figure 3-8, which plots the optimization data, overlaid

with the optimization data for the single-grid cases. Note that only the 4km and

multigrid curves are marked with optimal points. A single grid with an ROI less than

4km is not a valid AOI for a real exercise; the curves are included only for reference.

We conclude that the multigrid is reasonably successful. At its optimal (leftmost)

point, it produces 1/3.41 times the data of the 4km-grid optimal point, while using

only 1.82 times as many multicast groups. Scanning across the multigrid curve, we

see that each time it crosses another curve, its data fraction is only slightly higher

than that of the single grid corresponding to the intermediate ROI. This observation

40

(Y

.• . • .

."..) O '. " ".. " '. ". '.

•.. ,......... ::::.: :

-·
...........000

................... ", o " " . -.." '.".. .. ." ..•. . .. '.

" .. " .," -..Z .. ',. ". ., -. '. '..'.. . ",'.....

000:
•i i'. "'0"'.".'. " ". ' ". ":. : .. .t.

grid ROI threshold cell size

lofi 4 km 2.91 x 10- 4 r 0.209 r + 136m

hifi r 0 972m

Multigrid OptimizationMultigrid Optimization

: :

M I

"'l

is easily explained by the fact that the multigrid includes the single grid as its hifi

component; the additional traffic comes from the lofi data. On the other axis, we

see that the multigrid subscription rate is nearly horizontal, just like the single-grid

optimums, but it sits somewhat higher. This, too, is to be expected from the fact

that the multigrid is built out of single grids.

3.4 Multigrid Conclusions

To summarize our findings,

* A significant fraction of the data in a typical DIS exercise is spent in describing

very small-scale motions; i.e., many of the most frequent events are also the

most trivial ones.

* The optimal grid cell size for a particular radius of interest is directly propor-

tional to that ROI.

* The multigrid technique offers a significantly lower data rate in exchange for a

moderately higher subscription rate.

There are a few issues that weren't addressed in this paper but will probably be

of interest at some point in the future.

* One undiscussed advantage of the multigrid system is the availability of a dedi-

cated low-fidelity channel. (i.e., A receiver may choose to subscribe exclusively

to the lofi grid.) In many simulations, tanks and other ground vehicles aren't

the only observers present. There might be high-flying surveillance airplanes or,

more simply, there might be commanders and strategists watching the action

on plan-view displays (PVDs).

In simple terms, a PVD is basically a map-type display with abstract icons to

represent entities on the battlefield. Such a display doesn't require close-up,

high-fidelity data, but it does have a much larger than normal AOI. A low-

fidelity channel is extremely well-suited to providing wide-ranging data to a

PVD without swamping it.

* It isn't immediately obvious whether or not the multigrid scheme fully maintains

the accuracy of the simulation. That is, it's possible that some of the events

we dismissed as "imperceptible at a distance" actually aren't. For example, a

tank rotating in place may change its apparent width by several meters, but our

scheme would simply notice that it wasn't making any translational movement

and relegate the data to the low-fidelity channel. Now, tanks spinning in place

aren't common on the battlefield, but perhaps there are similar phenomena

which are.

* We focused only on the "per host" aspect of multicast subscriptions. In reality,

other considerations come into play, most notably, overall usage of the multicast

address space. In other words, there is only a finite supply of multicast addresses

which can be assigned to groups. If a grid scheme is too exorbitant in its use

of multicast groups, then problems will arise.

For this investigation, we made an implicit assumption which can be interpreted

in at least two different ways. One, multicast address space is plentiful, and we

don't have to worry about exhausting it by coming up with too many grid cells.

For the sake of simplicity, many current grid schemes simply preassign specific

multicast groups to each and every grid cell in an exercise. It saves computation,

but more importantly, it obviates the need for the individual simulators to tell

each other about a set of constantly changing multicast group assignments.

The second option may now be obvious to you. If we don't preassign multicast

groups, then we have to come up with a system to track and manage them

during the simulation run. The difficulties in this approach are in the relative

complexity of such a scheme and in the fact that some kind of intercommunica-

tion is necessary to ensure that all the simulators have the same idea of which

group goes where. The network traffic associated with this activity could very

well negate any benefits of the relevance filtering system.

Bibliography

[1] James O. Calvin and Daniel J. Van Hook. Agents: An architectural construct

to support distributed simulation. In Eleventh Workshop on Standards for the

Interoperability of Distributed Simulations, number 94-11-142, September 26-30

1994.

http://dss.1ll.mit.edu/dss.web/94.142.ps.

[2] James O. Calvin and Richard Weatherly. An introduction to the high level

architecture (hla) runtime infrastructure (rti). 1996.

http://www.dmso.mil/docslib/briefs/DIS/14DIS/96-14-103.PS.

[3] Andy Ceranowicz. Modular semi-automated forces. In Electronic Conference on

Constructive Training Simulation, 1994.

http://www.mystech.com/-smithr/elecsim94/modsaf/modsaf.txt.

[4] The DIS Steering Committee. The dis vision: A map to the future of distributed

simulation. Technical Report IST-SP-94-01, Institute for Simulation and Train-

ing, University of Central Florida, May 1994.

http://ftp.sc.ist.ucf.edu/STDS/docs/vision/index.htm.

[5] Joint Data Base Elements. Dis data dictionary, May 1997.

http://STDS.sc.ist.ucf.edu/dis/dis-dd/index.htm.

[6] Institute for Simulation and Training. Enumeration and bit encoded values for

use with protocols for distributed interactive simulation applications. Standard

for Information Technology IST-CR-93-19, Institute for Simulation and Training,

University of Central Florida, June 1993.

[7] Daniel Michel and David L. Brock. A 3d environment for an observer based

multiresolution architecture. In Simulation Interoperability Workshop, Orlando,

FL, March 1997.

[8] U.S. Department of Defense Joint Services Steering Committee. Human Engi-

neering Guide to Equipment Design. U.S. Government Printing Office, 1972.

[9] Steven J. Rak and Daniel J. Van Hook. Evaluation of grid-based relevance

filtering for multicast group assignment. In Fourteenth Workshop on Standards

for the Interoperability of Distributed Simulations, number 96-14-106, March 11-

15 1996.

[10] S. K. Singhal and D. R. Cheriton. Using projection aggregations to support

scalability in distributed simulation. In Proceedings of the 16th International

Conference on Distributed Computing Systems, Hong Kong, May 1996. IEEE

Computer Society.

ftp://ftp.dsg.stanford.edu/pub/papers/projections.ps.Z.

[11] Daniel J. Van Hook, James O. Calvin, Michael K. Newton, and David A. Fusco.

An approach to dis scaleability. In Eleventh Workshop on Standards for the

Interoperability of Distributed Simulations, number 94-11-141, September 26-30

1994.

http://dss.ll.mit.edu/dss.web/94.141.ps.

[12] Daniel J. Van Hook, David P. Cebula, Steven J. Rak, Carol J. Chiang, Paul N.

DiCaprio, and James O. Calvin. Performance of stow ritn application control

techniques. In Fourteenth Workshop on Standards for the Interoperability of

Distributed Simulations, number 96-14-157, March 11-15 1996.

46

