
An Approach to Distributed Sensing in a Virtual Fishtank

by

Mark L. Neri

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 21, 1997

Copyright 1997 Mark L. Neri. All rights reserved.

The author hereby grants to M. I. T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author _'/2 1 / ~ 7
Department of Electrical Engineering and Computer Science

Certified by
Bruce Blumberg

-A . , Thesis Supervisor

Accepted by_

Sariman, Dep tV.K. onTrotenthaler
Aariman, Department o ittee on Graduate Thesis

m

I



by

Mark L. Neri

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 1997

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

And Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The simulation of many simple creatures whose interactions lead to complex global
phenomena is of great interest to many people. Because simulations of this type are often
computationally intensive, it is often useful to distribute the simulation across several
computers connected by a network. A distributed octree data structure achieves both rapid
computation of the creatures' actions as well as distribution of these computations among
several computers. This approach exploits many of the constraints on creatures with limited
visual ranges in a three dimensional space in order to allow simulation of many creatures in
real time. This work will eventually lead to the construction of a Virtual Fishtank that will
allow users to experiment with the phenomena that arise from the behaviors of many simple,
interacting creatures.

Thesis Supervisor: Bruce Blumberg
Title: Assistant Professor of Media Arts & Sciences

An Approach to Distributed Sensing in a Virtual Fishtank



1. Introduction

1.1. The Creatures 4

2. The Problem 6

2.1. The Distributed Octree 6

3. Implementation 8

3.1. The Distributed Octree 8

3.1.1. View Computation 9
3.1.2 Network Communication 20

3.2. Auxiliary Components 24

3.2.1. Behaviors 25
3.2.2. Bodies 26

3.2.3. Rendering 28

4. Results 29

5. Previous Work 32

5.1. Emergent Behaviors 32

5.2. Distributed Simulation on a Network of Workstations 33

6. Future Work 34

6.1. Interactive Experimentation in the Virtual Fishtank 35

6.2. Simulation of Bodies 38

6.3. Graphic Display 39

6.4. Different Types of Creatures 42

7. Conclusion 43

8. Bibliography 44

Table of Contents



The Virtual Fishtank Project is a joint effort of the MIT Media Lab and the Boston

Computer Museum. The goal is to construct an exhibit that will allow museum visitors to

experiment with the behaviors that emerge from the interactions of large numbers of

creatures that follow simple rules based on local information. The central element of this

exhibit will be a large video display on which the interacting creatures will be displayed.

Several separate computers will project this display. Various types of creatures will live in

the tank, although the most prominent will be fish. Museum visitors will control these

creatures in a variety of ways ranging from direct control to a powerful graphical

programming interface.

The fishtank will provide an interesting environment with which creatures will

interact. It will have walls and other obstructions, which will constrain the movement of the

creatures. It will provide other environmental factors such as lighting and temperature.

Also, there will be ways for visitors to interact directly with the creatures in the tank by

feeding them or tapping of the glass of the tank, for example.

The goal of the exhibit is to show museum visitors that many phenomena that

appear to be organized on a global scale actually arise from many simple agents following

simple rules. These phenomena occur in a wide range of fields, from social animal behavior,

to economics, to human group behavior. The Virtual Fishtank will play an essential role in

communicating this idea of emergent behavior.

1. Introduction

I



1.1. The Creatures

The most important elements of the Virtual Fishtank are the creatures that interact

within it. Several types of creatures will populate the tank. Each will demonstrate a different

type of interaction that leads to an interesting global effect.

One of the most prevalent creatures will be fish. These fish will not necessarily

interact in the ways that real fish do, but they will exhibit interesting emergent behavior. The

most obvious interaction among these fish will be the formation of schools, although other

behaviors may be discovered as well. To help museum visitors to grasp the theme of the

exhibit, they will be able to manipulate the behaviors of the fish in several different ways.

In order to provide a meaningful experience to a wide range of museum-goers, the

fish will be programmable at a wide range of complexity levels. At the simplest level, visitors

will be presented with sensory information for a single fish and will directly control that

fish's movements. At a slightly higher level, they will be able to control the behavior of

groups of fish by manipulating a few simple parameters. Finally, a graphical programming

interface will allow visitors to construct a wide range of fish behaviors. The results of

changes made to a fish's behavior will be immediately reflected in the behavior of that fish

on the large displays.

Although the fish will be the focal point of the exhibit, other creatures will play a

crucial role in communicating the overall message. The Epistemology and Learning group at

the MIT Media Lab has been experimenting with behaviors that emerge in a wide variety of

systems (Resnick94a) (Resnick94b). Many of these will be represented by other types of

creatures in the tank. The types of interactions between these creatures will each be unique,

but there will be some common theme among all of them which will help to communicate



the theme of the exhibit. Museum-goers will learn that all of the system behaviors are the

result of individual creatures following simple rules and using only local information.



2. The Problem

Many problems will have to be solved before the Virtual Fishtank can be put into

operation. Simple yet effective user interfaces will have to be constructed that allow

museum visitors to manipulate the behaviors of creatures in the Fishtank. Models of the

creatures in the tank will have to be built that include both the creature's structure and it

characteristic movements. Behaviors will have to be designed that users can use as a starting

point for their own exploration. Most importantly, the simulator itself will have to be

constructed.

This thesis describes the implementation of a prototype for this simulator.

Specifically, this thesis presents a solution to the problem of rapidly finding the objects that a

creature can see, using this information to decide what movements to make, and finally,

making these movements. To meet the computational needs of this project, these processes

harness the power of several computers connected together with a network. For testing and

demonstration purposes, models of the motions and behaviors of schooling fish are

implemented as well.

2.1. The Distributed Octree

The major part of this thesis focuses on the design and implementation of a

distributed data structure that will be able to simulate the behaviors of creatures in the tank.

This data structure must allow rapid computation of the sensory inputs that a creature will

use to decide how to move around in the tank. It also must be arranged so that it can run in

real-time, despite the latencies involved in network communication. An octree is used to

achieve these goals.



The octree allows a creature to find other creatures that are within its field of view

very quickly. Different creatures in the tank have different fields of view, which depend

primarily on the placement of the creature's eyes. A typical fish can see roughly ninety

degrees up and down and has about a three-hundred-degree field of view from left to right.

Crabs can see the entire space that is above them, but nothing below. Further, the distance

that a creature can see is limited.

Two important techniques facilitate rapid location of the creatures that are within a

creature's field of view. The first is the precomputation of octrees that represent sub-sets of

the space within the main octree. For each leaf node and for each possible viewing distance,

an octree is computed that represents only the regio~ns of space that could be seen. These

pruned octrees are used as a starting point for the visual computation. The second

technique is the incremental computation of information about the relationship between a

node in the octree and the planes that define the shape of a creature's field of view. By using

information about this relationship for a parent node, a great deal of computation is saved

when recursing to a child node.

The distribution of the simulation between several computers connected by a

network is achieved by having each computer simulate a particular region of space. These

regions of space correspond to branches of the octree. Because each creature's range of

vision is small in comparison to the size of the simulation space, most the information on

which it bases its behavior is computed on the same computer on which it is computed.

This means that the amount of information that needs to be transmitted across the network

is small. In order to maintain this correspondence between a creature's location and the

computer on which it is simulated, control of creatures must be shifted among computers as

creatures move around the tank.

-7-



3. Implementation

The prototype fishtank developed many of the principles of that will be needed to

construct the final version of the Virtual Fishtank museum exhibit. The central component

is the distributed octree, which achieves rapid computation of creatures' fields of view. It

also allows distribution of the simulation across a network of computers connected by a

network.

The prototype was implemented in the Java programming language. Java was

chosen because the platform on which the final simulation will run was unknown when the

program was written. The program uses a very object oriented approach which will make it

easy to port to the program to a compiled language like C++ if the Java implementation is

not fast enough. The major drawback to using Java is that its performance does not measure

up to compiled languages. Still, the simplicity and portability of the language make it quite

suitable for building a prototype.

A number of additional components were necessary in order to test and demonstrate

the simulation. Microsoft's Direct3D rendering library was chosen to handle the rendering

needs of the project. Sample behaviors and movement constraints were based on a

combination of previous work (1fu94) and observations made at the New England

Aquarium. To allow user's to program the fish interactively, a visual-programming tool was

interfaced to the simulator (Trravers94).

3.1. The Distributed Octree

The heart of the fishtank simulator is the octree data structure. This structure

partitions the space in which the tank's inhabitants interact with each other.



The top node of the octree represents a cube with edges of length two, centered at

the origin. This cube is recursively divided into octants. This division is performed a static,

configurable number of times. The optimum number of divisions depends on the number

of creatures that are to be simulated. For several dozen creatures, a three-level tree with

sixty-four leaf nodes was found to give the best performance.

The creatures that are in the tank are stored in the leaf nodes of the octree. Each

creature is represented by a single point. Each creature is stored in the node that represents

the region of space in which the creature's representative point lies. When a creature is

inserted into the tank, the tree is recursed from the top down until the correct leaf node is

found. At each time step, when a creature moves, the simulator checks if the creature has

left the node in which it was on the last time-step. If it is not, the tree is searched upwards

until a node that contains the creature's new position is found, and then it is recursed

downward to the leaf node where the creature should be stored is found. In this way, every

creature is kept in the correct node of the octree.

3.1.1. View Computation

A significant challenge in the design, of the fishtank was to find a way of representing

the data collected by the creatures' visual senses. This representation had to capture enough

information for the creature to base interesting behaviors on, yet it had to be simple enough

to make behavioral programming easy. The method chosen was to use structures called

accumulators, which aggregate certain properties of a group of creatures in the tank and

predicates, which test some property of a creature. An accumulator and a predicate can be

combined to form a structure called a view-result. Each behavior defines a list of view-

results that it needs.



When this visual information is needed to process a creature's behavior, the

simulator finds every object in the behaving creature's field of view. For each view-result

that the behaving creature needs, every visible object is tested against the predicate of the

view-result. If the observed object matches the predicate, the accumulator is applied to that

object. After this process, the state of the accumulators in the view-results represents

information about the objects within the creature's field of view. This information is then

used to decide how the creature should behave.

A number of different predicates were constructed to create demonstration

behaviors for the fishtank simulator. One could test whether a creature was of a specific

color, or if it was of the same color as the observing creature. Another could test if one

creature was within a specified distance of another. Also, predicates could be combined or

inverted using Boolean operators. Together, these predicates were able to represent a variety

of conditions.

A few useful accumulators were also written to facilitate the programming of

interesting behaviors. One could find the creature that was closest to another. Another

could find the centroid of a set of creatures. By combining these with various predicates,

many different bits of simple, useful information about the objects around a creature could

be computed in a way that was easy for a programmed behavior to work with.

The computational challenge was to find the find all of the other creatures within a

given creature's field of view so that accumulator-predicate pairs could be applied to them.

A careful choice of the exact shape of the field of view was represented was critical for this.

Many useful fields of view can be represented by the result of boolean operations applied to

a sphere and small number of half-spaces whose defining plane passes through the center of

the sphere. For simulating the field of view of a fish, the shape that is needed is a sphere

-10-



with a slice of approximately sixty degrees taken out of it. This represents a three-hundred-

degree field of view as well as the limited range of vision that is possible underwater.

Using this representation of a field of view, the visual computation process can be

broken into two sub-problems. The first is to find the creatures that lie within the sphere or

more simply, to find the creatures within a given distance of the viewing creature. A pruned

octree data structure was used to achieve this. The second is to find the creatures that are

within the correct set of half-spaces. This was done using structures called view distances.

By carefully interleaving these two techniques, the time need to compute visual data is

minimized.

3.1.1.1. Pruned Octrees

The pruned octree structure that is used for visual computations represents a subset

of the space that lies within the complete octree. Each pruned octree has a leaf node,

referred to as the base of this pruned tree, and a specific distance associated with it. The

pruned tree contains all of the leaf nodes in the main octree that contain some space that is

within the specified distance of the base node. Also, a flag within each node of the pruned

octree is set to indicate whether all space in the node lies within the specified distance of all

space within the base node. In order to keep the size of the data structure as small as

possible, the recursive expansion of a node is performed selectively. If either all of node's

space is within the specified distance of the all of the base node's space, or no point in the

node is within the specified distance of any point in the base node's space, the node is not

expanded.

-11-



Figure 3.1-1 The sixpossible relationships between two intervals and their maximum
distances.

The six cases shown correspond to the cases six cases described in Listing 3. 1-1. The top ine represents the test
segment, while the middle ine represents the base segment. The thick, lower line indicated the maximum distance
between any two points that he within the intervals. In cases 4 and 5, the maximum dstance is the length of the
longer indicated segment.

When the simulation is started, many pruned trees are generated. A set of several

discrete distances is build into the program. At each node, a pruned octree is constructed

using the node as the base node for each of the discrete distances. The storage of these

pruned trees can be significant, but is not unreasonable, especially for octrees that have a

depth of four or less.

One tricky aspect of the computation of the pruned octrees is to determine when all

space within one octnode is completely within a certain distance of all space within another.

This is done by comparing the specified distance to the maximum distance between points

in the octnodes. This problem can be simplified by solving the problem in each of three

dimensions and then combining these results using a simple distance formula. This is

possible because the nodes are axis-aligned cubes.

The problem that must be solved in one dimension is to find the maximum distance

between a base interval and a test interval, given the minimum and maximum point of each

-12-



interval. Each of the possible relationships between these two intervals falls into one

cases, as described by Figure 3.1-1 and Listing 3.1-1.

Listing 3.1-1 Computing the maximum distances between two intervals

Similar subtleties arise in finding the minimum distance between the any poinl

test octnode and any point in another octnode. Again, solving in each dimension and

combining the results using a simple distance equation can solve this problem. The

algorithm in Listing 3.1-2 performs this computation.

-13-

double
MaxDist (double baseMin, double baseMax, double testMin, double testMax)
{

//Check if Base is completely to the left of Test
if (testMin > baseMax)

//Case 1
return testMax - baseMin;

//Check if Base is completely to the right of Test
if (baseMin > testMax)

//Case 2
return baseMax - testMin;

//Check if the minimum of Base is in Test
if (baseMin < testMin)
{

//Check if Test is completely in Base
if (baseMax < testMax)

//Case 3
return testMax - baseMin;

else
//Case 4
return Math.max(testMin - baseMin, baseMax - testMax);

}
else

//Check if Base is completely inside of Test
if (baseMax < testMax)

//Case 5
return Math.max(baseMin - testMin, baseMax - testMax);

else
//Case 6
return baseMax - testMax;

}



Listing 3.1-2 Computing the maximum distances between two intervals

-14-

double
MinDist(double baseMin, double baseMax, double testMin, double testMax)
{

//Check if Base is completely to the left of Test
if (testMin > baseMax)

return testMin - baseMax;

//Check if Base is completely to the left of Test
if (baseMin > testMax)

return baseMin - testMax;

//The intervals overlap
return 0;

}



/ FiPure 11.-2 - C'nmnutinj· qion~ed dliqtancrfeq - -- I

3.1.1.2. View Distances

The view distances data structure represents the relationship between the half-spaces

that intersect with a sphere to define a view and the nodes of an octree. A view distance is

represented by group of other structures called plane distances.

The plane distance structure represents the signed distances from the comers of a

node in the octree to a specific plane. There exists a relationship between the signed

distances of the corners of a node in the octree and the signed distances of the corners of its

child nodes. This relationship allows the distances of the comers of a cube's octants to be

computed rapidly based on the distances of the cube's corners. There are twenty-seven

distinct corners of the octants of a cube. Eight of these comers correspond to the corners

of the cube, so their distances from the plane are drawn directly from the cube. Twelve

octant comers lie on edges of the cube. Their distances can be computed simply be

averaging the distances of the endpoints of the edge on which they lie. Six more corners lie

in the center of faces. The distances to these can be computed by averaging the distances

form two diagonal comers of the respective face. Finally, there is one point in the center of

-15-

Kjour 3.1- -Comnut n& -gione &stance
Given the signed distances from a lne to the corners of a square, it is
very easy to compute the signed dstances to the corners of the square.
The distances to the midpoints of the edges of the square can be found by
averaging the endpoints of the edges. The distance to the center of the
square can be computed by averaging the dstances of the corners of the
square.



the cube whose distances can be computed by averaging the distances of two corners on a

main diagonal of the cube. Figure 3.1-2 shows these relationships in two dimensions.

These plane distances can be used to compute very quickly whether all, some, or

none of the space in an octnode lies within the half space defined by the view plane. This is

done by finding the corners of the top node of the octree that have highest and lowest

distance from the plane. If the minimum distance is positive, then the octnode lies

completely on one side of the plane. If the maximum distance in negative, then the entire

octnode lies on the other side of the plane. If neither of the above is true, then the octnode

and the plane intersect.

Computation time can be decreased further by recognizing that the minimum and

maximum distances on nodes within the tree can be found one the same relative corners as

the minimum and maximum distances on the root node of the tree. This means that once

the signed distances need only be searched once, at the top of the tree, in order to find the

positions of the minimum and maximum plane distance.

These plane distance structures are combined to form view distance structures that

can represent more complex shapes, such as a fish's three-hundred-degree field of view.

Plane distance structures can be combined into either intersections or unions of the spaces

the individual planes represent. If an octnode is completely within the half-space defined by

any of the planes in the union, it is completely within the union. If it is partially within any

of the half-spaces, it is partially within the union. Only if a node is completely outside of

each of the half-spaces is it completely outside of the union. Similar reasoning can be

applied to implement the intersection operation.

-16-



3.1.3. Computational Process

In order to find the creatures that another creature can see, the pruned-octree

technique and the view distances technique must be carefully interleaved. This allows the

branches of the octree that do not contain any space that is within the creature's view to be

passed over quickly.

The process begins by finding the appropriate pruned octree, which has already been

generated when the simulation began. Each creature stores the node of the main octree that

it is currently in. Each node of the main octree stores several pruned octrees, each of which

represents the regions of the main octree that is within a certain distance of it. So, when a

creature needs to find the objects that are within its field of view, it finds the top of the

pruned octree that corresponds to the distance that creature can see.

Once the correct pruned tree has been found, it is recursed by the code in Listing

3.1-3. This procedure takes a list of accumulator-wildcard pairs, a field of view, and a view

distances structure as described above. This original view distance structure is computed by

taking the standard formula for the distance from a point to a plane. This code first checks

to see if the node in the main octree that corresponds to the current node of the pruned

octree is empty. This check is very important for performance because it avoids a great deal

of processing in branches of the octree that contain no objects.

If the current node of the pruned tree corresponds to a leaf of the main octree, the

accumulator-wildcard pairs are applied to the objects within that node. There are two ways

that this application can be performed. If the precomputation of this pruned octree found

that all of its space was completely within the specified distance of the node that the test

creature is in, the application is performed to all objects that are within the half-spaces that

define the view. Otherwise, the objects in the leaf node are tested to determine if they are in

-17-



the specified distance of the test creature as well as if they are in the half-spaces that define

the creature's view before the application is performed.

If the current node of the pruned octree is not a leaf node, then each of its child

nodes that is in the pruned tree is processed in turn. First, a view distances structure for the

child node is computed based on the view heights for the current node. If this structure

indicates that the child node is completely outside of the field of view, processing continues

with the next child. If the child node is partially within the field of view, the function is

called recursively to subdivide the node. If the child node is completely within the field of

view, it is recursed using a different procedure that does not perform any further view

calculations but still does distance comparisons. This code is shown in Listing 3.1-4.

-18-



Listing 3.1-3 Interleaving ofPruned Octree and View-Distances Techniques

The PartialLook function is called to find the objects within a creature's field of tiew.

-19-

void
PartialLook(CLookFor lookfor, CView view, CViewDistances viewDistances)
{

if (Octree.NumObjects == 0)
return;

if (Octree.IsLeaf)
{

if (CompletelyWithin)
((COctreeLeaf) Octree) .AccumulatelnView(lookfor, view);

else
((COctreeLeaf) Octree) .Accumula telnViewDistance (lookfor, view);

}
else
{

CViewHeights childDistances = view.GetEmptyHeights () ;

for (i=O; i<8; i++)
{

//Check if the child node is in the pruned octree
if (Children[i] != null)

//Compute the view distance of the child node based on
//the view distances of this one
view.GetOctantHeights(childDistances, i, viewDistances);

//Check if the child is not completely out of the view
if (!view.OctantOutside(childDistances))
{

//Check if the child is completely within the view
if (view.OctantInside(childDistances))

Children[i].CompleteLook(lookfor, view);
else

Children[i].PartialLook(lookfor, view, ChildHeights);
}

}

}



Listing 3.1-4 View Computation for a Node Completely Inside of the View-Planes

For eficienmy, branches of the octree can be recursed with CompleteLook when it is known that the top node
of the branch is completely inside of the iew planes. This avoids view-plane calculations for all descendants
of this node.

3.1.2. Network Communication

In order to simulate the number of creatures that the Virtual Fishtank will contain it

is necessary to harness the power of several computers. The octree structure lends itself well

to the distribution of the simulation of the creature's interactions. The key to making this

distribution effective was to limit the amount of information that had to be transmitted from

one computer to another. One of the central ideas of the study of emergent behavior is that

the interacting creatures have only local information about their environment. If network

communication is to be minimized, the information that a creature needs to execute its

behavior should be computed on the same computer that the on which the creature is

simulated. This led to the conclusion that each computer that runs the simulation should

take care of simulating the behaviors of the creatures in one region of space. Because each

-20-

void
CompleteLook(CLookFor If, CView v)
{

if (Octree.NumObjectss == 0)
return;

if (this.CompletelyWithin)
Octree.AccumulateAll (lf) ;

if (Octree. IsLeaf)
{

((COctreeLeaf) Octree) .AccumulateInDist (if, v) ;

else

for (int i=O; i<8; i++)
{

//Recurse any children that are partialy in the distance
if (Children[i] != null)

Children[i]. CompleteLook (lf, v) ;
}

I



branch of the octree represents a single region of space, it seemed reasonable to assign

different branches of the octree to different computers.

The computers used to simulate the Virtual Fishtank were connected using a

standard Ethernet network, using the TCP/IP protocol. The standard Java classes were

used to interface the software to this network.

3.12.1. Establishing Connections

In order to make several computers work together to simulate the creatures in the

Virtual Fishtank, a number of configuration and setup activities have to take place before the

simulation can begin. The computers must agree on which systems will simulate which

regions of space. Also, each computer must locate and establish communications with the

other computers that it must exchange information with during the simulation.

The decision about which computers will simulate which parts of space is left to the

user of Virtual Fishtank. The depth of the octree along with a listing of which computers

should control which nodes of the tree is read in from a file when the simulation starts. The

computers for each leaf of the tree are specified with an index value. These values are

mapped to IP addresses and ports through another file. This allows the system to be easily

reconfigured for the purpose of experimentation. The configuration files are shared

between computers using a standard file sharing system in order to ensure that all of the

computers running the simulation have the same configuration information.

After reading in the configuration files, each computer determines with which other

computers it must communicate with in order to get the information it needs to simulate the

behaviors of the creatures in the part of the tank that it controls. It does this by looking at

the pruned octrees that correspond to the largest viewing distance that a creature in the tank

-21-



may have. This value was chosen to be one quarter of a unit, which is one eighth of the

linear dimension of the fishtank. Then, for every leaf node in the octree that the

configuration files specify should be simulated on that computer, the simulator notes that it

needs to get data for the leaves in the largest pruned octree of that leaf. It also determines,

from data read from the configuration files, from which computer it should get this data. By

exploiting the symmetry of the octree and the pruned octrees, each computer also computes,

for each node that it is to simulate, which other systems will need data about the creatures

stored in that node.

After the simulator has determined which data it will need to simulate the behaviors

of the creatures in the space that it is to control as well as the computers from which this

data should come, it needs to establish TCP connections with these systems. It also needs to

allow these systems to establish communication with it. An important feature of these

connections is that they are symmetric, that is, every system that a system connects to will try

to connect to that system. Therefore, each system first sets up a server port for other

systems to connect to. Then, it tries to connect to each of the systems that has data that it

needs. It continues these attempts until it has successfully connected to every other

computer that has data it needs and these computers have connected to it as well.

3.1.2.2. Transmission of Visible Data

Once all of the needed network connections have been established, the simulation

can begin. Initially, on each system, all octree leaves that are not to be simulated on that

system are set to contain no objects. Any creatures that are initially in the tank are only

stored in the computer that simulates the octree leaf in which those creatures are initially

placed. At this point, the simulation of the first time step can begin.

-22-



To simulate a time step, each computer running the fishtank simulator performs the

behavior defined for each creature that is a leaf of the octree that it is assigned to simulate.

After the behavior of each creature is simulated, information about the new values of its

observable properties is sent across the network to all of the other computers that need it.

This information includes of the creature's position, direction, orientation, speed, size, shape,

and an index indicating which leaf node the creature is in after the time-step. After all of the

creatures in an octree leaf have been processed, a special code is sent across the network to

indicate that the data for all of the creatures in the current leaf of the octree has been sent.

Once all local leaf nodes have been processed, the simulation pauses until it has received the

information from other computers about the objects in nearby leaf nodes.

While a computer is simulating the behaviors of the creatures in its region of space

and sending information to other computer about these creatures, it must also receive and

process data that is being sent to it from other systems. When data is received from the

network, the first field indicates which leaf of the octree the object represented by this data

should be put into. In order to avoid threading problems, the creature is not immediately

added to the list of objects in the specified leaf of the octree. Instead, this information is

added to a temporary list within that node. This process continues until all data has been

received. This can be determined by counting the number end-of-node codes that are

received and comparing the result to the number of nodes that the initialization code found

were needed from other systems.

Once all data from the network has been received and the simulation of creature

behaviors has finished, each computer must prepare the data from the network for use in the

next time step. In leaf nodes that are not simulated locally, this is achieved by replacing the

old list of objects in the node with the list of objects received from the network. If the leaf

-23-



node is to be simulated locally, then the objects in the list that was received from the

network are added to the list of objects already in that node. Once this is done, the fishtank

is rendered and the next simulation step is performed.

3.1.2.3. Transfer of Control

The system described above will cause the simulation processing for a creature to

move among computers as the creature's behavior takes it to different areas of the fishtank.

One small modification must be made to allow this. When the information for a creature is

sent across the network, it must be determined whether the leaf of the octree that the

creature's new position lies within in being simulated locally. If it is not, then the

information needed to simulate the creature's behavior must be sent across the network

along with the observable information for that creature. This additional information

includes the type of body and behavior that define the creature as well as any parameters of

it body or behavior. When a system receives this additional data, it can continue the

simulation of the creature's behavior seamlessly.

3.2. Auxiliary Components

In order to test and demonstrate the techniques described above, several auxiliary

components had to be constructed. Creatures with interesting behaviors and believable

movements had to be created. For this purpose, schooling fish were used. The behaviors

that lead to this behavior and the constraints on the motion of fish have been well explored,

so it was possible to distinguish between programmed behaviors and artifacts of

implementation errors. Also, in order to see what was going on in the tank, a rendering

system had to be linked with the simulation.

-24-



3.2.1. Behaviors

The behaviors that lead to believable fish schooling are described in (Tu94). There

are three important parts of this behavior. The first is that fish should go towards the

centroid of the fish they are to school with. They must also go in the same direction as fish

that are close to them. Finally, they should go away from other fish that are very close to

them. Obviously, these rules are often contradictory.

To deal with this, a weighting scheme was used to reconcile these conflicts among

rules. The goal of this scheme is to determine a direction and a speed that the fish will seek

to attain. This desired speed is simply the weighted average of the speeds suggested by the

three rules above. The desired direction is represented by a vector, which is computed by

taking a weighted average in each dimension of the directions indicated by the rules.

There is a wide range of weights that will lead to convincing schooling behavior.

Generally, turning away from other fish that are too close has the strongest weight. Going

in the same directions as a nearby fish has a somewhat lower weight. Turning towards the

centroid of the school has an even lower weight. Varying the weights changes the character

of the school. If turning away has a very high weight, the fish scatter and do not seem like a

school at all. If going in the same direction has a high weight, the fish swim parallel to each

other, but do not come together. Increasing the weight of the centroid rule leads to a group

behavior that is more like a swarm than a school. The schooling behavior was improved

further by using non-constant weights for the different rules. For example, the weight for

the turning away behavior was scaled by the reciprocal of the distance to the other fish. The

most interesting combination of weights is a matter of taste and is best obtained through

experimentation with the Virtual Fishtank.

-25-



One of the most challenging aspects of programming the fish behaviors was making

them avoid the walls of the tank. It is straightforward to find the nearest wall and to figure

out which direction to go to avoid this wall. The difficulty arises in determining how to

combine wall avoidance with the other rules that lead to schooling. Although there is quite a

bit of flexibility in the three schooling rules, when the wall avoidance rule is added, it

becomes significantly more difficult to balance the two behaviors. Through careful tuning

and experimentation, however, a weighting mechanism was devised that led to fish that

formed schools, but did not run into the walls very often.

3.2.2. Bodies

In order to make fish move around the fishtank in a believable way, it was necessary

to constrain their movements. Based on previous work (Tu94) as well as observations made

at the New England Aquarium, a simple model of how fish are able to move around a

fishtank was constructed. There are three major constraints in this model. The rate at which

a fish can turn from left to right (yaw) is limited. The rate at which a fish can turn up and

down is also limited (pitch). Finally, the maximum angle at which a fish can swim up or

down is limited. Although the actual constraints on fish are substantially more complex than

these three constraints, this model did lead the fish to move around the tank in believable

ways.

Given this model of the constraints of fish motion, a method of translating the

desired movements specified by the fish's behavior to actual fish movements that followed

the constraints was needed. The problem is, given a desired speed, a desired direction, and

actual speed, and an actual direction make the actual position and direction as close as

possible to the desired. This problem must be solved without violating any of the

-26-



movement constraints imposed by the model. This is done using basic linear interpolation

for the speed and trigonometric interpolation for the direction. The boundary cases for the

direction interpolation are somewhat troublesome. Listing 3.2-1 shows how they are

handled.

Listing 3.2-1 Interpolation of a Fish's Direction

void
SeekDesiredMovement(double dTime)
{

double tilt = Direction.GetTilt() ;
double angle = Direction.GetAngle() ;

double desiredTilt = DesiredDirection.GetTilt () ;
double desiredAngle = DesiredDirection.GetAngle () ;

//Make sure that the creature does not go past the maximum allowed tilt
desiredTilt = Math.max(-MaxTilt, desiredTilt);
desiredTilt = Math.min(MaxTilt, desiredTilt);

//For robustness, make sure the creature has no exceeded the allowed tilt
tilt = Math.max(-MaxTilt, tilt);
tilt = Math.min(MaxTilt, tilt);

//Decide whether to tilt up or down, but don't go too far
if (tilt < desiredTilt)

tilt = Math.min(desiredTilt, tilt + TiltRate * dTime);
else

tilt = Math.max(desiredTilt, tilt - TiltRate * dTime);

//Put the angle between -pi/2 and pi/2
if ((desiredAngle - angle) > Math.PI)

desiredAngle = desiredAngle - 2*Math.PI;

//Decide whether to go left or right, but don't go too far
if (angle < desiredAngle)

angle = Math.min(desiredAngle, angle + AngleRate * dTime);
else

angle = Math.max(desiredAngle, angle - AngleRate * dTime);

//Set the fish's new direction
Direction.Set (angle, tilt);

}

Another constraint of the fish in the tank that is different from the ones mentioned

above is they cannot swim outside of the tank. It is especially important because, for

efficiency reasons, it is assumed that all of the objects in the main octree have coordinates

that lie inside of the tank. While a carefully programmed behavior should not cause a

-27-



creature to bump into the walls of the tank, the fishtank is intended for experimentation, so

this cannot be guaranteed. Therefore, it is necessary to check, after each movement,

whether a creature has tried to go through the walls of the tank. If a creature has done this,

then it is necessary to do something to the creature that will move it to a legal position.

Also, the creature should be positioned such that it does not run into the wall again on the

next time-step. When a fish runs into a wall, it is immediately rotated so that it faces

direction away from the wall. This sometimes leads to unnatural movements, but less drastic

steps seemed to lead to many situations in which creatures would repeatedly bump into the

same wall. This was quite frustrating to behavior programmers.

3.2.3. Rendering

The rendering of the Virtual Fishtank prototype was done using Microsoft's

Direct3D rendering library. This library was chosen because it was one of the only three

dimensional rendering system that could be easily interfaced to a Java program. Also, with

the recent introduction of hardware-based graphic accelerators for PC's, these systems are

able to meet the rendering demands of the prototype fishtank. The most significant

drawback of this choice was that the simulation could run only on the Windows 95 platform.

The three dimensional models that were used to render the fish were created using a

high end graphics package. They were manually simplified and converted into models with

dozens of faces that looked good, yet could be rendered in real-time. Several techniques

were used to create a sense of depth in the fishtank. Texture backgrounds with perspective

were used. Also, depth-cueing by shifting distant fish's colors toward the blue color of the

water was quite effective.

-28-



Figure 4-1 - The Division of the Simulation Space
Used For Testing

This shows the spaces that were assigned to the eight Virtual Fishtank
simulators. Because only four computers were available for testing, two
instances of the simulator were run on each one. Each computer ran
the simulation for one vertical slab of the simulation space. The slabs
were splt horiZontally, and each half was simulated by a separate
instance of the Virtual Fishtank simulator.

4. Results

The Virtual Fishtank simulation described has been tested using a network of four

PC's. Each PC was a fast, Pentium-based machine with a Diamond Stealth 3000 video card

running Windows. They were connected together with a 10Mb/s ethernet network. Two

instances of the fishtank simulation program were executed on each machine, in order to

simulate the way that the simulation would run on eight machines. The simulation space

was divided into four slabs, each of which was simulated on one computer. Each slab was

divided in half, and each half was simulated by a separate instance of the simulator as show if

Figure 4-1.

Using this configuration, the behaviors of sixty-four schooling fish were simulated.

The simulation ran nearly as fast on the four computers as a sixteen fish simulation ran on a

single computer. The overall slowdown was approximately twenty-five percent. Some of

this slowdown was due to the overhead involved in performing the network communication

between nodes.

Additional slowdown came from the synchronous nature of the simulation. That is,

one computer cannot begin simulating a given time-step until all of the computers in the

-29-



simulation have finished the previous step. Therefore, one simulation step takes at least as

long as the simulation of all the creatures being simulated by any one computer. The

slowdown due to this effect increased when creatures with behaviors that caused them to all

stay very close to each other. In this situation, all of the simulation is done on the single

computer that controls the region of space in which the creatures are clustering.

If the number of computers available for running the simulation were increased, a

few new problems could arise. First, the communication between the computers could start

to exceed the amount of bandwidth available on the network. This problem would be

especially bad if a network with a bus-configuration were used because each computer would

need to perform more network communication, and there would be more computers

communicating. Fortunately, for a given assignment of simulation space to computer's, the

potential pairs of computers that need to communicate is fixed, so, either a segmented

network or point to point links could be used to improve communication bandwidth.

Another problem that might be encountered if the simulation were run on many

computers is that the amount of communication between systems could grow

disproportionately larger. This could happen if the size of the space simulated by each

computer became small in relation to the visual range of the creature's being simulated. This

would be caused by the inevitable dependencies between the creature's behaviors. The only

way to reduce these dependencies would be to decrease the visual range of the simulated

creatures. This may be a reasonable thing to do, because when the number of fish that are

being simulated is increased, the scale of the simulation space should be increased as well in

order to avoid crowding. This increase in scale would correspond to a decrease in visual

range, which would eliminate some of the inter-creature dependency.

-30-



The results of this project suggest that this approach is suitable in a variety of

situations, despite its limitations. The techniques used to compute visual information using

the octree structure would be useful in any situation where dozens of creatures are interact in

a three dimensional space. To deal with more creatures, the depth of the octree could be

increased in order to improve the efficiency of algorithms. With fewer creatures, the depth

could be decreased, although with less that ten, a simpler data structure would be more

appropriate.

The distribution of the octree is also appropriate in a range of situations. Using the

spatial structure of the simulation environment to allocation computational effort is most

effective when creatures tend to be distributed evenly within the simulation space. Ideally, at

any time, the same number of creatures would be in the space simulated by each computer.

This was not the case with some schools of fish. When fish were programmed to form

dense schools, the performance of the simulator decreased significantly. A possible way to

work around this problem would be to have each computer simulate several small, far apart

regions of space. This would increase network demands, but would lead to a more even

distribution of computation.

-31-



5. Previous Work

Much work has been done that will be useful in the implementation of the Virtual

Fishtank, although many areas seem to be unexplored. Two areas of research were relevant

to the implementation of the Virtual Fishtank. First, many ways of specifying the types of

simple behaviors that will lead to interesting global phenomena have been explored. Ideas

from these works were used to determine what sensory inputs would be needed, how these

inputs should be processed, and what range of actions that creatures should be able to take.

The second area of interest is the distribution of the Fishtank simulation. Some general

principles are found in work on generic distributed simulation. This work, however, does

not cover many of the details that were needed for the Fishtank project. Studies of specific

applications designed for these simulators provide insights that relate more directly to the

Virtual Fishtank project.

5.1. Emergent Behaviors

Much work has been done exploring the interesting behaviors that emerge in systems

with many simple interacting agents. A lot of this has come from work at the Media Lab as

mentioned earlier (Resnick94a) (Resnick94b). Some work has been done that deals

specifically with simulating the behavior of fish in a biologically accurate way (Tu94). Also,

the behavior of birds in a flock, which is similar to fish in a school, has been studied by a

number of people (Reynolds87). This work suggested what types of inputs that creatures

in the Virtual Fishtank would need in order to behave in interesting ways as well as the

constraints on their motion that lead to believable movement.

-32-



Many ideas about specific behaviors that lead to interesting emergence have been

explored using specialized tools. One such tool is Star Logo, which has been in use at the

MIT Media Lab for quite some time. Using Star Logo, researchers have explored many

emergent phenomena, which will influence the design of creatures in the tank. It shows the

types of simple processing that creatures need to be able to do. This is important because

the balance between the simplicity and flexibility of behaviors will be vital to the

effectiveness of the Fishtank. The balance is explored further in Michael Traver's

(Travers94) work with graphical programming interfaces.

The Swarm simulator (Gutowitz93) provides a perspective on a wider range of

behaviors that those studying emergent systems may wish to explore. This provides an idea

of how the Virtual Fishtank simulator may be expanded in the future.

5.2. Distributed Simulation on a Network of Workstations

The distributed simulation of Virtual Fishtank presents a unique set of challenges,

which do not seem to have been explored together. The Fishtank runs on a network of

workstations instead of on a more traditional parallel computer. It is interactive, so it must

run in real time, which sets it apart from the majority of the work done in distributed

simulation field. Finally, the creatures in the Fishtank interact continuously rather at discreet

times as in most simulated systems.

There are many advantages to distributing the Fishtank simulation across a network

of workstations (Blumofe94). The most important of these advantages is that many

researchers who study emergent behaviors do not have access to the massively parallel

supercomputers that most work in distributed simulation focuses on. There are however,

some difficulties involved. The root of all of these is in dealing with latencies between

-33-

|



processors that are much higher that the latencies found in parallel computers. The result is

that there is a greater focus on limiting interprocessor communication that on finding

parallelism within a given problem. The intercommunication problem is often left to the

implementer of a specific application rather than being solved in a general way. One such

application is Antopia (Ebling 89) which runs on the Time Warp simulation system

(Jefferson87)

Most work on distributed simulation has focussed on systems that interact at discrete

points in time, like colliding hockey pucks (Beckman88), which interact only when two

pucks hit. They have used event queues to drive the simulation. The creatures that need to

be simulated in the Virtual Fishtank, however, interact as continuously as possible. This

means that their behavior must be simulated at each time step of the simulation. This area

has not been explored in nearly as much depth as has event driven simulation.

The goal of most simulation systems is to finish the simulation as quickly as possible.

Because the Virtual Fishtank is to be rendered in real-time, however, it faces the challenge of

running at a constant speed throughout the simulation. This makes many common

techniques of distributed simulation unworkable. For example, the Fishtank cannot use

rollback, because of its need to continuously render. Also, because there is user interaction

with the simulation, it cannot run ahead of real-time. The result is that the simulation must

run in constant, synchronized time steps, and so cannot use many of the techniques

commonly used by the distributed simulation community.

6. Future Work

More work must be done before the Virtual Fishtank museum exhibit is complete.

While the distributed octree solves many of these problems, it leaves many issues

-34-



unaddressed. Many of these issues have been experimented with at various stages of the

development of the project, but they have not been fully integrated with the distributed

octree architecture. The current implementation allows many different types of creatures

with many different types of behaviors to be put into the virtual fishtank. However, it does

not allow the creatures or their behaviors to be modified after they are created. At this

point, the large-scale movements of the creatures are believable, but the creatures themselves

are modeled as rigid bodies without any internal motion. Although the graphical

presentation of the fishtank is suitable for testing and demonstration purposes, significant

work is needed to reach a level of graphic appeal suitable for the museum exhibit. Finally,

the bodies and behaviors of the creatures other than schooling fish need to be created within

the framework of the Virtual Fishtank simulation.

6.1. Interactive Experimentation in the Virtual Fishtank

In an early, single-computer implementation of the Virtual Fishtank, it was possible

for users to modify the behavior of creatures in the tank and to see the results reflected

immediately in the creature's behavior. This was a very powerful way to communicate to

users the message that the creatures were really following simple local rules rather than

complex global procedures. It also made experimentation with behaviors much easier. This

was done in two different, but related ways.

The first way of allowing real-time experimentation with the behavior of the

creatures in the fishtank was through a simple control that allowed a few important

parameters of a behavior to be adjusted. Specifically, the weights of the three rules that lead

to schooling could be controlled interactively by the user by moving slider bars. This

allowed the user to quickly understand that when, for example, the weight of the rule that

-35-

|



had fish move towards the centroid of the school was set very high, the fish would form a

swarm rather than a school.

The second, more advanced way that users could experiment with the behaviors of

the creatures was through a graphical programming system created by Michael Travers

(Travers94). Users could arrange the blocks in order to specify what conditions creatures

would respond to as well as what the creature's response would be. This system allowed

almost as much flexibility in specifying behaviors as programming directly in Java, yet it had

the potential to be understood by a large number of museum visitors. It could also be used

to create a somewhat continuous range of tradeoffs between simplicity and power. This

could be done by starting out with most of the graphical components that define an

interesting behavior locked in place and allowing the user to change only a few. For

example, if blocks representing the three schooling rules were locked in place, while the

weights of these rules were adjustable by the user, a simple interface like the one described

earlier could be created. Once the museum visitor had gained an understanding of this

interface, more and more blocks could be unlocked until the visitor had completely mastered

behavior programming in the graphical system.

These interfaces were implemented so that the user could experiment on one

computer while the simulation ran on another. The computers would communicate with

each other through a network. This was done by creating a system of programming objects

in the simulator that corresponded to the blocks in the graphical programming system.

These objects could be serialized and sent across the network. These objects could also be

named so that an object created at one point in time could be referenced later. By keeping

references to the objects that defined the behaviors of creatures in the fishtank, the user

-36-

1



interface could change these behaviors and have the results immediately reflected in the

creature's behaviors.

Consider, for example, how the schooling example using Michael Traver's graphical

programming interface would use the above technique. First, the user interface would

construct several fish with a blank behavior and would retain a reference to this behavior.

Using the reference to this behavior, constructs called sub-behaviors would then by added to

this behavior. The sub-behaviors would represent the three schooling rules and would be

made up of other referenced objects like predicates and actions. Three other referenced

objects would represent the weights of these sub-behaviors. When the user adjusted the

weights through slider bars in the user interface, the references to the weights would be used

to modify the weights of the sub-behaviors and so the overall behavior of the fish. As a

result, all of the creatures that were created with the schooling behavior would immediately

begin to use the new weight when deciding what to do.

The creation of programming objects that could be modified on the computer where

the user interface was run and would affect the behavior of creatures on the computer that

was simulating the behaviors of the fish was implemented is a straightforward way. The

machine with the user interface would ask the simulating machine to create an object of a

specific type. The simulating machine would return an identifier that could be used to refer

to the object. Then the user interface could then send that identifier along with commands

across the network that would modify the object.

In order to make this system work in the distributed fishtank, a method would have

to found to distribute this object creation and modification system among all of the

computers running the simulation. Ideally, this would be done in an efficient, scalable way.

The computer running the user interface would communicate only with the computers that

-37-



were simulating a region of space that contained a creature that needed the information

about the behavior being manipulated. The difficulty in achieving this arises because, as a

creature moves around the tank, the computer that needs to know about changes to that

creature's behavior. Perhaps, standard approaches for dealing with dynamic, distributed

objects could be applied.

6.2. Simulation of Bodies

In the current implementation of the Virtual Fishtank, the creatures are modeled as

rigid bodies. In order to improve the visual appeal of the museum exhibit, creature's should

have moving parts. For example, fish should move their tails when swimming and should

use their fins when turning. This type of functionality could be implemented by improving

the translation of the desired speed and direction generated by a creature's behavior into the

actual movements of the creature.

In the process of doing this, a more realistic model of the actual movement

constraints could be implemented as well. The limitations on the direction changes of fish,

for example are a substantially simplified model of the motion of fish in the New England

Aquarium. A typical reef fish, for example, seems to have two modes of locomotion. One

mode is used when the fish does not turn very much, but travels forward rapidly. In this

mode, the fish pulls the fins on the sides of it body in and swishes its tail back and forth for

propulsion. This is the mode that is modeled in the current implementation of the Virtual

Fishtank. A substantially different method of movement is used when a fish is foraging for

food or is doing something else that requires a greater degree of maneuverability, but not so

much forward speed. In this mode, a fish extends the fins on the sides of its body and uses

them to propel itself. Using this technique, a fish can turn approximately seventy-five

-38-



degrees from side to side almost instantly. After doing this, the fish must pause for a small

amount of time while it recovers from this movement. At this point, the fish can make

another rapid turn.

In order to implement this type of movement, the procedure that produces a fish's

motion given the desired speed and direction generated by its behavior would have to be

greatly extended. The determination of which mode of locomotion should be used to

achieve the desired movement would have to be made by comparing the weights given to

the desired speed to the weights given to the desired direction. The transition between these

states would have to be done in a smooth, believable way. Also, in each mode, the

appropriate movements for the fish's tail, body, and fins would have to be determined.

A significant obstacle to solving this problem is that it requires a combination of

artistic and programming skills. Artistic skills are needed to construct dynamic models of

fish that are believable and visually pleasing in every position that the movement procedure

may put the fish. Programming skills are needed to create the procedure that figures out

how to manipulate this model in a believable way that leads to the desired movements

computed by the creature's behavior. These two parts of the problem are tightly coupled,

yet there are very few people who have both artistic and programming skills. Therefore, a

good solution will require cooperation by people with very different perspectives and

understandings of the problem.

6.3. Graphic Display

The graphic display of the Virtual Fishtank in its current state is not sufficient for use

in the final museum exhibit. One of the biggest problems is the difficulty for the viewer in

perceiving the depth of creatures in the tank. Also, the simulator does not currently address

-39-



the problem of fitting the images that are rendered by different computers together into a

consistent display.

The fishtank currently uses two methods of creating a sense of depth for the viewer.

First, it uses perspective projection, which makes creatures that are far away from the viewer

appear smaller than those that are close to the viewer. It also uses a fog effect to make the

colors of creatures that are far away from the viewer shift towards the color of the water in

the tank. These two techniques go a long way, but not far enough. Several additional

techniques could be used. Static objects could be added to the tank that would obscure

distant fish, but not close by ones. For creatures that are close to the bottom of the tank,

shadows projected on the floor of the fishtank would create a powerful indication of the

how far away each creature was. If these techniques are not effective enough, the distance to

the back of the fishtank could simply be decreased, so that most of a creature's interesting

movement would be parallel to the view plane and so would be easy for viewers to perceive.

Several difficulties could arise in trying to merge the displays generated by each of

the computers simulating the fishtank into one large, coherent display. The synchronization

mechanisms used in the simulation of the creature's behavior give each system consistent

information about the location and orientation of each creature in the tank. They do not,

however, distribute this information to every system that might need to render each creature.

Also, because the dimensions of the display generated by the Virtual Fishtank simulation are

to be large in comparison to the distance at which museum visitor will view the display, there

may be problems with perspective projection.

-40-



-V

-J

/

, Figure 6.J-1 - computers P/eed Extra
/ Information to Render

This is a top ziew of the main octree as seen by the computer
that is simulating the behaviors of creatures in the darkly
shaded leaves of the octree. To simulate these behatdors, it
receives information about the k'ght!y shaded nodes from the
network. In order to render the view shown by the dashed
lines, it needs more information about the creatures in
additional nodes.

Situations can arise, where one computer that is simulating a regions of space needs

to display creatures that it does not need to know about in order to run the simulation.

Figure 6.3-1 illustrates such a situation. In order to render this view correctly, the illustrated

system must get information about thirteen additional nodes from other computers on the

network. In order to do this, the thirteen nodes could be found before network connections

are established. Then, using the same techniques that are used to transmit the information

necessary to simulate the behaviors of creatures, the information needed to render correctly

could be send across the network. This would increase the simulator's demands on the

bandwidth of the network, but this increase seems unavoidable.

Another rendering problem is that, if the rendered outputs of all of the computers

are to be projected onto one seamless display, the eye point used for all of these projections

must be the same, as shown in Figure 6.3-2. Using a single eye point causes several

problems, including strange perspective effects for museum visitors who are not looking at

the fishtank from the virtual eye point that is assumed during rendering and poor

distribution of the rendering load. The strange perspective effects are an unavoidable

consequence of using perspective projection. One possible solution would be to project the

-41-

f-

~

,,,,,,,



N,

N I / ,/

Figure 6.3-2 - Seamless Perspective
Projection from a Single Eye Point

This is a top view of the main octree with dashed lnes
/ showingfourfields of view that must be rendered. In

/ order to render images that willfit together to form a
coherent view, each computer running the Virtual
Fishtank simulation must use the same eye point. This
could cause unacceptable distortion for viewers who are to

, the left or right of the viewpoint. It also could lead to an
imbalance in the rendering load of the computers.

\ \ I / i

tank onto the outside of hexagonal prism, using a different eye point for each face of the

prism. This way, a museum visitor would be unable to see the renderings that were created

using an eye point that was far away from the visitor's actual position. If one face of the

cube represented by the octree was mapped around the entire hexagonal prism, perhaps a

pleasing display could be created. If this were done, the simulation space could be made to

wrap around from left to right which would have the pleasant side effect of having less walls

to interfere with interesting creature behavior.

6.4. Different Types of Creatures

Perhaps the most important addition to the Virtual Fishtank would be the creation

of a greater variety of creatures and behaviors for those creatures. Researchers have

discovered many interesting group behaviors that arise from individual creatures following

simple rules (Resnick94a). The Virtual Fishtank provides an excellent framework for

experimenting with these behaviors and demonstrating them to museum visitors. If visually

appealing bodies that move in realistic ways are created to go along with the behaviors, the

experience would be greatly enhanced.

-42-

II __1 I _ _ _



7. Conclusion

This thesis explored many of the central problems that must be solved in the

creation of the Virtual Fishtank museum exhibit. Specifically, it explored the creation of a

distributed octree data structure, which allows efficient computation of visual fields as well

as the distribution of the simulation across several computers connected by a network. Also,

it dealt with other aspects of the Virtual Fishtank, such as the creation of behaviors and

realistic creature motion. The result was a prototype system that demonstrates the principles

that will be used in the final implementation of the Virtual Fishtank museum exhibit.

-43-



8. Bibliography

Beckman88 Beckman, B. et al. (1988) Distributed Simulation and Time Warp Part 1:

Design of Colliding Pucks In: Distributed Simulation, 1988 Simulation Councils,

Inc., San Diego, California, pages 56-60.

Blumofe94 Blumofe, D. and D. Park (1994) Scheduling Large-Scale Parallel

Computations on Networks of Workstations. In: Third International Symposium on

High-Performance Distributed Computing, August 1994, San Francisco, California,

pages 96-105.

Ebling89 Ebling, M., M. Di Loreto. M. Presley. F. Wieland. and D. Jefferson. (1989)

An Ant Foraging Model Implemented on the TimeWarp Operating System." In:

Distributed Simulation, 1989 Simulation Councils, Inc., San Diego, California, pages

21-28.

Gutowitz93 Gutowitz, H. (1993), A tutorial introduction to Swarm. Technical report,

The Santa Fe Institute, 1993. Santa Fe Institute Preprint Series.

Jefferson87 Jefferson, D., B. Beckman, F. Wieland, L. Blume, M. Di Loreto, P. Hontalas;

P. Laroche, K. Sturdevant; J. Tupman, V. Warren, J. Wedel, H. Younger; and S.

Bellenot. (1987). Distributed Simulation of the Time Warp Operating System. In:

Proceedings of the Eleventh Annual ACM Symposium on Operating System

Principles. ACM, New York, pages 77-93.

-44-



Resnick94a Resnick, M. (1994). Turtles, Termites, and Traffic Jams: Explorations in

Massively Parallel Microworlds. MIT Press. Cambridge, MA.

Resnick94b Resnick, M. (1994). Learning About Life. In: Artificial Life Journal, Volume

1, Number 1-2, pages 229-241.

Reynolds87 Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributed Behavioral

Model, in Computer Graphics. SIGGRAPH 1987 Conference Proceedings, pages

25-34.

Travers94 Travers, M. (1994) Recursive Interfaces for Reactive Objects, Proceedings of

CHI 1994, Boston, Massachusetts, 1994.

Tu94 Tu, X. and D. Terzopoulos (1994), Artificial Fishes: Physics, Locomotion,

Perception, Behavior. In: ACM Computer Graphics Proceedings, 1994, pages 43-50.

-45-


