
Building an Active Node on the Internet

by

David M. Murphy

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1997

@ Massachusetts Institute of Technology 1997. All rights reserved.

0 y P .1 AA1?

Department of IlectricallEngineering and Computer Science
May 27, 1997

Certified by ...
John V. Guttag

Professor
"fhesis Supervisor

. N•- •

Certified by .,
David L. Tennenhouse

Senior Research Scientist
Thesis Supervisor

Accepted by ....................... .......... ............... , .....
Arthur C. Smith

Chairman, Departmental Committee on Graduate Theses

O CT 2 9 1997



Building an Active Node on the Internet

by
David M. Murphy

Submitted to the Department of Electrical Engineering and Computer Science
on May 27, 1997, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

An Active IP Network integrates two very different network programming models, an IP
packet based model, and an Active Network capsule based model. This report shows how
to integrate these two models into a single node, called an Active IP node, and how to
integrate an Active IP node into an IP network. I also present some preliminary ideas on the
constraints network architects will face when building Active protocols for a heterogeneous
network of Active and non-Active IP nodes.

By using a model of constant and variable processing, integrating the Active and IP ar-
chitectures has lead to a clean and simple node design and implementation. Furthermore,
mechanisms presented in this report, such as protected buffers, provide various safety con-
straints which aid in the integration.

Finally, this report presents some preliminary performance results which, when combined
with the above characteristics, suggest that the Active IP platform will be appealing to
researchers who wish to study application specific protocols for the Internet.
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Chapter 1

Introduction

This report describes the design and implementation of a novel network node that integrates

two very different network programming models, an IP packet based model, and an Active

Network capsule based model. Both programming models have been integrated into the

same implementation, and take advantage of the same type of packets and node resources.

Importantly, users of the IP programming model do not need to be aware of the Active

Network model. This allows the dual purpose node to be deployed seamlessly into an

IP network. For users of the Active Network model, new types of constraints arise when

designing Active protocols for a heterogeneous network of Active and non-Active nodes.

This report presents some preliminary ideas on how these constraints might affect protocol

development.

The node supports the next generation of Internet protocols, IPv6. The novel aspect of this

node implementation, is that the node applies two types of processing to packets, constant

and variable. The node applies constant processing, which represents a small subset of the

IPv6 protocol, to all incoming packets. The variable processing, depends on the application

protocol requested by a packet. If a packet does not request protocol then it undergoes

default IP processing.

In order to support variable processing, the node uses a capsule-based Active Network

architecture implemented by David Wetherall. However, the constraint of co-existing with



IP led to a number of significant changes. Most notably, I have defined a new IPv6 option

and payload to transport programming code and its associated state, enhanced the class

structure of the capsules, and implemented a protected buffer scheme to insure that integral

fields within the IP header cannot be changed mid way through the network.

1.1 Active Networks

IP has become the de facto standard for network communication today. It achieves inter-

operation among a variety of physical networks by serving as a virtual network layer on top

of them. All the nodes on the Internet send packets amongst each other using IP. Further,

a wide range of applications can be run over IP. However, despite the diversity above and

below the network layer, the Internet Protocol itself is rigid, slow to evolve and difficult to

adopt to physical and application layer needs.

In 1990, Clark and Tennenhouse [10] described the need for an adaptable network. They

claimed that future networks "must exhibit a significant degree of flexibility and be based

on an architecture that admits a wide range of application demands and implementation

strategies."

Today's network has a number of examples of the wide demand for customized network

protocols. Unfortunately, the IP protocol provides little support for incorporating these

needs into its architecture. For example, numerous network administrators have inserted

firewalls, which filter packets, into IP routers that sit at the borders of their networks.

These solutions tend to be implemented as ad hoc additions to networking code. Simi-

larly the Multicast protocol has sat in beta-test limbo for years on the MBONE, thereby

preventing commercial network administrators from reducing the bandwidth consumed by

group broadcasts. Implementing multicast in the same ad hoc manner which developers

have implemented firewalls would be problematic because multicast will only work if it is

supported on a global scale.

In response to IP's inability to adapt to changing application needs, a new type of net-

work architecture, an Active Network[30], has been proposed. This architecture allows

applications to dynamically extend the functionality of the network by injecting customized



protocols, also known as application specific protocols, into it. In this type of network,

packets select the protocol by which they wish to be processed. Nodes within this network

become execution environments that supply an Application Programming Interface (API)

to the protocols delivered to them.

There are two major approaches towards transporting code in an Active Network, the out-

of-band approach and the in-band approach. In the out-of-band approach, Active Network

nodes are switches that contain a number of pre-defined protocols. The nodes load the

protocols through an auxiliary, i.e., out-of-band, mechanism. Packets passing through these

nodes request processing by one of the previously installed protocols. In contrast, packets

within an in-band architecture do not request processing by a protocol at a node, but rather

carry the protocol, in the form of code, with them as they travel throughout the network.

Network nodes process the packet by executing the accompanying code. Since an in-band

code loading scheme maps very well to a datagram network such as IP, it is the one that

this implementation supports.

1.1.1 ANTS

ANTS (Active Node Transport System) [35] is a reference Active Network implementation,

and the one which I have incorporated into my architecture. The ANTS implementation

uses a variant of the in-band approach towards building an Active Network architecture.

Instead of always transporting code with every packet, ANTS nodes cache the most recently

used code in order to avoid reloading the code for a related group of packets. Packets, called

capsules in the ANTS implementation, carry parameter values for a related piece of code.

If the node that a packet passes through contains the related code, the node initializes

the code with a packet's parameter values and then executes the code. If the code is not

present on the node, the node requests the code from its nearest upstream neighbor. Using

this type of code transport mechanism, Active nodes become primed "on the fly" by the

packets that pass through them. This connectionless aspect of ANTS maps well into an IP

environment.



1.2 Why integrate Active Networks into IP?

Because IP connects millions of nodes, it will be a good deployment mechanism for Active

Networks in the future. Merging ANTS into IP gives researchers and developers the oppor-

tunity to study how Active Network nodes function both on local area networks (LANs)

and wide area networks (WANs). From a practical point of view it also seems unreasonable

to expect that the whole Internet will simultaneously convert to an Active Network model

of network communication. Merging an Active Network into IPv6 allows the networking

community to study how a real deployment of an Active Network would work, and which

aspects of backwards compatibility with IPv6 nodes should be supported.

The integration of an Active Network into IP also gives researchers and developers the

ability to quickly and easily experiment with making additions to the IP architecture. In

today's environment, running experiments on changes to the IP layer involves changing

the source code of an IP implementation and coordinating efforts with other researchers

to upgrade their IP nodes to the experimental protocol. If this upgrade only needs to be

done locally, the process will be time-consuming but at least manageable. Trying to do this

on the scale of a WAN becomes a coordination nightmare and only occurs in the rarest

of occasions, such as the upgrade from IPv4 to IPv6, or testing Multicast. In contrast,

creating a WAN of Active IPv6 nodes would have a fairly large initial fixed cost, but the

marginal cost of testing new changes would be small, i.e., it would only involve writing the

code for the protocol, and injecting it into the Active IPv6 network.

Finally fully integrating an Active Network into IP will allow people to experiment with

developing Active protocols in a heterogeneous network environment of Active and non-

Active nodes. The application-specific protocols created for the ANTS implementation

work under the assumption that all nodes and packets in the network will be Active. This

architecture will allow network architects to determine the what useful protocols that can

be built when the above assumption does not hold.



1.3 Novel Aspects

The goal behind the design of an Active IPv6 (AIPv6) node was not to design a replacement

for an IP node, but rather to design a node that enhanced IP's capabilities. Thus, an AIPv6

node had to be backwards compatible. This created two constraints,

* An AIPv6 node must be able to route both IPv6 and AIPv6 packets.

* AIPv6 packets must never cause a processing error in non-Active IPv6 nodes.

The majority of this report will describe the design and implementation of a node that

satisfies these two constraints.

In satisfying the first constraint, I have built an IPv6 node that resembles most other

network implementations. It supports network devices and Ethernet drivers, and supplies

an interface (albeit a simple one) to applications. The node runs in the user-space of the

Linux OS while processing raw Ethernet frames. It achieves comparable performance to

user-space network implementations despite being written in Java.

What differentiates this node from other implementations is how it processes packets. The

node applies a fixed set of processing to all entering packets, and then, if appropriate, pro-

cesses packets with an application supplied protocol. Packets that do not have a customized

protocol undergo default IP processing.

To support customized processing, the node integrates a capsule based Active Network

architecture into its packet based IP architecture. Two major questions arise when com-

bining these very different models. How can commonalities between packets and capsules

be exploited in the implementation? How can the node achieve security for its resources?

To exploit the similarities between packets and capsules I have made IPv6 the default func-

tionality for all capsule implementations. Building on the work presented in [36] capsules

utilize an option plus an IP payload to transport parameter values and programming code

respectively throughout an IPv6 network. This insures that non-Active IPv6 nodes will not

generate errors when processing Active IPv6 packets. This approach is also novel in that

it uses options, which were supposed to support pre-defined optional processing, to support



dynamically defined optional processing.

In order to support security, the node should prevent capsules both from corrupting and

from abusing node resources. Though my implementation does not prevent resource abuse

it does prevent resource corruption. I have utilized access control mechanisms provided by

Java's package and type system to prevent capsules from accessing potentially destructive

methods. The node also restricts the areas of the packet to which the capsule can write.

It uses a "protected buffer" scheme that prevents capsules from modifying source address

and hop limit fields of the packet, thereby insuring a level of accountability, and limiting

the amount of time a capsule can exist in the network. The protected buffer scheme follows

ideas such as sand-boxing used in the design of operating systems-except that the address

space has now become a packet's payload.

To support a programming environment for capsules, I have developed a clean and explicit

API that a node can export to AIPv6 packets. All customized protocols, including the

default IP protocol, utilize this API for packet processing.

1.4 This Report

The following chapter discusses previous work of relevance to AIPv6 nodes. Chapter three

describes the design and implementation of the core module in AIPv6 node, and chapter four

describes how seamless code transport was achieved. Chapter five discusses the different

classes of applications that can be used in a heterogeneous network environment. Chapter

six discusses some performance measurements, and concludes.



Chapter 2

Background and Related Work

This chapter gives background information on the protocol and tools used to build an

AIPv6 node; and relates this work to research done in the network and operating systems

communities.

2.1 IPv6

The Active IPv6 node supports the IPv6 protocol [12], which is the successor to IPv4. The

major benefit IPv6 has over IPv4 is a larger address space; an IPv6 address has a length

of 128 bits whereas an IPv4 address has a length of 32 bits. Additionally IPv6 supports a

flow identifier field that enables source nodes to label a stream of packets, and its packet

format has been streamlined to enable efficient processing by IPv6 nodes.

One of the goals of developing an AIPv6 node, and its related code transport protocol,

is to provide an architecture for adding functionality to the IPv6 protocol. IPv6 tries to

address the demand for optional processing by defining a set of extension headers that

carry parameter values for pre-determined processing in IPv6 nodes. In IPv4 most of these

extension headers were treated as options. As evidenced by the Request For Comments

(RFC) archives though, IPv6 still does not support all the features requested by applica-

tion developers. The most glaring omissions include multicast [11] and support for mobile



hosts[25]. Using an AIPv6 architecture in a significant portion of the IPv6 network would

help to deploy these additional features.

2.2 Java

Java is a relatively new language that has a number of features which make it amenable

to an Active Network. It provides an Active node some security when downloading foreign

code into the Java execution environment. Also using an object-oriented language such as

Java allows for compartmentalization and future upgrading of the node.

The key to security in Java is that the type safe checks performed at compile time can be

verified during runtime.[34] Thus, the node can be assured that the Java bytecodes which

it downloads will obey the interface boundaries to node resources.

2.3 Active Networks

2.3.1 ANTS

The work presented in this thesis has a direct relation to Active Networks projects at

MIT. The AIPv6 node incorporates the Active Network functionality of ANTS [35]. The

code transport protocol and resource interfaces in an ANTS node have direct counterparts

in the AIPv6 node. ANTS does not support the IPv6 protocol though, and thus cannot

interoperate with Active and non-Active IPv6 nodes. Thus, users cannot use ANTS to either

experiment with changes to the IP protocol or study the effects of using Active protocols

within a hybrid network of Active and non-Active nodes.

2.3.2 Active Options

The prime motivator for building an IP node that incorporates Active Network functionality

has been the Active Options [36] work done here at MIT. This proof of concept work



demonstrated the feasibility of building an Active Network within the IP protocol. IPv4

nodes within this architecture interpret Tcl scripts sent by applications. The node supported

a handful of procedures that the Tcl scripts could call.

There are a number of differences between the Active Options work and mine. The primary

one is the level of functionality supported between the two implementations. The Active

Option implementation made a few changes to the Linux networking code to study the

feasibility of building an Active IP node. In contrast, my IP implementation has been

built from the ground up with the goal of incorporating a more flexible Active Network

architecture such as ANTS. Presently my node supports the essential portions of the IPv6

protocol which has made it easy to integrate Active Network functionality, and will make

it easy to study and add security measures to the system. Once the core subsystem of the

Active IPv6 has been finalized, then adding any remaining IPv6 features should be straight

forward.

2.3.3 An ActiveBONE

There presently is a proposal to build a test Active Network within the Internet. This

network would have similar characteristics to the 6Bone and MBONE, two virtual networks

set up to test the IPv6 and Multicast protocols respectively. Both of those test networks

connect two disjoint networks by tunneling through IPv4.The primary difference between

an ActiveBONE 1 and other test networks is that intermediate Active nodes not specified

as tunnel endpoints, will be able to apply Active processing to'packets that flow through

them. Unlike the AIPv6 described within this paper, the "ActiveBONE" proposal does not

support direct interoperation with non-Active IPv6 nodes.

2.3.4 Applications

A number of other researchers have focused on the use of Active Networks to address specific

networking problems.

1Note, this name has not yet been proposed. I am using it to create an analogy between a test Active

Network and the test IPv6 and multicast networks of today.



Researchers at Georgia Tech. [5] have focused on incorporating a small set of Active func-

tionality into an existing IP implementation. Their goal has been to study the benefits an

Active Network could have towards solving congestion. For experimental purposes they use

an out-of-band code approach in which Active packets can only call predefined methods

within the network node.

The Protocol Booster [15] project at the University of Pennsylvania has focused on inserting

customized processing into protocol stacks. For example, the processing could be a com-

pression or decompression procedure. Also at the University of Pennsylvania is the Active

Bridging [2] project that has focused on making an Ethernet bridge that can change its tree

discovery protocol "on-the-fly".

2.4 Operating Systems

There has been a great deal work done within the operating systems community to build

extensible operating systems that allow applications to customize system services. At the

University of Washington work has been done that allows applications to dynamically load

extensions into the kernel [4]. Like my system they have relied on a type-safe language to

provide a level of protection between the resource interfaces and imported code. They have

also defined a network architecture in which applications can insert protocol extensions [16].

Unlike the node presented in this thesis, their work applies only to network host nodes.

Work has also been done at MIT that has focused on safely exposing low level system

resources to library operating systems [14]. A related activity also allows applications to

insert customized protocol handlers into their kernels [33].

Finally, Sun Microsystems has also implemented a Java TCP/IP stack for their Java OS

platform [22]. Though not much has been written about the details of their implementation

it appears they have achieved reasonable performance which is a good omen for the AIPv6

effort.



Chapter 3

Node: Forwarding Engine

This chapter describes the design and implementation of the core module, the Forwarding

Engine, of an AIPv6 node. What is novel about this implementation is that it divides the

IPv6 protocol into constant and variable parts. The constant part of the IPv6 protocol

must be applied to all IPv6 packets that traverse this node. The variable part of the IPv6

protocol, such as IP forwarding, can be replaced by application specific protocols. Both

the IP forwarding routines, and the application specific protocols use the same node API.

Using this approach, Active Network functionality can be cleanly integrated into the AIPv6

node. Packets either request processing by their customized protocol or undergo default IP

forwarding.

The first section of this chapter motivates the purpose of the Forwarding Engine by giving

an overview of the structure of an AIPv6 node. The following sections then describe which

routines the Forwarding Engine treats as constant and variable. The chapter the moves

into a discussion of the flows of control within the Forwarding Engine, and concludes with

a presentation of the node API used by variable processing access.



3.1 Overview of AIPv6 Node

An AIPv6 node has three sets of modules, driver modules, device modules, and the For-

warding Engine module. The driver and device modules serve as the link interface to the

Forwarding Engine and are described in Appendix A. The Forwarding Engine handles all

the network layer processing of packets. As shown in Figure 3-1, packets can enter the node

either from the network or from an application. 1

Ethernet for IPv6 network Ethernet for IPv4 network

Figure 3-1: Structure of an AIPv6 node.

Inter-module Communication

Since the Java Runtime does not easily support event and interrupt driven processing at

the programming level (with the exception of graphical interface events), AIPv6 modules

1If the AIPv6 node is used as an end node, then the application would be part of the primary path into
the node. An application could also be attached to an intermediate node if it was used as a network manager
for example.



at different layers communicate through up-calls.[9]. Each module implements a send and

receive method which forms the module's communication interface. This simple interface

makes the interaction between modules explicit to the implementer, and also makes imple-

menting additional modules, such as other types of network devices, a simple process. Send

methods correspond to transmitting a packet out to the network, while receive methods cor-

respond to receiving a packet from the network. Table 3.1 shows that not all the modules

accept the same arguments to their send and receive methods. As the node gathers more

knowledge about the packet buffer moving up its module stack, it converts the packet to a

more specialized representation suitable for the module that the packet enters.

Module Method Argument Called By

Application receive IPv6Packet Forwarding Engine
or Capsule

Forwarding Engine send IPv6Packet Application
or Capsule

receive NetBuff Devices
Device send IPv6Packet Forwarding Engine

receive NetBuff Driver
Driver send NetBuff Devices

receive NetBuff Linux OS
(through Ethernet socket call)

Table 3.1: Communication interfaces implemented by each module.

3.2 Constant Processing

Constant processing is the common processing that all packets entering the Forwarding

Engine must undergo. It represents the subset of the IPv6 protocol that must be processed

for every packet.

The Forwarding Engine treats decrementing the hop count of a packet as constant process-

ing. The hop count in an IPv6 packet is used to avoid Internet routing loops, and so, every

node that a packet passes through must decrement the packet's hop count until it equals

zero, after which the packet can no longer be forwarded. By making this process constant

the network can be assured that Capsules will not remain in an IPv6 network indefinitely.



3.3 Variable Processing

Variable processing in an Active node is processing that is application dependent. This type

of processing occurs after constant processing, and can either be an application-specific net-

work protocol, or if no protocol has been supplied with the packet, the default IP forwarding

routine. All variable processing methods, including the default IP forwarding routines, must

interact with node resources, and packets, via the node API.

3.4 Protected Packet Buffers

Capsules need access to the packet buffer in order to create new fields or change the format

of existing ones. However, giving a capsule access to all of the IPv6 packet would allow the

capsule to change the source address or hop limit fields in the header and could create a

serious security problem for other nodes in the network.

Protected buffers prevent variable processing methods from modifying some fields of the

packet, such as the source address and hop limit fields, by checking each byte access made

into the buffer. Every attempt to modify the byte is checked at runtime. The NetBuff

class, described in Appendix A, supports the protected buffer scheme by providing two

versions of a set element method. One version, used by classes considered unfriendly by

the NetBuff2 performs this runtime check. Friendly classes have access to an equivalent set

element method that does not perform the runtime check.

3.5 Flow of Control

Figure 3-2 shows the packet flow paths within the Forwarding Engine. Packets can enter the

Forwarding Engine from two entry points, either from the network via the receive method,

or from an application via the send method. The Active Processor and Forwarder classes,

represented as squares in the figure, are the primary classes in the Forwarding Engine.

2In Java, a friendly class to the NetBuff class would be one which resides in the same "package", or
directory as NetBuff.



They support all the Forwarding Engine's packet processing methods. Additional classes

are listed in Table 3.2. The Forwarder class provides the send and receive methods, plus all

the methods used in the IP forwarding routine. The Active Processor handles the creation

and execution of capsules. The Forwarding Engine does use any packet buffer queues. It

relies on the Linux kernel to handle the queueing of packets.

Figure 3-2: Packet paths through the Forwarding Engine

Table 3.2: Core forwarding engine classes.

Classes Description
Forwarder Heart of the Forwarding engine.

Instantiates receive queue and thread.
Its public methods become node API exported to mobile code
Supports table lookup, send and receive routines.

DeviceManager Constructs and manages devices
for the Forwarder.

ActiveProcessor Handles all the processing of any packet
data tagged as Active.

LANDevice Node's interface to an IPv6 network.
TunnelDevice Node's interface to an IPv4 network

through which IPv6 packets will be tunneled.
LoopbackDevice Node's interface to itself.



3.5.1 Send Processing

Packets entering the node via the send method do not undergo constant processing. In-

stead they will be processed directly by either their customized protocol or the default IP

forwarding routine. Since packets have been instantiated locally, and correctly initialized,

it is assumed that they are valid IP packets.

3.5.2 Receive Processing

Every buffer entering from the network via the receive method undergoes both constant

and variable processing. Figure 3-3 displays the code used by the receive method to process

a network buffer. The first step involves checking the hop limit field of the buffer. If the

value equals zero then the buffer has exceeded its alloted time limit in the network, and

the buffer will be dropped. Otherwise the method will try to determine whether this buffer

should be instantiated as a subclass of Capsule or as an IPv6Packet. If the buffer represents

a capsule then processing will be switched to the Active processor. Otherwise the packet

will fall through to standard IPv6 processing.

public void receive(NetBuff buf)

IPv6Packet. decrementHopLimit (buf);

if (IPv6Packet. isActive (buf))
activeProcessor.process(buf);

else
defaultProcess (buf);

Figure 3-3: Receive method processing steps.

3.6 Default IPv6 Processing

Figure 3-4 shows how the Forwarding Engine applies default processing to an IPv6 packet.

After processing a packet's hop-by-hop extension header, the method applies some address

specific processing to the packet, if necessary. If the packet is not addressed to the node,

then the engine will call the routeForNode method, shown in Figure 3-5, which handles the



forwarding of a packet. This method applies a pruning algorithm to the routes in an AIPv6

node's routing table in order to determine the next route for a packet. The route returned

by the lookup method contains both the next hop IP address to which the node should send

the packet, and the name of the device that connects to the same network as the next hop

IP address.

The lookup method supports two processing paths, the fast path and the slow path. Packets

enter the fast path when their destination address equals one of the destination address

keys in a routing table cache. A route containing the next hop address is returned from

this cache hit. Packets whose destination address yields a cache miss in the routing table

cache, must pay the penalty of having their route calculated by the pruning algorithm. The

route calculated by this algorithm will be stored in the routing table cache for subsequent

packets.

The IPv6Packet class shown in the Figures 3-4 and 3-5 has two purposes: it supplies easy

access to the IPv6 header fields and to all extension headers plus payload in an IPv6 packet,

and it enforces the IPv6 packet format rules set by the IPv6 specification.

public void defaultProcess(NetBuff buf)
{

IPv6Packet packet = new IPv6Packet(buf);

processHopByHop (packet);

if (isNodeAddress(packet.dest ())) {

processRemainingExtensionHeaders (packet);

if (nodeIsAHost())
deliverToApp(packet);

return;
}
routeForNode (packet);

}

Figure 3-4: Receive thread processing steps.



public void routeForNode(IPv6Packet packet)

Route rte = lookup(packet);

if (!rte.isUp())
return;

if (rte.toGatewayO) {
devMgr.getDevice(rte.device).send(packet, rte.gateway);
return;

I

devMgr.getDevice(rte.device).send(packet, packet.dest());

Figure 3-5: Routing a packet in an AIPv6 node.

3.7 Active Processing

Active processing begins for a capsule as soon as it enters the process method of the Active

Processor. The processing algorithm used in this implementation is a close analog to the

algorithm used in ANTS. When the process method (shown in Figure 3-6) is called with

a packet buffer, the method will attempt to deserialize the packet, and if successful will

then call the capsule's evaluate method. The evaluate method expects a reference to the

forwarder object as its argument. All of the Forwarder's public fields and methods, which

form the node's API, are accessible to the evaluate method.

Applications inject new protocols into the network by subclassing the Capsule class and

overwriting the evaluate, serialize, and deserialize methods. Since the Capsule class is a

subclass of IPv6Packet all capsules have access to a packet's IPv6 extension headers and

payload. Access to the first 40 bytes is restricted through the use of the protected buffering

scheme described in 3.4.

public void process(NetBuff buf)
throws ICMPErrorException

Capsule c = deserialize(buf);

if (c != null)
c. evaluate (forwarder);

Figure 3-6: process routine for Active processor.



3.8 API Available to Variable Processing

The essential part of an Active node is the API that it exports to mobile code embedded in

packets. When mobile code enters an AIPv6 node it is supplied a reference to the forwarder

object. The code has access to all the forwarder's public variables and methods. Table 3.3

lists the API supported by an AIPv6 node. The following sub-sections describe in detail

the interesting characteristics of the API.

Table 3.3: Node API.

3.8.1 Resources

Soft-state Cache

An AIPv6 node incorporates a number of ideas from the ANTS [35] implementation, the

most important of which is the soft-state cache. The soft-state cache is an Active packet's

scratch space that can be shared by a series of packets associated with the same application

group or protocol family. Packets from the same group or family, can create, read, or write

entries in the cache, though the node makes no guarantees about the persistence of such

data.

Class Methods

Routing Table
List All Elements

Forwarder
TableLookup
ForwardPacket
Create packet
Create IP address
Generate ICMP message

Soft-state cache
Add
Delete
Get



Routing Table

The routing table is the most important resource for an IP node. It contains all the routing

information needed to send a packet onto its next hop or destination. Since an AIPv6

node can be rendered useless without a routing table, capsules only have read-access to

the routing information in the table. Capsules which require different routes than those

supported in the routing table, can add their routes to the soft-state cache.

3.8.2 ICMP Exceptions

One of the novel aspects of this node API is how it handles ICMP error processing. Nor-

mally, ICMP error processing is hidden within the thousands of lines of code in a node

implementation, but within an AIPv6 node that processing has now become explicit. This

section explains this idea in more detail.

ICMP

IP uses the Internet Control Message Protocol (ICMP) to communicate error and infor-

mational data between IP nodes. A node uses an ICMP error message to alert a source

node that it has been sending packets with invalid fields or lengths. A node will use an

ICMP informational message for resource discovery such as determining the members in a

Multicast group, or whether a node is operational.

How Linux Handles ICMP

In Linux, a routine can generate, and send, an ICMP message without ever alerting its

calling routine that it has done so. This type of implementation makes the code hard

to extend and manage for a number of reasons. First, it disperses the control of sending

messages throughout the whole node. Furthermore it moves knowledge about sending ICMP

messages, into code that probably does not need this information. For instance classes

that deal with processing the bits of a packet probably should not need to import packet

transmission code.



Exceptions

Exceptions separate abnormal processing from the common case, thereby simplifying pro-

gramming code. Since most languages that support exceptions require method declarations

to list any exceptions that might be thrown, the specification for that code becomes more

explicit. This is especially important when defining an interface to programming methods

and objects (such as in an AIPv6 node). Furthermore, exceptions also provide the bene-

fit of allowing calling methods to decide how to handle exceptional conditions instead of

hard-coding responses in lower level procedures.

ICMP Exceptions

Methods that catch ICMP exceptions can elect to either handle them locally or pass them

up the call stack to another method which might be in a better position to determine

whether an ICMP message needs to be sent.





Chapter 4

Code Transport in AIPv6

This chapter describes the design and implementation of the code transport mechanism used

by AIPv6 nodes. It begins with a discussion of the requirements for a successful integration

of a code transport protocol into IPv6, and then moves into a detailed explanation of the

demand-load protocol used in ANTS. It then discusses the various choices IPv6 presents for

transporting data and concludes with the solution that I have chosen.

4.1 Goals for integrating demand-load capabilities into

IPv6

The key to achieving interoperation between an AIPv6 node and an IPv6 node is the code

transport mechanism. Since all AIPv6 nodes can process of IPv6 packets, an AIPv6 node

can be deployed in an IPv6 network. The potential stumbling block that could prevent

interoperation between an AIPv6 node and a IPv6 node is the code transport mechanism.

If this mechanism placed programming code, or state values, in a location in an IPv6

packet that caused IPv6 nodes to generate an error while processing the code, then the

AIPv6 packet would never arrive at its destination. Any solution must avoid this problem

in order to achieve complete interoperation with IPv6 nodes.



The proposed solution must also work within the existing IPv6 specification, and not, for

the moment at least, require the IANA to define a new Active protocol. If the solution

cannot be used in today's IPv6 network then it is not valid.

4.2 The Demand-load Protocol in ANTS

As mentioned in Chapter 1, ANTS uses an in-band code loading mechanism in which a

node loads a packet's code into their memory while processing the packet. The extreme

version of an in-band code loading mechanism requires each packet to carry both code and

corresponding state values in order for the packet to be processed by each node it traverses.

Thus, even though consecutive packets may be processed by the same code, each packet

still carries its own code.

ANTS eliminates this redundant code transport by using a demand-load protocol. Instead

of transporting code with every packet, ANTS relies on the nodes within its architecture to

send out requests for code when they do not have the code available to process a packet.

In the present implementation of ANTS, a node sends a code request only to the adjacent

upstream node. Upon receiving a code response from the upstream node, the requesting

node stores the code within its cache for some finite amount of time. It will then use this

code to process all the successive packets that have the same identifier as the code. Figure

4-1 shows the complete demand-load process in ANTS. Since this process handles all the

code transfer, applications need only to embed state values for a corresponding piece of code

within the packets that they send out onto the network. As long as the applications supply

programming code to the node on which they run, then the applications can be assured

that their packets will be executed correctly throughout the network.

The ANTS demand load protocol has a number of nice properties. First, programming

code is sent only to the nodes that request it. Applications need neither pre-determine a

packet's route, and then upload code to every node the packet will traverse, nor broadcast

the programming code to the whole network. Furthermore, since most network protocols

usually use a stream of packets, the overhead of doing the initial demand-load is amortized

over the number of packets sent during the protocol transmission. Of course, for protocols
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Figure 4-1: Demand loading in ANTS.

which use a small number of packets the demand-load overhead might be quite high.

4.3 Choices for Code Transport

This section describes and analyzes the choices available for integrating an Active Network

into an IPv6 network. Section 4.4 presents the solution which I have chosen for the AIPv6

protocol.

4.3.1 Tunneling

Tunneling involves the encapulsation of one protocol within another. It is used when two

nodes cannot be linked using their own protocol.

The benefit of tunneling is that if one only wishes to connect two Active nodes that are

separated by an IPv6 network then tunneling will work perfectly and not upset the IPv6

network. Tunneling has worked well for a number of networks such as the MBone and the

6bone. Both of these networks though require knowledge of the tunnel end points.

he



Tunneling would not integrate Active Networks into IPv6. Essentially what tunneling would

do is treat IPv6 as a link layer. In this scenario an ANTS capsule would have to be

encapsulated in IPv6 before it is sent to the next Active node. An application running on

a pure IPv6 node would never be able to interact with Active protocols because its IPv6

node would never process Active packets destined for it.

4.3.2 Using Gateways

Another possibility is to tunnel between Active nodes and then to strip the Active payload

before an Active packet is sent to an IPv6 node. This would insure interoperability between

Active and non-Active nodes. Within the networking field, a node which converts one

protocol to another is called a gateway. This type of scheme would require an Active node

to function as both a router and a gateway.

The difficulty in making an Active node a gateway is, that in order for the gateway portion

of the node to function properly, the node will need to know the relative positions of all

IPv6 nodes and Active nodes in the Internet. Because Active packets can be mapped onto

IPv6 packets (just remove the programming code), but IPv6 packets cannot be mapped

back onto Active packets, it is imperative that an Active node not remove programming

code from a packet that might still pass through an Active node. The cost of insuring a

correct removal (an IPv6 node discovery protocol, and an enormous table containing the

locations of all IPv6 nodes) seem to outweigh any of the interoperability benefits that could

be gained from this choice.

4.3.3 IPv6 Mechanisms

The alternative to using tunnels or gateways is to transport code and state values in either

an payload or option. This sub-section describes the benefits and drawbacks of each of these

choices.



IPv6 Extension Header

Defining a new IPv6 extension header that supported Active Networks would be a Herculean

task from a politically viewpoint. Since all IPv6 nodes must be able process IPv6 extension

headers, all IPv6 nodes would need to be Active nodes. This does not appear to be a

politically viable option.

Upper Layer Payload

An upper layer payload, is the section of an IPv6 packet that follows the IPv6 header and

extension headers. It is not included as part of the IPv6 specification. Unlike an IPv6

extension header, the standardization of an upper layer protocol only applies to the end

node implementations that support it. Therefore, a payload, whose size restriction is the

maximum size of an IPv6 packet, would be a good vehicle in which to transport large

fragments of code and/or state values. An option could also be inserted into the hop-by-

hop options header that would alert AIPv6 routers to the presence of this payload within

the packet. This type of option has been proposed in [20]. The benefit of this option is that

an AIPv6 router would not have to parse every packet's extension headers in search of an

Active header.

Unfortunately, defining a new payload which all IPv6 nodes do not support means that IPv6

end nodes would drop packets containing this payload and send an ICMP error message

back to the packets' source nodes. This would violate my goal of seamless interoperation

and therefore cannot be used to transport any data that might arrive at IPv6 nodes.

An Option in the Hop-by-Hop Options Header

An IPv6 option provides properties for pre-determined non-standard processing that an

IPv6 node may apply to an associated packet. An IPv6 option would be a good choice for

code transport because it can instruct IPv6 nodes (source, destination and intermediate)

to ignore the option if the nodes do not understand it. Using an option to transport code

continues on the work done in [36]. Furthermore since there will be network socket support



for applications at the end nodes to insert options in and receive options from the hop-

by-hop options header, using an option would allow an application to use Active Network

technology while running over an IPv6 end node. The one unfortunate draw back about

using an option is that its size is restricted to 256 bytes. This makes it a good vehicle

to transport state values, which typically have a size of 50 bytes, but probably not code

fragments, which typical have a size of 750-1000 bytes.

Since the hop-by-hop options header has a maximum size of 2056 bytes, and therefore can

hold a number of options, one could break up a code fragment into a number of pieces, and

place each piece into an option. The main drawback of this would be that each Active node

would need to parse about five options for every packet contain about 1K code fragments.

This seems like an unnecessary performance hit.

4.4 The Solution: Combine Option and Payload

The solution that I have implemented views the transport process as having two separate

parts, code transport and state value transport.

In an Active network, code transport is an end-to-end process between two Active nodes.

Active node A sends a code request to Active node B, and Active node B sends a code

response to Active node A. Therefore in a hybrid network of Active and non-Active nodes,

an IPv6 payload can be used to transport code, since the only two nodes that will attempt

to process the payload will be Active.

State value transport, on the other hand, is an in-network process that involves all nodes

in an Active network. In a hybrid Active network, this means that state values could

potentially be processed by an IPv6 intermediate node or end node. This leaves the network

architect with two choices:

* Place the state values in an option, whose maximum size is 256 bytes, and enable

interoperation with IPv6 intermediate and end nodes.

* Place the state values in an IPv6 payload, whose maximum size is 2056 bytes, and



enable interoperation with IPv6 intermediate nodes, but require that the source node

only send packets to Active destination nodes.

I have decided to choose robustness of operation over robustness of size, and use an option

to transport state values. Since one of the goals behind building an AIPv6 node is to provide

researchers and developers a platform in which to experiment with a heterogeneous network

of Active and non-Active nodes, I feel this choice this choice is warranted.

The AIPv6 transport protocol uses one option, the marshaled option, and one payload, the

system payload, to transport code and state values in an IPv6 network. The marshaled

option carries state values, and the system payload will carry data for demand requests,

and responses. 1 The marshaled option maps directly to a marshaled capsule in ANTS, and

the system payload maps directly to a marshaled system capsule in ANTS. Details on the

format of the option and payload can be found in Appendix B.

1AIPv6 nodes did not support code transport at the time of this writing.





Chapter 5

Application Protocols

This chapter describes the types of application specific protocols that can be built for a

network consisting of AIPv6 and IPv6 nodes. The first section begins with a discussion of

the constraints placed on Active protocols in a heterogeneous network, and the last section

discusses a potential application that would combine the ideas presented in this report.

5.1 Constraints

A hybrid network of AIPv6 and IPv6 nodes solves the problem of integrating an Active

Network layer into the IP layer. Using this architecture, applications are guaranteed that

the Active protocol that they transmit into an IPv6 network, will be executed by Active

IPv6 nodes, and will be ignored and processed like an IP packet by non-Active IPv6 nodes.

This architecture, however, places a set of constraints on Active protocols that do not exist

in a pure Active architecture, e.g., the ANTS architecture. In the ANTS environment,

applications assume that Active protocols will, at the very least, be executed by at least

two Active nodes, the source and destination node. If the Active protocol passed through

intermediary nodes on its way to the destination node, then it would also be executed

at those nodes. In an AIPv6 architecture the same assumptions cannot be made. Since

applications using AIPv6 protocols can connect to IPv6 destination nodes, they can assume



only that the protocols will execute at one node, the source node. 1 If the source node knows

beforehand that the destination node is an AIPv6 node then the guarantee moves closer to

the guarantee provided by ANTS.

5.1.1 A Compression Example

Figures 5-1 and 5-2 illustrate how an Active protocol can have different effects when running

in an ANTS network versus running in a hybrid network of AIPv6 and IPv6 nodes. The

source applications in both figures insert compression protocols into the network to be used

on some packets. Neither of the destination applications can parse compressed data. The

compression protocol compresses a packet's payload at a node with a low-bandwidth link,

and must uncompress the payload before it reaches the destination application.

Figure 5-1: Active compression protocol in an ANTS network

Figure 5-2: Active compression protocol in hybrid AIPv6 and IPv6 network.

Within an ANTS network, the compression protocol will always work correctly. It can

compress the payload at an intermediate node, and decompress it at the destination node.

'In present AIPv6 implementation, an application must run over an Active node if it wishes to insert
an Active protocol into the network. If, in the future, some Active protocols are added to the core set of
protocols supported by all Active nodes, then the source application will only need to transmit an Active
option, and not need to run over an Active node.



It will never deliver compressed data to the destination application. Within an AIPv6

network though, the same guarantee of correctness no longer holds because an end node

could be a non-Active node. In this case correctness can be assured only when either

the source application transmits to Active destination nodes, or over routes with a known

number of intermediate nodes, or the destination application understands compressed data.

5.1.2 Not all Active Protocols Transfer Directly

The previous example shows that there exist a class of Active protocols that cannot directly

transfer to an AIPv6 network. To work correctly in an AIPv6 network these protocols

require the source application to have knowledge about the types of nodes in the network,

or require the destination application to have knowledge about the Active protocol.

5.2 Future Active Protocol: Load Balancing

This section describes a hypothetical Active protocol that would use a hybrid network of

AIPv6 and IPv6 nodes. The purpose of this exercise is to demonstrate that the design goal

of requiring interoperation between an AIPv6 source node and an IPv6 destination node

can produce useful protocols.

5.2.1 Why Load Balance?

No server has yet been built that can process all the http requests coming into most popular

sites on the World Wide Web (WWW). Therefore some sites utilize a number of web servers

to handle this enormous demand. In order to distribute the requests equally among all the

web servers, sites use a load balancing algorithm.



5.2.2 Coarse-Grained Load Balancing

Coarse-grained load balancing uses the Domain Name Service (DNS) to return the IP

address of the least loaded web server.2
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Figure 5-3: Coarse-grained Load Balancing.

Step 1 in Figure 5-3 shows an application sending a DNS resolution request for www.mit.edu

to it's local DNS server. Since the local DNS does not yet have a binding for www.mit.edu

it contacts MIT's DNS server. During Step 2, MIT's DNS server determines which web

server is the least loaded, at the time of request, and resolves the DNS request to that

server's IP address. For this example assume the DNS request resolves to web server A.

Once receiving a reply from MIT's DNS server, the local DNS server will cache web server

A's IP address, and then return the IP address to the requesting host. In step 3 the host

will then initiate an http with web server A.

There are two problems with this scheme that could disrupt the load balanced properties

of MIT's web servers. One, since the application stores the hostname-IP address binding

for the duration of its session, it will only connect to the least-loaded server during its

first connection. After that point, what originally was the least-loaded server could quickly

become the most-loaded server. Two, since the local DNS server caches the hostname-IP

address binding for some period of time, other nodes at the local site will use the same

2The purpose of DNS is to resolve a host name such as, www.mit.edu, to an IP address. Each network
site that advertises a hostname, must setup a DNS server to handle the resolution.



binding, and increase web server A's load. This affects both the client, who faces longer

delays in receiving data from MIT's web servers, and MIT web's site, which cannot process

as many requests as it should be able to.

5.2.3 Fine-Grained Active Load Balancing

Fine-grained Active load balancing would build load balancing characteristics into the tcp

protocol that underlies the http protocol. It would allow a web client to connect to the

least loaded server during every web connection. Web clients that do not have access to

Active Network technologies will always connect using the coarse-grained load balancing

scheme.

Step 1 of the scheme involves an Active application querying its local DNS server for the

IP address of www.mit.edu. Since the local DNS server doesn't have the binding the server

contacts MIT's DNS server. This DNS server, using the coarse-grained load balancing

algorithm, then returns the IP address of the least loaded server. Upon receiving a response

from MIT's DNS server, the local DNS server cache's a binding between www.mit.edu and

the returned IP address, and then returns this IP address to the requesting application. In

step 3, the first tcp connection packet that the application sends will search the AIPv6 node

for a list of available web servers. It will then choose which web server is the least loaded

and connect to it. The IP address of the server that it connects to will then be used for the

rest of the connection. Since a new request requires a new tcp connection, the Active web

client will always connection to the least loaded web server.

The beauty of this scheme is that if the application does not support this new Active

protocol, and has no concept of it, then it will connect directly to MIT's web site and use

the coarse-grained load balancing algorithm.

The changes required to implement this Active protocol would be a change in the initial

hand shake code of a tcp connection (it will need to recognize that the returned destination

address has changed and it should connect to it). Changing an IP address during mid-

connection could be a major security problem but it is quite similar to changing port

numbers for an FTP connection (though with FTP if the client assumes the machine your
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Figure 5-4: Fine-grained DNS load-balancing.

connecting to is safe, then it most likely won't have an evil port number).

This protocol also requires a process running at the web site that queries the web servers

for their load, and then inserts a load table into the AIPv6 border router.



Chapter 6

Performance Analysis and

Conclusions

Despite being written in Java, an AIPv6 node achieves respectable performance. When

routing only IPv6 packets, an AIPv6 node achieves an average fast-path throughput of 979

packets/sec. It achieves an average fast path throughput of 766 capsules/sec when routing

simple AIPv6 capsules. These results are a significant fraction of the maximum throughput,

3750 pkts/sec, that can be achieved by user space network implementations on the Linux

OS.1.

6.1 Description of Experiment

Figure 6-1 shows the experimental setup used to test the throughput and latency of an

AIPv6 node. Results were recorded for the AIPv6 router, shown as the intermediate node

in the figure, as packets flowed from the source node to the destination. The intermediate

node's routing table contained three routes, a loopback route, a route to the source node,

and a route to the destination node.

1This upper bound was determined by implementing a user-space application in C that received Ethernet
packets from an Ethernet socket and automatically forwarded them to a hardcoded destination. The machine
used for this experiment was a 200 MHz Pentium Pro



All three machines used in the experiment ran the Debian 1.2.x distribution of the Linux

2.0.30 kernel. The intermediate and destination machines had Pentium Pro 200 MHz pro-

cessors, while the source machine had a Pentium 120 MHz processor.

Figure 6-1: Experimental set up.

6.1.1 Packet Types

During each test, the source node sent one of two types of packets, a vanilla IPv6 packet

that contained only an IPv6 header, or a simple Null capsule that routed itself through the

nodes. Both packets were forwarded identically, but traveled through different processing

paths within the node, the default and Active paths.

Vanilla IPv6 Packet

The vanilla IPv6 packet contained only the IPv6 header. Since it does not have a marshaled

option, the node processes it using the default IPv6 routine shown earlier in Figure 3-4.

Null Capsule

The purpose of the Null Capsule is the test the performance associated with the node's

Active processing path. Figure 6-2 shows the Null Capsule's evaluate method, which is a

simplified version of the default IPv6 routine.



public boolean evaluate(Forwarder fwdr) {

if (fwdr.isNodeAddress(dest ()))

return fwdr.deliverToApp(this);
I

else

return fwdr.routeForNode(this);
I

Figure 6-2: Null Capsule's evaluate method.

6.1.2 Fast Path vs. Slow Path

Since there is only one route between the source and destination nodes in this experiment,

the second packet in a flow of packets always enters a node's fast path. Thus, to get

meaningful results during the slow-path experiments, the node did not use a routing table

cache.2

6.2 Results

Table 6.1 shows the maximum average throughput the intermediate node could sustain

over a run of 5500 packets. The destination node recorded these values by calculating the

throughput for every 500 packets that it received. The throughput for the first 500 packets

was not included in the calculation to account for the node "warming up".

Table 6.1: Throughput results.

2The slow-path studied here is the one described in Section 3.6. It is presumed that once the AIPv6
implementation supports code loading, that the slowest path will be the code loading path and not the one
associated with doing a table lookup.



6.3 Discussion of Performance

The performance results in Section 6.2 are encouraging. Given that studies have shown

that interpreting Java bytecodes is at least an order of magnitude slower than executing

machine code, I believe that the performance of the system can be greatly improved by

compiling the node down to native machine code, or, at least, running it with a Just-In-

Time compiler. Both of these solutions are available today, but, because of time constraints,

were not utilized for these experiments.

There are also two other potential areas for improved performance: reducing the scheduling

overhead caused by running an Active node over both the Java runtime and the Linux OS,

and reducing the copying overhead caused by running the node in the Linux user address

space. Both improvements can be realized by integrating a Java runtime into the Linux

kernel, or by using an already integrated platform such as the Java OS.

Besides showing reasonable performance there is one other interesting characteristic about

the results in Section 6.2; the throughput associated with processing capsules is less than

that associated with IPv6 packets. This difference can be explained by the startup costs

involved with executing a capsule in this implementation. It is a three step process that

involves loading in the associated code from memory, instantiating an instance of the code

using the state values from the Marshaled option of a IPv6 packet, and then executing the

evaluation method of the instance. In addition, because of the protected buffering scheme

used by this node, all byte accesses made to the packet buffer while creating a capsule must

undergo a runtime check.

6.4 Summary and Conclusions

By designing and implementing an AIPv6 node, I have shown that an Active Network

capsule-based architecture can be integrated into an IP packet-based architecture. The

AIPv6 node takes advantage of that which is similar between these architectures by dividing

its processing into constant and variable segments. By using control mechanisms, such as

protected buffers, the node insures that capsules will not change important fields in the



IPv6 packet header.

A unique aspect about the AIPv6 architecture, is that it supports interoperation between an

Active source node and a non-Active destination node. This places a new set of constraints

on Active protocols that move from a pure Active Network to a heterogeneous one. In

Section 5.1 I provided some preliminary ideas about what these constraints are.

Supporting interoperation should also enable the creation of new types of protocols, such as

the one proposed in Section 5.2, that could not be implemented using only an IP architecture

or an Active Network architecture. This characteristic, combined with its encouraging

performance results, suggests the Active IP platform will be appealing to researchers who

wish to study application specific protocols for the Internet.





Appendix A

Node: Link Interfaces

This appendix describes the link level interfaces supported by an AIPv6 node.

A.1 Network Devices

The AIPv6 device classes translate outbound IP addresses to Ethernet addresses, and apply

link specific processing to incoming and outgoing packets. The AIPv6 node supports three

generic types of devices: loopback, tunnel, and LAN. The following subsections describe

them.

A.1.1 LAN Device

Some devices do nothing more than pass the packet they receive down to the device driver

which handles placing bits onto the physical network. This is the purpose of the IPv6

network device which represents a node's interface to an IPv6 network. No extra processing

is needed to send IPv6 packets to other IPv6 nodes located on the same physical network.



A.1.2 Loopback Device

The loopback device represents the node's interface to itself.' When the Forwarding Engine

passes a packet to the loopback device, the device automatically returns the packet to

the Forwarding Engine's receive queue (by calling the forwarder's receive function). This

prevents the packet, which is destined for same node, from entering the physical network.

A.1.3 Tunnel Device

The tunnel device is the node's interface to an IPv4 network. Because IPv6 has not been

implemented across the Internet there are some places of the network in which IPv6 packets

will have to travel through IPv4 nodes in order to reach their IPv6 destinations. A node

must encapsulate these IPv6 packets within an IPv4 packet so that IPv4 nodes will be able

to route them. The tunnel device handles this encapsulation, hiding it from the Forwarding

Engine. The tunnel device also decapsulates any IPv4 packets that it receives and passes

the embedded IPv6 packet up to the Forwarding Engine.

A.2 Device Drivers

The driver handles the link-specific aspect of transmission and receive. The AIPv6 drivers

run in the user-space of the Linux OS and utilizes Ethernet sockets to gain access to Ethernet

frames. It supports the Ethernet driver interface in the event that, in the future, the node

software is moved into the Linux kernel or a different link protocol is used to transmit data

between computers.

Like the Ethernet driver in Linux, the AIPv6 driver module supports two modes, sending

and receiving. The driver is always in the receive mode listening for packets that have

the Ethernet protocol type specified by the device object that claims ownership over the

driver. This has its own thread, and upon receiving an Ethernet frame the thread invokes

the receive method of the driver's owner. This receive mode operates as its own thread.

1The loopback address in IPv6 is ::1.



Sending can be requested at any time by a device. This mode does not operate as its own

thread, and instead is executed by the thread of caller.

A.3 Buffer Management

A fundamental problem with processing a network packet centers around the numerous ad-

dition and removal of headers that occur to a packet as it moves through the protocol stack.

Each layer, from the Ethernet layer to the IP layer to the TCP layer and so on, prepend

a header on packet data so that it can be processed by the respective protocol. If done

naively, prepending and removing network headers can drastically reduce the performance

of a node. For instance if the whole packet needs to be recopied every time the node adds

or removes a header from it then the data copying can consume the majority of packet

processing time.

Both of the standard freeware network implementations, NetBSD and Linux implement

somewhat different solutions to the above problem. The NetBSD implementation uses a

linked list of buffers, called a chain of Mbufs, to hold the packet's data. A buffer can

either be a header or a packet's payload. When a network header needs to be added to

the packet, the networking code adds an Mbuf to the beginning of the chain. This type of

buffer structure places a requirement on the Ethernet drivers that they understand how to

move a chain of Mbufs from the kernel address space to the memory on the Ethernet card.

Linux uses a derivative of Mbufs, called sk.buffs, as the cornerstone of its buffer management

strategy. Instead of allocating a chain of buffer structures, the Linux kernel allocates one

sk.buff for each packet that passes through its protocol stack. Each sk.buff contains the

maximum amount of space for additional headers that a packet could possibly use while it

undergoes processing. For instance when the kernel creates a packet at the transport layer,

the sk.buff it uses will also have space for the IP and Ethernet headers that lower layers

will need to prepend to the packet before it can be sent out onto the network. In addition,

if there is the possibility that the packet might need to tunnel through a medium different

than IP, then the sk.buff will also have space for the tunneling header. Even though not

all the memory in an sk.buff will be used by the kernel for processing the common packet,



the simplicity of its implementation, along with the characteristic that drivers do not need

to support chained buffers tends to make it a better choice over Mbufs.

Active Node's NetBuffs

This implementation uses a buffer management strategy similar to the sk.buff strategy used

in Linux. The primary reason for emulating the Linux buffer management strategy is that

none of the Linux system calls can handle chained buffers. I have implemented a class

named NetBuff that serves as a layer of abstraction above the byte array which is passed

to the node from an Ethernet socket. The NetBuff class stores an index to the first byte

where valid non-IPv6 data (such as Ethernet or tunneling fields) should be placed in the

byte array, and also stores another index to the first byte where valid IPv6 data should be

placed. Classes which use the NetBuff class have access only to the IPv6 area of the byte

array.

Figure A-1 shows the NetBuff's layout. The start pointer tells the Ethernet methods where

the Ethernet frame begins in the byte array. All bytes with an index less than start is

invalid.

start qOffet

IPv4 Tunnel Header Ethernet Header IPv6 Header and Data

Figure A-i: The byte array hidden by the NetBuff class.

Passing pointers to specific values in the IPv6 area of a NetBuff is difficult in Java because

Java does not support direct addressing of memory. Thus, to facilitate passing indexed data,

I have implemented an IndexedBuff class that contains a reference to a NetBuff object, and

index values of the beginning and end points of the indexed data.



Appendix B

Format of Option and Payload

This appendix chapter describes the format of the marshaled option and demand payload.

The fields that the option and payload have in common are:

* 128 bit identifier that identifies a code class. In the present implementation this

identifier is a randomly chosen number, but in future versions the identifier could be

an MD5 fingerprint that authenticates every code class.

* Active Type field. Serves to differentiate the different types of formats that might

exist in a marshaled option and in the system payload.

B.1 IPv6 Option

IPv6 requires every option to have a type value. The two highest order bits of this value

instruct all IPv6 nodes whether to skip the option and continue processing the packet if

they do not understand the option. The third highest order bit notifies nodes that whether

the contents of the option may change en-route. End to end security protocols need this

information when calculating their checksums.

Every option also has a length field. The value of this field depends on the number of state



values embedded within it.

To ensure proper byte alignment within headers, the IPv6 specification specifies padding

fields. These padding fields are defined as options. IPv6 supports two types, the Padl

option and the PadN option. The Padl option has a length of one and a value equal to

zero. The PadN option has a value equal to one for its first field, and a value equal to the

length of the padding in the second field. A stream of n zeroes, where n equals the value of

the length field, then follows.

B.2 The Marshaled Option

The Marshaled Option contains the state values for programming code identified by the

identifier field. It has a value equal to 54. IPv6 nodes must ignore this option if they do not

understand it. Figure B-1 depicts the layout of this option. The option has an Active type

value equal to one. It also has a 128 bit address field which holds the IP address of the last

Active node that processed this option. I have inserted this field in order to support ANTS-

style demand-loading in which a node requests code from its closest upstream neighbor.

Nxt Hdr Hdr Len = X 00110110 Opt Len = Y

Address of Last Active Node (128 bits)

Identifier (128 bits)

Application Specific Data...

Figure B-1: The marshaled option.

In order to reduce the performance cost of demultiplexing a packet to the Active processor

or to the default IPv6 routine, the Marshaled option must be the first option in a hop-by-

hop options header, and that there must not be any padding between the Marshaled option

and the beginning of the header. Combining these requirements with the IPv6 requirement

that the hop-by-hop options header be the first extension header in a packet, reduces the



demultiplexing cost to the time required to check the values of two bytes, the next header

byte in the IPv6 header, and the option type byte in the hop-by-hop options header.

The risk in using an option in the hop-by-hop options header to transport state values is

that IPv6 specification forbids IPv6 nodes from fragmenting the hop-by-hop options header.

Therefore, even if a packet is fragmented, the state values in a marshaled option can be

used to execute code at every node. The problem though is that the code for a packet

might be executed more than once as the packet travels through each node because the

code will be executed for each fragment. This can be a benefit or drawback depending on

an application's requirements. Since fragmentation can only occur at the source node, the

best solution is to turn off IP fragmentation at the source node.

B.3 The System Payload

Both a demand request and a demand response will be transported within the same type

of payload, the Active payload. The Active payload has a protocol value equal to 89. Since

only AIPv6 nodes transmit this payload to and from each other, it does not need to be

immediately defined by the IANA. AIPv6 nodes will understand how to process it. The

first byte of the payload specifies the protocol value of payload that follows this one. The

second byte specifies the length of this payload in units of eight octets. The value of this

field excludes the first eight octets. I have reserved the two ensuing bytes for future use by

the Active Networking community. There is a proposal to create one Active payload for

the whole Active Network community. If this comes to fruition then these two fields will be

used to hold general Active Network data.

B.3.1 Demand Request

The demand request payload depicted in Figure B-2 has an Active type value equal to 2.

When an AIPv6 node receives a marshaled option for which it does not have the correspond-

ing code it will send a demand request payload to the upstream Active node identified in

the Marshaled option. The identifier field specifies the type of code the requesting node



needs.

Figure B-2: The demand-load request payload.

As shown in the figure, the demand request payload has a fixed which is less than the

maximum size of an option, and could have been implemented as such. In making the

demand request a payload I am assuming that, in general, the closest upstream Active

node will be the one identified in the Marshaled option. If for some reason a network does

not use symmetric routing (a router might fail and all packets need to be rerouted around

it), thereby making the route used by the Marshaled option to travel to the requesting node

from the upstream Active node different from the route used to travel back to that upstream

node, then there is the possibility there might be a closer Active node that potentially could

service this request. The likelihood though of a marshaled option, with the same identifier,

having actually traveled through that node on its way to another destination seems quite

small. The likelihood of a route being changed is also quite small.' Thus, the probability of

there being a closer Active node than the one specified in the Marshalled option, and that

that Active node contained the requested programming, does not justify the performance

hit suffered by every IPv6 node that attempts and fails to process this option.

B.3.2 Demand Response

The demand response payload, depicted in Figure B-3 contains the programming code

specified by the 128-bit identifier value in the payload. It has an Active type value equal to

3. The four high order bits, named Total, in the byte following the type field, indicate how

'Contrary to popular belief, most packets originating from the same source node usually do not travel
different routes to the same destination.



many fragments the code has been divided into for transport over the Internet. The four

low order bits, named Sequence, in the same byte, indicate the fragment sequence number

of the bytecodes in this packet. A value of zero indicates that this is the first fragment, a

value of one indicates that this is the second fragment and so on.

Figure B-3: The demand-load response payload.

Nxt Hdr Hdr Len = 3 Reserved Reserved

Identifier (128 bits)

Act Type = 2 Total Seq Programming Code
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