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Abstract

In uniprocessor systems, the increasing performance gap between the processor and the
memory imposes a memory bottleneck for many important scientific and commercial
applications. In cache-coherent multiprocessors, contention for shared resources and the
effects of the cache coherency protocol can adversely affect the performance of the mem-
ory system, so that applications may experience an even greater memory bottleneck.

Traditionally, memory performance has been characterized in terms of latency and
bandwidth. The purpose of this thesis is to refine the traditional definition of memory per-
formance to address the characteristics of modem processors. Previously, bandwidth could
be computed from cache line size and latency. In modem systems, because of lock-up free
caches and memory pipelining, pipelined memory bandwidth has become an important
metric. With the ability of modem processors to support critical word restart, latency is
defined in terms of two distinctive performance parameters: back-to-back latency and
restart latency.

As more sophisticated techniques are used in microprocessors to hide memory latency
and increase bandwidth, measuring memory performance has become increasingly diffi-
cult. In cache-coherent multiprocessors this task is complicated further by cache coher-
ency and contention. This thesis presents a micro benchmark suite to measure memory
performance in the context of cache-coherent multiprocessors. An analytic model based
on queueing theory is developed to estimate memory performance in cases which can not
be measured experimentally. The results for the SGI Origin 2000 multiprocessor and some
results for the SUN Ultra Enterprise 4000 multiprocessor are presented. The benchmark
suite has been used to optimize the memory system performance of the SGI Origin 2000
multiprocessor.

Thesis Supervisor: Arvind
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Chapter 1

Introduction

1.1 Motivation

Many real-world applications have working sets which do not fit into the largest caches of

modem microprocessors. With the increasing performance gap between processors and

memory systems [4], these applications are facing a memory bottleneck. For example, for

a miss rate of 4% and a miss penalty of 50 processor cycles, 68% of the time is spent ser-

vicing memory requests'. To address this issue, modem microprocessors use a number of

techniques to aggressively overlap cache misses with computation and subsequent mem-

ory operations. Some of these techniques include critical-word restart, lock-up free

caches, deferred cache-writebacks and store buffers [5], [9], [29]. While these techniques

can dramatically improve the performance of some applications, they do not operate as

effectively in others.

A shared-memory multiprocessor consists of a number of processors which see a large

shared address space that is directly accessible by load and store operations. The proces-

sors may have private caches. The general architecture of a shared-memory multiproces-

sor with caches is shown in Figure 1.1. PO through Pn represent the processors of the

system. Memory banks MO through Mq provide the storage for the shared address space

while caches CO through Cn provide fast access to copies of the memory data to each indi-

vidual processor. A coherence protocol is required to keep the caches consistent. The

1. The miss rate is defined as the ratio of the number of cache missing instructions to the total num-
ber of memory loads and stores. A superscalar processor executing one load/store per cycle, and
blocking on cache misses is assumed.



1)
Figure 1.1: A general architecture for a cache-coherent

multiprocessor.

interconnect medium could be a bus, a network or some other arrangement, such as a hier-

archy of buses.

In such shared-memory multiprocessors, contention for shared resources and the

effects of the cache coherency protocol can adversely affect the performance of the mem-

ory system, so that applications may experience an even greater memory bottleneck.

Because of queueing delays, the memory performance perceived by a given processor can

degrade considerably under contention. While beneficial for supporting processor caching

and enforcing consistent views of memory by different processors, the cache coherency

protocol can also increase the penalty of a memory access incurred by a given processor.

Traditionally, memory performance has been characterized in terms of latency and

bandwidth. Memory latency is the time from when the processor requests data to when the

memory responds. In cache based systems, the memory latency would include the time

from when the processor stalls on the cache miss to the time it receives the entire cache

line from memory and restarts execution. Memory bandwidth is the rate at which a given

processor can access memory. Memory bandwidth would be computed as the cache line

size divided by latency as defined above.



This thesis refines the traditional definition of memory performance to address the

characteristics of modem processors. Typically, the miss data represents only a small frac-

tion of the cache line received from memory. In modem processors, on a given miss, the

perceived latency could include the penalty of receiving either an entire cache line, or only

the miss data. In light of these considerations, for modem processors, two distinctive

latency parameters are of importance: back-to-back latency, which represents the time

until an entire cache line has been received by the processor, and restart latency which

represents the time until the requested fraction only of the cache line has been received.

While previously bandwidth could be computed from the cache line size and latency, in

modem systems, because of memory pipelining and the ability of the processors to sup-

port multiple outstanding requests to memory, this is no longer the case. With the decou-

pling of bandwidth from latency, pipelined memory bandwidth has become an important

memory performance metric.

In light of the sophistication of current processors and systems, and the complexity of

the performance space in cache-coherent multiprocessor systems, memory performance

has also become difficult to measure. This thesis introduces a methodology for measuring

memory performance in the context of modem microprocessors and cache-coherent multi-

processor systems.

1.2 Previous Work

For the past years, normal practice has been to select a set of real user applications and

compose them into suites of benchmarks to evaluate computer systems. Such suites are the

SPEC benchmarks [25], Perfect Club [1] and the SPLASH benchmarks [24]. While repre-



sentative of some real applications, these benchmarks do not shed light onto specific

machine performance bottlenecks and onto the performance of other applications which

are not very similar to the given benchmarks and are not included in the benchmark suite.

Another approach to measuring performance is based on micro benchmarks, which are

small benchmarks each measuring a particular aspect of the system under controlled con-

ditions. After having introduced it as a general philosophy for performance characteriza-

tion based on an abstract high-level machine model [21], Saavedra developed a memory

micro benchmark useful for measuring and analyzing memory hierarchy performance on

real machines. His micro benchmark reveals the impact of cache performance and the cost

of local and remote memory accesses [22]. One limitation of this micro benchmark is its

performance metric which does not compute either the memory latency, or the pipelined

memory bandwidth. In addition, by measuring contention in terms of the interaction

between various processors, instead of the bandwidth consumption produced by these pro-

cessors, the micro benchmark cannot estimate the memory performance under contention

conditions selected by the user. Finally, the micro benchmark does not take into account

the impact of cache coherency on memory performance.

McVoy's lmbench [17] is a popular suite of portable micro benchmarks which measure

latency and bandwidth of data movement among the processor and the memory, network,

file system and disk. However, Imbench is restricted to uniprocessor performance charac-

teristics, and its performance metrics assume a simplistic view of the microprocessor and

memory system designs.

McCalpin's STREAMS micro benchmarks [16] measure the memory bandwidth

obtainable by user codes. Targeted at sustainable unit-stride memory bandwidth measure-

ments, STREAMS is useful for predicting performance on unit-stride vectorizable code.

However, STREAMS does not offer a complete solution to memory performance since it



does not measure memory latency. In addition, it does not measure the pipelined memory

bandwidth under specific cache coherency and contention conditions.

1.3 Approach

Methodologies for performance analysis can be experimental, emulation-based or analytic

[18], [19], [7], [6]. On the one hand, the analytic and emulation-based methods tend to be

too simplistic or too complex. When simplistic, they ignore important architectural details,

and when too complex, they are generally hard to develop or use. In addition, they are only

useful when they can be validated against real systems. By contrast, experimental methods

account for all the hardware features and performance factors at no cost to the developer

or user of the particular methodology. On the other hand, the analytic and emulation-based

methods can be used in the absence of real hardware, and can provide insights into cases

which may be hard to reproduce experimentally.

Our methodology, which combines experimental and analytic performance tools, is

based on micro benchmarks and queueing theory. Micro benchmarks allow users and

hardware designers to characterize the memory performance of different machines in a

uniform way, while providing a level of detail which is usually associated with hardware

monitors [22]. The queueing model predicts memory performance under contention levels

which cannot be reproduced experimentally.

The micro benchmark suite presented in this thesis addresses memory hierarchy per-

formance only. While the performance of the processor, disk, graphics subsystem, the I/O

and the operating system is also relevant to evaluating the overall performance of a com-

puter system, we chose to focus on memory subsystem performance because of its

increased complexity and importance. Our micro benchmarks overcome the limitations of



previous work. To achieve this, they handle both sophisticated processor optimizations

and multiprocessor workloads. To maximize portability, the micro benchmarks are written

in C and their dependence on system facilities is minimized.

The suite is aimed at memory system designers, application writers, and end-users.

Designers can use the suite to validate the predicted performance of the memory system

and find subtle performance bottlenecks. Application writers can use it to understand the

critical path in their application kernels. Finally, end-users can use the benchmarks to pre-

dict the relative performance of various applications on different platforms.

1.4 Thesis Outline

The thesis is organized as follows. Chapter 2 details the variations in memory performance

as measured by a single processor. Chapter 3 presents the micro benchmarks used to cap-

ture these effects. Chapter 4 introduces cache coherence and its effects on latency and

bandwidth. Chapter 5 adds the complication of queueing within the memory subsystem. In

all of these chapters, performance results of the benchmarks on the SGI Origin 2000 [10],

[11] are given, along with selected results on the SUN Ultra Enterprise 4000 (UE4000).

Chapter 6 presents a discussion of future improvements in the micro benchmarks and con-

cludes the thesis.



Chapter 2

Uniprocessor Memory Performance

Traditionally, memory performance has been characterized in terms of latency and band-

width. Memory latency is the time from when the processor requests data to when the

memory responds. Memory bandwidth is the rate at which a given processor can access

memory.

Processors using caches move memory data in cache line chunks, that are typically 32-

128 bytes in size. For a given cache miss, a critical word is the fraction of the cache line

representing the data which the processor requested from the memory. Until recently, pro-

cessors would stall on the instructions dependent on the cache miss, until the entire cache

line had arrived from memory and filled the appropriate line in the cache. In these systems,

memory latency included the penalty of the cache line fill. With the larger cache line sizes

of current microprocessors supported by innovations in bursty DRAM technology, the fill

time has become a considerable fraction of the overall latency. For example, on a system

utilizing 128 byte cache lines and capable of filling at 800MB/sec, the fill time after the

initial critical word has been received is on the order of 160 ns. Assuming a critical word

access time of 200 ns, this represents 44% of memory latency. In this thesis, this memory

latency which includes the penalty of the entire cache fill is referred to as back-to-back

latency.

To reduce memory latency, an optimization has been introduced in modem processors,

known as critical word restart, which allows them to restart the computation of dependent

instructions upon receiving the critical word [29]. In these processors, memory latency



includes the time to receive the critical data word but does not include the penalty of the

entire cache fill. We refer to this measurement as restart latency.

While critical word restart allows processors to continue computation upon receiving a

fraction of the cache line, it does not, by itself, prevent stalls of any cache accesses issued

upon restart and which conflict with the on-going cache fill. To resolve such conflicts,

modem processors must implement a mechanism to select, on a given clock cycle,

between servicing new memory requests from the processor and servicing on-going cache

fills. This selection mechanism is shown in Figure 2.1. A time diagram describing the suc-

cession of events which occur when a fill and a miss detection event conflict at the cache is

given in Figure 2.2.

•nhPtnwuqnt

data

memory

Figure 2.1: Cache contention. A cache mechanism selects
between servicing new memory requests from the processor and

servicing fills of current memory requests.

memory
access

Current
memory
access
(fill)
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Figure 2.2: Cache conflict between two loads. The second load
must stall at the cache until the fill corresponding to the first load

completes.

To prevent such stalls, additional processor features are required which would allow it

to interleave cache miss detection with cache fills. Some of these features are:

1. a multi-level cache hierarchy, in which the first level implements critical-word
restart and uses smaller cache line sizes than the other caches in the hierarchy.

2. cache refill buffers which use idle cache cycles to complete the cache fills.

3. a dual port cache.

On systems which do not feature these optimizations, the worst latency incurred by a

miss which interferes with some previous miss at the cache includes the fill time of the

previous miss. Consequently, this latency effectively equals the back-to-back latency.

Until recently, systems were capable of moving only one cache line during one back-

to-back latency time unit. With the introduction of lock-up free caches [9], which allow

can proceed
back-to-back latency etc...

Time

1 1

1
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processors to issue new requests while previous requests are still outstanding, modem sys-

tems can overlap memory fetches, and hence transfer more than one cache line in a latency

time unit. As a consequence of this, a higher memory bandwidth can be achieved. To

exploit this processor optimization however, applications have to ensure that the memory

accesses are not dependent. On systems with lock-up free caches, the memory bandwidth

is limited by one of two factors:

1. The rate limiting resource within the cache/memory system servicing the miss
(cache, processor interface, bus or memory).

2. Restart latency and the maximum number of outstanding requests that a processor
can have pending to the memory system.

While previously bandwidth could be computed from the cache line size and latency,

in modem systems, because of pipelining, this is no longer the case. With the decoupling

of the bandwidth metric from latency, and the variations in the latency perceived by a sin-

gle processor, all these three metrics -- back-to-back latency, restart latency and pipelined

bandwidth -- are important for characterizing the performance of a memory system.

For a given application, any parameter of memory performance may be appropriate, or

they may all apply in various phases of the program. For example, for many scientific

applications written in FORTRAN, pipelined memory bandwidth is the most important

performance parameter since the data access patterns of these programs consist of array

references which are typically not inter-dependent. For applications in which the cache

misses cannot be overlapped either because they are infrequent or because of inter-depen-

dencies, restart latency and back-to-back latency are the most important performance met-

rics. Their relative importance depends upon the data access patterns and fill time. For

example, on systems with a fill time on the order of 150 ns, running at 200MHz and exe-

cuting one memory load or store per cycle, the fill is hidden if the processor executes 30 or



more load or store instructions before the next miss1. Likewise, back-to-back latency is

appropriate if the processor executes much fewer than 30 load or store instructions in

between memory misses. More generally, back-to-back latency pertains to codes with

bursty memory accesses, while restart latency pertains to codes in which the memory

accesses are isolated from one another. Given that a miss every 30 load or store instruc-

tions is a 3.3% miss rate which characterizes many applications [4], it is likely that restart

latency penalties are seen more frequently across applications than back-to-back latency

penalties2.

In conclusion, based on the features of current architectures and the data access pat-

terns of various applications, memory performance can be characterized in terms of the

following parameters:

1. back-to-back latency: the time to service a cache miss, assuming that the instruc-

tions before and after the miss are also cache misses. This performance parameter includes

the cache fill penalty, either because the processor is unable to restart upon receiving the

critical word or because of conflict with the previous miss at the cache. Back-to-back

latency is measured in time units, typically in nanoseconds (ns).

2. restart latency: the time to receive the critical word, assuming all previous cache

misses have completed and consequently no interference with other misses in the systems

is observed. Restart latency is measured in time units, typically in nanoseconds (ns).

3. pipelined bandwidth: the sustained rate at which a single processor can issue

requests to the memory system and place the memory data into its caches. Pipelined band-

1. This argument assumes the processor blocks on cache misses. For a non-blocking processor, the
number of instructions would have to be greater than 30 to account for the instructions executed
during the memory fetch. On a superscalar, non-blocking processor with an instruction queue of
-30 instructions and executing -4 instructions/cycle, this number is -(30 + 30/4) = -38
2. See footnote 1. For a non-blocking processor, the miss rate would have to be 1 in (30 + 30/4) or
-2.7%.



width is typically measured in megabytes per second (MB/s).

The following chapter describes our methodology to measure each of these memory

performance parameters.



Chapter 3

Uniprocessor Micro Benchmarks

Measuring pipelined memory bandwidth, back-to-back latency, and restart latency

requires micro benchmarks of increasing sophistication. The difficulties arise from the

need to limit the amount and type of overlap between processor execution and memory

operations. Micro benchmarks aimed at these three performance metrics are presented in

the following three sections. The micro benchmarks in this chapter measure the perfor-

mance of memory reads only. Since most processors do write allocations, no micro bench-

marks for measuring write performance are necessary, given that write performance is

similar to read performance. The micro benchmarks also do not measure the impact of

writebacks on memory performance. We consider supporting such measurements as part

of our future work. The results of running our micro benchmarks on the SGI Origin 2000

and SUN UE 4000 are described in the fourth and fifth sections respectively.

3.1 Pipelined Memory Bandwidth

To measure memory pipeline performance, a micro benchmark must cause multiple mem-

ory accesses which are all cache misses. The following simple reduction loop achieves this

goal:



double
PipelinedBandwidth (int *arry, int num_reads,

int stride)

int i, j=O, size;
double time;
size = stride * num_reads;
StartTime () ;
for (i = O; i < size; i += stride) C

j += arry[i];

EndTime (time);
do_dummy(j);
return ( stride/(time/num_reads) );

int
do_dummy(int j) f
return j;

The StartTime() and EndTime() routines are calls to the Unix routine gettimeofday,

which reads the system clock. To compensate for the coarse system clock resolution,

which is on the order of milliseconds on a system such as the Origin 2000, a large number

of reads must be performed, typically on the order of millions.

To compute the memory bandwidth limit, the code must be performed on increasing

strides until each load generates another cache miss (i.e., the stride is greater than the

cache line size). At this point, the execution time of the loop is relatively constant because

each memory access is a cache miss and the same number of memory accesses are per-

formed for all strides. A more detailed discussion of this argument is contained in [22].

The code given above does not compute the peak memory bandwidth but the sustained

memory bandwidth which is achievable by user codes. This sustained memory bandwidth

can be limited by the processor rather than the memory subsystem itself, in particular by

the maximum number of requests that the processor can have outstanding simultaneously

to the memory subsystem.

In our code, the sustained memory bandwidth can be underestimated as a consequence

of loop overhead and array address calculations. These effects can be minimized by



unrolling the loop multiple times and binding the stride statically. The reduction per-

formed on the fetched data, as well as the do_dummy call at the end of the routine ensure

that aggressive compiler optimizations do not eliminate the otherwise "dead-code" in the

main benchmark loop.

Similar micro benchmarks to measure memory bandwidth have existed for some time.

Larry McVoy's Imbench [17] includes such a benchmark. Saavedra's micro benchmark

[22] measures pipelined memory performance on read-modify-write operations at various

strides. On machines with write-allocate caches, such operations can generate three mem-

ory references (i.e. one for the read, one to allocate the write cache line in the cache, and

one to writeback the data). John McCalpin's STREAMS benchmarks [16] computes mem-

ory pipeline performance on four unit-stride floating-point vector codes. With modern

high-performance microprocessors these floating-point kernels are dominated by cache

misses, hence the performance results are the same as Saavedra's for unit strides (provided

the appropriate unit conversions are made between the two micro benchmarks).

3.2 Back-to-Back Memory Latency

To produce a non-pipelined reference stream, the back-to-back memory latency bench-

mark must defeat the aggressive overlap of cache misses supported by many microproces-

sors. McVoy's Imbench realizes this micro benchmark using linked-list pointer chasing.

An array is initialized with pointer values at a given stride, and the time to traverse the list

is then measured. By making all the loads dependent upon the value from the previous

load, the cache misses cannot be overlapped at the memory. A simplified version of this

code is shown below:



double
BackToBackLatency(int *arry, int num_reads') (

int i, *j;
StartTime () ;
j = arry;
for (i = 0; i < num_reads; i++) (

j = (int *)*j;
}
EndTime (time);
return ( time/num_reads );

void
initialize memory(int *arry, int num_reads,

int stride)
(

int i, *next, size;
size = num_reads * stride;
for (i = 0; i < size; i = i + stride) {

next = &arry[i + stride];
arry[i] = next;

The dependency of each load on the previous load's data guarantees that no two mem-

ory accesses are in the memory pipeline simultaneously at any given time2. However,

although no overlap at the memory exists between the cache misses, depending on the

hardware, each memory access is likely to conflict with its successor at the processor

cache. By including the penalty of the entire cache fill, the back-to-back latency may over-

estimate the latency perceived on a given miss.

3.3 Restart Memory Latency3

Restart latency represents the minimum penalty incurred by the processor for a cache

miss, assuming the corresponding cache fill is hidden by the execution of other processor

instructions. The actual CPU stall time associated with a given miss could be less than the

1. Suggested values for num_reads are on the order of millions.
2. To limit the amount of system interference at the memory, the micro benchmark must be exe-
cuted on lightly-loaded systems.

3. The methodology and ideas presented in this section were suggested to me by Daniel Lenoski.



restart latency if the access to the target register is delayed, and if the processor provides a

mechanism, such as a dynamic pipeline or a valid bit on the load register, to execute past

the completion of the given memory operation. For example, the MIPS R10000 has a

dynamic pipeline [29], and the SUN UE 4000 has a full/empty bit on the load register. To

measure restart latency, the back-to-back latency test must be modified to interleave cache

misses with instructions that do not interfere with the remaining cache fill. On micropro-

cessors with two-level caches, this implies that the operands for the subsequent instruc-

tions are either in registers or the first-level cache. For measurement purposes, we break

these overlapped instructions into a sequence of processor- work units. If the processor-

work is made dependent on the preceding memory access, and the succeeding memory

access is made dependent on processor work, then the activities of acquiring the critical

word, executing the processor-work and issuing the subsequent load all happen sequen-

tially. This is shown in Figure 3.1.
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Figure 3.1: The restart latency micro benchmark and the deriva-
tion of restart latency from back-to-back latency and fill time.

Because of the dependency between the succeeding load and the processor-work,

when the processor-work is greater than the fill time, the issue of the succeeding load is
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delayed. These delays result in idle periods at the cache which, in turn, cause an increase

in the total execution time. Thus, by iterating on the amount of processor-work until the

execution time increases, the restart latency can be calculated as:

RestartLatency = BackToBackLatency - FillTime

where FillTime is the maximum amount of processor-work that can be executed between

successive cache misses without an increase in the total execution time.

The code below iterates over the processor-work time to identify the proper refill over-

head:

double

RestartLatency(int **arry, int num_reads, double error; int dummy)

int last_time = 0, cur_time = 0, num_iters = -1, *j, i;

while ((cur_time <= last_time + error) // (last_time == 0)) (
lasttime = cur time;
num_iters++;
StartTime() ;
j = *arry;
for (i = 0; i < num_reads; i++) (
j = (int *)*j;
for (k = 1; k <= num_iters; k++)

DO_WORK (dummy, j);

EndTime (cur_. time);
}
return ( (last_time - (num_iters - 1) *

WORK_COST) / num_reads );

DO_WORK is the following simple instruction:
#define DO_WORK(dummy, j)

j = j + dummy;

To avoid the overlapping of processor-work with the subsequent load, a dependency

scheme on j is enforced between the two activities. The argument dummy is passed in the

value 0 so as to prevent the modification of the address of the subsequent load. Care must

be taken to invalidate the cache data between successive iterations to avoid reading from

the cache. In order to compute the cost of each processor-work unit, DO_WORK itself is

timed in a loop with a large number of iterations. Appropriate values for num_reads and



error are on the order of millions and tens of milliseconds respectively. To limit the

amount of system interference at the memory, the micro benchmark must be executed on

lightly-loaded systems.

To estimate the time spent in the memory system only (including the cache) one must

subtract the overhead of the load issue instruction which typically amounts to 1 processor

cycle.

3.4 Results on the SGI Origin 2000

The Origin 2000 has a nonuniform memory access (NUMA) architecture [15], in which

the nodes of the system include both processors and memory, and are connected by means

of a scalable Craylink network [10], [11]. This architecture is shown in Figure 3.2.

Because of its NUMA architecture, the Origin multiprocessor exhibits varying delays to

memory, depending on the relative location of the data with the respect to the processor

accessing it. The Origin 2000 comes with MIPS R10000 processors, running at 195MHz.

I -'N Koe1 I

Figure 3.2: Origin block diagram

The secondary cache runs at 2/3 of the processor frequency (130MHz) and the processor

bus at 1/2 of the processor frequency (98MHz).



The secondary cache size was measured to be 128 bytes. The back-to-back load

latency to local memory is 472 ns (46 processor bus cycles). This result, which matches

the result measured by McVoy's micro benchmark, was verified by gathering program

traces on the logic analyzer. The procedure to acquire the logic analyzer data is described

in Appendix A. A breakdown of this latency is given in Table 3.1.

Table 3.1: The cycle breakdown of a back-to-back load.

Proc.
Bus Activity

Cycles

10 R10000 proc. finished filling in the L2 cache with the previous load's data;
Subsequently, R10000 proc. detects L2 cache miss on the newly issued load
and places a read request on the processor bus.

20 The Hub gives the first double word from memory (the critical word) to the
processor.

16 The hub places the rest of the L2 cache line onto the proc. bus; R10000 proc.
places the L1 and L2 cache lines into the L1 and L2 caches; R10000 detects
an Ll cache miss on the next load.

46 total

Restart load latency to local memory takes 338 ns. The 133 ns (13 processor bus

cycles) difference between the back-to-back load latency and the restart load latency is

mainly a consequence of the L2 cache line being larger than the L1 cache line by 12 dou-

ble words, where a double word corresponds to the size of the data path connecting the

processor to the memory subsystem. The extra cycle is the result of an additional bus turn-

around overhead in the back-to-back latency micro benchmark.

The topology of two Origin 2000 systems [2] is shown in Figure 3.3.



32 Processor System

Figure 3.3: Origin topology, a hypercube. The nodes
labeled R represent routers.

When the home is the closest remote memory, back-to-back latency takes 687 ns (67

processor bus cycles), while restart load latency takes 564 ns (55 processor bus cycles).

For requests to further nodes there is a penalty of 103 ns (10 processor bus cycles) per

round-trip for each router that must be traversed. A summary of restart latencies on vari-

ous system sizes is given in Table 3.2. The average values in the table assume a uniform

Table 3.2: Restart Load Latency on Origin Systems of various sizes

worst-case avg. number of
System size number of worst-case % home routers to avg restart

(CPU latency memory that is home memory latency
Count) home memory (ns) local (ns)

home memory

2 0 338 100% 0 338

4 1 564 50% 0.5 451

8 2 759 25% 1.25 628

16 3 862 12.5% 1.875 719

distribution for the home memory locations of the requested data across the nodes of the

system.

Finally, the pipelined memory bandwidth results are 536 MB/s for local memory and

417 MB/s ns for the closest remote node.

64 Processor System



3.5 Results on the SUN UE4000

The SUN UE4000 processor is bus-based (hence all memory is equally far away from any

processor). The cache size measured is 64 bytes. The latency results, which are shown in

Table 3.3, show a difference of only 18 ns between back-to-back latency and restart

latency. This result corresponds to our expectations since the data path size is 16 bytes,

running at 84 MHz, and hence the cache fill penalty after the critical word has been

received, which is on the order of 1-2 system bus cycles, is between 12-24 ns. In terms of

system bus cycles, the back-to-back latency is -26 and the restart latency is -25 respec-

tively.

Table 3.3: Restart and Back-to-back load latencies on
UE4000



Chapter 4

Cache Coherency

Caching increases performance by reducing the effective memory latency. However, when

multiple processors are allowed to maintain local copies of the memory data, a cache

coherence protocol is required to ensure the processors have consistent views of memory.

The coherence protocol adds complications to memory operations and, depending upon

the caching state of the given memory location, can affect memory performance.

4.1 Micro Benchmark Implementation

To measure the effects of coherency, the micro benchmarks are modified to establish a par-

ticular caching state prior to the execution of the memory test. While there are many dif-

ferent coherence protocols, we focus on the Illinois [20] or MESI [26] protocol because it

is one of the most commonly used. As shown in Figure 4.1, this protocol is invalidation-

based and uses four caching states: modified, exclusive, shared, and invalid. The modified

state is also known as dirty and the invalid state as unowned. The exclusive state is also

known as clean-exclusive, since it implies that the memory is up-to-date since the given

processor has not written to the particular line. The coherency protocol affects the perfor-

mance of a memory load/store when the requested cache line is in the modified state, and

in some systems, when in the clean-exclusive state. In addition, the coherency protocol

affects the performance of a store operation when the line is shared because an exclusive

copy must be obtained by first invalidating the other cached copies.



Figure 4.1: The cache line states and the cache
line state transitions of the MESI protocol.

The micro benchmarks measure the performance of a "master" processor M which

executes a set of memory operations. The other processors in the system, which we call

P1, P2, etc. are used to establish the cache coherency state of the data accessed by M. To

use these processors, threads are created and placed on the various processors using

library thread routines [27].

To initialize the dirty state:

* P1 simply writes the data to be accessed by M.

To initialize the clean exclusive state:

* P writes the data to be accessed by M
* Then P1 writes an array of size equal to the secondary cache size. This second opera-

tion moves the data out to memory 1.
* Subsequently, Pl reads the data and hence establishes the clean exclusive state.

Finally, to initialize the shared state:

1. A direct-mapped cache or a least-recently-used (LRU) cache replacement algorithm is assumed.



* P1 first writes M's data.
* Subsequently, P2, P3, etc. read it. This sets the state to shared.

Depending on the virtual-to-physical address mapping scheme, different array

addresses may be mapped onto the same cache location. By removing sections of the data

from the cache which the micro benchmark assumes to be present in the cache, this limits

the ability of the micro benchmark to measure the memory performance under the desired

cache coherency conditions. To counteract this problem, the initialization routine is modi-

fied to request pages from the operating system which are large enough as to hold the

entire experimental data. On systems where this is not possible, depending on the virtual-

to-physical address mapping scheme, the user might have to reduce the size of the array if

intended to be placed in the cache in its entirety. Moreover, the cache coverage aimed at

removing data from the cache is to be done using arrays of sizes much greater than the

cache size. Care must be taken in reducing the array size as not to increase timing sensitiv-

ity to system load.

The coherence state is re-initialized before every "while" loop iteration in the micro

benchmark measuring the restart latency. This is done to preserve the consistency of the

cache coherency state across successive iterations.

To measure store latency, the test kernel is modified as follows:

for (i = 0; i < num_reads; i++) {
j = (int *) (*j);
*j = (int) (j + stride);

The store corresponds to the second instruction in the loop. By setting the address of

the write to the value of the previous write, the first loop instruction ensures that the suc-

cessive stores do not overlap.



To verify that the initialization routine produced the correct coherence state on the Ori-

gin system, we counted the number of cache misses, write-backs and invalidates caused

during M's execution. These checks relied on the ability of the processor to report the

count of various processor events such as those we mentioned above. In addition, the logic

analyzer was used to gather traces at the processor bus. We analyzed the traces by check-

ing the state of the data as read from the processor cache.

4.2 Results on the Origin 2000

4.2.1 Reads
These are the cache coherency results for the unowned, exclusive and modified cases. In a

MESI protocol, such as the one on the Origin 2000, the performance of a read to a line in

the shared state is the same as when the line is in the unowned state, and hence is not

included with our results. The following table lists the back-to-back latencies:

Table 4.1: Back-to-back latencies of reads under various CC cases on Origin.

Homea Ownerb Unowned Clean-Exclusive Modified
(ns) (ns) (ns)

local local 472 707 1036

remote 1c  local 704 930 1272

local remote 1 472 930 1159

remote 1 remote 1 704 917 1097

a. The "home" is the memory storing the directory information associated with the requested cache
line.
b. The "owner" is the processor which is caching the line requested by the read, either in the modi-
fied or the exclusive state.
c. By "remote 1" is meant a processor in the closest remote node to the requesting processor.



The following table lists the relevant restart latency valuesl:

Table 4.2: Restart latencies of reads under various CC cases on the Origin 2000

Home Unowned Exclusive ModifiedOwner
(ns) (ns) (ns)

local local 338 656 892

remote 1 local 570 879 1128

local remote 1 338 879 1015

remote 1 remote 1 570 866 953

Finally, these are some of the bandwidth results:

Table 4.3: Pipelined Memory B/w under various CC cases on Origin 2000

Unowned Exclusive Modified
Home Owner

(MB/s) (MB/s) (MB/s)

local local 536 381 304

remote 1 local 417 298 287

4.2.2 Writes
On processors using write-allocation (i.e., a write consists of reading the line from mem-

ory prior to writing it into the cache), writes and reads to memory incur the same penalty,

except in the case of shared lines which, for writes, require some invalidations. While in

1. Only the results in the first row were measured experimentally. The rest of the results were
derived from the corresponding back-to-back latency results and the fill times of each cache coher-
ency state. These fill times were measured by subtracting the restart latency from the back-to-back
latency results corresponding to the case where both the home and the owner are local. Notice that
the fill time for the clean exclusive case is much smaller than the fill time for the unowned and dirty
cases. In the clean exclusive case, the requestor cannot use the critical word until an acknowledg-
ment from the owner has been received,



Table 4.4: Back-to-back latency of writes to lines shared in 2 other processors

Location of sharers Back-to-back latency (ns)

local, remote 1 1320

remote 1, remote 1 (sharers on the same node) 1320

local, remote 2a 1438

remote 1, remote 2 1436

remote 2, remote 2 (sharers on the same node) 1438

remote 2, remote 3 1542

remote 3, remote 3 (sharers on the same node) 1542

local, remote 4 1672

remote 2, remote 4 1674

a. By "remote x", where x> is meant a processor located x-1 routers away.

bus systems, the invalidates are broadcasted through the common bus, in a NUMA multi-

processor such as the Origin 2000, separate invalidations must be sent to each of the shar-

ers. As a consequence, in a NUMA multiprocessor, the latency of a write to a shared line

depends on the number and the relative locations of the sharers. Table 4.4 and Table 4.5

show the back-to-back latency of writes to lines shared in 2 and 3 other processors respec-

tively.

Table 4.5: Back-to-back latency of writes to lines shared in 3 other
processors

Location of sharers Back-to-back latency (ns)

local, remote 1, remote 1 1355

remote 1, remote 1, remote 2 1435

remote 1, remote 2, remote 2 (sharers are 1620
on different nodes)

Table 4.6 and Table 4.7 show the variations in back-to-back latency of writes to shared

lines, with the number of sharers located at some maximum distance N. While varying N,



the distance D to the furthest away sharer(s) is kept constant, first at the value 2 and then at

the value 3.

Table 4.6: Back-to-back latency of a write to shared line; sharers at most 2 hops away

Na Back-to-back latency (ns)

1b  1435

2 1620

3 1663

4 1664

a. The total number of sharers is 3 in the first three experiments and 4 in the last experiment.
b. 1 refers to the one sharer at the furthest distance 2. The coherency state of the line is not
clean exclusive since there are other processors sharing the line, but which are located closer
to the master.

Table 4.7: Back-to-back latency of a write to shared line; sharers at most 3 hops away

Na Back-to-back latency (ns)

1 1542

2 1738 b

3 1743

a. The total number of sharers is 2 in the first two experiments and 3 in the last
experiment.
b. This result is considerably larger than the result measured in the case where
only 1 sharer is located at D=3. While some difference between these results is
expected, the measured -200 ns difference is, intuitively, too large. We have not
yet been able to explain this rather surprising result on the Origin 2000.

4.3 Discussion of Results

4.3.1 Reads
In the Origin 2000, the caches and the main memory are kept coherent through a directory

structure implemented in hardware [10], [ 11]. Requests to memory are processed by the

home of the requested data. The home reads the contents of the requested location while

performing a directory lookup. In the case of a read request, if the directory state is exclu-



sive with an owner different from the requestor, the home sends an intervention shared

request to the owner and a speculative reply to the requestor. Depending on whether the

owner has a modified copy or an exclusive or invalid copy, it sends a shared response

(data) or a shared ack (no data) to the requestor. These two cases are illustrated in the fig-

ure below:

ntervention
eq.

(b)

ervention

Figure 4.2: Read of a (a) Dirty (b) Clean-exclusive line

While sharing the same bus, the two processors on an Origin node do not function like

a snoopy cluster. Consequently, caches do not change state by monitoring the bus for

requests by the other processor, but only as a result of a memory intervention. This has

several implications on performance as measured by our micro benchmarks: On the posi-

tive side, uniprocessor performance is improved because there is no irrelevant snoop traf-

fic. Further, requests for remote memory are forwarded directly by the local processor



without having to wait for a local snoop. On the negative side, if the data is cached in the

other local processor, latency can be considerably longer. First, the owner has to wait until

an intervention arrives from memory before it can look up the necessary information in its

cache. Since the processing of the intervention cannot happen in parallel with the memory

fetch, this overhead is considerable on systems with slow processor intervention process-

ing. Secondly, in the dirty case, the data must traverse the processor bus one additional

time in the form of a speculative response from memory since no mechanism (such as a

dirty bit line on the snoopy buses) exists to disable this response.

4.3.1.1 Requestor and Owner Share the Processor Bus
The cycle breakdown gathered using the logic analyzer (see Appendix A), of a read

from clean-exclusive which was and which is shown in Figure 4.3(b), is given in Table 4.8.

While in the unowned case it takes a minimum of 10 processor bus cycles to issue the read

Table 4.8: Cycle breakdown of a read from local clean-exclusive

request, in the clean exclusive and dirty-exclusive cases it takes a minimum of 17 cycles.

The difference comes from the fact that the requestor must ask and wait for a bus grant

activity

Requestor detects the L2 cache miss and requests processor bus

Bus granted

Requestor issues read request

Intervention to owner from memory

Spec. header

Spec. data from memory

Ack from owner

Requestor grant taken away; the acknowledgment from the owner into proc. interface
outbound queue; the acknowledgment into the proc. interface inbound queue

total



before each read. When the processor interface (which connects the processor bus to the

Hub) does not need the bus, it releases it to the processor that owned the bus last. As a con-

sequence of the back-to-back nature of our tests, in the exclusive and modified cases

where the requestor and owner share the processor bus, it is given to the cache line owner

which used the bus last while responding to the preceding memory request. The 7 proces-

sor cycle overhead comes from the following:

1. the requestor must request the bus from the processor interface (1 processor bus
cycle).

2. the requestor must wait for the bus grant (2 processor bus cycles).
3. finally, the requestor must note it has received a bus grant and consequently place

the read request on the bus (4 processor bus cycles).

The table also shows that processing an intervention to a clean-exclusive line takes 20

processor bus cycles (40 processor cycles, or 27 secondary cache cycles) in the R10000.

The latency of this operation is surprisingly high since the operation should mainly

involve comparing the tags and reading the cache line state.

Although the overhead of intervention processing is high on the Origin 2000, the

snooping scheme was not implemented for the reasons discussed above, and also because

the incidence of reads from lines in which the owner is local in real applications was con-

sidered small relative those in which the owner is not local.

The cycle breakdown gathered using the logic analyzer (see Appendix A), of a read

from dirty-exclusive which is illustrated in Figure 4.3(a), is presented in Table 4.9.



Table 4.9: Cycle breakdown of a read from local dirty-exclusive

# proc. bus Activity
cycles

11 Requestor detects the L2 cache miss and requests proc. bus

2 Proc. bus granted

4 Requestor issues request

24 Intervention to owner from memory

1 Speculative header

16 Speculative data from memory

6 Owner requests proc. bus

2 Proc. bus granted

16 Dirty data from owner into proc. interface outbound queue

2 Dirty data goes from proc. interface outbound queue into proc. interface inbound queue

16 Dirty data from proc. interface inbound queue onto the proc. bus

100 Total

Reading a line present in the modified state in the other local processor is expensive

because the entire cache line must traverse the processor bus 3 times and in a sequential

fashion: once from memory to the requestor, a second time from the owner into the pro-
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Figure 4.3: Proc. bus transactions on a (a) Dirty Data Read
(b) Clean-Exclusive Data Read. In both (a) and (b) the

requestor and owner processors share the same proc. bus.

cessor interface outbound queue and lastly from the processor interface inbound queue to

the requestor.

4.3.1.2 Requestor and Owner on Different Processor Buses
When the owner is placed on a remote node, less contention at the local processor bus is

incurred. However, since the requestor must wait for an acknowledgment from the remote

owner and the network penalty is comparable to the bus contention penalty, no improve-

ments in the overall results are noticed. These results are shown in Table 4.1 and Table 4.2.

Finally, the worst penalty is paid when the owner is local and the home is remote. Under

these conditions both processor bus contention and network latency penalties are incurred.



4.3.2 Writes
To write a line which is shared in other caches, the processor sends a read-exclusive

request to memory. If the request succeeds, the memory sends invalidations to the sharers

and an exclusive reply with a count of the invalidates pending to the requestor. Once the

requestor receives all the invalidate acknowledgments, it fills the cache line with the mem-

ory data and sets its state to modified.

Since the overhead from processing the invalidates is insignificant compared to the

network latency, the latency of a read-exclusive to a shared line does not depend on the

number of sharers, but mainly on the maximum number of hops D from M to a sharer, and

on the number of sharers N on different nodes located at distance D from M.

As shown in Figure 4.4, the latency increases linearly with D as it depends primarily

on the number of routers traversed by the invalidate to the furthest remote sharer1.

For small systems (32 processors), when N is small, the performance drops with

increases in N, while for large N, it stays fairly constant. Figure 4.5 shows the dependency

with N of back-to-back latency for writes to shared lines.

1. While varying D, N was held constant to 2.
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Figure 4.5: Back-to-back latency of writes to shared lines in terms of the
number of sharers (N) located on different nodes at maximum distance 2

on the Origin 2000.

The performance does not depend on the number of sharers located on a particular

node. This is a consequence of the Origin design in which only one invalidate message per

node is used.

The experimental results presented are relevant for Origin systems of sizes smaller

than 32 processors. While results for larger systems are required for a thorough under-

standing of the impact of cache coherency on memory performance, such results could not



be acquired because, until recently, no Origin systems larger than 32 processors were

available.



Chapter 5

Contention

Large-scale parallel applications typically induce contention when run on shared memory

multiprocessors. It is easy to see how such contention can occur at any physically shared

resource, such as: a shared processor bus, the memory, or the network. By introducing

contention at user-specifiable system locations and measuring its impact on memory per-

formance, our micro benchmark suite provides users with additional insight into machine

performance on real multiprocessor applications and allows comparison of various archi-

tectures.

Predicting the performance of an arbitrary user application on a shared-memory multi-

processor requires knowledge of the memory performance seen by a processor under arbi-

trary levels of contention. While user applications can be written to generate some

contention conditions, no application exists which generates any arbitrary contention

value under which performance can be measured.

In light of these considerations, we have created a methodology, based on experimen-

tal and analytical tools, for estimating the memory performance for arbitrary contention

values. The experimental aspects of this methodology are presented in Section 5.1 and the

analytical aspects are presented in Section 5.3 of this chapter. Section 5.2 details the

experimental results acquired on the Origin 2000.

5.1 Micro Benchmark Implementation

The memory test is modified to allow various threads to interfere with the master proces-

sor M at various system resources. In this work, we studied the impact of contention at the



memory and the shared-processor bus.

To generate contention levels which are representative of loads on real applications, a

number of threads are created and placed on separate processors so as to be run concur-

rently and independently of each other. All the threads, which we call noise generators or

NGs, run the same code.

A data access pattern is defined as the amount of interleaving between memory

accesses and instruction execution (work) in the cache by some processor. To vary conten-

tion, the NGs are run under various data access patterns (along with running M). The con-

tention value each pattern generates is unknown to the user and measured at run time. The

more work the NG does between memory accesses, the less contention it produces in the

system. The NGs access memory at strides which increase with the desired contention. In

addition, when reduced contention is to be generated, between successive memory

accesses, the NGs execute a routine which accesses register or cache data only. To vary the

contention level, the number of interfering threads is also varied, from 1 to the maximum

number of available processors in the system (when the memory contention is studied) or

on the shared node (when the processor bus contention is studied).

To estimate contention, the NGs keep counters of the memory blocks transferred. To

avoid overestimating the amount of contention, M flags the NGs upon start and finish. The

NGs turn the counters on upon M's start and off upon M's finish. M must start after the

NGs and finish before them. To cause M to start after the NGs, a barrier call is executed

early in the program and a start-up routine is executed by M prior to the memory test,

which, by generating a large number of accesses to memory, incurs a long delay and

hence, ensures that all the NGs have started execution by the time M enters the memory

test. To cause M to finish before the NGs, the NGs are forced to cover larger data sets than



the data set accessed by M during the execution of the memory test. Figure 5.1 illustrates

the above discussion:

Rnrripr call

M executes
startup routine.

M executes
micro
benchmark.

I k

q NG starts execution

NG counter ON.

NG counter OFF.

Figure 5.1: Contention micro benchmark.

The flag, which is checked periodically by the NGs, is implemented as a shared vari-

able with two possible values: OFF and ON. When the flag is OFF, the NG leaves the

counter, a private variable, unchanged. When the flag is ON the counter is incremented by

the number of bytes moved since the last check. To compute this increment, the NG keeps

track of the bytes moved before the previous check and subtracts it from the total number

of bytes moved.

On shared-memory multiprocessors, the most important location of contention is the

memory system. In a distributed shared memory multiprocessor with multiple processors

connected to one node, another important contention location is the processor bus [14],

[ 11], [13]. To restrict bandwidth consumption to a particular system location, system rou-
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tines for process and data placement are used [27]. To restrict contention to the processor

bus, the NGs and M are placed on the same processor bus and the data on different physi-

cal memories. Similarly, to restrict contention to some physical memory, the processes are

placed on different nodes and the data on the same physical memory.

5.2 Results on the Origin 2000

The following table lists the memory contention results on the Origin 20001. The NG con-

tention values, and the master restart latency and throughput were all computed during the

execution of the micro benchmark.

Table 5.1: Restart latency under memory contention on the Origin 2000.

NG MasterNG Master Master throughput
Contention Restart Latency (MB/sec)
(MB/sec) (ns)

0 338 271

41 371 253

121 421 231

233 483 207

336 572 181

484 915 122

538 1462 80

1. Only the restart latency results are presented. The corresponding back-to-back latencies can be
computed by adding the fill time (measured previously) to restart latencies.



These are the processor bus contention results on the Origin 2000. As in the memory

micro benchmark, the NG contention and the master restart latency and throughput were

computed at run time.

Table 5.2: Restart latency under processor bus contention on the Origin 2000.

NG Contention Master Restart Latency Master throughput

(MB/s) (ns) (MB/sec)

0 338 271

13.9 368 255

120 431 227

316 586 178

386 786 139

5.3 Analytic Model

The experimental technique presented in Section 5.1 can be used to measure the memory

performance seen by a processor under some finite number of contention values. These

values are not set by the user however, but measured at run time. To compute the memory

performance under arbitrary, user-selected contention values, some analytic model is

required instead. By assuming the M/D/i model under closed queueing conditions for

each contended resource, an expression of memory performance in terms of NG conten-

tion at the resource is derived. From this equation, memory performance under any arbi-

trary contention values can be computed. The peak sustained bandwidth for each resource

is also derived, iteratively, based on the curve fit of the micro benchmark data and the ana-

lytic data model, evaluated for the particular value of peak sustained bandwidth.

A general diagram describing a queueing model with a single resource is shown in



Figure 5.2.
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Figure 5.2: The open queueing model. I represents the average
response time; W the wait time in the queue; S the service time.

In a queueing system, an important performance measure is the average response time

at the resource I which includes the waiting time in the queue W and the service time S:

1 = W+S (5.1)

The wait time W varies with the server utilization U, the type and the model of the par-

ticular queue.

Depending on the distribution of arrival and service times, different queueing models

apply. Under the conditions of our experiments, the service time is deterministic since all

the clients receive the same amount of processing time at a given resource ; in light of the

independent thread execution, the arrivals can be approximated by randomly distributed

exponential variables. Hence the M/D/1 queueing model applies [3].

Queueing systems can be of two types: closed or open. As shown in Figure 5.3, a

closed queueing system models networks in which a fixed and finite number of customers

1. Some resources, such as the shared-processor bus see two types of clients: requests, which
require a short processing time (for example, a memory request consisting of a memory address,
delivered in 1 bus cycle) and replies which require a long processing time (for example, a memory
reply including large data typically delivered over multiple bus cycles). Requests are paired with
replies. For such resources, each pair of requests and replies can be approximated by one single cli-
ent whose service time is equal to the sum of the service times corresponding to the request and the
reply. Consequently, the deterministic service model still applies.



are present, trapped such that none may leave and no others may enter [8]. By contrast, an

open queueing system which is shown in Figure 5.2 permits external arrivals and has infi-

nite populations. While the open queueing model is appropriate for large multiprocessors

which generate and support the service of many simultaneous requests to the resource

facilities, most computer systems resemble closed queueing systems. First of all, they con-

tain no infinite populations since the number of pending requests to any resource facility is

finite. Secondly, the nature of the arrival process depends upon the number of customers

already in the system.

Figure 5.3: The closed queueing model.

The closed queueing model operates as follows: when a user (processor) makes a

request for service, the request "enters" the center (memory) and proceeds to receive ser-

vice according to the scheduling algorithm for the particular resource. During this time,

the user either "goes to sleep" (i.e. cannot generate any new requests) or potentially gener-

ates a new request. When finally the request is complete, the response is fed back to the

user at which point it "wakes up" if asleep and then begins to generate a new request. The

time spent by the user in generating this new request is referred to as his "thinking time" T.

For simplicity, T includes the time from when the user begins to generate the request to

I



when the request arrives at the center.

For a closed queue, the important performance metric is L, the average total latency in

the system, which includes the average response time at the queue 1 and the thinking time

T:

L = T + (5.2)

Our aim in this section is to derive an expression for the latency seen by the master L,

in the context of the M/D/1 closed queueing model, and in terms of NG contention, which

we denote by Contention(NG)1. Initially, we derive an expression for L in terms of Con-

tention(NG) and S. Then we compute S from the expression of L by a least square approx-

imation to the experimental data for L.

To express L in terms of S and Contention(NG), we first derive I in terms of L, NG con-

tention and S, and then T in terms of S and the average total latency under no NG conten-

tion, which we assume to be known from the experiments, and which we denote by

L(Contention(NG) = 0).

According to (5.1), 1 depends on the wait time at the queue W and the service time S.

To derive the expression of W in terms of L, Contention(NG) and S, we first express W as a

function of L, S, Contention(NG) and U, the utilization of the resource. Since no closed

form solution to W in terms of these parameters has been found in the available literature,

the necessary expression is derived in this thesis. The derivation relies on the fact that the

wait time W depends on the instant queue length A upon customer arrival at the queue, in

the following manner [12]:

1. Although the "streaming" traffic pattern generated by the NGs may cause the total latency seen
a NG request to be different from the total latency seen by a M request (since the thinking times T
may differ), we can assume that the NGs act as N- master processors, and hence all N requests see
the same average total latency L.



W = SA (5.3)

The instant queue length A is computed on condition that some customer is arriving at

the queue and so cannot itself be in the queue. To compute A, a characteristic of closed

queueing systems is used, mainly that the instant queue length equals the average queue

length Q in a system where the arriving customer is not included. Consequently, A is com-

puted by subtracting the contribution of the arriving customer from Q. Since all customers

are equal, they also contribute equally to the average queue length, hence the contribution

of the arriving customer is Q/N where N is the total number of customers in the system.

Therefore,

W = SQ- (5.4)
Since, from [12], for a M/D/1 queue, the average queue Q at a server under U utiliza-

tion is:

lU
21-U

the expression of W in terms of U, S and N is:

W= S(I -U (5.6)

To compute N, we use the Little Theorem:

N = L(Throughput(NG) + Throughput(M)) (5.7)

where Throughput(NG) is the throughput 2 generated by the NGs and Throughput(M) is

the throughput generated by M. Since M executes one request during L time, Through-

put(M) is given by the following equation:

1. See footnote on page 49.
2. Throughput is defined as the number of requests generated by a processor per second.



1
Throughput(M) = -

L
(5.8)

Since each requests generates a data transfer of CacheLineSize bytes which contribute

to contention, Throughput(NG) can be derived from Contention(NG) as follows:

Throughput(NG) = Contention(NG)
CacheLineSize (5.9)

where CacheLineSize must be expressed in units of megabytes.

By substituting (5.8) in (5.7) and then substituting N in (5.6), W in terms of L, Conten-

tion(NG), U and S becomes:

W = S 2 -UU
)( 1-U

-1
LContention(NG)

CacheLineSize + 1

(5.10)

Consequently, from (5.1) and (5.10), the expression of I in terms of L, Conten-

tion(NG), U and S is:

1 = S 2 T-- + S
_1 1l (= ) LContention(NG) + I

CacheLineSize I

(5.11)

U and can be computed from the total contention and the peak sustained bandwidth

through the resource:

U = Throughput(NG) + Throughput(M)
PeakSustain edBandwidth

(5.12)

where:

1PeakSustainedBandwidth = -
S (5.13)

By substituting (5.13) in (5.12), the expression of U in terms of L, Contention(NG) and

S is:



Contention(NG) 1
CacheLineSize L

(5.14)

Hence, by substituting (5.14) in (5.11), the formula of I in terms of L, S and Conten-

tion(NG):

/

S= S
s(Contention(NG) +1)CacheLineSize L

j[i~ + 1 (5.15)
1 _ (Contention(NG)

CacheLineSize
1+iL)

After some simplifications, I can finally be expressed as:

(/
I = S. S Contention(NG)

(Contention(NG) +1 CacheLineSize
1 CacheLineSize L /

+11
J

(5.16)

To compute Tusing (5.2), we evaluate L and I for Contention(NG) = 0. By noting that,

when Contention(NG)=O, l(Contention(NG)=O)= S (since no wait in the queue is

incurred), T is computed as:

T = L(Contention(NG) = 0) - S (5.17)

where L(Contention(NG) = 0) is assumed to be of known value, as measured experimen-

tally.

By substituting (5.15) and (5.17) into (5.2), the implicit expression of L in Conten-

tion(NG) and S can be derived as:

(Contention(NG) 11-SCacheineSize
CacheLineSize L,

Contention(NG)
CacheLineSize

where L(O) is a shorthand notation for L(Contention(NG) = 0).

After simplifications, (5.18) reduces to a quadratic equation in L (see appendix B). The

roots of the equation are:

L = L()+1
L = L(0) + I (5.18)

\

as



L b± b2 4ac (5.19)

where:

a = - S Contention(NG) (5.20)
CacheLineSize

b= L(O)(S - Contention(NG) 1(1  2 Contention(NG) S (5.21)

CacheLineSize X(2 CacheLineSize

c = L(O)S (5.22)

L is set to the larger of the two roots, (-b) +J , so as to satisfy the inequality:

L 2 S. This step completes the derivation of the average master latency L in terms of Con-

tention(NG) and S.

By iterating over service times and choosing the value which results in the smallest

least square error to the actual data, one can estimate the actual resource service time.

Finally, by replacing in the expression of L the unknown service time S with the actual ser-

vice time, one can derive the expression of L in terms of Contention(NG). From this equa-

tion, one can compute the delays through the system on all contention values.

To compute the least square error per sample, formulae (5.23) and (5.24) are used:

i = NumSamples

LeastSquares = _ (r(i) - m(i)) 2  (5.23)
i= 1

where NumSamples is the number of contention values on which the benchmark data is

gathered, r(i) is the benchmark data corresponding to sample i, and m(i) is the model data

for sample i. Specifically, for the experiments run on the Origin 2000 and dedicated to

memory contention studies, which are shown in Table 5.1, NumSamples = 7, r(1) through

r(7) are the results stored in the second column of this table, and m(1) through m(7) repre-

sent the L values evaluated for each Contention(NG) value in the first column of the same



table.

To compute the error per experimental sample, the LeastSquares result is normalized

as follows:

Lerror = LeastSquareserror =N
NumSamples

(5.24)

Applied to the Origin 2000, this methodology leads to the following results:
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Figure 5.4: Restart Latency under memory contention and the
best-fit curve implied by the closed M/D/1 model with a

memory service time of 195 ns.
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Figure 5.5: Restart Latency under processor bus contention and
the best-fit curve implied by the M/D/1 closed queueing model

with a processor bus service time of 215 ns.

Best fit based on least square computations implies a memory service time of 195 ns

and a processor bus service time of 215 ns. The minimum least square errors are 44 ns/

sample for the memory and 28 ns/sample for the processor bus respectively. The service

times imply a peak sustained memory bandwidth of 657 MB/sec and a peak sustained pro-

cessor bus bandwidth of 594 MB/sec. These results match the numbers seen in cycle-by-

cycled based simulations within 5%.

arn



Chapter 6

Conclusions

6.1 Accomplishments

In light of the new processor developments, memory latency has become two distinctive

performance parameters: restart latency and back-to-back latency. Furthermore, pipelined

memory bandwidth has replaced memory bandwidth, a performance metric traditionally

computed as the ratio of cache line size to memory latency. With the sophistication of cur-

rent processors and the complex performance space of cache-coherent multiprocessors,

memory performance has also become more difficult to measure. This thesis has refined

the current definition of memory performance so as to adequately address the characteris-

tics of modem processors. In addition, it has introduced a methodology for measuring

memory performance, in light of this refinement and in the context of modem cache-

coherent multiprocessors.

The methodology is based on three micro benchmarks, each measuring one of the

three parameters of memory performance. As revealed by our experiments, each parame-

ter offers a unique result and insight into memory performance. Back-to-back latency can

be significantly larger than restart latency. For example, on the Origin 2000, back-to-back

latency is greater than restart latency by -40%. The pipelined bandwidth to local memory

is 536 MB/s, in contrast to 271 MB/s which would result if simply dividing the cache line

size (128 bytes) by the back-to-back latency (472 ns).

To study the effects of cache coherency, a particular caching state was established

prior to the execution of the memory micro benchmark. On the Origin 2000, the cache



coherency protocol increases the penalty of a memory access significantly. For example,

for a read to a line with a local home, the restart latency is 338 ns when the state of the line

is unowned (hence no extra cache coherency operations are required in order to service the

miss), as opposed to 892 ns when the state of the line is dirty in the other local processor

(in which case some extra cache coherency operations are required to obtain the most

updated version of the cache line).

To measure the impact of contention, the micro benchmarks were extended to allow

various levels of interference to be introduced and measured at controlled system

resources. A methodology based on the M/D/1 closed queueing model was derived to

compute the peak bandwidth through each studied resource and the memory performance

under contention levels that cannot be reproduced experimentally. As shown by experi-

ments on the Origin 2000, the resource utilization adds delays and reduces the bandwidth

seen by a given processor. For example, the restart latency increases by 330% when the

memory utilization changes from 40% to 94%.

6.2 Future Work

Our current methodology assumes a number of system features, such as a cache which is

either direct-mapped or has a LRU replacement algorithm1 and a MESI cache coherency

protocol. As future extensions to our work, we envision enhancing the portability of the

micro benchmarks, for example, by supporting additional cache coherency protocols and

cache replacement algorithms.

Introducing additional system resources, such as the network and the cache controller,

as cases in the micro benchmark dedicated to contention studies, and measuring the

1. In the routine which initializes the cache coherency state, it is assumed that some given data can
be flushed from a cache by writing a large array into the cache (of size greater than the cache size).



impact of writebacks on memory performance are some other possible extensions of this

work.

A current limitation of our methodology dedicated to cache coherency studies is that

the entire experimental data must fit in the cache. By limiting the size of the experimental

data to fairly small values, this methodology leads to inconsistencies of results across runs.

To overcome this difficulty, currently the user must run the cache coherency micro bench-

mark a large number of times and select the smallest of the observed results. At this stage,

we are not aware of a more elegant approach to overcoming this limitation.

The application of micro benchmarks to macro benchmark performance prediction

remains an open issue. While research by Saavedra [23] has shown that, for simple unipro-

cessor applications, such predictions can be made within 10% only of the actual run times,

no similar achievements in the area of multiprocessor applications have yet been demon-

strated [28]. However, with the new results our work has generated in measuring multipro-

cessor memory performance, we believe constructing such a successful methodology may

be possible. In addition, the ability of our micro benchmarks to handle sophisticated pro-

cessor optimizations may allow for further improvements in uniprocessor macro bench-

mark prediction to be achieved.





Appendix A

Acquiring Laboratory Data

To verify the micro benchmark results on the Origin 2000, a logic analyzer was installed at

the SGI facility in Mountain View, CA. The logic analyzer was connected to a processor

bus in a 2-node Origin 2000 system. The logic analyzer was monitoring events at the given

processor bus. Some of the events monitored were: requests for memory data and for bus

grant, acknowledgements and writebacks by each processor on the node, data replies, bus

grant release to each of the processors, and interventions from memory.

To trigger the logic analyzer, a trigger instruction was executed, which caused some

trigger value to appear at the processor bus. The trigger value was defined as follows:

#define TRIGGER_ VALUE OxfefefefefefefefeUL

A 64-bit value was chosen for TRIGGER_VALUE to reduce the probability that the

trigger value occurs at the processor bus as a result of some operation other than the trig-

ger instruction.

The micro benchmarks were modified to execute the trigger instruction after a few

loop iterations. The trigger instruction consists of a write to an uncached variable:

*uncached_trigger = TRIGGER_VALUE;

Prior to the execution of the micro benchmark, the uncached variable was initialized as

follows:

/* to allocate uncached memory */

uncached_trigger = memalign(16*1024, sizeof(long long));

cachectl(uncached_trigger, 16*1024, UNCACHEABLE));





Appendix B

This appendix derives the quadratic contention equation in L.

From (5.18),

r
L = L(0)+

1.
Contention(NG)1 -SCacheLineSize

We define the following constant A:

A = S. Contention(NG)
CacheLineSize

Then (B.1) becomes

SA

L = L(O) + S
1-A-

Hence,

(L-L(O))(1 -A-S) =S

Further simplification leads to the following:

L(1 -A) +L(O) S - L()(1 - A) = 0
L 2

Define constants a, b and c as follows:

a = 1-A

SA
b = -S-L(0)(1-A)

2

c = L(O)S

An implicit equation of L in terms of a, b and c follows from (B.5):

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)



(B.9)aL + + b = 0
L

Hence,

a(L)2 + bL + c = 0 (B.10)

q.e.d.
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