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for the degree of Doctor of Science.

ABSTRACT

This research is concerned with the optimal feedback con-
trol of linear stochastic systems. Particular emphasis is placed

d d
on the solution of problems ior whicn L-he CosU is nonIIquau r-ic a
the plant state cannot be determined by the controller without
error. The plant and feedback controller are treated as discrete
systems in time. It is shown that the optimal feedback control
can be determined as a function of the mean plant state, condi-
tioned on the measurements available to the controller. Recur-
sion formulas are derived which permit the determination of this
optimal control function. The theory is applied to the problem
of minimum fuel midcourse guidance of spacecraft. Both fixed
time of arrival and variable time of arrival guidance schemes are
investigated, and an Earth-Mars mission is used as the basis for

i.. T+ iF · , +f + +h t theoimal rcon-
computing numerca exampes. s oun a p

trol is determined by a threshold. If the estimated state lies out-

side the threshold, the optimal control corrects to the threshold.

Inside the threshold the optimal control is zero. Minimum fuel

lateral control of a re-entry vehicle is examined and a numerical

solution, based on the Apollo re-entry system is presented. It

is found that the o timal re-entr control is also determined by

a threshold. Quadratic cost problems are treated, producing the
discrete control/estimation separation theorem. The theory is
then generalized to handle problems for which the system is con-
tinuous. A partial differential equation is derived which must be
satisfied by the optimal control function. Solution of a quadratic
cost problem is accomplished, producing the continuous control/
estimation separation theorem. A minimum energy problem with

iii
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arbitrary terminal cost is treated and a particular closed form
solution is obtained. Finally, the continuous analogue of the dis-
crete variable time of arrival problem is examined.
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CHAPTER I

INTRODUCTION

1. 1 Background

The general field of system optimization has been highly
developed in two distinct, but related areas, namely stochastic
estimation theory and optimal control theory. Further, optimal
control theory has evolved in two separate directions, deter-
ministic optimal control and stochastic optimal control. As a
basis for further discussion, some significant results obtained
by investigators in these areas will be briefly described in the
following three paragraphs.

Stochastic estimation theory attempts to solve the problem
of estimating the state of a system so as to minimize a specified
penalty. The penalty usually takes the form of the mean value of
some function of the estimation error. This theory has been
notably successful in solving problems for which the system is
linear and the penalty is mean square estimation error. Wiener (7 5 )

developed the mathematical basis for the theory. He showed that
the weighting function of the minimum mean square linear esti-
mator satisfies an integral equation (the Wiener-Hopf equation).
By specializing to stationary problems he was able to develop the
method of spectrum factorization which provides a systematic
approach to the solution of this equation. The Wiener-Hopf equa-
tion and the resulting optimum linear estimator involve only the
second order statistics of the system. If the system state and
the measurements available to the estimator are gaussian pro-
cesses, then the minimum mean square linear estimator is opti-

(64)mum for a wide class of penalty functions In addition, in

abaft·Y~_U_~3il:*I__F~PI:__liiiiii;M~l~i~~j~?~ _iI_~:~l*n:il~iiYi~i:~*Oir~~__lCB~l~il-~ I--1;.17:lilii -i- Viiililiri~n'~-i~_*;i~; ^:r-:--"_- r-i-;-;;-;i-_~; *I;ii
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cases where the probability density of the system is not known,

but only second order statistics are available, there is good

justification for using the minimum mean square estimator be-

cause it is optimum for wide classes of penalty functions and

density functions. Many authors have extended Wiener's original

work to handle various nonstationary and/or nonlinear problems.

Significant advances were made by Kalman (4 0), Kalman and Bucy(4 1)

and independently Battin ( 5 ) , who developed practical methods of

solving nonstationary problems. By applying the state space ap-

proach to the estimation problem, they were able to define the

optimum estimator in terms of difference or differential equations.

Since the solution takes this form, realization of the actual esti-

mator is a relatively straightforward problem in computer pro-

gramming or analogue circuit design. More recently, some

progress has been made in the area of nonlinear filtering(18,38,78)

for cases in which the state or the measurements are nongaussian

processes. At present however, no compact systematic approach

to these problems has been found. The existing methods generally

involve truncated series expansions of the posterior state prob-

ability density.

Deterministic optimal control theory is an outgrowth of the

calculus of variations. The theory can be used, in principle, to

design a controller that will drive a plant so that some specified

cost function is minimized. In recent years significant contribu-

tions have been made by many authors. Methods have been de-

veloped that permit the solution of practical control problems

which could not be solved using the classical methods. Two dif-

ferent approaches have been used in the development of these

methods. Lawden ( 5 0 ) , Breakwell 1 4 ) , and others have invented

ingeneous techniques which permit the relaxation of one or more

of the conditions that must be met in the application of the classical

calculus of variations. In general these techniques apply to

specific problems or classes of problems. The other approach,

taken by Pontryagin et. al. (59) has produced a general extension

---- p~uly9-~l Prl__Y-~Dllllbql~···I~-·-Y~~~·llf~-··-~
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of the classical calculus of variations, in the form of the well-known
maximum principle. The application of this result allows solution
of a wide class of optimal control problems. In addition to these
analytical methods, a number of numerical techniques have been

(5 1) (16 )developed. Kelley and Bryson developed the method of
steepest descents which is extremely useful for determining the
optimal control as a function of time. By contrast, Bellman's
method of dynamic programming (6 22) can provide the optimal
feedback control; although the computational requirements involved
in this method are far more stringent than for steepest descents.

Stochastic optimal control theory attacks the problem of
controlling a plant, in the presence of random input disturbances,
so as to minimize a mean cost function. The parameters of the
plant, its state, and the statistics of the input disturbances are
assumed to be known deterministically by the controller. This
theory has its roots in the theory of Markov processes. There is
extensive literature on Markov process, for example, Doob( 2 1 )

(74) (67, 69)Wax and Stratonovich ( 6 7  Formulation of the stochastic

optimal control problem as a decision process was accomplished
by Bellman(6, 7,8) He applied the well known imbedding technique
of dynamic programming to derive the recursion formulas which
must be satisfied by the optimal control. In his development,
Bellman assumes that the plant state is a Markov process and
that the state can be measured by the controller without error.
As a result of these assumptions the optimal control becomes a
function of the known state. Only a few computer solutions of
stochastic optimal control problems have been reported. Some
interesting examples are given by Aoki ( ' 2), Tung and Striebel ( 7 3 )

(22)and Dreyfus

A very common engineering problem is the design of a
feedback controller to minimize a cost function when the plant
state cannot be measured perfectly. The controller must then
operate with partial information and elements of both stochastic

1ý ", -ý, -00
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estimation theory and stochastic control theory are necessary in

determining the optimum system. In such cases it is appropriate

to consider a mean cost function because the plant state, the con-

trol and the cost are all random processes. By specializing to

problems for which the plant is a linear system and the cost function

is a quadratic form, Gunkel and Franklin ( 3 0 ) Joseph and Tou ( 3 9 )

Florentine (26), Potter (60)and Tung ( 7 1 ) were able to prove a

separation theorem. This theorem states that the problems of

estimation and control may be solved independently. The estimator
(41)

is designed by the methods of Kalman and Bucy ( 4 1 ) . The feedback

controller is designed using the calculus of variations to minimize

the cost function, assuming that there is no uncertainty. The

cascade combination of these two systems provides the optimum

over-all feedback controller. However this theorem cannot be

applied to many important problems for which the cost function is

nonquadratic. For such cases Fel'dbaum(24) and Stratonovich ( 6 8 )

have shown that if there exists a finite set of sufficient statistics,

which determine the expected cost to complete the process, then

the optimal control becomes a function of these sufficient statistics.

Stratonovich shows that the optimal control is obtained by solving

recursion formulas for the cost function in the space of the sufficient

statistics.

1. 2 Description of the Problem

The primary goal of this research is to develop a systematic

method of determining optimal feedback controllers when the plant

is a linear stochastic system, the state cannot be measured without

error, and for arbitrary cost functions . In particular, solutions

to problems for which the cost function is not quadratic are desired.

The approach will be first, to derive the conditions that must be

satisfied by the optimal control and second, to apply these conditions

to some example problems in the control and guidance of spacecraft.

The object in solving example problems is to demonstrate the use-

fulness of the theory for providing practical engineering solutions

I1IBLII*TC·II··~YIW((~-~C- - _ ~-r I · · I · Ilr
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and to try to provide some physical insight.

1. 3 Synopsis

As an aide to the interested reader, the remaining chapters

of the work are briefly summarized below. Each summary attempts

to outline the content of the chapter and point out significant results.

CHAPTER 2 - Optimal Control of Discrete Stochastic Systems

The class of systems to be handled and the cost function to

be minimized, are carefully defined. Equations are developed per-

mitting calculation of an estimate of the plant state based on the history

of measurements available to the controller. This estimate turns

out to be the conditional mean of the plant state, based on the

measurement history available to the controller. An expression

for the posterior probability density of the state is also developed

and it is shown that the estimated state is a sufficient statistic

for determining this posterior density. Additional properties of the

estimated state are determined in preparation for development of

the optimality conditions. A minimum expected value function is

defined as the minimum cost to finish a partially completed process.

Recursion formulas are derived which must be satisfied by the

minimum expected value function and it is shown that the minimum

expected value function depends only upon the estimated state and

time. Solution of the recursion formulas produces the optimal

control as a function of the estimated state. A useful form for the

recursion formulas is determined for purposes of digital computation.

The recursion formulas are generalized to handle cases for which

multiple measurements are taken by the controller between control

application times. Proper terminal conditions are determined for

cases in which the terminal control function is specified instead of

a terminal cost function.

5



CHAPTER 3 - Applications of the Discrete Theory

The problem of minimum fuel, variable time of arrival,

midcourse spacecraft guidance is described. Errors out of the

plane of the reference trajectory are ignored. The optimality

conditions of Chapter 2 are applied, producing a one dimensional

recursion formula for the minimum expected value function.

Necessary and sufficient conditions for the optimal control are

developed. It is shown that the optimal control is determined

by a threshold. If the estimated state lies outside the threshold,

the optimal control drives the estimated state to the threshold.

If the estimated state lies within the threshold, the optimal con-

trol is zero. Equations convenient for digital computation are

obtained and a step by step procedure for calculating the optimal

control function is described. A computed reference trajectory

is described and the numerically calculated optimal control function

for this trajectory is presented. It is found that applying two

partial corrections very early in the flight can save an appreciable

amount of midcourse guidance fuel. Monte Carlo simulations of

the optimal control system are described and the computed cost

probability distribution, using the optimal control, is presented.

A comparison is made between the optimum and a near optimum

linear controller and it is found that the near optimum linear

controller does an extremely good job as compared to the optimum.

As a second example, the minimum fuel, fixed time of arrival,

midcourse guidance problem is formulated. Errors out of the

plane of the reference trajectory are ignored. It is shown that

this problem may be reduced to two state variables and necessary
and sufficient conditions for the optimal control are derived. It is also
shown that the optimal control is determined by regions in the estimated

state space. If the estimated state lies in a certain region 5(n) the
optimal control is zero. Outside C(n) the optimal control drives the
estimated state, in a specified direction, to a point on the boundary
of 5(n). Equations convenient for digital computation are developed and

~i~llP~I'Y"~1Y~L"VU~1 ;~

_ II I r I I ·



the step by step procedure for determining the optimal control

functions is described. The reference trajectory of the previous

example is used as the basis for solving an actual numerical

problem. The calculated optimal control functions are presented

and methods of implementing the optimal control on a guidance

computer are briefly discussed. The third problem handled in

this chapter is minimum fuel lateral guidance of an atmosphere

re-entry vehicle. It is shown that this problem can be reduced

to two state variables. Recursion formulas for the minimum

expected value function are derived and a computation procedure

for determining the optimal control functions is described.

Characteristics of the Apollo spacecraft re-entry system are

used as the basis for calculating an actual numerical solution.

It is found that the optimal control is again determined by a thresh-

old. If, for example, the vehicle is banked to the right, so that

its lift vector is pointing to the right of the target, then if the

estimated miss distance at the target lies to the right of the

threshold, the optimal control will roll the vehicle to the left. If,

however, the estimated miss distance lies to the left of the thresh-

old, the. optimal control is zero and the lift vector remains to the

right. Similar conditions hold if the vehicle is banked initially to

the left. The threshold values are calculated as functions of time

along the reference trajectory. , The final example treated in this

chapter is the general quadratic cost problem. The solution is

determined in terms of a matrix difference equation and con-

stitutes an independent proof of the well known quadratic cost

control/estimation separation theorem for discrete systems.

CHAPTER 4 - Optimal Control of Continuous Linear Stochastic

Systems

A class of continuous systems and the accompanying cost

function to be minimized, are carefully defined. A discrete system

is described which, in the limit as the time step goes to zero, has

the same statistics as the continuous system. A recursionformula

7



for the discrete minimum expected value function is derived by

the methods of Chapter 2. Taking appropriate limits, as the

time step approaches zero, a partial differential equation is ob-

tained for the continuous minimum expected value function.

Solution of this equation, to satisfy the appropriate terminal condi-

tion, produces the optimal control function for the continuous

problem. The various terms of this differential equation are

briefly discussed.

CHAPTER 5 - Applications of the Continuous Theory

Three example problems are solved. The first is the

general quadratic cost problem, and its solution produces the

familiar control/estimation separation theorem for continuous

systems. The second problem has a single state variable plant
with quadratic penalty on the control and an arbitrary terminal
cost function. By specializing so that the terminal control forces
the terminal estimated state to lie in a specified interval, the
solution of this problem can be written in terms of error functions
(erfs). Finally, the continuous analogue of the variable time of
arrival midcourse guidance problem is solved; for a special case
in which the control is determined by a threshold that stays con-

stant in time.

CHAPTER 6 - Conclusions, Contributions, and Recommendations

Aspects of the theory which are felt to be of value, as de-
sign tools, are discussed and the limitations of the theory are
enumerated. Those parts of the research which the author feels
are original are explained. Finally, some problems which cannot
be handled by the present theory are described and areas of
possible future research are outlined.

- _ _ _ _ ~~-~7P-~~I~-~"~slp~"~I·- _·CeYLII~U~··II~-CI_1·*~ ·IIIIIIYX i~
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CHAPTER 2

OPTIMAL CONTROL OF DISCRETE LINEAR STOCHASTIC SYSTEMS

2. 1 General Discusssion

The purpose of this chapter is to derive the optimality

conditions for control of a discrete linear stochastic system.

It will be shown that the optimal control is a function of the

mean plant state, conditioned on the measurement history.
Recursion equations will be derived for the minimum expected

value function and solution of these recursion equations produces

the optimal control as a function of the conditional mean state.

2. 2 Problem Statement

It is assumed that the dynamics of the plant may be described

by discrete linear equations. Consider the transition of the plant

state vector from time tn to time tn+1 . The transition is de-

scribed by the linear vector equation.

x(n+l) = (n + 1,, n) x(n) + (n+l1, n) u(n) + v(n)

(2-1)

where

x(n) state vector of dimension k

u(n) control vector of dimension p

0(n + 1, n) - state transition matrix (kx k)

0 (n + 1, n) control influence matrix (k x p)

The initial state x(O) is a k vector of normally distributed

random variables with known statistics and v(n) is a k vector of

normally distributed random variables, independent of x(n) and

u(n), with known statistics given by

iS~Li~



E [v(n)] = 0
E [v(n) vT(n) = V(n) (2-2)

E [v(n)v Ti) = 0 i n

Control sets U(n) are defined so that problems involving

constraints on the control may be handled. qj (n) is an arbitrary

set in the space of the control vectors and control vectors which

are elements of ql(n) are said to be admissible controls. The set

C1 (n) can depend upon parameters other than time; for example,

it may depend in some way upon the history of the control up to

time tn- It is only required qL(n) be known by the controller, in

a deterministic sense, at the time t . The set ql(n) representsn
all possible control vectors that can be applied at tn . Commonly

Ql(n) is a compact set.

The feedback controller has available to it a measurement

process m(n). The measurement m(n) is taken and processed

simultaneoulsy with the control u(n). Thus, the data received at

time t can be incorporated into the decision process that resultsn
in the control u(n). The measurement process is described by

m(n) = H(n) x (n) + w(n) (2-3)

where m(n) is an I dimensional vector with

H(n) = measurement matrix ( x k)

and w(n), the measurement error, an A vector of normally dis-

tributed random variables, independent of x(n) and v(n) with

known statistics given by

E [w(n)] = 0

E [w(n)wT(n)] W(n) (2-4)

E [w(n) wT(i)]= 0 i #n

;-~jlPY~~P~------~----~·11~·-·~--·11~·11 1~
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Measurement begins at time t1 and ends at time tq., so the first

measurement is m(1) and the last measurement is m(q).

The plant state vector and the measurement vector are

subject to random disturbances so it is appropriate to consider

cost functions which are mean values of functions of the state

and the control. Thus the cost J, to be minimized, is written

in the form of a scalar equation
-q

J = E L(x(n), u(n), n) + k (x(q+1))] (2-5)
-n= 1

Control begins a time t 1 and the last control decision is

made at time t . Time t is a specified terminal time,q q+1
L(x(n), u(n), n) is a specified scalar incremental cost at each time

step and c (x(q + 1)) is a specified scalar terminal cost function.

It is to be understood that the expectation in (2-5) is conditioned

on all available a priori information.

Using these definitions the optimization problem can be

defined in specific terms as follows:

"Find the admissible control u(n), as a function of the

past history of measurements up to time t n , that drives the state

x(n), so that the expected cost J is minimized".

It is important to note that the incremental cost function

L(x(n), u(n), n) and the terminal cost function k(x(q+l)) are not

required to be quadratic in x(n), u(n) or x(q+ 1). Also, inherent

in the definitions is the assumption that the effect of the control

on the state is known without error by the controller. If the

actual system has noise in the control channel, then this noise

may be modelled by including it in the disturbance v(n). However,

cases for which the noise in the control is statistically dependent

upon either the state or the control, are specifically excluded.

2. 3 Estimation and Sufficient Statistics

If there are no errors in the measurements and the measure-

ment matrix H(n) is square and nonsingular, then the state is known
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perfectly and the optimal control can be specified as a function of the

state. In general, however, the state cannot be determined exactly,

so the control action must be based on the information available

to the controller, namely, the measurement history. It will be

shown that this information can be summarized in the form of a

sufficient statistic. The problem of determining the sufficient

statistic is approached by deriving an expression for the posterior

probability density of the state, conditioned on all a priori infor-

mation and the measurement history up to time tn .

To develop an expression for the posterior probability

density of the state, first define two k vectors y(n) and z(n). The

vector y(n) contains all uncertainty about the state and z(n) describes

the known effect of the control history upon the state. Thus y(n) and

z(n) satisfy

y(n+l) = b (n+ 1, n) y(n) +v(n) y( 0) = x( 0) (2-6)

z(n +1)= 4(n+l,n) z(n) + 6(n+l,n) u(n)
(2-7)

z(0) = 0, u(0) = 0

and from (2-1)

x(n) = y(n) + z(n) (2-8)

Also, a pseudo measurement process r(n) is defined by the equation

r(n) = m(n) - H(n) z(n) (2-9)

Since m(n) is known by the controller and z(n) can be calculated

using (2-7), r(n) is known by the controller. Using (2-3) and (2-8)

produces

r(n) = H(n) y(n) + w(n) (2-10)

Equations (2-10) and (2-6) describe a linear system perturbed by

uncorrelated normally distributed random disturbances or errors.

The pseudo measurement process r(n) is composed of linear

combinations of the elements of the vector y(n), plus the random
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(40) (5)measurement errors w(n). Kalman and Battinl have shown

that the minimum variance estimate of y(n), given the measure-

ments r(n), can be calculated from the following recursion

formulas.

Y(n) =
- ((n)+P(n) HT(n) [H(n)P/(n)HT(n) + W(n)-1 r(n)

^"(n+l) = Q(n+l,n) (n)

y(O) = E[x(O)]

P/(n + 1) = (n+ 1, n) P(n) T(n + 1) + V(n)

P(0) = E [(x(0)- E[x(O)])( x(O) - E [x(O)])T]

where

y9(n) = minimum variance estimate of y(n)

-H(n) y (n)]

(2-11)

H(n) P/(n)

P(n) = covariance matrix of errors in estimating y(n)

If the estimation error e(n) is defined as

e(n) = y(n) - y(n)

E [e(n)] = 0

(2-12)

(2-13)

and

E [e(n) eT(n)] = P(n) (2-14)

In order to investigate some of the statistical properties

of the error e(n), define the history of pseudo measurements from

the initial time up to time t as the n.*n
Hence

r(1)

r(2)

r(n)

dimensional vector R(n).

then,

I
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(40)It has been shown by Kalman that the minimum variance estimation

error e(n) must be uncorrelated with the pseudo measurement

history R(n).

E[e(n) RT(n)]= 0 (2-15)

Since x(0) is normally distributed and v(n) and w(n) are normally

distributed, it is clear from (2 -6) and (2-10) that y(n) and r(n)

must be normally distributed. It follows from (2-11) and (2-12)

that "(n) and e(n) must be normally distributed. There-
fore, since e(n) and R(n) are uncorrelated and normally distributed,

they must also be statistically independent.

Now define the history of actual measurements from the
initial time up to time tn as the n, 2 dimensional vector M(n).n

M(n) =

m(1)

m(2)

m(n)

Also assume that some arbitrary admissible control function u[-],
of the measurement history M(n), is specified, so the control at
time t becomesn

u(n) = u [ M(n), n] (2-16)

and (2-7) may be written as

z(n+l) = (n + 1, n) z(n) + O(n+ 1, n)u[M(n), n]

(2-17)

From equations,(2-17)and (2-9) it is clear that the pseudo measure-

ment process r(n) can be considered to be a deterministic function

of the actual measurement history M(n). Fig. 2. 1 illustrates, in

block diagram form, a method by which r(n) might be calculated

~;~-r~·y*l~lrurp~-~-------- -- ---- ·- -- ---- -----;·Yrilrur~B~
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from the measurements m(n).

Fig. 2. 1 Calculation of r(n) from m(n)

By similar reasoning, the actual measurement process

m(n) can be considered to be a deterministic function of the

pseudo measurement history R(n). Fig. 2. 2 illustrates the

calculation of m(n) from pseudo measurements r(n).

Fig. 2. 2 Calculation of m(n) from r(n)
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Clearly the measurement histories M(n) and R(n) contain the

same statistical information. Since the error e(n) is independent

of R(n), and M(n) is a deterministic function of R(n), it follows

that e(n) and M(n) must be independent.

Consider an estimate of the state X(n) defined as

x(n) = (n) + z(n) (2-18)

From (2-7), (2-8), (2-9), (2-11) and (2-18), recursion formulas

for 2(n) can be derived as

xA(n) = '(n) + P '(n)HT(n) H(n) P '(n)HT(n)+W(n) [m(n) - H(n)(n

(2-19)

x'(n+l) = ((n+1, n)X(n)+ 0 (n+ 1, n)u(n) (2-20)

and P'(n) is calculated using the last three of equations (2-11). The

error in the estimate X(n) is, from (2-8), (2-12) and (2-18)

X(n) - x(n) = [9(n)+z(n)] - [y(n) + z(n)] = e(n)
(2-21)

so the error in x(n) is identical to the error in y(n). It was shown

above that e(n) and M(n) are independent so the error in the estimate
A
x(n) is independent of the measurement history M(n). Of importance

here is the fact that even through x(n) and '(n) may not be normally

distributed processes, because the control function u[M(n), n]may
A

be nonlinear, the error in x(n) and the measurement history M(n)

are still independent. In addition, the conditional mean of the

error in x(n), given the measurement history M(n), is zero.

E[x(n) - x(n)I M(n)] = E[e(n) IM(n)]= E[e(n)] = 0 (2-22)

Also, since x(n) is a deterministic function of M(n), the conditional

mean of the state given the measurements M(n), is the estimate

x(n).

E [x(n) IM(n) = E (n)- e(n)I M(n)] = E [:(n) IM(n) = x(n)
(2-23)
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At this point the statistical properties of the estimate A(n)

and the error e(n) can be utilized to derive an expression for the

posterior probability density of the state x(n). To that end, consider

the state as the difference between the estimate A(n) and the error

e(n)

x(n) = x(n) - e(n) (2-24)

Since X(n) is a deterministic function of the measurements and e(n)

is a normally distributed random variable, independent of the

measurments, with statistics given by (2-13) and (2-14), the

posterior probability density for x(n) is

k 1

fx(n) [ýM(n) ] = (27r) 2 P(n ) 2 e x p  X- •  n)T P(n)- 1 --(n)]

(2-25)

It is assumed that the error covariance matrix P(n) can be calculated

a priori. Since P(n) and x(n) uniquely determine the posterior state

probability density and P(n) is known a priori, the estimate x(n) is

a sufficient statistic for determining the posterior state probability

density. Thus, x(n) summarizes all posterior information about

the state that is obtained by the controller from the measurement

history M(n), and the posterior probability density of x(n) may be

written as

fx(n) M(n)] = fx(n) ( • A( n ) )  (2-26)

2. 4 Statistics of the Measurement Information

In the preceding section, recursion formulas were derived

for calculating the expected value of the state conditioned on the

measurement history. An expression for the posterior probability

density of the state was also developed. To obtain the optimal

control function, some additional properties of the estimate X(n)

are necessary. Thus, define the (k x Z) matrix K(n) and the k

vector s(n) as follows

K(n) = P'(n) HT(n) H(n) P '(n)HT(n) +W(n)] - 1
(2-27)
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s(n) = K(n)[m(n) -

and (2-19) becomes

x(n) = i'(n) + s(n) (2-29)

The vector R'(n) is the estimated state extrapolated forward from

time tn_1 to time tn and s(n) represents the incremental change in the

state as a result of processing the measurement m(n). Using (2-3)

the vector s(n) is written as

s(n) = K(n)[H(n)x(n) + w(n) - H(n) "'(n)] (2-30)

and from (2-1) and (2-20)

s(n)=K(n) HW(n)[Q(n, n-l)x(n-1)+ 8(n, n-l)u (n-1)+ v(n- )]+ w(n)

-H(n)[ (n,n-1)B(n-l)+ O(n, n-l)u(n-1) I

(2-31)

Employing (2-21) produces

s(n) = K(n) (H(n) [v(n-l) - D(n, n-1)e(n-1)]+ w(n)J

(2-32)

so that mean and covariance of s(n) are, using (2-11),

E [s(n)] = 0

H(n) P '(n) HT(n) + W(n)

and by (2-27) the covariance of s(n) becomes

E[s(n) sT(n)]= P '(n) HT(n)[H(n)P '(n)HT(n) + W(n)] -

KT(n)

(2-33)

H(n) P '(n)

(2-34)

Since e(n-1), v(n-1) and w(n) are normally distributed and

independent of M(n-1), then from (2-32), s(n) must be normally

distributed and independent of M(n-1). From (2-16), (2-19) and

(2-20) x(i-1) and ^'(i) are deterministic functions of M(n-1)

r I I · · ·
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for all i S n; so it follows that s(n) must be independent of x(i-l)

and x'(i) for all i= n. Further, from (2-28), s(i) is a deterministic

function of M(n-1) for all i<n; so s(n) and s(i) are independent for

all i<n. Thus, the s(n) are independent increments of a gaussian

process. Finally, since e(n) and M(n) are independent and s(n)

is a deterministic function of M(n); e(n) and s(n) must be independent.

2. 5 Determination of the Optimal Control Function

In this section the results obtained above are used to derive

the conditions that must be satisfied by the optimal control function.

Consider a partially completed process at the time t in the intervaln
t t tq+t 1 Assume that some arbitrary admissible control

function u[M(i), i]has been used in the past and an admissible control

function u [M(i), i)]is to be used in the future. Define a minimum

expected value function C [M(n), n] as follows:

C:M(n), n] minimum expected cost to complete

the process from time tn, given the measurement

history M(n), using the admissible control function

uLM(i), i]in the interval t t. <t and the admissible

control function u: [M(i), i]in the interval tn t. < t
n 1 q+ i1

By definition u LM(i), i] is the admissible control function which,

if used in the interval t n t. <t will produce the minimum
n  1 q+ 1'

expected cost to complete the process. Also, define an expected

value function CEM(n), u(n), n] as

C[M(n), u(n), n] = expected cost to complete the process

from time tn , given the measurement history M(n),

using the admissible control function u [M(i), i]in the

interval tI 1 ti <tn, applying an admissible control

u(n) at time t , and using the admissible control

function u' [M(i), i]in the interval t < t. < tn 1 q+ 1

The difference between C and C at time t is the result of using
n .,

the control u(n) at time tn instead of the control u"(n)n

--OMMW



Now consider the values of C and C" at the terminal time

t The last control decision is made at time t so at theq+ 1 q
terminal time the functions C and C" are identical. Thus, from

equation (2-5) and the definitions of C and C'

C [M(q+ 1), q+ 1)]= C [M(q+ l), q+ 1= E [(x(q+l))l M(q+1)] (2-35)

The expectation operation in (2-35) requires the posterior probability

density for x(q+ 1), given the measurement history M(q+l) and

using the control function u[M(i), i]for t 1  i t. <t This

probability density was derived in equations (2-25) and (2-26), so

if a function k (x(q+l)) is defined as

00oo 00

S(x(q+l1))= fd d 1  . . . d k  fx(q+ 1)( I (q+ 1)),"
00 _00

(2-36)

then the expected value functions at the terminal time become

C [M(q+ 1), q+ 1] = CE M(q+1), q+1 = (q+ 1)

(2-37)

Since the right hand side of (2-37) is a function of (q+ 1) only,

which is itself a function of M(q+ 1), then without loss of generality

the expected value functions C and C" at time tq+ 1 may be con-

sidered to be functions of x(q +1) instead of M(q+ 1). This important

change of independent variable is achieved because x(q + 1) is a

sufficient statistic.

Using the definition of C once again, the expected value

function at time t can be expressed as

C [M(q), u(q), q] = E L(x(q), u(q), q) + k (x(q+ 1)) M(q), u(q)j

(2-38)
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and if a function L(x(n), u(u), n) is defined thus

I

oo 00

L( (n), u(n), n) = fd . . . d k L(, u(n), n ) fx (n)( (n)

-00 -00

(2-39)

then by the same arguments used above

C[M(q), u(q), q]= L((q), u(q), q)+ E [ (x(q+1))IM(q), u(q)]

(2-40)

To evaluate the second term on the right of (2-40), it is necessary

to determine the posterior probability density for x(q+ 1), given

the measurement history M(q) and the control u(q). The derivation

of this probability density and an expression for the expectation

in (2-40) is a somewhat tedious task. For that reason, the

derivation is performed in Appendix A and the result, when

substituted into (2-40), produces

C [M(q), u(q), = L(x(q), u(q), q)

00 00

+ f dl...f dkfs(q+ 1)() (x '(q+1) +1 ) (2-41)

-OC -OC

where x (q+1) is given by (2-20) and the probability density

fs(q+ i) ( ) is normal with mean and covariance given by (2-33)

and (2-34).

Obtaining C" [M (q), q]from (2-41) is an ordinary minimiza-

tion problem. Clearly the minimum expected cost to complete the

process from time t is given by

[M(q), q = umin

00 00

(2-42)

21
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C (X(q+l),q+l) = (x(ql) (2-45)

Since the error covariance matrix P(n) is known a priori;

the posterior probability densities fx(n)([ x(n)) and f (n)() are

known a priori as functions of ý, x(n) and n. Therefore L(x(n), u(n), n)

and 4 (X(q +1) can be calculated a priori as functions of ý(n), u(n), n

and x(q+l), respectively. With these functions the system (2-44),
(2-45) is closed and the solution for C ( (n), n) is realized in the

x(n) space. Since the solution is obtained without leaving the x(n)

space, the control that produces the minimum expected value function
Amust itself be a function of the sufficient statistic x(n). Therefore

the minimizing control function is written as

u M(n), n = u (x (n), n) (2-46)

Now consider the minimum expected value function at time t o,
before the first measurement is taken and before any control is

applied. From (2-44) and (2-20) the minimum expected value

function at the initial time is

oo0 00

(x(0), 0) = d f dkfs(1)() C ( (1,0)(0) +r, ;1) (2-47)
-o00 - oo

A

where x(0) is the a priori mean of the plant state. By definition

C (x(O), 0) is the minimum expected cost to complete the process

from the initial time, using control which is a function of the

measurement history. Therefore C (x(0), 0) is the minimum of

the cost J in equation (2-5).

min[J = C ((0o), 0) (2-48)

* A
It follows that the control u (x(n), n), obtained by the solution of

(2-44) and (2-45), is the optimal control function.
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At this point it will be useful to write out the optimality

conditions and the auxiliary equations necessary for determining

the optimal control function. They are as follows:

A min (m
C (x(n), n) = u(n) q(n) L(x(n), u(n), n)

+ ýdý. .. • dkf s( n +1)( )C* '(•n+1)+( , n+1)
-OC -OC

(2-49)

x '(n+l) = (n+l , n)

C (x(q+1), q+l) =

x(n) + 0(n+l,n)u(n) (2-50)

00 00

(x(q+1)) = d ( 1 ... d k W() x(q+l)(X(q+1))

(2-51)
oc 00

(x (n), u(n), n) = 'd 1 .... Sdk L(, u(n), n(nf()( n (n))

-Oc -0C

k 1

fx(n)()i ; (n)) = (2 7r) 2 P(n) 2 exp . - x(n)T  P(n)-1

k 1
2 2 ( T -1

fs(n)(C) = (27) Sin) exp - 2 S-n)

H(n) P '(n)

(2-52)

- (n)])
(2-53)

(2-54)

(2-55)

Equation (2-49) is the recursion formula that must be satisfied

by the minimum expected value function with the equation for '(n+1)
provided by (2-50). Equations (2-51) and (2-52) give the expected

terminal cost function and the expected incremental cost functions

necessary in (2-49). Equations (2-53) and (2-54) determine the

probability densities for the state x(n) and the processed measurement
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information s(n). Equation (2-55) produces the covariance matrix

for s(n). Since the error covariance matrix P(n) is known a

priori, the system of equations(2-49) through (2-55) is complete

and the optimal control function u (x(n), n) can, in principle, be

calculated a priori.

It is essential to realize that for most practical problems

equation (2-49) must be solved by some form of approximation on

a digital computer. Methods of solution utilize the techniques of

dynamic programming and the concomitant requirement for large

amounts of high speed storage is a significant difficulty. For a

problem with k state variables, the minimum expected value

function must be stored as a function of k variables and the integral

on the right in (2-49) must be carried out over the entire k dimen-

sional state space. In addition, if the control is of dimension p,

the minimization on the right in (2-49) must be carried out over

p variables. In general, solutions for most problems involving

more than three state variables are virtually impossible with

contemporary computers. There are, however, many practical

problems of small dimensionality that can be handled.

2. 6 A Useful Form for Digital Approximation

Basic to the usefulness of the theory developed above is the

ability to obtain computer solutions. In this section a convenient

method for computing C is described.

Let a function C be defined as

o 00oo

C (x, n) d .. dfdk fs(n 1)()C ( +,n+1)

-00 -00

(2-56)

then (2-49) may be written as

C (x(n), n) = min L(x(n), u(n), n) + C ( '(n+ 1),n)

u(n)eql(n)
(2-57)



Equation (2-56) requires a k dimensional integration over the entire

state space. It can be shown (see Appendix B) that fs(n+l) (1) is

the Green's function, evaluated at 7 = 1, for the k dimensional

diffusion equation

a D (, 7) Tr S(n1) D(,)) 0 T7 5 1 (2-58)

where the (kxk) matrix of second partial derivatives is defined as

a D(~,7) a D ( T•i ) (2-59)
2 a g

If D(3, 7) is the solution of (2-58) with the initial condition

D(ý,0) =C ( , n+l) (2-60)

then from Appendix B and equation (2-56) , C in (2-57) is given by

C (x (n + ), n) = D(!/(n+l), 1) (2-61)

In many cases (see Appendix C) it is easier, from the stand-

point of digital computation requirements, to approximate the

solution of the diffusion equation by central differences than to

approximate the k dimensional integral with quadrature formulas.

If the difference equation method is chosen for the calculation of

the minimum expected value function, then equation (2-49) above

is replaced by equations (2-57), (2-58), (2-60) and (2-61). In

a similar manner, the functions L( (n), u(n), n) and- (x(q +1)

may be determined as solutions of diffusion equations.

2. 7 Multiple Measurements Between Control Applications

In some problems there will be many measurements taken

between the times when control is applied. If such is the case and

control is applied at time t and again at time t .; where j > 1,n n+3

II __



and j measurements are taken in the interval t < t S
n(nj) can be wtten as

x(n j) can be written as
tn+j
n±j

A(n+j) = (nj, n)(n) + (n+j, n)u(n) +x(n+j) = (n +j, n)x(n) + 0(n~j, n)u(n) +

i= n+ 1

Also, if the following are defined

x,(n~j) = n (n j,n)'fX(n)+O(n j,n)u(n)

n+3

s'(n+j) =I

i=n+l

then (2-62) becomes

x(n+j) = R' (n+j) + s '(n+j) (2-65)

Now equation (2-65) has the same form as equation (2-29) and

s '(n+j) is normally distributed with statistics

E s' (n+j)] =0

(2-66)

T (n+ j, i)P '(i)HT(i) [H(i) P / i)HT(i)Es ' (n+j) s'T(n+j)

i n+l
-1W(i) /(i)( n T j,1i)

Since s' (n + j) is a linear combination of the processed measurement

increments s(i), equations (2-49), (2-54) and (2-55) become

C ̀(x(n), n) min l (xWn), u(n), n)

u(n)E ql(n)i 00 00o
+ fd f' dkfs ' /(n+j)()C"((n+j) +, nj)

- 00 .- o

(2-67)

then

(2-62)

(2-63)

(2-64)
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k 121 T -1

fs,(n+j)() = (27r) 2 S'(n+ j)J2 exp - S'/(n±+j)

(2-68)

n+J [I-I ]-i

S/(n+j) = n+ '(n+j,i)P'"(i)HTi) [H(i)P/(i)HT(i) + W(i) H(i)P,(i) T(n+j, i)

i=n+l
(2-69)

with equation (2-50) replaced by equation (2-63). Thus, the theory

is generalized to handle multiple measurements between control

applications. When j = i, these equations reduce to (2-49), (2-54)

and (2-55).

2. 8 Specification of the Terminal Control Function

For some problems it is more meaningful to specify the

terminal control function than to specify a terminal cost function.

In such cases the expected cost becomes

J = E L (x(n), u(n), n) (2-70)

nan
with the terminal control u( (q), q) specified. Then the expected

cost to complete the process from time t is
q

C M(q), u(q), q] = E L(x(q), u(q), u(q), M(q), u(q) = T((q), u(q), q)

(2-71)

and since u(x(q), q) is specified, the expected value functions at

time t becomeq
--AA

C ( x(q), q) = C( (q), q) L(x(q), u(x(q), q), q) (2-72)

Equation (2-72) is the terminal condition for the recursion formula

(2-49). Solution of (2-49), (2-72) will provide the control functions

u'(x(n), n) that minimize (2-70), subject to the specified terminal

control function u(x(q), q).
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CHAPTER 3

APPLICATIONS OF THE DISCRETE THEORY

3. 1 General Discussion

In Chapter 2 a theory was developed for determining

optimal controllers for linear stochastic systems, when the cost

function may be nonquadratic. As with any theory, its usefulness

must be demonstrated by the actual solution of practical problems.

Four such probelms are treated in this chapter. The first two

problems require the determination of optimal midcourse velocity

corrections for spacecraft on interplanetary missions. The

third problem is the determination of the optimal control for an

atmospheric entry vehicle. Finally, the theory is applied to

the quadratic cost problem, producing the discrete control/estima-

tion separation theorem.

3. 2 Minimum Fuel Variable Time of Arrival Guidance

Consider the midcourse phase of an interplanetary space-

craft mission. Due to random errors made in injecting the space-

craft into its interplanetary trajectory, impulsive midcourse

velocity corrections are necessary, if the vehicle is to hit the

target with sufficient accuracy. The spacecraft uses chemical

fuel rockets to perform these velocity corrections. During

the midcourse phase the spacecraft is tracked by radar systems

based on earth. The radars provide velocity measurements in

the directions of the radius vector from Earth to the spacecraft

and the measurements contain normally distributed random errors.

Estimates of spacecraft position and velocity are computed from

this information, using recursion formulas (2-19) and (2-20).
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It is assumed that there is a reference trajectory defined

which passes through the nominal point of injection and the nominal

target point. At the target point there is a non-zero relative

velocity between a spacecraft on the reference trajectory and the

target planet. This relative velocity vector is given the symbol

vR . The guidance is variable time of arrival so deviations

from the reference trajectory, at the nominal time of arrival,

parallel to the relative velocity vR , carry no penalty. Also, the

reference trajectory is assumed to lie in a plane and spacecraft

deviations out of the trajectory plane are ignored. Except:for

the injection errors, there are no random disturbances to the

spacecraft trajectory so the covariance matrix V(n), defined in

equation (2-2), is identically zero. Since out of plane errors are

ignored, the deviation of the actual trajectory from the reference

trajectory can be described by a four dimensional deviation state

vector (2 coordinates of position and 2 coordinates of velocity).

Therefore, if a velocity correction is made at time tn , the deviation

at time tn+1 becomes

6y(n+1) = * (n+1, n)6y(n) + ;(n+1,n) Av (n) (3-41)

where

6y(n) E deviation state vector before correction (4 dimensional)

4 (n+1, n) state transition matrix(4 x 4), evaluated along the

reference trajectory

Av(n) - velocity correction vector (2 dimensional)

ro0l compatability matrix (4 x 2), first two rows are

zero, last two rows are (2 x 2) identity matrix

and it is assumed that the state deviations and velocity corrections

are sufficiently small so that linearizations about the reference

trajectory are valid.

Let time t q+ be the nominal time of arrival at the target.
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If a transformation of state variables is defined as follows

6y'(n) = (q+1,n) 6y(n) (3-2)

then the transformed state deviation vector 6y' (n) is the deviation at

time tn , extrapolated forward to the nominal time of arrival. The

vector 6y'(n) can also be thought of as the deviation from the reference

trajectory, at the nominal time of arrival; given that 6y(n) is the

deviation from the reference trajectory at time tn and no velocity

corrections take place for all time in the interval tn t 5 t+n q+ 1
Using (3-1) and (3-2) an expression for 6y'(n+l) can be written as

6 y' (n+1) = c(q+1, n+1)(n+ 1, n)6y(n)+(q+1, n+1) (n+1, n) 1 Av(n)

(3-3)

and applying (3-2) produces

6y'(n+l) = 6y'(n) + (Dq+l, n)10 Av(n) (3-4)

Equation (3-4) is the difference equation satisfied by 6y'(n). If

the position components of this vector are resolved into a coordinate

system such that an axis (1) lies in the trajectory plane orthogonal

to the relative velocity vR and points generally away from the sun

and an axis (2) lies parallel to vR and generally along the flight

path, then deviations in position at the target are, from (3-4)

6yl(n+1) = 6yl(n) + Fl1(n) Av 1 (n) + r 12 (n)Av 2 (n) (3-5)

6y' 2 (n+l)= 6y 2 (n) + F2 1(n) Av 1(n) + 2 2 (n)Av 2(n) (3-6)

The component 6yl(n) is the deviation in position orthogonal to v R
and 6y2(n) is the deviation in position parallel to vR with the (4 x 2)

matrix r(n) defined by

F(n) = (q+1,n) I (3-7)

so F(n) appears as the last two columns of cD(q+1, n).
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Since the guidance is variable time of arrival; the deviation

6y 2 (n), along the relative velocity vector vR is ignored and each

velocity correction is applied in the direction that maximizes the

sensitivity of 6yl(n+l) to the velocity correction magnitude. This

sensitivity is maximized if the velocity correction at time tn is

given by

A v 1 (n ) --

A v2 (n)

u(n) (3-8)

u(n) (3-9)

where u(n) is a scalar that determines the magnitude and sign of

the velocity correction. If the scalar state x(n) and scalar, non-

zero control sensitivity O(n+1, n) are defined as

x(n) = 6y;(n) (3- 10)

O(n+1,n) = P/ (n) 2 + 1 2 (n) 2  
1 3 (q+1,n)2 14(q+ 1,n)2

(3-11)

then equations (3-5), (3-8) and (3-9) produce the scalar relation

x(n+l) = x(n) + 0(n+ 1,n) u(n) (3-12)

Equation (3-12) is the equation of state for the minimization prob-

lem. Its simple form is a result of the transformation (3-2) and

the fact that for variable time of arrival guidance, no penalty is

attached to 6y2 (n).

Using these definitions it is possible to state the optimal

control problem in specific terms. It is desired to minimize the

expected total fuel required to perform the midcourse maneuvers,
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assuming that the velocity corrections are performed at specified

times. Since the spacecraft rocket engines are chemically fueled,

the sum of the magnitudes of the scalar controls u(n) is simply

related to the amount of fuel used. Two guidance schemes will

be investigated. The first scheme has no terminal cost function

but at the last correction time tm , a total correction is made so

that S'(q+l) is driven to zero. The incremental cost at each

correction is

L(x(n), u(n), n) = Ju(n)I (3-13)

with the terminal control specified as

A-m
U(x(m),m) = - (q+l,m)

Hence L ((n), u(n), u(n),n) is given by

00

L((n), u(n), n) d lu(n)l -(n) (I (n)) Iu(n)l (3-15)

and the terminal condition on the minimum expected value function

is determined by (2-72) as

(x(m), m) = L(x(m),u(x(m), m), m) (m) (3-16)
6 ( q+l, m)

Since the last correction drives the estimated state to zero, the

statistics of the error in hitting the target correspond to the statis-

tics of the estimation error at time t m . By performing the last

correction at a time when enough measurements have been taken

so that the estimation error statistics satisfy the target miss

distance requirements, the spacecraft will hit the target with the

required accuracy. This scheme will be called total final correction

guidance. The second scheme has L(x(n), u(n), n) given by

L(x(n), u(n), n) = Ju(n) 1 (3-17)
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with a quadratic terminal cost function

x(q+)2 (3-18)
€ (x(q+l)) =- x(q+1)(3-18)

In this case L ((n), u(n), n) is again given by (3-15) and the -(^(q+l))

function is

00

X - 2 A XA 2
(2q+1)) =-- dg fx(q+l)( x(q+1)) = - (Ax(q+ 1) + P(q+1))

-00 (3-19)

so in this case the terminal condition on the minimum expected

value function is

C (x(q+1), q+1) =- (x(q+ 1)2+ P(q+l1)) (3-20)

This scheme will be called quadratic terminal cost guidance.

It is important to realize that the scalar state x(n) is the

deviation from the reference trajectory extrapolated forward in

time to the nominal time of arrival, and taken perpendicular to

the relative velocity vector vR . Thus x(n) is the estimated target

miss distance, as calculated from the measurements and velocity

corrections up to time tn . Hence P(n) is the variance at time tn ,

of the error in the estimated target miss distance and it is assumed

that the measurement schedule is known a priori so that P(n) can

be calculated a pliori. From equation (3-12) it is clear that the

state transition matrix for this problem is the scalar unity. Also,

from (2-69) and the recursion formulas for P(n) in (2-11), the

variance S'(n+j) can be shown to satisfy

S'(n+j) = P(n) - P(n+j) (3-21)

with the probability density for s'(n+j) given by (2-68), with k = 1.

If two correction times are specified as times: tn and t+jn n+j'
and there are j measurements taken iri the interval.t < t : t+j
then the minimum expected value function must satisfy (2-67), so

min
C (x(n), n) u(n) + d fs '(n+j)()C (x'(n+j)+ , n+j) (3-22)u(n)(n+j)

-00
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No restrictions are placed on the control so Al(n) occupies the
entire real axis. Equation (2-63) provides a scalar equation

for the extrapolated estimate.

x'(n+j) = (n) + O(n+j, n)u(n)

Let a function C ' be defined as

Co

(3-23)

C*'=(d,n) = d fs'(n+j) ( ) C( + ,n+j) (3-24)

-0o

and C ' ( , n) may be interpreted as the minimum expected cost

to complete the process from the point x at time tn if no control

is applied at time tn (i. e. u(n) = 0). Using this definition (3-22)

becomes

C' ((n), n) = inu(n) u(n) + C ' ('(n + j), n) (3-25)

To obtain the minimum on the right of (3-25), the derivative of

the function in braces is taken with respect to u(n).

(3-2 6)Ssgn 1(n C '(+, n) 0(n+ j, n)
x = x '(n + j)

It can be shown (see Appendix D) that the resulting optimal control

function is given by

u (x(n), n) =

XA
sgn k(n)]a(n) -j(n)

0(n+ j, n)

0

if (lnj > a(n)

if I "(n)l a(n)

(3-27)

where the positive quantity a (n) satisfies

aC'(,n)_ O(n+j,n) =

SaxA £ = L(n)
(3-28)
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Another way of describing the optimal control function at time tn
is as follows:

The value a (n) determined by (3-28) defines an

interval (n)ontheaaxis as-a(n) 5 aý a(n). If x(n) lies

inside %(n) or on the boundary, no control is applied. If

§(n) lies outside S(n), the optimal control drives ý'(n+j)

to the boundary of S(n). Application of non-zero control

will move ' (n+j), but only at the expense of fuel. Ing(n)

the expense of applying any non-zero control is greater

than the resulting saving that can be incurred by the

movement of i'(n+ j). Conversely, outside i(n) it is

possible to apply controls at less expense than the saving

attained by the resulting movement of x'(n+ j). In fact,

the maximum net saving is produced by applying control

such that x'(n+ j) is driven to the boundary of %(n). The

boundaries of S(n) are determined by a (n) according to

(3-28). Now O(n+j, n) is the change in state per unit of
aC*/

applied control (fuel) and ;- is the change in cost (fuel)
ax

per unit change in state. Hence, a point at which the

product of these two quantities is unity, as in (3-28), is

a point at which saving and expense just balance each

other. Inside 9(n) there is a net loss for any nonzero

control and outside 3(n) there is a net saving for proper

application of control.

Finally, if the optimal control given by (3-27) is

applied, then (3-25) becomes

S(n) a (n) + ' (a (n), n) if I xn >a (n)0 (n +j, n)
C*(x(n), n)

C 'x(n), n) if I (n)5 a(n)

(3-29)

YI~__ ·_I _ _

__ LL ___ _-I_



Clearly, the optimal control problem becomes the problem

of determining the set of positive numbers a (n), one for each

velocity correction time. The solution requires digital computation

and can be accomplished in the 4 space, which for this problem

is the real axis. Calculations begin at the terminal time with

the terminal condition given by (3-30), if the total final correction

guidance scheme is used.

C (x, m)= 0(q+lm)m= n+j (3-30)

If quadratic terminal cost guidance is used then the terminal

condition is

C '(, q+1) =2 (2 + P(q+1)) q+1 = n+j (3-31)

The function C"'(k, n) is computed by approximating the solution of

the diffusion equation as described in Section 2. 6. The initial

condition and differential equation are given by

D( , 0) = C (,n+j) (3-32)

aD(, 7) = a S'1(n+ j) a 2D(x,) 0< 75 1 (3-33)
7 2 '(nj) ax

A
and C ' (x , n) is given by

CM' (X, n) = D(X, 1) (3-34)

The value a (n) is realized by numerically differentiating C '(x , n)
A

with respect to x and finding the point on the x axis that satisfies

8 C (x, n)I 0(n +j, n) = 1 (3-3 5)

x xA (n)

th i"-1
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Finally C (x , n) is determined from

-(n+j, n) + C ' (a(n), n) if I> a(n)
0 (n+j, n)

C (, n) =

tc'(,C n) if Il Sa(n)
(3-36)

Computations beginning with (3-32) are then repeated the required

number of times until the initial time is reached (i. e. n = 0). In

Fig. 3. 1 is pictured a typical sequence of computations from time

t + to time t .n+j n

C*

P, n)

j,n)

a(n)

Fig. 3. 1 Computation Sequence for Determining a(n)

3. 3 Numerical Example of Minumum Fuel V. T. A. Guidance

To demonstrate the actual numerical solution of the problem

described in Section 3. 2, a spacecraft mission to Mars was

simulated. Since many body gravitation effects do not appreciably

influence the minimization problem, a two body matched conic
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reference trajectory was computed. Two conics were used, a

geocentric hyperbola in the vicinity of Earth and a heliocentric

ellipse for the long interplanetary phase of the flight from

the Earth sphere of influence to the Mars sphere of influence.

The gravity of Mars was ignored in order to simplify the calcula-

tions. In effect the trajectory aims at a point on the Mars sphere

of influence, at the nominal time of arrival. The geocentric hyper-

bolic trajectory begins at a point 100 miles above the Earth's

surface and matches the heliocentric ellipse in position and velocity,

at a point 425, 400 miles from the center of Earth. The hyperbolic

transfer angle is approximately 1350. The heliocentric elliptical

portion of the trajectory is a 1800 transfer from approximately

the Earth sphere of influence to the target point near Mars.

Orbital elements of the geocentric hyperbola and the heliocentric

ellipse are listed in Table 3. 1.

Conic Semimajor Axis Eccentricity

Hyperbola 31, 300 mi. 1. 130

Ellipse 117.3 x 106 mi. 0.208

Table 3. 1 Orbital Elements of the Matched Conics

An approximate plot of the trajectory is shown in Fig. 3. 2.

LIPSE

OINT

: HYPERBOLA
TARGE1

POINT
POINT

Fig. 3. 2 Earth-Mars Reference Trajectory (not to scale)
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Total time on the reference trajectory from injection to

nominal time of arrival is 6160 hours, of which approximately

56 hours are spent on the geocentric hyperbola.

The (4 x 4) state transition matrix 1(q+1, n) was computed

as a function cf time tn along the trajectory. The matrix 1(n)

defined by (3-7) appears as the last two columns of 4,(q+1, n).

Using (3-11) the control sensitivity was calculated as a function of

time tn , and is plotted in Fig. 3.3.

( np*jn)
mi

mph

4QOOO

2Qooo

I'

2 4 6 8
tn(hr.)

6160

Fig. 3. 3 Control Sensitivity

The spacecraft was assumed to be an unmanned probe and

the variances of injection errors were chosen as typical for such

a mission. It was also assumed that the cross correlations between

injection errors are identically zero. Injection error variances for

the flight are listed in Table 3. 2.

Position Error Variance

Velocity Error Variance

Altitude

1 (mi)2

400 (m. p. h.) 2

Range

16 (mi)2

20(m. p. h.)2

Table 3. 2 Injection Error Variances
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In the vicinity of the earth, velocity measurements are
taken every hour beginning one hour after injection. It is assumed
that these measurements are always taken in the direction from
Earth's center to the spacecraft. The variance of errors in the
measurements is 0. 01 (m. p. h.)2. Using these statistics the
(4 x 4) covariance matrix, of estimation errors at the target,
was calculated as a function of time(see Battin ( 4) , Chapter 9).
The upper left hand corner element of this matrix is the variance
of error in estimated miss distance at the target. It is plotted
in Fig. 3.4.

Iv

0 I 2 3 4 5 6 7 8 9 10

t, (hr)

Fig. 3, 4 Variance of Error in Estimated Miss Distance
at the Target

From this figure it is clear that the measurement at two hours

drastically reduces the error variance at the target. This occurs

because between them, the two measurements at 1 and 2 hours, very

accurately determine the magnitude of the spacecraft velocity, which

10"

10 "

109

P(n)
( mi )2 10

•n6

I
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is the important factor in determining the target miss distance.

The last velocity correction is made at 56 hr. (i. e. at

the conic matching point), at which time the error variance is
4 2below 4 x 10 mi . Thus, the root mean square error in estimat-

ed target miss distance, at the last correction time, is less than

200 miles. Total final correction guidance is used (i. e. the

estimated target miss distance is eliminated at the last correction),

so the root mean square miss distance is less than 200 miles.

Using the computation method described in Section 3. 2, it

was soon found that optimum corrections after 2 hours and before

56 hours produce negligible savings in fuel. Physically this can

be explained with reference to Figs. 3. 3 and 3. 4 which display

relatively small decreases in control sensitivity and error variance

after 2 hours and before 56 hours. In effect the terminal miss

distance is known quite well after the measurement at 2 hours, so

a fairly accurate correction can be made at that time. In addition,

since the sensitivity does not change appreciably after 2 hours

and before 56 hours, little can be gained by applying part of the

correction at say 3 or 4 hours and the remainder at 56 hours.

By contrast, appreciable savings can be accrued by correcting at

1 and 2 hours because the sensitivities are appreciably higher.

In fact a measurement and correction before 1 hour can produce

even greater savings. This possibility was not investigated,

however, because it did not seem operationally feasible to require

a velocity correction earlier than one hour after injection. Thus,

velocity correctiontimes were chosen as 1, 2 and 56 hours. The

control sensitivities and error variances at these times are listed

in Table 3. 3.

Time tn (hr) 0 (n+ j, n) (m. )  P(n) (mi.) 2
n m. p. h.

O 35, 790 3, 661 x 1010

1 19, 380 1. 424 x 101 0

2 15,780 5. 592 x 107

56 9,754 3. 300 x 104

Table 3. 3 Trajectory Data



Using these values, the variances S ' (n+j) were calcualted
by (3-21). They are

s'(1) = 2. 237 x 1010 (mi.) 2

S'(2) = 1.419 x 1010 (mi.) 2

S'(56) = 5. 589 x 107 (mi.) 2

From these data, the ac(n) values for total final correction
guidance were computed as described in Section 3. 2, producing

a(1) = 158, 100 mi.

a(2) = 6,800 mi.

and the optimal controls are given by (3-27) so

158, 100 sgn (1) - x(1) if
19, 380if x

u (0(1), 1) =

0 if

(1)1 > 158, 100 mi.

(1)1: 158, 100 mi.

(3-37)

800 sgn (2)1 - A(2)

u Au (x(2), 2) =

15, 780 if 1x(2)1> 6, 800 mi.

if J (2)j - 6, 800 mij

(3-38)

where the units of x and u are miles and miles per hour, respectively.
Numerical results also showed that the optimum variable time of
arrival guidance corrections must be applied essentially parallel

to the reference trajectory velocity vectors.

The initial minimum expected value function C (x(0), 0)
was calculated using Eq (2-47). It was assumed that the space-
craft contains an inertial measurement unit for determining the

injection velocity and that this data is used to obtain ý(0). In

addition, the injection engine cutoff system produces errors, so
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0(0) is assumed to be a normally distributed random variable with

zero mean and variance equal to the variance of the error in x^(0),

(i. e. 3. 661 x 1010 mi2). The minimum expected cost was calculated

by integrating C*( (0), 0) over the probability density for x(0), pro-

ducing a value of 13. 4 m. p. h. as the minimum three correction

cost.

A comparison can be made between the mean cost of the

optimum three correction control, and the expected fuel required

to apply a single total correction at 56 hrs, which is the guidance

technique usually employed in this context. The expected fuel re-

quired for a single total correction at 56 hrs is 22. 1 m. p. h., or

an increase of about 65% over the minimum three correction

cost. The saving is, of course, due to the very early application

of optimum corrections at 1 and 2 hours. Similarly,a comparison

can be made between the optimum three correction controller

and the mean cost of applying three total corrections. The mean

cost of applying three total corrections at 1, 2 and 56 hrs is 16. 7

m. p. h., an increase of about 25% over the optimum.

As a check on the accuracy of the computations, Monte

Carlo runs were made using the optimal control. Three thousand

runs were completed using a normal random number generater to

simulate injection and measurement errors. The averaged cost

for these simulated optimum trajectories was 13. 2 m. p. h. or

0. 2 m. p. h. less than the computed optimum. Since the standard

deviation of the averaged cost is about 0. 1 m. p. h., there is

reasonably good agreement between the two computations.

The Monte Carlo simulations also provided the probability

distribution of the total cost using the optimal control. It appears

as Fig. 3. 5.
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Fig. 3. 5 Total Cost Probability Distribution Using
Optimal Control

Some interesting statistics can be obtained from the calculated

probability distribution. For example, the probability of a

particular optimum trajectory costing less than the minimum

mean cost (i. e. 13. 2 m. p. h.) is 0. 608, so about 61% of the

trajectories will cost less than the mean. Further, the prob-

ability of a particular trajectory costing more than three times

the mean (i. e. 39. 6 m. p. h.) is 0. 007, so less than 1% of the

trajectories will cost more than three times the mean.

From (3-37) and (3-38) it is obvious that the optimal

control is a nonlinear function of the estimated state. Breakwell

and Striebel ( 1 2 ) have developed a method for determining a near

minimum fuel control. Their theory obtains the optimum controller

I I I · 1~
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from the class of all linear controllers. For purposes of comparison
the near optimum linear control functions were determined for

corrections at 1 and 2 hours, assuming that the correction at

56 hours is a total correction. They are

u((1), 1) = - 0. 31 2(1) (3-39)
19, 380

u((2)2) - 0. 97 x(2) (3-40)u~x(2), 2) = 15,780 (3-40)

The velocity correction at 1 hour decreases the estimated miss

distance by 31% and the velocity correction at 2 hours decreases

the estimated miss distance by 97%. It was found that Breakwell

and Striebel's near optimum linear controller expended only 4%

more fuel, on the average, than the true optimum.

The optimal control law for quadratic terminal cost guidance

was also computed. The terminal cost function for this case is

given by equation (3-20). The value A was chosen so that the

terminal cost function 0 (x) has the same value at x = 1, 000 miles,
as the amount of fuel required to correct a 1, 000 mile error at

56 hours. Thus, errors greater than 1, 000 miles are weighed

heavily and errors near zero are weighed very little. The calculated

value of X is

A = 0.205 x 10- 6 (m.ph.h)
mi

Performing the computations as described above, the optimal

control at 1 and 2 hours was determined to be identical, to within

computational accuracy, to the optimal control for the total final

correction case. The optimal control at 56 hours was determined

as

500 sgn97(56)- (56) ifX x(56)1 > 500 mi

u ((56), 56) =

0 if (56) ;1 500 mi
(3-41)

·- i



The estimated cost was calculated as 13. 5 m. p. h.

Thus, the optimal control for quadratic terminal cost
guidance is essentially the same as the optimal control for total
final correction guidance, the difference appearing in the control
applied at 56 hours. Since the chosen value of A prescribes
heavy weighting to terminal errors greater than 1, 000 miles,
the terminal correction must eliminate almost all the error
(i. e., only 500 miles remain). Therefore, the functions C* (, 56)
for both cases, are almost identical. Since the solutions are

obtained by taking steps backward in time, the remaining computa-
tions for both cases do not differ appreciably. It may be concluded

that for quadratic terminal cost guidance, when heavy weighting

is applied to terminal errors, the optimal control approaches

the optimal control for total final correction guidance.

3. 4 Minimum Fuel Fixed Time of Arrival Guidance

In this section the fixed time of arrival guidance problem
is examined. It closely parallels the variable time of arrival

problem of Section 3. 2, except that terminal deviations parallel

to the relative velocity vector vR must also be controlled.

Equations (3-5) and (3-6) are the difference equations satisfied

by the deviations at the target. They are repeated here

6y (n+1) = 6yl' (n) + F11 (n) Av 1 (n) + rj 2 (n) Av 2 (n) (3-42)y 1 7()L2 (n)

by 2 (n+1) = 6y2 (n)+ F 2 1(n) Av l (n) + T2 2 (n) Av 2 (n) (3-43)

along with the equation for the (4 x 2) matrix 1(n)

rF(n) = (q+ 1, n)[Oi] (3-44)

If the two dimensional state vector x(n) is defined as

6y 1 (n)
x(n) = (3-45)

6y2(n)

A
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and the (2 x 2) nonsingular control sensitivity matrix O(n+1, n) is

given by

11i(n) r12(n) 13(q+ 1, n) 14(q+ 1, n)

0(n+ 1, n) =
E21(n) F22(n) 23(q+ 1, n) 4)24(q+l1, n)

(3-46)

with the two dimensional control specified as

Av1(n)

u(n) = (3-47)

Av 2 (n)

then (3-42) and (3-43) can be written as a two dimensional vector

equation

x(n+ 1) = x(n) + e(n+ l,n) u(n) (3-48)

This is the equation of state for the fixed time of arrival optimization

problem. It is two dimensional because two coordinates of the

target miss vector are to be controlled and the out of plane errors

are ignored.

The optimization problem is to find the control function

u (x(n), n) that minimizes the expected total fuel necessary to

perform the midcourse velocity corrections. Correction times

are specified and the velocity corrections are made using chemically

fueled rocket engines. The incremental cost at each correction

time is

L(x(n), u(n), n) = u(n)H (3-49)

and therefore L(X(n), u(n), n) is given by

00 00

U(i(n), u(n), n) = jdý1 dg2 Iu(n)l fx(n) (1 I(n)) = I u(n)I
-(00 00

(3-50)
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Total final correction guidance is used so a total final correction
is made at time tm. Thus the control at tm is specified as

u(^X(m), m) = -e(q+ 1, m)-1 x(m) (3-51)

and the terminal condition for the minimum expected value function
is

C' (E(m), m) = (q+ 1, m)- (m)I (3-52)

From equation (3-48), the state transition matrix for this
problem is the (2 x 2) identity matrix. The error covariance
matrices P(n) and the measurement information covariance
matrices S '(n+ j) are (2 x 2). From (2-69) and the recursion
formulas for P(n) in (2-11), it can be shown that

S '(n+j) = P(n) - P(n+j) (3-53)

Let tn and tn+ j be two correction times, so there are j measure-

ments taken in the interval tn < t t + The minimum expected

value function must satisfy (2-67) so

C (x(n), n) u (n) u(n) +  dS1 d2 fs' (n+j)(m) C(' (n+j)+, n+j)
-o0 -00

(3-54)

and no restrictions are placed on the control soql(n) occupies the
entire two dimensional control space. The extrapolated estimate
is

V'(n+j) = X(n) + e(n+j,n) u(n) (3-55)

Now define a function C as

00 00

C '(A, n) = d~ 1 fd 2 fs'(n+ j)() C"('(+ +,n+j) (3-56)

-00 -00

so the condition for optimization becomes

C (I(n),n) = fin 11u(n)j + C*'('*(n+j),n) (3-57)

4 ~81~---- ,
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To find the control function that minimizes the function

in braces in (3-57), it is necessary to consider separately,

optimal controls which are zero and optimal controls which are

non-zero. Consider first those possible cases for which the

optimal control u (n) is equal to zero. Then for any non-zero

control u(n) the inequality

Iu(n)lI + C*' ((n) + 0(n+ j, n) u(n);n) C* '(C^(n), n) (3-58)

must hold. C ' is analytic in the entire A space so (3-58) can be

expanded as

u (n) + C '('(n), n) + ' n) (n+j, n)u(n)+ E (n) -C* '(x(n), n)
x = x(n)

(3-59)

where the gradient of C*' is defined as the row vector

SC ' (_, n) _ C'(, n)aC'(,n) aC n) j = 1, 2 (3-60)
a x ax.

and E(n) is given by

(n) = uT (n) OT(n+ j,n) a2C2(, n) •2 (n+ j,n) u(n)
ax

(3-61)

with the matrix of second partial derivatives defined as

a 2 C*' (* , n)

ax i = 1, 2; j = 1, 2

(3-62)

and the vector ggiven by

g = X(n) + 0 (n+j,n) u(n) 0 = Y < 1 (3-63)



Dividing (3-59) through by II u(n)II yields

1 + aC"'(, n) 1e(n+j, n) u(n)+ n) > 0 (3-64)
a8 11u(n)JI + [uin) =

= x(n)

Inequality (3-64) must hold for all non-zero vectors u(n). By

choosing the magnitude of u(n), the third term on the left of (3-64)

can be made arbitrarily small. Similarly, by choosing u(n) in

the proper direction, the second term can be made negative if

the gradient is non-zero. Therefore, if (3-64) is to hold, a

necessary condition is

SaC '(, n) 0(n+j,n) < 1 (3-65)

x = x(n)

In addition, it is shown in Appendix E that the matrix of second

partial derivatives (3-62) is positive definite in the entire x space.

Thus, since 0(n+j, n) is nonsingular, E(n) given by (3-61) must

be positive for all non-zero u(n). Hence, if the optimal control

u (n) is zero, it is unique and the corresponding X(n) must lie

in the region%(n) determined by

%(n) = : C'(0,n) O(n+ j, n) 1 (3-66)

because (3-59) holds with strict inequality for all non-zero controls

u(n).

Attention is now turned to cases for which the optimal

control u (n) is non-zero. For this situation, the inequality

Iu (n) + C*' (x(n) + 0(n+j,n) u (n);n) C'( (n),n) (3-67)

must hold. Expanding as before yields

u*(n) + C'(j(n), n) + E C' n(• n) e(n+j, n)u (n)+E (n)5 n), n)
A (3-68)
x = .(n) (3-68)

A""~II -- -- ~~"""""~wM" .
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where now

1 *T T [a2c"( n)]
(n) (n) (n) (n + j, n) n) 0(n+j, n)u (n)x 2

x=9
(3-69)

and the vector 5 is similarly redefined. Dividing (3-68) through

by I u*(n)ll produces

1 + C(nj, n) u"(n) + E(n) 0 (3-70)
SIu (n) u (n)

x=Since (n) is positive, a necessary condition for (3-70) is

Since E(n) iS positive, a necessary condition for (3-70) is

IacI ', n)
xAi > 1 (3-71)

Thus, if a regionq(n) is defined as

T(n) = 1: aC', n) 0(n+j, n) > ], (3-72)

then if u (n) is non-zero, the corresponding X(n) must lie in region

QT(n). (n) and W(n) are disjoint and together occupy the entire x

space, so if X(n) lies in the region W(n), the optimal control is

zero and coversely if -(n) lies in region T(n), then the optimal

control is non-zero.

At this point there remains the problem of actually determin-

ing the non-zero optimal control when q(n) lies in T(n). Since u (n)

is non-zero, the derivative of the function in braces in (3-57) can

be used. It is written as

u l u(n)u T n C n)

Sau(n) 0+ u n 0(n+j, n) u(n)II> 0
ax A A- [ iil IL= X(n) + (n+j, n)u(n)

(3-73)

____~_~~_ _.__
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and setting the right hand side equal to zero produces necessary
conditions for the optimal control. The direction of u (n) is given
by

u (n,) e T (n+j, n) aC (x, n)

u (n) ax .,
x= (n)e(n(n+ j, n)u (n)

(3-74)

and its magnitude must be such that

ac (8, n) i ::n
1= n) (n+j, n) (3-75)

x=x(n)+0(n+j, n)u (n)

Also, the second derivative of the function in braces in (3-57)

is

u (n) u(n) + T (n+j,n) C'(x, n) (n+j, n)
au(n) uT(n) u(n) X A Au(n)2 u(n) un) L x= (n)+O(n+j, n)u(n)

(3-76)

It can be easily shown that the first term on the right of (3-76) is

a positive semidefinite matrix for all non-zero vectors u(n). In

Appendix E it is shown that a 2 C (2, n) is positive definite for

all and since O(n+j, n) is nonsingular, the second term on the

right in (3--76) is a positive definite matrix. It follows that a

local minimum exists for u (n) satisfying (3-74) and (3-75).

Furthermore, the absolute value function is semi-concave and

it is shown in Appendix E that C '(2, n) is concave, so the function

in braces in (3- 57) must be concave. Therefore the function in

i jW-- - - -"'WPPMr
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braces is unimodal(i. e., there is only one extremal). Hence,

u* (n) satisfying (3-74) and (3-75) provides the absolute minimum

and is the unique optimal control.

By comparing (3-75) and (3-66) it can be seen that the

optimal control drives the estimated state to some point on the

boundary of %(n). Because of its eventual importance, define the

boundary of 9(n) as

( (n) = : I C*'('~,n) (n +j,n)l= 1n (3-77)
ax

and let vectors b designate elements of (n). Thus, if b is

the point in M(n) to which the optimal control drives the estimated

state, then the optimal control direction is given by (3-74) so

u (n =- (n+ j, n) C,n) , (3-78)

A = b '_((n)

To each element b of (Q(n) there is associated an optimal control

direction and an optimal trajectory direction given by the vector

d(b, n) where

d(b,n) =- 0(n+j,n) (n + j,n) C A , n)  (3-79)
ax

X=b E(n)

Since b is the point in Q(n) to which u (n) drives the estimated

state, b must satisfy

b = 8(n) + p d(b ,n) b•e~ (n) (3-80)

p = Iu (n)l > 0
and once b is known, the optimal control is determined by

u (n) = e(n+j,n)1 b* - (n) (3-81)

Hence the problem of determining the optimal control becomes

the problem of obtaining b* to satisfy (3-80) . The point b* in

I _



R(n) must be found such that the difference between b* and q(n)
lies in the direction d(b, n). A typical solution is illustrated in
Fig. 3. 6.

b's g(n)

d( b,n )'s
X1

Fig. 3. 6 Typical Solution for b (n)

To obtain the solution it is necessary to know the boundary q(n)
and the vectors d(b, n) as functions of points b in@(n). Knowing
these, Q(n) can be searched for the point b* satisfying (3-80).
The point is unique because the optimal control is unique.

To formulate an actual control function, it is necessary
to determine the boundary curve B(n) in the q space and the vector

M X.1"MI --
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functions d(b, n). Determining these requires digital computation.

A two dimensional grid is necessary to represent the ^ space.

Computation begins at the last correction time tm , with the

condition.

C (, m) =11 (q+1, m)-ljA m= n+j (3-82)

Then an approximate solution of the two dimensional diffusion

equation

aD(, T) 1 S (n+j) 2 D(,) + 2 SD(, ) +S (n+j) D(', 7)
7 2 11n 2 1 2(n+j) A 22 A 2S 1ax a1 2  xa2

(3-83)

with the initial condition

D(ý, 0) = C (2, n+j) (3-84)

is calculated using central difference techniques, in the interval
0 < T7 1. It follows that C' (2, n) is given by

C' (, n) = D(2, 1) (3-85)

The boundary curve( (n) is obtained by searching the two dimensional

9 grid to find points b that satisfy the equation

8C '(~,n) 0 (n+ j, n) (3-86)

x x= b

and at each point b thus obtained, the vector d(b, n) is calculated

as

d(b, n)=- (n+j, n)T (n+j,n)[ CT(n) (3-87)
A

By making the search fine enough, the points b will lie sufficiently

close together to give an accurate representation of the boundary

M(n) and the vector function d(b, n). Then, at each point of the x

grid, the function C (q, n) is determined by

I
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C (x^n) =

jje(n+j, n) [b - Ji C"' (b*,n) if E qe(n)

C (x,n) if A E(n)

(3-88)

where b is attained by solving the transcendental equation

b - R = p d(b ,n) p >0 (3-89)

b Eq(n)

Computations beginning with (3-83) are then repeated the required

number of times until the initial time is reached. Having obtained

the curvesC(n) and vector functions d(b, n), the optimal control

is given by

u (*(n), n) =

e(n+j, n)-1 [b - (n)]

0

if M(n) EQ (n)

if ^ (n) E (n)

where b is determined by the solution of

A. -

b - X(n) = p d(b , n) p>b

b*•En)
(3-91)

3. 5 Numerical Example of Minimum Fuel F. T. A. Guidance

In order to demonstrate the numerical solution of a fixed

time of arrival problem, the Earth-Mars trajectory described

in Section 3. 3 is utilized once again. The reference trajectory

parameters and the injection error covariance matrix are as

listed in Tables 3. 1 and 3. 2. Optimal corrections are applied

at one and two hours and total finrral correction guidance is used

with the final correction applied at 56 hours.

To obtain the optimal control functions, the (2 x 2) control

sensitivity matrices were calculated at the correction times. As

a means of conveniently describing the control vectors and terminal

(3-90)

U-~ua
1

A =

I



I---

miss vectors, separate coordinate systems were chosen at the

vehicle and at the target point. The coordinate system at the

vehicle has an axis (1) in the trajectory plane, orthogonal to

the, vehicle reference velod.ity, and pointing gener:ally away from

the sun, and an axis (2) pointing in the direction of the vehicle

reference velocity. The target coordinate system has an axis (1)

pointing in the radial direction away from the sun and an axis (2)

tangential to the Mars orbit, which is assumed circular'. These

coordinate systems are illustrated in Fig. 3. 7.

:RAFT
IECTORY

EHICLE

LE
R DI N'ATE
SYSTEM

)RBIT

Fig. 3. 7 Vehicle, Target Coordinate Systems

The.control sensitivity matrices e(n+j, n) relate control vectors
resolved in the vehicle coordinate system to position changes

resolved in target coordinate system. The control sensitivity

matrices at the various correction times were computed as
follows:



a

210
0(2, 1)= 2

-4,779

0(56, 2) =

0(6160, 56) =

228

-5, 405

•lO - 3

-6, 395

19, 380

-39, 830

15, 780

-31,690

9,754

18, 610

With the injection error variances given in Table 3. 2
and assuming velocity measurement error variances of 0. 01(m. p. h.)2
the (4 x 4) estimation error covariance matrices, at the target,
were computed. For purposes of determining the optimal control,
however, only the position error covariance is necessary. It
appears as the upper left hand corner (2 x 2) submatrix of the
complete (4 x 4) error covariance matrix.

error covariance matrices, at the

are given as follows:

S[3.661 x 1010
P(0) =

-8.351 x 1010

1.424 x
P(1) =

-2. 552 x

5. 592 x
P(2) =

-6. 129 x

101010

1010

10

S3.300 x 10
P(56) =

L 9. 032 x 104

The (2 x 2) position

various times of interest,

-8. 351 x 1010

1. 960 x 1011

-2.552 x 10101

4. 574 x 1010

-6. 129 x 10 (mi.) 2

7. 515 x 107

9. 032 x 104  2

1.819 x 106

mi.
m. p. h.)

(mi.
m. p. h.

mi.
m. p .h.)

~uh- - -u~~m

-aR

107
10



From these data, the minimum expected value functions

were computed as described in Section 3. 4. At each correction

time the x space was searched to obtain the boundary curves Q(n)

apd the optimal trajectory direction vectors d(b, n). As a means

of describing theq4(n) curves anod the vector directions, d(b, n),

the target coordinate system shown in Fig. 3. 8 is utilized.

AJECTORY
IONS

3(n)

Fig. 3. 8 Definition of a, P3 and r



Thus, a is the polar angle measured from the 21 axis, r is the
radial distance to theG(n) curve and 3 is the angle between the
radial direction and the vector d(b, n). Therefore r, and 3 as
functions of a,. describethe boundary curve((n) and the directions
of the vectors d(b, n). Table 3. 4 contains the calculated values
of r (a) and 3(a) for the correction at one hour. The tabulated

range of a is -90=0 : a < + 900, at increments of 20. Obviously,

the problem is symmetric about the origin so

r (a) = r(a -180 0 ) 900< a< 2700

P (a)= 3 (a- 1800) 900 < a< 2700

The computations indicate that the( (1) curve has asymptotes at
a values of approximately -460, -580, -640 and -810. Fig. 3.9

illustrates the*(1) curve and the optimal trajectory directions.

Similarly, Table 3. 5. lists r, (a) and P(a) for the correction at
two hours. Asymptotes in the0(2) curve occur at approximately

-470 and -79 . Fig. 3. 10 illustrates these tabulated values for

the correction at two hours.

Calculation of the :actual optimal control for cases in which

ý(n) e•(n) becomes the problem of determining a so that (3 -80) is

satisfied. To that end, define a vector a(a) as

sin (a + 1(a))
a(a ) = (3-92)-cos(a+ 0 (a))

From Fig. 3. 8 it is clear that for a given value of a, the correspond-

ing d(b, n) vector is

-cos (a + (a))
d(b, n) = d(b, n) (a)) (3-93)

-sin (a + 1 (a))

and it follows that

aT (a) d(b, n) = 0 (3-94)

8ý 0 --



a deg r (a) mi p(a) deg

+90 00

-46 oo

-46. 76 1.668 x 106  -15.63

-48 6.365 x 105 -13.91

-50 6. 232 x 105 -12.13

-52 6.669 x 105 -10.09

-54 7.118 x 105 - 8.10

-56 8.865 x 10 - 6.01

-57. 35 1.447 x 106  - 4.96

-58 oc

-64 o

-64. 72 1.335 x 106  0.09

-66 3.991 x 105  1.48

-68 3.748 x 105 3.22

-70 3.505 x 105 5.10

-72 3.287 x 105 6.87

-74 3.159 x 105  8.64

-76 2.883 x 105 10.52

-78 2.857 x 105  12.43

-80 2.894 x 105 14.24

-80.47 1.219 x 106  14,46

-82 0o

-90 cc

Table 3.4 r (a) and 3 (a) for Correction at One Hour
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Fig. 3. 9 ((1) and Optimal Trajectory Directions at One Hour
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a deg r (a) mi ( (a) deg

+90 oc

-46 oc

-47.12 6. 673 x 104  -13.48

-48 2. 765 x 104 -13.00

-50 2.410 x 104 -11.52

-52 2.226 x 104 -10.06

-54 2. 107 x 10 - 8.46

-56 2.019 x 104 - 6.81

-58 1. 869 x 104 - 5.20

-60 1.827 x 104 - 3.54

-62 1.805 x 104 - 1.83

-64 1.739 x 104 - 0.10

-66 1.700 x 10 41.61

-68 1.715 x 104 3.35

-70 1.737 x 104 5.07

-72 1.778 x 104 6.77

-74 1. 763 x 104 8.51

-76 1.925 x 104 10. 16

-78 4.469 x 104  11.07

-78. 16 4.907 x 104  11.24

-80 oc

-90 oc

Table 3.5 r (a) and 0 (a) for Correction at Two Hours
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Fig. 3. 10 ((2) and Optimal Trajectory Directions at Two Hours
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so a(a) and the corresponding d(b, n) are orthogonal. By taking

the inner product of a(a) with both sides of equation (3-80) there

results an equation that must be satisfied by the optimum value

of a .

aT (a) [b -(n)] = 0 (3-95)

Then, from Fig. 3. 8 the vector b is given by

cos (a )
b = r•(a•) (3-96)

sin (a ) J
so (3-95) becomes

S(a ) cos (a )-x (n)] sin (a +0(a ))-ir (a )sin(a )- 2 (n) cos (&a+f(a~)) = 0

(3-97)

Equation (3-97) is the condition to be satisfied by the optimal angle

a. The corresponding optimal control is obtained by substituting

a into (3-96) and applying the resulting b$ to equation (3-90). The
actual calculation of a may be accomplished in many ways. The

method used in this example was to search through the tabulated

values of r, (a) and 3(a) until two adjacent values of a bracketed

the solution. Then linear interpolation was used to approximate

the actual a . More sophisticated approaches could use polynominal

approximations to r (a) and 3(a) etc. and iteration techniques like

Newton-Raphson might be applied to obtain the approximate solution

of (3-97). The most practical technique for an actual control

computer would of course depend upon the required accuracies,

the characteristics of the computer, etc.

From the computations of the minimum expected value

functions it was found that the minimum expected fuel required

to perform fixed time of arrival guidance is 31.7 m. p. h. A

comparison can be made between this value and the expected

cost to perform a single total correction at 56 hours. The single

total correction cost is 35. 6 m. p. h., an increase of about 12% .

I
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An investigation was also made to determine the cost of

eliminating one of the two early corrections. It was found that

eliminating the correction at one hour produces the lesser in-

crease in cost. If only two corrections are made, one at two

hours and a total correction at 56 hours, the optimal correction

at two hours is determined by the values in Table 3. 5. It was

found that the minimum cost for the optimal two correction case

is 32. 2 m. p. h., or an increase of 1. 6% over the optimal three

correction case. Thus the correction at one hour provides very

little decrease in the expected total fuel for this example.

3. 6 Minimum Fuel Atmospheric Re-entry Guidance

Consider the terminal phase of a spacecraft mission. It

is desired to guide a re-entry vehicle through the atmosphere

so as to land with acceptable accuracy at a target point on earth.

The vehicle is a wingless, axially symmetric body with its center

of gravity displaced from the axis of symmetry. The c. g. offset

causes the vehicle to trim at a non-zero angle of attack, thereby

providing lift. Control of the flight path is attained by rolling the

vehicle about the velocity vector using attitude control jets.

Since. the lift vector can thus be directed anywhere in the plane

perpendicular to the velocity vector, the flight path can be altered

in any direction.

It is assumed that a reference trajectory exists, which

passes through a nominal initial entry point and the target.

Deviations in the spacecraft trajectory are measured from this

reference trajectory. The problem of controlling the range

deviation can be effectively decoupled from the problem of

controlling the lateral deviation. Range is controlled by determin-

ing the roll angle magnitude which, if held constant will produce

the necessary vertical component of lift. By rolling the space-

craft left or right to this angle, the desired range will be attained

and the resulting horizontal component of lift can be used for

lateral control of the spacecraft trajectory. Each roll maneuver

requires fuel, however, so the ideal method for conserving

I sR



fuel is to roll the spacecraft first one way, and hold the required

roll angle magnitude, and then roll the other way, and hold the

required roll angle magnitude. The second roll maneuver must

obviously be timed precisely to hit the target.

Nongravitational accelerations of the vehicle are measured

by an on board inertial measurement unit and this data is available

to the controller. It processes the information to provide estimates

of position and velocity, utilizing recursion formulas (2-19) and

(2-20). These estimated values are then used to predict the miss

vector at the target. Since the predicted miss vector contains

random errors due to instrument inaccuracies and because the

future path of the vehicle is perturbed by random disturbances,

the ideal control scheme described in the previous paragraph

is impractical. As an alternative the stochastic optimal control

problem will be solved to provide an optimal feedback controller.

In what follows, only the lateral control problem will be

considered. It is assumed that the range problem is handled

separately and that for a particular trajectory, the required roll

angle magnitude is determined at the initial time and stays

essentially constant for the duration of the re-entry. Thus the

roll angle magnitude will be different for each re-entry, depending

upon random initial conditions, but it is known by the controller

at the initial time. Define y as the roll angle magnitude required

to attain the proper range. Let the control have only discrete

values of + 1, 0 or -1. Application of control +1 or -1 commands

the vehicle attitude control system to roll the vehicle to the

angle + y or --y, respectively. Application of zero control retains

the vehicle at its present roll angle. Define a switch function x 1 (n)

to satisfy the difference equation

x l1 (n+1) = x1(n) + 2 u(n) x 1 (0) = 1 (3-98)

and require the control at time t to satisfy the following rule.
n
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1

0 or -1 if x 1 (n) = + 1
u(n) = (3-99)

0 or + 1 if x1(n) = - 1

Therefore, x 1 (n) is a deterministic quantity that can have only
discrete values of ± 1. If the time between control applications
is longer than the time required to roll the vehicle through an
angle 2 7, then at times tn the roll angle will be either + y or
-y. Also, x1 (n) indicates the direction in which the lift vector
is pointed for if x 1 (n) equals +1 or -1 the roll angle at tn will equal
+7y or -y, respectively.

The switch function x 1 (n) is one state variable for the lateral

control problem. A second state variable is the lateral deviation

from the reference trajectory, extrapolated forward to the target.

It satisfies the difference equation .

x 2 (n+l1) = x 2 (n) + F(n)x 1 (n) + G(n)u(n) + v 2 (n) (3-100)

with

v2 (n) = normally distributed independent random disturbances

with zero mean and variance V 2 (n)

The second term on the right of (3-100) accounts for the effect of

the roll angle at time tn, on the lateral miss distance at the target.

The third term accounts for the effect of a roll maneuver which

may be initiated at time tn

With these definitions it is possible to state the minimization

problem in specific terms. It is desired to minimize the expected

total number of roll maneuvers plus a quadratic penalty imposed

on the lateral miss distance at the target. The cost to be minimized

is

J = E u(n) + -x 2 (q+ 1) (3-101)
n=1 -
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where tq+1 is the terminal time andq+l

X - terminal cost weighting

The functions E:(A(n), u(n)n) and X(i(q+l)) are

U(q(n), u(n), n) =Iu(n)l (3-102)

X((q+l)) = I (q+1) + P 2 (q+1) (3-103)

with the definitions

x2(n) = estimated lateral target miss distance

at time t
n

P 2 (n) = variance of error in estimated lateral

target miss distance at time tn

If € is not quadratic, the evaluation of • usually involves numerical
integration. In any case, no real difficulty is encountered if 4 is

not quadratic. From (3-103), the terminal condition in the minimum
expected value function is

C (x 1(q+),(q+1), q+1) = 2 (q + 1) + P2 (q + 1 (3-104)

Since x 1 (n) is known deterministically by the controller, equations
(3-100), (2-55) and the recursion formulas for P(n) in (2-11),
provide an expression for the variance of s 2 (n+1)

S2 (n+1) = P 2 (n) - P 2 (n+1) + V2 (n) (3-105)

Now if tn and tn+1 are times at which control may be applied, the
minimum expected value function must satisfy

C (x 1 (n), 2 (n), n) =
00

min d,^'
u(n)c l(n){u(n) l + Jd f s 2 (n+1)()C*(x( (n+1)+ n+l

-00(3-106)

(3-106)

---- __ I
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where

x 1 (n+l) = x 1 (n) + 2 u(n) (3-107)

"x2 '(n+l)= x 2 (n) + F(n)x 1 (n) + G(n)u(n) (3-108)

and the control setql(n) is determined by the control rule (3-99).
Let the function C '(x1(n+1), 2 '(n+1),n) be defined as

C '(x 1(n+1) 22 '(n+l),n) = _d fs (n+1)()C (x1(n+1), '2-0o 2
'(n+l).+ r ,n+1)

(3-109)

Then (3-106) becomes

C (x1(n), x2 (n), n)
- u(n) ql(n) [Iu(n)I + C '(x(n+l), '(n 1), n)

(3-110)

and since x 1 (n) can have only the discrete values ± 1, (3-110) may

be written as two equations thus

C (1, 2 (n), n) = C '(1 +2u(n), 2 (n)+F(n)+G(n)u(n),

(3-111)

min
u(n) = O, +1

r
Ii -

t lu(n)l +C
'(-1+2u(n), 2 (n) - F(n)+G(n) u(n),

(3-112)

By satisfying (3-111) and (3-112), the optimal control is obtained

as a function of x 1 (n) and x2 (n).

Solutions require digital computation in the x 1, x2 space.

Since x1 can have values ± 1 and x2 can take any value on the real

axis, the two quantities C'(1, x 2 ,n) and C (-1, 22 ,n) must be

stored as functions of A2. Calculations begin at the terminal time

with the conditions

C(1, 2' q+1) = C (-1, q+1) = •(x 2 + P 2 (q+1))

n)J

I App-

lo

C (-1, 2 (n), n)=

(3-113)

min u(n +
u(n) = 0, -1 fu·n11
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Approximate solutions of the diffusion equations

aD(1, 2 'T)

a7
1
2

8D(-1, x2-'r)
87r

a 2 D(1, A 2,')
S2 (n + 1) 2

ax2

S2 (n +1)
a2 D(-1, x 2,'r)

d 2
2

with the initial conditions

D(1, 2 , 0) = C (1, 2, n+1) (3-116)

D(-1,i 2, 0)= Cd(-1, e 2, n+1) (3-117)

are calculated using central difference techniques in the interval

0 7 1 Then C '(1, 2 n) and C '(-1, 2,n) are given by

A 1 A
C '(1, 2 ,n) = D(1,2 2 , 1)

C '(- 1,2, n)= D(-1,2 2 ,21)

(3-118)

(3-119)

Finally, the optimal control as a function of x 1, 2 and n is obtained

by satisfying (3-120) and (3-121).

JI

C (1, x2 , n)

C (-1,' 2 ,n)

Julu= min fSu-O, n- 1

= u=Om +11

'(1+2u, x2 +F(n)+G(n)u, n)

Ju + C*'(-1+2u,A 2 -F(n)+G(n)u, n)

Calculations beginning with (3-114) are then repeated the required

number of times until the initial time is reached.

Clearly, from purely physical reasoning, the problem

must be symmetric about the origin of the x 1, I2 space so

C (-1, 2, n) = C x(1 2, n)

C '(-1 2' ,n) = C '(1,- 2 ,n)

(3-114)

(3-115)

(3-120)

(3-121)
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and only C (1, 2 n) and C '(1, 2 ,n) must be computed and stored
as described above. Typically, the optimal control is determined

A A
by a threshold region on the x2 axis. If x2 (n) lies outside the thres-
hold then the vehicle is rolled over and if x2 (n) lies within the
threshold, no action is taken. The minimizations required in
(3-120) and (3-121) will produce the boundaries of these threshold
regions at times t .n

3. 7 Numerical Example of Re-entry Guidance

As a means of demonstrating a numerical solution of the
re-entry problem, a much simplified model of the Apollo re-entry
system is used. (See (55), pps. 5-1, 5-2). The nominal initial
conditions are given as follows:

altitude = 75 mi.

velocity = 24, 700 m. p. h.

flight path = - 6 deg.angle

lift/drag = 0. 34

weight/drag 66 psf.
coeff. x area

latitude = -12. 7 deg.

longitude = 122. 9 deg. east

azimuth = 61 deg.

and the desired range is 2, 000 miles. Total re-entry time is
approximately 700 seconds, but lateral guidance is utilized only
in the final 300 seconds of the flight. The nominal roll angle

magnitude to attain the proper range is about 50 degrees. Vehicle

roll rate is 20 degrees per second so the time to complete a

roll maneuver is about 5 seconds. Time increments between

control applications are 10 seconds so

t = 400 + 10n sec.
n

q + 1 =30
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Sensitivities F(n) and G(n) are linear functions of time determined
by

F(n) = 3. 33 300-10n mi.

300 - l
G(n) = 5.00 300 - 10n mi.

Thus, for example, in the first 10 seconds of lateral control
flight, an initial roll angle of + 50 deg. produces a change of
+ 3. 33 miles at the target. Also, since it takes just half the
control intervalto roll the vehicle over, the value of G(n) at
any time is just three halves the value of F(n). Further, it
is assumed that V2 (n), the variance of random disturbances
to the spacecraft trajectory at the target,decreases as a quadratic
function of the time to complete the trajectory. Such will be the
case if the variance of random velocity disturbances at the vehicle
is constant in time. The initial value of V2 (n) is assumed to be
2. 5 mi. so

V2 (n) = 2.50 [300- 10n mi. 2

In order to obtain some physical feeling for the magnitude of
V2(n), consider its sum over all possible values of n. It can be
shown that

29

" V2 (n )  25 mi.2

n=0

This sum represents the variance of the total random disturbance
to the spacecraft trajectory at the target so the total r. m. s.
disturbance is 5 miles. If in addition it is assumed that the
inertial measurement unit does perfect measurement of the
random velocity disturbances, the variance of estimation
errors P 2 (n) is constant in time and depends only on the initial
position and velocity estimation error variances. Therefore

S2(n+1) in (3-105) becomes

S2 (n+1) = V2 (n)

II~--~- · I
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The computation method described in Section 3. 6 was

used to calculate the optimal control functions. They are given

by

(x 2 ( n ) , x 1(n ) ,n ) = - if x l(n) ( +1, x 2 (n) > T(n)xI
L 0 Otherwise 1,

So if xl(n) is + 1 (i. e., the spacecraft has positive roll), then if

^ (n)isless than a threshold value T(n), no action is taken and if

x2(n) is larger than the threshold T(n), the spacecraft is rolled

over. Similar conditions hold for x 1 (n) = -1.

Digital computation produced the values of T(n) listed in

Table 3. 6. Fig. 3. 11 illustrates the thresholds, and a typical

reentry trajectory is also shown. It is important to realize that

the vertical axis corresponds to estimated target miss distance.

The thresholds display some interesting characteristics. For

values of time less than about 600 seconds, the threshold looks

much like an ' 2 (n) trajectory with u(n) and v2 (n) in (3-100) set

equal to zero. The threshold attempts to control 2(n) so that

it passes within a band of ± 2. 5 miles at 630 seconds. For most

and the assumed value of P 2 (n) is

P2(n) = 25 mi2

Finally, the terminal cost penalty for a 5 mile error at the target

is made equal to one roll maneuver. The terminal cost function

is

2
€(x 2 (30)) 0. 04 x2 (30)

so

710 M301 = 0A 21qnl + 9r,

f
2:
a

1

i;

;I

:i

i

i

i t
i i
ii
i ;
I i
; i
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n TIME (sec.) T(n) (mi.) n TIME (sec. ) T(n) (mi.)

0 400 41.56 15 550 10.04

1 410 38.89 16 560 8.62

2 420 36.27 17 570 7.31

3 430 33. 76 18 580 6.09

4 440 31.31 19 590 4.98

5 450 28.99 20 600 4.00

6 460 26.69 21 610 3.14

7 470 24.50 22 620 2.49

8 480 22.41 23 630 2.51

9 490 20.38 24 640 3.25

10 500 18.44 25 650 4.81

11 510 16.58 26 660 7.77

12 520 14.82 27 670 14.40

13 530 13.13 28 680 34.49

14 540 11.53 29 690

Table 3. 6 Computed Threshold Values for Re-Entry Control

1 ,- C I · --
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cases, only one roll maneuver is required to do this. After

630 seconds the threshold grows rapidly with time, signifying

that little reduction in the terminal miss distance can be gained

for the expense of a roll maneuver. It was found that the mean

cost is 2. 51 roll maneuvers, including the mean terminal penalty

which is equivalent to one roll maneuver.

3. 8 Discrete Systems with Quadratic Cost

As a last example, the general quadratic cost problem

will be solved. Assume that the plant and measurement processes

may be described by equations (2-1) through (2-4). The cost

is specified as a quadratic function of the state and the control so

J = E (xTn)A (n)x (n) +u (n)D(n)u (n) +1x T(q+l)Rx(q+l)
n = 1 

(3- 122)

where A(n) and R are symmetric, non-negative definite, (kxk)

matrices and D(n) is a symmetric, positive definite (p xp) matrix.

Functions E(i(n), u(n), n) and T('(q+1) become

E(^(n), u(n), n) = - (n)A(n) (n)+Tr[A(n) P(n)] +uT (n)D(n)u(n)

(3-123)

'((q+l)) = •T(q+1) R (q+1) + TrR P(q+1)] (3-124)

The minimum expected value function must satisfy (2-49) which

is written, for this problem, as follows:
min xT r 1 T

C (x (n), n) = (n) A(n) (n) +Tr[A (n) P(n +uTn) (n) D u(n(n)

+ Jd~1... d k fs(n+l)(1)C (x'(n+1)+ ,n+1)

-00 -00

(3-125)

with unbounded control and X '(n +1) given by

x '(n +1) = D(n +1,n)X(n) +0 (n + 1, n)u(n) (3-126)

13 r fir



and the terminal condition on (3-125) as

C ((q +l), q+l) = (q+1) R (q+l)+ Tr [R P(q+l)]

(3-127)

The solution of (3-125), (3-126), and (3-127) is assumed

to be of the form

C" ('(n), n) 1 ) K(n) 2(n) + g (n)] (3-128)

where K(n) is a (k xk) symmetric matrix, to be determined, and

g(n) is a scalar, to be determined. Equation (3-127) gives terminal

conditions on K(n) and g(n) so

K(q+l1) =R

g(q +1) = Tr[R P(q + 1)]

(3-129)

(3-130)

Using (3-128), the integral on the right of (3-125) can be written

dgk fs(n +1)(0) C ( '(n+1) + ý,n+1) =

-00

(3-131)

so (3-125) becomes

(n), n) minC (n),n) = u(n)
T(n)A(n) (n) +Tr [A(n) P(n)]+ u T(n) D(n)u(n)

+ T(n+l)K(n+l) '(n+l)+Tr[S(n+l) K(n+l)]+ g(n+1)3

(3-132)

and using (3-126) to combine terms

rd51

1

Y x'T(n+1)K(n+l) i'(n+1 ) +TrS(n+)(n+) +g(n+)



C ((n), n) = u(n) (n) A(n) + T(n+1, n)K(n+l)(n+1, n) (n)

+ T (n)[D(n) + T(n+ 1, n)K(n+1) (n+1,n)]u(n)

+ 2xT (n) 4T(n +1,n)K(n +1) 0(n+l,n)u(n)

+ Tr[A(n)P(n) + S(n +1) K(n+ l)]+g(n +1)

(3-133)

Taking the derivative, with respect to u(n), of the function in

braces on the right of (3-133) yields

=a-I 2uT(n) [D(n) + T(n+l1,n) K(n+1) 0(n+ 1,n)

+ 2 x (n) 4 (n +1,n) K(n +1)8 (n +1,n)

(3-134)

and the second derivative is

u(n)2 = 2 [D(n) + T(n+l,n)K(n+l1) (n+l,n) (a-135)
8 u (n)

Setting the right hand side of (3-134) equal to zero produces a

necessary condition for the optimal control

u (n) D(n) + oT(n+l,n)K(n +1) 0 (n +1,n n 0 (n+1,n)K(n+1)(n+l,n)x(n)

(3-136)

and it is assumed that the indicated inverse matrix exists. Substituting

(3-136) and (3-128) into (3-133) gives

x (n)K(n)(n) +g(n) = (n)[A(n) + (n + 1, n)K(n) (n+ 1, n)x(n)

x4T (n) T (n+ 1, n)K(n+ 1)0 (n+1, nj [D(n)+ T (n +1, n)K(n+1) (n+1, n

[O(n+l, n)K(n+ 1)@(n (n1, n(n)

+ Tr [ A(n) P(n) + S(n+1) K(n+1)] + g(n+1)

(3-137)

80
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Since (3-137) must hold for all vectors '(n), K(n) and g(n)

must satisfy

K(n) = A(n) + (n+l,n)K(n+1)4(n+1, n)- [ T(n+l, n)K(n+l) (n+1, n)]

[D(n) + T(n+1, n)K(n+1)O(n+ 1, n] -1 [T(n+1,n) (n +1) (n+1, n)

(3-138)

and

g(n) = g(n+1) + Tr[A(n)P(n) + S(n+l) K(n+l)] (3-139)

By virtue of (3-122), with A(n) and R non-negative definite

and D(n) positive definite, C'(X(n), n) cannot be negative for any

vector X(n). From (3-128), this can only occur if K(n) is non-

negative definite. Thus since D(n) is positive definite the right

side of (3-135) must be positive definite. The existance of the

inverses in (3-136) etc. is thus assured and u (n) given by (3-136)

is the optimal control. Further, since A(n), D(n) and R are

symmetric, K(n) satisfying (3-129) and (3-138) will be symmetric,

as assumed at the onset.

Solution of (3-129) and (3-138) for K(n) will provide the

optimal control function according to (3-136). Note that the

solution for K(n) depends only upon A(n), D(n) and R so the design

of the controller is independent of the statistics of the problem,

as specified by the previously derived quadratic cost separation

theorem(30), Note however that the expected cost given by

(3-128) includes g(n) which is dependent upon the statistics of the

problem, as shown by (3-130) and (3-139). Thus, although the

control function is independent of the statistics, the cost is de-

pendent upon the estimation error covariance P(n) and the measure-

ment information covariance S(n).
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CHAPTER 4

OPTIMAL CONTROL OF CONTINUOUS LINEAR STOCHASTIC SYSTEMS

4. 1 General Discussion

Up to this point, only discrete systems have been dis-

cussed. In this chapter the discrete theory developed in Chapter 2

will be generalized to handle continuous problems. The approach

is first to define the class of continuous systems under consider-

ation and the expected cost to be minimized. Then the continuous

process is approximated by a discrete process which converges

to the continuous process in the limit as the time step goes to

zero. The optimization theory of Chapter 2 is then applied to the

discrete process, yielding the usual recursion formula for the

minimum expected value function. By expanding the terms of the

recursion formula and taking proper limits as the time step goes

to zero, a partial differential equation is obtained which must be

satisfied by the continuous minimum expected value function.

Solution of this differential equation produces the optimal control

as a function of the estimated state.

4. 2 Problem Statement

The dynamics of the plant are described by a vector

Langevin equation

x(t) = F(t) x(t) + G(t) u(t) + q 1 (t) (4-1)

where

x(t) state vector of dimension k

u(t) control vector of dimension p

F(t) - system dynamics matrix (k x k), continuous in time

G(t) a control distribution matrix (k x p), continuous in time

m I - 1ha
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The initial state x(O) is a k vector of normally distributed random

variables with known statistics and q1 (t) is a ,k vector of gaussian

white noise processes with statistics given by

E [q1 (t)]= 0

E [ql(t)q1(s)] = Q 1 (t)6(t-s) (4-2)

where 6 is the Dirac delta function and Q 1(t) is a (k xk) matrix

of continuous functions. The feedback controller has available to

it a measurement process m(t) described by the equation

m(t) = H(t) x(t) + q 2 (t) (4-3)

where m(t) is an -t vector with

H(t) = measurement matrix (t x k), continuous in time

and q2 (t), the measurement noise, is* an £ vector of gaussian

white noise processes with statistics

E q2 (t a 0

E [q2(t) q2 (s)] Q 2(t) 6(t-s)

E [ql(t)q 2 T(s= 0 all s, t

(4-4)

with Q 2 (t) an (t x t) matrix of continuous functions. Finally the

cost to be minimized is written as

J = E L(x(t), u(t), t) dt + (x(tf)) (4-5)

1

where L(x(t), u(t), t) is continuous in x(t), u(t) and t; and ti, tf
are specified initial and terminal times.

4. 3 Conditions for the Optimal Control

Equation (4-1) describes a linear system driven by white

gaussian noise and the control u(t). If F(t), G(t) and Q 1 (t) are

_ _



all continuous, and u(t) is a piecewise continuous function, then

it can be shown (21, 36)tnat sample functions of the random

process x(t) are almost all continuous (i. e., with probability

one). Under these assumptions the process x(t) may be approximat-

ed by a process xa (t) defined as follows

xa (tn+) Xa (tn )+ [F(tn)xa (tn)+G(t )u(tn At + V(tn)

(4-6)

x (t) = Xa(tn) for (tn ! t <tn+1 ) (4-7)

x a(0) = x(0) (4-8)

and the tn 's are discrete times such that

t = t +At (4-9)
n+l n n

where At n is a short time step. Also v(t n ) in (4-6) is a k vector

of normally distributed random variables with statistics given by

E [v(tn) ] = 0

E v(tn) vT(tn)] = Q1(tn) Atn

E[v(tn ) vT(ti)] = 0 i n (4-10)

Similarly, the measurement process m(t) is approximated by a

process ma(t) where

m a (t n) = H(tn) x(tn) +w(tn) (4-11)

m (t) = m (tn) for (t n 5 t <tn+l) (4-12)

and w(t n ) is a vector of normally distributed random variables

with statistics given by

U I r



E W(t) = 0

E [w(t n ) wT (t n )  At

E w(tn) wT(ti)] = 0 i n

E w(tn ) vT(ti ) ] = 0 all i, n (4-13)

Finally, the cost function is approximated by

q

Ja = E L(xa(tn) , u(tn ) , tn) Atn + (Xa (t q+)) (4-14)

n -1

where

t 1 = t t q+= tf (4-15)

By taking appropriate limits it can be shown that the statistics

of the discrete system (4-6) through (4-13) converge to the sta-

tistics of the continuous system (4-1) through (4-4) in the limit

as At approaches zero. Similarly, the approximate cost Ja
converges to the cost J in the limit as the time steps go to zero

and q approaches infinity.

Now consider an estimate a (t ). With obvious changes

in the notation, equations (2-19), (2-20) and the last three of

equations (2-11) produce recursion formulas for the estimate

xa(t ).

__



xa(t ) = ~a(t ) + P (t ) HT(tn )
a n a -n a n n H(t) P'(tn) Hn a n

m (ta nr

-1

Q2(tn)
(t+n) n •jt

- H(t n x'(tn)n a

x^ (t n  ) = a(tn) +

a )+1 E[ ]

Sa(0)'= E(0

) 

At

n an n n

P (t )= P'(t )- P'(t ) HT(tn )
an an an n H(t ) P '(t ) HT(tn an

-1

Q2 (tn)
n At n

H(tn) Pa (tn)

P' (t ) =  P (t ) +a n+1 a n F(t ) P (t) At + P (t ) FT(t ) Atn an n ann

+ F(tn) Pa(tn) FT(t n ) At 2 + Q 1 (t) t

Pa(0) = Ex(0) - E[x(O)) x(0) - E[x(O )
By taking appropriate limits as Atn approaches zero, the differ-

ential equations for continuous estimation of x(t) are derived as

follows:*

(t) = F(t) (t) + G(t) u(t) + P(t) HT(t) Q 2 (t) - 1 [m(t) - H(t) x(t

2(O) = E[x(0

P(t) = F(t) P(t) + P(t) FT(t) - P(t) T (t).Q 2 ( 1 H(t)P,(t) + Q 1 t)

P(0) = Ex(O) - E [x(0)3

*In cases

x(0) - E Ix(0) (4-17)

for which Q2 (t) is singular, the methods of Deyst(20)or

Bryson and Johanson(15 ) must be used. All succeeding results
derived in this chapter are applicable, with small modification,
to such cases.

(4-16)
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Equations (4-17) are the familiar continuous estimation formulas

of Kalman and Bucy .l)

If, as in Chapter 2, a processed measurement vector Sa (tn)
is defined as

-1

Sa(tn) = P (tn) T(t) (tn) P (t) HT(tn)+ ~na n a n n n n n At n

{ma(tn) - H(tn) X(tn)] (4-18)

then the first two of equations (4-16) may be written as

a(t n+1 = (t )a n) + F(tn) xa (t) + G(tn) u(tn)] Atn + Sa(tn+1)

= tXa (+1) +Sa(tn+1) (4-19)

and it was shown in Chapter 2 that the elements of s (t ) are

normally distributed with statistics given by

E [sa(tn)]= 0

E [Sa(tn ) s (tn)l = a(tn)

E[sa(tn) sT(ti) = 0 i# n (4-20)

where S (t ) is

-1

S (t )  P '(t '((t ) H(t )  H (t ) + Q2 (tn) P '(t
=t)Pa(tn tT (tn) + -Atn J n  atnan an nn n At n an

(4-21)

With these definitions, a recursion formula for the discrete

minimum expected value function C (xa(t ), t n) can be derived by

the methods of Chapter 2. The result is

I __ __



C (' (t ), t ) = m (n  (t ), U(t ), t ) Ata n Utn )EItn an n n n

+ dp. . . dPkfs (t
-00 -oo a n+1

(p) C ( ' (t ) + P, t

and substituting an expectation operator for the integral in (4-22)

produces

C,'• ̂  min
Ca(x (tn), tn ) = U(tn ) ql(tn)

+ E[C • (tn ), t +)I (tn), u(txn)

The terminal condition on C is
a

C ( (t q L), tq+ ) = (xa(tq ))aa q+ q+1 aq+1

(4-23)

(4-24)

and the functions L(5a(tn), u(tn), tn) and -(Xa(tq+ )) are defined

by equations (2-51) and (2-52) with obvious changes in notation.

It is assumed that a continuous minimum expected value

function C (x, t) can be constructed. This function coincides

with the discrete function C (, tn ) at the discrete time points tn

and is continuous in time. That is

C (x, t ) = Ca(X, t )n a n IIIl< OC (4-25)

(4-26)C (A, t) = continuous function of t

ac "
Further, if the partial derivatives a ,

8Cac and
a .

a2C "

exist

1 J

(4-22)

q ~-9Y"P~~
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and are continuous, then C (x (t ), t ) in (4-23) can be
a a n+1. n+1

written as a Taylor series expansion about a (tn) and t, thus

Ca n'
min

u(tn)E qj(t) Y(a(tn), U(tn), tn ) Atn

+ E(C a + a At n

x (tn ), tan n

+ [(F(tn) a (tn) +G (tn) u(tn)) Atn + Sa(tn+ 1- x a (t n ) t n

+ [(F(t- )
+ 2 I(F(tn )

xa(tn) +G(tn)u(t )) At n +

+ G(tn)u(t n ) ) At n
+Sa (tn+1

+.... I x n), u(tn))

with the row vector of first partial derivatives and the square

matrix of second partial derivatives defined as

(4-27)

ac' (x, t)

a2C (X, t)
a 1 2

x2C~, t)

Note that the expectation in (4-27) is conditioned on (t ) and
an

u(tn). With the help of (4-20) the conditional expectations in

(4-27) can be evaluated so

a (tn),tn
Xan

U~-s -- Y~

~aEBFOaa~-

(A a(tn), tn)

(F(tn a (tn)



u(t n )E(t n x a(tn)u(t1 ), tn) At + j At
min

xa(tn), t

+ a [F(tn) a(tn)+G(tn)u(tnl Atn
nx n

a (tn)' tn

+ Tr Sa(tn+) a + o(Atn)+ HM(s a2 a n+ 1 , 2 a
xa (t n t n

(4-28)

where o (At n ) represents higher order terms in At n such that

o(At )lim I =M 0 (4-29)At - 0 Atn n

and HM(s a ) represents terms containing moments of s (t n+)

higher than the second and terms with the second moments of

Sa (tn+1 ) multiplied by At n . Dividing (4-28) through by Atn and
vtaking the limit as Atn approaches zero yields

fti 'gsre~t~

d ~I
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min r [0= U(tn ) EQ tn) '(xa(t a)n(tn)' tn

+ ~tn)C  F(t) )a (tn) + G(tn ) u(tn)
x i na [n2n*

1 T lim a n+1 aC
n n 1 x

xa(t n ) , t n

Slim HM(Sa(4-30)At --,-0 At
n Ant

First consider the limit containing Sa(tn+1) . From (4-21)

lim Sa(t n+1 lim- P•t ) HT(t )H(t+ )

at -0 At nt -0 a n+1 n+1 n1
n n n

P (t ) H T(t ) At + Q (t ) H(t ) P '(t
a n+1 n+1 n 2 n+1 n+1 Pan+1

(4-31)

and since P'(tn+l ) converges to P(t) as Atn approaches zeroa n+1 n

lim Sa(tn+ = P(t) HT(t) Q2 (t)- 1 H(t) P(t) (4-32)

n nJ

and therefore Sa(tn+1 ) is of order Atn . Since sa(tn) is normally

distributed all higher moments must be either zero or of order

o(At n ) so



limO HM(s a)
At -"0 At 0

n n

Thus, if the (k x k) matrix B(t) is defined as

B(t) = P(t) HT(t) Q2 (t) 1 H(t) P(t)

then (4-30) becomes

0 =min
u E•1(t) L(L ,

C "'(x, t)

a!
[F(t) ^ + G(t) u]

(4-35)

Equation (4-35), with the terminal condition

C (x, tf)= -(x) (4-36)

is the partial differential equation that must be satisfied by the

minimum expected value function. Functions -(x) and L(x, u, t)

are determined by

o0C

() = d d 1 ..
- 0C

u, 

t

L(x, u, t) =

0d

. d0 k W0x(t W(0 )-a f

dj .d .
00

(4-37)

dý k L(, u, t) fx(t)(l x)

(4-38)

(4-33)

(4-34)

and

m ~

act (x, t)u, t) +
at

+ 1 Tr B(t) a2C (, t
2 2

axz



with

k 1 T

fx(t)(~I~) = (2r) 2 IP(t)l 2 exp - - x P(t)-1[ -

(4-39)

It is quite interesting to consider separate combinations

of the terms in (4-35). For example, if the last term on the

right is missing then (4-35) becomes the familiar Hamilton Jacobi

equation for deterministic problems. The last term accounts for

the randomness in the processed measurement information which

is a gaussian white noise. If the L term is zero and u is a func-
A

tion of x, then (4-35) becomes a Kolmogorov equation. Further,

if F, G and L are zero, the diffusian equation, familiar from

Chapter 2 and Appendix B is obtained. Finally the entire equa--

tion is well known from the theory of optimal control of Markov

processes with perfect measurements and has been called the

stochastic Hamilton-Jacobi equation( -)

Solution of (4-35) through (4-39) produces the optimal con-

trol as a function of x and t. Solutions are generally quite diffi-

cult to obtain and in most practical cases, numerical approxima-

tions must be made and the solution calculated using the discrete

formulas of Chapter 2. The following chapter illustrates some

few solutions which are obtainable.



CHAPTER 5

APPLICATIONS OF THE CONTINUOUS THEORY

5. 1 General Discussion

The purpose of this chapter is to illustrate some methods

that are useful in solving the stochastic Hamilton Jacobi equation.

The first problem is solution of the quadratic cost case and the
(60)

results yield the previously derived separation theorem

The second problem involves quadratic weighting of the control

and an arbitrary terminal cost. Finally, the third problem is

the continuous analog of the discrete variable time of arrival

problem of Chapter 3.

5. 2 Continuous Systems with Quadratic Cost

The plant and measurement processes are described by

equations (4-1) through (4-4). The cost to be minimized is

quadratic in the state and the control, thus
tf

J = E [xT(t)A(t)x(t)+uTt)D(t)u(t)u(t dt+ x T(tf)R x(t (5-1)

t

where A(t) and R are symmetric, non-negative definite (k xk)

matrices and D(t) is a symmetric, positive definite (p xp) matrix.

Functions L (x(t),u(t),t) and ¢ (W(tf)) are, from (4-37) and (4-38)

L(x(t),u(t),t) = [ (t) A(t)x(t)+Tr [A(t)P(t)] +uT(t)D(t)u(t)5-2)
(5-2)

((tf)) ( = [T (tf)R (tf) + TrR P(tf) (5-3)
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The minimum expected value function satisfies equation (4-35)

which is written, for this problem, as follows:

S= min TA(t)x + Tr A(t)P(t)] + uD(t)u + C*(x, t)
u 2 L Dat

3 (x 1) a2C( 0t)+ (xt) [F(t) +G(t)u +2 Tr [B(t) A2 J
(5-4)

With B(t) given by (4-34), unbounded control, and the terminal

condition
* 1 FT A (55)

C (x,tf) = Rx + Tr RP(t(5-5)

The solution of (5-4), (5-5) is assumed to be of the form

A 1 AT )A
C (xt) = x K(t)x + g(t) (5-6)

where K(t) is a (k xk) symmetric matrix, to be determined, and

g(t) is a scalar, to be determined. If C (x, t) is given by (5-6),

then its derivatives with respect to time and space are
*C (x, t) AT
a t 2 x )K(t)x + g(t) (5-7)

C*(x,t) ATa 0=, x K(t) (5-8)
Aax

2 *Aa 2C (, t)
= K(t) (5-9)

ax

and substituting (5-7) through (5-9) into (5-4) produces

0 = mmin J_ [TA(t)x + Tr [A(t) P (t) + uT D(t)u]

+ .1 T(t) A t) + AT+ 2 x + (t)x +(t + TK(t) F(t) + G(t) u

+ 1 Tr B(t) K(t)] (5-10)(5-10)

" --



If the derivative of the function in braces on the right of (5-10) is

taken with respect to u then

8 T T
S= u D(t) +x K(t)G(t) (5-11)

and the second derivative is

u2 = D(t) (5-12)
8u

which is positive definite for all u, so an absolute minimum occurs

if (5-11) is set equal to zero, producing

u = - D(t)- G (t)K(t)x (5-13)

Substituion of (5-13) into (5-10) produces

0 = A(t)^ +Tr A(t) P(t)+ TK(t)G(t)D(t)1G (t)DK(t)

[AT * * AT

+ [T K(t)x +g(t3+xTK(t) [F(t) -G(t) D(t) GT (t) K(t)

+ Tr B(t) K(t)] (5-14)

and since all terms on the right of (5-14) are scalars, it may be

written as

0 =1 X TA(t) +Tr A(t)P(t + TK(t) G(t)D(t) GTt)K(t)

S -1 AT ]k t 1 T(t t A
+1 2TxK(t)x+(t) +I2 xK (t) F (t) x+ x F (t)K (t)x

AT -1 -Tr B(t) K(t)] (5-15)
- K(t)G(t)D(t) GT(t)K(t)T TrB

Now (5-15) can be satisfied for all values of x if the Riccati

equation

K(t) +K(t) F(t) +F T(t) K(t) +A(t) - K(t) G(t) D(t)-1TG (t)K(t) = 0 (5-16)

MEN Wqlrý I- " MMWý_'-ý



is satisfied with the terminal condition determined by (5-5) and

(5-6) as

K(tf) = R (5-17)

Clearly since A(t), D(t) and R are symmetric the matrix K(t)

satisfying (5-16) and (5-17) will by symmetric, as assumed at

the onset. Further the scalar function g(t) satisfies the differential

equation.

g(t) + Tr CA(t) P(t) + B(t) K(t)0 = 0 (5-18)

with the terminal condition

g(tf) = Tr [R P(tf)] (5-19)

Solution of (5-16), (5-17) for K(t) will provide the optimal control

function according to (5-13). Note that (5-16) and (5-17) do not

contain the matrix B(t), which determines the statistical characteris-

tics of the system. Thus, the design of the controller is independent

of the design of the estimator, as specified by the previously derived

quadratic cost separation theorem (6 0 ) . In addition, (5-13), (5-16)

and (5-17) are identical to the equations that are obtained by assum-

ing that there is no measurement or process noise and applying

the classical methods of the calculus of variations or the maximum

principle(3). Finally, from (5-6), (5-18) and (5-19) it is clear

that the minimum cost is dependent upon the statistics of the problem.

5.3 A Single State Variable Problem

Consider a single state, stationary plant described by the

scalar equation

~c(t) = Fx(t) + Gu(t) + q 1 (t) (5-20)

where F and G are scalars, the scalar control u(t) is unbounded

and q1 (t) is a stationary gaussian white noise with statistics

E ql(t)] = 0

E[ql (t)q l (s)] = Q1 6 (t-s) (5-21)

I



The scalar measurement process m(t) is available to the controller,

where

m(t) = Hx(t) + q 2 (t) (5-22)

and q 2 (t) is a stationary gaussian white noise with statistics

E q2(t) = 0

E[q2 (t)q 2 (s)] = Q 2 6 (t - s) (5-23)

Assume that estimation of x(t) has proceded for a sufficiently long

time, before control is applied, so that P(t), the estimation error

variance, can be considered to be constant. Then, from (4-17)

it can be shown that

Q H2Q
S=lim P(t) - + F2 + (5-24)t -* H 2 2 Qand with (4-34), B is determined as

and with (4-34), B is determined as

lim B(t) Q 2  F
t - _. - 2B~t~ 2H

2

(5-25)

The expected cost to be minimized involves the control

energy and a terminal cost function. It is given by the equation

J = E u 2 (t) dt + (x(t (5-26)

where the positive constant a and the terminal cost function

k(x(tf)) are arbitrary. Functions k and E, defined by (4-37) and

(4-38), become

00

=() d= d 0 () fx(tf) ( )  (5-27)

-00

M
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(5-28)

where 1

fx(t ) () = (2 P) 2 exp -
2 A

2x - (5-29)

By substituting the proper values into (4-35), the differential

equation for C is obtained as

minu a 2 + ac-&-
*ac ^ 1 B+ a Fx + Guj+ 2

8x

and taking the first and second derivatives, with respect to u, of the

function in braces in (5-30), produces

- = au + G at*
au

a2()u= a2
au

Since a is positive, the optimal control is given by

* G 8C
u =- - Aa Aax

and upon substitutuion of (5-32) into (5-30), there results

(5-31)

(5-32)

0 acat ac
Aax

*ac A+ Fx
ax8x

+ B8 a
2xax

Define a function A(x,t), as

A(x, t) = exp • (x , t

so the derivatives of C may be expressed as

ac
at

ac

ax

aB

G2A

aB
= - G'GA

100

2
ax

(5-30)

(5-33)

(5-34)

(5-35)

(5-36)

.. ·

" '""-' _

A t a 2E(x, u, t) = 2 u



_2C aB
a2 2ax G2A ax1 8A 2

A

IAýx, t) (x, ++F + xx)=

and the differential equation (5-33) becomes a linear equation in
A

A (x, t)

A A n2 A A\
r~A... !AI- t)i A D A(-, t- tZ A

at z A•Zax ax

Now consider a transformation of state variables such that

y = C(t, t) 0 (5

where P(tf, t) is the weighting function of the system (5-20), so

(5 -38)

'-39)

d ' (t, t)

dt = F P (tf, t) S(tf, tf) = 1

and therefore

D (tf, t) = e

Using this transformation, equation (5-38) becomes

A
aA '(y, t) +

at
c) 2 (t t)B

2

which has the solution

00

A'(y,t) = Sd fs(t)() A'(y+ ,t f)
-00

•2A '(y,t) = 0
A2ay

t < tf

1
2

fs(t)(W ) =2 rR(t)) (5-44)

101

M

2

ax
(5-37)

(5-40)

(5-41)

with

(5-42)

(5-43)

t~p-~--

exp 2 R(t
exp - )



and

R(t) = B f 2 (tf T )dT = e 1-1 (5-45)

ATransforming coordinates back to the x system produces the

solution for A(x, t)

00

A(x,t)= dC fs(t),()A(* (tf, t)ý + ; tf) (5-46)
- o0

Finally, the optimal control function may be written in terms of
A(x,t), using (5-32) and (5-36)

* A B 8A (~t)
u (x, t) = (5-47)

GA(A, t) ax
A\

and the derivative of A(x, t) is

00

aA('x,t) t) t) A +
A - (t, t) f d fs(t) ()D( (t, t)x + ;t ) (5 -48)

ax
OC0

where
8Aa A(x, t)

D(x, tf) = (5-49)
ax

The terminal condition A(x, tf) required in (5-46) and (5-49) is
determined by (5-34) as

A(, tf) = exp - C ( , t) exp aB

(5-50)

An interesting closed form solution can be obtained by
altering the problem slightly. Instead of specifying the terminal
cost function 0 ( (tf)), consider a specification placed on the
terminal control. It is desired to force the terminal estimated

Astate x(t f) to lie in a target interval such that

b1 < X(tf) + b2 b1 < b2 (5-51)
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where the values b1 and b 2 are specified. Consider the control

over a short interval from t ' to tf where

tf = t' + / t (5 -52)

and At is small. Assume that a control decision is made at time

t' and that the control is held constant over the interval At.

The control decision at t' is specified according to the following

rule.

b 2 - x(t')

G At

u(x(t'), t') =

b -1 (t')

GAt

if (t ') > b2

if b A (t ') b 2

if x(t') < b 1

(5-53)

From (5-26) the cost to complete the process from time t ' i s

C' ('(t ), t' ) 2
u (t) dt (5-54)

and since u(t) is constant in the interval and given by(5-53),

equation (5-54) becomes

2
_ x (t ' ]

a b2
2 G2 'A t

0

2

G2 At

A
if x(t') > b2

if b1 (t

A
if x(t')<

(5-55)

103
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If the time interval At approaches zero and (t ') lies outside
the target interval, the control rule (5 -53) will supply a delta
function of proper strength to drive x(tf) to the boundary of the
target interval. However, if x(t ~ lies within the target interval,
no control, is applied. Also, the termirial condition on C can
be obtained as the limit of (5-55) as At approaches zero. Thus

A:I
C (x, t-) =

The terminal

as

A(, tf) =

+ oc

0

+ oc

condition

0

1

0

A
if x >b

if b x 5 b2 (5-56)
A

if x < b 1

on A(x, t) can then be obtained from (5-34)

if x > b

A
if x<b

(5-57)

and with (5-49)

D(, tf) = 6 ( -b) - 6(Ax-b 2 ) (5-58)

Applying (5-57) and (5-58) to (5-46) and (5-48) yields

A 1 2 - (tf (tf1A(x, t) = 2 erf F -. erf j

and

aA(x, t) ) s(t)(b s(t)(b (t, t)
A (ttf1 (tf t)x - s(tb 2 f ]

(5-59)

(5-60)
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where erf(x) is the error function of probability theory and is
(42)tabulated4 2 " xx 22

erf (x) = Je dC (5-61)

N 0
The optimal control is obtained by substitutuing (5-59) and (5-60)

into (5-47).

An actual physical example to which this solution might

be applied is rate control of a vehicle in the presence of damping.

Measurements of vehicle rate are inaccurate, so the state must

be estimated. It is desired that the estimated state lie within

a specified interval at the terminal time. The solution given

above will accomplish this task with minimum mean expenditure

of control energy.

5. 4 Continuous Minimum Fuel V. T. A. Guidance

Consider the variable time of arrival guidance problem

of Section 3.2. If measurements and corrections are made at

very short intervals, the spacecraft guidance may be analysed

as a continuous system. Assuming that state variables are

transformed to the terminal time, the state satisfies the scalar

equation

x(t) = g(t)u(t) (5-62)

where u(t) is the control (acceleration) and g(t) is the control

sensitivity (rate of change of terminal state per unit of vehicle

acceleration). The cost to be minimized is the mean total fuel

plus the weighted mean square terminal miss

J=E S x21
X (tf) (5-63)

so functions L and 4 become

S(x, u,t) = lul (5-64)
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( 2) = 2 + P(t ,

and a bound is placed on the control so

lu(t) =< b

(5-65)

(5-66)

In section 4. 2 the differential equation satisfied by the
continuous minimum expected value function C (x, t), was obtained
as (4-35). The derivation of (4-35) involved the limit of the discrete
recursion formula (4-23) as the time step Atn approached zero.
In taking this limit it was assumed that the first and second
derivatives of the discrete minimum expected value function
C* ( , n), exist and are continuous. For the discrete v.t. a.a
problem, this assumption holds everywhere except at the points

a~,, where the second derivative of C' (M, n) is discontinuous.a
Therefore, Eq(4 -35) will apply everywhere except possibly at
the points ± a . Hence from (4-35), (5-62), (5-64) and (5-65)

min
0. = lulb ul + C x, t) + C(, t) g(t)u + (tat + a g + 2-xat 2ax

with B(t) determined by (4-34) and (4-17) as

B(t) =- P(t)

and P(t) is the variance of error in estimated

at time t. The optimal control is obtained by

side of (5-67), hence

b

u = 0-

-. b

ac
if g < -

ax

if 0 Ac__ <
x8X

(5-68)

target miss distance

minimizing the right

1

(5-69)

if ac g>
A'
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and C satisifes three different equations in different intervals

of the x space

0 =b +c xt)
8t

+C (A, t)
Aax

B(t) 82C'(x, t)g(t)b + a t)2 A2
ax

aC ( t)
0 = +at

aC (xt)0 =b+ at
at

(t) 82C (A, t)
2 4A2ax

ac (x, t)
ax

+ B(t) ac x, t)
g(t)b + a

ax

No bound is placed on the control for the discrete v.t.a. problem

of Section 3. 2, so it is necessary to investigate the limit as b goes

to infinity. If (5-70) and (5-72) are divided through by b and limits

taken as b approaches infinity; (5-70), (5-71) and (5-72) become

ac'(, t)0 = at8 t if I acAf
B+ (t) a 2C I, t

2 ex2 g <1

0ac (, t)O 1~ --A-- g(t) otherwise

Also, since this problem is to be the continuous equivalent of the

discrete v.t. a. problem, it may be inferrred that there is a

function a (t), determined by

aC (x, t)
ax

g(t) (5-75)

x =a(t)
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so that (5-73) and (5-74) are written as

ac (x, t)

at

ac (i, t)
ax

1
- g(t)

B (t )a x

2 a42

1
g(t)

A < - a(t)

1x < a (t)

• > a (t)

Now if the derivative of C (*, t) is defined as

G t) ac (, t)G (x.t) = (t

A
and both sides of (5-77) are differentiated with respect to x, then

(5-76), (5-77) and (5-78) become

*(,t) 1(R0t g(t)

G_(x.t) _t B 2 G (•.t)
at 2 A2ax

G (x, t) gt)
-g(t)

x <- a(t)

1x < a(t)

> (t)A
x > C(t)

In addition, since this problem is the continuous equivalent of the

discrete v.t.a. problem, G (x, t) must be continuous across

boundaries + a(t). Also, if the second derivative of C* (x,t)

defined as

H (x, t)
a2 C (, t)

A2ax
a_ G (x, t)

the

is

then differentiating (5-80), (5-81) and (5-82) produces

H *(,t) =0 I"I> a(t)
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8H ( t)
at (5-85)B a2 H 0 X I <aB(t) )2H (^ t)t

- 2 A2
ax

At this point the problem is further restricted by assuming

that a (t) is constant. With this assumption it is shown in Appendix

F that if the control sensitivity g(t) has a derivative for all values

of time, then H (x, t) is continuous across the boundaries ±i a

Thus boundary conditions on (5-85) are obtained as

H*(a ,t) = H (-a , t) =0

The terminal condition on H is yet to be determined.

The terminal condition on C is

C (x, tf) = 4 (x) = C" + P(tf)j

(5-86)

(5-87)

By analogy once again with the discrete

minimum expected cost to complete the

is obtained with the help of (3-29) as

v.t.a. problem, the

process from time tf

g(tf)

2 +A2
2 (X +

+ C (atf)

P(t ))

if II> a

if J 5 a

where a is determined by

[C (a, tf)
S g(tf)ax

AX --

=Xca g(tf) = 1

1
a g(tf)

Taking the second derivative of (5-88) produces the terminal

condition on H *(, t)
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H (x, tf) = if I: 1<>
if12<aI

(5-91)

Equations (5-84), (5-85), (5-86) and (5-91) completely determine

the solution for H (x,t). By applying the usual method of separa-

tion of variables, the solution of (5-85) with the boundary con-

ditions (5-86) and terminal condition (5-91), is obtained as
- tf

0oC1 A (k+ )2 2 B(7)d
(A t 2 - ( 1)

H (x,t) - cos a exp - 2
(k + -) 2a

k=0 2

(5-92)

and G (x, t) is the integral
A
x

G x,t) = H*( ,t) d

0

2 ka ( -1)k Xx
2 2 sin a exp

k=0 (k+ )-~ ~ -1'~ ____

tf

(k+ 2 i2 j B( )dr

22a

(5-93)

Since G (x,t) is continuous across the boundary a, evaluating (5-93)
A

at x equal to a and applying (5-82) produces an equation that must

be satisfied by B(t) and g(t). Thus if a is constant B(t) and g(t)

satisfy
B( 7)drcc

2 Xa g(t) 1 -2
2 (k + )

k= 0
exp (5-94)

with a determined by (5-90). Since this solution requires that

a be constant, the result is not very practical because of the

restriction placed on B(t) and g(t) by Eq (5-94). However, the
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result of Appendix F which shows that the second derivative of

C is continuous across the boundary a, may be very useful for

purposes of numerical computation.
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CHAPTER 6

CONCLUSIONS, CONTRIBUTIONS AND RECOMMENDATIONS

6. 1 Conclusions

A method is developed by which optimal feedback control-

lers may be determined for discrete linear stochastic systems,

when the system state cannot be measured without error. The

theory admits cost functions which are nonquadratic in the state

and/or the control and recognizes constraints on the control

variables. The optimal control is a function of an estimate of the

plant state, which is shown to be the mean state conditioned on

the measurement history. Calculation of an optimal feedback

control function involves solution of recursion formulas via the

method of dynamic programming.

A variable time of arrival midcourse spacecraft guidance

problem is postulated, ignoring errors out of the trajectory plane.

By transforming state variables to the terminal time, this prob-

lem is simplified to one state variable. The optimal control is

determined by an interval 3(n) of values of the estimated state.

If the estimate lies outside 3(n), the optimal control drives the

estimated state to the boundary of 1(n); otherwise the optimal

control is zero. Equations suitable for numerical determination

of the intervals %(n) are derived and an actual numerical solu-

tion is obtained. A comparison made between the optimal con-

troller and a near optimum linear controller, shows that there

is negligible increase in cost if the near optimum controller is

used.

Minimum fuel fixed time of arrival spacecraft guidance,
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ignoring out of plane errors, is also treated. Transformation of

state variables to the terminal time simplifies this problem to

two state variables. Necessary and sufficient conditions for the

optimal control function are derived and the form of the optimal

control is explained. It is found that the optimal control is deter-

mined by threshold curves in the two dimensional space of esti-

mated state variables. A numerical example is used to illustrate

an actual solution. Determination of the optimal control by a

guidance computer involves a one parameter search of precal-

culated values to compute the optimum velocity correction vector.

A minimum fuel re-entry guidance problem is formulated.

The optimal control is determined by threshold values of the

estimated miss distance at the target. Equations suitable for

numerical determination of the threshold are derived and the

numerical solution of an example is illustrated.

The discrete quadratic cost problem is also investigated.

Its solution determines the optimal control as a linear function

of the estimated state. This result represents an independent

derivation of the control/estimation separation theorem for dis-

crete systems.

Under suitable conditions of differentiability of the min-

imum expected value function, the discrete recursion formulas

are generalized to handle continuous problems. The result is a

stochastic Hamilton-Jacobi equation, to be satisfied by the con-

tinuous minimum expected value function. Solution of this equa-

tion produces the optimal control as a function of the estimated

state.

The theory is applied to the continuous quadratic cost prob-

lem. Solution of this problem produces the control/estimation

separation theorem for continuous systems. The optimum control-

ler is linear with time varying gains determined by the solution

of a matrix Riccati equation.
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Solution of a minimum control energy problem with arbi-

trary terminal cost function is also obtained. The result is

written in terms of integrals. By specifying the terminal control

to insure that the estimated terminal state lies within a target

interval, the solution is obtained in terms of error functions

(erfs).

Finally, the continuous variable time of arrival space-

craft guidance problem is formulated. By specializing to a par-

ticular case for which the control thresholds remain constant in

time, a solution is obtained which specifies the relationship be-

tween the control sensitivity and the measurement information

rate. An important result of this solution is the fact that the

second derivative of the minimum expected value function is con-

tinuous across the control threshold.

A significant limitation to application of the discrete theory

developed above is the requirement for large amounts of high speed

computer memory in the solution of even the simplest problems.

Calculation of the minimum expected value function must take

place on a grid of dimension equal to the dimension of the state.

For example, the one dimensional midcourse guidance problem of

Section 3. 2 required 60 points on the real line to adequately deter-

mine the minimum expected value function. Because of the sym-

metry of the problem however, calculations were made for only

30 positive values of the estimated state. The analogous two di-

mensional problem required a grid of 30 x 60 points. In general,
Nk

the number of points required is - where N is the number of

points in each axis direction and k is the dimension of the problem.

Thus, for a three dimensional problem with 60 points along each

axis, the memory requirement for storage of the minimum expected

value function is 108, 000 locations. Clearly, the requirements

grow out of hand for problems of even three or four dimensions.

There is, of course, the possibility of increasing the interval be-

tween points, thereby decreasing N. However, this leads to
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decreased resolution and larger errors in approximating

the optimal control function.

The computational difficulties outlined above are inherent

in the dynamic programming method itself. For deterministic

problems the calculas of variations or maximum principle can

provide optimal solutions without resort to dynamic programming.

With this approach two point boundary value problems must be

solved. Although quite formidable in themselves, these solutions

are usually much easier than their dynamic programming counter-

part and problems of higher dimension can generally be handled.

However, the maximum principle approach is possible only be-

cause the deterministic problems possess unique characteristic

curves. No such unique characteristics exist for the class of

stochastic problems considered above, so if a solution is desired,

it must be obtained via dynamic programming.

6. 2 Contributions

This section contains descriptions of those results of the

research which are felt, by the author, to be either original de-

velopments or independent derivations of previously published

results. Clearly, such statements are easily disputed, and often

with some justification since it is quite difficult to determine

just what constitutes original work. Thus, with some hesitation,

the contributions made in this research are described in the fol-

lowing paragraph.

Recursion formulas are derived for the discrete minimum

expected value function, for cases in which the plant state cannot

be determined without error and the cost may be nonquadratic.

Solution of these equations produces the optimal control as a func-

tion of the estimated state. This derivation is original, although

the results have also been obtained by StriebeF . Minimum fuel,

variable time of arrival, midcourse spacecraft guidance is devel-

oped. This solution is quite similar to some work of Tung and
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Striebel '. Solutions of the fixed time of arrival midcourse guid-

ance problem and the optimum re-entry guidance problem are

original and to the best of the author's knowledge, do not appear

elsewhere. Derivations of the control/estimation separation the-

orem are also included in the work, although these results are

well known. The stochastic Hamilton-Jacobi equation for contin-

uous systems with measurement errors is also derived; however,

this result was brought to the attention of the author byPotter(6 1)

(48)
and appears in a paper by Kushner . Finally, the method of

solving the recursion formulas by approximating the solution of

diffusion equations is original.

6. 3 Recommendations

In this Section some areas of possible future research

will be briefly outlined. In the course of the discussion some

partial results will be explained and some shortcomings of the

existing theory will be enumerated.

6. 3. 1 Steady State Problems - If the estimation problem

becomes stationary after a sufficiently long time, it is possible

to pose a stationary control problem. For this case there is no

terminal time and therefore no terminal cost function 0. Rather

the mean expenditure per unit time is to be minimized by an appro-

priate choice of the control function. Since the problem is sta-

tionary the minimum expected value function will not change with

time so for discrete problems, it should be possible to show that

C8 satisfies the following equation

C ((n)) u(n) E(n) ((n), u(n))

00 00

+ d 1... s( ( (n+ 1)+ (6-1)
-00 -00

If numerical techniques can be devised to determine C ((n))
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satisfying (6-1), then the optimal steady state control function

will also be obtained.

Similarly, it should be possible to show that for contin-

uous stationary problems, the minimum expected value function

satisfies (4-35), with the second term on the right set equal to

zero.

6. 3. 2 Variable Terminal Time Problems - If the esti-

mation problem becomes stationary as time approaches infinity,

then a variable terminal time problem can be posed such that

sample trajectories terminate when the estimated state enters a

target set or region S in the x space. For this problem the min-

imum expected value function satisfies the usual recursion for-

mula

C (x(n), n) m= umi (n), u(n), n)
u(n) cL (n)

00 00

(6-2)
Since each sample trajectory terminates when x(n) enters the

A
target set S, it should be possible to show that the boundary con-

dition

lim A "(nim A c (x(n), n) = 0 (6-3)

A

must be satisfied at the boundary of §. In addition, if

E(A(n), u(n), n) and q1(n) become stationary for large values of n,

then since the estimation problem also becomes stationary at

large n, it should be possible to show that the terminal condition

on C is given by (6-1). Thus, solution of the system (6-1), (6-2)

and (6-3) should produce the optimal control function for this class

of problems.
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Another type of variable terminal time problem can be posed

by requiring that sample trajectories terminate when the actual

state enters a target set or region S. At first glance it may seem

that this problem might be solved by some straightforward exten-

sion of the theory developed above. This is not the case, however,

because ^(n), based on the measurement history, is no longer a

sufficient statistic for determining the posterior state probability

density. In fact, at any time before a sample trajectory termi-

nates, in addition to the measurement history there is another

piece of information available; namely that the state cannot lie in

the region S. Thus the posterior state probability density cannot

be normal because it must be identically zero in S. It follows

that x(n), calculated using the recursion formulas of Section 2. 3,
is no longer a sufficient statistic and the developments of

Section 2. 5 cannot be readily applied.

.6. 3. 3 Specification of a Terminal Statistic - In some

optimization problems, specification of a terminal cost function

may not be desirable. This situation is best illustrated by the

re-entry problem of Sections 3. 6 and 3. 7. For that problem the

terminal cost function was made quadratic with arbitrary choice

of the weighting factor X. It would probably be more useful, in

this case, to be able to determine the control function that min-

imizes the mean fuel required to attain a specified value of some

statistic of the terminal state. For example, from the class of

all admissible controls, as functions of the measurement history,

find the control that will produce a given value of the variance of

the terminal state, with the minimum total mean expenditure of

fuel. This problem cannot be handled with the existing theory.
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APPENDIX A

AN EXPRESSION FOR E[C (x(q+l1)) M(q), u(q)]

In order to evaluate the last term on the right of (2-40)

an expression for the posterior probability density of x(q+ 1)

given M(q) and u(q), is necessary. First an expression for the

terminal state is written as

x(q+l) =x(q+l) - e(q+l) = V'(q+ 1) - e(q+ 1)+s(q+l) (A-1)

Define a k dimensional vector a(q+1) as

a(q+ 1) = i'(q+ 1) - e(q+l) (A-2)

so (A-I) becomes

x(q+ 1) = a(q+ 1) +s(q+ 1) (A-3)

The error e(q+l) is normally distributed and independent of x'(q+ 1).

Also i'(q+l) is a deterministic function of M(q) and u(q) according

to (2-19) and (2-20). Therefore, the posterior probability density

of a(q+1) can be written as
k 1

fa(q+ 1 )[ M(q), u(q)] =(2 7r) P(q+ 1)

exp -~~( -'( P(q1P(q+)-1 (q+1)

(A -4)

where

S'(q+ 1) = + (q + 1, q)S(q)+ 0 (q+ 1, q)u(q) (A - 5)
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Since P(q+ 1) is known a priori, ý '(q+ 1 ) is a sufficient statistic

and the posterior probability density of a(q+l1) given M(q) and

u(q) can be written as

fa(q+)[ l M(q), u(q)] = fa(q+ 1)(1' X/( q + 1)) (A-6)

The processed measurement information s(q+1) is normally

distributed with density function given by

fs(q+1) ) =

1k 1
2 2

(20) 1 S(q+ 1)

(A -7)

and the covariance matrix determined from

S(q+ 1) = P'(q+ l)HT(q+ 1) [H(q+l)P'(q+ 1)HT(q+ 1)+W(q+1 -1H(q+1)P'(q+1)

(A-8)

It was shown in Section 2. 5 that s(q+ 1) is independent of i'(q+ 1)

and e(q+ 1) so s(q+l) and a(q+1) are independent. Since x(q+l)

is the sum of a(q+ 1) and s(q+l), the posterior probability density

of x(q+l), given M(q) and u(q), can be determined by a convolution

integral

fx(q+ 1)))= Id 1' . d.k a(q+1) ( E- C I i'(q+ 1))fs(q+1)
- OC -OC

(A-9)

Using this density function, the second term on the right of (2-40)

is written as

E [0 (x(q+ 1)) M(q), u(q)] =
-00 -00 (A- 10)

Substituting (A-9) into (A-10) and reversing the order of integra-

tion obtains
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E (x(q+ )) M(q), u(q)] =
00 0C

-0 - 0C

0C

)( ) d l...
-0(

Sd•k4 ( q)f ( -,I'(q + 1))

(A- i)

Now, by comparing (A-4) to (2-25) and (2-26) it is clear that (A-11)

may be written thus

E[[ (x(q+l))I M(q), u(q)]
00 00

f d1
0C

jd' s(q+l)()
0C

Jdl1
-oC

k x(q+
-oC

(A -12)

Finally, by the definition of ¢ given in (2-36)

o00

E[k (x(q+ 1)) M(q), u(q)] = = d•.
-00

0C

Fd k fs(q+ 1)() M ('(q+1)+)

(A - 13)

which is the expression required for (2-41).
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APPENDIX B

GREEN'S FUNCTION FOR THE DIFFUSION EQUATION

The k dimensional diffusion equation of interest is given

aD(, 7) _ 1 )a TrS(n + 1)ar 2-T
82D(, T7)

a 
1 (B-1)

where the (kxk) matrix of second derivatives is

2 D(ý, 7)
2 =

a2 D(, r7)

i j (B-2)

If g(ý, 7) is the k dimensional Green's function corresponding to

(B-I), then by definition g(ý, 7). must satisfy the inhomogeneous

equation

ag( ,) 1 Tr [S(n+1)
a7 2

2
2 6 (9) 6(7r)

where 6(0) is the k dimensional Dirac delta function.

can be written as a k dimensional Fourier integral

6(~) = 7
(2~ r)k

Sdp 1V.. . dpk exp ipTý
-oc

where p is a k dimensional vector.and i= .

125

0 <5 - 1

(B-3)

Now 6(0)

(B-4)

It az· -- II II ra*u*8ma;



Also, if y(p, T) is the k dimensional Fourier transform of g(f,7)

then

g(R,7) = 1
(2 )k

oo

f dp . ..
00

s dpk exp ip K y(p° )
-C oi

and the terms on the left of (B-3) become

g(,T (2) 1
aT (27)k

K 12Tr [S(n+1)

oo

dpl...
00

1

(2 7)k

0(2
(2 ~)

-0o

dPk exp ipT  at(p,7)

-00

(B-6)

SdPl. .. dPk exp i pTp~ l7)Tr S(n+1)pp-00 -00

... S dpk expi ipT iY(p,-)pTS(n+ i)p

-00

(B-7)

Substituting (B-4), (B-6) and (B-7) into (B-3) produces a differential

equation for y(p,7)

T
7(p,7) + p S(n+l)p
a7 2 Y(p,'r) = 6(t)

with the solution

7(p,,) = exp -_{ pT S(n+1)pr7

Upon substituion of (B-9) into (B-5) there results

g(ý,7) =
(27)k 0 dP 1 ...

-- 0o

oo 1 T )p
dpk exp i pT - Tp S(n+1)pr

00

The matrix S(n+ 1) is symmetric so an orthogonal transforma-

tion A can be found that diagonalizes S(n+ 1)
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A S(n+1)AT =

O

' 1

kJ

If the orthogonal transformation of coordinates

p = Ap

is made, then (B-10) becomes

0C 00

dpl... f dPk exp ip A'
-oc -0C

1TSTA S(n+I)A
-•-p

T}

(B-13)

Define the k vector y thus

y =A

so (B-13) yields

g(, 7) = 1 dp...
(2 7) -

-00

dpk exp (i P Yi-

k 00

I- Jdpij exp{ipj yj
j=1

- 2 X
2- j J

The exponent in (B-16) can be written as

1 2
Pjyj - Pj X. r

2 -

( jP

Jp X ,•2 Y-2

Xra'. y.2 72 2j 1 -
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(B- 12)

1
g(, 7) (2)

(2·l)

(B-14)

or

pi T JJ) (B-15)

g(, 7) 1
(27)0

(B-16)

I 1.y
V2 x.T

]

y.

2
3

(B-17)
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where

iy.
Thus the integral on the 
right i - ) becomes

Thus the integral on the right in (B-16) becomes

exp i jYj
- 2
7 pj X

- J J

7 =f dp exp 2
-oc

2 0 2

= exp - daj exp - 2

2
= - exp -

and substituting into (B-16) yields

g(, ) =
(2 7)k

= (27r7)

= (2 7r7)

Sk

k2(j rr
k--2

k
2

S(n+l)

S(n+1)

1--2

1
2

exp 1 TAT

(B-20)
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171`exp{
k

j=1

2

j

exp -27
0O
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Using (B-11) produces the desired expression for the Green's

function.

1
2

k

g(T,7) = (277) 2 S(n+ 1) exp - T S(n+l)-1

Finally at T = 1, the Green's function for the diffusion equation

becomes the probability density of s(n+l)

1k 1
2 S(n+ 1) exp -- S(n+ 1)

I I 1-2
-l i

s (n +1)

(B-22)
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NUMERICAL EVALUATION OF EXPECTATIONS

In order to apply the theory of Chapter 2, it is necessary

to numerically evaluate integrals of the form

C '(5,n) = d.. d1k s(n+ 1)() C( + ,n+1)

-0C -0C (C-l)

It was shown in Appendix B that the probability density fs(n+1)
is the Green's function for a k dimensional diffusion equation. Thus

(C-1) can be numerically evaluated in two ways, either by approximat-

ing the integral via quadrature formulas or by approximating the

solution of the diffusion equation

aD( ., 7) 1 82D ( g 1)aE T ) Tr S(n+l) (C-2)aT 2 2

D(g, 0) = C (9, n+ 1) (C - 3)

C1 (, n) = D(S, 1) (C-4)

using central difference methods.

As a means of comparison of these two methods, consider

a problem with two state variables. Define subscripts i and j,

indicating the row (i) and the column(j) of a point in a two dimensional

mesh representing the x space. Thus, C (ij, n) is the minimum

expected value function evaluated at .i , where i represents the row

and j the column of the point .ij in the mesh. If h is the interval

between mesh points, then the lowest order quadrature formula
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for C ' is
a b

C '(i, n) =h 2  f (( ) C n+ )
=ij I Z s(n+l) Im (i + a)(j+m))

L=-a m=-b

(C - 5)

where I and m range over a sufficiently large set of values so that
all points with non-negligible values of the product on the right

2 2in (C-5) are included. If, for example, a 1 and a'2 are the eigen-
values of the covariance matrix S(n+l1); then the range of A and m
can usually be chosen to encompass a square region with each
side greater than six times the square root of the larger eigen-
value

ah =bh >3 max (al,' 2 ) (C-6)

Further, if the point ý.. is close to the boundary of the mesh, then

points (i+ )(j+ m) will lie outside the mesh for certain values of

land m. Thus, some sort of approximation of C must be used,
usually involving a functional description of C' outside the boundary.
In addition, the probability density

k

s (n+) e(nl) exp Im (n+l) i9m

(C-7)

must be evaluated at the points m . Calculation of these values
can be done once at the beginning of the computations and stored for
later use. The stored values are multiplied by the appropriate values
of C , according to (C- 5) and summed over A and m to produce each
new value of C'. This procedure is repeated for each point ..

of the mesh. For example, in the two dimensional fixed time of
arrival problem of Section 3. 5, a mesh of points (30x 60) is used.
Because of the symmetry of C', only half of a (60 x60) mesh is

necessary. It was found that the limits a and b in (C-5) must be
at least equal to 10, so the computations range over a (20x20) grid
and the sums in (C-5) involve 400 points. Thus for each point j,
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the computation of C '( ij, n) requires about 400 multiplications

and 400 additions. Since there are 1800 points in the mesh, 720, 000

multiplications and 720, 000 additions are necessary.

For the equivalent computation by approximating the

solution of the diffusion equation (C-2), the lowest order central

difference equation is given by

D( , T +AT ) = D( , ) +I IS 11(n+1) a +2 S 1 2  2(+1)+S22(n+1)YAT

(C-8)

where a, 0 and -y are

a =[D(( 1)(j),T) +D((i . )(j),) - 2 D( ij, 7) /h 2  (C-9)

S = D((i +1)(j+1),T ) +D(ý(i _-)(j_-), T) -D(Q(i+1)(j_1), T)

- D((i-1)(j+ ,1 )I /4h2  (C-10)

Y = [D ((i)(j+1), T) + D(i)(-1), ) - 2D(ý , T) /h 2  (C-11)

On the boundaries of the mesh, some approximation must be made

to the values of D just outside the boundaries, so that a, 0 and

y can be computed. For the problem of Section 3. 5, with a (30 x60)

point mesh, it was found that about 30 steps in AT should be taken
1

(i. e., AT = 3 ). By properly rearranging terms,the computations in-

volved in (C-8)-(C- 11) can be accomplished with 3 multiplications and

12 additions. With 30 steps in AT , the total number of operations

involved in computing one point C '( ij, n) is 90 multiplications

and 360 additions. Thus, for the (30x 60) mesh, 162, 000 multiplica-

tions and 648, 000 additions are required.

For most computers, the time required to do multiplications

is much greater than the time to perform additions. Since the

central difference formulas require only about one fourth as many
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multiplications as the quadrature formulas and approximately the

same number of additions, the central difference method should

be about four times faster than the quadrature method.

An even more significant difficulty with the quadrature

formulas is the problem of approximating C" outside the boundaries

of the mesh. Some form of approximation is necessary to produce

C as a function of j.. in those regions. By comparison, the

central difference equation requires values of C just one interval

outside the boundary, at each step AT . The accumulated error

over n steps will be propagated into the mesh a distance (n -1)h

from the boundary. The approximation used for the two degree

of freedom problem of Section 3. 5 is to assume that the incremental

change in D, at a point on the boundary, is the same as the change

in D at the nearest point inside the boundary. This technique will

provide exact answers on the boundary if D is a quadratic form.

Typically D is not quadratic however, but looks more like a

linear function of the radial distance to the origin, so this approxi-

mation is conservative in the sense that the calculated incremental

change in D will be larger than the true value. In general it is

much easier, from the standpoint of computer programming, to

handle the boundary approximations on a step by step basis, than

to calculate C outside the boundary with approximation formulas.

In addition, the central difference method will always provide a

conservative (larger) estimate of the true value; whereas the

quadrature approximation may not necessarily be conservative.

Finally, there is the possibility of using higher order

quadrature formulas with the hope of increasing the permissable

computation interval h. Similarly, higher order central differences

may permit larger intervals h. In this Appendix only the lowest

order quadrature and central difference formulas were compared.

It is felt that the conclusions drawn from this comparison will also

be valid for the higher order formulas because the quadrature

formulas always involve many more multiplications than the central

difference formulas.
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APPENDIX D

OPTIMAL CONTROL FOR THE V. T. A. GUIDANCE PROBLEM'

To formulate the v. t. a. optimal control function, it is

necessary to perform the minimization required in (D-1).

* minC (x(n), n) =n
u(n) Qu(n)l +

where 1
2

fs '(n +j)() =(27) IS'(n+ j)

'(n+j)(d) C ( '(n+j)+j., n+D)

(D- 1)
1
2 exp- T S'(n +j)

(D-2)

and

i' (n+j) - (n) + 0(n+ j, n) u(n) (D-3)

If the derivative of the function in braces on the right of (D-1). is

taken with respect to u(n), there results

f 00

Eau(n) =sgn[u(n)+ (n+j, n) Jdý fs (n+j) () G (x(n)+O(n+j,n)u(n)+4; n+j)
-0-

(D-4)

with the derivative of the minimum expected value function defined

G'(A, n+j) = aC ( [, n +j)
Aax

(D-5)

Assume that G 0(, n+j) is a piecewise continuous, anti-

symmetric, monatonically nondecreasing function of x such that

This analysis closely follows the work of Tung and Striebel 73)
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1 G (, n+ j)
O(n+j+k, n+j) = = e(n+j+ k, n+j)

lim G (x, n+j)
+ o0

lim G (x, n +j)
A-- - 00

1
O(n+j+k, n+j)

1
- (n+j+k, n+j)

where 0 (n+j +k, n+j) is the effect of the control at time tn+j upon

the state at the following control time tn+ j+k. Index k implies

that k measurements are taken in this interval. Fig. (D-1)

illustrates a typical function G (x, n+j)

1

8 (n+i +k,n+i)

8(n +'+ k,n+i)

Fig. (D- 1) Typical Graph of G x(I, n+j)Typical Graph of G (4, n+j)

Further assume that the control sensitivities decrease with time

so that

O(n+j, n) >
0(n+j+k, n+ j) (D-7)

This is a reasonable assumption because 0(n+j, n) is the sensitivity

of the terminal state to a velocity correction applied at time tn
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Case #1

Consider values of X(n) in the set T (n) where

oo

S(n) - (n): (n + j,n) d f s,(n+j)() G ((n) +ý, n+ j) > +1
-00

(D-8)

Setting the right hand side of (D-4) equal to zero produces a

necessary condition for the minimum in (D-1). If x(n) is in

T (n), then this condition will be satisfied by a negative value

of u (n) such that

- 1 + (n + j, n) dý f ()G ((n)+O(n+j, n)u'(n)+, ;n+j) = 0s(n+j)
-00

(D-9)

A unique solution of (D-9) always exists if the assumptions about

0 and G' are valid and because f '(n+ j)() is a positive, symmetric,

analytic function. A locally sufficient condition is obtained by

taking the second derivative of the function in braces in (D-1)

and evaluating it at u' (n)

2 6 (u"(n)) + 0 2 (n+j, n) dý fs '(n+ j)(,) H (^(n)+O(n+j, n)u (n)+4, n+j)
anu(n)2J -00

u(n)= u (n) (D-10)

where the second derivative of the minimum expected value function

is defined as

2 , A
HA G (,n +j) _ a C (x, n+ j) (D-1)

ax ax

Because of the form assumed for G , the integral on the right of

(D-10) must be positive. Further u (n) is nonzero so 6(u (n)) is

zero. Therefore, a local minimum exists for u (n) satisfying

(D-9). Clearly positive values of u(n) cannot satisfy the necessary

condition if X(n) is in + (n) and the only other possibility occurs

for u(n) equal zero, at which point there is a simple discontinuity
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in (D-4). However, if x(n) e T+(n) there is no change in the

sign of (D-4) across the discontinuity so no minimum can occur

at zero. Finally, since the solution of (D-9) is unique, u (n)

gives the absolute minimum.

Case #2

Now consider values of (n) in the set 5(n) where

n) = (n) - 1 (n+j, n) d f '(n ) G (n) n+j)n + 1( ) -n00 C

(D-12)

For u(n) less than zero, the derivative (D-4) is

00

8u(n) = - 1 + 0 (n+j, n) dý fs '(n+j)() G ((n)+O(n+j, n)u(n) +;n+j) < 0J u(n)<0 0

(D-13)

because of the assumed form of G .

zero

(n)= 1+ (n+j, n) did fs' (n+j) ( )

u(n).>0

Also, for u(n) greater than

G (X(n) + (n+ j, n)u(n)+ ; n+j) >:. 0

(D-14)

Thus since the sign of the derivative is negative for u(n) less than

zero and positive for u(n) greater than zero, an absolute minimum

must occur for u (n) equal to zero.

Case #3

Finally consider values of x(n) in the set T (n) so that
Co

00
n) dCf (n)G ( (n ) + ,n+ j)< - 15)(D- 15)
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With reasoning completely analogous to that used in Case #1 above,
it can be shown that u (n) must be positive and satisfy

00

1 + O(n+ j, n) d f fs (n+j)()G (x(n)n)u (n)+ ; n+ j) = 0

-00 (D-16)

From these results it is clear that if the positive quantity
a(n) is defined to satisfy

0(n+ j, n) jdcf S/ (n+ j)
-00s (n+ j)()G' G(a(n) + ,n+j)= 1

then if the conditions on G (x, n+j) are satisfied, the optimal control
must drive the estimated state to + a (n) if (n) > a(n), to - a(n) if

x(n)' k-&(n)and must be zero if - a(n) (n) < + a(n).
• °,.

are equivalent to (3-27).

C (x(n), n) is given by

C -((n), n)c (x(n), n) =

ja (n) - ^(n)j + d fI0(n+j, n) -o fc

00

-000

[- a(n) - x(n) + dýd
S(n+ j, n) -0

These conditions

if x(n) > + a(n)

if - a(n) < x(n)t + a(n)

Further, the recursion formula for

(n+j) )C ((n)+ C, n+ j)
(n+ j)

n)+ C, n+j)

fs (n+j ) C (- a(n)
fs'(n~j)

+ ±, n +j) if x(n) < - a(n)

(D- 18)

so G (x(n), n) satisfies

A
if x(n) > + a(n)

( (n) + ý, n+j) if - a(n)- x(n) < + a(n)j d4 fs' (n+j)( )G

-00

0(n+j, n)
(D- 19)
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Therefore, if G (x, n + j) is piecewise continuous, monatonically
nondecreasing, antisymmetric, and satisfies (D-6), these condi-
tions also hold for G (x, n). Clearly the conditions will always

be satisfied if they are satisfied by the terminal derivative.
Consider first total final correction guidance. The minimum
expected value function at the last correction time is given by
(3-30) so the terminal derivative is

G (x, m) = (q+ 1, m) (D-20)

which obviously satisfies the assumed conditions. Second, consider
quadratic terminal cost guidance with the terminal condition (3-31).
The terminal derivative is

'I A AG (x, q+1)= Xx (D-21)

Since the terminal sensitivity e(q+l1, q+1) is zero and X is positive,
this function also satisfies the conditions. Therefore, the optimal
control law is given by (3-27) if (D-7) is satisifed. In cases for
which (D-7) is not satisfied, the optimal control is always identically
zero at time t n
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APPENDIX E

CONCAVITY OF THE MINIMUM EXPECTED VALUE FUNCTION

FOR THE F. T. A. PROBLEM

Consider the function C ' (X, n) given by (3-56) and repeated

00 00

n) = d 1  d 2 fs(n+j)(c (^+, n+j)
-o00 -00

Assume that the function C (x, n+ j) is semi-concave.
A A

say, for any two points xA and xB , the inequality

That is to

C (PxA+(1-xB n+j) C (xA, n+ j)+( 1- C)C (xB, n+ j)

0 <p < 1 (E-2)
must hold. Equation (E-2) implies that the line segment joining

C (XA, n+ j) and C ( B , n+ j) car

the C (x, n+j) surface. For apl
A

a point x may be determined as

A. A
x =x A + ( 1 - U)B

so (E-1) becomes

C '( PXA

inot lie below its projection onto
A A

propriate choices of xA, xB and #,

0 <p < 1 (E-3)

+(1- )xB,n) =

00 00

Sd 1  d2 2fs
-0- -cc

'(n+j)(ý) C (p(xA + ) 1- )(xB+ý), n+j)

(E-4)
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Since fs '(n+j)( , ) is positive, equations (E-2) and (E-4) yield

the inequality
oc 00

C "(uXA + (1 - )xB, n) u  d 1  d2 2 f s (n+j)()C XA + ,n+j)
-OC -OC

+(1-u) dý1  d 2fs'(n+j)( C  B + , n+j)

(E-5)

or by (E-1)

S'( A +1- n) ' A n) +( 1- )C(B n) (E-6)

Since (E-6) holds for all points A, XB; C '(B, n) is semiconcave.

In addition, the integral in (E-4) is taken over the entire space,

so if there is a region (set) of ( , of nonzero area (measure)

such that

C' (p(xA +) +(1-p)(xB+0 ), n+j) <pC1 A+ , n+j)+(1 - p)C (B + ,n+j)

(E-7)

Then (E-5) holds with strict inequality and (E-6) becomes

C '(^A+ (1-M) B, P n)<p C '(xA, n)+( 1- u)C" '(B- n) O<p< 1
(E-8)

For the class of problems considered in Section 3. 4, there are

always regions of ý for which (E-7) holds. In fact it can be shown

that if either xA + ý or xB +ý is an interior point of '(n +j),

given by equation (3-66), then (E-7) holds. Since (E-8) holds
A A C9

for all xA , xB, the function C''(x, n) is said to be concave.

Now consider the function C (x, n) given by(3-57) and re-

peated here in slightly different form as
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where

C (,n) = min u + C" '(A')

x = (n+j, n)x"+ (n+ j, n)uA

(E-9)

(E-10)
For appropriate choices of xA, xB and p, a point x may be determined

as

A A A
x = WA + (1-W)x B

0 < < 1 (E-l1)

Also, appropriate vectors uA and uB may be chosen so that

u = PuA + (1- 4 )u.B

Hence (E-10) becomes

x A = (n+ j, n) XA + O(n + j, n) uA

x = ' (n+j, n)x B +(n +j, n) u B

(E-12)

(E-13)

(E-14)

(E-15)

The choice of uA and uB determines u according to (E-12), so

(E-9) may be written as

SPA A

C (px A + (1- )x B , n ) =

uA min B 1 PuA+(1-)uBll ( A + (1-")B'

(E-16)

The magnitude function on the right in (E-16) is semiconcave and

C '(x, n) is concave so (E-16) yields the inequality

C (x A + (1- )xB, n) <

umin B [ uAIIuA-! uB 1 + C '( B, n3

(E-17)
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Equality in (E-17) can occur when uA and uB are applied in the

same direction and drive the estimated states A and xB to the

same point. In fact this is precisely what happens in region T(n),
A Adefined by (3-72), when xA and xB lie along a common optimal

trajectory direction d(b, n), as given by (3-79). The first term

inside the braces in (E-17) is not a function of uB and the second

term is not a function of uA. Clearly the minimizations over uA

and uB may be done separately so

C( pA + (1- )B, n) < uA xAn)) + C A n

+ (1-p) [UB uB + C '(xB, n)]
(E-18)

and applying (E-9)

C XA+(-)B, n) pC (A, n) + (1-p) C B n) 0 <p < 1

(E-19)

AA A
Therefore, since (E-19) applies for all xA, XB; C (x, n) is semi-

concave.

Thus far, by assuming that C (X, n+j) is semiconcave, it

has been shown that C '( , n) is concave and C ( , n) is semiconcave.

If it can be shown that these conditions hold at the terminal time,
then they must be true for all n. The terminal condition is given

by (3-82) and repeated here as

C (x,m) = O(q+l, m)- m = n+j (E-20)

The magnitude function in (E-20) is semiconcave along radial lines

from the origin and concave otherwise. At the next previous

correction time C '(x, n) is given by

oo oo

C R. (•, n) = di f d 2s./(m)(II (q++1,m) x+
-00 -00

(E-21)
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and in the same manner as above, it can be shown that (E-8)

applies at the next to last correction time. Hence C '(x~, n) is
concave for all n.

Because of the integral in (E-1), C '(x, n) is an analytic
function of ý and its matrix of second partial derivatives exists
and is continuous in the entire x space. Thus C '(x, n) may be

expanded about a point ; as

C*'(x+A, n) = C '(x, n) + ac '(,n) + 1T a2 C'(,n) A+o(IAI3)22 h2ax ax
(E-22)

and similarly

C'(xA -, n) = C (x, n) - ac '(, A 2  A + 0 ( IA 3
ax ax

(E-23)

Adding (E-22) and (E-23), dividing by two and rearranging terms

produces

C '(,n) =-C '(~ , n) + C• (•n)-TA 2C-  A +O(
ax

(E-24)

By choosing IAIthe fourth term on the right on (E-24) can be made

arbitrarily small. Since A can be chosen in any direction and (E-8)

must be satisfied, it is clear that the matrix of second partial

derivatives cannot have negative eignevalues. Also, this matrix

cannot have zero eigenvalues in any region (set) of non-zero area

(measure). To show this, assume that there is a region 9, of

non-zero area, in which an eigenvalue of the matrix is zero.
A

Choose x in S and choose A so it is an eigenvector of the matrix

corresponding to the zero eigenvalue. Further choose the

magnitude of A so that x ±A lie in R . Under these conditions, the

last two terms on the right in (E-24) are identically zero, and

(E-8) is violated. Therefore, the matrix of second partial

derivatives must be positive definite, almost everywhere in the
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ý space. Now consider, once again, the integral in (E-1). It

may be broken down into two separate integrals, thus

00 0C

A( x = dý 1  dý2fa() C"'( +0 , n+j) (E-25)
-0c -0o

oc

lcý ,n)= i d0'OC
where

(E-26)d 2 fa() A(A + C)

1

f =(27)-S'(n+j) exp - T S'(n+j) (E-27)

From the results above, A(x) is analytic and its matrix of second

partial derivatives is positive definite, almost everywhere. Ta-

king the second derivative of (E-26) produces

2 C* '( , n) a 2 A( (E-28

a 2  -oo -oo ax
The right side of (E-28) may be interpreted as the limit of a sum

of matrices. Since the matrices are positive definite almost

everywhere, the left side of (E-28) must be positive definite for

all x and n. This is the required result .
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APPENDIX F

CONTINUITY OF DERIVATIVES FOR THE CONTINUOUS

V. T. A. PROBLEM

In this appendix the continuous analogue of the v. t. a.

problem of Section 3. 3 is examined. In particular, the

continuity of the second derivative of C is investigated.

For the discrete v. t. a. problem the optimal control

function is determined by the derivative of C as in (3-27),

(3-28). If that derivative is defined as

G(2, n)= aC (X, n) (F-l)

then it is shown in Appendix D that G (2, n) is continuous and

satisfies the recursion formulas

G (x, n) =

1
O(n+l, n)

G*' (%, n)

1
O(n+tl, n)

if X > a(n)

if - a(n) 5 :5 a(n)

if ý<- a(n)

Gl ( I, n) = ~d f
-00

and similarly
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1
9(n+2, n+1)

G ' x, n+ 1)

1n+
-(n+2, n+1)

if 2 > a(n+1)

if - a(n+1) < • a(n+1)

if A < - a(n+1)

(F-4)

Using (F-3) and (F-4), the equation for G '(xi, n) becomes

A
-x-_a (n+1)

G' '(2,n) = - (n+2, n+)S
-00

d s(n+1) )

A-x +•, (n +1)

+ d f (Q))G* ' (M+,n+1)- s(ntl)
-- (n+ 1)

(n-+2, n+1) s d fs(n+ 1)++ (n+2, d (i+)

(F- 5)
Now G ' (x, n+1) is an analytic function ofq so the second integral

on the right of (F-5) may be written as an expansion about x

producing

-x-a(n+1)

- dl fs(n+1)jO(n+2,1n+1) d- fs (n+1) ( C)

- x+ a°(n+ i)

-x+ao(n+l)

+ ' d f (n)(
-• s(n+1)·- ca(n+1~)

(A 4 l
R.-+ )

AG* , nax

a2G* ' (A, n+1)
A2ax

(F-6)
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Consider the very special case for which the values a(n) are
constant for all n. In other words, the control sensitivities and
variances of the problem vary in just the proper way so that
the boundary a(n) stays constant. Then (F-6) evaluated at
a becomes

0 -2 a

G' (a., n) = 1(n+2,n+ 1) df s (n+ 1) () - dJ f s (n+ 1))
0 -00

S( ( 1 n+l) 2 G (, n+l)2+ df( G* X., n+I+ ('nx, n1) r3
-2aa

+ °(•2j= a

(F- 7)

to evaluate these integrals, the probability density

fs(n+•) .V2S(n+1) S (n+1) } (F-8)

is required. If the time between control applications is sn•ll so that

t = t + At nn+1 n n

Then it is shown in,

S(n+1) is given by

Section 4. 3 that to first order the variance

S(n+1) = B(t n ) At n + o(At n )

where B(t ) is defined by (4-34). Thus to

the probability density for s(n+l) is

s(n+1) 7 -- B.t1---s2 tn ) nAt n

first order in Atn,

exp - B(tn) Atn

(F-11)
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Let the time step At n be sufficiently small so that

B(tn ) At n << a

If such is the case, then (F-7) may be approximated as

2 2
G (n~- 2 6(n+2,n±1)

0

idý fs(n+1) ( ) G'(2,n+1)+
-00

± a2 G*(/P,n+l) 2t
^r2 2a x

o (2)]

x=a

(F- 12)

and by the definition of a, (3-28)

1
S O(n+1, n)

* 1
G'(a,n±1) = (n+2, n+1)

so (F-12) becomes

1
O(n+l, n) -

1 + nd
8(n+2, n+l) _0

aG A
s(ntl1) a

82G */2
+"2 (x, n+.l) 0

+ 2

or

1 - ' 1 ,
O(n+l, n) O(n+2, n+l)

1
2

a $ '(x, n+l 1 (t)n n
.A 27
t• •x•

+82G' A 1S (xn+1) B(
-x.

X=a,

ti )At) + o0(At n )
4 n

(F- 16)
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It is assumed that the control sensitivity is a positive continuous

function of time. Therefore, the limit

lim 8(n+2, n+1) - O(n+l, n)
0 -at~ (F- 17)At---0 Atn L n

must exist for all t . However, the first term on the right inn
(F-16) contains the square root of At in the numerator. Hence

if the limit (F-17) is to exist, GA (, n+1) must go to zero at
I x -=a

least as fast as the sqaure root of At . Hencen

lim aG'(^ , n+1) =
At -0 Ia

n x Jax=a

and by virture of (F-4), it must be true that

lim aG (, ,n+1) = 0
At -'0o

n 80x x= a
Finally, since

"G'(, nt 1) =0

ax JA+
x=-a

the second derivative of C must be continuous across the

boundaries ± a and equal zero at those points.
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