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ABSTRACT

In this thesis we consider a compact manifold with boundary X equipped with
a scattering metric g and with a collection C; of disjoint closed embedded sub-
manifolds of §X. Thus, g is a Riemannian metric in int(X) of the form g =
z~*dz? +z72h near X for some choice of a boundary defining function z, h being
a smooth symmetric 2-cotensor on X which is non-degenerate when restricted to
0X. We also let A be the (positive) Laplacian of g, suppose that V' € C*°([X; U;C;])
where [X;U;C;] is X blown up along the C;, assume that V vanishes at the lift of
0X, and consider the operator H = A + V. Three-body scattering with smooth
potentials which have an asymptotic expansion at infinity (possibly Coulomb-type)
provide the standard example of this setup. We analyze the propagation of singular-
ities of generalized eigenfunctions of H, showing that this is essentially a hyperbolic
problem which has much in common with the Dirichlet and transmission problems
for the wave operator, though additional features arise due to the presence of bound
states of the ‘two-body operators’. We also show that the wave front relation of
the free-to-free part of the scattering matrix is given by the broken geodesic flow
at distance =.
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1. INTRODUCTION

Let X be a compact manifold with boundary. In [19] Melrose has defined the
algebra Diff;¢(X) of scattering differential operators on X. In fact, let z € C*(X)
be a boundary defining function of X, so z > 0, dz # 0 on X, and 8X = {z = 0}.
The Lie algebra of b-vector fields on X, V,(X), is the set of all smooth vector fields
on X which are tangent to 0X. The Lie algebra of scattering vector fields on X,
Vse(X), is simply Vise(X) = 2V, (X); this notion is independent of the choice of the
boundary defining function z. Much as in the case of Vy,(X), Vsc(X) is the set of all
smooth sections of a vector bundle over X; this bundle is denoted by *¢T X . Finally,
Diffs.(X) is just the enveloping algebra of Vi.(X), i.e. the ring of operators on
C*(X) generated by C*°(X) (considered as multiplication operators) and Vs.(X).
An example of such an operator is the Laplacian A associated to a scattering metric
g. Thus, g is a Riemannian metric in int(X) of the form g = z~* dz? 4+ z~2h near
0X for some choice of a boundary defining function z, h being a smooth symmetric
2-cotensor on X which is non-degenerate when restricted to 8X. In particular, g
is a metric on T X.

Let C;, i = 1,...,k, be disjoint closed embedded submanifolds of 8X. Here
the C; might have different dimensions. Nevertheless, to simplify the notation, we
introduce C = U;C;, and say that C is also a closed embedded submanifold of
0X, although this is strictly speaking only true if the dimensions of the connected
components of C' are the same. Let mf (‘main face’) be the lift of X to [X;C],
the blow-up of X along C (see the Appendix of [19] for a treatment of blow-ups,
and see Figure 1 for a picture). We write pys for a defining function of mf. The
‘three-body type’ operators we are interested in are perturbations H of A of the
form H = A +V, where V € C*([X;C]) is real-valued and vanishes at mf. As
discussed in the following paragraphs, three-body Hamiltonians, with the center of
mass removed, give an example of such operators, and explain our interest in the
problem. In the degenerate case when k = 0, i.e. C = @}, we arrive at the generalized
‘two-body type’ scattering considered in Melrose’s original paper [19]; in this case
V € zC>(X).

Consider the Euclidian space, RY , with the standard metric, and its radial com-
pactification to the upper hemisphere S¥. Embedding S¥ in R¥*! as the unit
upper hemisphere this is given by the map SP : RV — s¥

1 2
(1.1 SP(z) = ((1 + 22 1+ |z|2)1/2) ’

Let = be a boundary defining function of ¥ such that z = (SP™")*|z|~! near 8S¥.
Then the Euclidian metric pulls back to a scattering metric on S¥, with h being the
standard metric on S¥~! = 8S¥, and the Euclidian Laplacian becomes an element
of Diff2,(SY).

Let X;, i = 1,...,k, be linear subspaces of RV, let X? be the orthocomplement
of X;, n; = dim X*, and let 7 be the orthogonal projection to X*. By a Euclidian
many-body Hamiltonian we mean an operator of the form H = A + >, (n%)*V;
where V; € C®°(X%; R) satisfy (SP;)*V; € p;C>®(ST) with p; denoting a boundary
defining function of S”, and SP; being the radial compactification map SP; : X* —
S}. The condition on V; means that it is a one-step polyhomogeneous symbol on
X® of order ~1. A Euclidian three-body Hamiltonian (with center of mass removed)
is a many-body Hamiltonian with the additional assumption that X;NX; = {0} for
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i # j. In the compactified picture, writing X; = cl(SP(X;)) c S¥, C; = X;nSN -1,
the condition X; N X; = {0} for i # j becomes C; N C; = @ for i # j. With the
notation C = U;C; as in the general case, it is straightforward to check that

(1.2) V=P Y @)V eco(SY;Cl),  Vime=0

(cf. {32, Lemma 7.1]), so H is indeed a ‘three-body type’ operator as described
above in the geometric setting. Note also that the C; are ‘subspheres’ of SV—1,
in particular, they are totally geodesic with respect to the standard metric. A
two-body Hamiltonian corresponds to taking k = 1, X; = {0} above, so we have
V e zC“(Sf), giving rise to the ‘two-body type’ terminology in the geometric
setting. In Figure 1 below we take N = 2 and the X are lines. Hence, X = S2 is
a disk, X = S!, each C; consists of two points. The lift of C; to [X; C] is denoted
by ff; in the figure.

C1 £
(5.4 1 mf
Cs C, fi; fi,
Co Cs ff, E
C 1 ff1

FIGURE 1. The original space X and its resolution [X;C].

Now we return to the general setting. First note that H = A4V is self-adjoint on
L2 (X), the L? space defined by integration with respect to the Riemannian density
dg, since A and V are such and V is bounded. Hence, its resolvent R(\) = (H—\)~!
is a bounded linear operator on L2,(X) for A € C\ R. In this thesis we analyze
the boundary value of the resolvent at the real axis, i.e. R(X £ 10). We show that
spec,(H) N (0,00) = @ and

(1.3) R(\ +i0) € B(z'/*< L2 (X),z~ Y2 ¢ L2,(X))

for all € > 0. This is completely analogous to the classical result of Mourre in
Euclidian three-body scattering ([23, 24], see also the paper [25] of Perry, Sigal and
Simon in which they extend Mourre’s results to many-body systems), together with
the absence of positive eigenvalues which was shown by Froese and Herbst [7] in
the Euclidian case. )

We also show that for f € C*®(X), R(A £10)f has a complete asymptotic ex-
pansion away from C which is similar to the corresponding expansion for Euclidian
two-body Hamiltonians. For simplicity here we only state the asymptotic expan-
sion if V € p2;C*®([X;C]) (i.e. short-range); the general case is described in The-
orem 18.6. It is convenient to replace the spectral parameter A by A2. Then, for
A >0, f € (°°(X), the expansion can be described by

(1.4) vy = eEM2g~(N-D/2R(32 1 40)f € (X \ O).
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The top term of such an expansion for Euclidian three-body scattering was de-
scribed by Isozaki in [15], assuming that the potentials were short range, by Herbst
and Skibsted in [12] in the long-range many-body Euclidian case, and the full ex-
pansion was proved by the author in [31]. Moreover, we show that given any ‘initial
data’ ag € C°(8X \ C) we can find f € C*°(X) such that with v_ as above we have
v € C%®(X) and ag = v_|sx. Then

(1.5) u=R(2 +i0)f — R(\? —i0)f € C™=(X)
satisfies (H — A)u = 0, and has the form
(1.6) u=eMeg(N=1)/2_ _ =iMzy(N=-1)/2,,

For A > 0 the Poisson operator corresponding to ‘free initial data’ is the map
P(X) : CP(0X \ C) = C*(X) given by P(A)ap = u. This definition is justified
by the uniqueness statement of Theorem 19.1 which is again an analog of Isozaki’s
result [16]. The free-to-free part of the scattering matrix, S()), relates the leading
part of the expansions in (1.6) at X \ C. Thus, S()) is the map

1.7) S(A) : CF(OX\C) = C®(BX\ )
given by
(1.8) S(Nao = —vilox\c, a0 €CP(OX\ C).

Our main theorem describes the structure of S(\). We first introduce the broken
geodesic flow of h|sx on X, broken at C. For simplicity we only define this here if
C is totally geodesic; for the general definition see Definition 11.6 and the remarks
preceeding it. Let I C R be an interval, and let B be a discrete subset. We denote
by SOX the sphere bundle of X identified as the unit-length subbundle of TX
with respect to h|sx (we drop the restriction in the notation from now on). We say
that a curve v : I = 90X is a broken geodesic of h if two conditions are satisfied.
First, for all intervals J C I\ B, v|s is a geodesic of h, such that for all t € J,
v'(t) € S0X. Second, if ¢t € B then «(t) € C and the limits 4'(¢ — 0) and +'(t + 0)
both exist and differ by a vector in T.,(;)0X which is orthogonal to T.,(;)C (i.e. the
usual law of reflection is satisfied; see Figure 2). We say that p,q € SOX are related
by the broken geodesic flow at time — if there is a broken geodesic v defined on
[—m, 0], such that 4'(0) = p, ¥'(—7) = g. Using the metric h to identify SOX and
S*0X, this defines the broken geodesic flow at time —m on S*@X. We then have
the following result:

Theorem. For A > 0 the wave front relation of the free-to-free part of the scattering
matriz, S()), is given by the broken geodesic flow of hlox on 80X, broken at C, at
time —.

This theorem was conjectured by Melrose based on his work with Zworski in the
generalized ‘two-body type’ setting [19, 22]. As mentioned above, this just means
that we take C' = (). The result of Melrose and Zworski was that S()) is a Fourier
integral operator associated to the geodesic flow on X at time —m, from which
our Theorem follows when C = 0.

In the case of Euclidian three-body scattering with rapidly decreasing two-body
potentials a somewhat stronger result than the Theorem has been proved by the
author in [32] by an explicit construction resembling Faddeev’s original one [6];
namely the scattering matrix was shown to be a sum of Fourier integral operators
associated to the broken geodesic flow. Using different methods, which are closer
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&

FIGURE 2. Broken geodesics on 8X = S? starting at p.

to those of Melrose and Zworski in [22], Hassell has shown in [10] that the same
conclusion holds. In addition, Hassell’s construction proves that the kernel of the
Poisson operator is a sum of Legendrian distributions associated to conic Legendrian
pairs.

We also remark that there are other interesting operators associated to this ge-
ometry; one example is Christiansen’s analysis of scattering in perturbed stratified
media [2].

A major difference between two-body and three-body type scattering is that in
the latter case the range of P()), considered as an operator on C°(9X \ C), may
not be dense in the nullspace of H — A on C~*°(X). Apart from those corresponding
to ‘free initial data’, essentially characterized by restriction of their expansion to
mf, there are generalized eigenfunctions of H — A corresponding to ‘two-body bound
states’; in the case of Euclidian three-body scattering these arise from eigenfunctions
of Ax: +V; in L?(X?%). In the Euclidian setting these are easier to describe than
those coming from free initial data; this was done by Isozaki [15] and Skibsted [30]
for short-range potentials, and by Bommier [1] for long-range potentials in a more
general Euclidian many-body setting. Due to the lack of product structure, this
task is much harder in the geometric setting, and we only prove the propagation of
singularities of generalized eigenfunctions along bicharacteristics under additional
assumptions. These assumptions guarantee that the spectrum of the two-body
operators is constant along C, and are satisfied in the Euclidian setting. Even in
these cases we do not treat the Poisson operator with initial data in a two-body
bound state and the corresponding pieces of the scattering matrix. Hence, we do
not consider whether every generalized eigenfunction arises from a combination of
‘free’ and ‘two-body bound’ initial data. An L? version of this statement is called
asymptotic completeness in the Euclidian case; it was proved by Enss [4, 5] for both
short-range and long-range three-body scattering. In the many-body setting these
were proved by Sigal and Soffer [27, 28] and Dereziriski [3].

To see why a result such as the above Theorem should hold, consider first the
operator A — ), and its analysis in Melrose’s paper [19]. There is a principal symbol
map

1.9) Osem : DIff*(X) = SP(*T*X),
t h
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S (3T X) denoting the space of homogeneous functions of degree m on 5¢T*X \ 0;
this is completely analogous to the principal symbol map on compact manifolds
without boundary. We have gsc 2(A — A) = |¢|?, |.| denoting the metric function on
s¢T* X, the dual bundle of ¢T'X. This is independent of A, and it is elliptic in the
usual sense, i.e. it has an inverse in S; 2(**T*X). However, 0yc,m does not capture
the behavior of Diff;;(X) completely, such as its compactness properties between
certain Sobolev spaces. In fact, there is a symbol map, Ny, at 8X as well, mapping

(1.10) Nsc : Diffsc(X) — coo(schxX).

Now, Nec(A =) = [¢|2 = A, i.e. X is not lower order than A in this sense, meaning
that it appears in Ny.(A — ). Hence, for A > 0, Nsc(A — )) is not invertible in
C®(**T5xX), so A — X is not fully elliptic. This gives rise to scattering theory.

In particular, generalized eigenfunctions of A — A need not be ‘trivial’, i.e. they
are not necessarily in C*(X). They are certainly smooth in the interior of X since
Osc,2(A — A) is elliptic, but their behavior at 8X is much more complicated. Just as
for interior singularities, the failure of a distribution u € C~°°(X) to be in C®(X),
i.e. its ‘singularities’, can be measured by a wave front set, WFsc(u). Corresponding
to the symbol maps of Diffs¢(X), this consists of two parts: one part is an extension
of the usual wave front set from the interior to give a subset of the cosphere bundle
S* X, the other part at the boundary is a subset of T3y X. The first part describes
the smoothness properties of u, the second part its decay properties at 8X. Due
to the ellipticity of osc,2(A — X), (A — A)u = 0 implies that WFy(u) C T3, X.

The singularities of generalized eigenfunctions of A — )\ were analyzed by Melrose
in [19]. To facilitate this analysis, let = be the boundary defining function used in the
definition of g, and let y; be local coordinates on 8X. Then a covector v € T, X,
p near X, can be written as v = 727 2dz + - z~'dy. Hence, we have local
coordinates (z,y, T, 1) on **T*X near 0X. In these coordinates

(1.11) Nec(A = X) =72 + |pf? = X;

here |.| is the metric function of h|sx. The characteristic set, Za_) C T5x X, of
A — )X is the set where NSC(A — A) vanishes. Just as in the case of operators on
compact manifolds without boundary, there is a (rescaled) Hamilton vector field
associated to operators P € Diffs(X). Its restriction to ¢T3, X is denoted by
SHp, and it only depends on p = Ny.(P). It is related to the commutator [P, Q]
for P,Q € Diffsc(X). Indeed, [P, Q)] € z Diffsc(X), and Nyo(z7}[P,Q]) = 1*°H,q.
Correspondingly, as expected, **H, = 0, and with g denoting the metric function
on **T§x X, the Hamilton vector field of A — X is just 5°H,. Now, there are two
disjoint submanifolds of ¥a_» where 5¢H, vanishes, namely

(1.12) Ry ={(y,m,p) €Za_n: p=0, 7=£A/2};

these are called ‘radial surfaces’. The integral curves (t) of *°H, approach Ry as
t — Foo. The closure of the projection of each integral curve 7(t) to X gives
a geodesic segment of h|px of length 7 after reparametrization. Now, away from
R,ﬂf, where * H, does not vanish, we have principal type propagation of singularities
just as for hyperbolic operators on manifolds without boundary — in fact, we should
think of A — X as a hyperbolic operator at 8X. Such a correspondence is made
explicit by the Fourier transform if X = S¥ is the radial compactification of RV,
and by a localized version of the Fourier transform in the general case. Just as in
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the standard case of manifolds without boundary, the propagation results can be
obtained by positive commutator estimates; this is the significance of *°H,. The
singularities of the scattering matrix then correspond to singularities propagating
from R} to R along the bicharacteristics.

If we add a potential V € 2C*>°(X) and consider H — A = A +V — A, then
Nee(H — A) = Ni(A — A), so in the region of principal type propagation the
previous analysis applies; again, this is described in [19]. If, however, we consider
V € pmeC>([X; C]), then the behavior of commutators with H is radically changed.
Thus, propagation of singularities for generalized eigenfunctions of H is very similar
to the propagation phenomena in hyperbolic boundary and transmission problems,
and the broken geodesics in the statement of the Theorem arise for similar reasons
as the broken bicharacteristics in those cases. In fact, many of the proofs of those
phenomena, such as those given by Hormander in [14, Chapter XXIV], can be
adapted to our setting.

We now describe the commutator constructions in somewhat more detail. First,
we define a new algebra of differential operators on X which includes both Diff,. (X)
and C*([X;C]). It is convenient to introduce some notation. The front face of the
blown up space, [X;C], is denoted by ff. Defining functions for ff and mf will be
denoted by pg and pms respectively. The blow down map is written as

(1.13) B:[X;Cl > X;

pme and pg can be chosen so that pmspg = #*z. The inclusion of Diffsc(X) into the
new algebra is supposed to preserve interesting analytical properties. We are thus
led to define

(1.14) Diffsec(X) = C([X; C]) ®co x) Diffoe(X)-

For reasons of brevity the notation does not include C on which Diff3s.(X) de-
pends. Now, Diff35.(X) is actually an algebra with respect to operator composi-
tion, since for V € Vsc(X), f € C®([X; C]), we have [V, f] = V f € pmiC=([X; C))
as Vsc(X) lifts to be a subset of pm¢Vu([X;C]). In this thesis we will microlo-
calize Diff35.(X) by constructing the corresponding algebra of pseudo-differential
operators, g0, (X).

This algebra, ¥3o:~°°(X), will have several properties which are similar to the
fibred cusp algebras defined by Mazzeo and Melrose in [17]. In fact, in the interior of
ff, Diff35¢(X) is a fibred cusp algebra (though on a non-compact manifold). Thus,
many of the proofs are essentially adaptations of the proofs in [17], although in
this thesis we refrain from blowing up C on many occasions (thereby hiding the
similarity), and only do the blow-ups necessary to obtain the b-fibrations required
for push-forward results when the need arises.

One of the main differences between Diff 35.(X ) and Diffsc(X) is that the former is
not commutative to ‘top weight’. That is, while for P € Diff 5o (X), Q € Diﬁ';gl (X),
we have [P, Q] € z Diff™*™ ~1(X), this is replaced by [P, Q] € pm¢ Diffid ™ ~1(X)
for P € Diff5;.(X), Q € Diff. (X). Thus, there is no gain of a weight factor at ff.

Now consider the operator H = A+ V, V € pmiC>®([X; C]), discussed above.
As indicated in the previous paragraph, for P € Diff;(X),

(1.15) [A, P] € zDiff "+ (X) C prmepg Diff it} (X).
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On the other hand,
(1.16) [V, P] € pZ¢ Diff ;i  (X).

Hence, as expected, [V, P] is lower order than [A,P] at mf. However, at ff it
can actually be higher order. That is, the term [V, P] can dominate [A, P] there!
This would clearly cause very serious problems for positive commutator arguments
used, for example, to prove results on the propagation of singularities. We can
avoid this by choosing P carefully. Thus, we take P from the ‘symbolic center’,
Z Diff35.(X) C Diffsc(X) of Diffssc(X), i.e. we choose P € Diff5, (X) so that
[P, Q] € prmspg DIFRF™ ~1(X) for all Q € Diff%%.(X). This makes [V, P] the same
order as [A, P] with additional vanishing at mf which will be sufficient for the
commutator arguments. While the leading part of [V, P] can be quite complicated
since it does depend on ‘sub-leading’ terms, the standard Poisson bracket formula,
lets us deal with [A, P] easily. The additional vanishing of [V, P] at mf will ensure
(due to compactness arguments) that relatively simple estimates of this commutator
suffice.

The commutator approach we just outlined can give global positive estimates,
such as the Mourre estimate, for H = A + V. However, we need to introduce
the corresponding pseudo-differential algebra, ¥5o.~°°(X), for a microlocal descrip-
tion of the propagation of singularities at X. These will propagate along broken
bicharacteristics of ° Hg, broken only at C, with the usual law of reflection satisfied
at the ‘break points’. The spreading of the singularities from a bicharacteristic to
other ones when it hits C' corresponds to the restriction in the choice of P in the
commutator estimates mentioned above.

We define ¥52(X) in Section 3, and in the subsequent sections we analyze its
properties in detail, mostly following [17]. We describe the basic properties of the
Hamiltonian, H# = A +V, in Section 11. We then prove the Mourre estimate in
our setting in Section 12; our method is very similar to Froese’s and Herbst’s in [8].
This could be used to analyze spectral properties of H, just as in Mourre’s work
[23], but we adopt instead the approach of [14, Chapter XXX] and [19]. We proceed
to show in Sections 13-16 that singularities propagate along broken bicharacteristics
of the (rescaled) Hamilton vector field, **Hy, of g.

We continue by showing that H has no positive eigenvalues and describing the
boundary value of the resolvent at the real axis, R(A + i0), A > 0, applied to
f € C®(X). This is basically the many-body result of of Gérard, Isozaki and
Skibsted [9, 16] in our setting, with the additional microlocal variables included,
together with the full asymptotic expansion away from C given in [31]. It should
be noted that the propagation estimates of [9] correspond to microlocalization with
respect to the operator 2D, only. This is completely sufficient for spectral theory,
uniqueness statements, and (with slightly more involved arguments) for asymptotic
expansions of R(A+40)f, f € C*°(X), but it cannot capture the singularities of the
scattering matrix, for example.

We end the discussion by analyzing the scattering matrix in Section 19 using
our results concerning the propagation of singularities and the plane wave con-
struction of Melrose and Zworski [22] near the ‘initial point’ (the easy part of their
construction, which we recall in Appendix A).
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2. DIFFERENTIAL OPERATORS

First, we analyze the structure of Diff 3,.(X), defined in (1.14), in local coordi-
nates. Near a point p € C we can choose coordinates

(2.1) z, y; (j=1,..,codimC - 1), z; (j =1,...,dim C)

such that z = 0 defines X and z = 0, y = 0 define C. Correspondingly, one can
cover a neighborhood of ff [X; C] by two types of coordinates. In the interior of ff
we have coordinates

(2.2) z, Y =y/z, 2

Near fNmf in the lift of the region defined for some k by |yz| > cly;| for some
c>0andall j #k

(2.3) &=x/yr, Y; =v;/ve G #K)s vrs 2

give coordinates. In (2.2) z is the boundary defining function of ff, in (2.3) Z defines
mf, and y; defines ff.

The scattering tangent bundle of X, 3T X, pulls back to the 3-body scattering
tangent bundle 3°T[X;C]. Similarly, its dual bundle, T*X, pulls pack to give
the 3-body scattering cotangent bundle 3¢T*[X; C]. From (1.14), 3-body scattering
vector fields are just smooth sections of 3°T'[X; C]. The Lie algebra of these vector
fields is denoted by Vssc(X), i.e. just as in the case of general differential operators
the underlying space X is emphasized at the expense of C. This is partially justified
by the fact that 35¢T[X; C] is the pull back of a bundle over X.

In the local coordinates (2.1) near p € C a basis of 5T X is given by

(2.4) #28,, 8y, (j = 1,...,codimC — 1), z8,; (j = 1,...,dimC).
Near the interior of 3~!(p) in coordinates (2.2) these lift to a basis of 3T'[X; C):
(25) 2°0,— Y z¥;0y,, 8y, (j =1,..,codimC - 1), 28;; (j = 1,...,dimC).

J

Near the corner mf N3~1(p) in the coordinates (2.3) they give a basis

(2.6) yi0s, 20y, (j # k), yeddy, — &0z — > &Y;8y,, wdd;,

7k
of 35°T'[X; C]. Thus, over int(3~!(p)) sections of 3**T[X; C] are spanned by
2.7 2?8, y,, ©8;,

over C®([X; C]) corresponding to a natural fibred cusp structure, but at 96 (p)
it does not have a simple product-type structure.

The principal symbol map of Diffsc(X) (see (1.9)) extends by continuity to define
the principal symbol map of Diff3;.(X) and to give a short exact sequence:

(2.8) 0 — Diff’c (X) — Diffe (X) —= P(3T[X;C]) = 0,
P™ denoting the space of mth order homogeneous polynomials.
Instead of the indical operator of Diffs.(X) discussed in (1.10), cons1der the
corresponding normal operator
(2.9) Ny : Diffse(X) — (Diff;1 **Tox X);

here Diff; *T5x X is the algebra of fiber translation-invariant differential operators
on Tpx X (see [19, Section 2]). In fact, for @ € Diffgc(X), p € 80X, Nscp(Q)
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is simply given by the canonical lifting of Q to be a translation invariant differ-
ential operator on *“7T,X. Also note that N, is multiplicative, since Diffs.(X) is
commutative to top order:

(2.10) [Diff™ (X), Diff™ (X)] C = Diff™+™ ~1(X).

Moreover, Ng. and Nsc are related via conjugation by the invariant Fourier trans-
form on the fibers of **Tyx X (mapping functions on %7, X to densities on its dual
space *°T; X, p € 0X).

Just like the principal symbol map, Ns. extends by continuity to define the
normal operator map of Diff3c(X) at mf, and it gives a short exact sequence:

(211) 0 ppog Diff ¢ (X) < Diffsge(X) —m%, Diffy 35¢Tyg[ X; C] — 0.

One of the main points about 03sc,;m and Ny, (keeping in mind that ultimately we
are interested in spectral theory, hence in resolvents) is that they are multiplicative
in the sense that

(2.12)
0'3sc,m(P)U3sc,m'(Q) = 0O03sc,m+m’ (PQ), Nmf,O(P)Nmf,O(Q) = Nmf,O(PQ)

for P € Diff . (X), Q € Difff", (X). We wish to define a normal operator at ff which
is also multiplicative. This is somewhat complicated; we first work out the space
into which it maps. Here we just point out that the natural idea one might try, i.e.
mapping into Diff; 3°T¢[X; C] does not give a multiplicative homomorphism. In
fact, it cannot, since this is a commutative algebra, while Diff3s¢(X) is not so even
to top order as indicated in the Introduction.

Just as there is a well defined relative b-tangent bundle ?T(C; X) over C, we
also have a relative scattering tangent bundle **T'(C; X). In fact, **T(C; X) is the
subbundle of **Tc X consisting of v € T, X, p € C, for which there exists

(213) Ve Vsc(X; C) C Vsc(X)
with V, = v. Here
(2.14) Vse(X;C) = 2W(X;C) = z{V € Vp(X) : V is tangent to C},

and tangency is defined using the (non-injective) inclusion map ®TX — TX. Thus,
given a boundary defining function z, ®T(C; X) is isomorphic to 5T(C; X) (via
extension and multiplication by z), but the isomorphism depends on the choice of
z. It should be noted that dim **T,(C; X) = dim C +1, and in the local coordinates
(2.1) it is spanned by z28, and zd,.

There is a natural action of *°T, X /%°T,(C; X) on int(8~!(p)) as we shall see in
Section 4. In local coordinates (2.2) this is given by

(2.15) L,(Y,2)=(Y +8,2), v = az?8, + Bz, + Yzd,.

Correspondingly, the tangent space of the fibers of the blow down map, T8~ (p),
B(g) = p, is naturally isomorphic to *T,X/*T,(C; X). This isomorphism can
be realized as follows: v € **T,X pulls back to f*v € *°T,[X;C]. There is a
natural (non-injective) inclusion map *°T,[X; C] — T,[X; C] whose range is 7,4~ p.
The null space of the composition of the pull back with this inclusion is exactly
**T(C; X), and it gives the isomorphism mentioned above. In particular, v € ST X
is mapped to a vector field on T8~ (p) which is invariant under the affine action.
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More generally, if V' € Vas(X) is a vector field, it can be regarded as a section
of T[X;C], and restricted to int(ff) with the result being tangent to the fibers of
B. This induces a natural map

(2.16) C®(B7H(P); > Tp-1»)[X;C)) 2V = Vo € C®(B7" (0); TS ());

this is called the boundary restriction map. The null space of this map is exactly
C®(B7(p); B3-1(5)*°T(C; X)). In the local coordinates (2.2) this map is given by

(2.17) az’d; + B -0y +v -0z — (- Op.
On the other hand, the basis vector fields (2.6) near 83~ (p) restrict to
(2.18) 0, £y, (j # k), —#°0; ~ ) &Y;8y, 0

i#k
respectively. Thus, the boundary restriction map actually maps into
(2.19) C=(B7(p); T8~ (p))-

Tt is now reasonable to expect that all information about V at ff can be encoded
in a bundle over T8~ !(p), so taking into account the null space of the boundary
restriction map, we want to define the normal operator, Ngo(V), as a section
of Tﬂ;;_,(p)s"T(C; X). Since this is supposed to be defined in particular when
V € Vs(X), we first construct the analogous map for v € **T, X, p € C. For this
we need to split **T,X as 5°T,(C; X) ® Wy, i.e. to split the short exact sequence

(2:20) 0 — °T,(C; X) = T, X —I— T, X/*T,(C;X) — 0.

This splitting occurs naturally if we have a scattering metric on X, for then we can
take W, to be the orthocomplement of **Ty,(C; X). Using this splitting we have a
projection m; : T, X — °T,(C; X). Also, **T'(C; X) is a vector bundle over C, and
so is ¢ : ST X/**T(C; X) — C, so we can pull back **T'(C; X) to a vector bundle
over *T X /**T(C; X). Also note that ¢**°T'(C; X) is naturally a vector bundle over
C, and elements of a vector space can be regarded naturally as translation invariant
elements of the tangent space of the vector space; this lifting map will be denoted

by I.
We can now define the normal operator on *T, X as the map
(2.21) CTpX3ve 1 (¢;-‘(,,)1r1 (v)) € Difff ¢"**T(C; X).

Here Diff{ stands for translation invariant vector fields. Alternatively, using the
identification of Tp(*°Tp X /*T,(C; X)) with T3~ (p) where 3(g) = p, we can iden-
tify Diff} ¢**°T(C; X) with elements of Diff] ﬂ;‘,_l(p)“T(C; X) which are invariant
under the affine action on 8~1(p). (Here Diff} by itself refers to invariance under
translations on fibers of the bundle ﬂs_,(p)“T(C’ 1 X))

For general V € V3qc(X) the prescription is now clear: take g € B~1(p), use that
3s¢T[X; C] is the pull back of **T'X to identify V(q) with an element v € T, X
(so V(q) = B;v), and using the map above map it to Diﬂ'},q ﬂz‘,_l(p)scT(C;X).
Alternatively, we could use the tensor product (1.14) and the construction of the
previous paragraph in this general case. In any case, this gives us a map

(2.22) Ng 0,p : Vasc(X) — Difff Bs-1()"T(C; X)

with null space Z(8~(p))V3sc(X) where Z(8~1(p)) is the ideal of smooth functions
on [X; C] vanishing at 371(p). The only reason for this not being surjective is the
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behavior of Ng 0 ,(V) at 8371 (p). Namely, from the tensor product definition and
from (2.19) it follows that Ng o, maps onto

(2.23) Diﬁl;c,I ﬂs_l(p)scT(C; X).
It extends to an algebra homomorphism:
(2.24) Ngo,p : Diffgsc(X) — Diffsex ﬂ;-l(p)scT(C’; X).

The space Diffsc1 85-1(,)*T(C; X) is analogous to the space of *T,(C; X) sus-
pended differential operators on 8~1(p) as defined by Mazzeo and Melrose [17]; the
only difference is the appearance of the boundary 837! (p). Just as in their case we
can put Ng g, p € C, together in a single operator using the fibration 3 of ff over
C. We thus obtain the normal homomorphism Ng o into the algebra Diffgys(v) sc(f)
of V =5¢T(C; X)-suspended differential operators on the fibration int(ff) — C. It
gives a short exact sequence

(2.25) 0 = pg Diffsse(X) < Diffsse(X) —2 Diffgua(ysc(f) = 0.

We proceed now to microlocalize Diff35.(X) by constructing the ‘small calculus’,
U3sc(X), of pseudo-differential operators, and to examine its properties, such as
the normal operators.

3. DEFINITION OF THE THREE-BODY SCATTERING CALCULUS

In order to define the three-body scattering calculus, we first recall the definition
of the scattering double space X2, from [19]. Thus, consider the b-double space and
its blow-down map

(3.1) Bo: X2 X%, XE=[X%(8X).

The diagonal A of X? lifts to a p-submanifold Ay, C X2 which intersects X in
the interior of the front face bf of the blow up (3.1). The scattering double space
is then the blow up

(3.2) Bsc : X2 — X2, X2 = [X2;0A).

The lift of Ap, Asc, is a p-submanifold of X2, meeting X2 only in the front face
sf of the blow up (3.2). We can also lift C from either factor of X to XZ. The lifts
of Cr, Cg under B intersect bf in embedded submanifolds, and

(3.3) CrNOAL, =CrNOAL

is a closed p-submanifold of Ay,. Hence C NJA, lifts to a closed p-submanifold of
sf, and we can define the three-body double space:

(34) X325c = [stc; lBs—c1 (CL n aAb)]

We write the blow-down map as B3sc : X2, — X2. Since dAp N CL C 8A, are
closed p-submanifolds of X2, they can be blown up in either order, so

(3.5) X3 = [XZ;CL N O0Ay; 0A).
The lift of sf to X2, is denoted by sf’, while the front face of the blow up (3.4)

is sfc. Thus, we can choose boundary defining functions of sf’ and sfc so that

ﬂ;scpsf = Psf'Psfc-
It is actually useful to construct coordinates near sf’ and sfg. Let = be a boundary
defining function of X. We can choose coordinates z,y,z near some point on C C X
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such that C is defined by z = 0, y = 0. Denoting the coordinates on the right factor
of X by 2, y', 2 we then obtain coordinates in the interior of bf near A, N Cy:
(3-6) s=1z'[z,x, 9y, ¥, 2, 2.

In the region of validity of these coordinates Ay, is defined by s=1,y=9', 2 =2,
Cy is defined by z =0, y = 0, Cr by £ = 0, ' = 0. From here we can obtain
coordinates in the interior of sf near B! (CL N 8Ay):

(8.7 z, S=(1-38)/z, Y =(y—y)/z, Z=(2-2")/z, y, 2

Now Ag is defined by § =0, Y =0, Z = 0, and B;;1(Cr. N 8A}) is defined by
z = 0, y = 0. In particular, they are p-transversal. It follows now that A4 lifts to
a p-submanifold, Az, of X2, intersecting the boundary in sf’ Usfc only. Finally,
in the interior of sfc we have coordinates

(3.8) z, S,Y, 2 Y =y/z, 2,
while near sfc Nsf’ in the lift of the region |yx| > c|y;| for some ¢ > 0 and all j # k
(39) B=3/y, S, Y, Z, Vi =y;/ux G #K), wr, 2.

In the region where (3.8) are valid Agsc is defined by S =0,Y =0, Z =0, and
similarly in the coordinates (3.9). In the coordinates (3.9) sf’ is defined by £ = 0
and sfc by yx = 0. Note that CL can be replaced by Cg in the construction of
X2.. by (3.3), and similarly we can swap the primed and unprimed coordinates
throughout this discussion.

The scattering kernel density bundle for operators on half-densities

1 .
can be pulled back by B35 to obtain the three-body-scattering kernel density bundle
1 _ ; i
(3.11) KD3,, = (Bjsoper) "V/2AImX41) p2im 2 0 (x2.),
80
(3.12) KD, = pppe/ im0 1/ 2Am XA @ (X2 ).

The space of kernels of elements of the three-body-scattering small calculus with
weight € R and order m € R is defined by

(3.13)
™l (X;5%Q%) = {k € A™ (X2, Assc; KDL) : & =0 at dX2, \ (sf'Usfc)}.

3scc

We also define the corresponding one-step polyhomogeneous space:
(3.14)
1
U 0508) = {x € Phopleo I (Xdrer Asse; KDLo); 5 = 0 atb X2, \ (s Usfc)}.

3sc
We can generalize these definitions for arbitrary vector bundles E and F over X as

usual, i.e. we define ¥7v}(X; E, F) by replacing the bundle KD:%'sc in (3.14) by
®6B5,c Hom(ri(E ® *0~ (X)), 7} (F ® 0% (X))

(3.15) KDEF —KDi_

where Base = BoBscPasc ngc — X? is the composite blow down map, and 7, 7R :
X2 - X are the left and right projections. We write U5/ (X; E) for U532/ (X; E, E),
and if E is the trivial vector bundle, i.e. for action on functions, we simply write
T5(X).
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Since elements of I™ (X2, Aq; KDfs’f ) pull back to elements of

I:; (X325c1 A3sc; KDE,F

3sc /»

it follows that 8%, Y™ (X;E,F) C \I!;';’CI(X ; B, F). Before checking that multi-
plication by functions in C®°([X;C]) is an element of ¥3:2(X; E) we modify this
definition of the double space.

The problem is that if we consider the space [X; C] instead of X as the base
space, then with the single blow up (3.4) the projection to either factor of [X; C]
is not a b-fibration (it is not even a smooth map). It would have been reasonable
to define X2, so that this problem does not arise in the first place, but then the
triple space (which we need for the composition of operators) would have been much
more complicated. In fact, even now it is easier to define two new spaces X3, i and
X3, With b-maps (actually composite blow-down maps) Basc,r. : X3, = X3sc
and fBssc R : X3, p = X3 for which the corresponding projections

(316) Wgsc,L : X325c,L - [X; C']? 7'rgsc,l:{ : ngc,R - [XYC]

are b-fibrations.
Let If and rf be the left and right boundary hypersurfaces of X2, so If is the lift

of X x X under By, 0 Bsc, and rf is defined similarly. Let bf’ be lift of bf under ;..
Using the stretched projections 72, ;, 72, p we define

(317)  Xiop = [X2;821(C N 9AW); (12,1) 7 (C) NbE; (n2, 1)~ (C) N1,

(3'18) X??sc,R = [Xs2c; s—él (CR n aAb); (Wszc,R)_l (C) N bf’; (ﬂ'szc,R)—l(C) n lf]

2

Lemma 3.1. The stretched projections 75, 1, : X3, 1 = [X;C), 73, p * X3sc,

[X; C] are b-fibrations.

R

Proof. We take 73,1, in this proof for definiteness; by (3.3) 73,z can be dealt
with the same way. First of all, by (3.5)

(3.19) XZ.L = [X2CLN8AY; 8Ay; CL NbE; Cp N1

Upon blowing up CrNAA} in Xﬁ, CrNbf and GAy, lift to be disjoint p-submanifolds,
so they can be blown up in either order. Moreover, the lift of C, NIf to [XZ;CL N
0Ay] is disjoint from the lift of Ay, so these two can be blown up in either order
too. Thus,

(3.20) X3250,L = [Xg, CL NOAp; CL Nbf; Cp NIf; 6Ab]

Since Cr, N JAy, is a closed p-submanifold of Cy, N bf which is disjoint from Cp N1If
we see that

(3.21) X323c,L = [Xg, Crnbf;CrL NIf;CL NOAy; 3Ab]
In addition, C x 8X is a closed p-submanifold of (0X)? in X2, so
[X2;CL Nbf; O NIf] = [X2;(8X)%;C x 8X;C x X]
(3.22) = [X?%,C x 8X;(0X)%C x X]
=[X?%,C x 0X;C x X;(6X)Y



24

where in the last step we used that upon blowing up C x 8X, C x X and (0X)?
become disjoint. Finally, C x 8X is a closed p-submanifold of C x X in X2, and
[X2;,C x X]=[X;C] x X, so (ff denoting the front face of the blow up [X;C])

(3.23) [X2;,C x 8X;C x X] =[[X;C] x X;ff xdX].

Putting together equations (3.19)-(3.23) we see that X2, | can be obtained from
[X;C] x X by a series of blow ups. Since the left projection [X;C] x X — [X;C]
is a fibration (hence a b-fibration), and the blow down maps are b-maps, it follows
that the stretched projection 7r§sc,L, defined as the composite of the blow down
maps and the left projection, is also a b-map; in fact, an interior b-map.

We now check that 73 is actually a b-fibration. If Y is a manifold with
corners, p € Y, let Fa(p) denote the smallest boundary face of Y which contains p.
A b-fibration, f, remains a b-submersion when composed with the blow up map of a
closed p-submanifold M, if for each point p € M the induced map f : M — Fa(f(p))
is a b-submersion [17). For any boundary face M this is automatically satisfied.
The composite map will be a b-fibration if f(M) is a boundary hypersurface of the
range space.

In our case we start with a fibration 7 : [X;C] x X — [X;C]. Since m maps
ff x8X to the boundary hypersurface ff of [X; C], = lifts to a b-fibration m;. Next,
w1 maps the lift of mf x0X to mf in [X;C], so blowing up this lift gives another
b-fibration, 7. Note that the lift of mf XX to [[X; C] x X; ff x0X] is just the lift
of (8X)? to [X2;C x 8X;C x X]; these two spaces are the same by (3.23). Thus,
the composite of the left projection and the blow down maps of (3.22), 9, is a
b-fibration.

It remains to deal with the last two blow ups of (3.21). But these can be dealt
with the same way: m2 maps the lift of C, N 0Ay, (to (3.22)) to ff, so we obtain a
new blown up b-fibration 73. The lift of A} to this new space is mapped to mf
by 73, so the composite of the blow down maps of (3.21) and the left projection,
ie. 73, 1, is a b-fibration as claimed. O

The following lemmas are very useful for taking care of the behavior of functions
at irrelevant boundary faces. Recall that the blow down map g of a closed boundary
p-submanifold S of Y gives an isomorphism 8* : C~°(Y) = C~°([Y; 9]).

Lemma 3.2. Suppose that S is a closed boundary p-submanifold of Y, and let
B :[Y;S] = Y be the blow down map. If u € C~°([Y;S]) is (polyhomogeneous)
conormal to 3[Y;S] in a neighborhood of ff, the front face of the blow up, which
vanishes to infinite order at ff, then v = (8*)~'u € C~°(Y) is (polyhomogeneous)
conormal to 8Y near S and vanishes to infinite order at S.

Lemma 3.3. Suppose that Z is a closed interior p-submanifold of Y, and S is
a boundary hypersurface of Z. Let B : [Y,S] — Y be the blow down map. If
u € C~2([Y; S]) is (polyhomogeneous) conormal to the lift of Z and to O[Y; S] in
a neighborhood of ff, the front face of the blow up, and it vanishes to infinite order
at ff then v = (8*)~'u € C~°(Y) is (polyhomogeneous) conormal to Z and to Y
in a neighborhood of S and it vanishes to infinite order at S.

Proof. These lemmas follow from the fact that the vector fields used in the definition
of the conormal spaces on Y lift to [Y; S| with finite order singularities at ff. Since
u is assumed to vanish to infinite order there, it follows that the lifts of these vector
fields preserve the Sobolev-regularity of u. In case u is polyhomogeneous, it even
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has a polyhomogeneous development in terms of these operators. This proves both
lemmas. O

Corollary 3.4. If A€ U™ (X; E,F) then

3scc
(3.24) A:C®([X;C); E) = C>(|X;C]; F).
If in addition A € U (X; E, F) then
(3.25) A pkepk CO([X; ) B) — ! gl e (1X; C; F)
forallk, k' € R

Proof. The first statement is the easiest to check since C®°([X;C]) = B*C(X).
Using 72, i we can pull back u € C*®(X; E) to X2, and then by Bssc to X2, the
product with the kernel of A then vanishes to infinite order at the boundary. The
standard push-forward theorem now gives the result.

To check the second statement note that if u € pk ;pk' C>°(X; E) then

* * ' 1 * 1
A(ﬂgsc,R) u€ ﬂ (pft:t-lp:f:l)coo(xigsc,ft; K:D‘."fsc ® ﬂ-Rscﬂi(X)

(3.26) A
® i (F ®*072(X)))

(where a few pull backs by blow down maps are dropped in the notation), and it
vanishes to infinite order on all faces but the lift of sfc and sf’. Thus, Lemma 3.2
implies that the blow ups of X2, in (3.18) can be undone, and

(3.27)
’ 1
A(m3er) u € P HCo (X2, KDZ, ® ()" Q% (X) ® (1r)*(F ® *°Q~#(X)))

with infinite order vanishing off sfc and sf’. Therefore, it can be pulled back
to XZ..; and then pushed forward by 73, to [X;C] with the result being in

PEE K+ ([X; CT; F) (see [18]) as claimed. .

Note that this proof also shows that C*®([X;C]) C ¥2:2(X) as multiplication
operators, since the kernel of u € C*°([X; C]) as an operator is just uId, Id denoting
the kernel of the identity operator too. Thus, it is exactly (3.26), and hence (3.27),
with A =1Id, E, F trivial; and the proof is similar for
(3.28) C®([X;C)) c ¥32(X; E).

3sc
Finally we discuss an alternative definition of this space of operators in terms of
localization and quantization of symbols. Thus, we can assume that X = S¥ is the
radial compactification of RV, (w, z) are coordinates on RY = R™ x R", and

(3.29) C = (SP{(w,0) : w € R™}))

with SP : RV — S¥ being the map defined in (1.1). We also take E and F to be
the trivial vector bundles for simplicity. Suppose that a € z*p"C([SY; C] x S¥)
where p, is the boundary defining function on the second factor, and z on the first
factor of X. Removing the compactification of the second factor this simply means
that a is a symbol on [SY; C] x RY; in particular

(3.30) |PDga(p,£)| < Caz (€)™ 1!
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if P € Diffp([SY; C]). The Weyl quantization of this symbol is

(331) Aw,0,2,0) = [ G5+ 2 e
Integration by parts shows that for all Q € Diff(SY x S¥)

(332) QA(z,0,2',0)| < Crale — T

for all » everywhere where the right hand side makes sense. But, just as in case of
the scattering calculus, this factor gives us smoothness and infinite order vanishing
near all faces but sfc and sf’.

Writing 8 = (6;,62) near C we can take y = 6; and z to be some components of
#>. With this choice the phase function lifts to be smooth in the interior of sfc Usf’
and it is non-degenerate in the sense of [13] with critical points at Ass.. Hence, we
deduce:

Lemma 3.5. The set of operators on X obtained by localization and quantization
of symbols a € ' p"C*®([SY; C] xSN 1), where po is the boundary defining function
of the second factor, is ezactly Ut (X).

We also note what the estimate (3.30) becomes in terms of coordinates (w, 2)

on RY. Thus, C is the closure of the inverse image of 2 = 0 under the radial
compactification. Then (3.30) is replaced by

(333)  |DgDID}a(w,z,8)| < Caypyl(w, 2)) ™71 (2) "Wl (gym .
4. RESTRICTION TO THE BOUNDARY

Due to Corollary 3.4, A € ¥52°(X; E, F) defines an operator
(41) 4p : C2(3[X; C]; B) » C=(9]X; CJ; F),

(4.2) Asu = Ailloix;c;,  Glox;e)=u, 14 €CP(X;E)

independently of the extension @ of u. Here we denoted the pull back of the bundles
E, F to the boundary by E and F as well. In the general case A € ¥52/(X; E, F)
the choice of a boundary defining function z of X gives an isomorphism

(4.3) VPUX,E, F)3 A 17 A€ VW) (X E, F).

This depends on z, but if we then restrict to the boundary, (z~'A)s it only depends
on dr restricted to the boundary. Correspondingly we can change the bundles on
which z! A acts to obtain a natural boundary restriction map

(4.4) ITHX,E,F) 5 A— Apy = (7' A,

3sc
(4.5) Asy : C®([X;C]; E) » C®(9[X;C];|N*0X|~t ® F).

However, it is often convenient to trivialize [N*8X| by the choice of a boundary
defining function and drop the additional bundle in (4.4). For example, if we have
a scattering metric g on X, then it fixes = up to O(:cz), i.e. it trivializes N*0X.

It is useful to calculate the action of A € ¥5%(X; E, F) in local coordinates.
We first consider the mapping properties from the coordinate chart near ff N mf to
itself so we use coordinates

(4.6) & =z/ye,Y; = yi/yx (G # k), Yk, 2.
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We also assume that E and F' are trivial over this patch. Pulling back the coordi-
nates on the right factor to the region where (3.9) are valid gives
4.7
1-2wS -, Y;—2Y; . . .

N Lt V4 Rl Eudat | b= - 2Y; "=z -yiZ.

£ Ty, U= 1w (G#E), yh=y(1-2Y3), 2’ =z —pd
Thus, the action of A on u € C*([X; C]; E) supported in the region of validity of
these coordinates gives

(4.8)
Au(:i,YA},ykaz)=/A(:iayk1§}azrs’yyz)

1 —3yS Y, - 3Y;
YT gy, 1%

It is interesting to see what happens when we restrict this to ff or mf. In these
coordinates ff is given by y = 0, mf by £ = 0. Thus, at mf

J (1 — 2Y3), 2z — yx2Z) dS dY dZ.

(49) Au(ovﬁi)ykaz) = (/A(O,mej,ZaS,Y,Z) deYdZ)u(O’f,j)yk)z)‘

That is, at mf, Ay is simply multiplication by

(4.10) Amtue, 5,2) = [ AO,00,%;,2,5,Y,2) dS d az,
in particular it is local. At ff
o B . & Y3y
411)  Auz,¥;,0,2) = / An(®, Y Vulg =g Ty 0, dY
with
(4.12) An(3,9;,2,Y) = / A(2,0,%;,2,5,Y, Z) dS dZ.

This is only local in the z variable, that is in the fibers of the blow up.

The same result would be obtained considering the coordinate chart in the inte-
rior of ff. In fact, pulling back the coordinates from the right factor to this region
(where the coordinates are z, Y, z, S, Y and Z) gives

(4.13) =z(1-28), YV =Q1-28)"Y(Y -VY), 2’ =2~zZ.
(So z,Y,2,5,Y", Z give another coordinate system in the interior of sfc! This is

the coordinate system used in the fibred cusp computations in [17].) Thus, for
u € C*([X;C); E)

(4.14) Agu(¥, 2) = / Ag(P,2,Y)u(0,¥ - Y, 2)dY,

(4.15) Ag(¥,2,Y) = / A(0,Y,2,8,Y, Z)dS dZ.

Of course, we must consider mapping properties between different coordinate charts,
but they again give similar answers.

We put this information together to construct a space of boundary operators.
First note that Ag = Aslg is a smooth family of pseudodifferential operators in

VO (SYE, F) = Ue® (87 (p); B, F
+
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on Cp; of course, E and F are trivial over 3~!(p). The set of such families will
be denoted by ‘Il;'c‘fc.(ff ,E,F). Also note that the boundary operator of Ag at
p € ffNmf is just Ame(p) where Aps € C®°(mf; Hom(E, F)) is the restriction of
Ap to mf identified with the smooth section by which it is a multiplication. Let
S(X; C) denote the subspace of

(4.16) C*(mf, Hom(E, F)) @ ¥™°,(ff; E, F)

consisting of pairs (a, A¢) for which the restriction of Ag to 0ff at p € 9ff = FNmf
is just a(p). We thus deduce:

Lemma 4.1. The boundary restriction map A — Ap gives a surjective map to
S(X;C).

There is significantly more information in Ag than in An¢. For example, if
A € V35c(X), then Ap is given by the evaluation map 3*T[X;C] 3 A — 1(4) €
T[X;C]. Thus, Am¢ = 0 directly from the definition of Aj, since then A = pm¢V,
V € W([X;C]), and V([ X;C]) : C®([X;C]) = C>([X;C]), but Ag does not
vanish necessarily. The precise relationship between the boundary operators at the
two hypersurfaces will be discussed in Section 6.

Since ¥™0(X) C ¥5(X), it is important to see how the boundary restric-
tion behaves on the smaller algebra. For p € C' we have defined the fiber of the
relative scattering tangent bundle **T,(C; X) C **T,X similarly to ?Ty(C; X), so
v € *T,(C; X) if and only if v = zV|, for some V € V,p(X) with V}, tangent to
C. Given a boundary defining function, z, the map V(X)) 2 V 5 2V € V,(X)
restricts to an isomorphism of ®T(C; X) with 5T (C; X), but the isomorphism de-
pends on the choice of z. We also recall that the normal operator for V € Vi(X)
at p € 90X is given by V, € *°TpX lifted to a translation invariant vector field,
Nie,p(V), on **T, X (by the natural identification of **T, X with the fibers of its

tangent bundle).
Lemma 4.2. There is a natural transitive free affine action of the fibers of
TX[*°T(C; X) =~ C

on the fibers 8~1(p) Nint(ff), p € C, such that if A € $™°(X;E,F) then Ag is
translation invariant (i.e. invariant under this action). If A € V,o(X) then Ag is
given by the push-forward of N,.(A) by the differential of this action.

Proof. If (z,y, z) are coordinates near p, z is a defining function of 8X, C is defined
by £ =0, y = 0, then we have coordinates

y-Y
(4.17) 5 7=Y 2
near 71 (p) Nint(ff). We can write v € *T, X as
(4.18) v = azr’8, + Z B;z0y; + Zyjza,,,..
j J
Now define
(4.19) L, (}7: z) = (? + B, 2).

If (z',9', 2') is another coordinate system near p with properties as above, then

(4.20) ' =a(z,y,2)r, Y =b(z,y,2)z + B(z,y,2)y
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where B is a codimC — 1 by codimC' — 1 matrix, b is a vector in ReedimC-1
a(0,y,2z) > 0, B(0,0, 2) is invertible. It follows that

(4.21) v=a(a")?0 + ) Bjz'dy; + > ',
J j
(4.22) B85 =" a(0,0,2(p)) "' Bjx (0,0, z(p))Bs-
k

In addition,

y; - _ .
Y] = < = a(z,y,2) 7 'bj(2,y,2) + Y _ a(=,4,2) ' Bje (2,9, )Yk
z k

(4.23) }
= a(z,zY,2) " 1b;(z,2Y,2) + z a(z,zY,z) ' Bji(z,2Y, 2) Vs
k
Thus, on ff
(4.24) Y] =a(0,0,2)7'5;(0,0,2) + Y a(0,0,2) "' B;x (0,0, 2) .

k
Hence, if we define L, as in (4.19), i.e. by
(4.25) L,(Y',2)=({"+4,2)
then, e; denoting the jth unit vector in Reedim ¢—1

(4.26)
L,(V'(Y,2),2'(¥,2)) = (D_(a(0,0,2)7"6;(0,0,2) + Y a(0,0,2) ™ Bj (0,0, 2)¥x
J k

+ Z 0(07 0, Z(p))_lBjk (Oa 0, z(p))ﬁk)e.h ZI(O) z))
k

= (Y'(Ly(Y,2)), 2 (Lo(Y, 2))).

Therefore, L, is well-defined independently of the coordinates on X used in the
definition. Moreover, by (4.19), L, does not depend on a and +, so L, is in fact
the lift of an affine action by the quotient S¢T X /**T(C; X) as claimed.

We can see directly from the definition (4.19) that the action is transitive and
free. We can write V' € Vsc(X) in local coordinates as

(4.27) V = az?8, + Z B;ixz0y; + Z’yj:vaz’..
Jj J

Its lift to V([X; C]) near int(ff) in the coordinates (4.17) is
(4.28) V' =a(z?0; - Y _a¥;0y,) + Y Bidy, + Y 1iz0;.
J J J

Thus, for ¢ € int(ff), V'(g) = 3, B;0,, which is exactly the push-forward of
V(B~1(q)) by the action. Finally, due to (4.15), A € ¥™0(X; E, F) means exactly
that Ag is independent of Y, so Ag has a convolution kernel, i.e. it is translation
invariant. O
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5. COMPOSITION OF OPERATORS

We first recall Melrose’s definition of the scattering triple space X2 from [19].
The b-triple space is defined by the iterated blow up

(5.1) X2 =[X3,(0X)3%(0X)? x X;0X x X x 8X; X x (0X)?.

The three partial diagonals lifted from X2 by the stretched projections are p-
submanifolds and intersect in pairs only in the triple diagonal; in particular, these
pairwise intersections intersect the boundary of X in the boundary, K, of the
triple diagonal. The intersection of the lifted partial diagonals with the front face
of the first blow up in (5.1) is denoted by Go, O = F,S,C, and the other part
(which is in the front face of one of the last three blow ups in (5.1)) by Jo. The
intersection of any two of the Go is K; the Jo do not meet each other, and meet
only the corresponding Gp away from K.

If we blow up K the elements of G = {Gr,Gs,G¢} become disjoint. This allows
us to define the scattering triple space

(5.2) X3 =[X3K;G;7]

where J = {Jr, Js, Jo}. If we denote by Bo the last three boundary faces of (5.1),
and I = (0X)?3 then we also have

(5.3) Xs3c = [Xs2c x X;I;Bs; Bo; K; Jr; Gs; Ge; Js; Jel.

Now, using the stretched projections 7j o, Cr can be lifted from either double
space to X2; these will be denoted by C¢. Similarly to the construction of the
double space we need to blow up the intersection of the C@ with the boundary of
the lifted partial diagonals.

(5.4) X3 = X5, K; KN CL; 6603 T; Jo)-
Here

(5.5) Gc ={GrNCf,GsNC;,GcNCE},
and similarly

(5.6) Jo={JrNCE,JsNCE,JcNCEY.
Note that

(5.7 KnCF=KnC;=KnC¢.

The problem with this definition is that we were too economical in the definition
of X2, (meaning that we had only a few blow ups), so this space is too big for the
streched projection to give b-fibrations. So we also construct some intermediate
spaces X3, , with composite blow down maps from o : X3, = X3, o for which
the corresponding stretched projection 73, o : X3, o = X3 is a b-fibration.
Thus, let

(5.8) X3eo = XS K; KN CY;Go;Go N CY ;5 Jos Jo N CE.
Since the Go are disjoint after the blow up of K in X2 and the Jo are disjoint
from each other and from all but the corresponding Go, the blow ups in (5.4) can

be rearranged so that the first blow ups are exactly those of (5.8); here we also use
(5.7). Thus, there is a composite blow down map (hence an interior b-map)

(59) Bo : ngc - ngc,O'
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Now we turn our attention to the stretched projections.

Lemma 5.1. The stretched projections 7%, o : ngc,o - X2%,.,0=F,S,C, are
b-fibrations.

Proof. 1t suffices to prove the claim for wgsc’F, say, due to the symmetry. In (5.8)
the blow ups of K and K N Cf can be interchanged as K N Cf is a closed p-
submanifold of K. Upon blowing up K NC¥, K and Gr N C¥ become disjoint, so
they can be blown up in either order. Note that in (5.8) the blow ups of Gr and
Gr N Cf can also be interchanged. Thus,

(5-10) X3er = X5 KNCL;GrNCE;Gr; K; Jr; JF N CE .

Here we also used that K lifts to be a closed p-submanifold of G, so the order of
their blow up is immaterial. Commuting K N C¥ through Gr N Cf and G, and
commuting Jr and Jr N Cf to the front (these are disjoint from K and K N Cf)
gives

(5.11) X3 r =[X3Gr;GrN CE,Jr; JrnCE; KN CE; K.

Now, as X2 = [XZ x X; I; Bg; B¢], we can use that Bs and B are disjoint from the
other faces of the blow up to reorder it. Furthermore, in X{f xX,G pr']Cf cGrCl,
so these blow ups can be interchanged too. Upon blowing up G, I and Jr become
disjoint. Using these results we see that

(5.12) X3, p=[X2 xX;GrNCL;Gr;JrNCE;Jrp;I; KNCE; K; Bs; Bo).
Finally we use that G C Jr, so

(5.13)

(X2 x X;GrNCE;Gr; Jr N CE; Jp) = [X2 x X;Jp; Jr N CE;Gr N CF;GE).
But due to the product structure of Jr and C¥
(5.14) [X2 x X;Jp; JENCE) = X2, x X.

It follows now that X gsc, # can be obtained from X2 x X by a series of blow ups,
hence the composite of the blow down maps and the projection to the first factor,
Mse,F> 18 an interior b-map.

We proceed as in Lemma 3.1 to show that 73, p is a b-fibration. The projection
m: X2, x X = X2 is certainly a b-fibration. The next two blow ups on the right
hand side of (5.13) involve sfc x3X and sf’ x8X which are mapped to the boundary
hypersurfaces sfc and sf’ respectively by =, so (see the proof or Lemma 3.1) 7 lifts
to a b-fibration m; of the space in (5.13). Next, I is the lift of bf x0X to (5.13),
and m maps it to bf, hence the lifted projection, w2 is also a b-fibration. Similarly,
Bs and B are the lifts of rf XX and If x8X, so the lifted projection, =3, is a

b-fibration
(5.15) T3 : [X$;Gr;Gr N CE; Jp; Jr N CE) = X2

Here we used the remarks after (5.11) to rewrite the space obtained after the blow
ups.

Now, K N C¥ is a submanifold of the front face of the blow up of Gr N C¥ in
(5.15), and 73 maps it to sfc, while K is a submanifold of the front face of the blow
up of G there; it is mapped to sf’ by 3. Hence, w3 lifts to a b-fibration even after
they are blown up. But, by (5.11), the space we have constructed with these blow
ups is exactly X3, , so this proves the lemma. O
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Proposition 5.2. If A € ¥} (X;F,G), B € U7} (X;E,F) then

3sc 3sc
(5.16) AB e ¥ (x B @)

and

(5.17) (AB)g = ApBs.

If we only assume that A € ¥} (X;F,G), B € \I".',Zlgil (X;E,F) then we still have
(5.18) AB e ¥ (x B @),

Proof. Suppose that A € \Ilgcl (X;F,G), B € \Il;’;'c"' (X;E,F). The kernel of the
composite operator is just

(5'19) AB = (ﬂ-gsc,C)* (ﬂal )* ((ﬂ;‘ (Wgsc,F)*A) (ﬂ; (Wgsc,s)*B))'

Since all of the 7r§sc,o are b-fibrations, and the 8¢ are interior b-maps, the product
is polyhomogeneous conormal on X3,.. Moreover, at each boundary hypersurface of
X3, except at the lift of K and K NCF, one of the two factors vanishes to infinite
order, hence the same holds for the product. Thus, by Lemma 3.3 (85')* applied
to the product gives a polyhomogeneous conormal distribution on X3,_ . As 73, ¢
is a b-fibration it follows that the push-forward is polyhomogeneous conormal and
vanishes to infinite order at all boundary hypersurfaces of X2, except sf’ and

sfc, proving that AB € \Il;';:"'l’”ll (X;E,G). A similar argument without the

polyhomogeneity claims proves (5.18) for A € ¥t (X; F,G), B € ‘Il:',';;cll (X;E,F).
Now assume again that A € ¥T(X;F,G), B € U3.' (X;E,F), and let u €
C®(d[X;CJ; E), and let 4 € C®([X; C]; E) be such that i|gx,c; = 4. Then

(5.20) (AB)su = ABi|g(x;c), Bsu = Bil|gx;c)-

But ¥ = B is then a smooth extension of Bgu, so

(5.21) As(Bou) = Atlsix;c) = ABils(x;c) = (AB)ou

indeed. O

6. THE NORMAL OPERATOR

In this section we define the principal symbol and the normal operator for A €
¥ (X) so that the vanishing of these two together will be equivalent to A €

3sc
\Il;';c_l""'l (X). First we restrict our attention to the case I = 0. The principal
symbol map o3sc,m is Hérmander’s symbol map [13] for the kernel of A which is
conormal to the diagonal Azsc. The singularity coming from the density factor in
(3.15) means that
(6.1) O3se,m : UIY(X) - SPC*T*X; 7* Hom(E, F))

3sc

where S is the space of mth order homogeneous sections of 7* Hom(E, F') over
3scT*[X; C]. We radially compactify the fibers of 3¢T*[X; C] and let *¢S*[X;C]
be the new boundary face (i.e. the boundary of 3*¢T*[X; C] at fiber-infinity). This
allows us to write o3sc,;m as a map

(6.2) Osge,m : TIY(X) = C°(3°8*[X; C]; (N**¢S*[X;C])™ ® n* Hom(E, F)).

3sc
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We then have a short exact sequence:
(6.3)
0— \I’;)rslc—1 O(X) - ‘I’Ssc (X)
= C®(*°8*[X;C); (N**°S*[X;C])™ ® 7* Hom(E, F)) = 0

as usual.

To obtain a similar short exact sequence in the boundary weighting of 3% (X)
we need more information than what is given by the boundary restriction map. As
in [17], this is done by conjugating by ‘oscillatory test functions’. Thus, suppose
that f € C*(8X). Choose f € C®(X) with flox = f

Lemma 6.1. For any A € ¥7'(X;E, F)

3sc

(6.4) A=ef/mpeifl= ¢ 9T (X, E, F).

3sc

Proof. The kernel of A is A = e~if(=:2)/=+if(z':¥'2')/2’ 4. The exponential factor
is

(6.5) exp(i((1 — 28) 7! f(2(1 - 28),y — 2V, 2 — 22) - f(=,y,2))/)

near sf. Now, (1 —z8)"!f(z(1 —28S),y — Y,z —2Z) — f(z,y, z) vanishes at £ = 0,
so it is of the form

(66) a:(Sf(y,z) -Y. ayf(ya Z) -Z- azf(yyz)) + 11:29(1', Y, 2, S, Y’ Z)
with g smooth. It follows that (6.5) is smooth up to sf and its restriction to sf is
(6.7) exp(i(5f(y,2) =Y -0, f(y,2) — Z - 8. £ (y, 2)))-

Although this exponential is not smooth up to the other faces of X2, it only has a
finite order singularity there. Since the kernel of A vanishes to infinite order at the
lift of these faces to to X2, it follows that A € U} (X; E, F). O

IfAe \Ilg;'(X E,F) then by (4.10) Ams:(y,2) only depends on f(y,z) and
df(y,z), and similarly, by (4.12), /iﬂ-,,(ﬁ:,ffj,z,Y) only depends on f(0,z) and
df(0,z). Moreover, the dependence of Ag; on d,f(0,z) is only via conjugation
by a nonvanishing smooth function. At the operator level (as in (6.4)) this can
be seen from the fact that if £(0,z) and d, f(0, z) vanish, then eif/% extends from
int([X; C]) to be a smooth function on int(ff), since ¥; = y;/z is a smooth func-
tion on the interior of ff. Hence, denoting A obtained from f via (6.4) by Af, if
£1(0,2) = f2(0,2) and d f1(0,2) = d.f2(0,2) then Af!(2) and AP (z) are uni-
tarily equivalent on L*(S%; E;) = L*(87'(p); E); L? is taken with respect to any
translation invariant metric (in the sense of Lemma 4.2).

A convenient way of incorporating the information about both f(0, z) and df (0, z)
is to consider

f -dz df

(6.8) dT)=~f5+

Then

(6.9) al)0,2) = —£0,9% +

€ C®(X;5°T* X).

d(y,z) f(Os Z)
—_.'E .
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Hence, the statements of the previous paragraph show that /iﬁ‘,l (p) only depends
on d(f/x)(0,2) € **TyX, p = (0,z) € C, and its dependence on z~!d, f(0, z) is
somewhat redundant.

To eliminate the ambiguity we choose a subbundle W — C of *T'X which
is complementary to 5¢T(C;X). Such a splitting arises naturally if we have a
scattering metric on X, for it gives an inner product on *¢TX, and we can take W
to be the orthocomplement of °T'(C; X). This induces a corresponding splitting of
seT* X over C, with W+ C **T3 X being the annihilator of W. We can now choose
local coordinates z, y, z near p € C such that z = 0 defines 80X, ¢ = 0, y = 0 define
C, and zdy;, j =1, ...,codim C — 1, give a basis of W. This means exactly that %f—
and d—:"-, j =1,...,dimC, are a basis of W+. It follows from the discussion of the
previous paragraph that we do not lose any information if we require d(f/z) € W+
when defining Ag. Note that the choice of a boundary defining function z, modulo
T2C*®(X), fixes %%— as an element of **T5, X, so in this case W induces a splitting

of T,0X by defining a complementary bundle W of TC. In particular, this is the
case if we are given a scattering metric g on X.

Definition 6.2. For A € ¥T}(X; E, F) the indicial operator

(6.10) Aga(p,7,v) € T8 (0); B, F ® IN*0X|™),

p € C, (p,T,v) € W+ is the restriction A,’;’, with Af given by (6.4) with f(p) = —,
df (p) = v (i.e. d(f/x) = 7(dz/2?) + v/z). Similarly,

(6.11) Amt(p, 7, &) € Hom(E, F) ® |IN*8X| ™,

(p,&) € T, mf, is A,fnf,, with f(p) = —7, df(p) = £. We often write /imf,o = Ams,
Ago = Ag.

Lemma 6.3. For each p € C, (1,v) € W;', the indicial operators at ff and mf
give multiplicative homomorphisms

(6.12) v X; B, F) - ™87 (p); E, F ® |N*8X| ™),

3sc

(6.13) ¥™(X; E, F) - C®(mf; Hom(E, F ® |N*X|™))

3sc

respectively. If A € ‘Ilg.':cl(X :E,F) and Ag,;, Ay vanish identically then A €
gl (X B F).

3sc

Proof. The multiplicative property follows from

(6.14) e~z ABeiflz = (¢=i1/2 Aeif/2)(e=if/ Beif /7y,

Since for A € V50 (X; E, F)

(6.15) Ag(YV,2,Y,7,v) = / ei(=57=2Y) A(0,Y,2,8,Y, Z) dS dZ,

the vanishing of Ag (z,7,v) for all z, 7 and v means that the partial Fourier trans-
form (6.15) vanishes identically, so (by taking the inverse Fourier transform) we see

that the kernel of A vanishes identically when restricted to sfc. In the case of Apme
vanishing means that

(6.16) Ame(ye, Yj,2,7,8) = / ST 2D A(0, s, ¥, 2,5, Y, Z) dSdY dZ = 0,
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so by taking the inverse Fourier transform we deduce that A vanishes when re-
stricted to sf’. But the vanishing of A at these two boundary hypersurfaces means
that A = zA', A € U3 X;E,F), ie. that A € U52}(X;E,F). In the case

Ae g™ (X; E, F) we only have to note that A — z~'A is a bijection. O

3sc

One of the main differences between the indicial operators at mf and at ff (and

hence between ¥/ (X) and lIl;’;’c'(X )) is that the former maps into a commutative

algebra while the latter does not. Thus, for 4, B € ¥70(X), mmf = 0, but

3sc
[A, B]g does not necessarily vanish. Since commutation properties are very impor-
tant in spectral theory, we are interested in finding the pseudo-differential operators
which commute with all others to ‘top order’. We thus make the following defini-
tion:
Definition 6.4. We say that A € Z¥™!(X;E), if for all B € ¥ (X; E)

3sc 3sc

(6.17) [A, B] € g™ —LIH+ (x. py

3sc

Lemma 6.5. Let A € T} (X;E). Then A€ ZU ™ (X;E) if and only if

3sc 3sc
(6.18) Ag (p,7,v) = a(p,7,v)1d, a € C®(W1L).

Proof. Since multiples of the identity operators commute m all operators and
the indicial operator is multiplicative, if (6.18) holds then [A, Blg ;,, = 0. Thus,
by Lemma 6.3 (and the commutativity of the indicial operator at mf and of the
principal symbol map) (6.17) holds.

On the other hand, for each p € C, (1,v) € W;—, the indicial operator gives a
surjective map

(6.19) U (X;E) 3 B~ Bg(p,,v) € ¥ (37 (p); E).

3sc
Since the center of ¥5'~*°(8~1(p)) consists of multiples of the identity map (see
e.g. [14, Lemma 7.1.4]), (6.18) follows. |

Remark 6.6. The subalgebra of 0" ~°°(X) generated by Vs.(X;C) (over C®(X))
certainly lies in Z ¥3.;”*°(X). In fact, for g € C*®(X),

(620) gﬂ',O(pa 7 V) = g(p)’
and for V € Vi(X; C),
(6.21) Vro(p,m,v) = a(p)7 + 3% (0)v;

it V(p) = a(p)s?0. + 5, 7(p)ad,.

We now define the normal operators which contain the same information as
the indicial operators but which are sometimes more convenient. First let M be a
compact manifold with boundary and let V' be a real vector space. Generalizing the
results of [17] we define the V-suspended algebra of scattering pseudo-differential
operators on M, denoted ‘Il;::;'(v)’sc(M ). We do so by defining their kernels as
convolution operators in V, i.e. we demand that

(6.22) A€C(M2 x V;*Qp)
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is polyhomogeneous conormal to A X {0} and sf xV of order m and I respectively,
decays rapidly at co (in V') with all derivatives, vanishes to infinite order on all
other boundary faces, and acts on S(int(M) x V') as

(6.23) Au(m,v) = /A(m,m’,'v — v )u(v')dm' dv'.

We could rephrase the definition by radially compactifying V to V, and demanding
that A € C~°(M2 x V;%Qg) should be conormal to As x {0} and sf xV and
vanish to infinite order on all other boundary faces. Here 5¢Qp is the pull back of
cQ(M) ® °Q(V) by the right projection 7g : M2 xV =+ M x V.

We also need to define a corresponding algebra associated to operators mapping
sections of a vector bundle E/ — M x V to another one F -+ M x V. For the
V-convolution structure (i.e. the related translation invariance) to make sense, we
require that E' and F' are pull backs of vector bundles E -+ M and V — M.
Then \Il;’;;'(v)’sc(M ; E, F) is defined as was ‘Il;:’s'(v),sc(M ), except that (6.22) must

be replaced by
(6.24) A €C™°(M2 x V;**Qg ® =* Hom(E, F)).

Here 7 : M2 x V — M? is the projection.
Since \Il::’;(v),s .(M; E, F) is invariant under diffeomorphisms of M, linear trans-
formations of V, and bundle transformations of E and F over M, we can define

the analogous object for vector bundles over a manifold C.

Definition 6.7. Suppose that V — C is a real vector bundle over a compact
manifold, Y a compact manifold with boundary and 8: Y — C is a fibration. The
V-suspended scattering double space is

(6.25) Y2v)—cse =Y X Y Xc V;0Y X0 8Y xc V;Apy]
where Ay, y is the lift of the Y-diagonal,
(6.26) {(,9",v): y=1v, By) =B)} CY xc Y xcV,

to the first blow up. The front face of the last blow up is denoted by sfgus(v). The
V-suspended scattering diagonal, Agys—sc, is the lift of

(6.27) {.v,0) : y=4/, By) = B(0)},

o denoting elements of the zero section of V.

We now define the generalization of ‘Il;:’s'(v)’sc(M ; E,F) when M is a fiber of a
fibration 8 : Y — C over a compact manifold C. Here we also need to generalize V
to a real vector bundle over C. Thus, we want elements of the new algebra to be
a smooth family of operators on C, with values in ‘I’;::;l(v,,),sc(:@_l (p); E, F). More
precisely, we make the following definition.

Definition 6.8. Suppose that V' — C is a real vector bundle over a compact mani-
fold, E - Y, F — Y are vector bundles, Y a compact manifold with boundary and
Y — C is afibration. The algebra of V-suspended scattering pseudo-differential op-
erators, \Il;::;f(v)_c’sc (Y; E, F), is the space of operators with V-convolution kernel
Ae C'°°(stls(v)_c,sc; O r®7* Hom(E, F)) which are conormal to Agys—sc and to
sfsus(v), vanish to infinite order on all other boundary faces, and decay rapidly with
all derivatives at infinity in V. Here 7 : Ys?ls(v)_c’sc — Y x¢ Y is the projection.
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We can finally define the normal operator at the front face essentially as the
restriction of the kernel to sfc; or as the inverse Fourier transform of the indicial
operators. We actually have slightly more structure than this (after all, we want
to realize the normal operator as an operator). First we note the lift of the basis
vector fields on the left factor of X2 (as in (2.4)) from X2 to X2,.. Namely, as
calculated in [19], they lift to

(6.28) Bs + zVu(X3,.), Oy + oVo(X3.), 0z + zVo(X3.)

in both coordinate systems (3.8) and (3.9). In particular, restricted to sfc they
become s, 8y and Oz respectively. This means that we can naturally identify
seT,X with the fibers z = z(p), Y = const of int(sfc) since the lift from the
left factor gives translation invariant vector fields on the these fibers which can
be identified with points of the fibers. Thus, we have a natural identification of
35¢T[X; C] with sfc. Hence, the subspace 85T (C;X) is also identified with a
submanifold of sfc, namely with Y = 0. More generally, the lift of *T(C; X)
gives a ‘distribution’ on sfc whose integral submanifolds correspond to elements
of 3¢T¢[X; C] with the same image in the tangent space T3~ !(p). These are the
submanifolds Y = const. Now the splitting T X = W & 5°T(C; X) over C means
that we have a splitting 3T, [X; C] = T, (p) @ 8;°°T(C; X). We can identify
TB (p) with (671(p))? by the exponential map, that is by (Y,8) — (Y,Y - ),
which gives us an identification of sfc with ff x¢ ff x**T(C; X). Thus, we are
exactly in the setting of Definition 6.8 with 8 : ff — C a fibration, and V =
5¢T'(C; X) — C a vector bundle. We can then regard the restriction of the kernel of
Ae \I:g';f (X) to sfc as a distribution on this space, and directly from the definition
of ¥740(X), we obtain an element, Ng o(A), of ‘I’;,l:,s(:V)—C,sc(ﬁ.)'

There is a better way of thinking about this which is more analogous to [17]. As
noted in Section 4, Y can be replaced by Y’ as a coordinateonsfc: Y =Y —Y'. In
these coordinates the identification of (837! (p))? x *¢T,,(C; X) with the submanifolds
of sfc given by z = const is more natural, but it still depends on the choice of W
since there is no natural origin S = 0, Z = 0 to correspond to the fibers of **T(C; X).

Since the convolution kernel of

(6-29) Neop : Ut (X) = Unity) (871 (D)),

as in (6.22), is just the inverse Fourier transform of the indicial operator over 3~ (p)
(giving a distributional density as required), multiplicativity of Ng o follows from
the corresponding property of indicial operators. For general l € R, A € \Ilg;;' (X),
we define Ng ;(A) = Ngo(z~'A). We thus conclude:

Proposition 6.9. The normal operator at the front face, Ng,;, gives a multiplica-
tive short exact sequence

0 > pstc Y X; E, F) &

»
3sc

(6'30) m,l Nee 1 m,0 * ~1
S URIXGEF) s el (G E,F @ |N*0X[™) 0

3sc

with V = %¢T(C; X), the relative scattering tangent bundle of C in X.

7. COMMUTATORS

The proof of the propagation of singularities used in this thesis is based on
a positive commutator estimate. We thus proceed to compute the commutator
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of A € ¥3%(X), B € \113,c %(X). As we saw in Section 6, in general we only
have [4, B] € pme U™ ~10(X), but if [Ag(€), Be(€)] = 0 for all £ € W, then

3sc

[A,B] € ¥p+™~L1(X). Since this happens in many interesting cases, we need

to compute [4, B] modulo ¥5t ™' =22(X). In fact, we are interested in (4, Blg,
m+m’'—1,1

(under the assumption that [4,B] € ¥ (X)), so it suffices to compute
[4, Blu for u € Cg°([X; C]).
Lemma 7.1. Ifu € CP([X;C)), A€ TO(X), then Au € CP([X;C)) and
(7.1)
Au = Agu + z((8; A)u + Ag(d,u) — (D, Ag(0)) (Y dyu) + (D, Ag(0))(8,u))

mod z*CP ([X; C)).
Proof. Since in the local coordinates valid in the interior of ff (which suffice as
u € CR(IX; C))

(7.2) Au(z,Y,2) = /A(a:,?,z,S, Y, Z)u(z(1 — zS), {T—%,z —zZ)dSdY dZ,

differentiation with respect to = gives

(7.3)

0, Au(z,Y, 2) =/(6 A)(z,Y,2,8,Y, Z)u(z(l — zS), e ;
Y -

(1- S)2

u(z(1 — zS), iY——_:_czS’ z—zZ)dSdY dZ.

—2Z)dSdY dZ

/A(:c,Y 2,5,Y, Z)((1 - 252)8; + S———~ 8¢ — 28,)

Restricting this to ff, i.e. letting = = 0, gives
(7.4)

8, Au(0,7, 2) = / (8:4)(0,7,2,8,Y, Z)u(0, ¥ — Y, 2)dS dY dZ

+ / A(0,7,2,8,Y,Z)(0, + S(¥ - Y)dy — Z8,)u(0,¥ — Y, z)
dSdy dz.

Now, the first term is just (8, A)gu, 8, denoting the derivative of the kernel of A;
here 3,4 € \Il3sc (X) since the kernel is in the appropriate space. The second term
is Ag(O,u), while the last term is

(7.5)
- / ( / ZA(0,7,2,8,Y, Z) dS dZ)(8,u)(0, ¥ — Y, 2)dY

= [ D.F5240,7,2,0,Y,0@:)(0,Y - ¥, ) dY = (D.An(0))(0.v)
and the third is of similar form taking into account that
(7.6) (Y = Y)0pu(0,Y - Y, 2) = (YOpu)(0,Y - Y, 2).
Since Au — Au|g — (8, Au)|g € z2C*(X), this proves the lemma. O

‘We can now discuss commutators.
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Lemma 7.2. If A€ ¥7° B e ¥™°(X) and u € C([X;C)), then
(7.7)
[B, AJu = [Bg, AgJu + z[Bg, Ag]0zu + z[(8: B)x, Agju + z[Bsg, (0: A)g]u
+ 2([D, Ag (0), Bg] + [Ag, D, B&(0)])d,u + =D, Ag (0)[Y, B)dgu
- 2D, Bg(0)[Y, Aldyu — 2([Bg, D Ag(0)] — [D, Bg, Ag))¥ 0pu
— z(D, Bg(0)(Y 8y A) — D, Ag(0)(Y 3y B))u
+ z(D, B (0)(3; Ag) — D, Ag(0)(9,Bg))u
(mod z2CP ([X; C))).
Proof. This is just an application of the previous lemma; first one calculates Au

modulo z2C*®([X; C]), then B(Au) the same way, and one deals with A(Bu) simi-
larly. In addition we write

(7.8) 0.(Agu) = (0, Ag)u + Ag0.u,

and dy (Agu) similarly. O
It is easy to extend this result to the indicial operators since for f € C*(X)

(7.9) [A, Bff = e=if/2[A, Bleif I = [e=/2 Acif /= o~ifI= Beifla).

However, in general [4, B] fu, regarded as an element of C([X;C)) /=22 ([X; C)),
depends on f in a more complicated way than in the case of the indicial opera-
tors where we quotiented out by mé§°([X ;C]). The situation is much simpler if
[Bg, Ag] = 0 on WL. Then [B,A] € ¥T™ ~11(X), and [B, A} gives the indi-
cial operator of [B, A], which hence depends only on f(0,z) and df(0, 20) where
f = flax- In this case we can simply center our coordinate system at (0, zo), i.e. we
may assume that zp = 0, assume that u is supported near z = 0, and we can take

f(y,2) = —7+ vz to calculate [I,_\B](O, T,v), since the result of the computation is
independent of all such choices.

Proposition 7.3. If A€ ¥™°(X), B € ¥7°(X) and [Bg, Ag] = 0 on W=, then

3sc 3sc

[B, A] € ¥™t™-11(X) and
(7.10)
B, Alg; = [(0:B)a, An] + [Br, (0. A)a] + (D An)[Y, Baldy
— (D;Bg)[V, Agl0y + ((D-Ag)(Y 8y Bg) — (D Bg) (Y 8y Ag))
+ ((DyBg) (0. 4g) - (D, Ag) (0. Bg))
+ ((v - Dy Ag)(8-Bg) — (v - D, Bg)(0: Ar)).

Proof. The additional ingredient to Lemma 7.2 is the understanding of operators
such as (8;Af)g and (0,A')g. Now, with our choice of f = —7 + vz,

(7.11) Af|a(V,2,Y) = / HS(=T+2)=20) 4(0. ¥ 5, 8, Y, Z) dS dZ,
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S0
8, ATla(¥,2,Y) = v; / iSeS=T+m)~20) A0 ¥ 2. 8,Y, Z) dS dZ
(7.12)
+ / el S(-r+=)-2)g, A(0,Y,2,8,Y, Z) dS dZ.
Thus, restricting to z = 0 gives

(7.13) 8., A%1g(¥,0,Y) = —v;8,Ax(¥,0,Y) + 8., Ar(¥,0,Y).

Substituting this into Lemma 7.2 and noting that

(7.14) D, [/iﬂ',éff] = [D,,fiﬁ', Bﬂ‘] + [Aﬂ‘, D,,Bﬂv],

with a similar result for D., proves the proposition. O

It is interesting to see how this proposition gives the usual commutator formula
if Ae ¥™0(X), B € ¥ °(X). In that case the kernel of A is the pull back of a
distribution A’ on X2, so
(7.15) A(z,Y,2,8,Y,Z) = A'(z,2Y, 2,5,Y, Z).

Let a' be the Fourier transform of A’ in S, Y and Z, i.e. it gives jsc,m,0(A’) when
restricted to Cs. X, and define b’ similarly. Thus,

(7.16) Ag(z,7,1,V,Y) = F;1d'(0,0,2,7,Y, ),
(7.17)
(0, A)g(z,7,v,Y,Y) = 8:F;1d'(0,0,2,7,Y,v) + Z Y;8,,F;1d'(0,0,2,7,Y,v).

J

Thus, the only dependence on Y in (7.10) comes from the multiplication by }_’, in
expressions such as the last term of (7.17). Thus, we can explicitly compute the
operator commutators in (7.10). Moreover,

[Bg, (0:A)e] = > _[Br,¥;10,,Fa'(0,0,2,7,Y,v)
J

(7.18)
= Z f;lD,‘,.b'(0,0,z, 7,Y, u)Byj]-"jla'(O, 0,2,7,Y,v).
J
Similarly,
(7.19) [V;,Bgl = —F,;'D,,b.

The other terms can be computed similarly giving

B, lgs = 3 i (D ¥)(0y,) = (Diy0)(8y,b)

(7.20) + X,: F(Dy;)(8:,0") — (Dy,0')(8:,b))

+ ‘7:;:1((” - Dya')(8-b') — (v - D,b')(9-a'))
+ F; (- Dua')(3rb') — (1 - Dyub')(8ra")).

Here the right hand side is just the inverse Fourier transform of the standard
(rescaled) Poisson bracket formula [19, Equation 5.23] of the scattering calculus, as
expected.
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8. MAPPING PROPERTIES

Proposition 8.1. If A € ¥3° (X) and L2,(X) is defined with respect to a scat-
tering density, v € C®(X;**Q(X)), then A defines a bounded linear operator on
L3 (X).

Proof. This can be proved by the construction of an approximate square root as
usual, at least in the case of A € ¥3:2(X) where we have discussed the symbol
and indicial maps in detail, or simply using the local description of kernels which
implies that with X =S¥, ‘Ilg;(c)c (X) c ¥ (RM) (this is the algebra corresponding
to symbols in [14, Definition 18.1.1]), so we can apply Hérmander’s theorem [14,
Theorem 18.1.11]. O

Corollary 8.2. If A € ! (X) then for all m', I’ € R, A defines a continuous
3scc

operator from H;’;"" (X) to Hfg"m"'“(X). In particular, if m < 0,1 > 0, then A
is a compact operator on L2 (X).

Proof. Suppose m' > 0, I' > 0. Let P, € ¥/™1/20(X) be fully elliptic (i.e.
Jsc,jm’|/2,0(P) is invertible). Then Qo = Id+P;P, € \IJs’c"ll’o(X ) is invertible with
Qy! € T™IO(X). Ifm' >0let Q = Qoz"', while if m' < 0let Q = Qy'z".
Thus, Q € ¥7 ¥ (X) is invertible with inverse Q! € \I!;c”,"” (X). Similarly,
we can construct Q' € ¥ ~™~F-l(X) with inverse in U™ ™I+ (X). Now,
Q'AQ™! GI\I{g;ZC(X ), so by the proposition Q'AQ! is bounded on L2 (X). Since
Q € BHZ'Y (X), LZ,(X)) and (@')! € B(LZ(X), H'~™I"+(X)), the composite
operator is

(8.1) A=(@)7Q4Q™)Q € BHZ " (X), H ~™*!(X)).

O
Proposition 8.3. If A € U (X), and 0,n(A), Nmsi(A) and Ngi(A) are invert-
ible, then there exists P € U5™ 7 (X) such that
(8.2) PA-Td € U;%°(X), AP —1Id e ¥;°%(X).

Proof. This is just the standard proof using the symbol calculus. Thus, using
the full ellipticity and the exactness of the symbol mappings we can find Py €
;™ ~}(X) such that

3sc
(8.3)
o—m(Po) = om(A)7!, Numt,—1(Po) = Nms, 1 (4)72, Ng,—1(Po) = Ng(A)™!.

Thus,
84) RLo=PRA-Ide¥;2'(X), Rr=AP —Ide ¥;2(X).

3sc

Then we asymptotically sum the Neumann series

[ o]
(8.5) Pr ~ Py(Id+ ) (-1)R}),
Jj=1
and define P similarly. The standard argument shows then that Pp — Pp €

¥2.>(X), so we can take P to be either one of these two. a
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9. WAVEFRONT SET

Just as Melrose has defined the scattering wave front set, WF, arising from
¥ ~%°(X), on the boundary CscX of scT* X, we can define an analogous notion
of wave front set for ¥3..~ °(X). In fact, since the operators for which we want do
develop a scattering theory are elliptic in the usual sense, i.e. 035c,m (H) is invertible
for these H, we will only consider the part of the wave front set which captures
the behavior of distributions at 8X. First, however, we define the simpler notion
of operator wave front set.

!

The operator wave front set, WFj,, of elements of ¥3..'(X) is closely related to

the indicial operators. Namely, for 4 € ‘Ilg;c' (X) we could first consider the set of
points & € 3¢T*.[X; C] which have a neighborhood in 35T .[X; C] on which Apmg,
vanishes and call it the complement of the ‘top order operator wave front set of A
at mf’. Similarly we could define ‘the top order operator wave front set of A at ff’
by saying that ¢ € W is not in it if £ has a neighborhood on which Aﬂ‘,l vanishes.
Although the ‘full indicial operator’ of A is not well defined, the following statement
has an invariant meaning: the amplitude of A, a(4) € z'p™C>®(3T*[X;C]),
defined as the Fourier transform of the kernel of A in S, Y and Z given by some
local coordinates on X (as in Section 2), vanishes to infinite order on a neighborhood
of a in 3T [X;C] or on a neighborhood of B~ (x+)~*({¢}) C T3 x.[X; Cl.
Here 7t : T3 X — W+ is the projection. As a general principle we should work
on compact spaces. Hence we consider the radial compactification WL of W+.
If K ¢ Wt is closed and K = cl(int(K)), by 8~!(n1)"!(K) we mean the set
(B~ (L)Y (K Nint(W+))). It is also useful to have the notion of operator wave
front set at 3%¢S*X corresponding to the symbol map. Thus, the operator wave
front set will be defined on the disjoint union of three compact manifolds with
corners:

(9.1) O35 X; C] = ¥5*[X; CJU T [X; ClUW .
We thus make the following definition.

]

Definition 9.1. The operator wave front set,
(92)  WEyo(4) = WFhye o (4) UWFhq e(4) U Wy (4) C Coucl X Cl,
of A € ¥ (X) is given by
(9.3)
Tyx X \ WFjge mi(A) = {@ €T X : U C 3*Te[X; C] open such that
a € U, a(A) vanishes to infinite order oncl(U)}
at mf, and at ff by
(94)
W\ WFj,, g(A) = {£ € Wt : 3U C W open such that £ € U, a(A) vanishes
to infinite order on B~} (7+)~1(cl(U))}.
Finally, at 3°S*[X; C] it is given by
(9.5)
3seS*[X; C)\ WF3, »(4) = {a €3¢5*[X;C] : U C %°S*[X; C] open such that
a € U, a(A) vanishes to infinite order on cl(U)}.
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It follows immediately from the definition that WF5,,(A4) = @ implies that a(A)
vanishes to infinite order at 8%°T*[X;C], so A € ¥;2>"°(X). We also have the

3sc

corresponding ‘partial residual’ results, i.e. for A € w;’;;‘(x )

(9.6) WFhee o (4) = 0= A € U324(X),

3sc

(9.7 WF3se mi(A) =0 and WF3 ¢(A) =0 = A € U5 (X).

3sc

The operator wave front set behaves under composition just as expected.

Lemma 9.2. If A € ¥7}(X), B € ¥ (X), then

3sc 3sc

(9.8) WF, (AB) C WF',, (A) N WF’, (B).

3sc 3sc 3sc

Proof. This follows easily from the microlocality of the composition formula. In
particular, at the top level at ff, ZEWH' = Aff,lﬁﬁ,p, which vanishes if either
factor on the right hand side vanishes. This argument extends to the full amplitude
and to the other faces. a

We now show the existence of a microlocal parametrix of operators A € \Ilg;cl (X)
whose normal operator is microlocally invertible. Such a result holds in the scat-

tering calculus, so we only need to concern ourselves with the behavior at C.

Lemma 9.3. If A € T (X), & € W, Ag(&) is invertible, then there exists

3sc
B € 9™ (X) such that
(9.9) b ¢ WFyyeq(AB—1d), 6 ¢ WFh,q(BA - 1d).

Proof. We only consider m = | = 0; the extension to other values of m and !
is straightforward. Let a € C®([X;C] x S¥) be the left symbol of A, and let
bo € C®(U x S% x S%) be the symbol of Ag(€)~! when ¢ € U, a sufficiently
small neighborhood of & in W+. We wish to show that there exists a symbol
b € C=([X;C] x S¥) which restricts to by in U’ x ST x S% for some U’ open con-
taining &. But the invertibility of Ag(£o) implies that Ame(a) # 0if B(a) = &, i.e.
a(O,?j, 20, To, i, Vo) is invertible for all 4 and f/, In fact, more is true. Compacti-
fying the fibers of 3¢T*[X; C] to obtain 3°T*[X; C], we see that a(p, (0, z,0)) # 0
for any i € S*1, p € ff. This allows us to define b’ on a neighborhood of U’ by
b= a~! away from the interior of ff xS¥, and by on U. Let ¢ € C®(*°T*[X;C])
be identically 1 at (0,Y, 29,70, &, ) and be supported in a small neighborhood V
of this set in 3¢T*[X; C), and let by = ¢b', By = q1(b). Then BjA—-Id =R, + R»
where R; € ¥31'(X) and the left symbol of R, vanishes in an open subset V'
of V containing S = 8~ !(r1)~1(&). We can now follow the usual argument (as-
ymptotic summation of the Neumann series) to remove R; and obtain B such
that BA — Id = Rj, R, vanishing in V" C V' open still containing S. Thus,
& ¢ WF5, (R}), and B satisfies the second equation in (9.9). Now, we could
have constructed similarly B’ satisfying the first equation there, and the standard
argument shows that & ¢ WF;, (B — B'), so B also satisfies the first equation. [

Remark 9.4. If K C Css[X; C] is compact and A is elliptic on K, then essentially
the same proof shows that we can pick B € ¥;,™*(X) such that

(9.10) KNWF3(AB—1d) =0, KNWF5 (BA-1d)=0.



44

We define the wave front set WF3,¢, consisting of two pieces: one at mf and one
at ff. For u € C~°(X) we want

(9.11) WFssems(t) C*TxX,  WFsseq(u) C W2

Deﬁmtlon 9.5. The relative 3-body scattering wave front set, WFT (u), of u €
C~°(X) (‘relative’ to H™!(X)), is given by
(9.12)
“Tix X \ WFpes 1o(u) = {p € T5x X : 3A € ¥3(X) such that Au € H™(X)

and Ame(q) # 0 Vg € * T3¢ X; C] with (g) = p}
at mf, while at ff by

(9.13)
W\ WFp! e(u) = {p € W' : 34 € ¥3.2(X) such that Ag(p) is invertible,

Au € H™(X)}.

The absolute .3-body scattering wave front set, WF3s:(u), is defined by replacing
H™(X) by C*(X) in (9.12) and (9.13).

First note that for u € C~°(X)
(9.14) WFas0,m () N *Tix\ o X = WFyo(u) N ** T\ o X.

In fact, it is clear from the definition that the left hand side is a subset of the right
hand side. On the other hand, if p ¢ WFssc,mt(w), p € *Tjy\ o X and A € ¥30(X)

is such that A(p) # 0, Au € ¢°°(X), then let p € C*°(X) be supported in X \C,
1dent1cally 1 near 7(p), w : *T*X — X being the projection. Then we have
pA € U2 (X), jsc,0,0(pA)(p) # 0, pAu € C°°(X) sop¢ WFsc(u)

There is a natural map from T3 X to W+ glven by nt, the orthogonal pro-
jection to W+. Now, if A € \Ilgsg (X ) and Ag(¢) € %2 (S ) is invertible for some
£ € W, then certainly jic 0,0(Ag(€)) is invertible. But this means that for all
g € 3T, f[X C] with 718(q) = &, Ame(g) # 0. Thus, if p € *T3X, 71 (p) =

£ ¢ WF3_,‘c g(u) then p ¢ WFssc me(%). This means that WFgg. ms restricted to
scTCX is somewhat redundant.

Note that (9.12) and (9.13) can be replaced by uniform statements over com-
pact sets disjoint from Wngc(u) Namely if £ ¢ WPF3s.(u) then by definition
Agu € C=(X) for some A¢ € ‘If3sc (X) with (Ag)ﬁ-(f) invertible. But then (AE)ff is
invertible on a neighborhood Uy of £ in W+. Let U¢ be a neighborhood of £ such
that cl(Ug)) C Ug. Now, if Kg C W+ \ WF34c,5(u) is compact, then {U} : £ € K¢}
is an open cover of Kg, so it has a finite subcover {UE’,' : j=1,...,k}. Now
let A=3;A; A € € U3%(X). Then Au € C®(X) by construction. Moreover,
if ¢ € Kg, then € € Ug,, for some j, and on Uy, (m is invertible, so on Uéj,
Af,Ag; 2 6 > 0 for some &. Hence, Ag(€) is invertible. Since mf can be dealt with
similarly, we conclude:

Lemma 9.6. Suppose that Knr C WF ggc me(u)° and Kg C WF goc5(u)® are com-
pact. Then there erists A € Uy (X) with Au € C°(X) and Ag invertible on Kg,
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Remark 9.7. We can easily prove the analogous result for WF;’;’c‘(u).

In the next sections we show that the wave front set of approximate generalized
eigenfunctions u of the operators we are interested in stays in a compact subset
of *T5x X and W+. Correspondingly, we are interested in applying operators
A € 9;HX) to u where WFh (A) C ¥°T*,[X;C]U W, ie. it stays away
from W+ and 3°T*,[X;C] N 35¢S*[X; C]. Although it is not true in general that
WF35c(Au) C WF34(u), we can prove the following weaker resuit.

Lemma 9.8. If A € ¥;2°4(X), u € C~*°(X), and

3sc
(9-15) WFj,.(4) C T X;ClUWS,
then for m’, ' € R
(9.16) WEFY,.(A) NWEFT Y (u) = 0 = Au € HHH (X).

Proof. Suppose that WF,_(4) N WFT! (u) = 0. Thus, WF}_.(A) is a compact

3sc
subset of WF;’;C’I (u)¢, so by Lemma 9.6 and the remark following it there exists
P € 93%(X) with P elliptic on WF%,.(4) and Pu € H™'#(X). Moreover, by

Lemma 9.3 and the remark following it, there exist @, R € \Ilggg(X ) such that
Id = QP + R, and WF5, (R) N WF5, (A) = 0. Now,

(9.17) Au = A(QP + R)u = AQ(Pu) + (AR)u.
Since Pu € H™¥(X) and AQ € ¥;°°%(X), the first term is in HH (X).

3sc

Moreover, WF3, (A) NWF5, (R) = 0, so AR € ¥57"°(X). Thus, the second term

3sc

is in C°°(X), proving that Au € HH (X). ]

10. FUNCTIONAL CALCULUS

In [26] Seeley used integration along a contour avoiding the spectrum to define
complex powers of pseudo-differential operators with real symbols and to show
that they were also pseudo-differential operators. He also showed that holomorphic
functions of a zeroth order pseudo-differential operator on a compact manifold are
also pseudo-differential operators. This method does not work directly for non-
holomorphic functions of an operator, but Stokes’ theorem can be used in certain
cases. In [11] Helffer and Sjostrand applied this to compactly supported smooth
functions of self-adjoint operators by using almost analytic extension. We now
show that compactly supported smooth functions of pseudodifferential operators in
U0(X) with o3sc,m elliptic, are in ¥;,°°°(X). Here we need an L? inner product
defined by a smooth positive scattering density, v € C*(X;**2(X)). First, however,
we state a uniform version of the parametrix construction in the scattering calculus.

Lemma 10.1. If P € ¥™%(X) is self-adjoint, 03scm(P) is elliptic, m > 0, and
k > 0 is an integer then there exists a family of order k parametrices B, = B ¢
¥, ™%(X), z € C\R such that

(10.1) (P—2)B, —1d, B,(P —z)—1d € ¥ F*(X),

and the seminorm of order k of B, as well as that of the error terms in (10.1) are
bounded by Cy|Im z|~°(¥),
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Proof. Let p € p"C*®(X;*°T*X) be a smooth extension of osc,m(P); here py, is
the boundary defining function of 7*X at ‘fiber-infinity’. In the uncompactified
notation this just means that p is a symbol of order m on ¢T*X. Since |p — z| >
| Im 2|, it follows from the chain rule that for T' € Diff}, (X)

(10.2) ITD{(p ~ 2)7| < Crpl Im 2| "~ Pl(gym1A1

with Cy g independent of z (in fact, it depends only on the r + |3| seminorm of p).
Let Q. be a Weyl quantization of (p — z)~! (constructed by some cutoffs). Then
(10.3) E,p =1d-Q,(P-2), E,r=1d—(P - 2)Q, € ¥ (X),

and the seminorm of order j of @, E; L, E.,r are bounded by C;}|Im 2|~ W, Using
the standard Neumann series argument we define

k-1 k-1
(10.4) B.r=(d+Y E};)Q., B.r=Q.(d+)Y E’p).
j=1 Jj=1

It follows from the continuity of the composition that the kth seminorms of B, L
and B, g, as well as those of the error terms

(105)  F=B.1(P-2)-1d, Fr=(P-2)B,r - 1d € T M*(X)
are bounded by C}'| Im z|~*. In addition,
(10.6)
B.1 =B.1((P~2)Bsr— F:r) = Id +F; 1)B; r — B.,LF; r € U;" ¥ (X)

with kth seminorm bounded by Ci|Im z|~¢(*), so we can take, say, B, = B, 1, in
(10.1) above. This completes the proof of the lemma. O

Proposition 10.2. Suppose that ¢ € CP(R), and P € ¥™°(X) is self-adjoint,
Om,sc 8 elliptic, m > 0. Then ¢(P) € ¥;2°°(X) and

14

(10.7) jac,0,0(¢(P))|“T5xX = ¢(jsc,m,0(P))'

Proof. Let ¢ be a compactly supported almost analytic extension of ¢. Then, as
shown in [11]

(10.8) #(P) = % / 8,9(2)(z — P)"'dz A dz.

Let B, be a family of order k parametrices as in the previous lemma. Define Pg by

replacing (P — z~)'1 by B¥ in (10.8). Interpreting the integral as that of the kernels
it follows that Pg € ¥ ™°(X) for all k. Moreover, using the error estimate of the

previous lemma,

(10.9) ¢(P) - P} = —511_5 / 8,9(2)F. 1 dz A dz,

and | Im z|¥ F, 1 is a bounded family of linear operators in B(HZ;*(X), HI %tk (X))
for any r and s. Hence, directly from (10.9),

(10.10) ¢(P) — Py € B(H(X), HiHH* T (X)).

Since B¥+1 — Bk ¢ @ m~k-LE+1(X) we also have that

(10.11) PYtl — P¥ e g mmt M),
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Thus, we can asymptotically sum

(10.12) By~ Py + i(ﬁgﬂ - P¥) e 3.™0(X).
k=1

By (10.10)

(10.13) ¢(P) — B3 : C™(X) - C®(X)

is continuous, so it is in ¥_°>%°(X), proving that
(10.14) #(P) € ¥ ™°(X).

Noting that ¢ € C2°(R;), we can write it as ¢ = (£2 + 1) %), with ¢, € C(R;) for
all k > 0. Thus, applying (10.14) for ¢ (P), it follows that ¢(P) = (P%+1) "%y (P)
is in UEO(X) for all k, ie. in ¥, 20(X).

Finally, (10.7) follows from

1 (.-
Jsc,0,0(8(P)) = == [ 8:6(2)jsc00{(z — P)"1)dz Adz
(10.15) > 2mi / »

= %{ / 52‘5(2)(25 - ]‘sc,O,O(P))-1 dz ANdz = ¢(jsc,0,0(P))-
O

m,0

35 (X)) can be proved similarly.

The corresponding statement in ¥

Proposition 10.3. Suppose that ¢ € CX(R), and P € Wi(X) is self-adjoint
with 03ec,m(P) is elliptic and m > 0. Then ¢(P) € ¥3°°(X). Moreover,

(10.16) Ngo(¢(P)) = ¢(Neo(P)),  Nmto($(P)) = ¢(Nme,0(P)).

Proof. We proceed as in the case of scattering differential operators to prove ¢(P) €
\IIS_S?'O(X )- Thus, we first prove an analogue of Lemma 10.1. The main difference
is that now we need to use that the seminorms of (Pg(¢) — z)~! are bounded by

powers of |Im z|~!. We finish the argument as in the previous proposition.
Finally, (10.16) holds since restricting the integral (10.8) (considered as an inte-
gral of the kernels) to sfc and sf’ gives the analogous definition of ¢(Ng o(P)) and
]

&(Nms,0(P)).

We can also show that (Id —¢(P))(P — A)~! € ¥3™°(X) under the same as-
sumptions as above if A ¢ supp ¢.

Proposition 10.4. Suppose that ¢ € C°(R), A ¢ supp @, and P € Up°(X) is

self-adjoint with 0 gsc,m(P) is elliptic and m > 0. Then (Id — ¢(P))(P — A)~! €
w;m0(x).

3sc

Proof. Let ¢bea compactly supported almost analytic extension of ¢. Then f(z) =
(1 — ¢(2))(z — )" is an almost analytic extension of (1 — ¢(t))(t — A)~! which
is analytic outside a compact set. Let I' = I'(t) be a curve such that near T' ¢(z)
vanishes, I'(¢) = |t| + i|¢| when |¢| is sufficiently large and ¢ > 0, and T is disjoint
from spec(P). By the Cauchy-Stokes formula we need to replace (10.8) by

(10.17) #(P) = i%(/ 0.f(z)(z = P)"YdzAdz + /r f(2)(z - Py tdz.
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We can see that the first term is an element of ¥’ ¥(X) exactly as above. On
T we have f(z) = (z — A\)™1, so we can apply a construction analogous to Seeley’s
[26] to conclude that the second term is indeed in ¥5m%(X). O

11. THE HAMILTONIAN

Melrose showed in [19] that the Laplacian, A, of a scattering metric
dz? h
(11.1) g= F ;f
where h is a smooth symmetric 2-tensor when restricted to X is in Diff>,(X). Its
normal operator is the flat Laplacian on **T, X, p € X, of the metric mduced by
g.

From now on we choose the bundle W used in the construction of the indicial op-
erator, Definition 6.2, to be the orthocomplement of ¢T'(C; X). Thus, if p € C, we
can choose coordinates (y, z) on a neighborhood U of p in 8X, such that zd,, give
an orthonormal basis of W, at each ¢ € U N C. Hence in these coordinates, hence-
forth called coordinates adapted to W+, the dual boundary metric h (restricted to
T*9X) becomes

(11.2)

= Z h:‘fn(y! z)ay;ay,- + E h:th(yr z)(ay;az,- + az,' ay,') + Z hg (y1 Z)az;az,-
with
(11.3) hin0,2) =85, B (0,2) =0

Note that g fixes  modulo z2C®(X) (to make g of the form in (11.1)), so W
induces a splitting of Tc0X and T30X. Namely, T50X = N*C @ W+, W being
the orthocomplement of N*C C T50X with respect to hlax. In particular, we can
identify 7*C with W-.. We define

(11.4) h=hly. =Y hi(0,2)0.,0;,

ij

which is a metric on W+, i.e. it can be thought of as a metric on T*C. We denote
the metric functions by g, h, h as well, so h € C®(W+) is given in these local
coordinates by

(11.5) h(z,v) = E R (0, 2)vv;.
i

We will also use the following notation:

(11.6) h(z,v) = h.(v) = |vIZ,

and similarly for b and g.

Since in the scattering calculus Nic(A) = g, Nie,p(A) = Ag(p), Lemma 4.2
implies that the restriction of A to ff, now considering A as an element of ¥22(X),
is Ag)w. This can also seen very explicitly from the local coordinate expression for
A. Namely, the standard formula for the Laplacian of a metric in local coordinates
rj, 1.e.

*y/det(gxi) D,

(11.7)

Z \/det( Dig
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gives

(11.8) A = (22D,)? + 2*Ap),, mod z Diff2 (X),

(see [19, Lemma 3]), and (11.3) implies then (by the same formula)

(11.9) Apjox = D%+ hi(0,2)D,,D,; mod Z(C) Diff*(8X),
i

Z(C) C C*(0X) denoting the ideal of smooth functions on X which vanish at
C. Thus by (2.5), the coordinate expression for A in the interior of ff, in the
coordinates (2.2) which are valid there, becomes

(11.10) A = (a*D;)* + )" D} +»_ hi(0,2)(zD;,)(zD;,) mod pg Diff3. (X).
J ij

The last term of (11.10) is just z2A; modulo z Diff' (C). Hence, we have proved
the following lemma.

Lemma 11.1. For the Laplacian A of a scattering metric (11.1), Ag is the Lapla-
cian of the translation invariant metric on the fibers 3~ 1(p) of ff (p € C) given
by the push-forward in Lemma 4.2. The indicial operator is Ag + 72 + |v|? if we
choose W in Definition 6.2 to be the orthocomplement of **T(C; X) with respect to
g. Correspondingly, the normal operator is Ag + Agjeer(c;x), Dg)eT(C;x) denoting
the Laplacian of the lift of gl-r(c;x) to B***T(C; X).

In this thesis we shall consider operators of the following type:
(11.11) H=A+V, V€pnC=(X;C};R), A=A, gasin (11.1).

‘We proceed to analyze the characteristic set of H to conclude a regularity result
outside it.

The characteristic set ¥a_x of A=A, A € R, on X is the submanifold of T3, X
where jsc,2,0(A—A) = 0. Thus, using the product decomposition of T3 X induced
by the choice of z to bring the metric to the form (11.1) we have

(11.12) TSa-a={(r,q) e RxT*8X : 7% + h(q) = A}

In the local coordinates (y, z) discussed above, we have

(11.13) Ta-x={(y,z, 7, v): T2+ h(y,2y(,v) = A},

S0

(11.14) TA-ANCTEX = {(0,2,7,1,v) : T2 + |yl + |v|2 = A}
Thus, with 7t : T4 X — W+ the orthogonal projection,

(11.15) T (Ba_a N*°TEX) = {(2z,7,v) : T2+ |[v|2 < A}

This set splits into two parts. In fact, with

(11.16) Ta(A) = {(z,1,v): 7>+ V]2 < A},

(11.17) S\ = {(z,7,v): 242 =),

we see that on (m1)"1(Z,()\)) N Ta—»x, # # 0, while on (7)1 (Z:(A)) N Ta-x,
u vanishes. As we shall see this corresponds to the (rescaled) Hamiltonian vector
field *°H, of g being normal or tangent to **75X at points on Xa_», which in turn
will affect the propagation results considerably. Note that £,()\) =@ if A <0, and
X(A)=0ifxA<0.
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By our assumption on V it follows that o3sc2(H — A) is elliptic, (H/—-\/\)mf =
Ams — ), so the characteristic set of H — X on mf is exactly £¥a_x. Now, the indicial
operator of H at ff is

(11.18) Hg = Ag + Vg + 72 + V|2 = Hg(2) + 72 + v|2.

Now Hg(z) — o is invertible with the inverse in ;> (S%) if and only if o < 0 and
o ¢ spec,(Hg(z)). Note that

(11.19) spec,(Hg(2)) \ {0} C (q,0), a <0,

is discrete, and each eigenspace is finite dimensional by analytic Fredholm theory,
applied in the scattering calculus [19, Theorem 1], as Hg(z) is bounded below, and
by the absence of positive eigenvalues [19, Theorem 2]. We thus conclude that

(H — N)g(z,7,v) is invertible with inverse in . 20(S%) if an only if

(11.20) A—7%—|v|2 ¢ [0, 00) U spec, (Hg(2)).
It is convenient to define
(11.21) ) ={(z,7,v): A-T =)l € spec,(Hg) \ {0}}.

With this notation we have thus proved the following proposition:

Proposition 11.2. Let H be as in (11.11), A € R. Then the characteristic set of
H — ) is given by

(11.22) Zmt(H — ) =Za-»,

(11.23) ESg(H — X) = Z(A) UZ(A) U Zp(N).

Thus, for u € C~°(X),

(11.24) @ € *°Tix X \ Sa—x and a ¢ WF geems(H — \u) => o ¢ WF s50.me(u),
and similarly

(11.25) £ € W\ ZSg(H — \) and £ ¢ WFgse g ((H ~ Mu) = £ ¢ WFsoc5(u).
Remark 11.8. Note that Tg(H — )) is a compact subset of W~ due to (11.19).

We now discuss the basic properties of the (rescaled) Hamilton vector field, *°H,
of A. Let Rz = ji-85 be the fi-radial vector field in coordinates (z,, 7, fi) on *T*X
above a neighborhood of p € 8X; this is well-defined at T35 X independently of
the coordinates. Then the Hamilton vector field of g becomes

(11.26) *H, = 27(zd, + - 05) — 2h0, + Hy +zW', W' € W(*T*X),

where Hj, is the Hamilton vector field of h € C*°(T*9X); see [19, Equation (8.17)].
Noting that h is positive definite, **H, vanishes at X if and only if # = 0 since
x0, restricts to X as 0. For A > 0 we define the ‘radial surfaces’

(11.27) Rf ={(@,mp): 7=+ p=0}.

Thus, for A > 0, H — X gives rise to real principal type propagation of singularities
on Xa_y\ (Rf U%T4X) as in Hérmander’s theorem,; in this setting it was proved
by Melrose in [19, Proposition 7]. All integral curves y(t) of **H, in ¥a_ tend to

Ry ast — oo and to R} ast — —oo; the signs correspond to the negative sign of
the 9; component of °H,.
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In the local coordinates used above near p € C' we compute Hp:
(11.28)

Hy=2) hd.p;0y, +2) hpud., +2) hlvo, +2)  hilvo,,
.7]. ‘7.7.

ij i,j
+ Z(azk hi{n)uiﬂjavk +2 Z(alk hgt)“iujaVk + Z(azk hg)yil’javk + W
1.5,k i,5.k 1,5,k
with W' = 3" a;0,, for some a; € C*®(*T*0X). By (11.3)
(11.29) Hu(0, 2,7, p8,v) — 2u- 8, € T(TAX)

so we see that *° H, is normal to T X on (71)71(E,(A))NTa-», but it is tangent
to it on (71)~1(Z¢(A)) N Za_» as claimed. Hence singularities can be expected to
leave C' normally in the former case, while in the latter case more complicated
phenomena could occur. Since (71)~1(Z5(})) is disjoint from ¥ a_», singularities
at X can be expected to remain at C.

We shall see that if Hg is independent of z in some local coordinates, as in the
actual three-body problem, the propagation of singularities at 3;()\) is governed by

(11.30) W =27(v-8,) — 2h0; + H; € V(W1).

Thus, W(z,1,v) = 7r,f-|(0,z,,.,0,,,)s°Hg. Note that W vanishes if and only if A = 0,
so we will see propagation outside of & = 0. Along the integral curves 7(t) of W,
72+ h is constant, and it is greater than A on X3()\). In addition, the integral curves
tend to R* as t = Fo00; here

(11.31) Rt = {(z,7,v): h=0, £7 > 0}.

This follows from the formula for the 0, component of W; we provide a more
detailed analysis of these integral curves in the following paragraphs along the lines
of the description of the bicharacteristics of g by Melrose and Zworski [22, Lemma
2]. Recall also that W+ is a subbundle of *°T% X over C, and it is given by p = 0 in
our local coordinates. Correspondingly, we can think of X;(A) U X5()\) as a subset
of T3 X.

In fact, we see that under certain assumptions singularities of (approximate)
eigenfunctions of H propagate along broken bicharacterstics. The definition we
take is analogous to Hérmander’s in [14, Definition 24.2.2].

Definition 11.4. A broken bicharacteristic of H — A, H as in (11.11), is a contin-
uous map

(11.32) v:I\B 2 EA_AUZ(A) C*T5x X
where I C R is an interval and B is a discrete subset such that
(i) if J is an interval, J C I'\ B, then v|; is an integral curve of either *°H, or
w,
(ii) if ¢ € B then the limits (¢t — 0) and «(¢ + 0) both exist, belong to *T3X,
and mt(y(t - 0)) = 7+ (v(t + 0)).

Broken bicharacteristics will be sufficient for describing the propagation of sin-
gularities if no bicharacteristic of *°H, which does not lie completely in W+ is
tangent to W+ to infinite order. For example, this is satisfied if C is totally geo-
desic. If this condition is not satisfied, we need to generalize this notion similarly
to [14, Definition 24.3.7] which comes from the original definition by Melrose and
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Sjostrand [21, Definition 3.1]. We need to make some modifications however. Since
the glancing set of order precisely 2 does not break up into the disjoint union of
a diffractive set and a gliding set (even if C' has codimension 1 in X, there is no
natural notion of ‘diffractive’ and ‘gliding’), the above mentioned definition has to
be changed so that the diffractive set is treated on equal footing with the rest of
the glancing set. This means that the generalized broken bicharacteristics are just
like the analytic rays defined by Sjostrand in [29]; except that we are in a higher
codimensional setting, and even in the codimension 1 case C has ‘two sides’.

Definition 11.5. A generalized broken bicharacteristic of H — A, H as in (11.11),
is a continuous map

(11.33) v:I\B = ZA_AUZp(A) C*T5xX
where I C R is an interval and B is a subset of I such that
(i) if ¢t € I\ B then v is differentiable at t, and «'(t) = **Hy(vy(t)) or v'(t) =
W(v(t)),

(ii) if t € B then t is an isolated point of B, the limits (¢t — 0) and (¢ + 0) both
exist, belong to *°T5X, and 7+ (y(t — 0)) = 7 (y(t + 0)).

We often say ‘broken bicharacteristics’ instead of ‘generalized broken bicharac-
teristics’ when it is clear from the context what is meant.

Finally we define (generalized) broken geodesics. We actually only state the def-
inition of broken geodesics (which is very similar to Definition 11.4), Definition 11.5
can be modified similarly to yield a definition of generalized broken geodesics. In
the following definition we regard S*0X C T*0X as the unit cosphere bundle with
respect to the metric hlox. Also, let 7+ : T50X — W = (N*C)* be the orthogonal
projection to the orthocomplement of N*C with respect to h|sx.

Definition 11.6. A broken geodesic of h|sx, h as in (11.1), is a continuous map
(11.34) 4:I\B— S*0X cT*'90X
where I C R is an interval and B is a discrete subset such that
(i) if J is an interval, J C I'\ B, then 4| is an integral curve of either Hy, or
H,;,
(i) if 2'e B then the limits 3(t—0) and 5(¢ +0) both exist, belong to $*8X, and
7 (3(t - 0)) = *4(3(t +0)).

The factor % in H 1n and H 1k only appears to make sure that the tangent vector
to a broken geodesic, when it is defined, has unit length. There is a close connection
between (generalized) broken bicharacteristics and broken geodesics. Namely, the
projection of a broken bicharacteristic to T*8X first, and then rescaled to S*9X
using the R action on 7*9X, is a reparametrized, non-maximally extended, broken
geodesic whose projection to X has length 7 (with respect to h|sx). To see this,
first recall Melrose’s and Zworski’s discussion [22, Lemma 2] of the corresponding
relationship between bicharacteristics of g in Ta_» \ (Ry U RY) and geodesics of
hlox.

Thus, Melrose and Zworski showed that after rescaling the parameter along the
bicharacteristics of g in Za—x \ (Ry URY) to s € (0,w), with the rescaling given
by ds/dt = 1h'/2, they are curves of the form

(11.35) =A% coss,
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(11.36) i = A2 (sin s)Ji,

(11.37) (7, 12) = exp(sHy,) (7', ')

where (§',4') € T*0X and h(§', ') = 1, i.e. (§,') € S*8X by our identification
of S*0X. Equivalently, they are curves of the form

(11.38) T =A"2coss,
(11.39) B = A/?(sin s)Ji,
(11.40) (4, 1) = exp((s — M) Hy,)(@, &),

s € (0,7). In particular, as s varies, (7, i) moves along the geodesic with initial
point (7', ii'). Given (7',p') € S*0X, we let v_(t;4', ') be the unique bicharac-
teristic of g which is of the form (11.35)-(11.37) after reparametrization and which
satisfies 7(y~ (0; %', ")) = 0. Similarly, let v (¢; 7', ') be the unique bicharacteristic
of g which is of the form (11.38)-(11.40) after reparametrization and which satisfies
7(v+(0; 7', &')) = 0. It is useful to introduce some notation for the corresponding
relation between points of Sa_» \ (Ry UR}) and points of S*0X.

Definition 11.7. Suppose a € La_y, ( € S*0X. We say that a ~/. ( if there is
a time t € R such that v4.(¢;¢) = .

Now, the (generalized) broken bicharacteristics of H — A, A > 0, can be described
similarly. Namely, after reparametrizing them, letting ds/dt = 3h!/2, they become
curves of the form

(11.41) T =A"2coss,
(11.42) B = A/?(sin s)Fi,
(11.43) @B =4(s— =7, 1),

where s € (0,7), A\=Xor A— X € spec,(Hg), and 7 is a (generalized) broken
geodesic satisfying 7(, 7', @') = (7', &'). Moreover, if A # ), then 5 must be an
integral curve of H 3R Here we only stated the second parametrization; the first
one can be stated similarly. This parametization can be deduced similarly to the
way (11.38)-(11.40) is proved in [22, Lemma 2]. Namely, changing into i polar
coordinates, i.e.

(11.44) B=h@ B0, |6 =hE 5",
and changing the parametrization by ds/dt = ||, yields
dr _ d, _.
(11.45) % = B A=,
d - - . d sSC
(11.46) @R = Hyy if —9lys) = *“Hy,
d, _ o d
(11.47) @B = Hyj if 29lye =W,

This proves that the projection of a (generalized) broken bicharacteristic v to 8X
is a (generalized) broken geodesic of length 7 as claimed. Note that this also shows
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that if v is a broken bicharacteristic through a = (§,7,5), § ¢ C, v(t) = «,
and A'/2 cosdist(7,C) < 7, then in (11.41), s < dist(g, C), so by (11.43), v does
not intersect **T3X for t < to (since the broken geodesics have tangent vec-
tors of unit length), i.e. v is actually a bicharacteristic for ¢ < tp. Similarly, if
A/2 cosdist(7,C) < —7, ¥(to) = a = (¥, 7, /i), then v is a bicharacteristic for
t > to. Note also that by (11.42) i — 0 as t — %00, and 7 = FAY2 as t = *oo0.

We also introduce the relation corresponding to ~!. for (generalized) broken
bicharacteristics.

Definition 11.8. Suppose a € Ta_», £ € Tg(H — A), € € s;x\cax. We say
that a ~4 ( if there is a (generalized) broken bicharacteristic -y through a and a
constant C' which satisfies y(t) = v+ (¢;¢) for £t > C. We also say that { ~4 ( if
for some, and hence for all, o' € Sa_j2 with 71 (a’) = ¢, o ~+ (.

In the propagation theorems we shall see that if for some & € W, & ¢
WFssc,((H — M)u) and certain additional conditions hold then & ¢ WF;’;’c"ﬁ(u) for
any m and I. We now prove that m does not play a role at all since o35c,2(H) is
elliptic.

Lemma 11.9. Suppose that A € R, & € W+ and & ¢ WFaseg((H — Nu). If in
addition there exist m and | such that & ¢ WF;’:f'ﬁ(u) then for any m' we have

€0 ¢ WF ' (u).
-2,0

Proof. Tt is convenient to use that H is self-adjoint, so (H +1i)~! € ¥5.¢"(X).
By our assumptions we have some Q € ¥32(X) with Q(£) invertible in ve0(sn)
for which Qu € H™!(X). Since & ¢ WFas s ((H — A\)u) we can also arrange
that Q(H — A)u € €®(X) by reducing WF%,.(Q) if necessary. Writing A +1i =
(H + 1) — (H — \) we see that

(11.48) Qu=A\+9)"1QH +i)u— (A +i)'QH - Nu.

By our assumption Qu € H™!(X), and we have seen that the same holds for
Q(H - Mu. Thus, Q(H +i)u € H™(X), so

(11.49) Que HP(X), Q' =(H+i)'Q(H +1) € ¥g0(X).

But Q'() is invertible in ¥%°(S), so we conclude that & ¢ WF;’;:?,”(X ). We
can repeat this argument if necessary, thus completing the proof of the lemma. [

Since H € ¥22(X) is self-adjoint and o3sc 2(H) is elliptic, we have for all ¢ €

3sc

C>(R) that ¢(H) € ¥;°°°(X). Moreover, if ¢ € C°(R) and ¢ = 1 on supp ¢ then

3sc

(Id —¢(H))¢(H) = 0, (H)(Id —¢(H)) = 0. Now,

(11.50) H(H)g = ¢(Ha) = $(Ha(z) + 7 + v[2),

and Hg(z) = Ag+Vi(z) > cfor some ¢ € R, so for a sufficiently large C, T2 +|v|2 >
C implies that Hg > 1 + supsupp @, so ¢(Hg(£)) = 0 when 72 + |v|? is large,
¢ = (2,7,v). In particular, (Id —¢(H))g(¢) = Id outside a compact subset of W+.

Taking a microlocal parametrix P of Id —¢(H) at such a £, soId = P(Id —¢(H))+R,
¢ ¢ WF3, ¢ (R), shows that

(11.51) Y(H) = P(ld —¢(H))y(H) + R(H) = Ry(H).
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Since ¢ ¢ WF5, . (R), we conclude that £ ¢ WF5 . (v(H)). Since a similar argument
works at mf, we deduce that WF3, ((H)) C 3*°Tpx¢[X; CJUW . Correspondingly

we can drop the compactifications 3T*.[X; C], W+ in our arguments.

12. THE MOURRE ESTIMATE

The Mourre estimate is a global positive commutator estimate for perturbations
of the Laplacian. Before discussing it we make a definition.

Definition 12.1. Suppose that H satisfies (11.11). The set of the thresholds of H
is defined as

(12.1) A(H) = {0} Upec spec,(Hg (p))-

To prove the Mourre estimate (which is the statement of the following Theorem)
in this generalized 3-body type setting we first reduce the problem to obtaining
the estimate for the normal operators. Then we can use the proof of Froese and
Herbst [8] for unreduced two-body operators (i.e. two-body operators from which
the center of mass motion is not removed).

Theorem 12.2. Suppose that H satisfies (11.11). Let A € z~ Diff} (X) be self-
adjoint with

(12.2) Nsc,—l(A) = Nsc,—l(zDz)
andlet H=A+V. For A\ > inf A(H) let
(12.3) s(A) = sup(A(H) N (—o00, A]),

otherwise define s(A\) < X arbitrarily. Then for A € R and € > 0 there exists an
open interval I C (A — €, X + €) such that for all ¢ € C°(R) supported in I

(12.4) ig(H)[A, Hl¢(H) > 2(A — s()) — €)¢(H)* + K

where K € U5 (X).

Proof. First, A € Z¥3."(X) by Lemma 6.5, so [4,V] € ¥22(X), and actually
in pme TR(X) due to the additional vanishing of V at mf. Of course, [4,A] €

¥20(X) already, since the scattering calculus is commutative at the level of normal
operators. Now it suffices to prove (12.4) for the normal operators, i.e. that

(12.5) iNg,o(¢(H))Ngg o([A, H]) Na,o($(H)) > 2(A = s()) — €)p(H)?,

(126) iNmf,0(¢(H))Nmf,0([A7 H])Nmf,0(¢(H)) 2 2(’\ - 3(’\) - €)¢(H)2
In fact, if these hold, then consider
(12.7) Q = igp(H)[A, Hl¢(H) - 21 - 5(X) - )9(H)* € ¥3,3°(X).
Then we can construct an approximate square root B of Q, i.e. B € \Il.;?’o (X)
self-adjoint with
(12.8) K =Q - B? € 9.2 (X).
Thus, Q > K, i.e. after rearrangement we deduce that (12.4) holds.
Note that (12.6) is just the standard estimate of the scattering calculus since
Nmt,0(H) = Nmg,0(A), 80 as Nmi,0(i[A, H]) = Nms,0(6[4, A]) = {Jsc(A), jsc(A)} =

2jsc(A). Also, by Proposition 10.3, Npms,o(¢(H)) = ¢(jsc(A)). Thus, (12.6) follows
from supp ¢ C (A — €, A + €) and spec(A) = [0, 00).
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On the other hand, the normal operator estimate on the front face can be replaced
by its Fourier transform, i.e. the corresponding indicial operator estimate. Recall
that Ag is the fiber Laplacian of 3 as in Lemma 11.1, and note that

(12.9) Hg = Ag + Vg = Ag + Vg
Now, using the local coordinate expression of A in the interior of ff
(12.10)

if4, Hlgp = 2Ag + 77 + W) + [-¥y, Vig o = [~V g, Hr] + 20 + [v]2).
Thus, it suffices to prove that for ¢ € C°(R) with sufficiently small support
¢(Hg + n)([-Y 8y, Hg] + 2n)o(Hz + )

> 2(A - s() — €)¢(Hg +n)”
where we have written n = 72 + |v|2 for simplicity. As the notation indicates ¢ is
not allowed to depend on 7, » and p € C. This is exactly the 2-body estimate of
the Theorem of Froese and Herbst in [8] if Ng o(V') is the same on each fiber up to
translations and metric preserving transformations of T, X with **T, X, p,q € C
(this statement makes sense due to 4.2). The general case requires only minor
modifications.

Namely, the point is to reduce the estimate to first a similar one but with ¢
possibly depending on ¢ = (p,7,v) € W+, and then further to an estimate analo-
gous to (12.4) for the two body operators. In fact, a weaker estimate than (12.4)
suffices for two-body operators. More precisely, suppose that A € R, and € > 0. If

A>0letd =€ if A < 0let &§ = min{—\,e}. Then for o € (—o0,A] and for all
¢ € C(R; [0,1]) supported in the open interval I = (o — 4,0 + §) we have that

(1212)  ¢(Hg(2))[-Y 3y, Hr(2)l6(Hg(2)) > 2(0 — s(A) — €)¢(Ha(2))* + R(2)

where R(z) is a continuous function on C with values in ¥,*"'(8~(p)) if we fix ¢.
The analog of (12.4) would have s2(0) instead of s(A) on the right hand side where
s2(0) = 0 if 0 > 0 and it can be taken arbitrary if ¢ < 0. Thus, (12.12) is weaker
than the two-body Mourre estimate since sz2(0) < s(A) if ¢ < A. Now, since

(12.13) [4,Vlgo € 2567 (),

and, by Proposition 10.2,

(12:14) #(Hr (2) - $(4) € T (57 (7)),

so taking into account [—-Y 8y, Ag] = 2Ag, (12.12) is a consequence of
(12.15) $(A)A¢(A) > (0 — €)p(A)?

for A > 0 and the vanishing of both sides of (12.15) if A < 0. These in turn
follow from supp ¢ C I, spec(A) = [0,00), and from the fact that if A < 0 then
I C (~00,0).

Now suppose that 1 € CZ(R;[0,1]) is supported in (A — 8, A + d). Let o(§) =
A—72—|v|2. Then with ¢¢(t) = ¥ (t+72+|v|2) we have supp ¢¢ C (0(£)—6,0(£)+9)
and ¢¢(Hg(2)) = ¥(Hg(£)). Thus, by (12.12)

(12.16) (A (8)[-Y 8y, Ha(2)[¥(Hr (9) = 2((6) - s(X) — % (Hr(§))* + R(€)

where now R(£) is a continuous function on W+ with values in ¥;;>'(S?%) if we
fix 9.

(12.11)
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Choose ¥, 9, ¢ € C®°(R; [0,1]) such that 9 is identically 1 near supp ¥, suppy C
I =(\—68,A+0), and ¥ = 1 near supp¢. Thus, multiplying (12.16) by ¥ (Hg)
from both left and right,
% (Hg (£))[-Y 0y, Hel$(Hr (€)) > 2(0(€) — s(A) — )p(Hr (£))*
+ Y (Hg)R(¢)P(Hz)-
Suppose that o(£) is not an eigenvalue of Hg(z), i.e. A is not an eigenvalue of
Hg(€). Then ¢(Hg(€)) — 0 strongly as supp ¢ — {A}. Thus,

(12.18) P (He (€))R(E)D(Ha (£)]] < €

if we assume that ¢ is supported in a sufficiently small open interval I! = (\ —
g, A +8;). Hence,

(12.19)  $(Hr(€))[-Y 0, Ha(2)[¥ (Hr(€)) — 2(c(€) — s() — e)P(Hr (£))> > —¢

whenever supp zZ C Ié. The left hand side is a continuous function of £ with values
in B(L2,(S%), L%(S%)) if we keep ¢ fixed, so there is a neighborhood Ug of £ such

C

that for ¢’ € U

P(Heg(€'))[~Y 0y, He()Y(Hg (¢) — 2(a (&) — s(N) — )9 (Hr(€))?
> —2¢

if suppy C I;. Multiplying (12.20) by ¢(Hg(€)) from both left and right and
rearranging the equation, we deduce that for all £’ € U

(12.21) $(Hz(€))[-Y 0y, Ha(2))(Hr (8)) 2 2(0 — s(N) — 2€)¢(Hr (£))”

whenever supp ¢ C (A — 6;/2, A + 6;/2).

If (&) is an eigenvalue of Hg(2), then o < s(A) by the definition of s()\). We
want to prove that even in this case there exists a neighborhood U of ¢ and
6 > 0 such that (12.21) holds whenever ¢’ € Ug, ¢ € CZ(R;[0,1]), suppé C
(A = 6¢/2, A + 6¢/2). We again follow the proof of Froese and Herbst, though in
the particular case of three-body scattering the estimate of Lemma 15.1, which we
use in the microlocal propagation theorems, would make the proof slightly simpler.
So let E = Epg(;)({0(£)}), En, denoting the spectral projection. We proceed to
show that there exists R;(£) compact such that

(12.22)
b(Hg ())[-Y 8y, Ha(2)$(Hr (£))
> 2(0(€) — s(N) — P(Hr)” + $(Hr)(1d — E) Ry (¢)(1d - E)¢(Hg),
from which (12.19) follows as in the previous case since ¥(Hg(€))(Id—E) — 0

strongly as supp®) — {A}. To prove (12.22), choose a finite dimensional orthogonal
projection with Ran F' C Ran E and

(12.23) [[(Id—E)R(¢)(Id —E) — (Id —F)R(¢)(Id - F)|| < /2.
This implies that
0> —(¢/2)(Y(Hr (£))* - F)
+9(Hg)((1d —E)R(£)(1d —E) — (Id — F)R(¢)(Id — F))$(Hr)

(12.17)

(12.20)

(12.24)
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since ¢ = 1 near A,}O}Z(ﬁg({))F = F. We now use (12.16) with e replaced by ¢/4.
Multiplying it by ¥(Hg)(Id —F) from left and right (noting that the two factors
commute) and adding (12.24) to it gives

(12.25)
($(Hg (¢)) — F)[-Y 8y, Hr(2)|($(Hr () — F)
> 2(o(€) — s(A) — €/2)(%(Hg)? — F) + $(Hg)(1d — E)R(£)(1d — E)(Hg).-

Following the proof in (8], we note that now it suffices to show that for some R» (&)
compact we have

(12.26)
F[-Y0p, Hg(2)[(Hg (€))(1d —E) + (Id — E)y(Hg (£))(-Y 8, He (2)|F
> 2(a(€) — s(\) — €/2)F + (Hg)(Id —E) Ry (¢)(1d —E)¢(Hg).

Indeed, adding (12.25) and (12.26) proves (12.22) since by the virial theorem
E[Y Oy, Hg(£)|E = 0. Now, we simply let

(12.27) C = C(§) = F[-Y 8y, Hg(2)}$(Hz(€))(Id ~E),

Ry(€) = —EC(£)*C(¢), € = &(£) = 2(s(A) — o(€) + €/2)~! > 0. In this notation
(12.26) becomes

(12.28) C*F + FC > —(€7'C*C +¢&F),
and to prove (12.28) it suffices to note that
(12.29) (€712C + &2F)*(e/2C + &/°F) > 0.

Now if §; > 0 is sufficiently small and P= 1/:'5 is supported in I; = (A — 0, A + &)
then

(12.30) 1 (Hz (€))(1d — E) Ry (€) (1d ~ E)e (Hr ()l < .

So from (12.22) we conclude that (12.19) holds. Then the very same continuity
argument as after (12.19) proves (12.21).

It only remains to show that for a fixed A € R we can choose ¢’ independently of
& € WL, We have already shown this for a neighborhood Ug of each £. Note that
Hg(z) is bounded below uniformly, so there exists ¢ > 0 such that #(Hg) vanishes
if ¢ is supported in (A—1,A+1), and 72 +|v|2 > ¢. Thus, (12.21) is automatically
satisfied outside a compact subset K of W+. Now, {Ue : £ € K} is an open cover of
K, so it has a finite subcover {Ug; : j = 1,..., J}. Let 6’ = min{6; :j =1,..., J}/2.
Then for ¢ € C°(R; [0,1]) supported in I"” = (A — ¢',A + ¢'), (12.21) shows that

(12.31) ¢(Ha(€))[-Y 0y, Held(Hr (£)) 2 2(o(€) — s(A) — 2¢)$(Hg (€))?

since ¢ € Ug, for some j. Adding 2(72 + |v|2)¢(Hg)? to both sides and noting that
o(€) + 72 + |v|2 = X proves (12.11), and hence the theorem. 0O

The point of the Mourre estimate is to construct the weak limit of the resolvent
of H at the real axis. Thus, note that s(A) < X for all A, and away from the
thresholds A — s(\) — € > 0 for € > 0 sufficiently small. Here it should be noted
that by the absence of positive eigenvalues of the two-body Hamiltonians there are
no positive thresholds, so for A > 0, and more generally for A ¢ A(H) the Mourre
estimate is a positive commutator estimate.
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13. THE BASIC COMMUTATOR ESTIMATE

In the following sections we analyze the propagation of singularities of generalized
eigenfunctions v of H (so u € C™*°(X), (H — A\)u = 0) by constructing Q €

¥;°%(X) such that [Q¢(H ), H]g , is positive where ¢ € C2°(R) is supported near

3sc
—

A. Here Qg will have the form fY(H)g with f € C®(W1), ¢ € C°(R). In fact, f
will arise as the restriction of ¢ € C*®°(**T*X) to W+, where gl x is independent
of , i.e. it is just the extension of a function on W+ by the orthogonal projection.
Unfortunately, we will have ¢ ¢ C°°(*T* X)), meaning that the behavior of q at fiber-
infinity on 5T X is not sufficiently nice (**T* X is the (fiber-)radial compactification
of T* X). Hence g does not give rise to an element of ¥2:°(X). However, this is a
rather irrelevant difficulty since we wish to mutliply the quantization of g by ¥/(H),
which is in \113_8?’0 (X), i.e. it is trivial at fiber-infinity (‘smoothing up to 6X").

We deal with this difficulty by realizing that we can write down the full symbol §
of Q¢(H) explicitly, where @ would be defined by a quantization of a symbol with
complicated behavior at fiber-infinity, and the quantization of § gives rise to an
element of ¥;.%°%(X) with all the desired properties. Although it is straightforward
to compute the indicial operators of Qy(H) and [Qy(H), H] directly from this
point of view, the arguments are much simpler (and more transparent) if we also
consider () as an operator acting on oscillatory functions. On such functions Q
behaves essentially as an element of the scattering calculus, thereby simplifying
the discussion (indeed, this motivates the choice of ¢ in the following sections). In
particular, we can use [¢(H), H] = 0 explicitly in such an argument.

Since we work locally in what follows, we may replace X by U C Sf open,
SY being the radial compactification of RV. We have coordinates (z,§) on S¥,
7; being local coordinates on S¥—! = §S¥. Thus, the standard polar coordinates
on RY are (z7',7), so w = z~'3. The canonical coordinates on T*R" induced
by w are denoted (w,&); the canonical coordinates induced by (z,7) are denoted
(z,9,7, ) as usual. Note that embedding S¥~! into RN as the unit sphere and
using the standard metric on both S¥~! and R¥, a covector ji - dj € Tysh-1
can be regarded first as a vector in T3SV =1, hence as a vector in T;RY, which is
orthogonal to the radial vector . (See also Appendix A, in particular the discussion
in the proof of Proposition A.1.) Thus, 7 = —£-§, and & = £ — (£ - §)¥y with &
regarded as a vector orthogonal to j. We also use the notation (£)? = 1 + |¢|?,
((r,m))*> =1+ 7%+ ||? (here |.| is the Euclidian metric in our coordinates). Thus,
(&) ={(r,p))-

As discussed in Section 3, locally in X we can write ¢(H) as the right quanti-
zation of a symbol p, i.e. if p € C*°(X) is supported in U C S¥ open, cl(U) C U,
identically 1 on a smaller open set U’ C U, p € C2°(U), 5 =1 on U, then

(13.1) P = py(H)p = (2m)~N / el0/2=T /3 Ep (! ', €) de.

Here p is smooth in the blown-up coordinates at C, i.e. it is in C®([SY; C] x RgN ).
Since Y(H) € ¥;3.°°°(X), i.e. it has smooth kernel, p and its derivatives are actually

3sc
rapidly decreasing in .
Now suppose that
(13.2) g€ C*(RY,), xRY,,), RY} =[0,00); xR xR™"!, N=n+m,

’y?z
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q is supported in K xRN for some compact set K C U’, and it satisfies the estimates

(13.3) D202 4l < Cap(r, p,v))™2

for some C,,g and m, g independent of (z,y,z,T,u, ). Changing to the dual
coordinates £ of w, (13.3) becomes

(13.4) |D2, .DEq| < Cl (&)™

z?y7z

Thus, ¢ € C*®°(**T*X), but typically ¢ ¢ C®°(**T*X), so q is not the symbol of an el-
ement of 2°(X) (under left, right, Weyl, or other ‘reasonable’ quantizations). We
are mainly interested in ¢ with much better properties; in our positive commutator
estimates we take g whose support projects to a compact set in the (r,v) coordi-
nates, and behaves as a (classical) symbol in p. However, it is actually convenient
to treat this more general class of ¢ in this section.

Although in general ¢ ¢ C®°(**T*X ), it is easy to see that g defines an operator
acting on oscillatory functions u = e//%y, f € C®(X), v € €X(U) by, say, left
quantization. Namely,

Qu=(2m)™ [ e@l=T ) tg(a, 5, u(e', 7)) dgda' dy
(13.5)
= (@m)~™" / &7/ %g(z, 5, §) Fu() d¢

where the integral makes sense as a distributional pairing since Fu is a Lagrangian
distribution with compact singular support and it is Schwartz outside a compact
subset of IREN (e.g. if f = 0, then Fu is conormal to the origin); see also Appen-
dix A, in particular the proof of Proposition A.l for more details. In fact, we
can prove more generally that ¢} defines an operator acting on singular oscillatory
functions u = e//%v, f € C*(X), v € C2([U;C)) since such u lies in HZH(SY)
for some I, and correspondingly Fu € Hs'é°° (Sf ), so Fu vanishes to infinite order
at infinity in a L? sense. To prove the existence of this action, we ‘regularize g
to finite order’, i.e. write ¢Fu = ((€)~*q)((€)*Fu) in the integrand above, note
that (§)*Fu € HL>®(SY) for all k, and (€)~*q satisfies an arbitrarily large num-
ber of the scattering symbol estimates (arbitrarily many seminorms of (¢)~* in
C®(S¥ x S¥) are bounded) provided that we chose % sufficiently large, so we can
apply the corresponding results in the scattering calculus (discussed in Section 6

here).
Now, choosing a cutoff,
(13.6) peC®(U), supp(l-p)NK =0,

allows us to extend @ to an operator acting on singular oscillatory sections u =
ef/zy, f € C*(X), v € C*([X;C]), on the original manifold by

(13.7) Quu = Q(p'u).
Based on this, choosing p’ =1 on U, we can consider the composite operator
(13.8) Q = (") (pb(H)) = Qey(H),

a priori acting on oscillatory functions u = eif/zy, f e C®(X),ve c>([X;C); @
is independent of the choice of p'. Since we have written Q as a left, and py(H) as
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a right quantization, we conclude that the kernel of the composite operator is

(13.9) (Qpv(H)p)(z,5,2',7) = (2m)™N / el 0/e=0 12V gz 5, E)p(a', 7', €) dE.
Note that
(13.10) pY(H)(1 = p) € U330 (X) = U.°0%(X),

so p(H)(1 — p) : C~°°(X) —= C°(X) is continuous. Since Q, : C*®(X) = C=(X)
is also continuous, we conclude that

(13.11) Qrp(H)(L - p) € T3> (X).

Since this is a ‘trivial’ term, we sometimes write that Q is given by (13.9) (i.e.
neglect p) to simplify the notation.
Motivated by (13.9), we now consider the symbol

(13.12) (z,9,2",7",6) = q(,4,)p(z", 7, §).

Due to the rapid decay of p in £, and using the radially compactified notation in
the £ variable, we can deduce that

(13.13) ge =S¥ x [s¥;C] x s¥)

vanishes to infinite order at S§¥ x S& x SN=1; here S¥~! = §S¥. It follows that
the operator Q obtained by quantizing this ‘double-symbol’ as

(13.14) Q= (27r)_N/ei(g/z—y,/z"f@'(z,ziyw’,ﬂ’,é) dg

(this is really the kernel of §) is in ¥5.°>"°(X) since the integral converges absolutely
and away from sfc and sf’ the exponential factor gives infinite order vanishing (cf.
Section 3).

The simplest way to analyze the symbolic properties of Q is via the oscillatory
testing definition of the indicial operator and recalling that (13.8) holds with the
right hand side considered as the composition of operators acting on oscillatory
sections. Thus, we only need to compute the leading part of Qp'u for u = e*//=v,
f e C®(X), v € C®([X;C)). But ‘regularizing q to finite order’ as above shows
that this is given by the same formula as for scattering pseudo-differential operators.
First, with f = flox,

(13.15) _
e H/=Qp' e /%0(0,y, 2) = ¢(0,y, 2, — f(y, 2), 0y f(y, 2), 0 f (4, 2))v(0, y, 2),

$0 Oms = ¢ 13 x. Moreover, with a = (€)"*q (which can be regarded as a
scattering symbol satisfying a sufficient number of symbolic estimates), A (say) the
left-quantization of a, using the formula of the scattering calculus (see also Section 4
and Section 6), we see that

(13.16) A(0,v,2,5,Y,Z) = (27r)_N/ei(ST+Y'“+Z'”)a(O,y,z,r,u,u) drdudv.
Thus,

(13.17) Ag(z,7,1;Y,Y) = (27r)‘"/eiy"‘a(O,O,z,T,u,u) du.
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Correspondingly,

(13.18) Qp'u(0,Y,2) = (2m)~" /eiY'”q(O,O,z,T,u,V)v(O,Y -Y,2)du,
s0

(13.19) Oelz,,v; 7, Y) = (2m) " / ¥ 44(0,0, 2,7, 1, v) dp.

This operator becomes particularly simple if g satisfies

(13.20) q(0,0, 2,7, u,v) = f(z,71,v), fecewh,

i.e. ¢ is independent of p at C, since then f can be factored out of the integral
giving

(13.21) Qa(z,7,v) = f(z,7,v) Id € TLO(S™).

Finally, from (13.8) (using that supp(1—p) x R and supp § are disjoint) we deduce
that

>~ ———

(13.22) Ot = Omi0(H) e, Qg = QB

The same discussion can be carried out more directly from (13.12); we briefly
outline the argument. Namely, it is straightforward to check that

(1323) x_l(:’j_g’) 'fzST+Y',U,+Z‘V+SL'1'(ZL‘,y,Z,S,Y,Z,T,/,L,V)

where r and its derivatives is polynomially bounded in (S,Y,Z, 7, u,v). Using
(4.13), (13.14) gives

(13.24)
0(0,,2,5,Y,2) = @r)~N / GSTHY B IGO0, ¥ 2,0, — Y, 2,7, p, v) dr dpr .

The indicial operator at mf is given by the (S,Y, Z) Fourier transform of the re-
striction of the kernel @ to sf’, so it is simply

~

(13'25) me(y7 z’ S? Y’ Z) = 6(0’ y’ z’ 07 y’ z’ T’ Na V)'
The indicial operator at ff is given by the (S, Z) Fourier transform of the restriction
of the kernel to sfc, so it is

(13.26) CA?E(z,T, v,Y, Y = (27r)‘"/ei(y"?’)'“d(O,Y,z,O, Y', 2,7, p,v) du.

If g satisfies (13.20), then we can substitute § = gp in the above formula, and pull
out the factor q as f to conclude that

5 Z7T7V;Y’Y =(2r —nf 2, TV Ciy’“P(OyY‘Y,Z,T,HyV)dﬂ
ff

= f(zﬂ—: V)w(H)ﬂ'(zaTa V)

in agreement with the previous results.
Summarizing the previous two paragraphs, we have proved the following propo-
sition.

(13.27)
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Proposition 13.1. Suppose that g is as in (13.2) and ¢ € C°(R). Then G given
by (13.12) and (13.1) defines Q € ¥52°(X) via (13.14). We also have

~ —

(1328) me,O(y7 2, Ty [y V) = q(07 Y, 2, T, Ky V)¢(H)mf(yv 2, T, i, V)7

and for £ = (z,7,v) € W+, 5370 s given by (13.26). If in addition (13.20) holds,
then

(13.29) Qg,0(€) = FO)Y(H)g o(6)-
Suppose that H is as in (11.11). The condition [Q, H] € 55> (X) is equivalent

[Qﬁ,ﬂﬂr] = 0 on W'. If it is satisfied, we can compute the indicial operator

—

Q,H lg - Namely, it is just defined by the action of the commutator on oscillatory
test functions:

(13.30) [Q, Hg v = (¢~ e /%@, Hle'/*v) g

Since the action of @ on such oscillatory sections u has been defined above, we
can write Q = Qv¢/(H), [Q, H] = [Q, H|¢(H), expand the commutator on the right
hand side, and apply the discussion of Section 7 even though @ is not in \I!ggc’O(X ).
Again, this can be justified by ‘finite order regularization of ¢’. Thus, we have the
following proposition:

Proposition 13.2. If H satisfies (11.11), ¢ € C°(R), and q is as in (13.2) satis-
fying

(13.31) q(0,0,z, 7, u,v) = f(z,7,v), fe C;’o(WL)
then [Q, H] € U351 (X). Moreover, for each € € W
(13.52) Q. Hlg (&) = [@. Hlg (06 (H)a () € ¥32°0(57)

where [@:T—I]ml is given by the Proposition 7.3 with Emﬁ the operator obtained by
replacing q(0,0, 2,7, p,v) by 8,q(x,zY , 2,7, 1, V)|z=0 in (13.26).

Proof. By the previous proposition Q € \I:;;;"’O(X ), and using
(13.33) Qu o(6) = F(E)¥(Hr0(6)),
S0

(1334) [0, Hlg o(&) = [Qrr.0(6), Hro(€)] = FORHro(6)), Hr o(6)] = 0.

We can then use the discussion preceeding this proposition to compute the indicial

——

operator [QY(H), H| ,, giving the claimed result. O

Remark 13.3. An alternative proof of the proposition is to calculate 695@5 from
(13.14). It is not hard to see that it gives the same result; the main point is to
realize that the terms arising from differentiating either the exponential or p are
exactly the same as the terms that would arise if we dropped ¢ (i.e. assumed that it
was 1), multiplied by f(z,7,v) = ¢(0,0,2,7,0,v). Since ¥(H) commutes with H,
such terms must cancel against others in the commutator formula of Proposition 7.3.

The following corollary of the preceeding discussion is the basic commutator
estimate for the propagation results.
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Corollary 13.4. Let H, v, q and f be as in Proposition 15.2, and let | € R. For
EeWt let

—

(13.35) R(§) = [2'Q, Hlg 4, (§) — [©Q, Al ,+1(€)¢(A)ff 0(&)-
Then
(13.36) [33 Q H]mf +1 = [f” Q, A]mf H-ﬂ/)( )mf 0

and R(€) € U, ' (S™). Moreover, there ezist C and k independent of £ and g such
that

(13.37)
IR L2 s S7).H:' (S7))

< Csup{|D# D;q(0,0, 2,7, p,v)| s || <k, |B| <1, pe R}

T,Y,2,TyV

Proof. First, (13.36) follows from ¢(H Yt = w/(K)mf, Hue = Ape, and the commu-
tativity of the indicial operators at mf.

At ff we use the formula in Proposition 7.3 together with (13.33) and @ﬁ given
in Proposition 13.2. Thus,

[QU(H), Hlg , = (82Qq, Hg] — (D )V, Hg)dy — (D f)(V 8y Ha)
(13.38) + (D, £)(0:Hg) — (D, Hg)(0: )
+(v- D, Hg)(@, f) — (v - Do )8, Hi) P(H)g

Here we can write Hg = Ag + Vg. Since V vanishes at mf , Vg € ‘11251 (S%). As
Y; € B%71(Sn), it follows that all terms of (13.38) arising from V are in ¥%' (S%),
and the g dependence of all but the first one is simply via multiplication by a
derivative of f. It is particularly easy to deal with the first term, [@ﬂ, Vg]@ﬁ,
if the full ‘amplitude’,

(1339) (afc + Yay)q(0,0,Z,T, /-1’7 V)a

of B/wbﬂp is actually a symbol in y of, say, order 0 (whlch is the case we will be
using in the following sections). Namely, then 8,Q Qg € ¥27(S), and we only
need that the norm in B(L2,(S), H%'(S™)) of its commutator with Vi € ¥%'(S7)
is bounded by a seminorm of the full symbol, (13.39), of BIQﬁ, this is a standard
result in the scattering calculus. In general, when (13.39) is not a symbol in y, we
can use a regularization argument, i.e. we multiply (13.39) by ()™ (u)™, and use
that (u) =™ (8, +Y 9y)q(0,0, z, T, 1, v) satisfies an arbitrary large number of symbolic

estimates if m is sufficiently large, and note that 1(H)g € ¥;.°°(S?). This shows
that [Q, V](H)g , satisfies the estimate of (13.37). We also have an additional

term in [z!Q, V] (H), namely [z!, V]Q, but here the commutator actually vanishes.
It remains to deal with [2'Q, A](y(H) — (A)). Since under our assumption on
V we have

(13.40) Y(H)g — 9(D)g € TN(ST),

it suffices to show that for some m the norms of Qg [:v’,/K]ﬂ»’ 141 and [Q,/K]ﬁ,1 as ele-
ments of B(H™!(ST), Hi'(S7)) have bounds as in (13.37). If (13.39) is a (classical)
symbol of order 0 in u, these follow from Proposition 13.1 and (13.38) respectively
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where now Ag € ¥2,°(S") only ensures that the commutator is in T.0(S7) as
opposed to the case of [@,V]. Even in general we do not need to use a regular-
ization argument since A is a scattering differential operator, so the commutator
[@ﬂ, Aﬂ‘] is just the product of [V, Aﬂ'] and the quantization of 0,¢(0,0, 2, T, , V),
and the required estimate follows directly.

Since @ﬁ has compact support in W+, we see that C' can be chosen to be
independent of &. O

We also need to show that the operator wave front set of Q is indeed where we
expect it to be. For ¢ € C®(**T*X) we let

(13.41) ess supp(q) = {a € *T5x X : ¢ vanishes with all derivatives near a}°.

At ff we need a uniform version of this in the p variable:
(13.42)
ess suppg () = {€ =(2,7,v) € W1 Fp € C=(WL), x € C®(X), p(€) £0,

x(0,0,2) #0, xpg € C*(*T5x X)}°.
Lemma 13.5. Suppose that q, Q are as in Proposition 13.1, 1 € CX(R). Then
(1343)  WFhyq (@) C 8" (ess supp(ath(s))) C ““TlX; C,

(13.44) WF',. 4(Q) C ess suppg(g) N WF, . ¢ (¥(H)) C W,

Proof. This follows from the definition of Q via the quantization map, taking into
account that composition is 3sc-microlocal. [

14. PROPAGATION OF SINGULARITIES IN NORMAL DIRECTIONS

We are now ready to prove that singularities incident along integral curves of
S¢H, which are not tangent to C' propagate along broken bicharacteristics. Recall
that 71 : ¢T3 X — W+ is the orthogonal projection to the orthocomplement (with
respect to the metric g) of the annihilator of 3T(C; X), g € C®(**T*X) is the
metric function on X, h € C>°(T*9X) the metric function on dX, and h = h|j. .
We only state the result for propagation in the forward direction of *H, flow, but
it is equally true for the flow in the opposite direction as a minor modification of
the arguments shows.

Proposition 14.1. Let H be as in (11.11), A > 0. Let & = (20,70, %) € Zp(N).
Let € > 0 be such that exp(s*°Hy)(a) ¢ *TEX if a € *TEX NTa_y, mHa = &,
s € (—€,€) \ {0}. Suppose that u € C~°(X), & ¢ WFss((H — Nu), and for all
a € *TEX NEa_y with mha = &, we have exp(s*°Hy)(a) ¢ WF 3. ((H — M\u)
for all s € (—¢,€). If in addition for each such a there exists s € (—¢,0) such that
exp(s*°Hy)(a) ¢ WFc(u), then & ¢ WF 35 q(u). Hence, for all such a and for all
s € (—¢€,€) \ {0}, exp(s*“Hy)(a) ¢ WF.(u).

Proof. Notice first that Melrose’s form of Hérmander’s propagation theorem [19,
Proposition 7] implies that under our assumptions exp(s** Hy)(a) ¢ WF.(u) for all
s € (—€,0) and a € T4 X N Ea_, satisfying 7 a = &. Similarly, if we just prove
exp(s*°Hy)(a) ¢ WFc(u) for sufficiently small s > 0, it follows for all s € (0, €).
This in turn will follow from & ¢ WF3s. g(u) since the wave front set is closed.
Thus, we can work above a coordinate neighborhood U of (0, zp), and hence we can
use local coordinates (y, z, T, u, v) adapted to W+ in this proof.
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The proof is by induction on microlocal regularity, i.e. we prove that

(14.1) €o ¢ WFo! o (u)

for all m, l. Here m is irrelevant by standard elliptic regularity, i.e. by Lemma 11.9,
which shows that if (14.1) holds for one m, then it holds for all m. So assume
that (14.1) holds for some m and !, and we proceed to show that it also holds if we
replace [ by I + 1/2.

We first construct a symbol ¢ which has a positive commutator with H microlo-
cally away from exp(s*H,)(a), s € (—¢,0), and which is elliptic at exp(s*H,)()
for sufficiently small s € (0,€). Note that the our commutator construction will be
similar to, though much simpler than, the one used in the proof of [14, Proposition
24.5.1}; that proof will be more closely followed when we investigate the propagation
of singularities at ¥;()) in the next section. Let

(14.2) Y2={(y,z,mpv) p-y=0, p#0}

Thus, ¥ C *°T(;X is a smooth hypersurface. Moreover, in these local coordinates
(11.26) states that

(14.3) H, = 27(20, + -8y + v - 8,) — 2hd; + Hy, + zW', W' € Vo(**T*X),
and by (11.29)
(14.4) Hyp —2p-0y € T(TeX).

As p-y = 0 on T3 X, this proves that Hy(u - y)ly=0 = —2|u|?, so *H, is
transversal to X N*°T7 X if U is a sufficiently small neighborhood of (0, zp) in 8X.

Let p € C°(R;[0,1]) be supported near A, and it is identically 1 in a smaller
neighborhood of A. Now, on a neighborhood U’ C T34 X of supp p(g) N T X
we can solve the Cauchy problem

(14.5) *Hyw =0, wig =W +|z =22+ |7 =) + v - wl

where |.| denotes the Euclidian metric in these local coordinates. Since w|z > 0,
we have w > 0 on U'. Also, w|s vanishes exactly at

(14.6) S={ae*TEXNnU": nta =&},
so w will vanish exactly at the flow-out
(14.7) S = {exp(sH,)(S)NU' : s € (—¢,¢€)}

of this set under °H,. Moreover, dw will also vanish on S, since it does at S, but
for the same reason the Hessian is positive in directions transversal to **H,. In
particular, on compact subsets K of U’ we have for some Cy, C2, C3 > 0 depending
on K

(14.8) Ciw'/? < dist(p, S) < Cow?/?,

where dist is the Euclidian distance. By reducing the size of U’ (while keeping it a
neighborhood of supp p(g) N%¢T3X) we may assume that this holds everywhere on
U'.

Propagation along the integral curves of **H, can be measured by - y since it
vanishes on ¥ and 5 Hy(p-y) > co on U'. It will be, however, convenient to introduce
a new propagation variable N so that **HyN = 1, N|z = 0 (i.e. parametrize the
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integral curves by the time it takes to flow from ¥ to the given point). Thus, for
some ¢;, ¢ >0

(14.9) alp-y) SN <c(p-y).

Let xo0 € C°(R) be xo(t) = exp(—1/t) for t > 0, identically 0 for ¢t < 0, and also
let x1 € C*°(R;[0,1]) be 0 on (—00,0], 1 on [1, ), and satisfy 0 < x} € C((0,1)).
We now define for € > 0,6 >0, A >0

(14.10) p=N+e'w

(14'11) QO(ya 2y Ty 1y V) = XO(A_I (2 - ¢/6))X1 (N/6 + 2)'

Note that on the support of the first factor ¢ < 24, and on the support of the
second one N > —24. Thus,

(14.12) on supp go, w < 44¢, and |N| < 26,

so if we choose €, 6 > 0 sufficiently small then for some K C U compact supp §o C
Tk X, 1.e. go can be regarded as a function on **T*X. Next, *Hy¢ =*H,N =1
since *Hyw = 0, so

(14.13) Hydo = —gg + €0

with

(14.14) 96 = AT xo(ATH(2 — ¢/0))xa(N/6 +2),
(14.15) eo = 267 xo(A7H(2 — ¢/8))X1 (N/5 + 2).
Noting that on T3 X NU’, go is independent of p, let

(14.16) fr= A7 € CO(WH),

so fPlyr = g§|==T5XnU', and in particular g2|s = f’|s = 2471671}, (2/A) > 0. On
the other hand,

(14.17) on suppep, —20 < N < -6, w < 46¢.

Now, x1(N/é + 2)|sersx =1, and Go|se13 xny- is independent of u, namely it is
(14.18) Fz,7,0) = (0, 2,7, 1, v) = X0(A™(2 — wo/(5)))

with

(14.19) wo = |y|* + |2 — 20|® + |7 — 1o|* + |v — wo|? € C® (T} X),

so we define § € C°(*°T;.X) by

(14.20) g =p(9)d0 + (1 - p(9))x0(A™" (2 — wo/(€0)))-

On the support of the second term wp < 2é, so [y|? < 2€8, i.e. supp § € **Tx X (with
K C U compact) as well. Now (14.20) implies that §(0, z, 7, u,v) is independent
of u, and taking into account that x¢(s) = s~2xo(s) and that A=1(2 — wy/(&6)) <
24!, we conclude that

(14.21) ety x < 4A72x0(A7H2 - ¢/8))xa < C'AT6f".

In addition, dp = dN + €' dw, and supp p(g) is compact. Furthermore, wy is
independent of u and the set {(y,2,7,v) : wo < 2} is compact. Since on the
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support of the second term of (14.20), we < 2€6 < 2 if we make sure that € < 1,
6 <1, we conclude that

(14.22) |dleers x| < ATHTIC(1+E xpxa S CM(1+EY S

More generally, taking into account that on ¢T3 X, wp, w and N are independent
of u, so when differentiating dgls-rsx with respect to 2 no additional derivative
may fall on xo, we obtain that for all multiindices

(14.23) 0z dlsers x| < C(L+E)F.

Finally, we estimate § on supp(1 — p(g))¢, i.e. near ¥a_». As on supp o, |N| < 24,
we have ¢ > —26, hence A~(2 — ¢/d) <4471, and correspondingly

(14.24) Glsupp(1—p(g))c < CA™'6g2.

In particular, given any M > 0, ¢ > 0 and keeping § < 1, we can make sure (by
choosing A sufficiently large, only depending on M and €’) that

(14.25) *°Hy§ + Mg = —(1—r)gs + eo on supp(1 — p(9))",
here
(14.26) r=MAY(2-¢/8)%5, [r|<€/2.
We now fix € and 4, but will leave M to be determined later. For small §' > 0
(14.27) Ky = {a € °THX : wo <8’} C*°THX,

and choose &' € (0, 1) such that p(K ) is compact (p being the projection T} X —
U), and

(14.28)  WFasemt((H — Nu) N Ky =0, WF3e g((H — ANu) N7t (Ks) = 0,

(14 29) F € ‘Ig;?:(X)i WF;}BC,mf(F) - K(;'; WFésc,ﬁ'(F) C 7("L (Rdl N SCTE,X)
. = Fu € H?(X).

This can be arranged as & ¢ WFssc,a((H — A)u) and as (14.1) holds, since by
making ¢’ small we can make sure that Ky is included in any fixed neighborhood
of (m+)7*({&}). Then, corresponding to (14.17), let

(14.30)
K=Ks:={a€*TyX: —26 <N < -6, |g— | < 6¢, w < 46¢} C *T} X,

and choose € € (0,1) and & € (0,1) such that K;o C K5 and
(14.31) E € ¥%~°(X), WF..(E) C K = Eu € (*(X).

Note that this can also be arranged since we know that for a € **T;.X with N(a) €
(—€,0), w(@) = 0, g(a) = A we have a = exp(IN(a)**Hy)(ap) for some ag €
CTEX N Za—x with mtap = &, so a ¢ WFy(u). Hence fixing any 6§ > 0 so that
the flow stays inside U’ for time |N| < 44, we have that K;p is compact and is
disjoint from WPF.(u) so for an appropriate neighborhood of K;g, and hence for
some & > 0 (14.31) holds.

Let 19 € C°(R) be identically 1 near 0 and supported sufficiently close to 0 so
that the product decomposition of X near X is valid on supp ¥o. We also define

(14.32) q = to(2)g.
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Now note that ¢ satisfies the estimates in (13.2) and let @ be the left quantization
qr(q) of g as in (13.12) We intend to compute the commutator i[@Q, H]. Corol-
lary 13.4 reduces our task to computing

(14.33) [Q, Al¥(A) = [@¥(A), Al

Since Qy(A) € ¥, *°(X) we can use the commutator formula in the scattering
calculus to give

(14.34) Jse,0,1(i[QY(A), A]) = —(*“Hyq)¥(g),
i.e. with g7 denoting left quantization
(14.35) i[Q, AlY(A) — zqr (- Hyq)y(A) € T 7*(X).

Let ¢ € C°(RR; [0, 1]) be supported sufficiently close to A so that p = 1 near supp ¢.
Now, f° is independent of y, so

(14.36) i[Q, Alg,9(D)g = 9 D).
Since Y(H) — ¥(A) € pms ¥3.°°(X), we have

(14.37) P(H)g — 9(B)g € TN (ST),
SO

(14.38) i[Q,/K]ﬂr 1@3 —-f mff = fb(w/(-z)ﬁ' - /(.H\)ff) € 'I’s_coo’l(sn)

and its norm in B(LZ(S%), HL!(S™)) is bounded by a constant multiple of f*(§).
Combining this with Corollary 13.4, (14.21) and (14.23) shows that

(1439)  Ra(®) = (Q, Hle, ¥(H)g — f* $(H)y € T (ST),
(14.40) ||R1(§)"3(L2 (1), HE (5) S < C'fo(z,1,v)

with C' independent of A, hence of M, if we keep 4 > 1.

It is useful to replace Q by a self-adjoint operator, so we consider ¥(H)Q* Qv (H)
in place of Qy(H). Thus, from (14.40) and Proposition 13.1 (employing (14.37))
we deduce that for some C' > 0

(1441)  i(E)@Q HWH))g 1 (©) — 20 Fo ) gllpzz, sy < CLEOFE)

for all £ € W,

Now we can follow the proof of Theorem 12.2. Thus, choose 1,¢ € C®(R)
identically 1 near A, ¢ = 1 on supp ¢, ¥ = 1 on supp. Let € € (0,1). On supp f,
A — 172 —|v|2 is not an eigenvalue of Hg (since it is positive). Thus,

(14.42) D(H)g(€) = D(Ha(z) + 7 + [v]2) » 0

strongly as supp®¥ — {A}. Since supp f is compact, and the inclusion map T :
B(HL(S?),L%(S?)) is compact, for ¢ with sufficiently small support we have

(14.43) "("p(H)T)ff(f)”B(H}c‘(s 2),L2(S7) S <ec!
for all £ € supp f. Thus, on supp f

(1449)  [i@EQ"Q HIG(EH))g 1 (€) — 27 Fo(H)g ooy < €L F(O).
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Note that by (14.41), (14.44) holds automatically outside supp f, so it holds for all
¢ € Wi. Thus,

~ —_ . —2
(14.45) iG(H)Q*Q, HW(H))g,, 2 2 fi(H)g — € 1.
Multiplying by ¢(H) from both left and right we finally conclude that
(14.46) i6(H)Q"Q, Hp(H)g, > (2~ €)f* Fo(H)g.

The other face, mf, is much easier to deal with. In fact, from (13.36) we deduce
at once that

(14.47) i(W(E[Q*Q, HI(H))s, = —20(9)*4(*H,d)-

This also holds if we replace v by ¢.
Now we can follow the usual proof of the principal-type propagation theorem
(19, Proposition 7]. Let

(14.48) b= go(2)§"/*(1 ~r)"/*go,

and let B = q1,(b)¢(H). Also, let

(14.49) E = ¢(H)qr((deo)'/*)" L ((deo)/*)$(H).
Thus, by (14.46) and (14.47) and (14.25)

(14.50)

iz 2$(H)[Q"Q, Hlp(H)z™"/? — Ma'*$(H)Q" Qg(H)z™"/2
- Mz 2¢(H)Q*Qé(H)z'/* > (2~ 2¢)B*B+E+F
where B € ¥3.2°°(X), E € ¥ .°°(X), F € ¥32'(X), and

3sc 3sc

(14.51) WF,.(E) CK =Kz,
(14.52)
WF3eeme(F) Csupp§ C {a € *THX : =26 <N <24, |g— | < 8¢, w < 40¢},
(14.53) WF3. g (F) C supp f.
Let
(14.54) A=z 120 +rfz)7Y,  re(0,1).
Also define

(14.55) Q- = Q¢p(H)A,z~'/?, B, = BA,, E, = A,EA,, F, = A, FA,.

Then multiplying (14.50) by (1 + r/z)~! from left and right and rearranging the
terms we obtain the following estimate of self-adjoint bounded operators on L2 (X):

i t12(Q;Q,, Hla/? — 12 (M’ A + G)$(H)Q' Q,
(14.56) +Q*Qé(H) (G, + Mz'/?A,))z'+1/?
2 $’+1/2((2 - El)B:B,- + Er +F.,.)a:'+1/2
where G, = i[A,z~Y/2, H]. Now, G, € B(Hx™"""Y%(X), Hx™ (X)) re-

mains bounded when we let r — 0. Hence, ||z!G,|| < M if we chose M sufficiently
large. The point of the commutator calculation is that in LZ.(X)

(14.57) (u,[Q7Qr, Hlu) = 2i Im(u, Q;Q(H — Mu);
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the pairing makes sense for r > 0 since Q, € ¥5.>" ~}(X). Now apply (14.56) to
z~1=1/2y and pair it with =~/24 in L2,(X). Then for r > 0

(14.58) IBrull* < [(u, Eru)| + [(u, Fru)| + 2|(u, Q7 Q- (H — A)u)|.

Letting r — 0 now keeps the right hand side of (14.58) bounded since (1 +
r/z)~! — Id strongly on B(HZ" ¥ (X), H?' ¥ (X)). In fact, by (14.28) Q. (H-M)u €
C*(X) remains bounded in C®°(X) as r — 0. Similarly, by (14.31) E,u remains
bounded in C®(X) as 7 — 0. Also, F, is bounded in B(H™!(X), H™ (X)), so
(u, Fru) stays bounded by (14.29). These show that B,u is uniformly bounded in
L2(X) which implies that Bz~'~1/2y € L2 (X).

Let

(14.59) B' = Bz~'"Y/2 { P(1 - ¢(H))

with P € 937 3(X) with Pg _;_1/2(&) = Id. Although B(&) is not invertible,
; /

3sc

B'(&) is by (14.48). If P is chosen with WFQS,_:(P) sufficiently small, then & ¢
WFssc({H — A)u) implies that P(1 — ¢(H))u € C*°(X) too, so we conclude that

(14.60) B'u € L2 (X).
As B'(&) is invertible, this implies that
(14.61) Eo ¢ WEyit' /2 (w).

This is exactly the iterative step we wanted to prove. Hence, we deduce that (14.1)
holds for all m and I, proving the proposition. a

An immediate corollary is a complete description of propagation of singularities
away from C if C is totally geodesic.

Corollary 14.2. Suppose that H satisfies (11.11), C is totally geodesic, and A > 0.
Ifue C°(X), (H-\Nu € (°(X), a € *“Tix\cX, @ € Ea-x, and for every
broken bicharacteristic v of H — X satisfying v(0) = a, there exists t < 0 such that
Y(t) ¢ WF g5c(u), then a ¢ WF g5.(u).

15. PROPAGATION OF SINGULARITIES IN TANGENTIAL DIRECTIONS

We proceed to analyze the propagation of singularities along the tangential di-
rections to C. First we prove a result showing that if either one of two spectral
conditions on Hg, given below in (15.1) and (15.2), is satisfied, then for (microlo-
cal) solutions of (H — A)u € C®°(X) the absence of WF3,c(u) in a ball implies the
absence WF3,.(u) in a corresponding parabolic region. This is completely analo-
gous to Theorem 2.50 of Melrose and Sj6strand [20]. The other main ingredient
of proving that singularities propagate along generalized broken geodesics is the
understanding of the generalized broken geodesic flow. Since the geometry is es-
sentially the same as in [20] and [21], we can make this conclusion. As we are
primarily interested in the actual three-body problem where C is totally geodesic,
we will provide a simpler proof in this special case.

If Hg has eigenvalues, propagation can be much more complicated. However, in
the case when in some local coordinates adapted to W+ Hg(z) is independent of 2,
it can be described just as in the eigenvalueless case. It is convenient to state our
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assumptions here. From now on in this section we assume that H is as in (11.11),
and either

(15.1) Hg(z) does not have any eigenvalues in LZ,(S7) for any z,
or

(15.2) in some local coordinates Hg(z) is independent of z.

Note that (15.2) does not give any conditions for k,(v), and it is satisfied for the
actual three-body operators. We first prove a commutator estimate which will be
useful if (15.2) holds.

Lemma 15.1. Suppose thgt A <0 and H satisfies (11.11). Then given € > 0 there
exists § > 0 such that for € C°(R; [0,1]) supported in (A — 6, + 9)
(15.3) |19 (Hg)[Y 0y, Hel(Hr)ll < e.
Proof. Let E = Eg,({A}), En, denoting the spectral projection. First choose
¢ € C(R;[0,1]) which is identically 1 on supp®. Then ¢(Hg) = ¢(Hg)(Hg).
Let
R = Yoy, Hg)¢(Hzg) - [Y 0y, Agld(Ag)

= [Vdy, Aal(¢(Hr) — ¢(Ag)) + [V Oy, Valé(Ha).
Now, [Y 0y, Ag] = —2Ag, and
(15.5) $(Hz) — ¢(Ag) € T (ST)
by Proposition 10.2. Moreover, Vg € ¥%'(S%), and Y8y € ¥ '(X), so their
commutator is in ¥%!(S%). Hence, R € ¥;°(S7?), and thus it is compact on
LZ,(S%). Now write

(15.6)
$(Hg)[Y 8y, Hg|Y(Hg) =($(Hg) — E)[Y 8y, Hg|¢(Hg) (¥ (Hg) — E)
+ E[Y 8y, Hg)¢(Hg)(¥(Hr) — E)
+ (&(Hﬂ) - E)D?a}_’a HE]¢(Hﬂ')E + E[Yai_/’Hﬂ']E'

Here the last term vanishes by the virial theorem. Also, ¥(Hg) — E goes to 0
strongly as supp v — {A}, so in particular ¢ supported sufficiently close to A

(15.4)

(15.7) |((He) — E)R|| < ¢/8,  |IR((Hg) - E)|| < ¢/8.
In addition, A < 0 and Ag > 0, so if ¢ is supported in (A — €/32, A + €/32) then
(15.8) I2Azd(Ag)|l < €/16.

Since ||)(Hg)|| < 1, and the same holds for E we see that if ¥ is supported suf-
ficiently close to A then the first three terms on the right hand side of (15.6) are

bounded in norm by €/2, ¢/4 and €/4 respectively. This proves the lemma. O
Recall that
(15.9) h(z,v) = h,(v) = hutly=0(z,v)

is the restriction of the boundary metric A to W+, and we have defined
(15.10) W =2r(v-8,) — 2h,(v)0, + H; € V(W1).
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This definition ensures that W —**Hg|w.1nx,_, = Y ai0,, in the local coordinates
adapted to W+. We also assume in what follows that we have chosen some

(15.11) K c X))\ (R UR™")

which is compact. Since the propagation result is local, we can work in local
coordinates. In particular, it will be useful to extend the projection 7+ TEX —
W+ using a product decomposition given by local coordinates to a projection (also
denoted by 71) from %73 X to W+, where U C 8X is a neighborhood of C. We
also write |.| for the Euclidian metric on **T}; X in the local coordinates.

Proposition 15.2. Suppose that H satisfies (11.11) and XA > 0. Suppose also that
either (15.1) or (15.2) holds. Given K as in (15.11) there ezist constants Cy > 0,
do > 0 such that the following holds. If & = (20,70,10) € K, u € C~*(X),
éo ¢ WF3,((H — AN)u) and in addition for some 0 < € < 1, 0 < § < min{Cpe, dp}
and for all a = (y, 2,7, p,v) € *Tjx X

(15.12) ly| < €6, |7t (a) — exp(—0W)(&)| < €6 = o ¢ WF g5 me(u)
and
(15.13) y =0, |7 (a) — exp(—6W)(&)| < €6 = mta ¢ WF g0 4 (u)

then 50 ¢ Wngc,ﬁ‘('U:)-

Proof. The proof is essentially a combination of the proofs of Proposition 14.1 and of
the propagation along generalized bicharecteristics found in [14, Proposition 24.5.1]
which in turn is based on Melrose’s and Sjostrand’s paper [20]. Thus, we have to
change the construction of g; the point being that now *H, is tangent to W+ at
some points of the broken geodesics, so we cannot use the flow-out of *H, from
some hypersurface including *°T3X as in the normal case to define w, and hence
d. Of course, we still want to arrange @ to have a positive commutator with H in
the region which we wish to exclude from the wave front set. The main difference
from the proof of Proposition 14.1 will be that we define w by using the flow-out
of W from some hypersurface; in particular w will be completely independent of p.
Naturally, we cannot expect * Hyw to vanish, but it will be small in the region of
interest, and we will have to do careful estimates to make sure that it is actually
sufficiently small. In the first part of the argument we follow the proof of [14,
Proposition 24.5.1] closely with a few necessary changes.
We have
(15.14)

Hy = 22 heniOy; + 2Zhgtﬂtaz, + 2Zhnt"18y. + 2tht”1 2
i’j

+ Z(Bz,, ) ipiBn, +2) (02, hnt vy, + Z(az,. hel)viv;Bu, + W'

i,4:k 3,5,k 4,4,k
with W' = 3" @;0,,. Hence, if w € C°(R™~! x R™,) then
(15.15) Hpw|y=0 = Hjw,
so we have
(15.16) 5 Hywly=0 = Ww — 2(h — h)8,w.

We now define w such that the second term is small near og = (0, 2o, 70,0, uo) €
*°T¢X, the unique point on Ta_y such that mtap = &. Now, Wr = —2k, and
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ﬁzo (v0) # 0, so near &, Wt # 0, i.e. W is transversal to the hypersurface 7 = 7.
Thus, near & in W+ we can solve the Cauchy problem

(15.17) Ww =0, Wlr=r, = (2 — 20)2 + (v — 10)?.

Since w and dw vanish at &, the same holds on the bicharacteristic of W through
&, but w > 0 and the Hessian is still positive in directions transversal to the
bicharacteristics as these hold at &. Moreover, by [14, Lemma 7.7.2],

(15.18) ldw] < Cw'/2.
Let
(15.19) To = T2 + ﬁz(y) —_

so Wro =0. Now at 7 = 19 we have rg = ﬁz(u) - EZO (»), so
(15.20) Iro| < C'|dw| < C"w/?

when 7 = 79, and then Ww = 0 = Wry implies that this inequality holds every-
where. Therefore,

(15.21) lh—h| < A=72=h|+|A=72 —h| < |A =72 — h| + Cw!/2
Note that hiJ, (0,y) = d;;, h,(0,y) = 0, and
(15.22)

Hyw = *“Hyw — Ww = — 2(h — h)d,w
+2 Z t(y’ 2)pi0w + 2 Z(h:{ (y,2) — h (0,2))11,'3,,-(—0

1.7

+ Z 82, b3 (v, 2)pipiOuw + 2 Y 82, Ry, 2)piv; B w
9])k 7.71k

+ E 64 h;t (y7 h:{(ov z))l/,'l/jay,'w,
’JY

so for some C,C’' >0
(15.23) [ Hyw — Ww| < C'(|y| + |72 + b — A| + w*/?)|dw]
| <Oyl + |7 + h = A + w'/?)wl/2,

Now we define for 6, € > 0
1 2
(15.24) $=m0 -7+ 5=y’ +w).

Note that now |y|? +w plays the role of w in (14.5) and (14.10), and our propagation
variable is 79 — 7 since *°H, ('ro — 1) = 2h is positive near ap. Thus,

(15.25) “Hy$ = 2h + - (4 D Bilnitsyi +4 Z hviy; + % Hyw).
i,j
We have already estimated *° Hyw. On the other hand

(15.26) |k, (y, 2)vsyi| < Clyl®, R (y, 2)psuil < Clyllul-

We can also estimate |u| near £a_». In fact, |uiv;| < |p|? + |v]?, so

(15.27) |Zh Ly, 2)pavs| < Clyl(luf + [v]?).
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Also,

(15.28) | (Wi (Y, 2) — bi5)mips| < Clylluf?,
i’j

(15.29) 1> (hil (Y, 2) — hil(0, 2))vivs| < Clyllvl?,

i’j

SO

(15.30) I — |ul? = Ro(¥)] < Clyl(Iuf® + V%)

By the triangle inequality

(15.31) uf? < [(h = ho()) — |ul?| + |k — Al.

Hence, by (15.21)

(15.32) > < Clyl +w'2 + |72+ h = )))

Summarizing these estimates we see that
sy FHo =2 S SEbIu] + 7+ 77 R X 4

+ (Jyl + 172 + h = Al + w'/?2)w'/?).
Now,
(1530)  ¢<25andr—19 <20 = |7 — 0| < 26, [y < 265, w < (2€6)°.
Thus, under the additional assumption that |72 + h — A] < €6,
(15.35) I**Hy¢ — 2h| < C1((6/€)'/* + ).

Note that C; and 4; > 0 can be chosen so that (15.35) is valid for all & € K if
d < 6;. Thus, there exist Cp > 0 and &y > 0 such that if § € K, 6 < g, € < 1,
d/e < Cp then

(15.36) ¥Hyp >c= inf{|1/o|§O :é € K},

when the assumptions of (15.34) are satisfied and |72 + h — A| < €6.

Still following the proof of [14, Proposition 24.5.1] we let xo(t) = exp(—1/t) for
t>0,0fort <0, and welet x; € C*°(R) to be identically 1 on [1, 00}, 0 on (—00, 0],
and to have 0 < x} € C((0,1)). Fort € [0,1],e € (0,1),0<d <€, A> 0 we
define

(15.37) Gt(y, 2,7, 0) = x0(AT (1 +t = ¢/8))x1 (10 — 7 + 8)/(e6) + 1)

On the support of the first factor ¢ < 24, and on the support of the second factor
T— 179 < 0+ edt < 26. Now,

(15.38) “HyG = —g3 + €0
where
(15.39) g5 = AT 6T Hyd)xo (AT (L +t — ¢/8))xa (o — 7 + 8)/ (e6) + 1),

(15.40) eo = 2h(ed) 'xo(ATT(1 +t — ¢/8))xi (70 — T + 8) /(€) + t).
Note that xq(s) = s72x0(s), and on suppg:, 1+t — ¢/8 < 4, so
(15.41) ATX(ATH 1+t - ¢/8))x1 = (A/16)d:.
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By (15.35) we see that when |72 + h — \| < €6, we have similarly to (14.24)

(15.42) @ < C'Axpx1 < CA™ég3.
On the other hand, e; is supported where
(15.43) —ted<10—-T+6 < (1-1t)ed

in addition to (15.34). With £ = exp(—8'W)éo, &' = 6/(2|o|2,), this implies that
|7 — 7(€)| < €6 + C4%. From (15.34) we also conclude that

(15.44) lyl? + |2 = 2(&)” + lv — v(&)® < C**.
We drop the index ¢ for the time being. We now let () be the quantization of
(15.45) ' g =vo(z)q

as in Proposition 14.1, and we consider the commutator [Qy(H), H] where we still
have Qy(H) € ¥3.2°"'(X) since ¢ € CP(R). If A — 72 — |v|2 is not an eigenvalue
of Hg(z) then we can employ Corollary 13.4 as in the normal case to reduce the

computation to that of [Qy(A), A]. Since Qy(A) € ¥ >°°(X), the joint symbol
of the commutator is given by the Poisson bracket of the symbols:

(15.46) Jse,0,1 (HQY(A), A]) = —(“H,@)1(g)-

We have already estimated *°Hyzq near Ya_», so if we arrange that suppy C
(A — €8, + €d), and & > 0 is sufficiently small, we can conclude that away from

suppe
(15.47) Jsc,0,1(([@¥(A), A]) < —A7'6 L expxa(g).

We can also estimate dgl|y—o since on supp g

(15.48) [dly=ol < €' + —ldu] < C"(1+ 2597 S O+ €™).
Thus, we see that away from suppe

(15.49) |d§(0, z,7,v)| < C(1 + € 1) f* (2,7, V)

where, in accordance with (14.16) and (15.47) we let

(15.50) 2= A7 Yexhly=oxa-

Since q is independent of u, this proves (14.21) and (14.23) in our setting.

If (15.1) holds, then we can apply the argument in the proof of Proposition 14.1
after (14.40) verbatim, taking into account the support properties of e in (15.43),
and reducing the size of ¢ in the iterative steps (of improving regularity by order
%) as in the proof of [14, Proposition 24.5.1], to deduce the conclusion of this
proposition. Note that the presence of ¢! in (15.49) will not cause any problems
since in the compactness argument after (14.42) we will just choose a spectral cutoff
function ¢ € C*°(R) supported sufficiently close to A, with the size of support
depending on e.

Suppose now that (15.2) holds. Note that

(15.51) He = Ag + Vg +h+ 12
By (13.38) we have with f = §ly=o0
(15.52) i[QU(H), Hlg , = (—(0: )V 8y, Ha] — W f)(Hg)
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since
(15.53) W =27(v-8,) — 2h8;, + (8,h)d, — (3,h)d,.

Now, if 72 + A > ), then by Lemma 15.1 we can arrange for any £ € W+ and
for any €' > 0 that

(15.54) 1% (Hz (€))[¥ 8y, Hrr (2)[(Hr (€)]| < €

if ¢ € CX(R;[0,1]) satisfies supp e C (A — &, A + &) where § = d¢ ¢ , since
(15.55) U(Hg) = P(Hg + 7° + h).

Since W¢ = 2k, we have

(15.56)

Wq=—2A710" hxp(A™ (1 +¢ — ¢/8))xa + 2hxoxi ((To — 7 + 8)/(e6) + 1)

We multiply both sides of (15.52) by 1/;([?5)@1}, note that Q;“f = f, so it commutes
with ¢ (Hg), so we see that

(15.57) iW(H) Q" Qu(H), Hlg , > 2f f9(Hg)?

if ¢ ¢ suppe. This is completely analogous to (14.46). Taking into account (15.42),
we actually conclude that for any M we can choose A > 0 sufficiently large so that

(15.58)  i(H)[Q*QU(H), Hlg, +2M f*4(He)? > (2 - 2¢)f f*9(Ha)?

Although we have assumed that 72 +k > X, (15.57) also holds if this is not satisfied,
since in that case A — (72 + h) cannot be an eigenvalue of Hg, so we can use the
eigenvalueless argument from above. Since the right hand side of (15.57) is a
continuous function of ¢ with values in B(LZ,(S%), L%.(S7)), if (15.57) holds for
some % at &, it also holds in some neighborhood of ¢ with €’ replaced by 2¢'. Since
supp f is compact, (15.57) holds on supp f if we choose supp v sufficiently small,
and hence it holds everywhere in this case. Combining this with the argument for
on suppq at mf proves the proposition when (15.2) is satisfied. O

As mentioned above, this result is completely analogous to Theorem 2.50 of
Melrose’s and Sj6strand’s first paper [20]. The argument of their second paper [21],
see also Sjostrand’s paper on analytic singularities [29] and the arguments of [14,
Section 24.3], can be repeated to prove that our proposition implies that WFsq,
propagates along generalized broken bicharacteristics. Namely, we conclude:

Proposition 15.3. Suppose that H satisfies (11.11) and X\ > 0. Suppose also that
either (15.1) or (15.2) holds. Let & € X:(\). Assume that u € C~°(X) and
éo & WF sy ((H — N)u). If in addition & € WF g5, g(u), then there exist € > 0 and
a generalized bicharacteristic vy of H with v(0) = & such that ¥|(—e,ey C WF gc,mr(u).

We are particularly interested in the case when C is totally geodesic. Then
the argument of the previous proposition can be strengthened to give an analog
of Proposition 14.1 immediately, without the additional analysis of the generalized
bicharacteristics. Namely, in this case the bicharacteristic v of g going through
ag € Wt C *T3, X stays in W+, and 7+ (y) is a bicharacteristic of W. We now
show that for microlocal solutions of (H —\)u € C*®°(X), WFs34c g(u) either includes
the whole of « or is disjoint from it.
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Proposition 15.4. Suppose that C is totally geodesic, H as in (11.11), A > 0 and
either (15.1) or (15.2) holds. Let & = (zo0,70,%0) € Zt(A) \ (R~ U R*). Suppose
also that u € C~°(X), &o ¢ WF s5c((H — A)u). Then there exists € > 0 such that if
in addition for the unique o with 7 ap = &, g(aw) = A, and for some s € (—¢',0)
we have exp(s*°Hy)(ap) € WF g5c(u), then & ¢ WF g,c g (u).

Proof. Note first that ¢ > 0 appears in the statement only to ensure that for
s € (—€,0), exp(s°°Hy)(ag) ¢ WF3sc((H — A)u). As usual, it suffices to prove that
the set

(15.59) {s € (—¢€,€) : exp(s**H,)(ao) ¢ WF3sc(u)}

is closed. We again work in local coordinates and note that C totally geodesic
means that

(15.60) 8,hi(0,2) =0

for all z. It is useful to introduce geodesic normal coordinates (y’, 2') with respect
to C. In these coordinates A%, (y',z') — &;; vanishes with its first derivative at
y' =0, and the same holds for k', (y’, 2'). Moreover, (15.60) is still satisfied when
the variables are replaced by the primed ones. From now on we assume that our
coordinates are geodesic normal coordinates and we drop the primes.

The additional vanishing of the coefficients allows strong improvements in the
arguments of the previous proposition. First, in (15.22) every term but the first
one, —2(h — h)d;w, has an additional order of vanishing in |y|, so (15.23) can be
replaced by

[ Hyw — Woo| < C'([yl? + |72 + h = A| +w"/2)|du]
< C(yl? + |72 + b = A| + w272,

Similarly, in (15.27)-(15.30) we gain an extra factor of |y| in the estimates, so (15.32)
can be replaced by

(15.62) |2 < Clyl? + w’? + |72 + h = A)).

(15.61)

Moreover, the first equation of (15.26) can be replaced by |R¥,(y, 2)vyi| < Clyl3.
For € > 0 let

(15.63) ¢=10—T+ey® + e w.
Thus, (15.33) is replaced by
(15.64)

[°Hy¢ — 2h| < C(e M yl(ly® + w2 + |72 + h = ADY/? + [y*
+ e 2(ly)? + |72 + h = A| + w'/2)w?/?).

Therefore,
(1565) ¢<20andT~79 <26 = |r— 70| <26, |y| < (4e8)'/?, w < 4€%6.
Hence, under the additional assumption that |72 + h — )| < €4,
(15.66) °Hy¢ — 2h| < Cy (6 + 6%/4 4 83/2¢1/2 + §%/%).
Thus, there exists dp > 0 such that if § < §p and € < 1 then
(15.67) *Hy¢ > ¢ = inf{|wo|2, : & € K},
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when the assumptions of (15.65) are satisfied and |72 + h — A| < €d. This has the
tremendous advantage over the non-totally geodesic case that we can fix § > 0 first,
and then choose € > 0 as small as we wish.

We can repeat the arguments of the previous proposition. Since we altered the
definition of ¢, (15.48) is replaced by

(15.68) |dly=o] < C" + €7 2|dw| < C"(1 + € 2w'/2) < C(1 + €714%/2).

Again, the presence of ¢! will not cause any problems since we will simply choose
our spectral cutoff, ¢ to have sufficiently small support (depending on €) near
A. The rest of the proof can be followed verbatim to conclude that statement of
Proposition 15.2 can be replaced by the following assertion. There exists a constant
8o > 0 such that if & = (29,70,%) € K, u € C™°(X), & ¢ WF3s.((H — A)u) and
in addition for some 0 < e < 1,0 < J < § and for all a € T35 X

(15.69) ly| < €d, |a — exp(—dW)(&)| < €6 = o ¢ WF35¢,me(u)
and
(15.70) y=0, |a—exp(—dW)(&)| < 6 = mta ¢ WFase a(u)

then & ¢ Wngc,g(u).
It is very easy to interpret these conditions geometrically. First, W — *°H,
vanishes when y = 0 and p = 0 by the assumption of total geodesity, so

(15.71) exp(—6W)(&) = 7+ exp(—6*H,)ag

where ag is the unique element of ¥a_» with mtay = &. Next, suppose that for
some § < €, § < 8o, 7 exp(—6°°Hy)(ap) ¢ WF3sc(u). Then for sufficiently small
€ > 0 (15.69) and (15.70) are satisfied, so we conclude that & ¢ WF3g s(u). This
shows that (15.59) is closed, hence we have proved the proposition. O

16. BOUND STATES WITH STRICTLY NEGATIVE ENERGY

We now analyze the propagation of singularities along bound states with strictly
negative energy, i.e. at points in ¥;(A). We assume that (15.2) holds. On the
other hand, since (r1)~1(y(A)) is disjoint from Xa_», the singularities at the
bound states will be unable to leave C, and correspondingly we can implement the
argument of Proposition 15.4 without the assumption that C is totally geodesic.

Proposition 16.1. Suppose that (15.2) holds and A > 0. Let & = (20,70, %0) €
Zs(A) \ (Rt UR™). Suppose that & ¢ WFsscq((H — Mu). Then there erists
€ > 0 such that if in addition exp(sW)(&) ¢ WFgsc5(u) for some s € (0,—¢)
then & ¢ WF gsc.a(u).

Proof. We just follow the proof of Proposition 15.2. We define w, §, etc., exactly
the same way, but now we will not make use of the estimates on 5H,§. Now if we
choose supp 9 close to A then supp ¥(g) and supp ¢ are disjoint, so

(16.1) mmﬁlmmf =0.

On ff we can follow the calculations following (15.51). Since it only involves es-
timates on Ww and the use of Lemma 15.1, the arguments given there can be
followed without a change. O
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17. RADIAL SETS

In this section we study the wave front set near the radial sets Rf\’ and R* N
(Z:(A) U Z5())). We shall also show that any L2 (X) eigenfunction of H ~ X\ with
A > 0 is actually in C*°(X). A theorem of Froese and Herbst [7] implies that
there are no such eigenfunctions in Euclidian many-body scattering. We extend
this result to the geometric setting, largely following their proof, in Appendix B.

In general, when we do not assume either of (15.1) and (15.2), we do not have
a complete picture of propagation of singularities. Namely, the propagation is
understood in normal directions to C, but tangential directions and bound states are
more troublesome. However, even in these cases we can prove resolvent estimates
and uniqueness results which are analogous to those of Gérard, Isozaki and Skibsted
[9, 16]. In fact, these results only require propagation estimates in the 7 variable, i.e.
no complete microlocalization. If either of the above mentioned assumptions holds,
so in particular for the actual three-body problem, we can obtain sharp uniqueness
statements in the sense that the wave front set assumptions are minimal. We first
prove the standard commutator identity.

Lemma 17.1. Suppose that H satisfies (11.11), Q € ¥;721(X), Q = @*,
[Q,H] € T3~ %(X), and v € C~°(X) satisfies

(17.1)  WFg,(v) N WF, (Q) = 0, WFG,™ (H — X)v) N WFy, (Q) = 0.

Then

(17.2) (v, [Q, H]v) = 2i Im(v, Q(H — A)v).

Proof. Let m',I' € R be such that v € H? ¥ (X). Also let P € ¥3°(X) with
WF5,.(Id —P) N WF,.(Q) = 0 such that Pv € HY(X), P(H — M\)v € H3Y(X);
this can be arranged by (17.1). For the same reason note that both sides of (17.2)

are indeed defined. First note that (17.2) holds under the slightly stronger assump-
tion Pv € H%1(X). In fact,

(17.3) (H - N)Q € BHE*(X), Hy™! (X)),

so we can write [Q,H] = Q(H — X) — (H — X)Q and expand the left hand side
of (17.2). We also write v = Pv + (Id —P)v, and manipulate the arising terms of
(v, [@, H]v) separately using that

(174) (H = 2)Q(Id —P), Q(H — N)(Id —P) € ¥3,.%(X);
then the standard argument gives (17.2). Moreover, again writing
(17.5)

(’Ua [Q,H]‘U) = (va [Q,H]P’U) + (’U, (Id —P*)[Q,H]P’U) + (’U, [Qs H](Id -P)U>7
and similarly with the right hand side of (17.2), we have
(17.6) (0, Q. HIo)| < CUIPoll gty + ol gzt )
(17.7)
(0, QU = M) < CUIPoll o xy + 10l v )
("P(H - A)v"H;l,’+1(x) + "U"H;:',I’(X))-

Thus, by continuity, it suffices to show that there exists a sequence v, in H%!(X)
such that v, = vin H™ ¥ (X), Pv, = Pv in H%'(X) and P(H —\)v, & P(H—\)v
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in H M+1(X). But now consider A; = (1+sz~1)™!, and let v; = A,v for s € [0, 1].
For s > 0, Pv, € H%'*1(X), and Pv, — Pv in H%!(X). Moreover, we can also
choose P’ such that P'v € H%!(X) and WFj (P’ — Id) N WF},.(P) = 0. Hence,
(17.8)

P(H = \yvs = A, P(H — Ao + [P(H — X), A]P'v + [P(H — \), A,)(Id —P")v.
Now, A, — Id strongly on H%'*1(X), so the first term converges to P(H — A)v in
HYH1(X) as s — 0. Also, [P(H — )A),A,] — 0 strongly in

B(H'(X), H ' (X)),
so the second term converges to 0 in H1'+1(X). Finally, [P(H—-)\), A;](Id —P') -
0 strongly in B(H% (X), H;*1(X)), so the last term also converges to 0 in

H M+1(X). This shows that (17.2) indeed holds if we just assume that Pv €
HH(X), P(H — Xv € H@*(X). O

First we deal with the general case; the improved statements under the additional
assumptions, (15.1) or (15.2), follow at once from the propagation results of the
previous sections. For 79 € R let

(17.9) TE(m0) = {(2,7,v) € Eg(H — \) : £7 > 70}

If the additional assumptions hold, then we can use R~ N (X¢(A) U (X)) instead
of Ty (—A/2) in (17.10) and (17.11) in the statement of the following lemma.

Lemma 17.2. Suppose that H is as in (11.11), A > 0. Suppose also that

(17.10) WFp () NRy =0,  WFR!o(u) N Tz (=A%) =0
for some m € R and 1 > —1/2, and (H — \)u € C®(X). Then
(17.11) WFgeeme(u) NRy =0,  WFapeu(u) N Ty (-2/2) = 0.

The same result holds with R and Tz (—\'/2) replaced by R} and T (A\/?) re-
spectively.

Proof. Assume iteratively that (17.11) holds for WFg;fc(u) where | > -1/2; we
want to show that it holds when [ is replaced by ! + 1/2. Note that by our initial
assumption the claim holds for some I > —1/2.

With € € (0,21/2/3) small, let x € C*(R) be supported in (—oo, —Al/2 + 2¢),
identically 1 in (—oo,—AY2 +¢€) and x' < 0. Let 4 € C*®(X) be supported in a
product neighborhood of 8X, identically 1 near 9X. Define
(17.12) g =z 2x (Yo > 0;

g is a globally defined function on 7T*X and on suppgq, 7 < —A/2 4+ 2¢ < 0. Thus,
Qu(H) € 8;°7/2(X). Near T3, X we have

(17.13) S Hyq = 2(— (I + 1/2)7x(7) — hx'(r))z~*"Y/2 > 0.

Let f = $l+1q|=cTé x; since f is independent of u, it can be regarded as a function
on W+. Now, let 9 € C°((A/2,2))) supported near A, so that in a neighborhood
of supp¥(g) N supp x'(7) we have h > §; here § > 0 is just some fixed constant.
This can be arranged since on £a_», h = A — 72 and on supp x'(7), 7 € [-A'/2 +
€, —A'/2 + 2¢]. Thus, with

(17.14) C2 = 2infhlsupp¢v(g)nsupp x'(r) > 0,
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and

(17.15) a1 = 2(1+1/2)(A\/2 — 2¢) > 0,

we have

(17.16) xl+1/2(scng|5upp w(g)) = f =ax(r) —ex'(r) > 0.
Hence,

(17.17) Jac,1,—1+172(=i[QU(A), A)) = 22 H,yq)9(g) 2 f4(g)-
Note in particular that g is independent of i = (g, v),

(17.18) gH2q < C1f

and in the standard local coordinates near C

(17.19) |d(z*+1/2g)| < Caf’

corresponding to (14.24), (14.21) and (14.23). Using Corollary 13.4 and the argu-
ment of Proposition 14.1 we see that with @ = qr.(q)

(17.20) Ri(8) = ~i[Q, Hlg, 11 jp¥(H)g — £* $(H)g € T4 (SD),
(17.21) 1B (Ol sz, (1), 12 s7)) < C'f’(z,1,v).

When X — (72 + |v]2) is not an eigenvalue of Hg, we can follow the proof of
Proposition 14.1 after (14.40) to conclude that for ¢ € C°(R) supported sufficiently
close to A we have

(17.22) —i((H)[Q*Q, HI$(H))g oy > (2 — ) F P $(H).

If A= (72 +|v|2) is an eigenvalue of Hg, we can follow the proof of Proposition 15.2
starting from (15.51). We need not make use of (15.2) since ¢ is independent of
v, and so the term (D, f)(d,Hg) automatically vanishes in (13.38). This proves
(17.22) in this setting too. We can then apply the standard compactness argument
to show that ¢ can be chosen to be independent of ¢ € W+. Of course, at mf the
analog of (17.22) holds automatically. Now note that

(17.23) —i[(z +r)"Y2, H] — qu.(a*H, (z + r)"1/?) € ¥33%(X)
uniformly for r € (0,1), and
(17.24) “Hy(z+7r)"Y2 = —ra(z +r)"%?

which is positive on supp g. Hence we have shown that with @, = Q¢(H) (:1:+r)‘1/ 2

where ¢ = 1 on supp ¢,

(17.25) ~i[Q;Q,, H] > Y(H)(z + 1) /2B (z + r)"/*y(H) + E} + F;
where B € U32°7)(X) is self-adjoint, F, € ¥3,52~?(X) uniformly bounded, E, €
w5527(X) for r > 0 and it is uniformly bounded in ¥3,°'"/%(X) (and it is
self-adjoint). Note also that @, € \Il?;‘;‘;’_'_l/ %(X) for r > 0 and it is uniformly
bounded in ¥3.%~*1(X).

Apply now (17.2) with u in place of v, Q}Q. in place of @Q, and use (17.25).
Thus, we see that for r > 0

(17.26)  [|B(z + )" *p(H)ul® < [(u, Fru)| + 2| Im(u, Q1 Q- (H — Nu)).
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Letting 7 — 0 keeps the right hand side bounded, and B(z + r)~'/2y(H)u —
Bz~1/2y(H)u in H3/*(X), so it follows that Bz~Y/2y(H)u € L2 (X). Noting
that z=!=1/2(I1d —y(H)) + Bz~1/24(H) has an invertible indicial operator where
f > 0 by (17.22) and (Id —¢(H))u € C®(X) shows that the set where f > 0 is
disjoint from WFg;’:é/ ?(u), which provides the iterative step in the proof. O

We can also analyze propagation in 7 in the region 7 € (—=A'/2,A\1/2). Of course,
we have the detailed picture at X, ()) in general, but at ¥;(A\) UZ,()) only if either
(15.1) or (15.2) is satisfied. For 7o € R we now introduce similarly to (17.9)

(17.27) T*(10) = {(§,7, ) € Ta_r: 7 > £7n0}.

Lemma 17.3. Suppose that H satisfies (11.11), A > 0. Suppose also that for some
7 € (=AV/2, \1/2)

(17.28) WFseeme(u) NT ™ (10) =0,  WFgeeq(u) N Ty (70) = 0
and (H — \)u € C®(X). Then for any 7} € (—A/2,21/2) we have
(17.29) WEF 35¢,me(u) N T~ (7-6) =0, WF3sc,ﬂ(u) N TﬂT (7'(,)) =0.

The same result holds with T~ and Ty replaced by T+ and Ty respectively.

Proof. This is a simple one-variable version of the propagation theorems. Thus,
we only sketch the proof. We let xo € C°(R) be xo(t) = exp(—1/t) for t > 0,
Xo(t) = 0 for t < 0, and also choose x; € C*°(R; [0, 1]) be 0 on (—00,0], 1 on [1, c0).
For 6 > 0 small, A > 0 large, define

(17.30) 7= xo(A™ (15 + 6 = ) (T — 70) /8 + 2).
Then we proceed just as in the proof of Proposition 14.1 to obtain a positive com-
mutator estimate and prove this lemma. O

Remark 17.4. This one-variable propagation result follows easily from the meth-
ods of Gérard, Isozaki and Skibsted in [9] in the setting of Euclidian many-body
scattering, with an appropriate notion of wavefront set.

Corollary 17.5. Suppose that H satisfies (11.11), A > 0, u € H™}(X), 1 > —1/2,
and (H — Mu € C*°(X). Then u € C*(X).

Proof. By Lemma, 17.2

(17.31) WF3e,me(u) N (T~ (=AY2) UTH(AY2)) =9,

(17.32) WF3gc,8(u) N (T (=AY2) UTFH(AY2)) = 0.

By Lemma 17.3 and the closedness of the wave front set we conclude that
(17-33) WF3sc,mf(u) NXa_n= @, WFssc,ﬂ‘(U) n z;ﬁ'(H' - )\) =0.

Combining this with Proposition 11.2 shows that WF3sc mf(u) and WF 34 g (1) van-
ish, hence Y(H)u € C*(X) if ¢ € C°(X). Taking ¢ = 1 near A we also have
(1—-y(H))u € C=(X) since (H—A)u € C*®(X), so we conclude that u € C*(X). O

As mentioned at the beginning of this section, we can extend the result of Froese
and Herbst on the absence of positive eigenvalues to the general geometric setting.
This is done in Appendix B; here we only state the result.
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Theorem 17.6. [cf. Froese and Herbst [7, Corollary 1.4]] Let H be as in (11.11)
and let A > 0. Then (H — ANu =0, u € H™!(X) for some m € R and for some
1 > —1/2 implies that u = 0. In particular, H has no positive eigenvalues.

We now prove a ‘rough’ regularity theorem near the radial sets.
Lemma 17.7. Let H be as in (11.11) and let A > 0. Suppose that
(17.34) WFasemt(u) C RS,  WFgea(u) C TH(AV?),
and (H—-A)u € C°(X). Thenu € H™(X) for allm € R andl < —1/2. The same
result holds with R} and TF (A\Y/?) replaced by Ry and Tz (—A'/?) respectively.

Proof. The proof proceeds similarly to that of Lemma 17.2. Thus, we assume that
u € H™(X), l < —1, and we proceed to show it when [ is replaced by ! + 1/2. Let
€ € (0,A1/2/3), x € C*(R) supported in (A}/2 — 2¢, 00), identically 1 in (X — €, 00),
x' > 0. Also let ¥ € C®(X) be supported in a product neighborhood of 8.X,
identically 1 near X . We define

(17.35) g=z"""x(r)¢o 2 0.
Now, however, near **T3x X we have
(17.36) “Hyq = =2(r(l + Dx(7) + hx'(1)z~"",

so the two terms have opposite signs. However, x'(7) is supported in 7 € (A/2 —
2¢,\1/2 — ¢], i.e. in the region where u does not have wave front set by (17.34). We
have

(17.37) e H gl i _gae 2 f7 = =20+ D)XV ~¢).

On the set {r > A\1/2 — 3/4¢}, x' vanishes, so we have z*+1q < C;f*, d(z'*1¢q) =0
in this region. In addition, for » > 0

(17.38) H,(1+r/z)"! = 2r2r(z +71)72

is positive on supp g. Correspondingly, using the arguments of Lemma 17.2 follow-
ing (17.20) we see that with Q, = qL(q)(1 +r/z)"'¢(H), ¢ € C°(R)

(17.39) -i[Q*Q,, H|=B?+E, + F,

where now B, € lII:;?’—lH/ %(X) for r > 0, bounded in \Il;s‘;z’—'_l/ *(X), E, €
;9241 (X)) has WF5, in 7 < A — 3/4¢ and is bounded in U3 ~2*1(X), and

3sc

F, € 935272 (X) uniformly. Thus, we conclude that for r > 0

3scc
(17.40) IBrull? < [{u, (Br + Fr)u)| + 2/(u, Q7 Qr(H — Nu)|-
Now the right hand side is bounded as r — 0 as we have noted, so we have proved
this lemma. O

We now prove that the conclusion of Theorem 17.6 also holds if (H — A)u =0
and one of the radial sets is missing from the wave front set of . This only requires
a simple additional commutator estimate which is very similar to Isozaki’s proof in
[16, Lemma 4.5].

Proposition 17.8. Suppose that H satisfies (11.11), A > 0. Suppose also that
u € C~®(X),

(17.41) WFy (W) NRy =0,  WFolo(u) Ty (=A%) =0

8sc,mf
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for somem € R and !l > —1/2, and (H — A\)u = 0. Then u = 0. The same result
holds with Ry and T (—A/?) replaced by R and Tgf (A1/2) respectively.

Proof. By Lemma 17.2 and 17.3 we see at once that

(17.42) WF3semt(u) C RY,  WFasa(u) C T (A/2).

By Lemma 17.7, u € H™ ¥ (X) for any m' € R, I' < —1/2. Now let I € (~1/2,0),
and let ¢ € C*°(R) be 0 on (—00,1], 1 on [2,00). For 7 > 0 let

(17.43) xr(x) = r~ 21 /0 o #%(s)s72 2 ds.

Thus, xr € C°(int(X)) and

(17.44) 20, x-(x) = 272 (z /7).

Now, by [19, Equation 3.7]

(17.45) A = (22D,)? +i(N — 1)z®D, + z® Ay + 2 Diff2 (X),
SO

(17.46) —i[xr(z), H] = 22~ 2 ¢?(z/r)(2®D,) + F!

where F! is bounded in ¥3:-21(X). Let 4 € C2°(R) supported close to A, iden-

3scc
tically 1 near A. Let p € C*°(R) be 0 on (—oc0,A1/2/3), 1 on (2A1/2/3,00), and let
b= p(7), B = qu(b)y(H), E = qr(1 — p?(7))¢(H). Thus, we see that

(17.47) —ilx-(2)¢(H), H] = 227" ¢(¢/r)(B* + E)¢(z/r)z~" + F;
with B € 1;2°%X), E € ¥;,2°(X), WF, (E) disjoint from R} and Ty, F,

3sc 3sc

bounded in U522~ 2#*1(X). Now, for r > 0 we have

(17.48) (u, [xr(z), Hlu) = 2iIm(u, x,(z)(H — X)u) = 0.
Hence,
(17.49) e ¢(z/r)Bull® < [(z~'¢(z/r)u, Bz~ ¢(z/r)u)| + |(u, Fru)|.

Taking into account (17.42) and u € H™# (X) for all I’ < —1/2 we see that the
right hand side stays bounded as r — 0, so we conclude that z7!Bu € L% (X), so
by (17.42) we have u € HX*(X). Since I € (—1/2,0), we can apply Theorem 17.6

to conclude that u € C*°(X). Note that x,(z) is not bounded in \1:;';;’” (X) for any
m' and I', so the place where we really used the assumption (H — A)u = 0 was to
eliminate the term on the right hand side of (17.48) from the right hand side of

(17.49). O

We only state the improved version of this proposition; the preceding lemmas
can be strenghtened similarly.

Corollary 17.9. Suppose that H is as in (11.11), X > 0 and either one of (15.1)
and (15.2) holds. Suppose also that u € C~°(X),

(17.50)  WFg. (w)NRy =0, WFp.au)NRE™ N(Z(A) UZy(A) =0

3sc,mf

for some m € R andl > —1/2, and (H — A)u = 0. Then u = 0. The same result
holds with R, and R~ replaced by Rj and R* respectively.
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Proof. We only have to prove that the second assumption of (17.50) implies the
second assumption of (17.41). Since WFsec & is closed, R~ N (£(A) U Xp(A)) has
a neighborhood in W+ which is disjoint from WF3SC g(u). But all integral curves
of the vector field W in £; UX, go to R~ N (Et(/\) U Zb(/\)) as t — 00, so by
Propositions 15.2 and 16.1 they are disjoint from WF356 g(u). Hence, (17.41) is
satisfied and we can apply Proposition 17.8. O

18. THE RESOLVENT

_ In this section we examine the behavior of the resolvent applied to elements of
C°°(X) as the spectral parameter approaches the real axis. First we prove a simple
global result on the wave front set of u = (H — (A%i0))7!f, f € C*(X), assuming
that

(18.1) (H — (A £it))71f € L®((0,1);C~2(X)).

It is completely analogous to the theorem proved by Gérard, Isozaki and Skibsted
in [9], and it is really just a version of the results of the previous section. Note that
if one uses the Mourre estimate and the corresponding argument to estimate the
resolvent, [25], (18.1) is automatically satisfied. However, we do not need this; we
prove the limiting absorption principle here similarly to Hérmander’s proof in [14,
Theorem 30.2.10]. For A € C\ R we let

(18.2) R(\) = (H - M) e 9;2%(X).

3sc

Lemma 18.1. Suppose that H satisfies (11.11) and A > 0. Let f € C®°(X) and
Uy = R()\ +it)f, and assume that (18.1) holds. Then there exist C > 0 and

B e \Ilgsc(X) such that Bug, Bg are invertible for £7 > X, 035c,0(B) is invertible
everywhere, and Bu; is bounded in C*®(X).

Proof. This is just a variation of the proof of Lemma 17.2. For the sake of definite-
ness we consider u; = R(A—it)f, t € (0,1). Let ¢ be as in (17.12), so (17.25) holds
with » =0, i.e.

(18.3) —i[Q3Qo, H] > 5~ /2 B2~/ 4+ % + Fy

where B € ¥%-!(X) is self-adjoint, Fy € ¥372(X), Eo € U372 (X) is self-

adjoint, Qo € U327+ 1(X).
Now, for t > 0, u; € C*®(X), so

(184) (ut, [QSQ(), H]Ut) =2 Im(ut, QSQ()(H - ()\ - it))ut) - th”Qout”2
Hence,
(18.5)  [|Busl® < 2| Im(us, QQo(H — (A — it))ur)| + |{u, Fou)| — 2t[|Qout|*.

As 2t||Qous||? is nonnegative, it can be dropped. The right hand side remains
bounded as ¢t — 0, proving the proposition. O

We can also analyze the singularities of R(\ £1i0) at the opposite radial regions,
i.e. where =1 > X. Of course, we expect that wave front set appears there, and
correspondingly we prove a ‘rougher’ regularity result.
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Lemma 18.2. Suppose that H satisfies (11.11) and X\ > 0. Let f € C>°(X) and
us = R(ALit)f and suppose that (18.1) holds. Givenl < —1/2, m € R, there exist
C>0and Be \Ilg’soc(X) such that B¢, By are invertible for F1 > X, 035c,0(B) 1s

invertible everywhere, and Buy is bounded in H™!(X).

Proof. We again consider us = R(\ — it)f. The proof is very similar to that of
Lemma 17.7. Thus, we let € € (0,A1/2/3), x € C®(R) supported in (A\}/2 — 2¢, 00),
identically 1 in (A —€,00), X’ > 0. We define ¢ as in Lemma 17.7 as well, so with
o € C*(X) supported near 90X, identically 1 in a smaller neighborhood of X,

(18.6) g=2""""2x(7)yo 2 0.
Just as in the parameterless case, near T3, X, we have
(187) **Hyq = =2(r(l +1/2)x(r) + hy' ()=,

so the two terms have opposite signs. Again, x'(7) is supported in 7 € (A/2 —
2¢,A!/2 — ¢]. By the previous lemma and the propagation results, which can be
modified similarly to include the parameter ¢, we know that Pu; is bounded in
C®(X) if WF}..(P) does not meet 7 > A1/2 — ¢/2, so the second term in (18.7) is
automatically bounded in C*(X) as t — 0. We have

(18.8) g2 H gl ssingyae > fF = =21+ DAV~ ).

On the set {7 > A\!/2—3/4¢}, x' vanishes, so we have z!t1/2¢ < €, f°, d(z!+1/2¢) = 0
in this region. Correspondingly, using the arguments of Lemma 17.2 following
(17.20) we see that with Qo = qr(q)¢(H), ¢ € CZ(R)

(18.9) -i[QQo, H) = By + Eo + Fy
where now By € ¥;°°71(X), Ep € 527 (X) has WFh, in 7 < X — 3/4e, and

3sc 3sc

Fp € 932272+ (X). Thus, we conclude that for ¢ > 0

3sc

(18.10)
|Bue||” < |(us, (Eo + Fo)ug)| + 2/{ue, Q5Qo(H — (A — it))ug)| — 2t|| Qoue |-

Now the right hand side is bounded as ¢ — 0 as we have noted (the last term can
be dropped again), so we have proved this lemma. O

We can now state the weak form of the limiting absorption principle, namely
that R(A%1it), t > 0, has a limit as ¢ — 0. We again state this in the general case,
but just as in Corollary 17.9 we can replace T3 (£A/2) by RN (Z;(A) UZ4())) in
(18.11) if either (15.1) or (15.2) is satisfied.

Theorem 18.3. Suppose that H satisfies (11.11), A > 0. Let f € C°(X), uf =
R(AFit), t > 0. Then uff has a limit uy = R\ F40)f in H™(X), 1 < —1/2, as
t = 0. In addition,

(18.11) WF g5cme(us) C RY, WF e, (us) C TiE(£A/2).

Proof. We consider u; = R(A—it) f only and we follow the proof of [19, Proposition

14]. So suppose that § > 0, and u; is not bounded in Hsoc’_l/%&(X) ast — 0. Hence
we can take a sequence t;, j € N, t; — 0, such that |lug,|| ;o-1/2-5 ,, = c0. Now
consider the sequence

(18.12) v =

(X)

’U,tj

||utj ]IH;)C,—1/2-5(X) .
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Thus, v; is bounded in ch’_l/z_a(X). Taking some m < 0,1 < -1/2 — 4, we

can pick a subsequence v; of v; which converges in H™!(X), since the inclusion of
01/ 2-5()( ) to H™!(X) is compact; we let v be the limit. Note that (H — Av; —

0 in distributions, so (H — A)v = 0. We know by the previous lemmas (together

with the propagation theorems) that Bvj is bounded in C*°(X) if WF3,.(B) is in

T < A2 —¢. Consequently, v satisfies the assumptions of Proposition 17.8, i.e.

v = 0. This, however, contradicts v, — v, ||v}]0,-1/2-5 = 1. Thus, u; is
J N H (X) ’

bounded in HY~1/?~? (X) for any > 0 as t — 0. Again, we can take a convergent
subsequence in H™!(X), m <0, ! < —1/2, and argue as above that the difference
of the limit of two such convergent subsequences must vanish. This argument also
proves (18.11). O

Remark 18.4. A slight modification of Lemmas 18.1 and 18.2 which allows f to
depend on t as long as it stays bounded in H%*(X), s > 1/2, can be used as in
Hoérmander’s proof of [14, Theorem 30.2.10] to prove that R(\ +0) is a bounded

operator from HYY**¢(X) to H: */27¢(X) for any € > 0.
As a corollary of this theorem we note that R(A=+:0)v also exists for distributions

v which satisfy a wave front set condition. Again, if either (15.1) or (15.2) holds
then T (£A1/2) can be replaced by RE N (Z4(A) U Z5(N)).

Corollary 18.5. Suppose that H satisfies. (11.11), A > 0. Suppose also that v €
C~(X), and let uf = R(AFit)v, t > 0. If in addition v satisfies

(18.13) WFgemt(W) NRF =0,  WFgeeqa(v) NTF(FAY2) =0,
then uz has a limit ux = R(\ Fi0)v in C~°(X), ast = 0. In addition,
(18.14) WFsseme(ux) NRF =0,  WFgpea(us) NTF(FAV2) = 0.

Furthermore, uy are the unique elements of C°(X) satisfying (H — Nux = v and
(18.14).

Proof. For t > 0 we have R(A £ it)t = R(X Fit), T denoting transpose, so for
fec=(X)
(18.15) v(R(A £ it)f) = (R(\ £ it)v)(f).

Since under our assumptions the left hand side converges as t — 0 due to (18.11), so
we can define the limit R(A+i0)v in C~°°(X) using this equation. Here we need to
know the continuity implied by Remark 18.4. Once we know the existence of such
a limit, we can use a slightly stronger version of the uniform propagation estimates
(in so far as only microlocal assumptions on v are used) to conclude (18.14). Finally,
the uniqueness follows from taking the difference of two such distributions and using
Proposition 17.8. 0O

We can also discuss the asymptotic expansion of R(A £0)f, f € C*°(X) away
from C. This result was obtained in [31] in the case of Euclidian scattering covering
the same class of potentials as in this thesis, and it used the paper [9] of Gérard,
Isozaki and Skibsted to show that

(18.16) WFee(R(A Fi0)f) N*Tx\cX C RS,

after which a local version of Melrose’s original argument [19, Proposition 12] im-
plied the existence of the asymptotic expansions. Since the necessary fact from [9]
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has been proved above in Theorem 18.3, the proof from [31] applies verbatim. For
the statement of the result it is convenient to renormalize the resolvent. Thus, we
let

(18.17) R(£)) = R(A2Fi0), X>0.

To deal with the case of long-range interactions we make two definitions. If V €
pmfC>([X; C]), then we can can write V =zV', V' € C®°(X \ C). We let

(18.18) ar = (2N W'lex\c €C®(BX\C), AeR\{0}.
We also introduce an index set
(18.19) K={(m,p): m,peN, p<2m}.

For a description of the space .A]’fhg(X \ C) of polyhomogeneous conormal distribu-

tions to the boundary, 0X \ C, see [18]. Essentially, u € Ashg(X \ C) means that
u has a full asymptotic expansion in ™ (logz)?, p < 2m, m — oo, with smooth

coefficients on 8X \ C. We hence conclude:

Theorem 18.6. Suppose that f € C®(X), H as in (11.11), A € R\ {0}. Then
u = R(A)f has a full asymptotic expansion away from C as follows. IfV €
p2:C®([X;C)) (short-range interaction) then

(18.20) eM2g=(N=1/2y ¢ ¢(X \ C).
If V € pmeC>([X; C]) (long-range interaction) then
(18.21) eMegion—(N-1/2y ¢ gL (X \ O).

19. THE SCATTERING MATRIX

We can define the free-to-free part of the scattering matrix geometrically us-
ing the asymptotic expansion of Theorem 18.6 exactly in the same way as it was
discussed in [31, Theorem 4.1]. The proof of that theorem involves the resolvent
estimates of Gérard, Isozaki and Skibsted [9], Isozaki’s uniqueness theorem [16,
Theorem 1.2], and the construction of generalized eigenfunctions with arbitrary
expansion, supported away from C, at one of the radial surfaces, which is again
Melrose’s construction [19, Proposition 12]. Since these have been proved in our
context, in particular the uniqueness theorem is just Proposition 17.8, [31, Theorem
4.1] is also valid in this more general context. Namely, we have the following:

Theorem 19.1. Suppose that H is as in (11.11), A € R\ {0}, and let a) and K
be as in (18.18) and (18.19). Suppose also that either (15.1) or (15.2) holds. Then
Jor ap € C(0X \ C) there ezists a unique u € C~°(X) such that

(19.1) (H-X)u=0, u=uy+u_,

(192)  v_=e Mg VD2 e AR (X),  v_|ox = ao,

(19.3)
WF ggc,mf(ut) N R = 0, WFgecar(uy) N R™5E22 O (,(A2) U Bp(A2)) = 0.
Moreover, there exists f € C®(X) such that uy = FR(x\)f. In particular, u . has

an asymptotic expansion as in Theorem 18.6. If V € p2.C®([X;C]), then ay =0
and A%, (X) can be replaced by C>(X).
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Remark 19.2. If neither (15.1) nor (15.2) holds, then this theorem is still true if we
replace R~%8"2 N (£,(\?) U £5(A%)) by Ty “"*(~)). This can be proved by the
very same argument.

We can now define the free-to-free (three-cluster to three-cluster) scattering ma-
trix as the operator relating the leading terms of ux on 9X \ C.

Definition 19.3. With the notation of Theorem 19.1, the free-to-free scattering
matrix S(A), A € R\ {0}, is defined as

(19.4) S(N) : C(BX \ C) = C®@OX \ C),

(19.5) S(Nao =vilox\c,  vg = Mgl V=072
We also define the Poisson operator:

Definition 19.4. With the notation of Theorem 19.1, A € R\ {0}, the Poisson
operator corresponding to free incoming data is the map

(19.6) P(A) :CX(0OX\C) =» C*(X), P(A\)ao = u.
Thus, the Poisson operator associates to incoming data the unique generalized
eigenfunction of H with eigenvalue A? which has this ‘A-incoming part’, and the

scattering matrix maps the incoming data to the outgoing data. The Poisson op-
erators P(\) and P(—A) are closely related.

Lemma 19.5. If ap € C*(8X \ C) then P(—A)ag = P(A)ao.

Proof. We can assume that A > 0. Let u = P(—=A)ag. Thus, (H — A?)u = 0,
u=uy +u_,

(19.7) WF3seme(us) NRY, =0,  WFaeg(us) NRY N (T(A%) UT(A?)) =0,
and u_ has an asymptotic expansion

(19.8) v_ = eMTgian—(N-1)/2y ¢ Afhg(X), v_|ax = Go-

Now, taking the complex conjugate of u gives another generalized eigenfunction of
H: (H - )\?)@ = 0. Moreover, i = Uy +%—. Since eif/z = e~//% if f is real valued,
we see that

(19.9) WFseemt(@) "Ry, =0,  WFaseg(@3) NR™ N (Z:(A?) UZ5(A?)) = 0.

Moreover, the asymptotic expansion of _ becomes

(19.10) 7= = e"MagTion-N=D/2g- ¢ AK (X),  ©T]ax = ao.
By Theorem 19.1, the unique generalized eigenfunction of H with these properties
is P(\)ag, so P(A)ap = P(—\)ag, completing the proof of the lemma. |

In the case of two-body type scattering on X (i.e. V € zC*°(X)) the Poisson
operator Py()\) has been analyzed in detail by Melrose and Zworski in [22], and
they used it to conclude that the scattering matrix is a Fourier integral operator
associated to the geodesic flow on X at distance w. In this thesis we have only
proved simpler wave front set propagation estimates, so we cannot expect that
we can draw such strong conclusions. Nevertheless, we are able to analyze the
wave front set of the scattering matrix. First, however, we recall how the Poisson
operator is constructed in [22].
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Thus, one constructs ‘plane waves’ starting at § = §' € dX, and does so uni-
formly in §'. For this note that X x 8X is a manifold with boundary and we write
the product coordinates on it as (z, 7, 7’). We can also use the product coordinates
on *°T*X near 0X x 0X, namely they are just (z,7,¥’, 7, fi, i'). The construction
microlocally near the initial point § = §', i.e. near (z,%',%',—\,0,/') € R;zs'g“,
is rather explicit. It is based on solving the eikonal equation and then the corre-
sponding transport equations near § = 4’. The simplicity is due to the fact that
we are just dealing with a smooth Legendre submanifold of 5¢T*(X x 8X) which
has a simple parametrization. To proceed with the construction farther from ',
Melrose and Zworski discuss Legendrian distibutions, and they use Legendre dis-
tributions associated to a pair of Legendre submanifolds with conic points to finish
the construction near the outgoing radial surface, Rf\'-f,‘“)‘.

It would be harder to carry out the same program in our setting, though in
the case of V' vanishing to infinite order at mf this has been done by Hassell in
[10]. Instead, we can use the initial part of the Melrose-Zworski construction to
start plane waves at § = §' € X \ C, but we cut them off away from R;zsig"'\
but before they hit 5T X. This construction is described in Appendix A with the
slight modification that we allow long-range potentials (V' simply vanishing at mf).
It is convenient to take A > 0 in what follows; in general we just need to switch
some signs.

Since in Appendix A we describe the global two-body type construction, we now
indicate the modifications necessary to accommodate three-body scattering. So we
fix a compact set K C 0X \C, and use the plane waves constructed in the Appendix
for initial points near K, cut off before they hit **TgX. Thus, let V € zC*(X)
be such that V = V in a neighborhood of K in X. Let Po()) : C;®(K) —
C~°(X), with kernel K* € C~°(X x 8X;75), be the operator constructed in the
Appendix for A + V instead of H. Recall that ~!, is the relation given by broken
bicharacteristics between points in X5 _j2 and $*8X, defined in Definition 11.7.
Thus, by Proposition A.1, and the remarks preceeding it about the cutoff ¥ having

support close to X x X, we have for u € C;*°(K)
(19.11) WFs(Po(A)u) C{(7,—A,0): § € suppu}
' U{a€Za_x \*TeX : 3¢ € WF(u), @~ ¢},

and correspondingly
(1912) WFee((A + V = A2)Py(A)u)
C{a€Xa_x\ (R U*TEX): 3¢ € WF(u), a ~ (}.
Moreover, if u € C2°(K) then
(19.13) v=e Megmiean-IN=D2p,(\yu € AK (X)),  vlox =u.

Now, as V —V € C®([X; C)), with WF}, (V —V)N*T% X = 0, (19.11) and (19.12)
show that for u € C7*°(K)

(19.14)

WFs((H — A)Po(A)u) C {a € Ba_xz \ (R UTEX) : 3¢ € WF(u), o~ (}.

We can thus apply the outgoing resolvent, 2()), to the error, (H — A2) Py(A)u; this
is justified by Corollary 18.5.
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Thus, for u € C°(0X \ C), suppu C K, consider Py(A)u. We define

(19.15) v =Po(A)u — RO)(H — N2)Po(\)u.
Note first that by (19.14)
(19.16) (H = A2)Py(\)u € C°(X).

Hence, the right hand side of (19.15) makes sense, and (H — A\2)v =0,

(19.17)  WF3s(R(\)(H — A1) Py(\)u) N (R, U (R~ N (Sp(A%) U Z,(A%)))) = 0.
Therefore, we conclude that P(A)u — v is a generalized eigenfunction of H with no
incoming wave front set, so by Corollary 17.9 it vanishes, i.e.

(19.18) P(Nu = Po(\)u — RO\ (H — A2)Po(\)u.

Since we have analyzed the propagation of singularities in terms of wave front
sets, we can at once deduce the wave front relation of the Poisson operator.

Proposition 19.6. Suppose that H satisfies (11.11), A € R\ {0}. Assume in
addition that either (15.1) or (15.2) holds. Then the Poisson operator extends to a
continuous linear map

(19.19) P(A):C;®(0X \C) = C™(X).
In addition, for u e C;*°(0X \C), A> 0,
(19.20)

WFg5c(P(Au) C{(5,—),0) : § € suppu} U R, U (R* N (Zp(X%) U Z(A%)))
U{a €Za_x2: I € WF(u), a~4 (}
U{¢ € Sa(H —X°): 3¢ € WF(u), £ ~4 C}-
If A < 0 this still holds with R}, and Ry, Rt and R~, ~, and ~_ interchanged.

Proof. If u € C;*°(0X \ C), then Po(MNu is still defined, and it satisfies (19.11)

and (19.14). Hence, R(A\)(H — A2)Py(\)u is defined by Corollary 18.5, and the

right-hand side of (19.18) extends by continuity from C°(0X \ C) to define P(A)u.
Since WF3sc(Po(A)u) satisfies the statement of the proposition by (19.11), it

suffices to consider v = R(A)(H — A2)Py(A)u. Thus, with f = (H — A?)v,

(19.21) f=(H-32)B\uy,

50 WFs.(f) is estimated by (19.14). We can thus apply our propagation results,

namely Propositions 14.1, 15.3 and 16.1, see also Corollary 14.2 and Proposi-
tion 15.4, to deduce bounds for WF3,.(v) which prove the proposition. O

Remark 19.7. If C is totally geodesic but neither (15.1) nor (15.2) hold necessarily,
then for u € C7*°(0X \ C) we still have

WF3sc(P(M)u) N*Tgx\cX C{(§;—A,0) : § € suppu} U R},

U {a € EA_,\z . 3( € WF(’U), a ~y C},
since then the broken bicharacteristics through a € £a_ 2 n“Tgx\CX can only hit
¢T&X normally, so Corollary 14.2 suffices to prove (19.22). We also note that if the
assumptions (15.1) and (15.2) are removed, then in (19.17), R~ N(Z5(A2) UZ;(A2))
must be replaced by Tz (—A) just as in Theorem 19.1; see the remark following the
statement of the Theorem.

(19.22)
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We can also analyze the wave front set of the scattering matrix. For this purpose
consider the usual boundary pairing. Its statement is slightly complicated, since
now we do not have such simple asymptotic expansions globally as in two-body (i.e.
V € 2C*(X)) case.

Lemma 19.8. Suppose that ul9) € C~>(X), j = 1,2,
(19.23) u = o 409 O = (H - N, € 6~(X),

uf) = RO, u = R(=2)g®, g9 € (=(X), j = 1,2, and

(1924) Ui?) — e:l:i)\/zz:l:ia,\—(N—l)/2uEg)
satisfy

(19.25) v e A8, (X), vPlox € 20X\ ),
(19.26) v € A5, (X), vP)ox € C(0X \ C).

Then with w(j) = v(])|3x\c,
(19.27) —22/\/ WP w® — V@) dh = /(U“)?@—)—f“)m)dg-
b's

Proof. Since w'™™ and w( ) (and hence both terms on the left hand side of (19.27))
are supported away from C, the two-body proof [19, Proposition 13] applies. O

Corollary 19.9. Let ag,aj € C°(0X \ C) be supported in K C 0X \ C compact.
Then

(19.28) /S(/\)a()%dh=/ ao S(—N)a}, dh.
K

Proof. Takeu™™ = P(\)ag, u(® = P(—\)a)) and apply Lemma 19.8. The right hand
side of (19.27) vanishes and w? = ag, wf,_l) = S(Nay, w+) = agy, w 2~ S(=N)ayp,

so (19.28) follows. a

For the sake of definiteness we assume that A > 0 in the following argument.
Changing the sign of A will only change some signs. Let ¢ € C°(R; [0, 1]), identi-
cally 1 near A2, and let Q € ¥;°°°(X) satisfy

(19.29) WF3(Y(H) — Q) N (R U(R™ N (T(A) UBy(NY)) =

(19.30) WF3,.(Q) N (R U (R N (Z:(X%) U, (A%)))) = 0.

For example, we can take Q' corresponding to the symbol ¢(7), ¢ € C*(R), ¢ = 1
near (—o0,—A\], ¢ = 0 near [\, 00), and then let Q = (H)Q'. Now given ag,a} €
C(OX\ C), let u = QP(N)ao. Note that

(19.31) WF3s.(P(M)ao) C R URL U((R™URT)N(Z:(A%) U Z,(A2))).
Thus, with f = (H — A?)u, we have f € C°(X). In fact, f = [H, Q]P()\)ao, and
(1932) WFg}sc([H Q]) C WF3SC (Q) n WF3SC( (H) - Q)a
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hence WF3..([H, Q]) N WF3sc(P(A)ao) = 0, so by Lemma 9.8 we deduce that f €
C>®(X). Lemma 19.8 implies then that for ag,af € C°(0X \ C) we have

(19.33) 2iA / aoS(—Naj dh = — / (H - A)QP(N)aoP(—\)d} dg.
X X

Therefore, by Corollary 19.9

(19.34) 2iA / S(Nag alydh = — / (H = XH)QP(N)aoP(-N)aj, dg,
ax X

SO

(19.35) SO = ;—AP(—/\)*(H ~ A3)QP(\).

We choose @ so that on WF5, .(Q) N WF5, (Y¥(H) — Q), 7 € (=X + €, — X + 2¢),
€ > 0 small. Fix ap € C7*°(0X \ C). Now, by Proposition 19.6,

(19.36)
WF3SC(P(A)GO) n WFésc([Ha Q]) c {a € ZA—)\z : HC € WF(G'O)a Qa ~y C}

U{€ € Sa(H - A2) : 3¢ € WF(ao), € ~+ C}.
Since € > 0 is small, we have m — s small in the parametrization of the bicharac-
teristic through « in the set on the right hand side of (19.36) due to (11.38), so
the projection of WF3s(P(N)ao) N WF5. ([H,Q]) to 8X is close to sing supp ao,
and hence it is away from C. Correspondingly, the second term of (19.36) can be
dropped. This also shows that ~4 in (19.36) is actually given by the (unbroken)
bicharacteristics of g in £ _j2. Thus, by (a local version of) Lemma 9.8

WF3sc((H — M)QP(Nao) C {a € Ta_x2: 3¢ € WF(ao), @~ (}

(19.37) , ,
WF3sc (Q) n WFSSC("?Z)(H) - Q)

Now recall that the complex pairing
(19.38) (u,u)x = / uu' dg
X
extends by continuity from u,u’ € C®(X) to u,u’ € C~%°(X) satisfying WFsc(u) N

WFs(uw') = 0. To see this just let A € ¥°(X) with WF. (4) N WFyc(u) = 0,
WF. (Id —A*) N WF(u') = 0, and note that

(19.39) (u,u'yx = (Au,u')x + (u,Id —A*)u') x
extends as claimed. Since for a € C°(0X \ C),
(19.40) WF3s.(P(=))ap) C R URL U (R™ N (Z(A%) US(A?))),

WFc(P(=\)a}) is disjoint from WFsc((H—A?)QP())ag) (which is away from C), so
the pairing on the right hand side of (19.34) is certainly defined if af € C°(0X\C).
Note that (19.40) uses that either (15.1) or (15.2) holds. However, it is easy to see
that we can still draw the desired conclusion from the results of Section 18 using
T (— ) instead of R~ N (T5(A%) UX4(A?)); see Remark 19.2. This will also be true
for some similar equations in what follows.

We now show that the pairing on the right hand side of (19.34) extends by
continuity from aj € C°(0X \ C) to a5 € C;*°(0X \ C) with WF(ap) in a fixed
compact subset of $*(8X \ C) which is disjoint from the image of WF(ao) under the
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(generalized) broken geodesic flow at distance —x. As we saw above, the complex
pairing used in (19.34) is defined by continuity whenever

(19.41) WFsc((H — A)QP(Nao) N WFs(P(—A)ag) = 0.

Since the first term in the intersection has wave front set away from C, the part
of WF3s.(P(—A)ag) at (in fact, near) C' does not cause any problems. Now, by
Proposition 19.6 and the remark following it,

WFSC(P(_’\)aG) n scT;X\C){ n WF%SC(Q) n Wngc('w(H) - Q)
C{a€Xa_x2: 3¢ € WF(ag), a ~_ (}.
Using (19.37) we conclude that

(19.43)
WFsc((H — A2)QP(N)ao) N WFsc(P(—M)ag)
C{a€Zar:N*Tgx\cX : 3¢ € WF(ao), ¢' € WF(ap), a ~4 ¢, a~_('}.

(19.42)

Since there is a unique bicharacteristic of A through a € Xa_jz, we see that
if there are no { € WF(ao), (' € WF(ag) such that ¢’ is related to ¢ by the
(generalized) broken geodesic flow on S*8X at time —x then (19.41) holds. Thus,
under this assumption the left hand side of (19.34) is also defined by continuity
from C*(0X \ C). This shows that WF(S(A)ao) is given the broken geodesic flow
at distance —7. In fact, this statement simply means that taking A € ¥°(8X) with
WF'(A) disjoint from the image of WF(ao) under the broken geodesic flow at time
—m we need to show that AS(A)ag € C*°(0X \ C). For this it suffices to show that

(19.44) / AS(N)ao o dh = / S(\ao A7a dh
ax X

is defined for all ag € C7°°(8X \ C) by continuity from C®(8X \ C). But, due
to the assumption on WF'(A), this is exactly what we proved above. Hence, we
deduce our main theorem:

Theorem 19.10. Suppose that H is as in (11.11) and A € R\ {0}. Suppose
also that either C is totally geodesic, or (15.1), or (15.2) holds. Then the free-to-
free scattering matriz, S()), extends to a continuous linear map C;°(0X \ C) —
C~°(0X \ C). The wave front relation of S(\) is given by the (generalized) broken
geodesic flow at time —(sign A)w.

Remark 19.11. This can be proved using (19.35) and Wunsch’s push forward theo-
rem [33] as well. Namely, the kernel of P(—)) is given by Melrose’s and Zworski’s
plane wave construction near 7 = ) as discussed above, hence we can write down
the kernel P_) € C~°(0X x X) of P(—\)* explicitly as well. We take Q such
that on WF3,.(Q) N WF3, (¥(H) — Q), T € (A — 2¢, X — €), € > 0 small. Thus, the
application of P(—\)* to v = (H — A2)QP())ay, ap € C;°°(0X \ C), can be written
as a push forward:

(19.45) (SOa0)@) = 55 /X P_(@, v dg.

It is then completely straightforward to check that Wunsch’s push forward result
in the scattering calculus [33] proves Theorem 19.10.



96

APPENDIX A. CONSTRUCTION OF PLANE WAVES NEAR THE INITIAL POINT

This section is essentially taken from Sections 1 and 15 of Melrose’s and Zworski’s
paper [22] with the minor modification that we allow long-range potentials. We thus
construct the kernel of the Poisson operator for A+V -2V € 2®(X), on X x0X
microlocally near the incoming set

(A1)
d , sops
GH(=)) = graph{A=3} = {(1,¥/, =X, 0,0) : 4,y € X} C *Tyxox (X x X).

Note that X x 8X is also a manifold with boundary, hence with a natural scattering
structure. In particular, if z is a boundary defining function of X so that g is a
scattering metric on X, y are local coordinates on 0X near a point g, then near
the point p = (g,q) € 80X, x 80Xy C X x 0X we have coordinates (z,y,y').
Correspondingly, on Ty 5xX X 0X we obtain coordinates (y,y’, 7, i, p'). The
Legendre submanifold associated to the plane waves is

(A.2)
G(=N) ={(, 97, 1) : (y,) = exp((s — M) Hy,)(y', &), 7= Acoss,
p=Asins)a, i = —A(sins)i¥, s € (0,m)} C *Thxox X x OX;
see [22, Proposition 4]. Note that the incoming and outgoing sets are defined the
opposite way in [22]; we follow the notation of [19]. In particular, this is the reason
for some sign changes above.

Near G*(=)), G(—)\) is parametrized the function Aé(y,y’') where ¢(y,y’) =
cosd(y,y'), and d denotes the distance on X with respect to h|sx. Thus, if u is a
Legendre distribution of order m associated to G(—), i.e. u € ITH(X x90X,G(=N)),
and A € ¥2.(X x 8X), WF..(A) is near G*(—1), then Au has the form

(A.3)
Ay = (zﬂ.)—(2N—1)/4xm+(2N—1)/4ei/\¢(y,y’)/ma(m7y’ y/) + u,

a € C®(X x 8X), up € C®(X x 8X)

(see [22, Definition 2]).

We will need to consider slightly more general distributions, namely ones of
the form v = zi*(®) Ay, with Au as above, a € C®(0X). These are Legendre
distributions in the non-polyhomogeneous sense, and they can be thought of as
polyhomogeneous distributions with variable order. By the stationary phase lemma
we also have the pushforward result that for f € C*°(0X,),

(A-4) / W) Au(z,y,y') f(y) dh = /2N DU Q(y, f)
80X

where Q(u, f) is a polyhomogeneous distribution on X with index set as in (18.19),
ie.

(A.5) K = {(m,p): m,p€N, p<2m}.

In particular, there exists w € C®(dX) so that |Q(u, f) — w| < Cz(logz)? for
some constant C > 0. Define Q°,(u) : C®(0X) — C*(0X) by Q°,(u)f =
Q(u, f)|le=0o = w. The stationary phase lemma also gives that Q%,(u)f(y) =

q(y) f(y) where ¢ € C*(0X), i.e. Q°,(u) is just multiplication by a smooth func-
tion.
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The only modification that we need to make in Melrose’s and Zworski’s construc-
tion is that at the initial points, i.e. at G(=X) N G*(—\), an additional factor must
be introduced (which then ‘propagates’ along G(—A)). Thus, we seek a Legendre
distribution K’ satisfying

(A.6) WF((Ax + Vx — A2)K) NG H=N) =0,

(A7) Q% (K" =1d.

Here ‘Legendre distribution’ is understood in the sense discussed above, so K’ =
W) KY o € C*(8X) and K’ is Legendre in the sense of [22]. It is easy to specify
a = ay; it is the function in (18.18) that appears in the asymptotic expansion of
R(ENf, f € C®(X), ie. with V = zV', V' € C®(X), a = (2A\)™'V'|sx. We
construct K” as an asymptotic sum

(A8) K ~Y K; oWk e I[;BNV/AI(X x 9X,G(-N), QR).
Jj=0

Hence, microlocally near G*(\), Ko must satisfy

(A.9) (Ax + Vx — A) Ko € g W) [ZN-1/442(X » 5X G(=N), QR),
(A.10) 50(Q2\(Ko)) = oo(1d),
and for j > 1 we need
j—1
(Ax +Vx = M) +(Ax + Vx = A3 K))
(A.11) 1=0

€ W [-CN-1D/1+i+2(X ¥ X G(-N), MR).

The kernels K take the form of oscillatory functions

(A.12)
K = gi*io)eir @) /2 (1 y o )rhy, aj € C®(X x 0X), v € C®(8X, ),
(A.13) d(y,y") = cosd(y,y'),

d(y,y') still being the metric distance between y and y’ with respect to h|ox.
Regarding y' as a parameter and introducing Riemannian normal coordinates in y
centered at y' we obtain transport equations for a} = a;|z=o

(A.14)  (y-0y +J)aj + (=22(0)¢(y,0) + V'(y) + bj)a; = ¢; € C°(X x 0X)
near y = 0 with b; vanishing quadratically at y = 0 and ¢o = 0. Since
—22a(0)¢(y,0) + V'(y)

vanishes at y = 0, the transport equation for ag has a unique smooth solution with
ag(y,y) € C*(0X) specified, and the equations for a}, j > 1 have unique smooth
solutions. This is true for the same reasons as in Hadamard’s construction, see e.g.
[14, Lemma 17.4.1].

Hence, the K; exist microlocally near G*(—\), and if 9 is supported near the
diagonal in 0X x 0X C X x 0X, identically 1 in a smaller neighborhood of the
diagonal, then the K can be considered distributions on X x 8X. They can be
summed by Borel’s lemma, to obtain K* € C~°(X x dX;Qg) with the desired
properties. By choosing 1 to have sufficiently small support with sufficiently small
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support we can arrange that the projection of WFy. (K l’) to X x 0X is close to the
diagonal at the expense of making WFy.((Ax + Vx — A?)K?®) close to (but disjoint
from) G*(—)). Now recall that ~/, is the relation induced by the bicharacteristics
of g between points in ¥ o _j2 and points in S*0X; see Definition 11.7. We can
finally deduce the following result.

Proposition A.1. K* € C~°(X x 0X;QR), constructed above, is the kernel of
an operator Py()) : C*(0X) = C~°°(X), which extends to an operator Py()) :
C~*(0X) = C~*°(X), and for u € C~°(0X)

WFe(Po(Mu) C{(y,—A,0) : y € suppu}

(A.15) U{a € Sa_s: \ Ry : 3 € WF(u), a~, ¢},

WF:((A+V = A1) Py (M)

(A.16) _
C{a€Za_x2\Ry,: 3( € WF(u), a ~, (}.

Proof. Since K" is supported near the diagonal of X, x 8X,, we can work in
local coordinates. Thus, we may assume that u € C~°°(0X) is supported in a small
open set U C ]R;\f‘l , and we can replace X by Sf , 1.e. the radial compactification
of RV, which is [0,1); x )Y~ near 8V~ = 8S¥ (so (¢~*,y) are the standard polar
coordinates on RY). We take the partial Fourier transform of K® with respect to
(z,y), i.e. consider

K*’:/ e VTR (2, y,y') dx dy

(A.17) X

:/ ei(—E-y+z\¢(y,y’))/ra($,y’y')dz dy € C‘°°(]R§N X ]Rﬁf‘l);
X

a € £0W)C®(X x 8X;Qr) C S¢(X x 8X) for all € > 0. Here we are using the
compactified notation for symbol spaces, i.e. the non-trivial behavior of the symbols
is at £ = 0. It follows that K’ is a Lagrangian distribution associated to a conic
Lagrangian submanifold A of T*(RY x RV~1) with compact projection to the base,
since

(A.18) Yy z,y) = (=€ y+ 2y, y')/z

is a non-degenerate phase function (again, we are using a compactified notation).
Namely, A is given by

(A.19) C 3 (&4, 5,9) = (61, deth, dy) € A C T*(RY x 9X),
where C is the critical set
(A2O) C= {(Ea ylaxyy) : d(z,y)"»b({a y',ﬂ?,y) = 0}

It is convenient to think of S)'~! as the unit sphere in RY ; correspondingly we can
identify o € T;SN ~! with a covector in Ty RY using the standard metric on both
S¥-1 and RM. Then

(A.21) Oy(€-y)dy = (£ —(€-y)y) dy.
Hence, (A.20) becomes
(A22) C= {(6, y',x, y) : f Y= }‘¢(yy y,)7 5 - (6 . y)y = Aa’y(ﬁ(y) yl)}’



99

Moreover,

1 A
(A.23) dey)¥ =~y dE+ 0y d(y,y) dy',
SO

(A.24)
A= (€0 -4 20,0, : €-9=200), £~ (€ vy =28,0(u.1)).

Since

(A.25) ¢(y,y')* +10,8(y, 9" )} = 1

(this being the eikonal equation satisfied by ¢; here |0,é(y,y')|n is the metric
length of 8y ¢(y,y') dy with respect to h|sx), this proves that A indeed has compact
projection to RN x 8X. Moreover, as K'isa Lagrangian distribution associated
to A, WF(K?) c A. It is also easy to see that (1 — p)K* € SRV x 8X) if
p € CX(RN x 8X) is identically 1 in a neighborhood of the projection of A to the
base, so

(A.26) WF,(K®) = WF(R?) C A.

Now,

ROu= [ K@)
(A.27) Xy / b
= (27 -N i€y/z 2 Nuly' .

@™ [[ e[ R

We write ((£,3'), (£*,7)) for the canonical coordinates induced on T*(RN x 8X)
by the coordinates (£,y'). We also write (£,£*) for the coordinates on T*RYN
identify S*RVM as the set {(£,£*) : |€*] = 1}, and write £* = £*/|¢*|. Similarly,
if (y,m) € T*8X, we let ) = -ﬁ’h As usual, we regard the wave front set of a

distribution on, say, RV, both as a conic subset of T*RY \ 0 and as a subset of
S*RN.

The standard wave front set calculus [14, Theorem 8.2.13] allows us to estimate
the wave front set of

(A.28) v=[ B
Namely, we have
WF(v) c{(&€%) : 3y, (&y',€",0) € WF(K®), y' € suppu}

U{(£¢") : 3y, —n) € WF(u), (&',€",n) € WF(K)}.

In the first set on the right hand side we have 9,/ ¢(y,y') = 0 by (A.24), so (using
that ¢(y,y') = cosd(y,y')), y = y'. Then (A.24) also gives {&-y = A, and 9y(€-y) = 0,
so £ = Ay = Ay’. Moreover, by the same equation, £* = —y/z, i.e. f* = —y. Thus,
the first set on the right hand side of (A.29) is

(A.30) {0y, —y) € S*RY : y € suppu}.

(A.29)
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Equation (A.24) also shows that the second set on the right hand side of (A.29) is
{(51 _y) € S*RN : (y’ _ay’¢(y7 yl)) € WF(U), E Y= A¢(y7 yl):
£ (€-y)y =29,9(y,y')}-

Now, WFs(Pp(A)u) and WF (v) = WFs.(FPo(A)u) are related by the Legendre
diffeomorphism [22, Lemma 5 and Proposition 8]. This is the map L~! : S*RY —
S°T§‘~_18f which in coordinates (y,7, p) on **Tgy_,S¥ is given by

(A.31)

(A'32) L_l(fa é*) = ("'é*’£ : é*’é. - (ﬁ : é*)é*)
Hence, the set in (A.30) corresponds to
(A.33) {(y,—A,0): y € suppu},

while the set in (A.31) corresponds to
{w,r, ) : 3('n") € WF(u), 7=—Acosd(y,y'), n=A0,8(y,y"),

n' =—8y¢(y,y')}.
Now, by (A.25) we have 72 + |u|2 = A? in (A.34). Since ¢(y,y’) = cosd(y,y’), so
(A.35) dy ¢ = —(sind(y,y"))0y d(y,y') dy’,

we see that p = —A3,¢(y,¥’), " = —0y¢(y,y’) mean that (y,p/|p|) lies on the
‘backward’ geodesic starting at (y',7%'). Thus, we conclude that (A.34) can be
written as
(A.36)

{,mw): 3@,7) € WF(u) C §*8X, 7= —Acosd(y,y"), 7° + |ulj = X*

exp(—d(y,y")H1,) (', 7') = (y, /1u)}-
This proves (A.15). In view of (A.6) the proof of (A.16) is similar. O

(A.34)

APPENDIX B. ABSENCE OF POSITIVE EIGENVALUES

This section follows the paper [7] of Froese and Herbst, and we only emphasize
the modifications necessary to accommodate the more general setting. The main
point is that we have to estimate the error terms introduced by the general geometry
carefully. On the other hand, we do not have any of the complications arising due
to the lack of smoothness of the potential. In the proof of super-exponential decay
of eigenfunctions with positive energy, the analogue of [7, Theorem 2.1], the error
terms arising from the general geometry are similar to those in the Euclidian setting,
so the proof of Froese and Herbst requires only minor modifications. On the other
hand, they use the exact form of the metric very strongly in their proof of the unique
continuation theorem at infinity [7, Theorem 3.1], so there will be many error terms
in our case which we have to control and which do not arise in Euclidian scattering.

Fix a boundary defining function z on X such that ¢ = z=*dz? + z~2h is a
scattering metric, and choose a product decomposition of a neighborhood Up of 0.X:
Uo = [0,€0)z X 8X,. It is convenient to eliminate cross terms dz ® dy by adjusting
the product decomposition. This is not necessary for the first proposition (super-
exponential decay), but it will be important in the proof of unique continuation at
0X.

First note that the coefficients of the dual metric

(B1) g =9¢00,®%+) ¢%8.:08,+ 9°0,88:+) 970, ®0,
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satisfy

(B.2) g% = z*(1 + O(z?)), g% = O(z?), ¢" = z?(h'7 + O(x))
where A is the pull back of h to 8X (see [19, Lemma 3]). Thus,
(B.3) g7 (dz) =2 (0pde + »_ @iB,;),  ab=1+0(z?)
so in a neighborhood of X

(B.4) W = (o) 'z7g 7 (de) = 8. + Y 00,

is a smooth vector field on a neighborhood of 8X which is transversal to the hy-
persurfaces = const in a smaller neighborhood of 8X. Let 4(t,y) be the integral
curve of W satisfying v(0,y) = (0,y) € 8X; so z(y(t,y)) = t. If p = v(t,y), let
y'(p) =y, t(p) =t = z(p). This introduces a product decomposition of a neigh-
borhood U of X with U = [0,€),; x 0X,,. Moreover, by our definition of v, &,
and T'{z = const} are orthogonal with respect to g, so the coefficients of the cross
terms dzr ® dy;- in g vanish with respect to this product decomposition. Thus, we
can assume, as we will in what follows, that

g=az"*dz ® dr + 7 2h, a € C®(U), a=1+0(z?),
h e C®(U;T*0X ® T*0X), ho = hlax is a metric on 0X

(here we really mean the pull back of the cotensor bundle). The Laplacian of g
becomes

(B.6) A = (22D;)? +i(N = 1)z(2?D,) + z2A¢ + 23 P + 2%Q

where Ay is the Laplacian of hlpx, P € Diff>(8X) (lifted by the product decom-
position), Q € Diff:.(X), and N = dim X.

Let W be a vector field such that near 8X, W = zD,, and let A = LW +wW>).
It is easy to check that if ¢ € C°(R) is identically 1 near 0 and has sufficiently
small support then

(B.5)

(B.7) &(z)(A — (zD, + i%)) € zC*(X).

We next state the analog of Lemma, 2.2 of Froese and Herbst. We let S™([0,1),) be
the space of all symbols a of order m on [0, 1), which satisfy a € C*((0, 1)), vanish
on (1/2,1), and for which sup |z™+*8ka| < oo for all k. The topology of S™([0,1)) is
given by the seminorms sup [z™+*¥8%a|. Also, the space S™(X) of symbols is defined
similarly, i.e. it is given by seminorms sup |z™ Pa|, P € Difff(X). In the follow-
ing lemma Diffscc(X), as usual, stands for non-classical (non-polyhomogeneous)
scattering differential operators (i.e. scattering differential operators with non-
polyhomogeneous coefficients), corresponding to the lack of polyhomogeneity of
F. In particular, Diffo,.(X) = S%(X) (considered as multiplication operators).

Lemma B.1. Suppose that H is as in (11.11), A > 0, HyY = M, ¢ € L2 (X).
Suppose also that a > 0, and for all B we have z7P exp(a/z)y € L2,(X). Then
with F € S'([0,1)), F < a/z + B|logz| for some B, suppF C U, vr = eFyp,
H(F) = H + eF[H,e ] we have ¥r € C*(X),

(B.8) H(F)¢Yr = MF,

(B.9) H(F)=H —2a(z’D,F)(z*D,) + a(z’D,F)?> + Ri, R, € z8°(X),
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(B.10) (¥, HYr) = (¥F, (A — a(z> D F)*)yF).
If in addition 0. F <0 then
(B.11)

(W, i[A, Hlyr) = — 4||(az)'/?(~2?0, F) /2 Apr|* + (¥, (20 (z°0: F)?)¢F)
+ (¥F, RoYr) + (R3vr, AYr) + (AYr, Rytor),
R; € £8°(X), Rs,R, € z28°(X).

Here Ry, R3 and Ry are bounded by some seminorms of F, and R» is bounded by
a quadratic polynomial in some seminorms of F'.

Proof. Formally this is just an explicit computation, carefully taking into account
the error terms. It can be justified exactly as in the setting of the paper of Froese
and Herbst. Here we just note that

(B.12) [«2D,,ef] = (D, F)ef, 22D, F € 5°([0,1)),
so ef[H,eF] € Diffl,.(X) (V € C®([X;C]) commutes with e’'). Hence (B.8),

8ccC
which a priori holds in a distributional sense, and the ellipticity of oasc,2(H) show

that ¥ € C®(X). Moreover, we use
(B.13)

Mirl? = Gbr, H(F)pr) = Re(r, H(FYbr) = (br, (H + 5[e”, [H, e~ l)ps)
to prove (B.10), and
(B.14) 0= (¢, [H,e" Ae"|9) = (¥r, (e F[H,eF|A+ [H, Al + A[H, eFle~F)r)

to prove (B.11). The estimates of the error terms are facilitated by (B.12). In par-
ticular, the dependence of R; on seminorms of F arises by commuting ef through
z2D,. Each such commutation gives a factor bounded in S°([0,1)) by seminorms
of F, but it also eliminates the vectorfield, i.e. reduces the degree of the differential
operator by 1. Since H is second order, and the only non-tangential second order
part is a(z2D,)?, the previous formulas give the claimed bounds. O

Using this lemma and the Mourre estimate (Theorem 12.2) we can follow Froese
and Herbst very closely in the proof of the following result:

Proposition B.2. [Froese and Herbst, [7, Theorem 2.1]] Let H be as in (11.11),
A > 0, and suppose that 1 € L2,(X) satisfies Hyp = Mp. Then e*/®p € L2 (X) for
alla e R.

Proof. The proof is by contradiction. First note that 3 € ¢*(X) by Corollary 17.5.
Let
(B.15) a; = sup{a € [0,00) : exp(a/z)¥ € L% (X)},
and suppose that a; < co. If @3 = 0, then let a = 0, otherwise suppose that
a < oy, and a + v > a;. We show that for sufficiently small v (depending only
on o) exp((a + 7v)/z)y € L2,(X), which contradicts our assumption on ; if a is
close enough to a;. In what follows we assume that y € (0,1].

Note first that we certainly have for all 3 € R, exp(a/z)zPy € L2, (X), due to
our choice of a. We apply the previous lemma with

(B.16) F = $(z)(; +Blog(1+ 7))
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¢ € C°(R) identically 1 near 0, and let y5 = eF'y, U5 = ¢5/||vg||. Here F = F5 €
S%([0,1)), and Fj is uniformly bounded in S!([0,1)) for 8 € [1,00), & € [0,1),
v € (0,1].

Now, F is an increasing function of 8, and F(z) converges to ¢(z)(a +v)/z as
B — oo. Thus, by the monotone convergence theorem

(B.17) lall® = Il exp(g(z)(a + ) /)l = 0o

since @ + v > @;. On the other hand, for any compact subset B of int(X), e is
uniformly bounded, and so are its derivatives, so for any Q € Diff*(X)

B—ro0

In what follows, we write b;, j € N, for positive constants which are independent
of a, B and v. Now,

(B.19) —220,F = (a+~(1+ [%)—l)qs(x) +F <b, F eC®(mnt(X)).

Hence, by (B.8), (B.9) and the ellipticity of o3sc,2(H),
(B.20) 1Csll e (x) < b2k

for all k. Note that (B.18) and (B.20) prove that for any Q € Diff%, .. (X), Q¥p
converges weakly to 0.
Still following [7] we next show that

(B.21) lim ||(H — A — (220, F)*)¥g|| = 0.
B—roo
In fact, by (B.9) we have
(B.22)
limsup ||(H — X — (228, F)?)¥g|| = limsup ||(2((z?8,)F)z2 D, + iR, ) ¥yl
B—o0 B—00

Now, R; = zR!, R} € Diff...(X) with uniformly bounded coefficients. Thus, by
(B.20), ||} ¥sllL2 (x) < bs. Hence, for any § > 0

(B.23) IR Ts|1% < ||Ry gl 25, + 623

where B; = {p € X : z(p) > 6}. Since R; has uniformly bounded coefficients,
(B.18) proves that

(B.24) limsup [|(2((z28;)F)z® D, + iR1)¥g| = limsup ||(2((z?8, ) F)z* D, ¥4||.
B—ro0 B—o0

In fact, 22D, can be replaced by zA since the additional term also vanishes as

B — oco. An explicit calculation shows that

(B.25) 20, (2%0: F)* — 2y(a + 7) < baz,

so from (B.11)

(B.26) (¥p,i[A, H]¥p) < —4||(—2*8, F)' /2 AVl + 2v(a + ) + (¥5,2R5¥p)

with Rs uniformly bounded in Diff2,(X). In addition, [H, A] € DiffZ,.(X), so the
left hand side is bounded as 8 — oo. This proves that

(B.27) ll2*/?(—2?8, F)!/? AWpg|| < bs.
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Since |220,F| < bg, we conclude as above that
(B.28) lim ||(z%8,F)zA%g| =0,
B—o0
which proves (B.21). Since |z28,F| < a + v, we deduce that
(B.29) limsup ||(H — A — a?)¥g|| < 2va + 42
B—o0

Hence, for ¢ € C2°(R) supported in (A —¢, A +¢), identically 1 on (A —¢/2, A+¢€/2),
A =X+a?, e < )\/2 fixed, we see that

(B.30) liﬁs;p |(1d —$(H))¥g|| < limsup ||(H — A)(2/€)(Id —$(H))¥g]| < by,

and hence

(B.31) lim sup || (H + i)(I1d —$(H)) ¥ || < bsy.
B—o0

Now, from (B.26)

(B32) lim Sup(‘I’ﬁa Z[A’ H]‘I’ﬁ) < 2’7(6\' + 7) < b9'71

B—o0
and by (B.30) and (B.31) (using that [4, H] € Diff2. (X))
(B.33) lilran sup ||[A, H](Id —(H))¥g|| < bioy.
—00

Hence,

(B.34) lim sup(¥g, §(H)il4, HG(H)s) < bury.
— 00

For small v, however, this contradicts the Mourre estimate of Theorem 12.2 which,
together with the weak convergence of ¥z to 0, implies that

(B.35) liminf(%g, $(H)i[A, HIG(H)¥p) > bi2 lipn inf IG(H)pl1* > bra(1 — brs7)-
oo 00
This contradiction proves the proposition. O

We next prove, following Froese and Herbst, that faster than exponential decay
of an eigenfunction of H implies that it vanishes. As mentioned in the introduction,
this requires more substantial modifications than the previous proof.

Proposition B.3. [cf. Froese and Herbst, [7, Theorem 3.1]] Let H be as in (11.11),
X € R. Suppose that Hy = Xy, exp(a/z)y € L2 (X) for all . Then ¢ =0.

Proof. Let F = F, = ¢(x)2 where ¢ € C°(R) is supported near 0, identically 1 in
a smaller neighborhood of 0, and let ¥, = ¥4, ¥4 = 0o /||¥bal|- Then (B.10) and
(B.11) give

(B.36) (Uo, HU,) = A+ 02 + a?(Wq, 2f1¥,),

with f; € S°(X) vanishing near 0, independent of a,

(Va,i[A, H]¥,) = — 4||(caz) 2 AV, | + (¥q, z(af2 + o2 f3)¥a)
+ a(zAVo,2f1P,) + a(zfsPq, zAT,),

fi € 8°(X), j=2,...,5, independent of a. In addition we have

(B.38) i[A,H] =2A +i[A,V] + zP

where P € Diff>,(X). Also note that [4, V] € C®([X;C]) C L®(X).

(B.37)
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Since V is bounded and [|,]| = 1, it follows from (B.36) that (¥,,A¥,) <
C(1+a?), so

(B.39) d%allrz (x;ea1) < C'(1 + ).
In particular, for Q € Diff} (X) we see that
(B.40) 1Q¥all < Ci(1 + a).

Write zP = PyzP;, P;, P, € Diff! (X), and let C, be such that

(BA41)  [|[P/¥] < Ca(1 + @), |B¥a| < Co(1+a), |lzAT,| < Co(1 + a).
Let Q5 = {p€ X : z(p) > 6}. Thus,

(B.42) Wallz2(05) < Cse®/°|l9l 12 (x)-

Similarly, we can estimate the derivatives of ¢, as well in L?(Qy), taking into
account that |z20,ef'| < Cya, so

(B.43) 1QvallL2,) < C5(1+a)e®’®, Qe Diffk.(X)
and more generally
(B.44) 1Q¥allLz(0;) < Co(l +a*)e*®, Q@ € Difff (X).
Here Cj is independent of o and §; it only depends on Q. Let C; be such that
(B.45) [¥allz>(05) < Creo/®
and for each of Q = zA, P}, P,
(B.46) 1¥allL20q) < Cr(1 + a)e/?.

Let Cs = max; sup |z f;| 4 supz, and choose § € (0,¢/2) so that

1
(B.47) 6(1+ C2+ C3)(1 +sup|fy]) < 3
for all j. Then
(B48) |(‘I/on wfj‘l’a)l < CSH\I’QH%R(QJ) +5suplfj|”\IJa”27 .7 = 172737
S0
1 .
(B49) l(\Pa,-Tfj‘I}a)l < CSC’?eQQ/(s”Q/)Ot”_2 + §7 )= 1;2)37
Similarly
1

(B.50) [(zA¥q, 2f4¥a)| < CsCF(1 + a)e®/O|jgpa |72 + gl+a)
and analogously for fs. Finally,
(B.51) (P ®q,zP2¥4)| < CsC2(1 + )20 ||y, || 72 + 1(1 + )?

8
We now assume that suppy N {p: z(p) < §/4} is not empty; soon we obtain a
contradiction. Under this assumption

(B.52) IWallLz.x) > €219l L2 (fo<s/2y) > Coe®/®

with C9 > 0. Hence, our estimates above and (B.36), together with (T, VT, <
sup |V| show that

(B.53) (Ta, AW,) > a® — Cip — a*(Crre~29/% 4 %)_
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Similarly, from (B.37), using (B.38), [4,V] € L*(X), and that the first term on
the right hand side of (B.37) is negative, we have

(B.54) (Wa,2A4) < Ciz + (@ + ) +2a(1 +a) + (1 + )2)(Crze=22/% + é).
Thus, for sufficiently large o, (B.53) shows that

(B.55) (Ua,AT,) > gaz,

while (B.54) implies for large a that

(B.56) (Vq,AT,) < %az,

providing the contradiction. Hence, supp ' is a compact subset of the interior of
X. Then the standard Carleman-type unique continuation theorem [14, Theorem
17.2.1] implies that 1 vanishes identically as claimed. O

The absence of positive eigenvalues is just a combination of the previous two
propositions. Thus, we have proved Theorem 17.6.
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