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Abstract

We consider three scheduling problems that arise in studies of packet routing, load
balancing and disk scheduling.

A fundamental problem in the design of packet-switched communication networks
is to provide effective methods for resolving contention when many packets wish to
cross a link. End-to-end packet delays should be low and queue sizes should be small.
For an adversarial connectionless model we provide upper and lower bounds on delay
for many simple algorithms. For an adversarial session-oriented model we prove the
existence of an asymptotically optimal schedule with per-packet delay guarantees of
O(distance + 1/session rate) and constant queue size. We also describe randomized
schedules with near-optimal bounds.

In the on-line load balancing problem, jobs arrive on-line and must be assigned
to one of a set of machines, thereby increasing the load on that machine by a certain
weight. Jobs also depart on-line. The goal is to minimize both the maximum load on
a machine and the amount of job reassignment that occurs. For the cases of identical
machines and related machines we consider arbitrary reassignment costs and provide
the first algorithms that have constant competitive ratios against current load and
constant reassignment factors.

In the disk scheduling problem we have a set of read and write requests on a
computer disk and a convex reachability function that determines how fast the disk
head travels between tracks. Our aim is to schedule the head so that it services all
the requests in the shortest time possible. Among other things we present a 3/2-
approximation algorithm (with a constant additive term) for the general case and
an optimal polynomial-time solution for the special case in which the reachability
function is linear. We also present a heuristic for the on-line problem in which requests
arrive over time.

Thesis Supervisor: Michel X. Goemans
Title: Associate Professor of Applied Mathematics
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Chapter 1

Introduction

Scheduling problems arise whenever objects or processes have to compete for available

resources. Computer science is a rich source of such problems since processors may

be able to perform many different kinds of tasks but are only able to perform one of

them at any point in time. The field of networking also raises many scheduling issues

since a network may have to handle many different classes and types of traffic but

each link can only handle a certain number of connections at a time.

Classical scheduling problems usually assume an abstract set of machines and

a set of jobs that need to be processed. Each job is known to consume a certain

amount of resources and each machine is known to have a certain ability to process

jobs. Typical performance measures are the makespan, which is the total time that is

needed to process all the jobs and the response time of a job which is the time between

its arrival into the system and its completion. For an overview of various different

types of scheduling problems see [42]. In this thesis we shall consider three specific

scheduling problems, namely contention resolution in packet switched networks, on-

line load balancing, and disk scheduling. For each problem there will be some resource,

such as a communication network or a computer disk drive, that we wish to use as

efficiently as possible.



1.1 Packet Routing

In Part 1 we consider scheduling issues that arise in packet-switched networks. Fu-

ture communication networks such as Broadband Integrated Services Digital Net-

works (B-ISDN) will be required to carry many different types of traffic. This is in

marked contrast to traditional networks such as the telephone network which was

only required to provide one type of connection, namely voice which is transmitted

at 64 kilobits per second. The modern Internet is theoretically capable of carrying

any digital traffic since it can transmit packets of differing sizes. A drawback of the

Internet however is that it sends packets in a best effort manner, i.e. a packet is only

transmitted when the network has sufficient resources. This means that when the

network is heavily loaded all users will suffer regardless of the type of communication

that they are trying to accomplish. It is a common belief in Europe that one should

aim to use the Internet in the morning before the East Coast of the United States

"wakes up".

It would therefore be desirable to have a network that could support different

traffic classes and provide Quality-of-Service (QoS) performance guarantees for the

connections. Moreover, different traffic classes should be able to request different QoS

guarantees. The most commonly cited areas in which a connection might require QoS

bounds are bandwidth, delay, delay jitter and loss. (See Keshav's book [38].)

The bandwidth of a connection is a measure of the number of bits per second that

may need to be transmitted along it. The delay on a connection measures the time

between the transmission of a bit from its source and its arrival at its destination.

Delay jitter is a measure of the variance of delays experienced by bits. Loss is a

measure of how many bits are lost during transmission.

We now give examples of potential traffic classes and their QoS requirements.

* Video Conferencing. Here we assume that two or more people are communicat-

ing in two directions via video streams. Bandwidth requirements are big since

a picture involves a lot of data. The delay must be small otherwise meaningful

two-way communication is not possible. Delay jitter must also be small oth-



erwise the pictures would appear to be "jerky". However if certain parts of a

video frame are missing then it is still possible that the video stream is coherent

and so some data loss is tolerable.

* Video-on-Demand. Here we assume that a viewer would like to watch a video

that is provided by some service. As before the bandwidth must be big, the

delay jitter must be small and the loss can be reasonably large. However, since

the communication is in one direction only the delay can be high.

* World Wide Web browsing. When we request a web page we would like it to

appear fast and we would like it to be accurate. Hence delay and loss must

both be low. However, delay jitter is not important since we only care about

the time to receive the entire page. The bandwidth required is dependent on

the complexity of the page.

* Voice conversation. This application has similar requirements to video confer-

encing except that the bandwidth needed is much lower.

* File transfer. The only essential requirement here is that no data is lost. High

bandwidth and low delay are also desirable but not critical.

The Asynchronous Transfer Mode (ATM) is the method that has been proposed

for solving these problems. In ATM the traffic offered to a network is encoded as

streams of 53 byte packets.1 For each connection a path is set up on the network and

packets are sent along this path. The crucial problem that we consider in this thesis

is how to multiplex several connections onto one link. That is, if packets are arriving

along several different connections and all wish to cross the same link, in what order

should they be sent. It is important to be able to do this in such a way that the

quality of the connection is guaranteed. The fact that ATM can support QoS means

that ATM networks are likely to become ubiquitous in the not too distant future.

In this thesis we mostly concern ourselves with the question of bounding the

delay experienced by data. We assume that the data has been packetized and that

'In the ATM literature the word "cell" is sometimes used instead of "packet".



all packets are the same size (as in ATM). We also assume that all packets take the

same amount of time to cross an edge. We shall use this as our unit of time.

Our model of packet routing is a store-and-forward model. This means that at

each time step at most one packet may cross a link. If two or more packets wish to

cross the link at the same time then we assume that the others queue up at that edge.

Our goal is to bound the total delay experienced by packets as they travel from their

sources to their destinations. A secondary (and closely related) goal is to bound the

size of the queues at the edges.

Before it is possible to analyze these packet-switched networks we must make

some assumptions about the way in which packets are injected into the network and

the manner in which they traverse the edges. Different communities of researchers

have approached this issue in different ways. For example, there has been a great

deal of work in the queueing theory community on networks where the injections

are generated by Poisson processes and the time for a packet to cross an edge is

exponentially distributed (see, for example, [37] and [39]). These assumptions are

convenient in that the evolution of the system is memoryless.

Packet routing problems have also been the subject of a large body of work within

the field of Theoretical Computer Science. For a comprehensive survey see Leighton's

book [43]. Much of this work was initially motivated by the study of parallel compu-

tation. In particular it was a key part of the work that linked the study of idealized

machines such as the PRAM to machines that could be built in practice. The usual

assumption here is that the packets take unit time to cross a link. However, much of

this work is not immediately applicable to communication networks since it assumes

a static model, i.e. all the packets are present in the network initially.

More recent work within the Theoretical Computer Science community has con-

sidered the dynamic packet routing problem. This work usually assumes that the

packets are generated by some stochastic process and are routed to random desti-

nations [47, 34, 14, 13]. Another question that has attracted interest is whether or

not it is possible to use results from queueing theory concerning exponential edge-

traversal times to derive results in networks where the edge-traversal times are con-



stant [63, 29, 30, 49].

We consider a model that does not make any statistical assumptions, i.e. we

assume that the packets are injected into the network by an adversary. By this we

mean that both the times at which packets are injected and the routes that they must

follow are chosen by an adversary. However we cannot allow the adversary to inject

an unlimited number of packets into the network otherwise it would be impossible to

provide delay bounds for packets. We consider two different methods for restricting

the adversary, and we refer to the two resulting models as the connectionless model

and the connection-oriented or session-oriented model.

In the connectionless model we assume that the adversary can choose to inject

packets along arbitrary paths. The only restriction we make is that there are two

constants r < 1 and a such that for any edge e and for any interval of t time steps,

no more than rt + a packets may be injected into the network that wish to cross

edge e. Clearly a restriction such as this is necessary otherwise the number of packets

that wish to cross edge e could grow without limit. This would lead to unbounded

delay. For the connectionless model we focus on several simple contention-resolution

protocols. These are protocols that determine which packet should cross an edge

when more than one wish to do so. In this thesis we show (a) that the contention-

resolution protocols Farthest-to-Go and Nearest-to-Source have bounded delay and

queue size and (b) that the delays and queue sizes for Farthest-to-Go, Nearest-to-

Source and Shortest-in-System can be exponential in the size of the network. The

exact definitions of these protocols are given in Chapter 2. These results together

with other results and analysis from [1] almost completely characterize several simple

protocols in terms of packet delay.

In the session-oriented model we assume that packets can only be injected along

one of a fixed set of paths in the network. We refer to these paths together with

the packets that follow them as sessions. Each session i has an associated injection

rate ri. We restrict the adversary by saying that in any interval of t time steps no

more than rit + 1 packets may be injected into session i. As with the connectionless

model we must bound the rate at which packets that wish to cross a specific edge



are injected. In the session-oriented model we achieve this by requiring that for each

edge e the sum of the rates of all sessions that pass through edge e is at most 1 - e

for some constant e.

Our first result in the session-oriented model is a simple, randomized, distributed

schedule that with high probability allows all session i packets to reach their destina-

tion in time O(1/ri + di log m/rmin) where m is the number of edges in the network

and r1 in is the minimum rate of a session. Except for initial queues (which we define

in Chapter 2), the queues have size at most O(log m/rmin). We then show the exis-

tence of a schedule that allows session i packets to reach their destinations in time

O(1/r; + di) which is asymptotically optimal. All queues (except for initial queues)

have size 0(1). These bounds contrast strongly with previous bounds which are ei-

ther multiplicative (i.e. given in terms of di/r,) or else are not session based (i.e. the

bounds are at least 1/rjin + dmax where rmin is the minimum rate of a session and

dmax is the maximum length of a session.)

The work on the connectionless model is joint with Baruch Awerbuch, Antonio

Fernandez, Jon Kleinberg, Tom Leighton and Zhiyong Liu and is contained in Chap-

ter 3. The work on the session-oriented model is joint with Antonio Fernandez, Mor

Harchol-Balter, Tom Leighton and Lisa Zhang and is contained in Chapters 4 and 5.

1.2 Load Balancing

Part 2 of this thesis is devoted to the on-line load balancing problem. Consider a

system of machines and a set of jobs that arrive in and depart from the system.

Whenever a job arrives it must immediately be assigned to a machine for servicing.

Our goal is to assign the jobs in such a way that the load on any machine is not too

high, i.e. we should like the jobs to be evenly balanced on the machines. There are

many variants of this problem. For instance, machines may have different capacities

for servicing jobs or the jobs may have different requirements. In addition, there are a

number of ways to measure the performance of candidate load balancing algorithms.

Load balancing problems arise naturally in settings in which jobs have to compete



for the available resources. Machines may represent various kinds of communication

channels with certain bandwidth, and jobs requests for bandwidth [2, 4, 5, 6, 7, 69].

Alternatively, machines may represent distributed database platforms, and the jobs

may be application programs accessing the database [69]; here, the increase in the

load represents the time for an access. The on-line load balancing problem has been

much studied in connection with the virtual circuit routing problem [2, 4, 69]. In this

problem, the machines are the edges of a network, the jobs are requests for allocating

a certain amount of capacity between two given endpoints, and the goal is to minimize

the maximum congestion.

As usual, the performance of an on-line algorithm can be measured using the no-

tion of competitive analysis [61]. In the context of load balancing, most analyses that

have been performed compared the maximum load at time t of the on-line algorithm

to the maximum load at any time between 0 and t, the peak load, of the best off-

line algorithm presented with the same sequence of job arrivals and departures (see

[4, 5, 6]). Westbrook [69], however, pointed out that a competitive analysis against

peak load is somewhat unrealistic. Westbrook instead proposed the more realistic

notion of competitiveness against current load. An on-line algorithm is said to be

a-competitive against current load if, for any time t, the maximum load at time t is

at most a times the lowest achievable load at time t for the jobs then in the system.

If the model does not allow for job departures, as in [2, 7], there is no difference

between current load and peak load. However, in general, competitiveness against

current load is a much stronger notion than competitiveness against peak load. Even

though the arrival or departure of a job may greatly affect the optimum assignment of

jobs to machines, a competitive algorithm against current load needs to ensure that

its maximum load before and after the arrival or departure is still within a factor

of a of the corresponding optimum. Phillips and Westbrook [55] were the first to

present competitive analyses against current load, but the distinction between peak

and current load was highlighted in Westbrook [69].

To see why it is useful to have an algorithm competitive against current load,

consider the example in which the machines are communication channels and the



jobs are requests for bandwidth. Suppose also that the data being transmitted comes

from a real-time application such as audio or video. If many jobs arrive then the

system will inevitably become overloaded. Data must be lost and so the video will be

"jerky" and the audio will sound "broken up". Suppose however that later on there

are many fewer jobs present. An algorithm that is competitive against peak load

would not have to take advantage of this and so the quality of transmission might

still be poor. In contrast, an algorithm that is competitive against current load would

have to take advantage of the lightly loaded system and produce low load on each

channel. Hence the video would be smooth and the audio would have good sound

quality.

The notion of competitiveness against current load is too strong if we do not allow

reassignments of jobs (also called job preemptions). Indeed, without reassignments,

any algorithm is m-competitive against current load and no algorithm is better than

m-competitive against current load, where m is the number of machines [69]. On

the other hand, if we allow an arbitrary amount of reassignment then the problem

loses its on-line aspect: the scheduler can "simply" reconfigure all the machines at any

departure or arrival to match (or closely match) the optimum configuration (although

this is an NP-hard problem). There is thus a trade-off between the competitive ratio

and the amount of reassignment performed.

To be more specific, each job has an associated reassignment cost which is a

measure of how much expense is involved in assigning the job to a machine. Whenever

a job is assigned or reassigned to a machine we must pay the reassignment cost. An on-

line load balancing algorithm has a reassignment factor of r if the total reassignment

cost paid is always at most rS, where S is the total reassignment cost of all jobs that

have arrived in the system. Intuitively, this means that in an amortized and weighted

sense, each job is assigned to a machine at most r times.

We shall be considering two specific versions of the load balancing problem. They

differ in the way that the load on a machine is defined. We assume that when a job

arrives in the system we are told its weight. This is a measure of the amount of service

that the job needs. In the identical machines problem, the load on any machine is



simply the sum of the weights of the jobs that have been assigned to it. In the related

machines problem, each machine i has an associated capacity, capi that represents

its ability to service jobs. The load on machine i is now the sum of the weights of

jobs assigned to machine i divided by capi.

The main contribution of this thesis is to present the first algorithms with constant

competitive ratios and constant reassignment factors for the general case in which

the job reassignment costs are unrelated to the job weights. Most previous work

concentrated on the case in which the reassignment costs are proportional to the job

weights. In particular we present,

* An algorithm for the identical machines problem that is 3.5981-competitive

against current load and has a reassignment factor of 6.8285.

* An algorithm for the related machines problem that is 32-competitive against

current load and has a reassignment factor of 72.5.

For related machines we also present an algorithm whose competitive ratio is loga-

rithmic in the ratio of the largest machine capacity to the smallest machine capacity.

This algorithm is superior to the algorithm with constant bounds unless the capacities

of the machines differ greatly. For identical machines we consider the special case of

the problem in which the reassignment costs are unit and the special case in which the

reassignment costs are proportional to the job weights. For these restricted problems

we provide algorithms whose bounds are lower than those previously known.

The results for the identical machines problem are contained in Chapter 7 and the

results for the related machines problem are contained in Chapter 8. Both chapters

represent joint work with Michel Goemans and Lisa Zhang.

1.3 Disk Scheduling

In Part 3 of the thesis we consider the disk scheduling problem. Computer processor

speed and disk and memory capacity are increasing by over 40% per year. In contrast,

disk speed is increasing more gradually, growing by only 7% per year [59]. Since this



rate is unlikely to change substantially in the near future, I/O performance may

become the bottleneck in most computer systems. However, despite the difficulty of

improving mechanical components, we can still aim to use the disks more efficiently.

For example, disks generally operate at a small fraction of their maximum band-

width. Experiments have shown that sophisticated disk head scheduling algorithms

can deliver higher throughput [60, 33, 71]. This past research has focused almost

exclusively on two types of work loads: synthetic work loads, where disk requests are

randomly and uniformly distributed across the disk, and more recently, traces, where

the requests to an actual disk are recorded and used to test algorithms. However, for

these or for general work loads, researchers have made little attempt to develop algo-

rithms with provable performance guarantees. In addition, no one has determined the

computational complexity of the disk scheduling problem. There is a risk that syn-

thetic work loads and traces from a few environments may not represent all possible

situations.

In this thesis we propose several disk-scheduling algorithms with performance

guarantees and we state a hardness result. The research has provided additional

payoffs. The first, of practical interest, is a heuristic for the on-line problem. The

second payoff is of theoretical interest: the disk problem suggests algorithms for a

special case of the asymmetric traveling salesman problem with the triangle inequality

(ATSP-A). Before defining our problem formally we describe the structure of a modern

disk.

The Disk A computer disk is composed of several concentric, rapidly-rotating plat-

ters, where data may be written to both sides of each platter. Platters are logically

divided into circular tracks. A cylinder is composed of all the circular tracks having

the same radius. The smallest unit that can be written to disk is called a sector, which

typically holds 512 bytes of data. Modern disks have approximately 2000 cylinders

and 100 sectors per track. The data is transferred to and from the disk by a set of

read/write heads (usually one per surface). The disk arm moves the heads in concert,

so that all of the heads are contained in one cylinder. For this reason we can restrict



our attention to one disk platter and one disk head.

When a head accesses a particular sector, it suffers two kinds of delays. The

seek time is the time required to move the head to the correct track; the rotational

latency is the time necessary, once the head is in the correct track, for the requested

sector to pass underneath the head. Modern disks rotate at a speed of 3600-7200

rpm (implying that one rotation takes 8-16 msec). With today's technology, the time

for a track-to-track seek (one track to a neighboring track) is typically 1 msec; the

time for a full-seek (the innermost to the outermost track) is typically 20 msec. Small

seeks are dominated by a constant start-up time, medium-length seeks by a period

of acceleration and deceleration, and long seeks by a period of constant speed. In

the following table we give the specifications from [59] for the Hewlett-Packard 97560

disk.

sector size (bytes)

number of cylinders

tracks per cylinder

data sectors per track

revolution speed (rpm)

seek time (msec) for d tracks

d < 383

d > 383

512

1962

19

72

4002

3.24 + 0.400v1

8.00 + 0.008d

The Problem In this paper we chiefly consider the off-line version of the disk

scheduling problem. The input consists of a set of points on the disk (which we call

requests) and a convex reachability function which determines how long it takes the

disk head to move between tracks. Our goal is to schedule the disk head so that

it services (i.e. visits) all of the requests in the shortest possible time. Note that if

we consider the motion of the head relative to the disk then the problem becomes a

special case of the Traveling Salesman Problem. We also consider an on-line version

of the disk scheduling problem in which the requests arrive over time and are placed

into a queue. The head is able to service any request that is currently in the queue.



Our goal is to maximize the throughput.

Our Results We first present an algorithm, HEADSCHEDULE, for the off-line prob-

lem; HEADSCHEDULE services all the requests in at most Topt + a rotations, where

Topt is the number of rotations taken by an optimal algorithm and a is a term that de-

pends solely on the reachability function. We can show that this problem is NP-hard

and so in general it is not practical to look for the optimum algorithm. For the special

case in which the reachability function is linear we present a polynomial-time algo-

rithm, MONOTONE, and show that it is optimal. The algorithms HEADSCHEDULE

and MONOTONE are presented in Sections 9.2 and 9.4 respectively. The NP-hardness

result is contained in Section 9.3.

In Section 9.5 we relate the disk scheduling problem to the special case of the

asymmetric Traveling Salesman Problem with the triangle inequality (ATSP-A) in

which all distances are either 0 or a for some value a > 0. We show how to find the

optimal tour in polynomial time and describe how this gives another approximation

algorithm for the disk scheduling problem.

In Section 9.6 we consider the on-line problem. Since the requests in real systems

are known to arrive in a "bursty" fashion [58] our off-line algorithms are still useful.

When a burst of requests arrive we can schedule them using an off-line algorithm.

We also present an on-line algorithm, CHAIN, which is related to our algorithm for

the above ATSP-A. Although we are unable to provide performance guarantees for

this algorithm it has better look-ahead properties than algorithms that have been

considered previously.

This work on disk scheduling is joint with Michael Bender and Lisa Zhang.



Part I

Packet Routing



Chapter 2

Packet Routing-Introduction

2.1 The Problem

In this section we study the problem of scheduling packets in a packet-switched net-

work. We model the network by a directed graph in which the nodes represent the

switching hardware and the edges represent the communication links. From now on

we shall use the words node and switch interchangeably and we shall use the words

edge and link interchangeably. When a packet that wishes to travel between two

nodes arrives in the network we say that it has been injected. We shall assume that

when a packet is injected the route that it must follow has already been determined,

i.e. we shall assume that the problem of finding good routes for the packets has al-

ready been solved. Throughout this work we shall consider a store-and-forward model

of packet transmission, i.e. we assume that packets take one time step to cross an

edge and at most one packet can cross an edge at each time step. If two or more

packets wish to cross an edge then one of them is transmitted and the rest queue up

at the switch.

In this work we focus on three key questions. First, how do we ensure stability

in the network, i.e. how do we make sure that the number of packets in the network

remains bounded. Second, how do we reduce the delay experienced by packets as they

travel through the network. We should like to be sure that packets travel from their

sources to their destinations as quickly as possible. This is an important Quality-



of-Service (QoS) requirement for real-time applications such as video conferencing.

The third question comes from the fact that packets that queue up at nodes must be

stored in a buffer. It is desirable for these buffers to be small but we also need to

be sure that we never lose packets. Hence we should like to know how to keep the

number of packets that are ever queued up at a node small. We shall refer to this

issue as limiting the queue size. Stability, packet delay and queue size are all closely

related. (See Theorem 3.1.3.)

Unless we make some assumptions about the way in which packets are injected

into the network then there will be no meaningful answers to these questions. If

packets can be injected at an unbounded rate then it is possible that the network

will become unstable, the delay experienced by packets will be unbounded and the

queue sizes will be unbounded. We shall be considering two distinct models of packet

injection, a connectionless model and a connection-oriented or session-oriented model.

In both models we assume that the injections are made by an adversary and hence

we shall be concentrating on worst-case scenarios. However, in the session-oriented

model we impose more restrictions on the adversary.

2.2 The Connectionless Model

In the connectionless model when a packet is injected it may follow any simple path

through the network. (A simple path does not cross any edge more than once.) We

restrict the number of packets that may be injected into the network in the following

manner. For some constants a and r, a > 0 and 0 < r < 1, we specify that for any

edge e in the network and any time interval of t steps, no more than a + rt packets

that wish to cross edge e may be injected into the network during this interval. We

refer to a as the burst parameter and r as the rate. In some sense this is the weakest

restriction that could be made that would still allow any hope of network stability.

This is because if packets that wish to cross a particular edge are injected at a rate

higher than one over a long period of time then packets will continue to accumulate

in the network since at most one packet can cross the edge during any time step. We



make no further assumptions regarding the packet injections and so an adversary is

allowed to determine when packets are injected and which paths they should follow

as long as the above requirement is satisfied.

Our goal regarding the connectionless model is to analyze several simple protocols

for deciding which packet should cross an edge when more than one wishes to do

so. We should like to consider whether or not they lead to network stability and we

should also like to provide bounds on the total delay experienced by packets and the

maximum queue sizes that can occur. We shall consider the following nine protocols.

Each of them is distributed in the sense that each switch decides which packet to send

solely by examining the queue of candidate packets that wish to cross the edge at

the next step. For some of the protocols the packets may be required to carry some

timing or route information that is used in the decision. The protocols are:-

* FIFO (First-in-First-out) - The packet chosen to cross the edge is the one that

has been in the queue for that edge for the longest amount of time.

* LIFO (Last-in-First-out) - The packet chosen is the one that has been in the

queue for the shortest amount of time.

* SIS (Shortest-in-System) - The packet chosen is the one that was injected into

the system most recently.

* LIS (Longest-in-System) - The packet chosen is the one that has been in the

system the longest.

* NTG (Nearest-to-Go) - The packet chosen is the one that has to cross the fewest

edges to reach its destination.

* FTG (Farthest-to-Go) - The packet chosen is the one that has to cross the most

edges to reach its destination.

* NTS (Nearest-to-Source) - The packet chosen is the one that has crossed the

fewest edges since its injection.



* FFS (Farthest-from-Source) - The packet chosen is the one that has crossed the

most edges since its injection.

* RANDOM - A randomized protocol that is similar to LIS.

All of the above protocols are greedy. A greedy protocol will always send a packet

whenever the queue is non-empty. 1

2.2.1 Results - Connectionless Model

In Chapter 3 we prove the following results.

1. The protocol FTG is stable. This means that for all networks and all adversaries

that obey the restrictions described above, the number of packets in the system

can be bounded if the protocol FTG is used. In particular, if e = 1 - r, m is the

number of edges in the network and d is the maximum length of a path that

a packet must follow, then the total number of packets in the system is never

more than O(,21 ). In addition no packet takes more than O(mdl-) time steps

to travel from its source to its destination and the maximum queue size that

ever occurs is O(md1).

2. The protocol NTS is stable. This result is a corollary to the result for FTG. The

bounds on number of packets in the system, the packet delay and the maximum

queue size are identical. The protocol NTS is of interest because it is extremely

easy to implement. Protocols such as LIS and SIS require the switches to have

an accurate clock which is expensive in practice. The protocol FTG requires

either the switches or the packets to carry information about the length of the

routes that the packets will follow. With many schemes for determining the

routes of packets this assumption is not satisfied. All that is required for the

protocol NTS however is that the packets keep track of the number of links that

they have crossed.

'The term work conserving is sometimes used instead of greedy.



3. The protocols FTG, SIS and NTS may produce exponentially large queues, i.e.

there exists a graph with m edges and an adversary with rate strictly less than

one such that using FTG, SIS or NTS results in a system in which there are

queues of size 2 0(d). An immediate corollary is that for these protocols the

packet delay can be exponential.

2.2.2 Classification of Protocols

The above results combined with results of Andrews, Awerbuch, Fernandez, Klein-

berg, Leighton and Liu [1] enable us to determine almost completely the stability,

packet delay and queue size of the nine protocols described earlier. We assume as

above that the graph has m edges, the maximum length of a path that a packet

must follow is d and the adversary has burst size a and rate r, 0 < r < 1. In the

following table we indicate the size of the upper and lower bounds on packet delay

for the various protocols. The exact bounds will be given in Chapter 3. We use EXP

to denote an expression in terms of m, d and 1/e that contains d in the exponent.

We use POLY to denote an expression that is polynomial in m, d and 1/e.

By Theorem 3.1.3 in Chapter 3, exponential bounds on packet delay imply expo-

nential bounds on queue size and the number of packets in the network. Likewise,

Stable? Packet Delay

Upper Bound Lower Bound

FIFO No 00 00

LIFO No oo oo

SIS Yes EXP EXP

LIS Yes EXP POLY

NTG No oo 00

FTG Yes EXP EXP

NTS Yes EXP EXP

FFS No 00 00

RANDOM Yes POLY POLY



polynomial bounds on packet delay imply polynomial bounds on these quantities. It

should be emphasized that the lower bounds in the table are existential. For example,

a lower bound of oo means that there exists a network and an adversary of rate r < 1

such that the maximum delay experienced by packets is unbounded.

2.2.3 Previous Work - Connectionless Model

The model that we are calling the connectionless model was first introduced by

Borodin, Kleinberg, Raghavan, Sudan and Williamson in [11]. Their name for the

study of this model was "Adversarial Queueing Theory". The adversaries considered

by Borodin et al. were weaker than those consider here in that they were character-

ized solely by a rate parameter r. The number of packets injected during t time steps

that wished to cross an edge e could not be greater than [rt] for any value of t. The

main results of [11] are,

* All greedy protocols are stable on directed acyclic graphs for adversaries of rate

r<1.

* All greedy protocols are stable on the ring (directed cycle) for adversaries of

rate r < 1 - e.2

* FTG is stable on the ring for adversaries of rate r < 1, and LIS is stable on the

ring for adversaries of rate r < 1 - e.

* FIFO and LIS can be unstable on the ring for adversaries of rate r = 1.

The results of [11] were consistent with both of the following extreme scenarios.

Maybe all greedy protocols are stable in all networks for all adversaries of rate r < 1-e

or maybe no protocols are stable in this general setting. In [1], Andrews, Awerbuch,

Fernandez, Kleinberg, Leighton and Liu showed that neither of these possibilities are

true. This has already been indicated in Section 2.2.2. The adversaries of [1] are

stronger than those of Borodin et al. since they allow for some burstiness. Andrews

et al. say that an adversary has rate (w, r) if at most rw packets that wish to cross



an edge e are injected during any interval of length w. Here w is some constant. If w

is large then bursts of packets that all wish to cross a single edge are allowed.

Recall that in this thesis we are restricting the adversary by requiring that for

some constants a and r, no more than a + rt packets can be injected in t steps that

wish to cross an edge e. Although this is not strictly equivalent to the definition in

[1] the results in the two models are virtually identical. Most of the results from [1]

have been described above and they will be considered in more detail in Chapter 3.

The major results in [1] that we shall not consider later are,

* All greedy protocols are stable on the ring for adversaries of rate r < 1 - e.

* There is a polynomial time algorithm that decides, given a network, whether

or not all greedy protocols are stable on the network for all adversaries of rate

r < 1 - e.

2.3 The Session-Oriented Model

In the session-oriented or connection-oriented model we again assume that the packet

injections are made by an adversary. However, we now restrict the adversary further

by requiring that whenever a packet is injected it must follow one of a fixed set of

paths through the network. We refer to one of these paths together with the packets

that are injected along it as a session. With each session i we associate an injection

rate ri that specifies how many packets may be injected along it. We require that

in t time steps no more than rit + 1 packets are injected into the system that wish

to travel along session i. As with the connectionless model there must be some

restriction on the injection rates otherwise the system could become unstable. In the

session-oriented model the restriction we impose is the following. There exists some

constant e such that the sum of the rates of sessions that pass through any edge e

add up to at most 1 - e for some constant e.

In the session-oriented model we consider two different types of queues at the

switches. When a packet has been injected and is waiting to cross its first link we



assume that it is held in an initial queue. Once the packet has started to move it is

held in edge queues at the switches. When we consider the issue of queue size we focus

on bounding the size of the edge queues. The reason for this is that the initial queues

can be external to the network and can consist of cheap, slow memory. The edge

queues, in contrast, are part of the network and usually consist of fast and expensive

memory.

The key difference between the connectionless model and the session-oriented

model is the following. In the connectionless model we can have two distinct paths

that pass through a common edge and an adversary that oscillates ;between injecting

packets at a rate close to 1 on one of the paths and injecting packets at a rate close to

1 on the other one. This is not possible in the session-oriented model since the rates

of the sessions associated with these paths would sum up to a value greater than 1.

The session-oriented model describes a scenario in which the connections are per-

manent or have long duration. In contrast the connectionless model describes situa-

tions where packets are routed individually (e.g. the Internet) and situations where

temporary connections of short duration are set up.

2.3.1 Results - Session-Oriented Model

Since we have established that the session model is more restrictive in terms of al-

lowable adversaries we should expect that it allows us to prove stronger results. This

is indeed true. Our main result is a proof that there exists a way to schedule the

packets such that packets in session i reach their destinations in time O(1/ri + di).

An existential lower bound is Q(1/ri + di) and so our result is optimal up to constant

factors. In addition the edge queues have constant size.

The novel feature of our result is that the guarantee is both additive and session-

based. By session-based we mean that the bound for session i is given in terms of

ri and di. Previous results were either given in terms of rsin = mini ri and dmax =

maxi di or else were given in terms of di/ri.

The main drawback of our result is that it uses the Lovisz Local Lemma and



hence is non-constructive.2 However the schedule will be periodic and so we could

in principle calculate the schedule for one period off-line and then run it repeatedly.

In order to show a simpler result and also to remove the reliance on the Lovaisz

Local Lemma we describe randomized algorithms that with high probability schedule

session-i packets so that they reach their destinations in time O(1/ri + di log m/rmin).

(Recall that m is the number of edges in the network.) We initially show how to do

this in a centralized fashion but we then describe how it can be done with a distributed

algorithm. For the centralized version the edge queues have size O(log m/rnin).

In a common extension of this model the traffic is assumed to be leaky-bucket

constrained with parameters bi and ri. This means that no more than bi + rit packets

are injected into session i in any time interval of length t. Our results generalize

easily to this model. The first delay bound and the existential lower bound increase

to O(bi/r, + di). The second delay bound increases to O(bi/ri + di log(m/rmin)).

In Chapter 4 we present the randomized algorithms that have delay bound O(1/r;+

di log m/rmin). We prove the existence of a schedule with delay bound O(1/ri + di)

in Chapter 5.

2.3.2 Previous Work - Session-Oriented Model

There has been a great deal of work on the problem of providing delay bounds for

leaky bucket constrained traffic. One of the most widely studied algorithms was first

proposed by Demers, Keshav and Shenker [19] and is called Weighted Fair Queue-

ing (WFQ). It is based on an idealized algorithm known as Generalized Processor

Sharing (GPS). GPS assumes a fluid model in which fractions of packets from dif-

ferent sessions can be serviced simultaneously. In particular, if packets from sessions

I = {il, i 2, ... , in} are queued at a switch then packets from session ik are continu-

ously serviced at a rate of,

EjI 'Dij 7

2The result in this thesis is non-constructive. However, Zhang has shown that our methods can be
made constructive [74]. The techniques used are based on ideas of Leighton, Maggs and Richa [45].



per time step for some parameters 4i,. Parekh and Gallager [53, 54] showed that

if we set 4i = ri then GPS has excellent delay properties. It is of course unimple-

mentable since in practice only whole packets can be scheduled. The idea of WFQ is

to approximate GPS. Under WFQ each switch simulates the schedule produced by

GPS. Whenever a packet must be chosen the switch examines its queue and sends the

packet that would be serviced earliest under GPS, assuming that no further packets

arrive. Parekh and Gallager [53, 54] analyzed WFQ (although they used the name

Packet-by-Packet Generalized Processor Sharing (PGPS)) and showed that if OD = ri

then all session-i packets reach their destinations in time,

bi + 2(di - 1) +d = O(b0 + di

ri ri

One advantage of Weighted Fair Queueing is that it is simple to implement. Its

main disadvantage is that the delay bound grows as the product of di and 1/ri. It

is tempting to believe that this is best possible since it is conceivable that each

packet must wait for 1/ri steps at every switch on its path. Indeed, there are a

number of other algorithms with delay bound O((b2 + di)/ri), for example Virtual

Clock [73] and Frame-based Fair Queueing [64, 65]. Our results show however that

this multiplicative bound is not optimal since we prove the existdnce of a schedule

with delay bound O(bi/ri + di).

Rabani and Tardos [57] obtained an randomized algorithm withi an additive delay

bound. They allowed each packet to be dropped with probability p and they achieved

a delay bound of O(R) + (log* p-1)O( 0og* P-)D + poly(logp - ,) where R = maxi l/ri

and D = maxi di. (They only considered the case in which bi = 1.) Note that this

bound is not session based which implies that if one session has a small rate or a long

distance then the delay bounds for all sessions will suffer. Ostrovsk y and Rabani [51]

were able to improve the above delay bound to O(R + D + log 1+6 p1') for some small

constant 6. The algorithms of Rabani et al. are distributed in the sense that packets

carry some information but knowledge of the entire network is nrot assumed. The

delay bounds that we achieve in this thesis are session based and we do not drop



packets.

The earliest work on the session-oriented model was performed by Cruz [17, 18].

He showed that the maximum delay is bounded for all greedy protocols on all layered

directed acyclic graphs. Tassiulas and Georgiadis [66] were able to show a similar

result for the ring. Papers that study leaky-bucket regulated traffic include [21, 68].



Chapter 3

Connectionless Packet Routing

3.1 Preliminaries

Throughout our discussion of the connectionless model we shall phrase results in

terms of an adversary that adds packets to the system, and a conrtention-resolution

protocol that moves packets across edges. We use (G, A, P ) to deiote an adversary

A and a protocol P acting on a graph G. We view each time step t of this system as

consisting of three phases.

(i) Packets are injected by A.

(ii) Packets are moved by P.

(iii) Packets that reach their destinations in phase (ii) are absorbed.

Definition 3.1.1 A packet is said to require an edge e at time t if e lies on the path

from its position at time t to its destination.

For simplicity we shall assume that when a packet is injected, its assigned path is

simple; namely, it does not contain any edge more than once. It is not difficult,

however, to remove this assumption.

Definition 3.1.2 We say that A is a bounded adversary, of rate (o, r), if for all

edges e and all intervals I of t consecutive steps it injects no more than a + rt packets

during I that require e at their time of injection.



Our results will be presented in terms of the maximum delay experienced by

packets, the maximum queue size and the maximum number of packets in the system.

The following result shows that there is a close relation between these quantities.

Theorem 3.1.3 Let (G, A, P7) be a system, where G is a graph with m edges, P is

any greedy protocol, and A is an adversary of rate (w, 1 - e), 0 < e < 1.

1. If the maximum queue size is k, then the maximum number of packets in the

system is at most mk.

2. If the maximum number of packets in the system is n and n > a + 1 then the

delay for a packet whose path has length d is at most 2nd - 1.

3. If the maximum delay experienced by a packet is 7 then the maximum queue

size is at most r.

Proof: Properties 1 and 3 are immediate. It remains to prove Property 2. Suppose

there are never more than n packets in the system, and consider a queue q at time t.

We claim that q becomes empty sometime in the next 2ne-1 steps. For if not, then

a packet must leave q in each of the next 2ne - 1 time steps. But there are only n

packets in the system at time t, and no more than

a +2n-l 1(1-e) < a+2ne-1 -2n

< 2ne- 1 - n

packets arrive over the next 2n6 - 1 time steps - this contradicts the assumption that

a packet leaves q in every one of these time steps.

From this it follows that no packet remains in a queue for more than 2ne - 1 time

steps. Hence, if the path of a packet has length d then the delay that it experiences

will be at most 2ndE- 1. E



3.2 Stability of protocols

In this section we focus on the issue of stability for protocols: given a contention

resolution protocol P, can we provide a delay bound for every network G and every

bounded adversary A? We first discuss four simple protocols for which the answer is

affirmative. Our upper bounds for all these protocols are exponential in the maximum

path length d; thus, while the bounds are large in general, they are better when all

packets require only short paths. In Section 3.2.2 we discuss several simple and very

common protocols that are not stable.

3.2.1 Stable protocols

Recall that the Farthest-to-Go (FTG) protocol gives priority to a packet that still has

to cross the largest number of edges.

Theorem 3.2.1 Let G be a directed network, and A a bounded adversary of rate

(o, 1 - e), with e > 0. Then the system (G, A, FTG) is stable. If m is the number of

edges in G and d is the maximum path length then the maximum delay experienced

by a packet is at most O(md-la1/).

Proof: We prove this result by a backwards induction. Let us define ki = 0 for

i > d and ki = m Zj>i kj + mo- for 1 < i < d. We claim that for all j > i the number

of packets in the system that still have to cross exactly j edges is at most kj.

This is trivial for j > d since each packet has to cross at most d edges. Now

consider a particular edge e and let Xi(t) be the set of packets in the queue of e that

still have to cross at least i edges at time t. Let t be the current time, let t' be the

most recent time step preceding t in which Xi(t') was empty and let t" be some time

step in the interval (t', t]. The number of packets with at least i + 1 edges to cross is

at most Ej>i kj by the inductive hypothesis. The number of packets injected between

times t' and t" that could be in the queue for edge e is at most a + (1 - e)(t" - t')

by the definition of the adversary. Since we are using FTG, at time t" a packet from

Xi(t") is chosen to cross edge e. (Note that Xi(t") : 0.)



Set t" = t. By the above discussion we have,

|Xi(t) _ k + a + (t - t')(1 - E)-(t - t')

SZkj + o-E(t-t').
j>1

The above inequalities have two consequences. First, the number of packets in

the system that still have to cross i edges is always at most m Ej>i kj + ma = ki and

so the inductive step holds. Second, t - t' cannot be greater than ,(E >i k+ a).

Hence this expression gives the maximum amount of time that a packet with i edges

still to cross can remain in a queue. Therefore under FTG the maximum number of

packets in the system is bounded by j>l1 kj and the maximum delay experienced by

any packet is at most,

i=d 1 1
k - -E ki

i=1 j>i i=1

1 (mi+' - m)o
me m -

(md+2 _ m2 - dm(m - 1))o
em(m - 1)2

Theorem 3.2.2 The protocol Nearest-to-Source (NTS), which gives priority to the

packet that is closest to its source, is stable. The maximum delay is at most O(md-lo./).

Proof: The proof is almost identical to the proof for FTG. The only difference

is that we use a standard induction on the number of edges crossed as opposed to a

backwards induction on the number of edges still to cross. El

In [1] the following theorem about Shortest-in-System and Longest-in-System is

proved. Recall that SIS (resp. LIS) gives priority to the packet that has been in the

system for the shortest (resp. longest) time.



Theorem 3.2.3 The protocols SIS and LIS are both stable and have maximum delay

upper bounded by O(al/ed).

As discussed in Chapter 2, Nearest-to-Source is the simplest of these four stable

protocols to implement. This is because a packet must simply keep track of the

number of edges that it has crossed. For SIS and LIS global timing is required and

for FTG each packet must possess information about the length of its path.

3.2.2 Protocols that are not stable

The classification of the eight simple, distributed, deterministic protocols with respect

to stability is completed by the following theorem from [1].1

Theorem 3.2.4 The protocols NTG, FFS, FIFO, and LIFO are not stable, i.e. for

each of these protocols there exists a network and an adversary of rate less than one

such that the number of packets in the resulting system grows without bound (and

hence the delay experienced by packets grows without bound.2)

The instability of NTG is somewhat surprising since one would think that by

allowing the packets that are near their destinations to move forward, one would be

keeping the number of packets in the system as small as possible. Indeed, NTG is

a protocol that has been proposed for routing in parallel machines. However, a bad

property of NTG is that a queue of packets that has a long distance to travel can be

held up at a switch by a stream of packets that only wish to cross one edge. This

allows the adversary to continually increase the number of packets in the system.

The protocols NTG and FIFO can be made unstable on the simple network shown

in Figure 3-1. For this network NTG can be made unstable by an adversary of rate

r > 1/1V2 and FIFO can be made unstable by an adversary of rate r > 0.85. The

'The protocol FFS is not considered in [1] but the proof of its instability is very similar to the
proof for NTG.

2 However, each packet will leave the system eventually. This is because if the queue for edge e
is non-empty then the rate at which packets cross edge e is faster than the rate at which packets
requiring edge e are injected. Hence every queue will empty at some time in the future.
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Figure 3-1: A 4-node network on which NTG and FIFO can be made unstable.

LIFO protocol and the FFS protocol can be made unstable on similar networks. A

rate of r > 1/x/2 is sufficient for instability of both LIFO and FFS.

3.3 Bounds on delay for stable protocols

We have already noted that for all four of the stable protocols presented in Sec-

tion 3.2.1, we have only been able to show exponential upper bounds on the maximum

delay. In this section we show that three of the protocols presented there actually

produce exponential delay, for some network G and some adversary A.

In Section 3.3.2, we describe a simple distributed randomized greedy protocol that

with high probability has polynomially bounded delays and polynomially bounded

queue sizes.

3.3.1 Exponential lower bounds for SIS, NTS and FTG

We now show that under the protocols SIS, NTS and FTG the delays can be expo-

nential. We first present a proof of this result for SIS and NTS; the proof for FTG is

similar.

In order to make the result more general, we use an adversary with a minimal

amount of burstiness. We say that an adversary A has rate 1 - e, if for every t > 1,
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every interval I of t steps, and every edge e, A injects no more than 1 + (1 - e)t

packets during I that require e at the time of injection.

Consider first a linear array L with m + 2 nodes 0, 1,..., m + 1, with two parallel

edges e? and el from node i to node i + 1, for 0 < i < m - 1, and with an edge em

from node m to node m + 1. Choose an e < 1/(m + 2) and an s > 2m + 1. We attach

to L a tree T such that during an interval of s steps, an adversary A with rate 1 - e

can inject (1 - e)s packets at the leaves of T with the following properties. They all

reach the root of T in the last step of the interval and they all require a common

edge. This tree T simply consists of (1 - e)s "branches", each of which is a chain

connected to the root.3 The kth branch has length k/(1 - e). In total T has O(m 2)

edges. The graph G is obtained by connecting L and T, making the node 0 of L the

root of T. (See Figure 3-2.)

0coeo

L e?

eo22

Figure 3-2: The network used for the lower bound. Here m = 3, s = 10 and e = 1/5.

3 Note that if the burst parameter satisfied a > (1 - e)s then we could simply inject (1 - e)s at
the root. We would not need to use the rest of the tree T. However, the tree allows us have burst
parameter 1, thus making the result more general.



We now construct an adversary A with rate 1 - e that injects packets in phases

of s steps each. We number the 2 m first phases from 0 to 2m - 1. For some fixed

i E {0,...,2 m - 1}, let bm-i ... bo be the m-bit binary representation of i. Then, in

phase i the adversary injects (1 - e)s packets at the leaves of the subgraph T of G, all
br b0 .  bmtarequiring edges eo e ... em-1 em, so that all of them reach node 0 in the last step of

phase i. It also injects (1 - e)s packets requiring only edge , for all 0 < j m - 1.

(Here b3 is the complement of b3.)

Let us define ko = (1 - e)s, and k3 = 2kj_1 - es2j - 1 for 1 < j 5 m. The crucial

lemma is the following. The intuition is that we build up a set of packets that wish

to cross ej. We then simultaneously hold up this set of packets using single edge

injections and build up another set of packets that wish to cross el. The two sets

of packets are then able to merge since they were injected at different times. This

creates a larger set of packets that all wish to cross an edge lower down the graph.

Lemma 3.3.1 For all j E {0,..., m}, let ij E {0, 1,...,2 m- j - 1} and bm.j- ... bo

be the (m -j)-bit binary representation of ij. Then, at the end of phase 2J(ij + 1) - 1

there are at least kj packets in the system still requiring edges e ... b--1 em.

All these packets are queued at edges of the subgraph L of G.

Proof: We use induction on j. The claim is trivially true for j = 0 since, by the

definition of A, at the end of phase i there are (1 - E)s = ko packets in node 0 all
bo b .  bmi 1requiring edges e e ... em-1 em, where bm-1... bo is the m-bit binary representation

of i.

Let now assume the result holds for some j and consider some iZ+1 whose (m -

j - 1)-bit binary representation is bm-j- 2 ... bo. Let i9 = 2ij+l and let i} = 2ij+l + 1.

Then, the (m - j)-bit binary representation of i9 is bm-3-2 ... boO and the (m - j)-bit

binary representation of iA is bm-j- 2 ... b01.

From the induction hypothesis, at the end of phase 2j(iQ + 1) - 1 there are kj

packets in L requiring eo bm-j--2 e. Since i + 1 is an odd number, the m-bit

binary representation bi-1 ... bo of any i E {2j(i + 1),. , 2j(i + 1) + 2J - 1} has

the bit bj = 1. Hence, during these 2i phases all the packets injected requiring eF are



single-edge injections. Therefore, during these 2i phases there are (1 - e)s2j packets

injected that require the single edge eq. Under SIS and NTS these new injections

have higher priority. In total, s2j packets cross edge eq0 during the above 2' phases.

Hence at the end of phase 2'(i ° + 1) + 2j - 1 = 2J(i 1 + 1) - 1 there are at least

kj - s2' + (1 - e)s23 = kj - es2 packets in L still requiring edges ee•+1 ... e, -j-em.

Also by the induction hypothesis, at the end of phase 23 (i + 1) - 1 there are at

least kj packets in L requiring edges ee+ .m- em Therefore there are at least

2kj - es2i = kj+ 1 packets in L requiring edges e+ol ... e-j- em at the end of phase

2i(i . + 1) - 1 = 2i+1(ij+ 1 + 1) - 1. O

Theorem 3.3.2 At the end of phase 2m - 1 there are at least (2m + 1)2m- 1 packets

in the system requiring edge em, and there are at least 2 m - 1 packets in some queue of

the system. Hence some packet will experience delay 2 m-1 .

Proof: From Lemma 3.3.1 with j = m and ij = 0, at the end of phase 2m - 1

there are at least km packets in L requiring edge em. Then, the theorem follows,

since km = 2m ko - mes2 m - 1 = s2m-1(2 - e(m + 2)) > (2m + 1)2m- 1 . There are only

2m + 1 queues where these packets can be held, hence some queue contains at least

2 m-1 packets. One of these packets will experience delay 2 m-1 .  1

The proof for FTG is very similar. For 1 < i < m attach a chain of m + 1 edges

to node i of L. Call this chain Ci. The total number of edges is still O(m 2 ). Now,

instead of injecting packets that wish to traverse the single edge ei ' the adversary

injects packets that wish to traverse the concatenation of the edge e4' and the chain

Ci+l. This ensures that these packets have priority over the packets that they need

to block.

3.3.2 A randomized greedy protocol with polynomial delay

bounds

For completeness and in order to provide a contrast with the exponential lower bounds

of the previous section, we briefly describe the randomized greedy protocol RANDOM



from [1] that has a polynomial delay bound. This bound is not worst-case since if the

system is run indefinitely then the number of packets in the system will eventually be

more than any fixed bound. We say that a randomized protocol P has a polynomial

delay bound if there is a polynomial p(.) such that for any network G with m edges,

any adversary A, any t > 0, and any k > 1, the probability that at time t there

are packets that have been in the system (G, A, P ) for more than time kp(m) is

exponential in -k.

The bound obtained is polynomial in d log m; thus, for systems in which only short

paths are used, this bound is polylogarithmic in the network size. 4

A brief description of the protocol RANDOM

Let A be an adversary of rate (a, r). Let d denote the length of the longest sim-

ple directed path and m the number of edges in G. Time is divided into intervals

X 1 , X 2, ... of length T = O(dlog m/(1 - r)). Priorities are randomly assigned to the

packets in such a way that packets injected during the interval Xi always have priority

over packets injected during the interval Xj for i < j. For this reason the protocol

resembles LIS. The exact method for assigning priorities is derived from techniques

of Leighton, Maggs and Rao for a static routing problem [44]. (We shall consider

the results of Leighton et al. in more detail in Chapter 5.) It is shown in [1] that by

using RANDOM the probability that at time t there are packets that have been in the

system for more than time k -poly(dlog m) is exponential in -k, i.e. RANDOM has a

polynomial delay bound.

3.4 Remarks

The main open question concerning the connectionless model is whether or not there is

a deterministic, distributed queueing protocol with a polynomial delay bound. Given

the similarities between LIS and RANDOM, and the fact that there is no known

4It can also be shown that if the number of packets in the system is ever more than kp(m), then
with high probability there is a net decrease in packets over a fixed subsequent time interval.



exponential lower bound for LIS, a specific open question is to determine whether

LIS itself has a polynomial delay bound. (It is noted in [1] that RANDOM can be

converted into a deterministic, centralized protocol with a polynomial delay bound;

thus, the emphasis is on finding a protocol that is both deterministic and distributed.)

Most of this chapter has concentrated on adversaries with rates arbitrarily close

to 1. It is also interesting to study the behavior of protocols against adversaries of

rates bounded away from 1. The instability results stated in Section 3.2.2 for NTG,

FFS, FIFO and LIFO were for adversaries of rate greater than 0.5. However, a result

of Borodin, Kleinberg, Sudan, and Williamson [12] shows that on a torus-like network

there exist adversaries of arbitrarily small positive rates that cause NTG and FFS to

be unstable. It would be interesting to know if for either FIFO or LIFO there is some

constant injection rate below which it is stable. An extreme possibility is that there

is a "Zero-One" type of result. Such a result would say that all greedy protocols are

either stable for rates arbitrarily close to 1 or else can be made unstable for arbitrarily

small rates.

A similar issue to the above is whether or not FTG, NTS or SIS have polynomial

delay bounds for sufficiently small injection rates? It should also be noted that the

adversary used in Section 3.3 has rate 1 - O(1/m). Recently, Leighton [48] has

shown that FTG has an exponential lower bound against an adversary whose rate

is independent of the size of the network. This result extends easily to NTS. The

network used is similar to the one on which FIFO and NTG were unstable. (See

Figure 3-1.)) An analogous result is not known for SIS.



Chapter 4

The Session-Oriented Model

4.1 The Model

We recall the definition of the session-oriented model. Let Af be a network of arbitrary

topology. A session consists of a simple path through the network and a set of packets

that travel along the path. (A path is simple if it uses each edge at most once.) We

use di to denote the length of session i, i.e. the number of edges in the path associated

with session i.

Each session i has an injection rate ri. This rate constrains the injection of new

packets into the session so that, during any interval of t consecutive steps, at most

tri + 1 packets can be injected into session i, for any t. We assume that the exact

injection patterns are determined by an adversary, subject to this constraint.

As in the connectionless model we assume that at most one packet can traverse

an edge at each time step. When two packets simultaneously contend for the same

edge, one of them must wait in a queue. During the traversal of their paths, packets

wait in two different kinds of queues. After a packet has been injected, but before it

leaves its source, the packet is stored in an initial queue. Once the packet has left its

source the packet is stored in an edge queue whenever it is waiting to cross an edge.

The delay experienced by a packet is the total time between its injection and the time

at which it reaches its destination.

Our main goal is to minimize the delay experienced by packets. A secondary



goal is to bound the size of the edge queues. As discussed in Chapter 2, it is more

important to bound the size of the edge queues than the initial queues. Recall that

for the connectionless model we had to restrict the rate at which packets are injected

into the network, otherwise the number of packets in the system would grow without

bound, thus making it impossible to provide delay bounds and bounds on queue size.

The same is true here. The assumption that we make in the session-oriented model

is that the sum of the rates of the sessions using any edge e is at most 1 - e, for a

constant e E (0, 1).

4.1.1 Template-Based Schedules

We focus on the problem of timing the movements of the packets along their paths. A

schedule specifies which packets move and which packets wait in queues at each time

step. In this thesis most of the schedules that we consider are template-based. In a

template-based schedule each edge is associated with a template. A template of size

M can be viewed as a wheel with M slots. Each slot contains at most one token. Each

of these tokens is associated with a particular session. The wheel "spins" at a rate of

one slot per time step. We allow a session-i packet to cross the corresponding edge

only if a session-i token appears. We then say that the packet has used or obtained the

token. For each session-i token, the session-i packet that uses it will be the one that

has been waiting to cross the edge for the longest amount of time, i.e. the session-i

packets use the session-i tokens in a First-Come-First-Served manner.

If we are considering template-based schedules our problem reduces to the problem

of assigning tokens to the slots on the templates. Our usual strategy will be to assign

tokens in packet-groups. A packet-group of tokens for session i will consist of di tokens,

one for each edge on session i. (There will be many packet-groups for each session.)

For each method of assigning tokens we initially provide bounds on delay and queue

size for a packet-group schedule. In this schedule, packets use tokens for the initial

edge in a First-Come-First-Served manner. However, once a packet has used one

token from a particular packet-group then for subsequent edges it only uses tokens

from that packet-group. In Section 4.2 we show that these bounds give us bounds



for the corresponding template-based schedule in which session-i packets use session-i

tokens in a First-Come-First-Served manner on all edges. If no ambiguity arises, we

shall often refer to scheduling packets rather than assigning tokens in packet-groups.

Template-based schedules are periodic. The length of the period is the lowest

common multiple of all the template sizes. It is not unreasonable to consider schedules

that can only be computed with a large amount of computational effort. This is

because the templates only need to be constructed once and can then be used to

schedule packets indefinitely. All that a switch must do is store the template and

"spin" it one slot every time step. The only schedule we consider that is not template-

based is the distributed schedule of Section 4.3.2.

4.1.2 Lower Bound

Observe that di is always a lower bound on the delay for session i, since every session-i

packet crosses di edges.

It is easy to see that (1X/ri) (and hence Q(1/ri +di)) is an existential lower bound.

Consider n sessions with rate r = (1 - e)/n, all of which have the same initial edge.

If a packet is injected into each session simultaneously, one of the packets requires

n = Of(1/r) steps to cross e.

For any given set of sessions, if we are using a template-based schedule then Q(1/r;)

is a lower bound on delay for some session i. Consider some edge e and suppose that

the sum of the rates of sessions that pass through edge e is 1-e. Suppose also that on

the template for edge e the maximum time between appearances of session-i tokens

is at most (1 - 2e)/ri for all sessions i that pass through edge e. This template must

have at least Fi Mril(1 - 2e) > M tokens where M is the number of slots on the

template. This contradicts the fact that each slot has at most one token. Hence there

is some session i that has two consecutive tokens that are at least (1 - 2e)/ri slots

apart. If a session i packet is injected just after one of these tokens appears then it

must wait at least Q(1/ri) time steps before it can cross edge e. This means that

for template-based schedules, there exists a session i such that some session-i packet

must experience delay Q(1/ri + di). An interesting open problem is to determine



whether or not this bound holds for non-template-based schedules.

4.1.3 Delay Insertion

The main technique that we use for obtaining schedules with small delay is random

"delay-insertion". The intuition here is that if each packet is delayed by a random

amount then it is unlikely that many packets will try to cross an edge at the same

time. This delay insertion technique was introduced by Leighton et al. in [44, 45] in

the context of static routing. (In the static routing problem, all packets are present

in the network initially.) Since our main result employs many techniques from [44],

we shall summarize them in detail in Section 5.1.

4.1.4 Leaky-bucket injection model

Our techniques can be generalized for bursty sessions that are leaky-bucket con-

strained. A leaky-bucket constrained session i has an associated "bucket" size bi > 1.

The number of session i packets injected into session i during a time interval of length

t is at most rit + bi for all t. In order to deal with bursty injections, we "shape" the

session-i arrivals at the initial queue. If a large burst of packets arrive, we hold them

in the initial queue as though they had not been injected yet, and then treat them as

if they were injected every 1/ri steps. To do this, the initial queue requires bi extra

space, and the delay experienced by session-i packets is increased by at most bi/ri

steps.

4.1.5 Chernoff Bounds and the Lovaisz Local Lemma

We shall make frequent use of a Chernoff Bound [15] and the Lovisz Local Lemma [62,

pages 57-58]. For ease of reference we present them here.

[Chernoff Bound] Let Xi be n independent Bernoulli random variables with prob-

ability of success pi. Let Y = E=l Xi and let p EŽ ! ~= pi. Then for 0 < 6 < 1, we



have,

Pr[ Y> (1 +b)p] < e62 s/3

[Lov6sz Local Lemma] Let A 1,..., Am be a set of "bad events" in a probability

space each occurring with probability p and with dependence at most d (i.e. every bad

event is mutually independent of some set of m - d other bad events). If 4pd < 1,

then with probability greater than zero no bad event occurs.

Our discussion of the session-oriented model is organized as follows. We first show

that if we can provide bounds for delay and queue size in packet-group schedules

then this gives us bounds for delay and queue size in template-based schedules. In

Section 4.3.1 we present a randomized centralized schedule that with high probability

has a delay bound of O(1/ri + di log(m/rmin)) and a queue size of O(log(m/rmin))

where m is the number of edges and r 4i, = mini ri. In Section 4.3.2 we present a

distributed schedule that has the same delay bound (but no bound on queue size).

Chapter 5 is dedicated to a proof that there exists a schedule with delay bound

O(1/r; + di) and constant queue size.

4.2 Converting Packet-Group Schedules into Template-

Based Schedules

In this section we show how to use bounds on delay and queue size for packet-group

schedules to obtain bounds on delay and queue size for template-based schedules.

Recall that a session-i packet-group consists of di tokens, one for each edge on session

i. The token for the first edge is known as the initial token in that packet-group. In a

packet-group schedule, once a packet has used the initial token from a packet-group

it can only use tokens from that packet-group to cross edges. In a template-based

schedule, the session-i packets use the session-i tokens in a First-Come-First-Served

manner on all edges.



To emphasize the distinction between the two types of schedule suppose that e

and f are two consecutive edges on the path for session i. Let AX,e and Ai,f be two

tokens for edges e and f respectively that belong to a packet-group L 1. Let A2,e and

A2,f be two tokens for edges e and f that belong to a packet-group L2. Suppose also

that A11, appears before A2,e but A1,f appears after A2,f. In a packet-group schedule,

if a packet uses Ai,e to cross edge e then it must use A),f to cross edge f. However, in

a template-based schedule, a packet could use AI,e to cross edge e and then use A2,f

to cross edge f.

We now state the result of this section. Suppose that we have a packet-group

schedule SPG such that,

1. Each session-i packet obtains a session-i token for the first session-i edge within

fl) steps of its injection. (We refer to these tokens as initial tokens.)

2. Once a session-i packet has obtained an initial token then it reaches its desti-

nation within another 4 2) steps.

3. If each session-i token is used by a session-i packet then there are never more

than qi session-i packets in any edge queue.

Now let STB be the template-based schedule that uses the same tokens.

Theorem 4.2.1 The schedule STB satisfies the above three properties 1, 2 and 3.

Therefore bounds for delay and edge-queue size in SPG imply bounds for delay and

edge-queue size in STB.

Proof: The fact that STB satisfies Property 1 is trivial since in both SPG and STB

the session-i packets obtain tokens for the initial edge in a First-Come-First-Served

manner.

We now show that STB satisfies Property 2. Let el, e,..., ed be the edges for

session i. Let m~m,e be the mth session i token to appear for edge ej. Let Pm be the

packet-group that contains m,,,,.

Lemma 4.2.2 The token Km,e ,+ appears after the token Km,Mej.



Proof: Suppose not. Note that for each packet-group Pm,, the token in Pm, for

edge ej+l must appear after the token in Pm, for edge ej, otherwise SpG would have

no delay bound. Therefore the set of packet-groups that contain Nl,ej+l,... , Km,ej+i

is a subset of the set of packet-groups that contain l,ej,... , Km-1,e3 . However, each

packet-group contains exactly one token for each edge. Hence we have m - 1 packet-

groups that contain m tokens for edge ej+l. This is a contradiction. o

Lemma 4.2.3 If the initial token used by a packet p is in Pm then in STB, packet p

crosses edge ej either at or before the time that Km,e, appears.

Proof: The proof is by induction on m and j. If packet p uses the initial token

in P1 then by Lemma 4.2.2 and the fact that session-i packets obtain their tokens in

STB in a First-Come-First-Served manner, p is always able to use Kl,j to cross edge

ej. For all m the result is clear for j = 1 by definition of Pm. Now suppose that

it holds for j' < j and m' < m. Therefore p crosses ej- 1 by the time that m m,ej

appears and hence by Lemma 4.2.2 it is waiting to cross edge ej by the time that

Km,e, appears. By the inductive hypothesis all of the packets that obtained initial

tokens from packet-groups in {P1 ,..., Pm-1} have crossed edge ej by the time Km-1,ei

appears. Therefore p can use Km,ej if it has not already used an earlier token. 0

We can now prove that in STB, no session-i packet experiences delay more than

£j2) once it has obtained its initial token. Let p be a packet that uses the initial token

in Pm. Let ,,,,d be the token for edge ed that is a member of Pm. If SPG is used then

packet p experiences delay at most £ 2) once it obtains its initial token. Hence there

are at most je 2) steps between the appearance of the initial token and the appearance

of token K,ed. By Lemma 4.2.3, in STB packet p crosses ed by the time that rcm,e

appears.

* Case 1. m < x. By the above comments the delay experienced by packet p in

STB once it has obtained its initial token is at most £.2)

* Case 2. m > x. There are exactly m - 1 packet-groups whose tokens for ed

appear strictly before Km,ed. Since m > x, Pm must be one of these packet-

groups. Therefore, by the pigeonhole principle, there exists an m' < m such



that the token for edge ed in Pm, appears no earlier than rm,e,. Let p' be a

session-i packet that uses the initial token Km',ei in Pm,. Since m' < m, ImI,ei

must appear before the initial token Km,,, in Pm. However, if SGa is used then

by the definition of Pm,, packet p' reaches its destination no earlier than the

time at which Im,eld appears. Hence in STB, packet p spends less time between

obtaining its initial token and reaching its destination than packet p' does in

SPG. Therefore in STB the delay experienced by p once it has obtained its initial

token is at most £).

This completes the analysis of delay bounds. It remains to show that STB satisfies

Property 3. Suppose that qi + 1 session-i packets are waiting to cross ej at time

t where j > 1. (Recall that we are only interested in bounding the size of edge

queues.) Suppose that these packets used the tokens Km1,ej- 1 , Im 2,_e,.- - -, -* mi+,ej-1

to cross edge ej-1. By an argument almost identical to the proof of Lemma 4.2.3,

if a packet uses Km,e, 1_ to cross ej-1 then it can use Km,,j to cross ej. Therefore

Kmi,e, Km 2 ,e , . I., ,mqi+,,ej have not appeared by time t otherwise not all of the qi + 1

packets would be waiting. Hence there are at least mq,+l - (ml - 1) Ž qi + 1 packet-

groups whose token for edge ej has appeared at time t but whose token for edge ej-1

has not appeared. Therefore if each session-i initial token is used by a session-i packet

then in SPG there would be qj + 1 session-i packets waiting to cross edge ej at time

t. This contradicts the definition of qj. E

4.3 A Preliminary Result

In this section we present a simple centralized schedule and a simple distributed

schedule that achieve delay bounds of O(1/ri + di log(m/ri,n)) with high probability.

In addition, the centralized schedule has a maximum queue size of O(log(m/rmin))

with high probability. These preliminary results are substantially simpler to prove

than the results of Chapter 5 because of the relaxed bounds on delay and queue sizes.

Nevertheless, they illustrate the basic ideas that are necessary.

In this section, for ease of presentation, we omit floors and ceilings where they



are necessary. We shall also assume that 1/ri is an integer for all i and there is a

constant k such that k/rf,, is a multiple of 1/ri for all i.0

4.3.1 A Centralized Schedule

We now describe the centralized schedule which we shall call TEMPLATE. Our analysis

will apply to the packet-group schedule. However, by the results of Section 4.2, the

corresponding template-based schedule will have the same bounds. Let M = k/rnin

where k is the constant chosen above. Each template will have size M. We first place

r;M initial tokens on the template for the first edge of session i, spaced 1/r; slots

apart.

Lemma 4.3.1 Each session i packet will obtain a session i token at most 2/ri steps

after its injection.

Proof: Suppose that packet p is injected at time t but has not obtained an initial

token by time t + 2/ri + 1. Let t' be the last time before t + 2/ri + 1 that there

were no session i packets waiting for initial tokens. (Note that t' < t.) Between

times t' and t at most (t - t')ri + 1 session i packets are injected. However, at least

(t - t' + 2/ri)ri - 1 = (t - t')r; + 1 initial tokens for session i appear between times

t' and t + 2/ri. By the definition of t', each of these tokens was used by a packet.

Hence none of the packets injected between t' and t (and in particular packet p) can

still be waiting for an initial token at time t + 2/ri. E

Once the initial session-i tokens are placed we delay each of them by an amount

chosen uniformly and independently at random from [L + 1, L + 1 /r], where L =

Slog(mM) and a is a constant. The intuition is that the random delays would spread

out the tokens. After the tokens have been delayed we can be sure that each packet

1In this section, we choose to assume the existence of k so as to avoid obscuring the main ideas.
If there is no such constant k, we can always show the existence of ýi for each session i such that the
following holds. i) ýi is a fraction of the form si/fi, where si and ti are integers and f4 = O(1/ri) is
a power of 2; ii) r <: ýi; iii) E• ýi <K 1 - E/2 for all edges. In what follows, if we choose the template
size M = maxj i4, then M = E(1/rmin) is a multiple of all the ei's. Then, instead of placing one
token every 1/ri slots, we place si initial tokens in one slot every £i slots. In Chapter 5 we shall be
more rigorous.



obtains an initial token within L + 3/ri steps. We now create the packet-groups of

tokens. (Recall the definition of packet-group from Section 4.1.1). For every session-i

token a placed in the template corresponding to the jth edge, we place a session-i

token b on the template corresponding to the (j + 1)st edge in such a way that b

appears exactly 2L steps after a.2

We observe that two different session-i packets p and p' have different starting

times T and T', and therefore different session-i packets do not cross an edge simul-

taneously. Unfortunately, tokens from different sessions may be placed in one slot,

which causes packets from different sessions to cross the same edge simultaneously.

The following lemma shows that the tokens are not clustered to any great extent.

Lemma 4.3.2 At most L tokens appear in any L consecutive slots on any template

with probability 1 - 1/(mM), where L = log(mM) and a is a sufficiently large

constant.

Proof: Since the initial tokens for session i are spaced 1/ri apart and each is

delayed by an amount chosen independently and uniformly at random from [L+ 1, L+

1/ri], the expected number of session-i tokens in a single slot is ri. For a particular

interval of L consecutive slots on a particular template, let the random variable X

equal the number of tokens in these slots. By linearity of expectations, E[X] <

Ei riL < (1 - e)L. Since the delays for the initial tokens are chosen independently

and all session paths are simple, we have the following by a Chernoff bound. (See

Section 4.1.5.)

Pr[ X > L ] Pr[ X > (1 + E)(1 - e)L ]< e- E2(1- c)L / 3 .

In the m templates there are at most mM intervals of L consecutive slots. Therefore,

by a union bound the probability that more than L tokens appear in any L consecutive

2Due to the periodic nature of the templates, some session-i tokens for an edge may appear before
the token from the first packet-group. This contradicts an implicit assumption of Section 4.2 that
all tokens are members of packet-groups. However, if we let all templates spin for one full rotation
before packets are injected then this problem does not arise.



slots is bounded by,

mMPr[ X >L] < mMPr [ X > (1 + e)(1 - e)L ]

< mMe-E2 (1-e)L/3

SmMe-_2(1-e)alog(mM)/6.

By choosing a sufficiently large constant a, we can bound the above probability by

1/(mM). lo

Lemma 4.3.2 is not sufficient to guarantee one token per slot. We resolve this prob-

lem by partitioning each template into intervals of L consecutive slots and "smoothing

out" each interval as follows.3 We take the at most L tokens from these slots and

rearrange them arbitrarily so that there is at most one token in each slot. We have,

Lemma 4.3.3 Consider a packet p. Let ~'P be the packet-group that contains the

initial token used by p before the smoothing process. Let .P be the token for the jth

edge in this packet-group. Then, after the smoothing process, token r, (the initial

token) appears after the injection of p and tc'+ appears after Cp. Therefore, the

packet-group schedule is legal.

Proof: A token is shifted by at most L- 1 steps by the smoothing process. Before

the smoothing, rl appears at least L steps after the injection of p and .+1N appears

exactly 2L steps after rP. The lemma follows. O

Lemma 4.3.4 Each session-i packet waits for at most O(log(m/rmin)) steps to cross

each edge.

Proof: Suppose that packet p uses token 9q from packet-group Kq to cross its jth

edge. Then packet p uses a .+, to cross its j + 1st edge. The token C +1 appears at

most 4L = O(log(m/rmin)) steps later than j.q The result follows. o
Therefore,

3 Here we assume that M is a multiple of L. This can be achieved by choosing M and L to be
powers of 2. (See the earlier footnote regarding the existence of an M that is a small multiple of
1/ri for all i.)



Theorem 4.3.5 With high probability, the randomized centralized schedule TEM-

PLATE has a delay bound of O(1/ri+di log(m/rmi,)) and a queue size of O(log(m/rm•n)).

Proof: The bound on queue size is immediate from Lemma 4.3.4. The bound

on delay follows from Lemma 4.3.4 and the fact that each packet receives an initial

token at most 2L + 3/ri = O(1/ri + log(m/rmin)) steps after its injection. 1O

With high probability the schedule TEMPLATE assigns at most one token to each

template slot. Note that if the first execution of TEMPLATE assigns more than one

token to a slot, TEMPLATE can be executed again until the condition of one token per

slot is satisfied.

4.3.2 A Distributed Schedule

The above result suggests the following simple distributed strategy for scheduling

packets so as to achieve small delay. As with the centralized schedule, we place initial

tokens on the first edge of session i and then delay each token by an amount chosen

independently and uniformly at random from [1, 1/ri]. Suppose that a packet now

has its initial token at time T. Then for the kth edge on this packet's path the packet

is given a "deadline" of T + 2L(k - 1) + L, where L = 2 log(mM). Whenever two or

more packets contend for the same edge simultaneously, the packet with the earliest

deadline moves. We call this scheme EARLIEST-DEADLINE-FIRST (EDF).

Lemma 4.3.6 For any edge, at most L deadlines appear in any L consecutive time

steps with probability at least 1 - 1/(mM), where L = ( log(mM) and a is a suffi-

ciently large constant.

Proof: The proof is almost identical to that of Lemma 4.3.2. OE

Lemma 4.3.7 If for any edge at most L deadlines appear in any L consecutive time

steps, then each packet crosses every edge by its deadline.

Proof: For the purpose of contradiction, let D be the first deadline that is missed.

This implies that all deadlines earlier than D are met. Let p be the packet that



misses deadline D for edge e. Since packet p makes its previous deadlines, p must

have crossed its previous edge by time D - L, or else e must be p's first edge and p

must have obtained its initial token by time D - L. Hence, at every time step from

time D - L + 1 to D, packet p is held up by another packet with deadline no later

than D. Furthermore, these deadlines must be later than D - L since all deadlines

earlier than D are met. Therefore, at least L + 1 packets have deadlines for edge e

from time D - L + 1 to D. This contradicts Lemma 4.3.6. o

Lemmas 4.3.6 and 4.3.7 imply,

Theorem 4.3.8 With high probability, the randomized distributed schedule EARLIEST-

DEADLINE-FIRST achieves a delay bound of O(1/ri + di log(m/rmin)).

Note that EDF does not generate a template for each edge. Instead, it generates

a list of riM initial deadlines for the first edge of session i, and gives them in order

to the session-i packets injected.



Chapter 5

The Session-Oriented Model -

O(1/r i + di) Bound

In this chapter we prove the existence of a packet-group schedule with delay bound

O(1/ri + di) and constant queue size. The results of Section 4.2 imply that the

corresponding template-based schedule has the same bounds. We begin in Section 5.1

by describing an algorithm of Leighton, Maggs and Rao (LMR) [44] for a static routing

problem since we shall make use of a number of their techniques. In Section 5.2 we

give an overview of our methods for the dynamic problem. The remainder of the

chapter contains the details of the proof.

5.1 The Leighton-Maggs-Rao O(c+d) algorithm for

static routing

In the static routing problem all the packets are present in the system initially. Each

packet wishes to follow a specified path. The congestion c of the problem is the

maximum number of paths that pass through any edge and the dilation d is the

maximum length of a path. As with our dynamic problem each packet takes one time

step to cross each edge and no more than one packet may cross any edge at any time

step. The much celebrated result of Leighton, Maggs and Rao states that there exists



a schedule such that all packets reach their destinations in time O(c + d). It is clear

that both c and d are lower bounds on the length of the schedule, hence this result is

asymptotically optimal. We now summarize their techniques.

An initial schedule is constructed in which each packet moves one edge at every

time step until it reaches its destination. This is an excellent schedule in terms of

delay but it is clearly illegal in the sense that more than one packet could cross an

edge during a single time step. The key idea is to refine the schedule a certain number

of times by introducing delays to packets. In order to understand why this is useful

we must present some definitions from [44].

A T-frame is an interval of T consecutive time steps. A T-frame has frame conges-

tion C if at most C packet cross any edge during the frame. The T-frame has relative

congestion R if it has frame congestion C and R = CIT. We say that a schedule has

relative congestion x and frame size I if the relative congestion in any frame of size I

or larger is at most x.

Since at most c packets wish to cross any edge it is clear that the initial schedule

in which packets move one edge at every time step has relative congestion 1 and

frame size c. It can be shown that for any schedule with relative congestion x and

frame size I, there exists a good set of delays that can be inserted into the schedule

so that the frame congestion is at most O(log5 I) and the relative congestion is at

most (1 + o(1))x. The new schedule is called a refinement of the original schedule.

When we refer to a delay being inserted into a schedule we mean that some packet is

held up for an extra time step before it crosses an edge. Note that when a schedule

is refined the frame size decreases by a large amount whereas the relative congestion

increases by only a small amount.

It can be shown that after O(log* c) refinements we obtain a schedule with con-

gestion 0(1) and frame size 0(1). This means that there is some constant w such

that at most w packets cross any edge during any time step. The schedule is then

"stretched" by a factor of "w", i.e. every time step is simulated by w time steps to

obtain a legal schedule in which at most one packet crosses an edge per time step.

In this schedule no packet is delayed by more than O(c + d) steps. (A packet waits



at most O(c + d) steps before it starts moving and then takes time O(d) to reach its

destination.) Moreover, the maximum size of each queue is bounded by a constant.

5.2 An O(1/ri + dz) bound for the dynamic problem

To obtain a solution for the dynamic problem we shall use many of the ideas from

LMR. However, our delay requirements are somewhat more rigorous and so there are

three major problems with doing this. We now present these problems and give a

brief indication of how we solve them.

1: Packets are injected indefinitely (for infinite time)

In the problem solved by LMR there are only a finite number of packets that need

to be scheduled. However in the dynamic problem that we are considering there

are an infinite number of packets that arrive over time. Our solution is to divide

time into intervals of length T = O(1/rmin + dmax). For some T = O(1/ri + di) we

aim to schedule all the packets from session i that are injected during the interval

[kT - T, (k + 1)T - T) so that they move and arrive at their destination within the

interval [kT, (k + 1)T). (See Figure 5-1.) Hence we shall be scheduling the intervals

of the form [kT, (k + 1)7T) independently. Our key result will be to show that we can

in fact carry out this scheduling.

2: Delay bounds are session based

In the refinement steps of LMR delays are added to all sessions. In particular, when

the frame size is I the packets in each session can be delayed by as many as I time

steps. However, if we are to employ a similar strategy with our current dynamic

problem then in general we must start with a frame size of O(1/rmin), otherwise we

would not be able to bound the relative congestion by a constant. Hence the delays

that would be inserted to all sessions at the start of the refinement process would

have size O(1/rmin). This amount of delay is tolerable for session i if 1/r; + di is large.
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Figure 5-1: The session-i packets that arrive during [kT - T, (k + 1)T - T) are
scheduled during [kT, (k + 1)T). In this figure, k = 1.

However, if 1/ri + di is small then adding a delay of O(1/rmin) time steps to a session-i

packet may prevent it from being able to reach its destination in time O(1/ri + di).

Hence we would not achieve the desired result.

The solution is to view each session as being either integral or fractional at each

stage of the refinement process. When we view a session of rate ri as being integral

we assume that whole packets are being injected into session i at rate ri. When we

view it as being fractional however we assume that an fi fraction of a packet is being

injected at every time step, where ri is a value slightly greater than ri. At each stage

of the refinement process the integral sessions will be those with a high 1/ri + di

value. These will be able to tolerate the delay added. The fractional sessions in

contrast will be those with a small value of 1/ri + di which means that they will not

be able to tolerate the delay added. However, since we are assuming that fractional

packets are being injected into such sessions, the congestion that they produce will

be only slightly larger than the sum of the corresponding session rates. Hence it is

not necessary to add delays to the packets in these sessions.

Of course, we eventually need to have a schedule for integral packets on all sessions.

To achieve this we convert some sessions from being fractional to being integral at

each stage of the refinement process. Initially we view all sessions as being fractional.

By the end of the process all sessions will be integral.



Each stage of the refinement process now consists of two steps, a refinement step

and a conversion step. Suppose that we have a schedule with frame size I and relative

congestion x. In the refinement step we introduce some delays to the integral sessions

only. This is done in order to reduce the frame size in a similar manner to LMR.

In the conversion step we convert some sessions from fractional to integral that can

tolerate the delay that will be inserted in subsequent refinement steps. The result

of the conversion and refinement steps will be a schedule with frame size log5 I and

relative congestion slightly larger than x. Some sessions may have been converted

from being integral to being fractional.

The result of the entire refinement process is a schedule with frame size 0(1) and

relative congestion 1. In addition all of the sessions are integral and so we are indeed

able to schedule whole packets.

3: Obtaining the final schedule

In LMR the result of the refinement process is a schedule with frame size 0(1) and

relative congestion 0(1). This implies that there exists some constant y such that

at most y packets cross any edge in any time step. For the static problem it is now

easy to construct a schedule in which at most 1 packet crosses an edge in any time

step. Every time step is simply replaced by y time steps and the at most y packets

that were scheduled to cross an edge in any original time step are now scheduled

arbitrarily within the corresponding y time steps.

For our dynamic problem however the solution is not so straightforward. Recall

that when discussing the first problem we indicated that we shall divide time up into

intervals and then construct an independent schedule in each interval. However, if

we are to expand time by replacing each time step by a larger number of steps then

these intervals will overlap and hence will no longer be independent.

The solution is to construct a new network and then use the techniques that

we discussed above on this new network. Recall that after the refinement process we

obtain a schedule with relative congestion 1 and frame size 0(1). Hence we can choose

a constant w that is an upper bound on this frame size. We construct a new network



by replacing each edge of the old network by 2w edges in the new network. We

then carry out all the techniques described earlier to obtain a schedule with relative

congestion 1 and frame size w on the new network. This means that in any interval of

w time steps at most w packets cross any edge. We divide time into intervals of length

w and reschedule the at most w packets that cross an edge during this time so that

at most 1 packet crosses any edge during any time step. For the new network this

rescheduling means that we might now have a schedule in which packets cross edges

out of order. Despite this, we can use it to construct a valid schedule for the original

network. Suppose that edge e in the original network corresponds to el, e2 ,... ,e2

in the new network. We schedule a packet to cross edge e in the original network at

the same time as it is scheduled to cross edge e2z in the new network. We show in

Section 5.5 that this gives a legal schedule in which at most one packet crosses an

edge in any time step and the packets cross the edges in order. The complete analysis

will also show that the delay experienced by each packet in session i is O(1/r; + di).

5.3 Parameter Definitions

The remainder of this chapter contains the details of the proof that there exists a

schedule with delay bound O(1/ri + di) and constant queue size. Our analysis makes

use of a sizeable amount of notation. In this section we collect together all definitions

for ease of reference.

5.3.1 The new network M

Let A" be the original network. In Section 5.5 we choose a constant w that is an upper

bound on the frame size of the schedule that we obtain at the end of the refinement

process. The new network M is constructed by replacing each edge of N by 2w edges.

Each session i in "N induces a corresponding session i in M.



5.3.2 Interval lengths

Let Di = 2wdi. It is clear that Di is the length of session i in M. Let,

T = 6DM + 1 + (8/e + 4)/ri,

and let T be the smallest integer multiple of w that satisfies,

T > (1 + 4/e) max T.

We divide time into intervals of length T and independently construct schedules

for the intervals [0, T), [T, 2T), etc. During the interval [kT, (k + 1)T) we assign

tokens for the session-i packets that are injected during [kT - T, (k + 1)T - T).

Throughout this proof we shall concentrate on assigning tokens for the packets that

are injected during the interval [T - T, 2T - RT). (These tokens will be placed during

the interval [T, 2T).) Clearly T = O(1/ri + Di). Since w is a constant we also have

R = O(l/r; + di).

5.3.3 Fractional packet size and parameters for the initial

tokens

Let,

ef = 8/er;1,
si = Ler,(1 +e/2)J.

When session i is converted from fractional to integral we place si tokens in one time

slot every ei slots. When session i is fractional the packets have size,

Si



Note that,

i >
£r~(1 + e/2) - 1

= ri(1 + 6/2) - 1/fj

> r;(1 + E/4) + Eri/4 - 1/ie
> ri(1 + E/4) + lli-.

The last inequality comes from the fact that £i 2 8/cri. We also have that,

i; < ri(1 + E/2).

Hence,

ri(1 + e/4) + 1/ii • ri 5 ri(1 + E/2).

For some edge e let E be the set of sessions that pass through edge e.

Lemma 5.3.1 For all edges e, EiiE i < 1 - E/2.

Proof:

iEE
ieE

< E ri(1 + e/2)
iEE

= 1 - e/2 - E2/2

< 1 - E/2.

5.3.4 Parameters for refinement and conversion

Let S ( q) be the schedule that is constructed after the qth refinement and conversion

steps. Let Xi = Di + 1/ri and let Xmax = maxi Xi. We shall show in Section 5.4 that

S ( q) has relative congestion c( q) and frame size I(q) where c( q) and I(q) are given by



the following recurrences. The parameter # is a positive constant that will be chosen

later. Let,

i(O) = elog 2/5 Xmax

I(q+1) = log5 I(q),

log I(q)

c( ) = 1 - e/2,

C(q+ l ) = (1 + b(q)) 2c(q).

Notice that I(q) decreases polylogarithmically with q whereas for large I (q) , c(q+1)

is only slightly larger than c(q ) .

We use A( q) to denote the set of integral sessions at the end of the qth conversion

and refinement steps. We use B( q) to denote the set of sessions that become integral

during the qth conversion step. The refinement process ends when q = ( for some

parameter C to be chosen later. We define A(q) and B( q) by,

A( ) = 0,
A (q+1 ) = A (q ) U B (q+ l )

B ( q+ ) = {i A ({ ) : I(q+1)) 2  Xi I e } for q < 1 - 1,

B (q+1) = {i A(q) Xi e }for q = ( - 1.

Lemma 5.3.2 The sets B( q) form a partition of all the sessions.

Proof: It is clear that if q 5 q' then B( q) n B( q') = 0. Also, I (1) = log2 Xmax by

definition which implies that Xmax = e' 1T . Hence for all sessions i there exists a q

such that Xi < ei .+l) This means that if the B( q) do not form a partition then

there must be some q for which e. I() < (I(q)) 2. But,

ev+i ) = elo- / I -q) = ((q)) 1g3/2 I(q)



We shall ensure that at all stages of the refinement process we have I(g) > e . (See

Section 5.4.4.) This expression is equivalent to log3/ 21 (q) > 2 which implies that

e > (I(q))2. By the above observations this completes the proof of the lemma.

Note that the sessions with large Xi values become integral first. We make use of

the bound Xi (I(q+) 2 in the refinement step and we use the bound log2 X, < I(q+1)

in the conversion step.

5.4 A Schedule for the Intermediate Network M

In this section we describe an initial schedule S(0) and the successive iterations needed

to transform it to a schedule S(C) that satisfies Theorem 5.4.1 below. Each interme-

diate schedule S ( q) is produced by applying the refinement and conversion steps to

the schedule S(q-1). All of these schedules are defined on the network M.

Theorem 5.4.1 Given a set of sessions defined on the network M there is a schedule

S() with the following properties.

1. The relative congestion is at most 1 for any frame of size larger than some

constant;

2. After leaving its source, each packet waits at most once every 0(1) steps, which

implies that all edge queues in M have size 0(1);

3. For all sessions i, each session-i packet reaches its destination within O(1/ri +

Di) steps of its injection;

4. All session-i packets that are injected during [T - T, 2T - T) are scheduled

during [T, 2T), i.e. each packet leaves its source no earlier than T and reaches

its destination before 2T.

The proof of this theorem is given at the end of Section 5.4.

We first define or recall several basic concepts. Given some schedule S, a region R

of the schedule is some interval of contiguous time steps in the schedule. A T-frame



is a region of length T. The congestion C in a T-frame is the maximum number of

packets that cross any edge in that interval and the relative congestion is the ratio

C/T. If session i is fractional then it always contributes exactly ri to the relative

congestion of any frame.

5.4.1 An Initial Schedule S(0)

In S(0), all sessions are fractional, i.e. A (0 ) = 0. Each packet (of a fractional size)

crosses one edge per time step whether or not other packets are using the same edge at

the same time. Since the relative congestion is entirely due to fractional sessions, the

relative congestion is at most E ri < 1 - e/2 = c(o) on any edge e (see Lemma 5.3.1).

Note that the above relative congestion holds for any frame size. We choose the

initial frame size I ( o) = e o2/ 5 Xmax, so that i(1) = log 2 Xmax, which implies Xmax =

e I  . This allows the sessions with the largest Xi value to be converted in the first

iteration of the algorithm (see the definition of B(1)).

5.4.2 The Refinement Step

In this section we describe the refinement step. For each schedule, the packets from

integral sessions are delayed in a way that dramatically reduces the frame size, but

does not increase the relative congestion and the length of the schedule by much.

To be more precise, for schedule S(q), we inductively assume that the relative

congestion is at most c(q ) for frames of size I(q) or larger and that each integral

packet waits at most once every I(q -
1) steps after leaving its source. In this frame

refinement step we show that there is a way to delay (by an amount related to the

frame size) the packets from A(g) so that, in the resulting schedule S(q+½), the relative

congestion is at most (1 + b(q))c(q) for any frame of size I(q+1) = log5 i(q) or larger,

where 6(q) = /log I(q). In addition each integral packet waits at most once every

I(q) steps.

The initial schedule S(o) is described in Section 5.4.1. Since there are no integral

sessions, no delays are inserted in this step. Clearly, the resulting relative congestion



is at most (1 + 6(0))c(0 ) for any frame of size 1( 1 ) or larger at the end of this step, and

no packet ever waits.

We now describe how to refine the schedule S( q), for q > 0. The refinement is

divided into two steps. In the first refinement step we divide the current schedule into

blocks of length 2 (I(q))3 + 2 (I(q))2 - I(q), and insert delays into each block so that its

length increases to 2 (I(q))3 + 2 (I(q))2. We show that these delays can be introduced

in such a way that in the central 2 (I(q))3 steps of each block the relative congestion

of frames of at least length I(q+1) is only a little larger than c(q) . (See Figure 5-2.)

At the beginning and end of each block there are "fuzzy" regions of length (I(q))2

each. In the second step we move the block boundaries so that the fuzzy regions

at the end and beginning of adjacent blocks are at the center of the new blocks of

2 (j(q))3 + 2 (I(q))2 steps. Again, we insert delays into each block increasing the size of

the block by (1 (q))2 steps. We show that there is a way to insert these delays so that

the final conditions for refining S(q) are indeed satisfied. (See Figure 5-3.)

In the following we present Lemma 5.4.3 that will be used extensively in both

steps of the refinement. We continue by presenting both steps in detail.

A Useful Lemma

The following lemma is used to prove Lemma 5.4.3.

Lemma 5.4.2 Let X and Y be independent random variables. Let Y be binomially

distributed with mean sp, and let a,, o2, and v be values such that o2 = al - 1/v.

Then,

Pr[ X + p > (1 + 1 )v] 2Pr[ X + Y > (1 + 2)v].

Proof: Let w = (1 + al)v - p,. We have,

Pr [ X +p , > (1 + o1)v ] = Pr [ X > w ], (5.1)

Pr[X+Y>(1+0o2)v] = Pr[X+Y > +w-1]. (5.2)



Note also that,

Pr[X+Y > , +w-1] Pr[X> , +w-1- Lpyj and Y2 Lyj]

= Pr[X> w- 1 +y- Lu,J ]Pr[Y 2 LJ ].

This last equality follows from the independence of X and Y. Theorem B.1 in [46]

shows that Pr [ Y > LpyJ ] Ž2 1/2. Since C, - LyuJ < 1, we have,

1
Pr[ X + Y >p,y + w- 1 ] > ý Pr[ X > w].

Our Lemma follows from equalities (5.1) and (5.2) and the above inequality. O

We say that a packet is active during some region of a schedule if the packet belongs

to some integral session and it traverses at least one edge during the region. Recall

that we are maintaining the following invariant. In the schedule S( q) a packet waits

at most once every O(I(q-1)) steps after leaving its source. Hence an inactive packet

is either at its source or its destination during the entire region. Lemma 5.4.3 below

is a stepping stone that allows us to reduce the frame size from I(q) to poly log I( q) .

We invoke this lemma for various values of s, t, r and R.

Lemma 5.4.3 Consider some region R of a schedule where the relative congestion

is at most r = 0(1) for frames of length s, where log3 I(q) < s < (i(S))2. Consider

any edge e and any t-frame, where log 2 I(q) < t < 2 log 2 I(q). Assume that each active

packet in the region is delayed between the beginning of R and the beginning of the

t-frame by a number of steps randomly, independently, and uniformly chosen from

[1,s]. Then, for any constant k there is some value - = 0(1)/log I(q) such that if
I(q) is large, the probability of having relative congestion greater than r(1 + 7) on e

during the t-frame is at most (I(q))-k

Proof: Let the random variable X be the frame congestion on e during the t-frame

due to the active packets after they have been delayed. If the relative congestion due

to fractional sessions is rf, the frame congestion due to fractional sessions in the t-

frame is exactly rft. Since the active packets are the only integral-session packets



that can cross e during the region, the frame congestion on e during the t-frame is

X + rft after the packets have been delayed.

Consider now a binomial random variable Y with parameters (rfs, t/s) and mean

E[Y] = rft. From Lemma 5.4.2, the probability p that the congestion in the t-frame

is larger than (1 + 7)rt after the packets have been delayed is,

p= Pr[ X + rjt > (1 +y)rt ] 2Pr[ X + Y > (1 + )rt],

where o = 7- 1/rt. Since t > log2 I(q) and r = 0(1), then 7 = O(1)/ logI (q) if

and only if a = O(1)/ log I(q). Let a = v/ logI(q), where v is a large constant. We

shall choose an appropriate value v so that the lemma is satisfied.

We first concentrate on X. Since the active packets are delayed up to s steps, an

active packet that crosses e in the t-frame after the delay insertion could cross e in

an interval of t + s steps before the delay insertion. The relative congestion due to

active packets is at most r - r1 in that interval before the delay insertion. Hence, at

most (t + s)(r - rf) active packets can cross e in the t-frame after the delay insertion,

and each of them has probability of at most t/s of doing so.

Recall that Y is a binomial random variable with parameters (rf s, t/s). We define

Z to be a binomial random variable with parameters (n, t/s), where n = r(t + s) >

(r - r1 )(t + s) + rfs. It is easy to see that,

p _ 2 Pr [ X + Y > (1 + oa)rt] < 2 Pr[ Z > (1 + a)rt].

Therefore, we can bound probability p by,

r(t+) r(t + )
p 2 . (t/s)(1 - )-i.

i=(l+a)rt

We bound the sum by observing that (1 + a)rt is larger than E[Z] = (t + s)rt/s,

since t/s < 2/ log I(q). Thus, the first term of the sum is the largest. By applying

the inequalities (1 + x) < e" for all x, ln(1 + x) > x - x 2/2 for 0 < x < 1, and



b() 5 (ae/b)b for 0 < b < a, and the fact that there are at most r(t + s) terms in the

sum, we have,

= :1 !)2r(t + s)

1 + 1 e (1+ eae ts-art

< 2r(t + s)e(1+a)rt(1+t/s-U+c 2 /2)- r t+art2/

= 2r(t + s)e - rta2 (1/2-a/2 - t/ • s- 2t/os)

The bounds on s and t and the definitions of r and a imply that we can choose

a constant v large enough so that 2r(t + s)e-'rt2 /4 < (I(q))-k for any constant k >

0. For values of I(q) larger than some other constant (dependent on v) we have

1/2 - a/2 - t/a 2s - 2t/as > 1/4. Hence we can choose v large enough so that

p < (I(q))-k when I(q) is large. EO

The First Refinement Step for Schedule S(q)

We first divide the interval [T, T + S(O) 1) into blocks of length 2 (J(q))3 + 2 (I(q))2 _ I(q)

We shall reschedule each block B independently. During a block B we only delay

active packets.

For each block B, each active packet in B is assigned a delay randomly, uniformly,

and independently chosen from [1, J(q)]. An active packet p, whose assigned delay is x,

is delayed in the first XI (q) steps of B once every I(q) steps. In order to independently

reschedule the next block, packet p is also delayed in the last (I ( q) - x)I(q) steps of B

once every I(q) steps. Therefore, a rescheduled block has length 2 (I(q))3 + 2 (I(q))2.

Before the delays are inserted to reschedule block B, an active packet p is delayed

at most once within the block, provided that 2 (I(q))3 + 2 (I(q))2 - 1 (q) < !(q-1), which

holds as long as I ( q) is larger than some constant. In Section 5.4.4 we ensure that I(q)

is large enough. Prior to inserting any new delay into a block, we check if it is within

I(q) steps of the single old delay. If the new delay would be too close to the old delay,

then it is simply not inserted. The loss of one delay in a block has a negligible effect



on the probability analysis that follows.

Lemma 5.4.5 shows that with the insertion of delays we can dramatically reduce

the frame size in the center of the block and increase the relative congestion only

slightly. In order to prove Lemma 5.4.5, we need the following fact.

Lemma 5.4.4 If the relative congestion in every frame of size T to 2T - 1 is at most

r, then the relative congestion in any frame of size T or greater is at most r.

Proof: Consider a frame of size T', where T' > 2T - 1. The first LT'ITJT - T

steps of the frame can be broken into T-frames, each with relative congestion r. The

remainder of the T'-frame consists of a single frame of size between T and 2T - 1

steps in which the relative congestion is also at most r. 0

Lemma 5.4.5 There exists a way of choosing delays so that in between the first and

last (I(q))2 steps of the block B, the relative congestion of any frame of size log2 
1 (q)

or larger is at most (1 + 71)c ( q), for some 71 = 9(1)/ log I().

Proof: With each edge e, we associate a bad event. A bad event on e happens when

the frame congestion on edge e is more than (1 + y1 )c(q)I during any I-frame of size

log2 I(q) or larger. Due to Lemma 5.4.4, it is sufficient to prove the statement for all

frames of size between log2 I(q) and 2 log 2 
1 (q) . We shall use the Lovisz Local Lemma

to show that the probability that no bad event occurs is nonzero. (See Section 4.1.5

for the statement of the Lovasz Local Lemma.)

We first bound the dependence, d, of bad events. Two bad events on two edges

are dependent only if a packet from a session i E A (q) can use both edges. At most

c(q)(2(I(q))3 + 2 (j(q))2 packets (from sessions in A(q)) can cross the same edge in the

block B, and each packet crosses at most 2 (1 (q))3 + 2 (j(q))2 - I(q) edges in B. As

we shall show later, c(q) < 1. Therefore, a bad event can be dependent on at most

O((I(q))6) other bad events.

We now bound the probability, p, that a bad event happens on e. Consider a

particular I-frame, where log2 1 (q) < I < 2 log 2 I(q), that lies completely between the

first and last (1 (q))2 steps of B. By setting R = B, r = c(q), s = I(q) and t = I,



we can apply Lemma 5.4.3 to show that for any constant ki there is some value

yi = O(1)/ log I(q) such that the probability pi of a bad event happening on e in

the I-frame is smaller than (I(q))-k.

Since there are 0((I())3 log 2 1 (q)) possible I-frames in B, the probability that a

bad event happens on e during any I-frame is p < p1O((I(9))3 log 2 I(q)). We can set

the value kl appropriately so that this probability is upper bounded by O((I())-7).

Therefore, we have 4pd < 1 and our lemma follows from the Lovasz Local Lemma.

time step

1 (I(q))2 (1 + l)c(q) (1(q))3 + 2(I(q))2 2(I(q))3 + 2( (q))2

I(q+1)

Figure 5-2: Situation after the first refinement step

At the end of the first refinement step, the center of each block has small relative

congestion for small frame sizes. However there are regions of (1(q))2 steps at the

beginning and end of each block that may have very large relative congestion. We

call these "fuzzy" regions, and we deal with them in the second refinement step.

The Second Refinement Step for Schedule St()

We start the second step of the refinement by relocating the block boundaries so that

blocks still have 2 (1(q))3 + 2 (1(q))2 steps, but now the fuzzy regions that were at the

beginning and end of adjacent blocks are in the center of new blocks. Then, a new

block has two "clean" regions of (I(q))3 steps each at the beginning and the end, and

a fuzzy region of length 2 (I(q))2 steps in the center.

As in the first step of the refinement we now concentrate on individual blocks.

We first show that the relative congestion is not very large for frames of size (I(q))2

or larger (even in the fuzzy region).



Lemma 5.4.6 For any choice of delays in the first step of the refinement, the relative

congestion in any frame of size (I(q))2 or larger is at most (1 + 2/I(q))c(q).

Proof: Consider an I-frame with I, steps before the center of the block and 12

steps after the center (I = I1 + 12, and either I, or 12 could be zero). A packet

crosses some edge e in the II-frame only if it did so in some frame of length I, + I(q)

before the delays were inserted. (This is true for both fractional and integral packets.)

Therefore, at most (I, + I(q))c(q) packets can cross edge e in the II-frame. Similarly, at

most (I2 + I(q))c(q) packets can cross edge e in the I 2-frame. Therefore, the congestion

in the I-frame is at most (I, + 12 + 2I(q))c(q) = (I + 2I(q))c(q), and for I > (I(q))2 the

relative congestion is at most (1 + 2/I(q))c(q) . o

Now, in order to reduce the frame size in the fuzzy region, we consider only the

active packets in each block B, and assign a delay randomly, independently, and

uniformly chosen from [1, (I(q))2] to each active packet. A packet p with delay x waits

once every (I(q))3 /x at the beginning of the block and once every (I(q))3/((I(q))2 - x)

at the end. As in the first step a delay is not inserted if it is going to be within I(q)

steps of an existing delay for a moving packet.

The block length after the delay insertion is 2 (I()) 3 + 3 (I(q))2, and the fuzzy region

can be (I(q))2 steps longer, spanning steps (I(q))3 to (I(q))3 + 3 (I(q))2.

The next lemma shows that there is some way of inserting delays so that the frame

size in the fuzzy region is reduced, and the frame size and relative congestion in the

rest of the block are increased by only a small amount.

time step

(1 + 7Y)cJ(
)  (i(q))3 (i(q))3 + 2 (I(q))2 2(I(q))3 + 2 (T(q))2

fuzzy region

I(q+1) (i(q))2

Figure 5-3: Situation after relocating block boundaries

Lemma 5.4.7 In a block B, there exists a way of choosing delays so that in the fuzzy

region (i.e. interval [(I(q))3, (I(q))3 + 3 (I(q))2]) the relative congestion of any frame of



size log 2 
1 (q) or larger is at most (1 + y2)c(q), for some "Y2 = O(1)/ /log,(q), and so

that in the intervals [I(q)log3 I(q), (I(q))3] and [(I(q))3 + 3 (i(q))2, 2 (I(q))3 + 3 (I(q))2 _

I( q) log3 I(q)] the congestion of any frame of size log2 I(q) or larger is at most (1 +

73)C(), for some y3 = O(1)/Vlog(q)

Proof: As in Lemma 5.4.5, we shall use the Lovaisz Local Lemma to prove the

claim. We associate a bad event with every edge e, so that a bad event happens on

e if, for any I > log2 1 (q),

* more than (1+72)c(q)I packets cross e in any I-frame in [(I(q))3, (I())3 +3(I(q))2]

(the fuzzy region), or

* more than (1+73 )c(q)I packets cross e in any I-frame in either [I(q) log3 j(q), (i(q))3]

or [(I(q))3 + 3 ((q))2, 2 (I(q))3 + 3 (i(q))2 _ i(q) log3 I(q)].

The dependency, d, of the bad events is bounded as in Lemma 5.4.5. Two bad

events on two edges are dependent only if packets from some session i E A(q) use both

edges. At most O((I(q))3) packets cross any edge in a block, and each of them can

cross at most O((I(q))3) other edges. Therefore, d = O((I())6).

Now, to bound the probability p of a bad event happening on some edge e, we

consider the three intervals separately and sum their respective probabilities. From

Lemma 5.4.4 we only consider frames of length I such that log 2 
1 (q) < I < 2 log 2 I(q) .

Take first some I-frame in [(I(q))3, (I(q))3 + 3 (I(q))2] (the fuzzy region). From

Lemma 5.4.6 we know that the relative congestion for frames of size (I(q))2 or longer

is at most (1 + 2/I(q))c( q) = 0(1). Then, by choosing R = B, r = (1 + 2/I(q))c(q),

s = (I(q))2, and t = I, we can use Lemma 5.4.3 to show that, for any constant k2 , there

is some o2 = O(1)/Jlog (q) such that the probability of having relative congestion

on e in the I-frame larger than c(q)(1 + 2 /j(q))(1 + 02) = c(q)(1 + 72) is smaller than

(I(q))-k 2 . Note that y2 = O(1)//logJ(q).

Take now some I-frame in [I(q) log3 I(q), (i(q))3], which starts at step j. Given the

way delays are inserted, by the jth step an active packet with delay x has been

delayed jx/(I(q))3 steps. Thus, the delay of an active packet at the jth step is



essentially a random value uniformly chosen from [1, j/I()]. For j > I(q) log3 I(q)

the value j/I ( q) > log3 I(q) .

Note that before the delays were inserted, Lemma 5.4.5 implies that the relative

congestion in any frame of length log2 
1 (q) or larger in the interval [1, (I(q))3] was at

most (1 + 71)c(q). Therefore, we can set R = [1, (I(q))3], r = (1 + 71)c(q), s = log3 I(q),

and t = I, and use Lemma 5.4.3 to show, for any constant k3, the existence of some

as = O(1)/•log I(g) such that the probability of having relative congestion larger

than (1 + o3)(1 + y1 )c( q) = (1 + 73)c(q) on e in the I-frame is smaller than (I(q)) - k3 .

Again, y3 = 9(1)/ Flog (q).

By symmetry, the same value 73 makes the probability of a bad event happening

on e in some I-frame in [(I(q))3 + 3 (I(q))2, 2 (I(q))3 + 3 (I(q))2 - I(q) log3 
1 (q)] smaller

than (I(q))-k 3
.

There are O((I(q))3 log2 I(q)) possible I-frames in the intervals that we have con-

sidered. Hence, we can choose values for k2 and k3 such that the probability of a bad

event is bounded by p < (pl + 2p2)O((I(q))3 log I(q)) < O((I(q))7). Therefore, we can

guarantee 4pd < 1 and invoke the Lovisz Local Lemma to prove the claim. O

Finally, we bound the frame size and the relative congestion in the remaining

intervals of the block in the following lemma.

Lemma 5.4.8 The relative congestion in any frame of size log4 I(q) or larger in the

intervals [1, I( q) log3 I(q)] and [2 (I(q))3 + 3 (I(q))2 - I(q) log3 
1 (q), 2(I(q))3 + 3(I(q))2] is at

most (1 + 7_)(1 + 1/ log I(q))c(q) = (1 + 7 4 )C(q).

Proof: Let us first consider some I-frame in [1, I( q) log3 I(q)]. Recall that, before

inserting delays, the relative congestion for frames of size log 2 j(q) or more was at most

(1 + 71)c ( q). In the interval no packet is delayed more than log3 I ( q ) steps. Therefore,

the packets crossing some edge e in the I-frame could have crossed e in some interval

of at most I + log3 1 (q) steps. Hence the congestion in the I-frame can be at most

(I + log3 I(q))(1 + 71 )c(q). For I > log4 1(q) the claim follows. The proof for interval

[2(I(q))3 + 3 (I(q))2 - I( q) log3 I(q), 2(I(q))3 + 3 (I(q))2] is similar. OE

From the above two lemmas we have that any frame of length at least log4 I(q)



in each of the different intervals has relative congestion at most (1 + 7)c( q), where

7 = max(72,73,74) = O(1)/ log I(q). We need to be careful now with the relative

congestion in frames that overlap several intervals or several blocks. We can however

say that for any frame of size I(q+l) = log5 i(q) or larger, the relative congestion is at

most (1 + 6(q))c( q), for some 6(0) = #/ log I(q), where / is a large constant. We use

8(+") to denote the schedule that has now been produced.

5.4.3 The Conversion Step

In the conversion step we take the schedule S(q+2) that has been produced by the

refinement step and transform it into the schedule S (q+f ) . In this schedule we shall

view the sessions in B(q+l) as integral sessions. The relative congestion of S (q+1) in

frames of size I(q+1) or larger is at most (1 + S(q))2c(q), where 6(q) = / logI(q).

(Recall that for the schedule S(q+½) the relative congestion is at most (1 + S())c(q) for

any frame of size I(q+1) or larger.)

In the conversion step we apply the following two substeps to each session i E

B(q+1) . (a) In the discretization substep we take the schedule for fractional session-i

packets and convert it to a schedule in which all session-i packets reach their desti-

nations quickly. (b) In the delay-insertion process we insert delays into the schedule

in such a way that the relative congestion due to sessions in B (q+l) is not too large.

Discretization

We now describe how to transform a schedule for a fractional session into a schedule

for an integral session. Recall that when we are providing a schedule for a fractional

session we assume that an ri fraction of a packet is injected at every time step.

The schedule for the fractional session is extremely simple. Each fractional packet

crosses one edge every time step until it reaches its destination. Clearly the relative

congestion due to session i is i; on any edge through which session i passes.

In the discretization step we provide a schedule for integral packets in which every

packet reaches its destination without too much delay. The key problem is the placing



of initial tokens on the first edge of the session. When a session-i packet is injected it

waits until all the other session-i packets have crossed the first edge and then waits

for the first session-i initial token to appear. The packet crosses the first edge at this

time. Packet-groups of tokens are then created in such a way that a packet can cross

one edge every time step once it has crossed its initial edge. In other words, if there

is a token for session i on its kth edge at time t then there is a session i token on its

(k + 1)st edge at time t + 1.

In order to describe the distribution of initial tokens we consider the two intervals

U = [T - T, 2T - 2T) and V = [T, 2T - 2T). (See Figure 5-1.) The significance of

these intervals is that all the packets that are injected during the interval U will be

assigned an initial token during the interval V. Although the interval V is shorter

than the interval U we shall ensure that the initial tokens appear within V at rate

ri. Since packets are injected into session i at rate ri and ri < ri we shall be able to

bound the time that a packet must wait before it receives an initial token.

The exact method for assigning initial tokens is as follows. The interval V is

divided into intervals of length ii. (See Figure 5-4.) If the length of V is not divisible

by li then the first such interval is incomplete. We then place si initial tokens at the

end of each interval.

U
V

Service time

Arrival time .

T - Ti 7 2T -T 2T

Figure 5-4: Session-i packets that are injected in interval U are assigned initial tokens
in interval V. The interval V is divided into consecutive intervals of length Li, each
of which has si initial tokens. The initial tokens are shown in solid dots.

Lemma 5.4.9 Each session-i packet that is injected during U can cross the first edge

on the session within Ti + Li = O(1/ri + Di) steps of its injection.

Proof: Let x = TT" be the ratio of the length of the interval U to the length of



the interval V. We first show that si is larger than the number of session-i packets

that can arrive during an interval of length xi;. By the definition of injection rate no

more than n = xziri + 1 session-i packets can be injected during x;i time steps. By

the definition of I and T we have T > (1 + 4/e) maxi T. Hence x < 1 + e/4 which

implies that n < si by the definition of si.

Recall that we divided V into intervals with boundaries,

T, 2" - T - ati, 2T - T - (a - 1)i, I ... , 2T - E,

for some a. Now divide U into intervals with boundaries,

T - T, 27 -T - axii, 2" - Ti - (a - 1)xfi,..., 27 - Ti.

The above argument shows that all the packets injected during [T -TR, 2T - - axzi)

can obtain an initial token during [T, 2T - T - aei) and all the packets injected

during [2T - T - kxi ,21 - E - (k - 1)xfe) can obtain an initial token during

[2T - T - kte, 27 - T - (k - 1)e1 ). This implies that all packets can obtain an initial

token within,

i£ + T-- (T-- T) = fe + Ti = O(1/r; + D)

steps of their injection. E

Delay Insertion

The above discussion shows that we can provide a schedule for the new integral

sessions in which all packets reach their destinations quickly. However, the relative

congestion could now be large if many packets wish to cross an edge at the same time.

The solution is to delay each initial token by an amount chosen uniformly at random

from [1, £i]. This has the effect of delaying the time at which we can be sure that a

packet crosses the first edge. If an initial token ic is assigned a delay x then we delay

all the tokens in the same packet-group as Ki by an amount x.



Lemma 5.4.10 Consider an edge e and a t-frame in the interval [T,2T). Suppose

that session i passes through e and consider the conversion step in which session i

becomes integral. Then the expected number of session-i packets that cross edge e

during the t-frame after the delay insertion substep is at most tsi/e; = ri.

Proof: Consider any time step. Before the delays are inserted the number of

session-i packets that can cross edge e in this time step is at most si and each does so

with probability 1/1i. Hence the expected number of packets that cross edge e during

this time step is si/ei. By linearity of expectations the expected number of packets

that cross edge e during the t-frame is tsil/i. 0

Lemma 5.4.11 The initial delays for sessions in B (q+l) can be chosen in such a way

that the relative congestion in any frame of size I (q+1) or bigger is at most c(q+l) after

the delays are inserted.

Proof: We shall use a Chernoff bound and the Lovisz Local Lemma. Due to

Lemma 5.4.4 it is sufficient to prove the result for frames of size between I (q+1)

and 2J(q+1) . In order to use the Lovisz Local Lemma we must define a set of bad

events. We associate a bad event B{e,I} with each edge e and each I-frame, where

I (q+1) < I < 21 (q+l ) . We define B{e,I} to be the event that more than Ic(q+l) packets

use the edge e during the i-frame. In the analysis below we show that with non-zero

probability no bad event occurs. Let,

Dmax = max Di,
iEB(q+l)

ran = min ri,
iEB(q+1)

fmax = max ii,
iEB(q+1)

1
X = max Di + --

iEB(q+l) ri

Note that Dmax = O(X), rma. = O(X) and imax = O(X). To apply the Lovasz Local

Lemma we must first bound the dependency d between bad events. Note that the

probability of a bad event occurring is dependent solely on the delays assigned to



packets from sessions in B( q+1) . Hence, a bad event B{e,,ti} is dependent on the bad

event B{e,I} only if there is a packet p from a session i E B( q+l) such that there is a

non-zero probability that p uses e in the I-frame and a non-zero probability that p

uses e' in the I'-frame.

Consider some bad event B{e,I). We now bound the number of bad events B{ed,Ii}

that can be dependent on it. There are at most 1/rmin sessions in B (q+ l), each of

which is at most Dmax long. Therefore there are at most Dmax/rmin = O(x 2 ) choices

for e'. Furthermore, the intervals I and I' cannot be more than Dmax + £max steps

apart. (Otherwise any session-i packet either has probability 0 of crossing e during I

or probability 0 of crossing e' during I.) Therefore, the starting point of I' can only

be in one of 2Dmax + 2emax + 4 I(q+ l ) locations which implies that the total number

of possible choices for I' is at most (2Dmax + 2emax + 4 I(q+1))I(q+1) = O(X(I(q+1))2).

This means that there are at most O(X 3 (I(q+l)) 2) bad events B{e,,p) that depend on

B{e,I}. We conclude that the dependency d of the bad events is O(X 3(I(q+l))2).

It remains to bound the probability that a bad event B{e,I} happens. By our

assumptions about the schedule 29+e) we know that before the conversion step the

frame congestion on edge e during the I-frame is at most (1 + 6(0))C(q)I. Let S be the

set of sessions in B( q+l) that use edge e. When the sessions in B(q+l) are fractional

they contribute exactly IE is ri to the frame congestion. Lemma 5.4.11 implies that

the expected frame congestion due to the sessions in B ( q+ l) is at most I EiEs ^i after

the delays are inserted. The congestion due to sessions not in B(q+l) does not change

during the conversion. Hence, if we denote by t the expected frame congestion on

edge e during the I-frame then yL • (1 + 6())c(q)I. Note that by adding extra "ghost"

packets that cross edge e during the I-frame with probability 1 we can ensure that

a >_ (1 + 6(0))c()I. This only increases the probability that the bad event BLe,I)

happens.

Now let P be the set of packets that have a non-zero probability of crossing edge

e during the I-frame. For each packet p E P let Z, be a Bernoulli random variable



that is equal to 1 if and only if p crosses edge e during the I-frame. We have,

Pr[B{e,I} occurs] = Pr[ Frame congestion on e in I > c(q+l)I ]

< Pr[ Frame congestion on e in I > (1 + (q))P ]

< e-(6(q))2 /3

< e-(1-e)
2 l(q+) /2 log I(q)

e-< ((1-)(I(q+))1/5 (I(q+1))
3 / 5

e-(1-e) (I(q+1))1/5 log06/5 X

The first inequality comes from the fact that c(q+ l ) = (1 + 6(q))2c(q) and ip 5 (1 +

b5())c(q)I. The second inequality follows from a Chernoff Bound. The third inequality

holds since p 2 1(1 - e)I 1(1 - e)I(q+ l ) and b(q) = - .- The fourth inequality

follows from the equation log I(q) = (I(q+'))1/5 . The last inequality comes from the

fact that log2 X < I (q+l ) . (This explains the need for log2 Xi < I(q+1) in the definition

of B(q+l).)

When # is a sufficiently large constant we have 4dp < 1. By the Lovisz Local

Lemma this implies that with nonzero probability no bad events occur. Therefore

there exists a way to choose the initial delays for sessions in B( q+l) such that for all

frames of size I( q+1) or larger the relative congestion is at most c(q+l) . Hence there

exists a schedule, which we call S (q+l ), with frame size I(q+ l ) and relative congestion

c(q+'l). 1

Note that in the proof of the above lemma we associate a bad event with each edge

e and each interval I. Recall that in the analysis of the refinement step we started by

considering one particular interval and a bad event was associated with an edge only.

We then used a union bound to obtain a result for all intervals. The reason that we

cannot do this for the conversion step is that we must consider the whole interval T.

For some sessions i, however, Xi could be much smaller than T and so we would have

many intervals to consider. The probability of failure for each interval would not be

small enough to allow us to use a union bound.



5.4.4 The Termination of the Algorithm

Let x be the smallest constant that satisfies the following conditions.

1. (1 - )2 >1 i.e. x > ep2/(-/ )2

2. > -loglog5 X

3. log 5 x < "

4. log' x > e .

5. 2(log' x)3 + 2(log5 x) 2 - log5  < x.

6. If I(q) > x then the proof of Lemma 5.4.3 holds whenever it is invoked in the

analysis of the refinement step.

(It can be verified that such a constant exists.) The refinement process terminates

with a schedule S(C) when I(C) is smaller than x. The above conditions give us the

inequalities that we need for our analysis.

Lemma 5.4.12 In the schedule S(C) all sessions are integral and the relative conges-

tion is at most c(¢) < 1 for any frame of size I(C) or larger.

Proof: By Lemma 5.3.2 the sets B (q+l ) form a partition of all the sessions. Hence

in S(C) all the sessions are integral. By our analysis, the relative congestion in S(W) is

at most c(C) for all frames of size I(V) or larger. Hence it remains to show that c(C) < 1.

By termination condition 1 we have x < I(C- 1) where x > e32/(1\- )2. Let

A = 0 and observe that b(C-1) < A < 1. Note also that,

( 6 (q+1) 2 - 2 2 >

log i(q+1) log log5 I() log I(q)

by termination condition 2. By the recursive definition of c(C) we have,

c(C) = (1 + S(C-1))2( 1 + 6 (C-2))2 ... (1 + 6(0 ))2 C( )



< (1 + A) 2(1 + A 2) 2(1 + A4) 2(1 + A8) 2 ... (0 )

< (1 - )-2 {( - A) 2(1 + A)2(1 + A2)2(1 + A 4)2(1 + A8) 2 .. } c()

< (1- A)-2c (0)

= (1 - / Vlg)-2c(0 )

1 - e/2
1 - e/2

= 1.

The first inequality comes from the fact that b(q) < (6(q+1))2. The third inequality

holds since A < 1 and hence the product in the braces is less than 1. The penultimate

equality follows from the choice of x and the fact that c(O) = 1 - e/2. o

We now bound the delay that a packet experiences in the schedule S(). The

analysis of the conversion step shows that when session i becomes integral, the delay

experienced by a session-i packet before it starts moving is at most O(Di + 1/ri)

steps. We also know by the analysis of the refinement step that once a packet starts

moving it waits at most one step every I(C-1) steps. However, the delay added during

the refinement steps can postpone the time at which a packet starts moving. The

following lemma bounds this delay.

Lemma 5.4.13 During the refinement steps, a session-i packet is delayed by at most

2(Di + 1/ri) time steps before it starts moving.

Proof: Suppose that S(q') is the first schedule in which session i is integral. Let p

be a session-i packet. For q < q' - 1, p is not delayed during the refinement of S(q).

For q > q' the time at which p starts moving is only affected by the delays added

to one particular block during the refinement step of S(q). By the definition of the

refinement step, p is delayed by at most I(q) + (1 (q))2 steps before it starts moving.

Therefore the start time of p is delayed by at most Cq>q, I( q) + (I(q))2 steps during

refinement. Since S(q') is the first schedule in which session i is integral we have that

i E B ( q') . By the definition of B ( q'), Di + 1/ri(= Xi) Ž (I(q'))2. By termination

condition 3, i(q+1) < I(q), hence a session-i packet is delayed during refinement by

at most 4(Di + 1/ri) steps before it starts moving. O



We can now prove that S(c) has all the properties stated in Theorem 5.4.1.

Proof of Theorem 5.4.1

1. By Lemma 5.4.12, the relative congestion is at most 1 for any frame of size I(0)

or larger. The termination conditions imply that I (() is at most some constant.

2. By the invariant maintained throughout the refinement process, a packet waits

for at most one step every I(C-1) steps once it leaves its source. In addition,

by Property 1 above, at most I (C) packets cross an edge during any time step.

Therefore, the edge queues have size at most 21(C) .

3. Let p be a session-i packet and consider the schedule produced by the discretiza-

tion substep of the conversion step in which session-i is converted. Let t, be the

time at which p obtains an initial token in this schedule. The time at which p

starts moving is delayed in both the conversion and the refinement steps. The

delay inserted during the conversion step is at most i£i _ 1 + 8/eri and the delay

due to refinement is at most 4(Di + 1/ri) by Lemma 5.4.13. By Property 2,

the packet p reaches its destination in at most 2Di steps once it starts moving.

Therefore, p reaches its destination by time t, + 6Di + 1 + (8/e + 4)/ri = tp + ±T.

Lemma 5.4.9 implies that tp is at most Ti + ti steps after the time at which p is

injected. Hence p reaches its destination within 22T + iL = O(1/r; + Di) steps

of its injection.

4. Let p and t, be as above. By the definition of the discretization substep, if p is

injected during [T - T, 2T - Z) then t, E [T, 2T - T). Hence the discussion

of Property 3 implies that all session-i packets injected during [T - Ti, 2T - Ti)

are scheduled during [T, 2T).



5.5 A Schedule for the Original Network, N

The schedule S(C) is a schedule for the network M. Of course, we are really concerned

with providing a schedule for the network /. We now show how to construct such a

schedule which we shall call Sg. Recall that in the construction of M from K, each

edge e in nA was replaced by 2w consecutive edges el,..., e2. The length of the ith

session in M was therefore Di = 2wdi. However, we did not define w. We now do

this by setting w = x, where x is the constant defined in the termination conditions.

(See Section 5.4.4.) In the schedule Sgr, which we define below, all session-i packets

will reach their destinations within time O(1/ri + di) and at most one packet will

cross an edge during any time step. Hence the schedule Sg will be a legal schedule

and it will have the desired delay bounds.

We first partition the time interval [T, 2T) into consecutive intervals of length w.

(Recall that we set T to be an integer multiple of w). For each w-interval and each

edge f in M, at most w packets can cross f during the w-interval in the schedule

S(C) . (This is because w > I(C).) We now smooth out the schedule S(C) to obtain a

schedule S(C). Let pl, p2,... be an arbitrary ordering of the packets that cross an edge

f during a w-interval in the schedule S(). In S(c) we schedule pj to cross f during

the jth step of the w-interval. (Recall that we are considering at most w packets.)

The schedule W(C) has the property that at most one packet may cross an edge during

any time step. Unfortunately however, since the times at which packets cross edges

have been shifted, a packet may not be scheduled to cross the edges on its route in

order. For example, a packet may be scheduled to cross g before f, whereas g follows

f on its route in M. A packet may also be scheduled to leave its source before its

injection time. We can use S(C) however to define a legal schedule for the network NA.

Definition 5.5.1 In the schedule Sg, a packet p crosses edge e in Kn at time t if and

only if it crosses edge e2t in M at time t in the schedule S(C).

Lemma 5.5.2 In SKr, each packet is scheduled to leave its source after its injection

and is scheduled to cross the edges on its route in order.



Proof: We first show that each packet crosses the edges on its route in order.

Consider a packet p. Let e and e be two edges on p's route in I and suppose that

8 follows e. Let t and t be the times that p crosses e and ^ in the schedule Sg. We

shall show that t < t. Let e2w and e2w be the edges in M that correspond to e and e.

Let 7 and T be the times that p crosses e2, and e2w in the schedule S(c) (i.e. before

the smoothing). Since in 8(C) the packet p crosses the edges in M in order we have,

7 + 2w < ·7.

In the schedule SA, p crosses e at time t which is shifted by at most w - 1 steps from

7. (Note that in S(C), p crosses edge e2z at time t.) Similarly, t is shifted by at most

w - 1 steps from 7i. Hence,

r - (w - 1) t < r + (w - 1),

r - (w - 1) <t ^ < +(w- 1).

The above inequalities imply that t < t. Therefore, p crosses the edges on its route

in order.

The proof that p leaves its source after its injection time is similar. Suppose that

p is injected at time s. Let e be the first edge on the route of p in the network Y, and

let t be the time that p crosses e in Sg. Let e2 , be the edge in M that corresponds

to e and let T be the time that p crosses e2w in S(C). Since in S(c) packet p crosses

the edges in order and leaves its source after its injection we have,

s + 2w < 7.

In the schedule SA, p crosses e at time t, which is shifted by at most w - 1 steps

from r. Hence,

7- (w-1) t <-r+ (w+ 1).

Therefore, s < t which means that in Sg, packet p is scheduled to leave its source



after its time of injection. 0

Theorem 5.5.3 Schedule Sg satisfies the following properties.

1. At most one packet crosses an edge in K during any time step.

2. After leaving its source, each packet waits at most a constant number of steps

to cross each edge, which implies that all the edge queues in K have constant

size.

3. Each session-i packet reaches its destination within O(1/ri + di) steps of its

injection time.

4. All session-i packets that are injected during [T - Ti, 2T - Ti) are scheduled

during [T, 2T).

Proof: The smoothing process guarantees Property 1. Properties 2 and 3 come

from Properties 2 and 3 of S(C) given in Theorem 5.4.1, the construction of M from

n and the fact that packets are scheduled to reach their destination in Sg at most

w steps later than in S(C) .

For Property 4, recall that the interval [T, 2T) is partitioned into intervals of size

w and the schedule S(C) is smoothed out within each w-interval. Therefore, if a packet

is scheduled to cross an edge e2, during [T, 2T) in the schedule S(c), it must also be

scheduled to cross e during [T, 2T) in the schedule Sg. Hence Property 4 follows

from Property 4 of S(c) given in Theorem 5.4.1. O

Property 4 of the above theorem implies that the intervals [0, T), [T, 2T), [2T, 3T)

etc. can be scheduled independently. To summarize we have,

Theorem 5.5.4 Consider an arbitrary network in which sessions are defined. Each

session i is associated with an injection rate ri and a path length di. Packets are

injected into the network along these sessions subject to the injection rates. If the

total rate on each edge is at most 1 - e for some constant e E (0, 1), then there exists

a schedule in which each session-i packet reaches its destination within O(1/ri + di)

steps of its injection and at most one packet crosses an edge at each time step. The

edge queues that result from this schedule have constant size.



Part II

Load Balancing



Chapter 6

Load Balancing - Introduction

6.1 The Problem

In this part of the thesis we consider the on-line load balancing problem. A formal

definition of our problem is as follows. A set of jobs arrive in and depart from a

system of m machines on-line, i.e. the arrival and departure times become known

only when these events occur. Each job j has a weight, wj > 0, which measures the

level of service needed for the job, and a reassignment cost, rj > 0, which measures

the cost of assigning (or reassigning) the job to a machine. Each machine i has an

associated capacity, capi, which measures the ability of the machine to carry out

work. If capi = 1 for all i then we say that the machines are identical, otherwise we

say that the machines are related.

When job j arrives in the system, the on-line scheduler is informed of its weight

and reassignment cost (but not of its departure time or, equivalently, its duration)

and has to assign job j to some machine i at a cost of rj. At any time, the scheduler

is allowed to reassign some of the jobs currently in the system to other machines. The

corresponding reassignment cost rj is paid for each reassigned job. A job is said to

be active at time t if it has arrived but not yet departed. The load on machine i at

time t is defined to be,

(t) = )capi



where Ui(t) is the set of active jobs on machine i at time t. (For notational conve-

nience, we shall later drop the time dependence.) If the machines are identical then

Ai(t) is simply the sum of the weights of the active jobs on machine i. The maximum

load A(t) at time t is the maximum of Ai(t) over all i. Let S be the sum of the reas-

signment costs of all jobs that have arrived in the system (regardless of whether or

not they have departed). We say that an on-line algorithm is a-competitive against

current load and has a reassignment factor of r if, for any time t, the maximum load

A(t) is at most a times the lowest possible load for the active jobs at time t and the

total reassignment cost (including the initial assignments) is at most rS. A competi-

tive ratio of 1 means that the load is distributed optimally and a reassignment factor

of 1 means that no reassignment is performed. We shall consider the cases of identical

and related machines separately.

Identical Machines

For the case in which the machines are identical and the reassignment costs are either

1 or proportional to the weights (rj = awj for some constant a), Westbrook [69]

presents an on-line algorithm that has a constant competitive ratio against current

load and a constant reassignment factor. The competitive ratio he proves is 6 and his

reassignment factor is 2 for unit reassignments and 3 for proportional reassignments.

Westbrook's algorithm is based on partitioning the jobs into levels according to their

weights and then load balancing each level separately.

The results for identical machines presented in this thesis are the following.

* For unit reassignment costs, we give a different analysis showing that the com-

petitive ratio of Westbrook's algorithm is in fact 5. We then present an on-line

algorithm, ZIGZAG, that treats even and odd levels differently and achieves a

competitive ratio of 11/3 against current load. This analysis is shown to be

tight. By defining the levels differently we reduce the competitive ratio still fur-

ther to 1 + 3V//2 < 3.5981. ZIGZAG and its variant have a reassignment factor

of 2, the same as Westbrook's algorithm. We also present a different algorithm,



the MULTI-SNAKES algorithm, which for any e > 0 achieves a competitive ratio

of 3 + e at the expense of a greater reassignment factor, f(e).

* When reassignment costs are proportional to the weights, ZIGZAG has a com-

petitive ratio of 3.5981 against current load and a reassignment factor of 3,

improving upon Westbrook's competitive ratio of 6. We also present an al-

gorithm, SNAKE, which is (2 + e)-competitive against current load and has a

reassignment factor of g(e).

* For arbitrary reassignment costs, our ZIGZAG-SNAKES algorithm is 3.5981-

competitive against current load and has a reassignment factor of 6.8285. This

is the first algorithm that achieves a constant competitive ratio against current

load while simultaneously having a constant reassignment factor. The ZIGZAG-

SNAKES algorithm is obtained by combining the ZIGZAG algorithm with the

SNAKE algorithm. Within each level of the ZIGZAG algorithm, the jobs are

balanced with respect to both their weights and reassignment costs by using

the SNAKE algorithm.

Related Machines

Our results for related machines are as follows. Both algorithms can be used for

arbitrary reassignment costs.

* We first present an algorithm, GREEDY ZIGZIG that is similar in spirit to

ZIGZAG-SNAKES. The competitive ratio (against current load) is logarithmic

in the ratio of the largest machine capacity to the smallest machine capacity

and the reassignment factor is 6.8285.

* We also describe an algorithm, BALANCE-RELATED, that is 32-competitive

against current load and has a reassignment factor of 79.4. This is the first

algorithm that has a constant competitive ratio and a constant reassignment

factor. It is an adaptation of the algorithm of Westbrook [69] that considered

the special case in which rj is proportional to wj. This condition is helpful



because if a job of large weight leaves then it has a large reassignment cost and

so we can "charge" the reassignment which may be necessary to the job that is

leaving. (Note that it is the departure of jobs of large weight that can cause the

load to become unbalanced.) If we have arbitrary reassignment costs and a job

of large weight leaves then it might have a small reassignment cost and so it is

less clear how to "pay for" the reassignment that might have to be carried out.

We deal with arbitrary reassignment costs by dividing the jobs into classes

according to their ratio rjl/wj. When we wish to assign a job, our choice of

machine is based solely on the location of jobs in the classes for which this

ratio is at least as big as that of the job being assigned. If the load on a

machine becomes too great we can then reassign jobs whose ratio rj/wj is

small. Whenever any reassignment is carried out we are able to "charge" the

costs incurred to jobs whose ratio rj/wj is large. The detailed analysis of the

reassignment costs is carried out using the method of potential functions.

Our results for identical and related machines are contained in Chapters 7 and 8

respectively.

6.2 Previous Work

In order to understand many of the previous results for load balancing we must make

some more definitions. Let A*(t) be the optimal assignment of the jobs that are

active at time t. We say that an on-line algorithm is a-competitive against peak

load if, for any time t, the maximum load A(t) in the assignment produced by the

algorithm satisfies A(t) 5 a maxtlt A*(t'). As discussed in Chapter 1, competitiveness

against peak load is a much weaker requirement than competitiveness against current

load since an algorithm does not need to take advantage of job departures. (Note

that if there are no job departures then current load is the same as peak load.)

We now describe the previous work on problems related to load balancing. If no

reassignment information is given then the algorithm being discussed does not make

use of reassignment.



6.2.1 Identical Machines

The first result that can be applied to on-line load balancing is due to Graham [28].

He showed that for the identical machines problem where jobs never depart, there

is a simple greedy algorithm that has a competitive ratio of 2 - 1/m. Azar, Broder

and Karlin [5] noted that Graham's algorithm is still (2 - 1/m)-competitive against

peak load even if jobs departures are allowed. Bartal, Fiat, Karloff and Vohra [9] and

Karger, Phillips and Torng [36] gave algorithms for identical machines that are (2-e)-

competitive (e a small constant) for the case where jobs never depart. As indicated

above, Westbrook [69] gave an algorithm that is 6-competitive against current load

and has a reassignment factor of 2 for unit reassignment costs and 3 for reassignment

costs proportional to job weights.

6.2.2 Related Machines

For the related machines problem in which jobs never depart, Aspnes, Azar, Fiat,

Plotkin and Waarts gave an 8 competitive algorithm. For the case in which jobs

can depart, Azar, Kalyanasundaram, Plotkin, Pruhs and Waarts [6] presented an al-

gorithm that is 20-competitive against peak load and showed that no algorithm can

be better than (3 - o(1))-competitive if job reassignments are not allowed. West-

brook's algorithm [69] is (8 + e)-competitive against current load and has an 0(1)

reassignment factor for the case in which reassignment costs are proportional to job

weights.

6.2.3 Restricted Assignment

In the restricted assignment problem all machines have capacity 1 but each job can

only be serviced by an associated subset of the machines. (The identical machines

problem is clearly the special case in which for all jobs this subset is the complete set

of machines.)

Azar, Naor and Rom [7] studied Graham's greedy algorithm and showed that it

is O(log m) competitive for the restricted assignment problem in which jobs never



depart. Moreover they showed that this is optimal up to constant factors when

reassignment is not allowed, even for randomized algorithms. Azar, Broder and Kar-

lin [5] then showed that if jobs are allowed to depart the problem becomes significantly

harder. The greedy algorithm is O(m 2/3)-competitive against peak load and no deter-

ministic or randomized algorithm is better than O(/V/)-competitive if reassignment

is not allowed. Azar, Kalyanasundaram, Plotkin, Pruhs and Waarts [6] closed the

gap by obtaining an algorithm that is O(Vf-m)-competitive against peak load and does

not reassign jobs.

Phillips and Westbrook [55] gave an algorithm that is O((log m)/p) competitive

against current load and has a reassignment factor of 1 + p for reassignment costs

proportional to job weights. Here p is a user-specified parameter that satisfies 0 <

p < 1. This was the first load balancing algorithm to be competitive against current

load.

Awerbuch, Azar, Plotkin and Waarts [4] gave an algorithm for the case in which all

jobs have unit weight and the peak load is )(log m). Their algorithm is 4-competitive

against peak load and has a reassignment factor of O(log m) for unit reassignment

costs. Westbrook also considered the unit weight problem. His algorithm is 0(1)-

competitive against current load and has a reassignment factor of O(log m).

6.2.4 Unrelated Machines

In the unrelated machines problem each job has a load vector with m components. If

the job is assigned to machine i then the load on machine i is increased by an amount

equal to the ith component of the load vector. The restricted assignment problem can

be viewed as a special case of the unrelated machines problem (if we allow some of

the components of the load vector to be oo). Hence the RQ(/V) lower bound of Azar,

Broder and Karlin [5] still applies for the case in which jobs depart and reassignment

is not allowed. However, this lower bound assumes that the duration of a job (i.e.

the length of time it spends in the system) is not known when the job arrives. If

the duration is known when the job arrives then Azar, Kalyanasundaram, Plotkin,

Pruhs and Waarts [6] gave an algorithm for the unrelated machines problem that is



O(log mT)-competitive against peak load, where T is the ratio of the maximum to

the minimum job duration.

Aspnes, Azar, Fiat, Plotkin and Waarts [2] considered the unrelated machines

problem in which jobs do not depart and gave an O(log m)-competitive algorithm.

By the lower bound for restricted assignment this is asymptotically optimal if re-

assignment is not allowed. Aspnes et al. note that Graham's greedy algorithm is

O(m)-competitive for this problem.

Awerbuch, Azar, Plotkin and Waarts [4] considered the case in which jobs depart

and reassignment is allowed. Their algorithm is O(log m)-competitive against peak

load and reassigns each job at most O(log m) times. Note that this immediately

implies an O(log m) reassignment factor for arbitrary reassignment costs.

6.2.5 Virtual Circuit Routing - Congestion Minimization

In the virtual circuit routing problem we are given a network in which each edge has a

capacity. Calls that require a certain amount of bandwidth between two nodes in the

network arrive in the system. In the congestion minimization version of the problem,

the goal is to route all the calls while minimizing the maximum edge congestion. The

congestion on an edge is defined to be the percentage of capacity used. The related

machines load balancing problem is the special case of this problem in which the

network has two nodes and m edge-disjoint paths between these nodes.

Aspnes, Azar, Fiat, Plotkin and Waarts [2] gave an O(log n)-competitive algorithm

for virtual circuit routing for the case where calls never depart. Here n is the number

of nodes in the graph. In [4], Awerbuch, Azar, Plotkin and Waarts considered the case

in which calls can depart and gave an algorithm that is O(log n)-competitive against

peak load and reroutes each call O(log n) times. Westbrook [69] extended this to an

algorithm that is O(log n)-competitive against current load and has a reassignment

factor of O(log n log C/capin), where C is the sum of the edge capacities and capmin

is the minimum edge capacity. All of these algorithms are based on assigning a length

to each edge that is an exponential function of its congestion and then routing along

shortest paths with respect to these lengths.
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6.2.6 Virtual Circuit Routing - Throughput Maximization

In the throughput maximization version of the virtual circuit routing problem, we

assume that the total bandwidth assigned to an edge cannot exceed the capacity of

the edge. This means that some calls may need to be rejected. The goal is to accept

as much profit as possible, the profit of a call being a function of its bandwidth and

duration. An algorithm is a-competitive if the total profit that it accepts is at least

a 1/a fraction of the total profit accepted by the optimal offline algorithm.

Awerbuch, Azar, Plotkin and Waarts [4] noted that an on-line algorithm can-

not be competitive in this setting unless it knows the duration of calls in advance.

Awerbuch, Azar and Plotkin [3] made this assumption and also assumed that the

maximum bandwidth of a call is at most an 0(1/ log nT) fraction of the minimum

edge capacity, where T is the ratio of the longest call duration to the shortest call

duration. They then presented an algorithm that is O(log nT)-competitive. Kamath,

Palmon and Plotkin [35] later adapted this algorithm for the special case in which

the calls are generated by Poisson processes and have durations that are drawn from

an exponential distribution. In [25], Gawlick, Kamath, Plotkin and Ramakrishnan

simulated the performance of the Awerbuch, Azar, Plotkin algorithm and modified its

parameters so as to give good practical performance. Zhang, Andrews, Aiello, Bhatt

and Krishnan [75] compared the resulting algorithm with algorithms developed by

the queueing theory community.
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Chapter 7

Identical Machines

In this chapter we consider the identical machines problem. Our competitive analyses

against current load will be performed by comparing the load of our on-line algorithm

at time t to a lower bound on the lowest achievable load for the active jobs. Let J

be the set of active jobs and let wmax be the maximum weight of a job in J. Then

clearly wma, is a lower bound on the current load. Since all jobs are distributed

to m machines, some machine has to have a load which is at least EjEJ M'. Hence

LB:= max{wmax, Eijj } is a lower bound on the current load.

7.1 Unit Reassignment Costs

In this section we assume that every job has unit reassignment cost (r3=l). We

start by examining the trivial case in which every job also has unit weight (wj = 1).

Consider any algorithm that maintains the invariant that the number of jobs on any

two machines differs by at most 1, i.e. the number of jobs on every machine is either p

or p +1 for some p, with possibly no machine with p +1 jobs. It is clear that any such

algorithm distributes the load optimally. Moreover, the invariant is easy to maintain.

If a job arrives, simply assign it to any machine with p jobs. If a job leaves from a

machine with p + 1 jobs, the invariant is already maintained. On the other hand, if

a job leaves from a machine with p jobs, say machine i, the algorithm moves any job

from a machine with p + 1 jobs to machine i. We pay one unit of cost for each arrival
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of a job and at most one unit for each departure. Hence the reassignment factor of

this algorithm is at most 2.

For the case in which the jobs have arbitrary weights, Westbrook [69] gave the

following generalization of this algorithm and showed that it has a competitive ratio

of 6. The jobs are divided into levels according to their weights. Level f consists of

jobs whose weight wj satisfies 2e < wj < 2 '+'. Let Je be the set of active jobs in

level e. We treat each job in Je as if it had weight 2e. For level i, let ne) = IJed

be the number of jobs, w(Oe) be the maximum weight of a job, wM(') = Ejyi wj /n0()

be the average weight of the jobs, and A!e) be the load on machine i due to these

jobs. Consider one particular level I. The algorithm guarantees that every machine

has either p or p + 1 jobs in this level. Since the weights of all these jobs differ by

a factor less than two, the load VA) on any machine of p jobs is at most twice the

average load EjEJg !-, while the load of the potential (p + 1)st job can be simply

bounded by w (X. This implies that Ae) < 2 ZjEJ, E + w(,a for any machine i.

Let L = max{£ : Je $ 0}. Summing over all levels, we derive that the load on any

machine is at most,

( 1 1 1
2 L+ W( 1 + 1 + +...

_ 2Zmw x2 22

-- wj + 3w (L)

jmax

< 5LB,

showing that Westbrook's algorithm is in fact 5-competitive. The term in parentheses

comes from the fact that for all f' < , w')X < wmx/ 2 L'-1

We now describe a more sophisticated variant of this algorithm with an improved

performance guarantee. The idea is to take advantage of the flexibility one has in

adding and reassigning jobs. The algorithm will be slightly different for even levels

and odd levels. Assume that the machines are numbered from 1 to m. For even f,

we maintain that machine i has p + 1 jobs for i < z and p jobs for z < i < m for

some pointer z E {1,...,m} (depending on f). The initial value of the pointer is
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1. When a job arrives we assign it to machine z and we increase z by 1. When a

job leaves from machine i we reassign a job from machine z - 1 to machine i and

decrease z by 1. (We assume that m + 1 = 1 and 1 - 1 = m.) If f is odd, the value

of the pointer is initialized to m, decreased when a job arrives and increased when a

job leaves. This means that for odd levels the machines with p + 1 jobs are those for

which i > z. We refer to this algorithm as the ZIGZAG algorithm. See Figure 7-1 for

an illustration. The ZIGZAG algorithm has the following important feature: If one

combines two consecutive levels, the number of jobs on any two machines still differs

by at most one.

:0.7.
Level- 1 0.6 0.7 0.8 0.6,Ii----
Level 0 :11 1.6 1.3_

--------------------------,
Level 1 13.5 2.5 3

,--------------,
4.5 5

Level 2 : : -- - - - - - - - - - -

:i7 ---- 5 6.5 __ _ 6_____

Machines 1 2 3 4

Figure 7-1: A typical state of the ZIGZAG algorithm for identical machines.

In Theorem 7.1.3 we show that the competitive ratio for the ZIGZAG algorithm

is 11/3. To prove this result we need the following two lemmas. First, consider some

arbitrary level f (for notational simplicity, we drop the superscript). Assume that we

have n jobs in level f and every machine has p or p + 1 jobs (from this level). Let

n = pm + k, where 0 < k < m.

Lemma 7.1.1 If machine i has p jobs, then Ai is at most 2 Zjet j - wma-. If

machine i has p + 1 jobs, then A• is at most 2 Ej•E, + Wmaz(1- L).

Proof: The weights of all the jobs in the level differ by a factor less than 2. This

means that the average job weight Wa,,g satisfies wma,, 2 Wavg. If machine i has p

jobs then,

i wmaP,,
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= wmaxz + -- - maxm m

< 2was (P + - - Wmj -
m m

= 2 P c - Wmax

w pm +2kE wmax k

n m m

w k
= 2 - wmax --

JEJt m m

On the other hand, if machine i has p + 1 jobs then Ai 5 wmax(p + 1), and thus Ai is

upper bounded by the above expression increased by Wmax. 1

We now consider what happens in two consecutive levels. This is where the

ZIGZAG algorithm gains.

Lemma 7.1.2 The load on machine i due to jobs in Je and Jt+l is at most 2 ijEJeUJtL+ m+

W(y+1)max

Proof: We consider two cases. First, assume that machine i has simultaneously

p(e) + 1 jobs of level £ and p(e+l) + 1 jobs of level e + 1. Then it must be the case that

k(e+1) + k(e) > m since the pointer for level £ + 1 travels in the opposite direction to

the pointer for level £. Hence by Lemma 7.1.1 and the fact that w(' +1) > w(V) we

obtain:

(e+l) A() < 2 + we+) 1 + w 1
S EJtJt ' +w x max ma

W. 2Wx (k +k
jeJeuJe+x m mwy l ) (W )l .Wma )

max max

EJUJI+lu mIn the second case, machine i has either max jobs of leveljEJtuJI+l

In the second case, machine i has either p(") jobs of level f or p(V+l) jobs of level
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£ + 1. Lemma 7.1.1 implies that

Ay) + AV' <2 E + W(1)
jEJtuJt+L m

Theorem 7.1.3 The ZIGZAG algorithm is (11/3)-competitive against current load.

For unit reassignment costs, the reassignment factor is 2.

Proof: The bound on the reassignment cost holds because we pay at most one

unit of cost for each job arrival or departure. Recall that L = max{f : Je 0}. Using

Lemma 7.1.2, aggregating two levels at a time (starting from level L) and summing

over these pairs of levels, we derive that the total load on any machine is at most,

Ai :5 2 1: !ýL3C+ w 1 (-•
2q)

t JJ m q=

11 2 -'- W (L )  1 + + + +
jEJ m max 2 23 25

2 !!3 +5w(L)
2 E- - 3 max

< 11LB.
3

The second inequality holds because w (L) > 2L and (L-2q) < 2 L-2q+l

We give the following example to show that the ratio of 11/3 is tight for the

ZIGZAG algorithm. Fix a parameter s (s even) and suppose that we have m = 3"

machines. Consider the following sequence of arrivals:

{2"; (m-1) x 2"- 1, (2")-; (2"-1)- , (m-1) x 2"- 2, (2-1)-; ... (m-1)x2, 4-; 2-, (m-1) x 1, 2- }.

By (m - 1) x 23- 1 we mean m - 1 separate jobs of weight 28- 1 and by (2")- we mean

a job of weight slightly less than 2".The case s = 4 is illustrated in Figure 7-2. Using

the ZIGZAG algorithm the load on machine 1 is,

( ( 1 1 1 1_ •1 1 1 1
22 2 22.+ 4 +...+
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S2-
Level 0 -----------------------------------------

2- 1 1 .-- I1r---------------------------------------------

8 4 4 4

Level3 16 8 8 8

Level 4 16

Machines 1 2 3 --- 34

Figure 7-2: An example to demonstrate the tightness of the competitive ratio 11/3.

This expression approaches -2' as s tends to infinity. The jobs can however be placed

on the machines so that the current load is 2".

We can actually get a competitive ratio better than 11/3 < 3.6667 by defining

the levels differently. Suppose level £ consists of jobs whose weight wj satisfies ae <

w. < a'+1 . By using an analysis identical to that used in proving Theorem 7.1.3, we

obtain a competitive ratio of,

1 1 1 a
+1+-+ -+ +...= +.+

a a3 a5 a2 -

We minimize this expression by setting a = /i to give a ratio of 1+ 31///2 < 3.5981.

Theorem 7.1.4 For ro = 1, the ZIGZAG algorithm with a = V is 3.5981-competitive

against current load and has a reassignment factor of 2.

7.2 Proportional Reassignment Costs

In the case of reassignment costs rm of the form awb for some constant a, Westbrook's

algorithm [69] as well as the ZIGZAG algorithm still apply. Since reassignments occur

only within a level, the weight of a reassigned job is at most twice the weight of a

departing job. As a result, both algorithms incur a reassignment cost upper bounded

by 3S. Theorem 7.1.4 thus implies:
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Theorem 7.2.1 When rj = awj, the ZIGZAG algorithm with a = V/ is 3.5981-

competitive against current load and has a reassignment factor of 3.

In this section we present an algorithm with an improved competitive ratio for

the case of proportional reassignment costs, at the expense of a somewhat weaker

bound on the reassignment cost. As for the ZIGZAG algorithm, level I consists of

jobs whose weight wj satisfies ae < wj < ae+l for a fixed parameter a > 1, and each

level has a pointer, z(e). The difference is in the way assignments and reassignments

are performed. The algorithm, which we will call the SNAKE algorithm, maintains

the following property: for any £, there exists a threshold y and a parameter q such

that all machines whose index is less than y have a total of q + 1 jobs from levels

f > i while all machines whose index is at least y have a total of q jobs from levels

greater than f. This is maintained in the following way. (See Figures 7-3 and 7-4.)

When a level I job arrives, we assign it to machine i = z(l) and increase z(e) by 1. If

level I was empty before the arrival, the pointer z(V) would first be initialized to the

value of the pointer z(M) of the next non-empty level t > i, or to 1 if I is greater than

any existing level. Once the job has been assigned to machine i, we find a job of level

max{I' < f: J1e, Z 0} on machine i and reassign it by treating it as a new arrival (it

will thus be placed on machine z(e')). Consequently, this will cause a job of level i"

on machine z(e') to be reassigned, and so on. When a level I job leaves machine i,

we reassign a job of level f on machine z(e) - 1 to machine i and decrease z(e) by 1.

We then reassign jobs in levels f' < i in a manner that is the reverse of that carried

out for job arrivals. Thus the arrival or the departure of a level f job will cause all

pointers z(t') of levels f' < f to be incremented or decremented respectively.

Consider the example described in Figure 7-3. If a level 1 job arrives, it is added

to machine 2; this causes a level 0 job to be reassigned from machine 2 to machine 3,

and a level -1 job to be reassigned from machine 3 to machine 4. The result is shown

in Figure 7-4. If a level 0 job on machine 1 now leaves, a level 0 job is moved from

machine 3 to machine 1, and a level -1 job is moved from machine 4 to machine 3.
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Level -1 :0.8 0.6 0.7

Level 0 1.3 1.1i :0.6 0.7---------
Level 1 : 3 ' 1 1 1.6

I ---- I

:4.5 5 ' 3.5 2.5
Level 2 5

:7 5 6.5 6

Machines 1 2 3 4

Figure 7-3:
z(2) = 3.

The SNAKE algorithm. The pointers are z ( - ' ) = 4, z(o) = 3, z(') = 2 and

Level -1 0.8 0.6 0.7 0.6
---- .-- ----------i-- --

Level 0 1.1 1 : : 0.7
; -----------------

Level 1 3 2.7 , .. 1 1.6'
, ---- ...-- I

L 4.5 5: 13.5 2.5j Level 1
Level 266

7 5 6.5 6...............................

Machines 1 2 3 4

Figure 7-4: The configuration of the SNAKE algorithm after a level
pointers are updated to z(- 1) = 1, z (0) = 4, z(P) = 3 and z(2) = 3.

1 job arrival. The

Lemma 7.2.2 When rj = awj, the reassignment factor of the SNAKE algorithm is

12+2a-l -= 3 + 2a + 2 12
C--1a 1

Proof: When a job of level f arrives, say job j, a job from each level smaller than

f will be reassigned. Thus, the reassignment cost incurred when job j arrives is at

most,

awj + aa + aa - + aa - 2 + ... = aw + a

wj
< awj + a W

1- 1/a
2a - 1

a - 1 rj.

Similarly, the reassignment cost incurred when job j departs is at most,

aat +l + aat + aa - 1 +
ae+1 a 2

Sa -1/ <  - ra .1 - 1/a a - 1 3
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Hence the reassignment factor is 2 +2 3 -l- = 3 a+ -+ -.

Lemma 7.2.3 The SNAKE algorithm is (a + 1)-competitive against current load.

Proof: Given the way that reassignments are done by the SNAKE algorithm,

there exists p(e) such that each machine contains either p(V) or p(e) + 1 jobs of Je.

Moreover, the machines with p(V) + 1 jobs of level f are precisely those with indices

z(e+1), z(e+l)+ 1,..., z(e - 2, z() -1. If z (e+1) > z(f), this sequence has to be interpreted

as z(e+l), ... , m, 1,..., z(') -1, while if z(e+1) = z() there are no machines with p() + 1

jobs of level £. Let C denote the set of "crossing" levels, i.e. the levels £ for which

z(e+ 1) > z(V). (In Figure 7-3 the only crossing level is level 1.) The key observation

we will exploit is the fact that the sequence of machines with p() + 1 jobs of level f is

immediately followed by the corresponding sequence for level £ - 1 and so on. This

implies that if machine i has p(e) + 1 jobs of level £ and p(e') + 1 jobs of level £' < £,

then there must exist a crossing level among {£', f' + 1,... -,£f}.

We need some more notation. Assume IJel = n(e) = p()m + k(), where 0 < k() <

m. We now analyze the load on machine i. Let Do = { : machine i has p(e) jobs }

and D 1 = {£ : machine i has p() + 1 jobs }. By Lemma 7.1.1, the load on machine

i is at most

3jJ m eDo eED 1

= (e)max max
jEJ m e m eED 1

Observe that k() =z( - z(V+l) for ý C and k() = z(?) - z(e+l) + m for f E C. We

can thus rewrite the upper bound on Ai as

S<Z) - Z1) WV- W v + 1w W v)ma
max max max

jEJ m m etC eED 1

E w3j 1 z( (WV)ax (e-I)) 
W V( e) X + E WV)

- Wmax mamax

jEJ m EC eED1

jEJ n eC eED 1
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The term involving z(e) has disappeared since wV)U - w($) > 0. Now we use the

crucial observation that the levels in C (the crossing levels) and in D1 must alternate.

Indeed, if we go through the sequences of machines with p(e) + 1 jobs of level £ in order

of decreasing levels, we will alternate between machine i and crossings from machine

m to machine 1. Therefore EED1 w ( )•i ~ - Dez c w)(,x _ wma and thus,

i < a 3 + Wmax < (a + 1)LB.
mjJ m

Theorem 7.2.4 When rj = awj, the SNAKE algorithm with parameter a > 1 is

(1 + a)-competitive against current load and has a reassignment factor of 3 + a + .a-•

We can see that there is a tradeoff between the competitive ratio and the reassign-

ment factor. For example, for a = 2, we have a competitive ratio of 3 (better than

the ZIGZAG algorithm) and a reassignment factor of 7. The competitive ratio can

be made arbitrarily close to two if we are willing to carry out a lot of reassignments.

The best reassignment factor is 4 + 2v/2 and is obtained by setting a = 1 + v/. Note

that using our lower bound LB we cannot get a competitive ratio better than two.

Consider an input which consists of m + 1 unit weight jobs arriving. In this case

LB = 1 + 1 but the optimum current load is 2.m

We can also use a variation of the SNAKE algorithm for unit reassignment costs.

Fix an integer parameter up > 1 and for all integers s form a snake out of levels

s, ... , (s + 1),u - 1. The reassignment factor of the resulting MULTI-SNAKES algo-

rithm now becomes 2p. Using an analysis similar to that of Lemma 7.2.3 we obtain,

1 1 1_
-Ai +wmax 1+1+--+ 1 +-.. 5 (2+a+ 1  LB.

jEJ m am a~li A -

Theorem 7.2.5 When rj = 1, the MULTI-SNAKES algorithm with parameters p and

a is (2 + a + • • l• )-competitive against current load and has a reassignment factor of

2p.
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Notice that the competitive ratio can be made arbitrarily close to 3 but with a cor-

responding increase in the reassignment factor.

7.3 Arbitrary Reassignment Costs

In this section we generalize the 3.5981-competitive ZIGZAG algorithm from unit

reassignment costs to arbitrary reassignment costs. Once again jobs are divided into

levels according to their weights, level i consisting of jobs whose weight wj satisfies

/3 < wi < w V +1 . As for the ZIGZAG algorithm, two kinds of pointers, depending

on the parity of the level number, are used to maintain the structure of Figure 7-1.

However, what happens within a level is different. Indeed, we need to make sure that

reassignments within a level are not too costly. For this purpose, within every level,

we "load balance" the jobs according to their reassignment costs using the SNAKE

algorithm. More precisely, within each level, jobs are divided into blocks. For a fixed

parameter /, block b consists of jobs in level f whose reassignment cost rj satisfies

fb < rj < fb+l. We use a pointer for each block to maintain a block structure

identical to the level structure of the SNAKE algorithm. (See Figure 7-5.)

b-1
-------------------

b + 1 block b
I

----------------

b b+1

b+2

Figure 7-5: The block structure for level £.

When a level t job j arrives/departs, we use the SNAKE algorithm (using the

reassignment costs as weights) to make appropriate reassignments between the blocks

of level i. To be more precise, we use the SNAKE algorithm for even levels, and a

reverse SNAKE algorithm (in which the pointers go in the opposite direction) for
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odd levels. The resulting algorithm, which we call the ZIGZAG-SNAKES algorithm,

is still 3.5981-competitive. Indeed, the SNAKE algorithm has the important feature

that the number of jobs on any two machines differs by at most one and that the

machines with one additional job are the lowest indexed machines. Using the analysis

of Lemma 7.2.2, we also obtain that the reassignment factor is 3 + P + OT. The

minimum value of this expression is 4 + 2V'2 < 6.8285 and is achieved by setting

# l= 1+ .

Theorem 7.3.1 For arbitrary reassignment costs and arbitrary weights, the ZIGZAG-

SNAKES algorithm is 3.5981-competitive against current load and has a reassignment

factor of 6.8285.
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Chapter 8

Related Machines

8.1 Greedy Algorithm for Related Machines

In this chapter we examine the related machines problem in which each machine i

has a capacity cap2 and the load on machine i is equal to the total weight assigned

to it divided by capi. By scaling and renumbering we can assume without loss of

generality that cap1 2 cap 2 > ... > capm = 1. When the reassignment costs are

proportional to the weights, Westbrook [69] has derived a 24-competitive algorithm

against current load with a reassignment factor of 4. We shall consider arbitrary

reassignment costs and propose two competitive algorithms against current load. The

first has a competitive ratio that depends logarithmically on the largest capacity cap1.

Its reassignment factor is 6.8285. The second algorithm, described in Section 8.2, has

a competitive ratio of 32 and a reassignment factor of 79.4.

We begin by presenting a GREEDY algorithm for the special case of unit weight

jobs. When a job arrives, GREEDY assigns it to the machine whose resulting load

is minimized. Thus, if there are n jobs present in the system and Ti(n) jobs on

machine i, the (n + 1)st job will be assigned to the (or any) machine i minimizing

(Ti(n) + 1)/capi. This defines a sequence of machines {s1, s2, s3, - -} on which jobs

are assigned; the ith job is assigned to machine i. If we have n jobs in the system

and a job leaves from machine i, GREEDY then reassigns a job from machine s, to

machine i to fill in the gap. This ensures that the number of jobs on any machine is
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as if n - 1 jobs have arrived and no departure has occurred. Thus, the number Ti(n)

of jobs on machine i only depends on the total number n of active jobs but not on

the sequence of arrivals and departures. Observe that for unit reassignment costs the

reassignment factor of GREEDY is 2.

Theorem 8.1.1 For unit weight jobs, GREEDY is optimal.

Proof: Without loss of generality we assume that n jobs have arrived and no jobs

have left. The GREEDY algorithm assigns them to machines sl, s2,1. ., sn. Let the

number of jobs on machine i be Ti(n) (or simply Ti for notational convenience). We

show that the following two identities hold for 1 < i < m:

Ti < (8.1)
capi cap s

Ti + 1 T (8.2)>_ (8.2)
capi cap s

To see that identity (8.1) holds, we consider the latest time at which a job, say j, was

assigned to machine i. The construction of the sequence {sl, s2, } guarantees that

the resulting load (including j) on machine i is no bigger than that on machine sn, i.e.

T, < T , otherwise j would have been assigned to machine s,. If identity (8.2)cap - capsn
did not hold for some i, i.e. , < ~ then the nth job would have been assigned

Capi cap,,

to machine i by the GREEDY algorithm. Hence identity (8.2) holds for all i.

We now show that the optimum load ,opt is equal to . This is all that we need
capsn •

since identity (8.1) implies that the load due to GREEDY is T". If opt < Tcapsn  cap,np

then in an optimum assignment machine s, must have fewer than T,, jobs and so

some machine i f s, must have at least Ti + 1 jobs. But identity (8.2) implies that

Ti+c > Ta > Aopt. Hence we have a contradiction. [
capi - cas n

In the case of arbitrary job weights, Aspnes, Azar, Fiat, Plotkin and Waarts [2]

have shown that the generalization of GREEDY is O(log m)-competitive if jobs never

depart and reassignment is not allowed. Considering our model in which jobs de-

part, we divide the jobs into levels according to their weights. Level f consists of

jobs whose weight wj satisfies 2e < wj < 2t+l. Let Je be the set of jobs in level t,
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n(e) = 1J11 and L = max{e : J1 6 0}. We treat jobs in J, as if they had weight 2e

and assign them to machines using GREEDY. We call this algorithm the GREEDY

ZIGZIG algorithm. The reassignment factor of GREEDY ZIGZIG is 2 if rj = 1 for

all j, and 3 if rj is proportional to wj. If we have arbitrary reassignment costs

then we can modify the algorithm by dividing each level into blocks based on reas-

signment cost as for the ZIGZAG-SNAKES algorithm. The highest block will have

jobs on machines S1, S2,... , sk, the next block on machines sk+1,..., and so on. We

omit the details. We now bound the competitive ratio (of either version of the al-

gorithm). Let r = [log cap1 ] + 1. (If we did not assume capm = 1 we would set

T = [log(capmax/cap.n)1 + 1, where capmax is the largest machine capacity and

capn is the smallest.)

Theorem 8.1.2 GREEDY ZIGZIG is (6 + 2T)-competitive against current load. Its

reassignment factor is 2 for unit reassignments, 3 for proportional reassignments, and

6.8285 for arbitrary reassignments.

Proof: The reassignment factors follow from the identical machine case. Let

C = El<i<, [capJ and n(e) = p(e)C + k(e), where 0 < k(' ) < C - 1. Let Aopt(k) be

the (optimum) load resulting from the assignment of k unit weight jobs by GREEDY.

Since the weight of any level £ job is at least 2e, maxe<L{2eAopt(k(e))} is a lower

bound on the optimum load. Two other valid lower bounds are (Xj wj)/(E, cap,)

and 2L/cap1 (since the jobs in the last level must be assigned). Hence

LB:=max max {2Ap,,t(k())}, caw' cap2L
t<L i capi cap,

is a lower bound on the current optimum load.

The load on each machine due to the first p(')C jobs is at most w$),p(e) and the

load due to the remaining k(e) jobs is at most 2e+ X1 ,pt (k()). Observe that Aopt(k) < 1

for k < C. Summing over all levels, we obtain that the load on machine i, Ai, satisfies,

Ai, C (wp(t) + 2'+1Aop,(k())
e<L
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_• Z 2w•Q~(' + z 2e+lAopt(k(t)) + E 2t+IAoop(k(e))
e<L CIL-+ <L-"

< 2 C + 2LB + ] 2 +1
t<L-r

< 4LB + 27LB + 1+I+ +...cap, 2 22
< 4LB + 27LB + 2LB

= (6 + 2,-)LB,

where we have repeatedly used the definition of the lower bound LB, and the fact

that Ei capi < 2C since cap < 2 Lcapi]. E

8.2 Constant Factor Bounds for Related Machines

We now present an algorithm, BALANCE-RELATED, that is 32-competitive against

current load and has a reassignment factor of 79.4. Note that the competitive ratio

is only superior to that of GREEDY ZIGZIG when capmax/capmn > 212. To avoid

complicated numerical calculations we shall initially describe an algorithm that has

a reassignment factor of 127. Once again we assume that cap1 > cap 2 > ... > capm.

Let A be some constant. We start by considering an algorithm, BALANCE(A), which

keeps the load on each machine bounded by 8A but which has the option to reject

jobs. The framework of the algorithm is based on [69] which in turn is based on

[2]. For simplicity we assume that for all jobs j, the ratio •- is a power of 8. ThisWi

assumption is removed later. (See Theorem 8.3.2.) We divide the jobs into classes

according to their ratio of reassignment cost to weight. Job j is in class c if a = 8c.Wi

The algorithm of [69] dealt with the special case in which all of the jobs are in one

class. We say that class cl is smaller than class c2 if C1 < c2. Let Wi(t) be the sum

of the weights of class c jobs assigned to machine i. We shall also define a quantity

Mc(t) which is an upper bound on Wc(t). The difference between Mc(t) and Wi(t) is

a measure of how much weight from class c has left machine i. For clarity we normally

drop the dependence on t. The aim of the algorithm is to maintain the following two
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invariants.

* Invariant 1: E, W0' < 8Acapi, for all 1 < i < m.

* Invariant 2: Eý=1 Ec<,(M_ ' - 2W4 ') < 0 for all 1 < k < m and for all c.

Invariant 1 provides a bound on the load on each machine. Invariant 2 ensures that

not too much weight has left the system and so the optimum load must be high. If

either of the invariants is ever violated then we carry out a rebalancing step in which

some of the jobs are reassigned.

We maintain a list which consists of jobs that need to be assigned. Let A be the

set of jobs in the list. Initially the list is empty. We say that we are in a stable state if

the list is empty and the invariants are satisfied. The basic structure of BALANCE(A)

is as follows. The details are given in section 8.2.2. When a job arrives in the system

it is placed in the list. The scheduler then takes the job from the list and attempts

to insert it onto a machine. If the attempt is successful then the invariants may be

violated and so rebalancing is carried out. When a job leaves the system it is simply

removed from the machine which was processing it. Rebalancing is then performed.

A rebalancing step will consist of removing jobs from machines and inserting them

into the list until the invariants are satisfied. We then remove a job from the list and

reassign it to a machine. This rebalancing is repeated until we reach a stable state.

We assume that after each job arrival or departure we reach a stable state before

the next arrival or departure. We now describe the rebalancing procedures in detail.

Procedure INSERTION-REBALANCE(i) is used to make sure that invariant 1 is not

violated for machine i. Procedure DELETION-REBALANCE is used to make sure that

invariant 2 is not violated.

8.2.1 Rebalancing Procedures

procedure INSERTION-REBALANCE(i)

1. If E~ Wic 5 8Acapi then stop. (Invariant 1 is satisfied.)

2. Let c' be the smallest class that has jobs on machine i.
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3. Set Mi' = Wi' = 0, remove all of the class c' jobs from machine i and add them

to the list.

4. Repeat.

procedure DELETION-REBALANCE

1. Let a = min {c: 3k i= 1 c'< (cMj' - 2W') > 0}.

2. If there is no such a then stop. (Invariant 2 is satisfied.)

3. Let i= max :k E =1E (Mr' -2Wic') > 0}.

4. For all i < i and for all c' _< ý, set Mi' = 0 and WC' = 0. Remove each job

from a class c' < ý currently on a machine i < i and add it to the list.

5. Repeat.

8.2.2 The Algorithm BALANCE(A)

We now define the algorithm BALANCE(A). It consists of three procedures: one for

insertion, one for deletion and one for reinsertion from the list. When a job arrives

in the system it is placed in the list and then inserted using the insertion procedure.

When a job leaves the system the deletion procedure is called.

Insertion: Suppose that we wish to insert job j from class c. Say that machine i

accepts job j if,

1. ~- < A, and
capi

2.caPi (1cW +wj) < 4A.

If there is no such i, then BALANCE(A) rejects job j. Otherwise we find the maximum

such i, assign job j to machine i, increase Wf by wj and set Mi = max {Wc, MJ}.

It is possible that machine i now has load greater than 8A. To deal with this we run

INSERTION-REBALANCE(i). This rebalancing may remove some jobs from machine i

and so we run DELETION-REBALANCE. Both rebalancing procedures may add some

jobs to the list. These jobs need to be reassigned and so we run the reinsertion

procedure (see below).
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Deletion: Suppose that job j of class c is deleted from machine i and leaves the

system. We decrease Wic by wj and run DELETION-REBALANCE. We then run the

reinsertion procedure since jobs may have been added to the list.

Reinsertion: Suppose that the list is non-empty. We find C, the maximum class

that contains a job in the list. We select any class ^ job from the list and insert it

using the insertion procedure. If the list is empty then we are in a stable state and

so we terminate.

Since the insertion of a job may require the reinsertion of another job it is not clear

that we will ever terminate. We will however be able to use the bounds on reassign-

ment cost to show that in fact we do terminate in a stable state. (See Corollary 8.3.3.)

Proposition 8.2.1 Suppose that INSERTION-REBALANCE(i) adds jobs to the list.

Then, immediately after the termination of INSERTION-REBALANCE(i), 4Acapi <

EC Wi' 8Acapi.

Proof: The upper bound is immediate from the definition of INSERTION-REBALANCE(i).

To prove the lower bound first note that Wi • 4Acapi for all c. This follows from the

criteria for accepting a job. Since INSERTION-REBALANCE(i) removes jobs one class

at a time, E, Wi cannot become smaller than or equal to 8Acapi - 4Acapi = 4Acapi.

O

Proposition 8.2.2 Suppose job j is rejected by the insertion procedure. Then A* > A,

where A* is the maximum load in the optimum assignment of the active jobs (including

j).

Proof: Suppose that j is a job from class c. Let Mi = Ec, Mf' and let Wi =

E,I Wi'. Let k be minimal such that Mkl/capk < 2A. If there is no such k, define

k = m+1.

Suppose k = 1. Since j is rejected either wj > Acap, or c (ag W6 + W) >

4A. Assume that the second condition holds. Then since M1 < 2Acapl, we have that

120



EC>c WIC < 2Acap 1, implying that wj > 2Acapl. Thus in either case, A* > wj/cap, >

A.

Suppose k > 1. For all machines i < k, Mi /capi _ 2A. Since invariant 2 is

maintained we know that Eh=1(Mh - 2Wh) < 0, for all 1 < i < k. Let X be the

set of jobs that are currently assigned to a machine i < k. Now consider an optimal

assignment of jobs to machines.

* Case 1: In the optimal assignment all the jobs in X are assigned to machines

i < k. Let Wi* be the weight on i in the optimal assignment. It is clear that

A* > WV*/capi for all i < m. Hence

k-1 k-1 k-1 k-1 k-1

A* Z caph Ž > W* Ž > Wh 2 Mh/2 > A caph.
h=1 h=l1 h=1 h=1 h=1

* Case 2: In the optimal assignment there is a job x E X that is assigned to

a machine i > k. Suppose that x is in class E. Let t' be the time that x was

last reassigned by BALANCE(A) and let t be the current time. At time t' job x

was assigned by BALANCE(A) to a machine f < k and so either wx/capk > A or

(Ea>E Mki(t') + w.) /capk > 4A.

We claim that in any case the first condition holds (wx/capk > A). Assume

for the moment that the second condition holds. If 6>E M, has not de-

creased between t' and t then e>3 MI(t') •_< E>E M(t) < Mk(t) < 2Acapk,

by definition of k. This implies that wx > 2Acapk. On the other hand,

if E>6 Mk has decreased between t' and t, part of the decrease must have

been caused by DELETION-REBALANCE because of Proposition 8.2.1 and the

fact that •6>e M6(t) • Mk(t) < 2Acapk. But if DELETION-REBALANCE af-

fects the value of E>EI M,$ then all of the class 6 jobs on machines e < k

are reassigned. Hence x is reassigned at a time between t' and t, contradict-

ing the definition of t'. Thus, in any case, wx/capk > A. This implies that

A* 2 wx/capj 2 wx/capk > A.

El
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Observe that the above proposition would still hold if we were to strengthen the

second condition for machine i to accept job j to _ (6>c Wi + wj) < 3A. This

observation will be useful in the next section.

8.2.3 The Load Balancing Algorithm

To obtain an algorithm competitive against current load that does not reject jobs we

use a system of levels. Level £ is parameterized by Ae = 2e and uses the algorithm

BALANCE()A). We say that a job is in level e if it was assigned to its current machine

by BALANCE(Ae). In order to make sure that the algorithm is competitive we need

to maintain a third invariant, the idea of which is due to Westbrook [69]. Let L be

the maximum occupied level.

* Invariant 3: There exists a job in level L that would be rejected by BALANCE(AL-1_)

if an attempt were made to insert it into level L - 1.

Invariant 3 is maintained using the following procedure.

procedure GLOBAL-REBALANCE

1. Let L be the maximum occupied level, let i be the minimum indexed machine

containing a job in level L and let c be the minimum occupied class on machine i

in level L.

2. Select any job j of class c assigned to machine i in level L.

3. Attempt to insert j into level L - 1 using the following small modification of

BALANCE(AL-1). Replace the bound "< 4AL-1" in the criteria for acceptance

by "< 3AL-1".

4. If job j is rejected then stop. (Invariant 3 is satisfied.)

5. Remove job j from machine i in level L. Decrease Mi,i and WI', by wj

where Mg,; and WL,i are the values of Mi and Wc respectively in level L.

6. Insert job j into level L - 1 using the modified version of BALANCE(AL_I).

7. Run DELETION-REBALANCE on level L.

8. Repeat.
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Observe that invariants 1 and 2 are still satisfied in level L after GLOBAL-REBALANCE

has terminated. Invariant 1 is satisfied because W values are only decreased. Invari-

ant 2 is satisfied because DELETION-REBALANCE is run on level L in step 7. The

complete algorithm can now be described. We shall call the algorithm BALANCE-

RELATED. Suppose that job j needs to be inserted from the list. Let £ = min{£(

BALANCE(Ae) accepts job j}. Job j is inserted using algorithm BALANCE(Ai). Now

suppose that job j' is removed from level 1. The algorithm BALANCE(Ae) is used to

carry out rebalancing within level £. To ensure that invariant 3 is maintained the

procedure GLOBAL-REBALANCE is now applied.

We say that algorithm BALANCE-RELATED is in a stable state if all of the al-

gorithms BALANCE(Ae) are in a stable state. We assume that no jobs arrive in or

depart from the system unless BALANCE-RELATED is in a stable state.

Theorem 8.2.3 Algorithm BALANCE-RELATED is 32-competitive against current

load.

Proof: Since invariant 3 is maintained there is always a job in level L that can-

not be inserted into level L - 1. By the observation following the proof of Proposi-

tion 8.2.2, this proposition still holds for the modified version of BALANCE(AL_1) used

in GLOBAL-REBALANCE. Furthermore, Proposition 8.2.2 also holds for BALANCE(AL)

even though an M value is decreased in step 5 of GLOBAL-REBALANCE. To show this,

we need to look carefully at what happens in Case 2 of the proof. There, between t'

and t, the decrease of E>6 Mk could not have been caused by GLOBAL-REBALANCE.

Indeed, GLOBAL-REBALANCE only moves a job from the least indexed machine in

level L which, in this case, cannot be k since job x is occupying machine £ < k. Thus

the decrease is still caused by DELETION-REBALANCE, and the proof follows. Hence

Proposition 8.2.2 implies that the optimum load is at least AL-1 = !AL. Since invari-

ant 1 is maintained for all levels the load on machine j in level £ is bounded by 8Ae.

This implies that the total load on machine i is bounded by 8AL(1 + "+...) = 16AL.

Thus the competitive ratio is 16AL/•AL = 32. O
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8.3 Reassignment Analysis for Algorithm BALANCE-

RELATED

8.3.1 Definitions

We need to bound the total reassignment cost incurred by BALANCE-RELATED. This

will be achieved by using four potential functions, T, (, T and Q. Each is used to pay

for a particular type of reassignment. The function T is associated with INSERTION-

REBALANCE, D with DELETION-REBALANCE and T with GLOBAL-REBALANCE.

The function Q is used to pay for the reinsertion of a job after it has been in the list.

Let M~ ; and W•; be the values of Mic and WC respectively in level e. In or-

der to bound the reassignment performed by GLOBAL-REBALANCE and INSERTION-

REBALANCE we need to define two more values, N'i; and Pyi. The difference between

N,;i and >6>c Wjt,i is a measure of how much weight from classes > c has left ma-

chine i in level f since f was last the top level. The value of P,i is a measure of how

much weight from classes strictly larger that c has been added to machine i in level

£. Suppose that j is a class c job which is inserted onto machine i in level e. For

all c' < c we set Nc,'i = max{N,', • , WI}. Then for all c' < c we update P,'i as

follows,

PI e P+ , + 8-(+c-')rj•

If GLOBAL-REBALANCE removes the class c job j from machine i in the top level L

then we set N~' = N', - wj for all c' < c. If INSERTION-REBALANCE removes all

the class c jobs from machine i in level e then we set P4C = 0.

Let,

T = Z16Pi ,

S= ~8 - 8cMNi ,
e,i,c
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(Recall that A is the set of jobs in the list.)

8.3.2 Amortized Costs for Job Arrival, Job Departure and

Job Insertion

When job j arrives in the system it is placed in the list. We shall use A to represent

change in value. It is clear that An = 111rj/7 and none of the other potential

functions change. Hence the total amortized cost of the arrival is 111rj/7 < 15.86r j .

When a job departs from the system none of the potential functions increase and so

the amortized cost is at most 0.

Now suppose that j is a class c job which is taken from the list and inserted onto

machine i in level £. The actual cost of the insertion is rj. From the definitions we

know that AMi • wj, ANc,' < wj for all c' < c and AP, =- 8-(c-c')rj for all c' < c.

No other M, N or P values are affected. Since job j is removed from the list we also

know that AQ = -111rj/7. Therefore,

AT 16 + • --... r = 16rj

A1 < 8 -80wj = 8rj

A _ < 4-8. j + 1 ++ +... 1 - rj
8 64 7.

Hence the total amortized cost of the insertion is at most rj(1 + L + 8 + --) = 0.

8.3.3 Amortized Cost of GLOBAL-REBALANCE.

Let L be the top level. Suppose that j is a class c job which is reassigned from

machine i in level L to machine k in level L - 1. Recall that i is the minimum

indexed machine in level L and c is the minimum occupied class on machine i in level

L. The definitions imply that AM,i = -wj, AMil,k wJ, AN,i = -wj for all
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c' < c, AN_-1,k 5 wj for all c' < c and AP'- 1 ,k = 8-(c-c')rj for all c' < c.

Lemma 8.3.1 ANZl,k = 0.

Proof: Let t be the current time and let t' be the last time that j was inserted

from the list. Between times t' and t job j has been in levels L or higher. At time t

job j is inserted onto machine k by GLOBAL-REBALANCE. Hence wj 5 ALl-capk and

E>_c Wc-l,k(t) + wj 3L-1_lcapk. But at time t' job j was rejected by machine k in

level L-1 when it was inserted from the list. Hence E>c L-1,k(t)+wj > 4 AL-lcapk.

This means that between times t' and t the value of EZ>c WL-1,k has decreased by

at least AL_1capk > wj. The value of NL ,khas not decreased between times t' and

t because level L - 1 has never been the top level during this time interval. Note

that N_,l,k is never smaller than Ea>c WL-1,k. Thus just before job j is inserted by

GLOBAL-REBALANCE, Ni-1 ,k - Wc -l,k . Hence N_-1,k does not increase.

0

The M, N and P values that were not considered above do not change. No jobs

are added to the list. Therefore,

1 1 16
AT = 16( + +...)rj= rj

AD < 0

AZ <_ -4. 8cw j = -4r j

AQt = 0.

Hence the total amortized cost of the insertion is at most rj(1 + L - 4) < 0.

8.3.4 Amortized Cost of DELETION-REBALANCE

Suppose that DELETION-REBALANCE removes all the jobs from classes c, c-1, c-2...

that are on machines 1, 2,..., I in level e. (For simplicity we shall drop the dependence

on t.) Then,

EE(M'- 2w ') > 0 (8.3)
c' <c i=1
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and,

E E (Mt'- 2w [') • 0, (8.4)
c'I< i=1

for all Z < c. The second formula holds because we always choose the smallest class

for which invariant 2 is violated. Hence, multiplying (8.3) by 8C and subtracting

appropriate multiples of (8.4) for all 6 < c, we derive that

8c (M2  - 2Wc) - Z ' (Mic - 2Wi /')
i=1 c'<c i=1

SE s8c• M,' 2 8 'Wew '1
c<c i=1 c<c i=1

2ZE R',
c'<c i=1

where Rý is the total reassignment cost of class c jobs on machine i. The procedure

DELETION-REBALANCE sets Mi' = 0 for all i < i and for all c' < c. The other

M values do not change and the N and P values are unaffected. The jobs that are

removed are added to the list. Therefore,

AT =0

111
C9<c i=1

Hence the amortized cost of the rebalancing is at most (-16+ 1) 1 '1<e i=1 Rq' < 0.

8.3.5 Amortized Cost of INSERTION-REBALANCE

Suppose that INSERTION-REBALANCE(i) removes all the jobs from class c on ma-

chine i in level £. (We shall drop the dependence on i.) Let these jobs have total

reassignment cost R? and total weight Wc. Let t be the current time and let t' be

the time at which the algorithm last assigned a class c job to machine i. We know
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that Ea>c Wa(t') < 4Acapi since a class c job was assigned to machine i at time t'.

This implies that Wic(t) 5 4Acapi. We also know that EC>c Wia(t) 2 8Acapi. Hence

between times t' and t the algorithm must have inserted at least 4Acapi weight from

classes i^ > c onto machine i. When a job j from a class ^ > c is inserted onto machine

i, Pic increases by 8-(a-c)rj = 8cwj. Pi has not been set to 0 since time t' and so at

time t,

Pi > 8 .4Acapi

> 8c0i0

Thus APc < -Rq. The other P values do not change and the M and N values are

unaffected. The jobs that are removed are added to the list. Therefore,

AT < -16RK

A = 0

111

7

Hence the amortized cost of the rebalancing is at most (-16 + 111/7)Rq < 0.

Theorem 8.3.2 The reassignment factor of the algorithm is 1-1 < 15.86. If we

allow class c jobs to satisfy 8C < rj/wj < 8c+1 then the reassignment factor becomes

888 < 127.

Proof: Let C(t) be the total reassignment cost that the algorithm has incurred

by time t. Let S(t) be the sum of the reassignment costs of jobs that have arrived

in the system at time t (regardless of whether or not they have departed). Let T(t),

o(t), 1(t) and 0(t) be the values of T, D, T and Q respectively at time t. The

above results show that the amortized cost incurred when job j arrives is at most

111rj/7 and the amortized cost for deleting job j, reinserting job j or carrying out a
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rebalancing procedure is at most 0. In other words,

C(t) + T(t) + 0(t) + T(t) + Q(t) 5 1S(t)

for all times t. It is easy to see that the potential functions are always non-negative.

The reassignment factor of 111/7 follows. If jobs in class c satisfy 8C < rjlwj < 8
C+'

then for every step of the algorithm the reassignment cost incurred is at most 8 times

the cost in the previous case. Hence the reassignment factor is 888/7. OE

Corollary 8.3.3 After each job arrival and job departure the algorithm BALANCE-

RELATED reaches a stable state.

Proof: Suppose that BALANCE-RELATED does not reach a stable state. Since

there are finitely many jobs in the system there must be a job j that is reassigned

arbitrarily many times. We are assuming that no jobs arrive if BALANCE-RELATED

is not in a stable state. Hence C(t) increases to an arbitrarily high value whereas

S(t) does not increase. (Recall that we assumed that rj > 0 for all j.) Therefore the

condition of Theorem 8.3.2 will eventually be violated. O

8.3.6 Improving the Reassignment Factor

By altering the definition of class we can obtain an improved reassignment factor.

Let e = 10.4 and say that job j is in class c if ec < rj/wj < ec+1. Let,

T = a, Pci,
e,i,c

S= yZ aZecMe
£,i,c

i = -a 3ecN~,i,
e,i,c

-- ->:a4rj,
jEA

where a = 4e2 -6e+2 a2  a3 = 1 + ' and a4 = a1.e2-6e+3, a2 C-1
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The proof of the following theorem is almost identical to the proofs of Theo-

rem 8.2.3 and Theorem 8.3.2. Details are omitted.

Theorem 8.3.4 Algorithm BALANCE-RELATED with the revised definition of class

is 32 competitive against current load and has a reassignment factor of 79.4.

Remarks. For ease of presentation we have assumed that BALANCE-RELATED is

able to work with infinitely many job classes and infinitely many levels. Of course,

in an implementation, the algorithm would only maintain the finitely many classes

and levels that can actually be occupied by jobs. We omit the details since they are

simple but cumbersome to describe.

We have also assumed that all reassignment costs are strictly positive. If some

reassignment costs are zero then we can reassign all such jobs after each arrival or

departure without affecting the reassignment cost incurred.
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Part III

Disk Scheduling
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Chapter 9

Disk Scheduling

9.1 Introduction

We begin our study of the disk scheduling problem with a formal definition of the

problem. We model a computer disk as an annulus whose radial distance between

the inner and outer circles is 1. The disk rotates at a constant rate. A movable

disk head travels in and out radially in order to access locations on the disk. (In

our presentation we consider the motion of the head relative to the disk and so the

head not only moves radially but also moves around the disk at a constant rate.)

An instance of the disk scheduling problem consists of a set of n locations on the

disk. These n locations represent requests to be serviced by the disk head. To service

a request, the disk head must be at the request and have no radial movement. A

solution to the disk problem is a path of the disk head that services all n requests.

An optimal solution is one that requires the minimum number of rotations.

The Reachability Function Associated with a disk drive is a function f(0), which

we call the reachability function. In a rotation through angle 0, the function f(O)

represents the maximum radial distance the head can travel when it starts and ends

with no radial movement. Since the annulus has thickness 1, we have 0 < f(O) < 1.

For convenience, we let f(O) = 0 for 0 < 0. Thus, from any starting-point the function

f(0) defines the reachable region in the O-r plane; we call this region the reachability
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cone. The reachability function f has the following properties.

1. Function f is nondecreasing since given more time the disk head can visit a

larger fraction of the disk. That is, f' > 0 where f' is the first derivative of f.

(We assume throughout that the reachability function is differentiable.)

2. Function f is convex, implying that the slope of f is nondecreasing. The intu-

ition for convexity is as follows. The head accelerates as much as possible and

stays at the maximum radial speed as long as possible (if the maximum speed

is reached) before decelerating.

3. Properties 1 and 2 imply that f(0 + 0') Ž f(0) + f(0') for 0, 0' > 0.

We define tfullseek to be the minimum number of rotations (not necessarily integral)

required for the head to travel the entire radial distance. That is, 27rtfullseek =

argminof(0) = 1. On modern disks 1 < tfullseek < 3, and usually tfulseek < 2.

The Representation of the Disk and the Requests For ease of presentation

we view the disk as a 27r x 1 rectangle. Each request Ri is specified by coordinates

(0i, ri), where 0 < ri < 1 and 0 < 0i < 27r. The distance between two requests

R; = (0i, ri) and Rj = (0j, rj) is defined by,

d(R;, Rj) = d((0i, ri), (0j, rj)) = min{integers k : f(Oj - Oi + 2kir) Ž Irj - ril}.

In other words, the distance from request Ri to Rj is equal to the number of times

that the head must cross the line 0 = 0 when traveling from Ri to Rj. 1 Note that

this distance is asymmetric. To reflect the "rotational nature" of the disk we also use

(0i + 2kr, ri) to denote request Ri, and we sometimes represent multiple copies of the

disk by a 2kir x 1 rectangle.

'The distance between Ri and Rj could be defined as the angular distance through which the
head must travel in order to service Ri and then Rj. However, our integral definition of distance
facilitates many of our later proofs.
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The disk graph is a directed graph whose vertices are the requests and whose

directed edges are the ordered pairs of vertices. The weight on the directed edge

RRij is d(R;, Rj).

9.1.1 Our Results

The results for disk scheduling that we present in this thesis are as follows.

* Let Topt be the minimum number of rotations in an optimal schedule in which

the disk head starts and ends at the same place. For general reachability func-

tions we show how to service all of the requests in at most Topt + a rotations,

where a is a term that depends solely on the reachability function, not on the

number of requests. (See Section 9.2.)

* For general reachability functions we show that the disk-scheduling problem is

NP-hard. (See Section 9.3.)

* Now suppose that the reachability function is linear. Let Topt be the minimum

number of rotations in an optimal schedule in which the disk head must start

at (0, 0) and end at (0, 1). We show how to construct an optimal schedule. (See

Section 9.4.)

* We provide an optimal solution to the Asymmetric Traveling Salesman Problem

with the triangle inequality (ATSP-A) in which all distances are either 0 or a for

some value a > 0. This extends to a 1-approximation algorithm for the case

in which all distances are either 0 or else lie between a and 0 for some values

0 < a < p. This latter result leads to another approximation algorithm for disk

scheduling with general reachability functions. (See Section 9.5.)

* For the on-line problem in which we wish to service requests at a high rate

(i.e. maximize the throughput), we present heuristics with good look-ahead

properties. (See Section 9.6.)
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9.1.2 Related Work

Since disks have been used for many years as secondary storage devices, the problem

of disk scheduling has received a great deal of attention. Most early papers, (e.g., [32,

16, 67, 27, 50, 70]) study the on-line problem and focus primarily on the algorithms

first-come-first-served (FCFS), CSCAN, shortest-seek-first (ssF) and modifications and

generalizations of these algorithms.

As its name suggests, FCFS always serves the request that has been in the system

the longest. Although it treats the requests fairly, numerous studies have shown that

it has low throughput.

The algorithm CSCAN is the disk scheduling algorithm most widely used in prac-

tice. In CSCAN, the head starts at one side of the disk and travels to the other,

servicing all the requests in a track as the head passes over it. Once it has completed

this pass it performs one full seek back to its starting position and repeats. The

throughput of CSCAN is usually higher than that of FCFS and it has good fairness

properties. Also, if a subset of the requests are arranged on the disk sequentially then

CSCAN services them efficiently. (This situation is not uncommon in practice.) A

close relative of CSCAN is the SCAN algorithm in which the head services requests as

it travels in both directions across the disk. (We can regard CSCAN as a unidirectional

version of SCAN.) The SCAN algorithm is often thought to be inferior to CSCAN since

the times at which it visits the inner and outer tracks are less evenly spaced than the

times at which it visits the middle tracks.

The shortest-seek-first (ssF) algorithm always moves the head to the request whose

track is closest to the track over which the head is currently positioned. If SSF is used

then some requests may be treated unfairly. For instance, under heavy workloads the

head remains over one portion of the disk. The requests in the other regions are said

to starve.

A continuum of algorithms, V(R), that have elements of both SSF and SCAN were

proposed by Geist and Daniel [26]. Here, the distance to a request is equal to the

seek distance if the head can move there while maintaining its current radial direction.
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However, if the head must change direction then the distance is the seek distance plus

(full radial distance) x R. The head moves to the request that is at the smallest such

distance from its current position. It is clear that V(O) =SSF and V(1) =SCAN. Geist

and Daniel proposed V(0.2) as an algorithm that performs well.

Note that for each of the above algorithms, the scheduler does not take into

account the rotational position of the request, only its track number. Although

useful in the past, this design principle currently makes less sense. In older disks the

seek time was the dominating factor limiting performance. In modern disks, however,

the rotational latency also plays a significant role since seek times are decreasing at

a higher rate than rotational latency. Jacobson and Wilkes [33] and Seltzer, Chen

and Ousterhout [60] simulated the algorithm shortest-time-first (STF) which always

services the request that can be reached in the shortest amount of time (i.e., the time

to seek to the correct track plus the time for the request to rotate underneath the

disk head). The results of [33] and [60] indicate that for randomly generated requests,

sTF has better throughput than algorithms that do not take rotational position into

account. Although the algorithm STF is prone to starvation, the effects can be lessened

if older requests are given higher priority or if the disk head is sometimes forcibly

moved to a new region of the disk.

A number of recent papers study disk scheduling from a more "real-world" per-

spective. Ruemmler and Wilkes [59] and Kotz, Toh and Radhakrishnan [40] devel-

oped detailed models of Hewlett-Packard disks. In a separate paper Ruemmler and

Wilkes [58] describe disk activity in various UNIX2 systems. The traces they obtained

were later used by Worthington, Ganger and Patt [71] to evaluate many disk schedul-

ing algorithms, including those described above. Methods for obtaining exact disk

drive specifications were given by Worthington, Ganger, Patt and Wilkes in [72].

The increasing significance of rotational latency is not the only technological

change that has altered the nature of the disk scheduling problem. For instance,

preventing starvation is becoming less important since nonvolatile memory (NVRAM,

i.e. memory that retains its stored values during a system power loss) is emerging

2UNIX is a registered trademark of X/Open Company Limited.
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as a viable technology [8, 31]. If the disk buffer (which stores data before it is writ-

ten to disk) consists of NVRAM then it is not essential for every write to get to disk

fast. Hence for writes, throughput becomes the only important performance measure.

(Servicing read requests is not considered as much of a potential bottleneck, because

many reads can be avoided as cache sizes increase.)

Another relevant technological change is that a modern processor, dedicated to

the task of disk scheduling, can execute algorithms that are more computationally

expensive. For example, the algorithm CHAIN of Section 9.6 has a higher time com-

plexity than STF, but for a given disk configuration the better look-ahead properties

of CHAIN mean that it is likely to serve more requests in the next rotation.

9.2 A 3/2-Approximation Algorithm

In this section we present an algorithm that services all of the requests on the disk

in at most Topt + a rotations, where Topt is the number of rotations required by an

optimal algorithm that returns the disk head to its starting position. The additive

term a depends solely on the reachability function. It is not a function of the number

of requests. We do not try to look for an optimal solution since we show in Section 9.3

that the problem is NP-hard.

The Minimum-cost Cycle Cover and a Lower Bound

We first use a minimum-cost cycle cover of the disk graph to derive a lower bound

LB for Topt, and then present an algorithm that services all the requests in !LB + a

rotations. For a graph G, let C denote a collection of cycles in G. If every node of G is

contained in exactly one cycle, then C is called a cycle cover of G. For edge-weighted

graphs the cost of a cycle cover, C, is the sum of the weights of the edges in C. A

minimum-cost cycle cover of G has the minimum cost among all the cycle covers of

G. Recall that in the disk graph, the length of an edge RiRj is equal to the number

of times that the head must cross the line 0 = 0 when traveling from Ri to Rj.

The problem of finding a minimum-cost cycle cover is equivalent to solving an
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assignment problem derived from the edge weights [22]. In an assignment problem

we have a weighted bipartite graph (L, R). The goal is to find a minimum-cost

matching in which all vertices in L are matched. Given an n-vertex graph G with

vertex set {vo,..., vn-}, we construct a 2n-node bipartite graph with vertex sets

L = {fe,. - - -, n-} and R = {ro,..., r_1}. There is an edge of weight w between ei
and rj if and only if there is an edge of weight w between vi and vj in G. A matching in

which all nodes in L (and hence all nodes in R) are matched defines a permutation of

the nodes in G. By elementary results in algebra this permutation can be decomposed

into disjoint cyclic permutations, each of which corresponds to a cycle in G. Hence

the matching in (L, R) gives a cycle cover in G. It is easy to see that the weight of the

matching is equal to the weight of the cycle cover. This demonstrates the equivalence

of solving the assignment problem and finding a minimum-cost cycle cover. We can

solve the assignment problem in O(n3 ) time using the Hungarian method of Kuhn

[41, 52].
Let C denote a minimum-cost cycle cover of the disk graph, and let CW() denote

the set of cycles in C with cost i. Let p be the maximum cost of a cycle in C. Then

C = C(1) U C(2) U ... U C (p) . Let K be the total cost of C, i.e. K = f=l ijC('i), where

0C(0)1 is the number of cycles in C(i). Note that K is a lower bound on Topt, since an

optimal solution to the disk scheduling problem is a cycle cover. Our algorithm finds

an order in which to service the cycles in C such that the disk head can move between

the cycles without using "too many" rotations.3 An approach based on finding a

minimum-cost cycle cover was independently proposed by [23], but no performance

guarantees were provided for the resulting algorithms.

The Virtual Trace

Before describing the algorithm in detail, we need to define a virtual trace to connect

neighboring requests on a cycle. A virtual trace does not describe the actual trace

3Note that the head can travel between an arbitrary pair of cycles in tfullseek + 1 rotations. This
immediately gives us a tfullseek + 1-approximation algorithm. However, by being more careful about
the order in which the cycles are serviced, we shall reduce the time taken to travel between cycles
and hence reduce the approximation ratio.
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of the disk head, but rather an imaginary path defined by the reachability function

f. Consider a cycle c E C(0). Let Rj = (0j, rj), for 1 < j < m, be the requests on c,

numbered such that request R 1 = (01, rl) satisfies 01 = minl<j!m Oj, and RjR j +1 and

RmRI are directed edges in the cycle cover. For each c E C( ) we shall view the disk as

a 2iir x 1 rectangle, T(i), i.e. i copies of the disk are joined end to end. As demonstrated

in Figure 9-1, we represent the requests on cycle c so that every request appears

exactly once in rectangle T(i). Formally, R 1 appears at location (q1, rl) for q1 = 01.

Request Rj for 2 < j < m appears at (hj, rj), where qj = Oj - O~-1 + +j-1 + 2kj7r and

kj = d(Rj- 1 ,Rj).

1

f(0)

9

n
0 2r 47•

Figure 9-1: (Left) The reachability function f. (Right) A cycle c E C(2), whose
neighboring requests are connected by the virtual trace. The disk is viewed as a
47 x 1 rectangle T (2) .

Consider two neighboring requests Rj and Rj+3 , which appear at locations (0j, rj)

and (oj+1, rj+l) respectively. The trace connecting them is composed of a horizontal

line (of possibly zero length) followed by a curve defined by f or -f. (See Figure 9-1.)

Formally, the virtual trace is defined as follows. By the definition of Oj and qj+1, one

can verify that there exists 0' E [%j, €j+1] such that f(Oj+1 - 0') = Jrj - rj+l1. For

rj+1 > rj let,

S= j for Cj < 0 < 0'

rj + f (0 - ') for €' < 0 < €j+1

The virtual trace between Rj and Rj+1 is defined parametrically by (0, gc(0)) for

j •< 0 < j+1. The case in which rj+l < rj is analogous. The trace from Rm to

R 1 is obtained from the trace connecting (0m, rm) and (2ir + €1, rl). If R1 is the

only request on c then the trace is the horizontal line r = rl. The next four lemmas

describe some properties of the virtual trace of cycle c E C (i) .
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Lemma 9.2.1 If the virtual trace can connect two requests within an angle 0 then

the disk head can service both of them within a rotation through angle 0.

Proof: The result follows from the definitions of the virtual trace and the reach-

ability function f. O

Lemma 9.2.2 If Rj and Rk are two requests on cycle c E C(i) and they appear at

(0j, rj) and (qk, rk) respectively, then jrj - rkl < f(iir).

Proof: Without loss of generality, we assume j < k. Either qk - qj 5 ir or

(2iir + 0j) - qk < iw. If the former case holds then,

k

Irk - r3 l • f(Of - 09-1)
1=j+l

k

< f( _ (0e - 0e-1)) 5 f (i).

The first inequality follows the definition of the reachability function. The second and

third inequalities follow from properties 3 and 1 of f respectively. A similar argument

applies for the case in which (2ir + 0j) - k < i7r. O

Lemma 9.2.3 For a cycle c C(i), the slope of the virtual trace (0, g,(O)) is between

-f'(ir) and f'(ir) for 0 < 0 < 2i7r.

Proof: By construction, the virtual trace g, for cycle c is composed of the curves

defined by f and -f. In particular, g,(0) = rk ± f(0 - 0') for qk < 0 -< k+1

and 0' E [¢k, Ck+1]. (Recall that f(0) = 0 for 0 < 0.) Lemma 9.2.2 implies that

Ok+1 - 0' < ir. Property 2 of f therefore implies the result. EO

Recall that f(ixr) is the radial distance that the head can travel after i/2 rotations

of the disk, given that the head starts and ends at rest. Let q, = [/lf(ifr)]. For

each C(i) the rectangle T(O) is divided into smaller rectangles T('i), T)..., T((), each

of size at most 2ir x f(ir). A request R = (0, r) is in rectangle TJi) if and only if

(j - 1)f(ir) 5 r < j . f(ir). We have,
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Lemma 9.2.4 If (O,g,(0)) is in rectangle Týj ) then the trace of cycle c either stays

in rectangles T(i) and T(')or else it stays in rectangles TOt) and TJ2i.

Proof: If (Ok, rk) is some request on c E C(i) then by Lemma 9.2.2 the trace of c

stays in the horizontal stripe defined by rk - f(ir) < r < rk + f(i7r). Since rectangles

Tj( ) are of size 2i7r x f(iir), the result follows. o

For a cycle c E C(i) let the centerpoint of cycle c, denoted by centerpoint(c), be

the point (iwr,gc(ir)) on the virtual trace, and let the leftpoint of cycle c, denoted

by leftpoint(c), be the point (O,gc(O)) = (2iir,gc(2iir)) on the trace. For an angle

p E [0, 2i7r), let ac be the first request on the virtual trace of c that appears after the

line 0 = p. We use the phrase cycle c is serviced starting at angle p to mean that ac

is the first request on c to be serviced and the other requests on c are serviced in the

order of the cycle.

The Algorithm

The algorithm HEADSCHEDULE is shown in Figure 9-2. It proceeds by finding a min-

cost cycle cover of the disk graph and then determining a particular order in which

to service the cycles. For each cycle, HEADSCHEDULE identifies the first request to

visit and then travels around the cycle servicing all of the requests. Our goal is to

show that the disk head can connect the last request of a cycle to the first request of

the next cycle without using "too many" rotations.

A cycle c E C(') is long if i > 2L where L = [tfullseekl + 1; otherwise c is short.

Note that in L rotations, the head can travel from any request to any other request.

The long cycles can therefore be serviced in any order and the number of rotations

required is at most

P P 3 P
E ilC(')l + 1 LIC( O')- 5 2E ilC( ) . (9.1)
i= i=i=2L i=2L

Hence, the approximation ratio of 3/2 is achieved for servicing the long cycles.

We therefore focus on the order in which HEADSCHEDULE services the short

cycles. The algorithm first services the cycles in C0() and then the cycles in C(2), etc.
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HEADSCHEDULE

1 find a min-cost cycle cover C = C(1) U ... U C(p)

service short cycles

2 for i = 1 to 2 tfullseek] + 1 do

3 if i is odd then

4 for j = 1 to qi do

5 CYCLECONNECT (H(i), (i)

6 if i is even then

7 for j = qi down to 1 do

8 CYCLECONNECT (H(i), V (i) )

service long cycles

9 while there exist unserviced long cycles c

service cycle c starting at angle 0

CYCLECONNECT (H4i), V(i))
1 while there exist unserviced cycles in H(), alternate between the following.

2 * Let c be the unserviced cycle in H i' ) which has the

highest centerpoint. Service c starting at angle 0.

* Let c be the unserviced cycle in H(' ) which has the

lowest leftpoint. Service c starting at angle ir.

3 while there exist unserviced cycles in VW'), alternate between the following.

4 * Let c be the unserviced cycle in Vj(') which has the

lowest centerpoint. Service c starting at angle 0.

* Let c be the unserviced cycle in Vj(') which has the

highest leftpoint. Service c starting at angle inr.

Figure 9-2: The HEADSCHEDULE algorithm.
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By Lemma 9.2.4, cycles in C (i) can be divided into the following groups.

1. The hill group Hji) consists of cycles c whose leftpoint (0, g,(0)) is in rectangle

TPi) and whose centerpoint (iir, g(ilr)) is in rectangle T(i) or Tj(0.

2. The valley group V(i) consists of cycles c whose leftpoint is in rectangle T(i) and

whose centerpoint is in rectangle T()i

To service the cycles in C(i), HEADSCHEDULE services the requests in rectangle T(i)

from bottom to top when i is odd and services requests in T(i) from top to bottom

when i is even. To be more precise, for odd i HEADSCHEDULE first services the cycles

in H'i) and then the cycles in V(i), H(i) and V2), etc; for even i HEADSCHEDULE first

services cycles in HW) and then cycles in V(i), H('-') and V(- 1), etc. The subroutine

CYCLECONNECT specifies the order in which HEADSCHEDULE services the cycles in

H i') and WVj) and also identifies the first request to be serviced on each cycle. (See

Figures 9-2 and 9-3.) Hence, the order in which HEADSCHEDULE services all the

requests on the disk is fully determined.

2f(iir)

f(iir)

0
0 ir 2ixr

Figure 9-3: CYCLECONNECT services the cycles in H(') in the order c1, c2, C3, since cl
has the highest centerpoint and c2 has the lowest leftpoint. To illustrate Lemma 9.2.6,
# is serviced last on cycle cl and a is serviced first on c2. Request a is reachable from
leftpoint(cl). CYCLECONNECT therefore uses i/2 rotations to travel from cl to c2.

To complete the analysis, we shall show that the approximation ratio of 3/2 is

achieved for servicing short cycles. In particular, we show in Lemma 9.2.6 that

HEADSCHEDULE uses NiIH!'I rotations (resp. iyVJ)l rotations) to service all the

cycles in H') (resp. V i)). Then in the proof of Lemma 9.2.7 we show that the head

can travel between HOi) and Vj(0 ) etc. in a small number of rotations.3 j
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Let y be a point of the form (0, ry) and consider the reachability cone rooted at

7. Let functions hi(0) and h2(0) define the upper and lower boundaries of the cone,

i.e. h (0) = r., + f(0) and h2 (0) = r, - f(0). For a cycle c E C(') let ac = ((c), r(c))

be the first request on c that appears after the line 0 = ir. For simplicity we assume

that 0(c) > ir. (For the case in which q(C) < ir, the location of ac can be taken to

be at (2ir + 0(c), r(c)) for the analysis. ) Figure 9-4 illustrates Lemma 9.2.5 and its

proof.

Lemma 9.2.5 If the centerpoint of cycle c is in the reachability cone rooted at 7,

then ac is in the reachability cone rooted at -. That is, if hl(inr) 5 gc(iar) 5 h2 (iir),

then hi(q(c)) < g(O((c)) < h2( (c)).

Proof: The definition of h, and h2 implies that h'(O) = f'(0) and h'(O) =

-f'(0). By Lemma 9.2.3, the virtual trace of cycle c never has a slope whose absolute

value is greater than f'(ir). Since f' is nondecreasing by Property 2 of f, we have

h'(O) < g'(O) 5 h'(O) for 0 > ir. Therefore, if ha(i7) 5 gc(ir) 5 h2 (i7) then

h (O(c)) < gC(O(C)) < h2(q(c)) for 0(c) > itr. Stated differently, if the centerpoint of

the virtual trace is in the reachability cone, then the trace can never leave the cone

after the centerpoint, i.e. the point (O, g,(O)) is in the cone for any 0 > iir. O

hi centerpoint(c)

h2
0 ' i 2i7r

Figure 9-4: The two dashed curves represent functions h, and h2 , which define
the upper and lower boundaries of the reachability cone rooted at the point y.
If centerpoint(c) is in the reachability cone then ac, the first request on c after
centerpoint(c), is also in the cone.
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Lemma 9.2.6 Subroutine CYCLECONNECT services all the cycles in H(i) (resp. Vj( ))

in 2ijH') I rotations (resp. 2i|VI) rotations).

Proof: Stated intuitively, we show that CYCLECONNECT uses i/2 rotations to

travel to the next cycle and then uses i rotations to service all the requests on this

cycle. Let ch E H() and ct E H() be the unserviced cycles that have the highest

centerpoint and lowest leftpoint, respectively. Suppose that CYCLECONNECT services

ch followed by ct. Let Ph be the last request on cycle ch before leftpoint(ch) and let

at be the first request on cycle ct after centerpoint(ct). (Note that Ph is serviced

last on cycle Ch and at is serviced first on ct. See Figure 9-3.) By the definition of

the virtual trace it is clear that leftpoint(ch) is reachable from 1h, i.e. leftpoint(ch)

is in the reachability cone rooted at Ph. The following two arguments show that

centerpoint(ct) is in the reachability cone rooted at leftpoint(ch).

Case 1: Centerpoint(ct) is in T ( ). Since the height of TO) is f(i7r), centerpoint(ce)

is reachable from leftpoint(ch).

Case 2: Centerpoint(ct) is in T (i. Centerpoint(ch) is higher than centerpoint(ct)

by the definition of ch. Since centerpoint(ch) is reachable from leftpoint(ch), centerpoint(ct)

is reachable from leftpoint(ch).

Lemma 9.2.5 implies that at is in this reachability cone and is hence reachable from

3h. Therefore the head services the requests in ch, moves to cycle ce and services the

requests in ct in i+i/2+i = 5i/2 rotations. An analogous argument can be applied to

show that after servicing any cycle in H(!) (resp. Vj( )) the next cycle can be serviced in

3i/2 rotations. For example, after servicing ct, the head can travel to the unserviced

cycle with the highest centerpoint in i/2 rotations. The result follows. O

Lemma 9.2.7 HEADSCHEDULE services all the short cycles in,

2L-13 2L-1 3.
i= 1 =2C() -zqi

rotations, where L = [tfullseek] + 1.

Proof: Let i be an odd integer that satisfies 1 < i < 2L - 1. (The case when i
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is even is similar.) HEADSCHEDULE can finish serving the requests in C( ) - 1 with

the head positioned at a point in rectangle T(i- 1) with angular coordinate 0. Since

rectangle T (i ) contains T,(i - 1) the head can move to its first request in C(i) in i/2

rotations.

Now consider a call to the subroutine CYCLECONNECT (H(i), (i)). By Lemma 9.2.6,

in iIH1)] I rotations the head can service all the requests in H() and return to a point

in TO)) with angular coordinate 0. The beginning of the first cycle in Vj( ') is in TO)

and so the head can move there in i/2 rotations. Using Lemma 9.2.6 again, we have

that in i•V rotations the head can service all the requests in V'(i) and return to a

point in T( i) with angular coordinate 0. The beginning of the first cycle in H (
1 is in

T 1 and hence the head can move there in i rotations. Summing over all j and i we

obtain the result. O

Since qi = [1/f(ir)] and f(ir) > if(7r) by Property 3 of f, we have iqi < i + qi.

Hence, 7 =,-1 3iqi :5 3Lql + 3L . Combined with the analysis for long cycles (see

inequality 9.1) we have,

Theorem 9.2.8 The algorithm HEADSCHEDULE has a 3/2-approximation ratio with

an additive term of at most 3Lqi + 3L2 , where L = [tfullseek] + 1.

9.3 NP-Hardness of Disk Scheduling

In this section we show that given a reachability function and a set of requests on

the disk it is NP-hard to determine the optimal schedule. The reduction is from the

following restricted version of the Directed Hamiltonian Cycle problem.

* Fact 1 The Directed Hamiltonian Cycle problem is NP-complete even if each

vertex in the graph is adjacent to at most 3 arcs [56, 24].

Outline of the reduction

Given such a graph G with n nodes, we first place requests on a disk with dimensions

poly(n) xpoly(n). Later on we rescale the coordinates to obtain a disk with dimensions
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27r x 1. We also construct a reachability function such that all requests can be serviced

in n rotations and the disk head can return to its starting point if and only if G

contains a Hamiltonian cycle.

P Q R S

Figure 9-5: The chains of requests.

We shall assume that the disk head must start at a point with angular coordinate

0 = 0. There will be four columns of requests that we place on the disk,

P={p,: vEV} Q = q, : v E VG}

R = {r,: vE VG} S= s,:vEVG},

where VG is the vertex set of G. (See Figure 9-5.) These columns are placed so

that requests in Q have a higher angular coordinate than requests in P, requests in

R have a higher angular coordinate than requests in Q, and requests in S have a

higher angular coordinate than requests in R. In addition the line 0 = 0 lies between

column S and column P. The exact positions of these columns will be determined

later. We also place a set of n chains of requests on the disk and denote them by

{chain, : v E VG}. The construction has the following properties.

1. For all v, chain, contains the requests p,, q,, r, and s,.

2. The requests all have integer coordinates.

3. The head can travel from the end of chain, to the beginning of chain, crossing

0 = 0 exactly once if and only if (u, v) is a directed edge in G.

4. If all the requests are serviced in n rotations then on each rotation chain, is

serviced for some v.
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5. The request s, is above s, if and only if r, is above r,.

6. The request q, is above q, if and only if p, is above p,.

7. For all v, chain, can be serviced in one rotation.

Theorem 9.3.1 Suppose that the above properties are satisfied. Then all of the re-

quests can be satisfied in n rotations and the head can return to its starting point if

and only if G has a Hamiltonian cycle.

Proof: Suppose that G has a Hamiltonian cycle. Let the cycle be vo, v 1,... , vn- 1, Vo.

Then by Properties 3 and 7 there is a valid solution with n rotations that has the

form,

chainvo,, chain,..., chain,._,.

Conversely, suppose that we can service the requests in n rotations. By Property

4 the schedule must have the following form.

chain, 0, chain, , ... , chain,,_,.

The head must cross 0 = 0 only once when traveling from the end of chain,,_j to

the beginning of chain,,. Note also that since the disk head returns to its starting

point, it must be able to travel from the end of chain-,_, to the beginning of chain,,

crossing 0 = 0 only once. Therefore by Property 3, uo, u1x, 2,... Un-1, 0 must be a

Hamiltonian cycle. O

The Construction

We now define the reachability function that we shall use. It is the simple function,

f(0) = 02.
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Enforcing Property 3

We first focus on the region between column S and column P. Suppose that we can

arbitrarily specify distances between requests, i.e. suppose that the distances are not

given by a reachability function. Then the following construction would immediately

guarantee Property 3. We define,

(1 if (u, v) is an edge in G

2 otherwise

(Recall that the distance from su to p, is the number of times that the head must cross

the line 0 = 0 when traveling from s. to p,. Recall also that the line 0 = 0 lies between

su and p,.) However we can only specify distances using a reachability function. Our

goal, therefore, is to construct requests with similar distance relationships using the

reachability function f(0) = 02. We make a new graph G', consisting of 2n nodes,

which lets us define the requests. We transform each vertex u E G into two vertices

Uin, Uout E G', where uin has only incoming arcs and uou t has only outgoing arcs. Let

Vin be the set of nodes with incoming arcs only and let Vout be the set of nodes with

outgoing arcs only. The edges in G' are defined by,

(Uout, Vin) E G' ý* (u, v) E G.

We examine the structure of G'. Notice that without loss of generality all nodes in

the underlying undirected graph of G' have degree 1 or 2. (If a node has degree 0 or

3 then G has no Hamiltonian cycle.) An undirected graph in which all nodes have

degree 1 or 2 is a collection of paths and cycles. Therefore all connected components

in G' have one of two structures. (See Figure 9-6.)

1. A sawtooth. All nodes have degree 2 except for exactly two nodes that have

degree 1. The nodes alternate between being in Vin and being in Vout.

2. A circular sawtooth. All nodes have degree 2. They alternate between Vin

and Vout.
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(Left) A sawtooth. (Right) A circular sawtooth.

For each node in G' we define a request on the disk. More specifically, for each node

uout E Vout, we define a request s' and for each node vin E Vin we define a request p'.

These requests will satisfy,

Requirement 9.3.2 The head can travel from s' to p, crossing 0 = 0 exactly once

if and only if (Uout, Vin) is an edge in G'.

We now show how to place requests that correspond to a sawtooth. Consider a

sawtooth in which both endnodes are in Vin. (The other three cases are analogous.)

Let the nodes in the sawtooth be,

1 2 3 k
Vin out Vin7•,. Vin'

(See Figure 9-6.) We satisfy requirement 9.3.2 if,

* sI2, is located at the point (0, 2i).

* p',2-I is located at the point (1, 2i - 1).

(Recall the definition of the reachability function.)

The case of a circular sawtooth is more difficult. We modify the above construction

to deal with this case. Suppose that the nodes in the circular sawtooth are,

0 1 k-1 kI 0
Uout , in ... out , Vin, Uout'
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(See Figure 9-6.) The requests pl, s' 2,...,Pk-2 ,k-, are placed as above. The

request p',k is moved to (2, k + 3). We also place a request s'o at ((1 - k)/2, -(1 -

k) 2/4 + 1 - k). (Note that k is odd and hence these coordinates are integral.) We

would like to have the following distances.

d(s'o,p',) = 0,

d(s'o,p~k) = 0,

d(s'o, p,) = 1, if i# 1, k,

d(s'k-1j,pk) = 0.

These equations do indeed hold since,

(2 (1 k) )2 (1 k)2 (12(1 - k) 1- k
2- ) +1-k = -4-2(1-k)k -

= k+3,
2  k) 2 +1 -k = 1-(1-k)+(1-k)

- 1,

(2-0)2 = (k + 3)-(k - 1).

It can now be seen that requirement 9.3.2 is satisfied. (All the other required distances

follow immediately from the construction.) See Figure 9-7.

We have shown how to construct requests for each connected component of G'

separately. We now place these blocks of requests for each connected component

one above the other. We do this in such a way that the difference between the radial

coordinates of requests corresponding to different components is at least an 2 for some

sufficiently large constant a. This will ensure that if the head travels between two

requests corresponding to two different components then it crosses 0 = 0 at least

twice. For each request s' we place the request s, so that it has the same radial

coordinate as s' and has angular coordinate (1 - k)/2. The request s' is connected

151



S 0 P

Figure 9-7: The placing of requests for a circular sawtooth with k = 5. Here s'2 =
(0,2), sU2 = (- 2, 2 ), p'vl = (1, 1), pv = (2, 1) etc.

to the request s, by a subchain of requests spaced one unit apart in the angular

direction and with the same radial coordinate as su and s'. Similarly for each request

p', we place the request p, so that it has the same radial coordinate as p' and has

angular coordinate 2. (See Figure 9-7.) Note that we have now defined the exact

positions of the columns S and P. Property 3 is now satisfied. The total number of

requests used is O(n2 ) and the dimensions of the area of disk used are O(n) x O(n3 ).

(The angular dimension is O(n) and the radial dimension is O(n3 ).)

Enforcing Properties 4, 5 and 6

We next describe the requests in columns Q and R and the additional requests that

must be placed between these columns. By Properties 5 and 6 the radial order of

the requests in Q and R is determined by the radial order of the requests in P and

S. By renumbering the vertices of G we can set the radial coordinate of q,, to be 5i.

We can then set the radial coordinate of r,i to be 5h(i), where h is a permutation

on 0,1,2,..., n - 1 defined by the radial order of the requests in S. Our goal in this

part of the construction is to place a subchain of requests between q, and r, so that

in any solution that takes n rotations, this subchain must be serviced in less than one
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rotation. This is done for all vertices v in G. Since h is an arbitrary permutation,

these chains must cross. However, at the crossing points we shall place the requests

so that in an n-rotation schedule, the disk head cannot jump from one subchain to

an overlapping subchain.

We first consider the simple case in which h is the transposition (0, 1,2,..., n -

1) -+ (1,0,2,...,n - 1).

Lemma 9.3.3 If h is the above transposition, we can place 0(1) requests between q,

and r, for all v so that in an n-rotation schedule each subchain is serviced in less

than 1 rotation. The total number of requests used is O(n) and the area of disk used

has dimensions 0(1) x O(n).

Proof: Consider the following sets of requests on the disk.

Ao = {(0,0),(1,0),(2,0),(3,0),(5,4),(6,5),(7,5)},

A1 = {(0,5),(1,4),(2,3),(3,2),(4,2),(5,2),(6,1),(7,0)}.

(See Figure 9-8.) Now suppose that (3, 0) and (5, 4) are serviced in different rotations.

Figure 9-8: Placing requests to enforce a permutation.

Then by the definition of the reachability function, (4, 2) must be serviced in a third

rotation. Hence if all the requests in Ao and Ax are serviced in two rotations then

(3, 0) and (5, 4) must be serviced in one of them and (4, 2) must be serviced in the
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other. By carrying out similar (but simpler) arguments on other pairs of requests we

must have that if all the requests in A0 and A1 are serviced in two rotations then all

the requests in A0 must be serviced in one of them and all the requests in A1 must

be serviced in the other.

Now for vertex vj in G, j L 0, 1, we place the requests,

Aj = {(0, 5j), (1, 5j), (2, 5j), (3, 5j), (4, 5j), (5, 5j), (6, 5j), (7, 5j)}

on the disk. Suppose that all the requests in Uj Aj are serviced in n rotations. It

is clear that all the requests in Aj must be serviced in a single rotation for j 5 0, 1

and the requests in Ao U A1 must be serviced in 2 rotations. Therefore by the above

argument for Ao and A1 , the requests in Aj must be serviced in a single rotation for

all j, < ij < n. o

Corollary 9.3.4 If h is an arbitrary permutation, we can place O(n 2) requests be-

tween q, and r, for all v so that in an n-rotation schedule each subchain is serviced

in less than 1 rotation. The total number of requests used is O(n 3) and the area of

disk used has dimensions O(n2 ) x O(n).

Proof: By an elementary result in algebra an arbitrary permutation is the compo-

sition of at most n2 transpositions of neighboring elements. Hence we can construct

a set of requests corresponding to an arbitrary permutation by simply concatenating

n2 structures similar to the one described above. The first column of requests of one

structure will be identified with the last column of requests of the previous structure.

All of these requests can clearly be placed in a region with dimensions O(n 2) x O(n)

and the number of requests used is O(n3 ). The entire region can be shifted in the

angular direction so that it lies between columns Q and R, whose exact positions can

be determined using the comments below. O

It only remains to add subchains of requests between P and Q and between R and

S to complete the enforcement of Properties 4, 5 and 6. It is easy to see that this can

be done and so we omit the details since they are a little awkward to describe. Once
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these subchains have been constructed it is possible to calculate the exact positions

for the columns P, Q, R and S so that all the subchains "match up" to form the

complete chains.

We have described the reduction in terms of a disk with dimensions poly(n) x

poly(n). In order to obtain a reduction for a disk with dimensions 27r x 1 we simply

scale all the coordinates of the requests by an appropriate amount. This has the effect

of scaling the reachability function. Note that there are poly(n) requests and each

request has integral coordinates before the scaling. This, together with the fact that

the disk before the scaling has polynomial dimensions, implies that each request can

be described using a number of bits that is polynomial in n. Hence the entire input

can be described using a number of bits that is polynomial in n. The reduction is

complete.

9.4 An Optimal Algorithm for Linear Reachability

Functions

Although the disk scheduling problem is NP-hard for general reachability functions,

optimal solutions can be obtained for a special case. In this special case, the head

either has no radial movement or else has full radial speed s. The reachability function

is therefore linear, i.e. f(0) = sO. In addition, we require that the disk head starts at

the point (0, 0) and ends at (0, 1).4

One can verify that the linearity of f ensures the reachability property. That is,

regardless of its current speed, the head can follow any head path passing through

its current position. To be more precise, suppose that on one rotation the disk head

4In Section 9.3 we showed that the disk scheduling problem is NP-hard when the disk head must
start and end at the same place. It is however easy to show that the problem remains NP-hard
when the head must start at (0, 0) and end at (0, 1). This is because the Directed Hamiltonian
Path problem is NP-hard when the beginning vertex and the end vertex are specified. We construct
an instance of the disk scheduling problem that is almost identical to the one used in Section 9.3.
The only difference is that there is a chain of requests from (0, 0) to s8 where u is the first request
required to be on a Hamiltonian path, and a chain of requests from p, to (0, 1) where v is the last
request that is required to be on the path. (Note that these chains might need to cross other chains
but this can be done using the techniques of Section 9.3.)
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goes from point A to point B to point C, and on another rotation the disk head goes

from point D to point B to point E. Then the head can go from A to B to E or from

D to B to C. (Note that A, B, etc. are any points on the head path, not necessarily

requests.) The reachability property does not hold for general reachability functions.

Suppose that P is a head path that services all the requests. If P requires m

rotations let (q, gp(q)), 0 < q < 2mr, be the location of the head after it rotates

through an angle 0. Path P satisfies the monotone property if gp(q) < gp(q + 2kr)

for any q and positive integer k, where 0 < q < q + 2kr < 2mr.

Lemma 9.4.1 Suppose that the disk head must start at (0,0) and end at (0, 1). Then

there exists an optimal solution to the disk scheduling problem such that the monotone

property is satisfied.

Proof: Consider any optimal solution and its corresponding path P. Suppose

that P requires m rotations. We construct a new path Q with m rotations such that

Q preserves monotonicity and can be followed by the disk head. In particular, for any

angle 0 E [0, 2r) and integer i E [0, m - 1], let gQ(O + 2ir) be the ith smallest value

from gp(O), gp(O + 2r), ... , gp(O + 2(m - 1)r). (See Figure 9-9.) By construction, the

path Q that corresponds to gQ takes m rotations and preserves monotonicity. The

reachability property implies that Q is realizable by the disk head. o

I

S.....rotation 3

--- rotation 2

- rotation I

0 27r

Figure 9-9: (Left) An optimal path P with m = 3 rotations. (Right) Path Q with 3
rotations which preserves monotonicity and is realizable by the disk head.

We now describe a situation in which monotonicity is violated. Consider the point
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(o0, ro). The region under (0o, ro) consists of points ( 0, r), where,{0 <r <ro-f(4-0o) for 0> 0o

0 r < ro - f(o - ) for q qo0.

Figure 9-10: The shaded triangle is the region under the point (q, r).

(See Figure 9-10.) If a request R = (0, r), 0 < 0 < 27r, is serviced on the (k + 1)st

rotation, then we say that R is serviced at angle 2k7r + 0. We have the following.

Lemma 9.4.2 Suppose request R = (0, r) is serviced at angle 2kr + 0. If, when

R is serviced, there are unserviced requests in the region under (2kir + 0, r), then

monotonicity is violated.

Proof: Let g be the function that describes the head path. Suppose that in the

region under (2kr +0, r) there is an unserviced request U = (0 +0., rj), -7 < 0, • r.

Then g(2kr + 0) = r and g(27r + 0+ Ou) = r, for some e > k. Since U is unserviced

and in the region under (2kxr + 0, r), we must have g(2ewr + 0) < r by definition of

the region under a point, i.e. g(2er + 0) < g(2kbr + 0) for some £ > k. O

An optimal algorithm. We present an optimal algorithm MONOTONE that ser-

vices the requests in the following order. The disk head starts at (0, 0). Let the

current head position be (q0, ro) where 0o is the actual angle through which the head

has rotated. Suppose that R = (0, r), where 0 < 0 < 27, is the next request to be

serviced by MONOTONE, and suppose that R is serviced at angle = 2kwr + 0. The

following conditions are used to determine R.

157



1. The reachability cone rooted at (40, ro) contains (¢, r);

2. There are no unserviced requests in the region under (0, r);

3. Request R is the first one that is in the cone rooted at (00, ro) and that satisfies

condition 2. Stated differently, for any unserviced request R' = (0', r'), if there

exists a k' such that 0' = 2k'7r + 0', 0o < 0' < 0 and (4', r') is in the cone rooted

at (40, ro), then there are unserviced requests under the point (0', r').

By Lemma 9.4.1 there exists an optimal solution OPT such that the monotone prop-

erty is satisfied. The following theorem shows that if OPT serviced some request before

MONOTONE does, then OPT would have to violate monotonicity. Hence, MONOTONE

cannot perform worse than OPT.

Theorem 9.4.3 Let OPT be any optimal algorithm that preserves monotonicity. Al-

gorithms OPT and MONOTONE require the same number of rotations to service all

the requests.

Proof: To obtain a contradiction we assume MONOTONE requires more rotations

than OPT. Let R 1, R 2, ... be the order in which MONOTONE services all the requests.

Let Rj = (0j, rj) be the first request that OPT services before MONOTONE. Suppose

OPT services Rj at angle Oj = 2kir + 0j, which implies that MONOTONE services Rj

at an angle greater than qj. Let R; = (08, r,), i < j, be the last request MONOTONE

services before angle Oj. Suppose MONOTONE services Ri at angle qi = 2k'r + 0i,

where qi < Oj. There are two cases to consider. (See Figure 9-11.)

Figure 9-11: (Left) Rj is outside the reachability cone rooted at (0i, ri). (Right) Rj
is inside the reachability cone rooted at (0i, ri).
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Case 1. Rj is outside the reachability cone rooted at (0i, ri). By condition 2,

(0j, rj) is above the cone. This implies that OPT cannot service Ri at an angle

q E [0i, qj], since OPT services Rj at qj. By the definition of Rj, OPT services Ri

no earlier than 0j. Hence, OPT services Ri after Rj. Lemma 9.4.2 implies that OPT

violates monotonicity.

Case 2. Rj is inside the reachability cone rooted at (0i, ri). The reason that

MONOTONE does not service Rj after servicing Ri is that there is some request Re

under the point (0j, rj). This request Re is not serviced by MONOTONE by angle Oj, by

the definition of Ri. However, MONOTONE services Re before Rj by the construction

of the algorithm (i.e. i < £ < j). Hence, the definition of Rj implies that Re is not

serviced by OPT by angle Oj. Therefore, OPT services Rj before Re. Lemma 9.4.2

implies that OPT violates monotonicity. EO

9.5 A Special Case of the Asymmetric Traveling

Salesman Problem

In this section we view the disk scheduling problem as a special case of the asymmet-

ric traveling salesman problem with the triangle inequality (ATSP-A). We present an

approximation algorithm for this ATSP-A problem and then obtain another approxi-

mation algorithm for the disk scheduling problem.

In the disk graph, edge lengths are nonnegative integers given by the distance

function defined in Section 9.1. If the disk head makes a full seek in tfullseek rotations

then all edge lengths are at most L = [tfullseekl + 1. However, an ATSP-A problem

that has integer edge lengths from [0, L] is not necessarily a disk scheduling problem

and so the algorithms of the previous sections may not apply.

The problem we consider in this section can be formally defined as follows. We

are given a graph G with n nodes and a distance function 6 on these nodes. The

function 6 is not necessarily symmetric but it satisfies the triangle inequality, i.e.

b(u, v) + b(v, w) 2 !(u, w) for all nodes u, v and w. We first assume that all distances
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are 0 or a for some a > 0. We present an optimal algorithm for this case. Secondly

we assume that all distances are either 0 or else lie between a and p where 0 < a < p.

In this case we apply the previous result to obtain a P/a-approximation algorithm.

The best known approximation ratio for a general ATsP-A problem is [log 2 n]. (See

[22].) We have,

Theorem 9.5.1 Let a > 0. If 6(u, v) E {0, a} for all nodes u and v then the resulting

ATSP-A problem is polynomially solvable.

Proof: We define a relation on the nodes. Let u - v if and only if 6(u, v) =

6(v, u) = 0. By the triangle inequality this is an equivalence relation. Let V1,V2 ,... be

the equivalence classes induced by this relation. Define the distance from equivalence

class Vi to class Vj to be 6'(Vi, Vj) = min{6(u, v) : u E V,v E Vj }. One can verify

that the triangle inequality holds for 6' and that if 6'(V2 , Vj) = 0 then b'(Vj, Vj) $ 0.

Consider now a directed graph, H, whose nodes are the equivalence classes. A directed

edge (Vi, Vj) exists if and only if 6'(V2, Vj) = 0. The graph H is acyclic, otherwise

there would exist Vi and Vj such that 6'(Vi, Vi) = 6'(Vj, 1V) = 0. By the triangle

inequality on 6' and the acyclicity of H, graph H induces a partial order, (P, -<),

on the equivalence classes. We say that 1V -< Vj in P if and only if there is a path

from Vi to Vj in H. Two elements Vi and Vj in P are comparable if either Vi -< Vj or

Vj -< Vi, and they are incomparable otherwise. An antichain is a set of elements any

two of which are incomparable. A chain is a set of elements any two of which are

comparable.

Lemma 9.5.2 Let A be the maximum cardinality of an antichain. The length of an

optimal tour for our ATSP-A problem is at least aA.

Proof: Let { V, V2 ,..., VA} be an antichain of size A. Since, for all i and j, Vi A Vj

and Vj A V1, we have 6'(1V, Vj) = 6'(Vj, V4) = a. For all i let vi be any member of

Vi. (Recall that Vi is an equivalence class of nodes in graph G.) The definition of 6'

implies that 6(vi, vj) = 6(vj, vi) = a for 1 < i, j A. The optimal traveling salesman

tour must visit all these nodes vi. Hence the tour has length at least aA. O
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It remains to show that we can find a tour that achieves this lower bound. Our

algorithm is based on the following theorem. See [20, 10].

Dilworth's Theorem If the largest antichain in a partial order (P, -<) has cardi-

nality A, then the partial order can be decomposed into exactly A chains. Moreover

this decomposition can be obtained in polynomial time.

It is clear that no decomposition can have fewer than A chains since every element

of the antichain must be in a different chain. What is remarkable is that there always

exist A chains that cover the whole partial order. (See [10] for a proof.)

An optimal tour is constructed from the chains in a minimum-size chain decom-

position. Under the distance function 6', the total length of a chain is 0 and the

distance from the end of any chain to the beginning of any other chain is at most a.

Given that the size of the maximum antichain is A, we can therefore link the chains

into a cycle of length at most aA. Note that this is a tour of graph H. To obtain a

tour of G, we observe that once a tour has visited one node in an equivalence class it

can visit all the other nodes in that class in any order without increasing its length.

Hence we can construct a tour of G that has length at most aA. By Lemma 9.5.2

this tour is optimal. O

Corollary 9.5.3 Let P > a > 0. If either 6(u,v) = 0 or a < 6(u,v) < P for

all nodes u and v then there exists a P3/a-approximation algorithm for the resulting

ATSP-A problem.

If we assume that all nonzero distances are a and apply Theorem 9.5.1, then Corol-

lary 9.5.3 follows. By the comments at the beginning of this section, if the disk head

can make a full seek in tfullseek rotations then Corollary 9.5.3 gives a ([trullseek + 1)-

approximation algorithm for the disk scheduling problem. (Typically tfullseek < 2.)

9.6 The On-line Problem

In this section we consider the on-line disk scheduling problem. Requests arrive over

time and are placed into a queue. The disk head can only service requests that are
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in the queue. The goal is to maximize the throughput (i.e. service the requests at

a high rate). This situation may be viewed as an on-line problem in which we have

limited look-ahead. In real systems the requests are known to arrive in a "bursty"

fashion [58] and so the preceding analysis of the off-line problem is useful. Suppose a

large group of requests arrive together and then there is a period in which no requests

arrive. We can use an off-line algorithm to service these requests.

As discussed in Section 9.1.2 many algorithms have been studied in the literature.

Of these, shortest-time-first (STF) has been shown to have good throughput. (Recall

that under STF the algorithm services the request that it can reach in the smallest

amount of time. This is equivalent to the request that it can reach with the smallest

amount of rotation.)

We propose an algorithm, CHAIN, for the on-line problem that is similar in spirit

to the algorithms of Section 9.5. The key property of CHAIN is that it has better look-

ahead than STF and should therefore have better throughput. (By better look-ahead

we mean that it considers more than just the next request that it will service.) An

interesting open problem is to obtain a meaningful comparison of the two algorithms

analytically.

9.6.1 The Algorithm CHAIN

Consider the q requests that are in the queue. We construct a partial order on q + 1

points, namely the q requests and the current position of the disk head, P = (80, ro).

For simplicity assume 0o = 0. We say that two points Ri = (0i, ri) and Rj = (0j, rj)

(where 0i,,j E [0, 2r)) satisfy Ri -< Rj if and only if d(Ri, Rj) = 0. (Recall the

distance function defined in Section 9.1.) It can be verified that this defines a partial

order. Note that P is a minimal element in this partial order. Algorithm CHAIN

proceeds by finding the longest chain whose minimum element is P. It moves the

disk head to the request that is directly above P in this chain. (If the longest chain

contains P only then the algorithm moves the disk head to an arbitrary request.)

The algorithm then repeats, constructing a new partial order.
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