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ABSTRACT

For some uses of magnetic bearings such as precise positioning of a rotor, the ability
to control the rotor actively is essential. However, the consideration of performance
robustness is required for this application because of unknown parameters, unpre-
dictable disturbances, and the nonlinearity of magnetic force. This thesis focuses
on the achievable robustness of the system designed by linear theories and perfor-
mance comparison between the linear approach and adaptive approach. First, the
examples of the controller design for the magnetic bearing using the LQG design,
H, design, LQG/LTR design, and tu-synthesis are presented to show how the linear
theories achieve stability and/or performance robustness. Second, the limitations of
linear controllers for the system with uncertainties are evaluated by using singular
value plots and structured singular value plots. Furthermore, it is revealed that when
the system reaches its limit, the gain of the controller becomes extremely high; there-
fore, it should be avoided. The effect of the order reduction of the controller is also
examined. Then, the robustness of the linear controller and adaptive controller using
local function estimation is compared by simulations. The results show the adaptive
controller can deal with wider range of uncertainties than the linear controller can,
but high frequency unmodeled dynamics impose limitations on adaptive gain.
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Chapter 1

Introduction

1.1 Motivation and Background

As a requirement of machines becomes faster and more precise, conventional design

methods or machine elements may not be able to achieve the requirement. In this case,

we must opt for an unconventional, yet practical approach to achive the requirement.

Even though magnetic bearings are not as widely-used as other conventional bear-

ings, they have been used in several applications because of their distinctive features.

No-contact nature may be the most attractive feature of magnetic bearings. Because

there is no friction, magnetic bearings are used for high rotating speed machines such

as fly-wheels and turbo-pumps. Also, because no lubrication is necessary, they are

used for maintenance-free machines, high speed machines in high temperature envi-

ronments, high speed machines in vacuum, and machines in clean rooms. For these

applications, especially for industrial applications, many research and development

works have been done, and magnetic bearings are widely in use.

There is another attractive feature in magnetic bearings. The fact that magnetic

bearings are actively controlled provides some useful applications. One possible ap-

plication is for machines that need high speed rotation and precise positioning of

the rotor simultaneously. Precise machine-tool spindles and the joints of high-speed,

high-precision robot manipulators may be achieved by magnetic bearings. Active con-

trol also makes force control and impedance control of moving parts possible. This

feature is difficult to achieve by other conventional bearings such as ball bearings or



air bearings; therefore, using magnetic bearings largely enhances the machine's capa-

bility. However, due to the nonlinearity of magnetic force and nature of instability,

the use of magnetic bearings for precise machines requires more effort on designing a

control system than just making the rotor levitate for the bearing purpose. Unknown

factors, such as unknown load, unmodeled dynamics, or unpredictable disturbances

may cause the performance degradation of the system, and to precise machines, it is

not acceptable. Nevertheless, the research in the area of precise control of magnetic

bearings has not yet been well explored.

In the past decade, modern control theories have evolved to deal with the uncer-

tainties in systems. This development is driven by the fact that in real systems, there

are many unknown factors, and without considering these factors in the design pro-

cess, the closed-loop system often fails to be stabilized, or the resulting performance

becomes much poorer than expected. This fact can also be applied to the control of

magnetic bearings. However, the recent development of robust control theories has

enabled us to design a controller that achieves the desired performance even when

uncertainties exist. Moreover, these theories are now readily available as computer

aided design tools [1][2]. Nonami et al. applied p-synthesis to the control design for a

magnetic bearing and succeeded to robustly control the flexible-rotor magnetic bear-

ing system [3]. Even though this proves that the linear robust control theory can be

applicable to the real system with uncertainties, fixed gain linear controllers cannot

always achieve the desired performance, and knowing the limitation of the controller

designed by p-synthesis is as important as the design procedure itself. Moreover, in

precise magnetic bearings, the system is affected by nonlinearity because the operat-

ing point changes. However, the effect of the nonlinearity is not analyzed in [3].

Because of the strong nonlinearity, other approaches than linear controllers have

been applied to magnetic bearings. For example, Shinha et al. applied sliding mode



control to the magnetic bearing even though the report does not include experimental

results [4]. Yeh developed an adaptive control method using local function estimation

and successfully controlled the rotor of the turbo-pump with magnetic bearings [5].

These results indicate that nonlinear approaches can deal with the strong nonlinearity

of magnetic bearings and may be able to achieve performance robustness for precise

control.

With these choices of control methods, we must analyze the advantages and dis-

advantages of these methods in order to design a proper controller. Generally, linear

controllers are most widely used and can be applied easily. However, in some cases,

other methods, such as adaptive controllers, far more exceed linear controllers in

terms of achievable performance. Astrim et al. discussed this issue in their literature

[6]. However, it does not mention the limitation of robustness of linear controllers.

With the advent of p-synthesis now, we are able to judge the limitation of linear con-

trollers applied to the system with uncertainties. One of the purposes of this thesis

is to provide the information about the methodology and examples of the limitation

of the magnetic bearing system designed by p-synthesis along with the comparison

with an adaptive method. This information helps control designers choose the proper

control structure.

1.2 Scope and Contents of the Thesis

This thesis contains three schemes: linear control design examples, evaluation of

limitations of linear controllers, and comparison of the linear approach and adaptive

approach. By using design examples, it is shown how linear controllers are able to

deal with the uncertainties that exist in the magnetic bearing system. The design

methods used in this part are LQG, Hooc, LQG/LTR, and M-synthesis, and in these



methods, only p-synthesis can deal with performance robustness. Even though the

design process of these theories is not trivial, commercially available CAD programs

exist, and all four controllers are designed using these programs. The program codes

to calculate the controllers are listed in the Appendix.

The limitation of linear controllers for the system with uncertainties are evaluated

by singular value plots or structured singular value plots. In this part, the limitation

by the bandwidth limit of the closed-loop system, limitation by the uncertainty of

the rotor mass, and limitation by both the uncertain mass and bandwidth limit are

evaluated. Also, as the adverse aspects of the robust linear controllers, high gain and

high order of the designed controllers are discussed, and the effect of order reduction

and prefilters is presented.

The effect of nonlinearity on the performance of the system with uncertainties

is discussed by using nonlinear simulations. In this part, the adaptive control us-

ing local function estimation, by which the turbo-pump with magnetic bearings are

controlled successfully, is briefly described to compare the linear approach and adap-

tive approach. Because of the strong nonlinearity of magnetic force, the system with

the linear controllers may not be able to deal with the nonlinearity whereas with

the adaptive approach, which estimates the nonlinear function as well as unknown

disturbances, is not affected by the nonlinearity. Also, the effect of high frequency

unmodeled dynamics is examined by simulations, and the reason why the adaptive

gain chosen is not always able to be used in real sytems is presented.

This thesis is organized as follows. First, design examples using linear control

theories are given in Chapter 2. The design procedures and comparison table for

these methods are presented. In Chapter3, the limitations and disadvantages of the

linear controllers for a robust design are evaluated. Chapter 4 contains the equivalent

linear uncertainties of the nonlinearity, description of the adaptive control method



using local function estimation, and comparison between the adaptive approach and

linear approach. Finally, concluding remarks are given in Chapter 5.



Chapter 2

Control of Magnetic Bearings with
Linear Controllers

2.1 Introduction

In the design of a feedback controller, the structure of the controller is first sellected.

There are two types of controller we can choose from: a linear controller and a

nonlinear controller. Linear feedback controllers are simple. They involve only matrix

calculation. There are no branch operations or special functions. Therefore, they are

easy to install and debug. Thus, more reliable than nonlinear controllers. Also, the

recent development of linear control design theories has made us able to deal with

both stability robustness and performance robustness within the linear frame, and

these theories are readily usable as a form of computer aided design software.

In this chapter, the controller design for the thrust magnetic bearing of a turbo-

pump is demonstrated by using several linear control design methods. In addition,

a discussion on how these methods achieve stability robustness and performance ro-

bustness is presented. In the end, summary of the existing linear design methods

is presented in a comparison table. Performance robustness is necessary when we

apply the magnetic bearing to a precise machine spindle and try to change the rotor

position precisely because the characteristics of the system changes as the position

changes. The advantages and disadvantages of linear controllers are discussed in the

later chapters based on the design results presented in this chapter.



2.2 Model of the Magnetic Bearing

Figure 2.1 shows a cross section of the turbo-pump. This turbo-pump is designed

and manufactured to use in the semiconductor industry for creating a vacuum envi-

ronment. A simplified schematic diagram of the thrust magnetic bearing is shown

in Figure 2.2. In ideal situations, the magnetic force is proportional to the square

X 1, X2 ,Z : bearing local cooridinates

Radial bearings

Figure 2.1: Cross section of the turbo-pump.
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Gravity
I /

Gap

sk

Sensor

Figure 2.2: Schematic of the thrust bearing.

of the input current and inversely proportional to the square of the bearing air gap.

Therefore, the equation that governs the magnetic bearing is

m ko(io + uz) 2 _ ko(io - uz) 2  g (2.1)
(zo - )2 (z + Z)2

where z 0 is the nominal air gap, k0o is the electromagnetic constant, m is the mass of

the rotor, g is the gravity acceleration, io is the bias current, and uz is the control

current [7]. The numerical values of the magnetic bearing are shown in Table 2.1.

At the equilibrium position, uz = 0 and z = 0, Eq.(2.1) can be linearized and

expressed as a state space form:

k = Ax+Bu (2.2)

y = Cx (2.3)



Parameters

Nominal Air Gap z o

Electromagnetic Constant k o

Mass m

Bias Current i o

Numerical Values

400 x 10-6 m

4x 10-6 Nm2 /A2

2.0 kg

0.5 A

Table 2.1: Numerical values of the thrust bearing.

where

x [

A =

B =

z
04k i

4koi2
mzo

0

m•
0

1 0

1
0

(2.4)

(2.5)

(2.6)

(2.7)

Gravity is neglected to make the analysis of the examples simple. With this linearized

equation, (2.2), I design controllers that stabilize the magnetic bearing, and see how

they achieve the stability robustness and performance robustness.

2.3 Design Examples

In this section, I proceed a linear quadratic Gaussian (LQG) design, H, design, LQG

loop transfer recovery (LQG/LTR) design, and p-synthesis. These design methods

are based on optimal control theories and considered to achieve high performance.



2.3.1 LQG Design

Figure 2.3 shows the structure of an LQG controller. An LQG design chooses the

state feedback gain vector K such that the performance index

J = (xTQx + uTRu)dt (2.8)

where x is a state vector, u is a control vector, and Q and R are weighting matrices,

becomes minimum, and chooses the filter gain H such that the variance of the state

estimation error becomes minimum with the existence of disturbances whose intensity

matrix is 5 and noises whose intensity matrix is O [8]. The design aims to regulate

I
I
I
I
I
I
I
i
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-r

Figure 2.3: Structure of an LQG controller.

the output against a pulse disturbance that is 50 N and lasts 2 ms within 20 ms

without overshoot. E=1.0 N and O = 1.0 x 10- 15 m are assumed. The fact that

we can separately design the filter gain H and state feedback gain K makes the

design process simple (the separation principle). The weighting matrices Q and R



are decided as follows with a try and error process.

1 0
0[ 1.0 x 10-5

= 3x10-9

(2.9)

(2.10)

As a result, K and H are calculated as K = [1.995 x 104 69.98], H = [5.629 x

103 1.584 x 10 7]T . The simulation result when the pulse disturbance is applied is

shown in Figure 2.4. The output is settled within 20 ms without overshoot.

x 10-5
5

,4
E
C-

00
2

0
o
rr

n

0 0.01 0.02 0.03 0.04
Time [sec]

0.05

Figure 2.4: Time response of the LQG designed system.

2.3.2 H, Design

One of the critical issues about designing a controller for a real mechanical system is

stability robustness with the existence of high frequency uncertainties. These uncer-

tainties include elasticity of the structure and sensor dynamics. In order to maintain

the stability of the system, we have to limit the bandwidth of the closed-loop system



if unmodeled high frequency dynamics exist. Since the LQG design developed in the

previous section does not limit the bandwidth to a specific frequency, I need to an

alternative design method needs to be considered if we have to limit the bandwidth

to maintain the stability.

For example, suppose the position sensor of the magnetic bearing has dynamics

described as
40002G,(s) = (2.11)s2 + 560s + 40002

The magnitude plot of the sensor dynamics is shown in Figure 2.5. Then, the real

transfer function of the magnetic bearing becomes different from the ideal transfer

function as described in Figure 2.6 in a frequency domain. If we design a controller

without considering these dynamics, the closed loop system may become unstable.

Figure 2.7 shows the time response when the same disturbance of Figure 2.4 is applied

but the sensor dynamics exist. As can be seen from Figure 2.7, the closed-loop system

becomes unstable because there is no stability margin in this system.

The so-called H, design is a design method that can minimize the maximum

value of a principle gain throughout the frequency domain [8]. With a certain fre-

quency weighting function, an H, design method can achieve an optimal nominal

performance while limiting the bandwidth. Figure 2.8 shows the concept of an H"

mixed sensitivity design described in a block diagram. While limiting the high fre-

quency gain of the closed-loop transfer function by the weighting function W 2 (s),

the design procedure maximize the performance by shaping the sensitivity function

to the sensitivity weighting function W (s). The theory can also judge the existence

of the controller that achieves the desired sensitivity function. If the controller does

not exist, the specification must be changed to realize the controller.

In order to achieve the same performance as achieved in Section 2.3.1, the weight-
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Figure 2.5: Frequency response of the position sensor.
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Figure 2.6: Frequency response of the real system.
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Figure 2.7: Time response of the LQG designed system.

ing function Wi(s) is chosen as shown in Figure 2.9. The designed controller must

achieve the smaller sensitivity function than the curve shown in Figure 2.9 in the low

frequency region. However, because of the relation between the settling time t, and a

dominant pole Pd, ts r -4/pd, the frequencies over 200 rad/s of the sensitivity func-

tion do not count to achieve the settling time of 20 ms. Therefore, we must choose

the weighting function as simple as possible while it covers the frequency area under

200 rad/s because the order of WMl(s) is added to the order of the controller designed

by the Ho design method. The dotted line in Figure 2.9 is the inverse of the selected

weighting function:

9 x 40000
s 2 + 400s + 40000

One way of describing uncertainties is to use a multiplicative error A(s) from the

nominal plant. Figure 2.10 shows the block diagram of a multiplicative uncertainty.

If we can asses that the sensor dynamics in Figure 2.5 is the worst deviation from



Figure 2.8: Mixed sensitivity H, design.

the nominal plant, we can consider A(s), the solid line in Figure 2.10, as Gs(s) - I,

where G,(s) is a transfer function of the sensor and I is a unit matrix. Then, we can

choose the weighting function for the closed-loop transfer function to cover A(s) in

the high frequency region as the dotted line in Figure 2.11:

W2(S) = (2.13)
14002

Again, since the order of W 2 (s) is added to the order of the controller, we should not

choose a high order transfer function for W 2 (s). In addition, W 2 (s) can be improper,

but the relative order of the combination of W 2 (s) and the plant cannot be negative.

Once we choose the weighting functions, we can calculate the controller by using

the commercially available MATLAB m-files. What the program does is to find the

controller that achieves the following inequality:

W2(s)S(s) < 1 (2.14)
W2.14) does not exit, we have to revise the specifica-

If the controller that achieves Eq.(2.14) does not exit, we have to revise the specifica-
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Figure 2.9: Desired sensitivity function.

Figure 2.10: Multiplicative uncertainty.

tion. In fact, the controller that satisfies the specification, Eq.(2.12) and Eq.(2.13),

simultaneously does not exist. Therefore, the performance specification needs to be

revised in terms of Wi(s), not W2 (s), because stability must be maintained. This

revision can be either to make the gain lower, to make the dominant pole slower, or

both. The procedure to find a controller by making the gain of Wl(s) lower is called

"gamma iteration," and it is also commercially available as a MATLAB m-file. Figure

2.12 shows a sensitivity function bode plot of the designed closed system. The dotted
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Figure 2.11: Necessary robustness bound.

line is the revised weighting function used for the design. Instead of using W1(s) of

Eq.(2.12), the following W1 (s), whose gain is lowered to make the controller exist, is

used.
6.1 x 40000

W1 (s) = 2 + 400s + 40000

The closed-loop transfer function of the designed system is shown in Figure 2.13, and

the inverse of the weighting function W2(s) is shown in Figure 2.13 as a dotted line.

The closed-loop transfer function is lower than W2(s) throughout all frequencies. The

response of the rotor when the same disturbance as Figure 2.4 is applied to the system

is shown in Figure 2.14. In this simulation, the sensor dynamics are not included in

the plant. Even though it achieves almost the same settling time as Figure 2.4, the

performance is not as good as the system designed by the LQG method. However,

as can be seen in Figure 2.15, even when the sensor dynamics exist, the closed-loop

system maintains stability.
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Figure 2.12: Sensitivity function of the H, designed system.
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Figure 2.13: Closed-loop transfer function of the Hc designed system.
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Figure 2.14: Time response of the H. designed system.
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Figure 2.15: Time response of the H, designed system with the sensor dynamics.

2.3.3 LQG/LTR Design

An LQG/LTR design is the other approach to achieve stability robustness. The LTR

method recovers the closed loop system to the filter loop. Therefore, we first design
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the filter loop that has the characteristics the closed-loop system is supposed to have,

and next, approximate the system by the solution of the cheap control LQR problem

[8].

The structure of the controller is the same as that in Figure 2.3. First, the filter

gain H is chosen to have the desired characteristics. By tuning the gain of the filter to

make the gain of the closed-loop transfer function smaller than A-l(s) and make the

sensitivity function close to the one in Figure 2.12, H = [4.66 x 102 1.09 x 105]T . is

chosen. The sensitivity function and the closed-loop transfer function of the filter loop

are shown in Figure 2.16 and Figure 2.17. Figure 2.18 and Figure 2.19 are the bode

plots of the sensitivity function and closed-loop transfer function of the recovered

closed-loop system. Both functions are almost the same as those of the filter's. As

a result, we obtain a time response that is similar to but slightly slower than the

response in Figure 2.12 (Figure 2.20). The disturbance applied to the system is the

same disturbance mentioned in Section 2.3.1, which is the pulse whose amplitude

is 50 N and that lasts 2 ms. The stability robustness is also satisfied because the

bandwidth of the closed-loop system is properly limited, and as Figure 2.21 shows,

even when the sensor dynamics exist, the closed-loop system is stable (However, it

shows oscilations because the system is almost on the stable limit).

The problem of the LQR/LTR design is that it is not easy to find the filter gain

that realizes the desired filter loop. Moreover, it is difficult to estimate the limitation

of the performance we can achieve with the LQG/LTR design procedure. In this

example, the limitation of achievable performance was known from the result in the

previous section. However, in general case, we might waste a time to select a filter

gain by pursuing the impossible performance.
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Figure 2.16: Sensitivity function of the filter loop.

102 103  104

Frequency [rad/s]

Figure 2.17: Closed-loop transfer function of the filter loop.
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Figure 2.18: Sensitivity function of the LQG/LTR designed system.

102 103 104
Frequency [rad/s]

Figure 2.19: Closed-loop transfer function of the LQG/LTR designed system.
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Figure 2.20: Time response of the LQG/LTR designed system.
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Figure 2.21: Time response of the LQG/LTR designed system with the sensor dy-
namics.

2.3.4 p-Synthesis

The H, design and LQG/LTR design can achieve only stability robustness. p-

Synthesis has the potential of solving the overall robust control problem including
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performance robustness. Dyle et al showed performance robustness is expressed in

the form of fictitious uncertainties and the small gain theorem [9]. Therefore, the ro-

bust control problem can be considered to solve a problem described in Figure 2.22 as

a generalized form, and using structure singular values as judging values, we can de-

sign a controller that achieves performance robustness as well as stability robustness

[1].

Figure 2.22: Generalized robust control design problem.

In order to demonstrate performance robustness, suppose the case that the mass

of the rotor is unknown, but the maximum mass does not exceed 4.5 kg and minimum

mass does not become less than 3.0 kg. I try to achieve a sensitivity function lower

than the bound described below in Eq.(2.16) no matter how much the mass is within

the range from 3.0 kg to 4.5 kg.

10 x 200
s + 200

(2.16)

This uncertainty is expressed as a form in Figure 2.23 [1]. By choosing B2, C2 ,



and D 2 in Figure 2.23 as

0
B2 = 4koi2

zo

C2 = 1 0

D2 =
io

Then, the system matrices A and B can be written as

0

B is the nominal value of the mass of

where m, is the nominal value of the mass of

(2.17)

(2.18)

(2.19)

A2) 0 (2.20)

A2)] (2.21)

the rotor. Then, the corresponding

Figure 2.23: Parametric uncertainty of the system.

nominal mass mn and A 2 to m = 3.0 -4.5 kg become the values in Table 2.2.

Figure 2.24 shows the block diagram for this robust performance problem. Once

we can describe the problem as this canonical form. we can use the computer aided



Numerical Values

Nominal Mass

Uncertainty

3.6 kg

A 2 5.556 x 10 -2

Table 2.2: Nominal mass and uncertainty.

Figure 2.24: Block diagram of the p-synthesis structure.

design tool to design the controller. p-Synthesis consists of the iteration of an Ho

optimal design and curve fitting (D-scale fitting). The design completes when the

structured singular values become less than one throughout the all frequencies [1].

Figure 2.25 shows the structured singular value plot before the D-scale fitting has

not been done. With the D-scale fitting, I try to minimize the maximum structured

singular value and make it less than one. D-scale must be approximated with finite

systems. The order of the approximated system should be as low as possible because
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Figure 2.25: Structured singular values before D-scale fitting.

the order of the controller becomes huge if we choose a high-order approximation. In

this case, a 5th order system is appropriate to approximate the D-scale derived in the

process of calculating the structured singular values (Figure 2.26 and Figure 2.27).

This D-scale fitting leads the maximum structured singular value of the closed-loop

system less than one. How the maximum structured singular value is lowered is shown

in Figure 2.28. As seen in Figure 2.28, the structured singular values in the frequency

domain become flat (all pass) with the iteration of the Ho optimization and D-scale

optimization.

In general case, structured singular values cannot be directly obtained. Only if

the number of the blocks, Ai, is less than or equal to three, the structured singular

value can be evaluated. Otherwise, we can only evaluate performance robustness

by the upper bounds of structured singular values. Yet, the research indicates that

even if the number of Ai is more than three, the difference between the upper bound

obtained by D-scale fitting and the structured singular value is usually less than 5 %
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Figure 2.27: D-scales and the fitted 5th order curves for A 2.
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Figure 2.28: Structured singular values after the D-scale fitting.

[8]. In this case, the number of Ai is two; therefore, the result of the P-synthesis is

not conservative. Figure 2.29 is the magnitude plot of the sensitivity functions with

three different rotor masses. The i-synthesis makes all the sensitivity functions less

than the sensitivity bound set as a specification.

2.4 Summary

In this chapter, several controller design methods based on the linear theories were

demonstrated. Many of the existing design methods are based on linear theories, and

we can choose one of them to achieve the specific purpose such as to minimize the

quadratic function of the time response or to guarantee the response time even when

uncertainties exist in the system.

In the case of magnetic bearings, stability robustness is essential because of their

unstable nature. Moreover, when we use the magnetic bearing for precise position-
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Figure 2.29: Sensitivity function with the various rotor masses.

ing, performance robustness is required as well as the stability robustness. For this

purpose, M-synthesis is suitable to achieve uniformed responses when uncertainties

exist. This robust performance issue is the result of relatively recent researches; thus,

there still is an immaturity in the process of design. However, in this chapter, it was

demonstrated that the designed system is guaranteed the performance robustness

even though conservativeness may exist in some cases.

Table 2.3 shows the comparison among the most often-used linear design meth-

ods. As design specifications become complicated, more sophisticated calculations

are required. However, most of the design sequences in Table 2.3 are programmed

in MATLAB m-files as listed and commercially available. Therefore, all we have to

do is to formulate the problems as a canonical form that can fit the computer aided

design. The Matlab programs that are used to design the controllers in this chapter

are attached in Appendix.

AA
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Chapter 3

Limitations of Linear Controllers

3.1 Introduction

In Chapter 2, it was shown that it is possible to design a controller that satisfy

the specification with p-synthesis even when uncertainties exist. This performance

robustness is especially necessary for the precision magnetic bearings for machining

center spindles or the joints of robot manipulators because pay load changes as the

machining tool is changed or the configuration of the manipulator changes. We can

implement uncertainties in the design specification, and p-synthesis guarantees the

uniformed responses within the specified uncertain range. However, if uncertainties

are large, linear controllers may not be able to satisfy the specification. The existence

of the linear controller that satisfies the specification when uncertainties exist is of

interest because if we cannot achieve the specification with linear controllers, we must

consider an alternative method. The H, design method can judge the existence of

the controller that satisfies the specification. Since p-synthesis is a combination of the

H,, optimal design and D-scale fitting, it has the potential to judge the limitations

of linear controllers for overall robustness problems.

In this chapter, it is first shown how the limitation of the linear controllers is

determined by the Ho, design method. Then, the effect of the range of the uncertainty,

which is used in Chapter 2 as a design example is examined. In addition, we try to

reveal the limitations by using the structured singular value plot. Finally, the possible

adverse aspects are listed and how to avoid these disadvantages is discussed.



3.2 Achievable Performance with Limited Band-
width

The H, optimal design method is known to shape the closed-loop transfer function

(or sensitivity function) exactly the same shape we plan to be as a shape of the

weighting functions. In addition, it gives us the information about the existence of

the controller that satisfies the specification given as a shape of weighting functions

within the linear frame. For example, consider the case to design a controller for the

magnetic bearing that has the parameters shown in Table 2.1. Suppose the sensitivity

bound (performance specification) Wi(s) is given as

10 x 200
Wi(s) = (3.1)

s + 200

and the bandwidth of the closed-loop system and the roll-off at the high frequencies

are defined as
82

W2(s) = S (3.2)

The performance bound is set to achieve the settling time of about 1 ms and reasonably-

small steady state error. The parameter wc is decided by the unmodeled dynamics

that exist in the high frequency region as shown in Chapter 2. The stability must be

maintained; therefore, the closed-loop transfer function of the designed system must

have lower gain than W2-(s) in Eq.(3.2). Thus, the design is proceeded to make the

H,-norm of the closed-loop system

= W1(s) (s) (3.3)
W2 (s)T (s)

less than one, where S(s) is the sensitivity function and T(s) is the closed-loop transfer

function. If y exists such that y > 1 and J < 1, the controller that satisfies the

specification exists. However, if it does not exist, we have to revise the specification.



The so-called y-iteration automatically changes the 7y and evaluates the maximum -

that leads J < 1. The maximum singular values of the transfer function from w to z

T(s) =[ W2(s)T(s) (3.4)

of the system designed by -y-iteration are plotted in Figure 3.1 with several ýc. From

this figure, we can observe that the limitation of a linear controller that satisfies

the performance specification, Eq.(3.1), is somewhere between wu = 3000 rad/s and

wC = 4000 rad/s. In this calculation, the tolerance of y is set to 0.001. The reason

why the maximum singular values of Tw, at the high frequencies rolls off is that the

optimization is not perfectly done. If a tighter tolerance is chosen, the maximum

singular values of Tw, become flat for all frequencies. However, that is not necessary

because the tolerance of 0.001 covers all the necessary frequencies.
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Figure 3.1: Maximum singular values of T., (s).
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This limitation forces us to revise the performance specification. Figure 3.2 shows

the achievable performances with several bandwidth limits wc, and the corresponding

closed-loop transfer functions are shown in Figure 3.3.

This feature, to judge the existence of the controller, of the H, design method is

powerful because it reveals the limitation of linear controllers with bandwidth limit.

3.3 Limitation with Parameter Uncertainties

In Chapter 2, I showed that we can judge performance robustness by structured

singular values. Even though there still is a room to improve, p-synthesis gives us

an insight of the limitation of linear controllers when we try to achieve performance

robustness. Consider the case given in Section 2.3.4. A controller that satisfies the

performance specification even when the mass of the rotor changes at the range of

3.0 to 4.5 kg was designed. Here, how wide range the linear controller can tolerate is

of interest because if there are no linear controllers that can achieve the performance

robustness, we have to consider other approaches.

Figure 3.4 shows the structured singular value plot of the closed-loop system

designed by p-synthesis with various uncertainties. As can be seen from the figure,

we can design the controller that satisfies the performance bound, Eq.(3.1), even if

the mass of the rotor is unknown but within the range of 3.0 to 4.5 kg. Figure 3.5

shows 10-pm step responses of the closed-loop system with the cases of m = 3.0

kg, m = 3.6 kg (nominal mass), and m = 4.5 kg. Even though the mass increases

50 %, the shapes of the responses are uniformed, and the settling time keeps 1 ms

for all three cases. However, if the upper bound of the uncertainty exceeds 4.5 kg,

the maximum structured singular value becomes more than one. That means the

designed system does not satisfy the specification for the specified uncertainty range.



20

10

-10

-20

30~f
101 102 103

Frequency [rad/s]
104

Figure 3.2: Achievable sensitivity functions with various we.

.:.. 

.i- 

c

, ("eC

,...... ....... . .... .... ... ..

=4000 rad/s

= 3000 rad/s" o00 rad/s

2-·- i
.' '.'. . .' . . . . .. .. ' '. "'. . . . . . . ' . . ."'.: : . . . ... . '

, , .. . . . .. . . . . . . . ,

' ' '' ' . . . . . . . . . . . I' '
. . .. .. . . . . . .. . . . . . . .. ·

4:::: . . .. .. . . .. .. . x' '
, v v tl : '

v·· ......

101 102 103

Frequency [rad/s]
104

Figure 3.3: Closed-loop transfer function of the systems.

49

-7- -· *: . .::: ! : : : ::: :: : : : : : :: : : :... . ........ : :"

.c = 2000 rad/s

co c 3000 rad/s ...

o = 4000 rad/s

..
-i

105

m

L,C

U-
a)'4-
CoW

0
0

_J-6
V.a)
Cl)
o
o

-10

-20

-30

-40
100 105

....... ·.....
""--------------

i i - i - • i

100

''~'` ''r

·'

· ·

··
··

-



m=3.0-5.0kg
m=3.0-4.5kg

M 0 m=3.0-3.5kg
" -1 ...... ... . .. m=3. . 4. k

1-
_-1 0 ------ ...... ...... .. ...

Cn

100 101 102  103  104

Frequency [rad/s]

Figure 3.4: Structured singular values with various uncertainty ranges.

Therefore, if the uncertainty range of the mass is 3 to 5 kg, the resultant sensitivity

function by p-synthesis does not become less than W- (s) for all frequencies (Figure

3.6). As a result, in the 10-iLm step response, the shape of the response can have

overshoot, or the settling time can take more than 1 ms (Figure 3.7).

When looking into Figure 3.4, we observe that the structured singular values are

not flat for all the frequencies. That means the design is not perfectly optimized in

terms of lowering the maximum structured singular value. The limitation of linear

controllers is precisely estimated when we can obtain an all-pass structured singular

values. However, it requires more precise (higher order) approximation for D-scale

fitting and smaller tolerance for H. optimization in the p-synthesis process. In

this case, a 5th-order approximation for D-scale fitting and a tolerance of 0.01 for

r
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Figure 3.5: Step responses of the system designed for m = 3.0 - 4.5 kg with various
m.

7-iteration are used, and limitations are reasonably estimated.

3.4 Adverse Aspects of Large Uncertainties

It is easily imagined that the robust controller designed by P-synthesis achieves the

performance robustness by making the loop gain high. High gain is inevitable within

the linear frame to make the system robust. However, high gain causes three adverse

effects: high control input, noise magnification, and instability due to unmodeled

dynamics. High control input may cause actuator saturation.

It is also imagined that the larger uncertainties the plant has, the higher gain

the controller has. Figure 3.8 shows the gain plot of the controller designed by three

p-synthesis cases: ma = 0.5 kg, ma = 1.0 kg, and ma = 1.5 kg for

m = 3 .0 + mA (kg) (3.5)

As expected, the gain becomes higher when the uncertainty becomes larger. It is also

said that the increase of the gain is not proportional to the increase of the uncertainty;
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the gain plots of the controller designed for mA = 0.5 kg and mA = 1.0 kg are almost

the same shape whereas the gain of the controller designed for mA = 1.5 kg is more

than 20 dB higher than the other two cases in high frequencies. This fact is more

130
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106

Figure 3.8: Gain plot of the controller designed by p-synthesis.

clearly shown in Figure 3.9 that shows how high the maximum gain (H, norm of the

controller) becomes when mA increases. As it was mentioned in the previous section,

if the uncertainty of the mass exceeds 4.5 kg (ma becomes more than 1.5 kg), the

controller that satisfies the specification does not exist. However, even though the

controller exists at mA < 1.5 kg, the gain of the controller becomes significantly

higher when mA becomes close to the limitation, especially in the high frequency

region.

The effect of this high gain can be seen in the control input of step responses.

Figure 3.10, 3.11, and 3.12 respectively show the 10-pm step responses of the system

8n
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Figure 3.9: Increase of the maximum controller gain with the increase of the mass
uncertainty.

designed for m = 3.0 - 3.5 kg, m = 3.0 , 4.0 kg, and m = 3.0 - 4.5 kg. The systems

designed for m = 3.0 - 3.5 kg and m = 3.0 - 4.0 kg show the slow responses at

m = 4.5 kg. However, the control input in both cases does not exceed 10 A whereas

in the system designed for m = 3.0 - 4.5 kg, the control input almost reaches 20 A.

The reason why the gain is high when the uncertainties become close to the

limitation is that in the optimization process, p-synthesis tries to make the gain

highest to make the system insensitive for the parameter change as long as it does

not violate the stability robustness. If the uncertainties are not close to the limitation,

the system satisfies the specification far before the gain becomes as high as possible.

Therefore, we should avoid to design the system that is close to the limitation if

we try to use linear controllers in order to avoid the adverse effects that high gain

controllers cause.
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3.5 Limitation with Parameter Uncertainties and
Bandwidth Limitation

In Chapter 2, it was shown in an example that if a plant has unmodeled dynamics

in the high frequency region, a closed-loop system may become unstable; thus, the

bandwidth of the system must be limited. This is also applied to the system discussed

in the previous section. Moreover, this consideration is important for the system that

is designed by o-synthesis because the controller designed by t-synthesis tends to be

a high-gain controller and to have high bandwidth. To limit the bandwidth of the

closed-loop system, I set the bound of the closed-loop transfer function as.

W3(S) = , (3.6)
WC

r__9



This is the same bound used for the Hoo design in Section 3.1. Then, the correspond-

ing block diagram is described in Figure 3.13. In this case, the controller guarantees

not only the robust stability for the uncertainty of the mass of the rotor, but also the

robust stability for the high-frequency unmodeled dynamics.

Figure 3.13: Concept of ,-synthesis with bandwidth limit.

Figure 3.14 shows the structured singular values of the system designed by A-

synthesis for targeting m = 3.0 - 4.5 kg with three wc: 10000 rad/s, 20000 rad/s,

and 30000 rad/s. As can be seen, the maximum structured singular value becomes

less than one only when w, is greater than 20000 rad/s. As a result, when w, = 20000

rad/s, the sensitivity function and the closed-loop transfer function simultaneously

become less than the desired bounds for all the frequencies for all the masses between

3.0 kg and 4.5 kg (Figure 3.15 and 3.16). However, when w, = 10000 rad/s,

the sensitivity function becomes higher than W 1 -(s) in low frequencies whereas the

closed-loop transfer function still is lower than WT-1(s) for all the frequencies (Figure
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Figure 3.14: Structured singular values of the system designed for m = 3.0 - 4.5 kg
and various w,.

3.17 and 3.18). Therefore, as can be seen in Figure 3.19, the step response designed

to achieve w, = 10000 rad/s fails to settle within 1 ms, but the control input becomes

smaller because the bandwidth is limited.

Figure 3.20 and 3.21 respectively show the structured singular values of the system

designed for m = 3.0 - 4.0 kg and m = 3.0 - 3.5 kg with several w. As the

range of the uncertainty becomes wider, we have to take higher w,. To achieve

the performance robustness for m = 3.0 ' 4.0 kg, w, x 10000 rad/s is required

whereas for m = 3.0 - 3.5 kg, w, ; 7000 is the necessary bandwidth to achieve the

performance robustness.

This result indicates that we have to compromise the performance to maintain

stability if unknown factors in the plant are significant. Also, we instinctively under-
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Figure 3.19: Step responses and the control inputs of the system designed for cw =
10000 rad/s.

stood that a high-gain controller leads performance robustness, but with the advent of

p-synthesis, it becomes possible to quantitatively know how the high-gain controller

achieves the performance robustness and the limitation of linear controllers.

As it was mentioned in Section 3.3, the optimization to obtain all-pass structured

singular values must be compromised to a certain point where the optimization pro-

cess requires reasonable computation. This compromise affects the results shown in

Figure 3.14, 3.20, and 3.21. In the high frequency region, the structured singular

values become less than the values in the low and middle frequency region. As a

result, the closed-loop transfer function does not perfectly fit W:'-l(s) (Figure 3.16).

That means that wu can be less than 20000 rad/s to achieve the required performance

robustness for m = 3.0 - 4.5 kg. In the calculation. I used a tolerance of 0.001

r--
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Figure 3.20: Structured singular values of the system designed for m = 3.0 - 4.0 kg
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Figure 3.21: Structured singular values of the system designed for m = 3.0 ' 3.5 kg
and various w,.
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for '/-iteration and 5th-order approximation for D-scale fitting. With the 5th-order

approximation, the order of the controller becomes 33rd. This order is large enough

for the 2nd-order plant. Curve fitting with orders ranging from 6 to 9 were tried, but

that did not change the frequency shape of the structured singular values. One more

D-scale fitting and Ho optimization may further optimize the system, but it makes

the order of the controller much larger. Usually, the order of a controller designed

by y-synthesis becomes huge, and order reduction is required to make the controller

practical. However, as it will be shown in the next section, an order- reduction method

does not always significantly work. Therefore, the results shown in this section are

not perfectly optimized; thus, they are not the ultimate limitations. Nevertheless,

they are the practical limitations for the real system.

3.6 Order Reduction of the Designed Controller

Though the order of the controller designed by 1L-synthesis depends on the order of

the weighting functions and the order of the functions used for D-scale fitting, it

tends to become huge. For example, the controller designed in Section 3.3 has a 23rd

order. The controller designed in Section 3.5 has 33rd order. Considering the order

of the plant (second), the order of those controllers is huge. Usually, order-reduced

controllers are used for the implementation to real systems. Eliminating insignificant

orders from the balanced-realized controller is commonly used and is reportedly able

to reduce the order of the controller significantly without changing the characteristics

of the system.

Figure 3.22 is the plot of the diagonal of gramian of the balanced realization

of the controller designed in Section 3.3. As can be seen in the figure, there are no

significantly small elements in the diagonal of the Gramian. As a result, eliminating a



small portion changes the characteristics of the closed-loop system. Yet, the first and

the second smallest orders can be eliminated from the controller without violating the

specification. Figure 3.23 shows the magnitude plot of the reduced controller and the

4f810
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Figure 3.22: Diagonal of the gramian of the balanced-realized controller.

original controller. In the low frequency region, both controllers have the same gain,

but in the high frequencies, the gain of reduced controller becomes higher than the

original controller. It occurs because high-frequency poles are eliminated. However,

the system with the reduced controller keeps the maximum structured singular value

less than one as shown in Figure 3.24. Therefore, the sensitivity function is kept

less than Wl-'(s) within the range of m = 3.0 - 4.5 kg with the reduced 21st-

order controller (Figure 3.25). The controller designed with the consideration of

bandwidth in Section 3.5 has higher order than the controller designed in Section 3.3

because the new weighting function W3 (s) is added. There are also no significant

small elements in the diagonal of the gramian; the order of the controller cannot be

significantly reduced. Only 3 orders can be reduced without losing the robustness.

64



.4 V~f~1OU

120

'q110

0 100

90

an

Original Controller (23th) --

/ Reduced Controller (21th)

- .........-............ ........ ------------------ -------------- ........

................... . . . ...................................................

-- - - - - -- -- - - -
-102 io4 10

100 102 104 106
Frequency [rad/s]

Figure 3.23: Gain plot of the reduced controller and original controller.

Figure 3.26 shows the magnitude plot of the reduced controller, and Figure 3.27

shows the structured singular value plot of the system with the reduced 30th order

controller. Even reducing three orders changes the shape of the structured singular

value plot, and no more reduction is possible to keep the robustness.

3.7 Using Prefilters to Reduce Control Input

In Section 3.4, it was shown that when the range of uncertainties becomes close to

the limitation, the gain of the controller becomes high, and it causes large control

input for step responses. This disadvantage of the high-gain feedback controller can

be averted by using prefilters. For example, in the case of the controller designed

to achieve the performance robustness for m = 3.0 - 4.5 kg in Section 3.3, the

maximum control input for the 10-tum step response becomes almost 20 A (Figure

3.10). This high control input is mainly due to the high gain of the controller at the
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Figure 3.28: Concept of a prefilter.

high frequencies, zeros in the I-synthesis controller, and the fact that a step input

contains high frequencies. Therefore, if we use a filtered step input as shown in Figure

3.28, it reduces the control input.

Figure 3.29 is an example of the filtered step response. The used filter is

2

GPF ) PF 2 L(3.7)
s2 + 2 (pFWPF + WPF

where WpF = 20000 rad/s and (PF = 1.0. The resulting time responses and control

inputs are shown in Figure 3.30. The maximum control input becomes about 8 A.

Though the rising time increases, the settling time changes only a little. Therefore,

with the use of proper prefilters, we can avoid the high controller input caused by

i-synthesis.

3.8 Summary

The H,, design theory reveals the existence of the controller that can achieve the

required specifications. If the maximum singular values are less than one for all the

frequencies, the desired closed-loop system is achieved. In the same manner, the

structured singular values give us an insight where the limitation of linear controllers

is. In this chapter, the relation between the range of uncertainties and the limitation

of the linear controllers were evaluated. The achievable performance is limited when
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the range of uncertainties is wide and it is successfully evaluated by the structured

singular value plot. In addition, it is revealed that if the range of the uncertainties

is close to the limitation, the gain of the controller increases sharply. Therefore, to

design a robust controller that is close to the limitation should be avoided. Also, if

the range of uncertainties is wider, the achievable bandwidth limit becomes higher;

thus, system's stability robustness becomes poor. An order reduction of the designed

controller and prefilter to reduce the control input are also discussed. These results

help the designers of controllers to choose the specifications as well as the structure

of the controller.



Chapter 4

Control of Magnetic Bearings with an
Adaptive Approach

4.1 Introduction

In the preceding chapters, how p-synthesis achieves performance robustness and the

limitation of the controller designed by p-synthesis with an uncertain rotor mass are

discussed. In the real system, the other factors, such as the nonlinearity of magnetic

force, gyroscopic effect, and gravity, may play an important role to characterize the

performance of the system. For example, Yeh demonstrated that the poles of the

magnetic bearing migrate drastically as the rotation of the rotor accelerates or decel-

erates [5]. Considering these factors within the linear frame may not be a good idea.

As it was pointed out in the previous chapter, if the range of uncertainties is wide,

the undesired aspects such as high gain or high order of the controller may be needed.

Moreover, the controller that achieves the desired characteristics may not exist. Es-

pecially, if the bounds of uncertainties are unclear because of linear approximation of

nonlinearities or combined uncertainties, the designed system may become conserva-

tive and sometimes fail to achieve the desired performance with linear controllers.

If the purpose of the magnetic bearing is just to levitate the rotor to eliminate

friction, performance robustness is not necessarily a critical issue. However, in case

of precision magnetic bearings, this limitation especially affects the achievable perfor-

mance because the change of characteristics is significant in the positioning system.

Adaptive control is another possible approach to the system with uncertainties,



and the case to successfully control the system with unknown dynamics is reported

[5]. In this chapter, an adaptive control method using local function estimation for

the precise positioning will utilized. In addition, the feasibility of the method for this

application by using the magnetic bearing in the turbo-pump model as well as the

comparison with the controller designed by p-synthesis will be evaluated to determine

the advantages of this relatively fast adaptation scheme.

4.2 Nonlinear Model of the Real Magnetic Bearing

In order to demonstrate the feasibility of the controllers, simulations will be conducted

with the nonlinear model that is close to the real system. The linearized model gives

us the insight of the system, e.g. where the poles are, and makes us able to design

the linear controller. However, magnetic bearings have strong nonlinearity and we

cannot ignore this nonlinearity if the operating point changes.

In the real system described in section 2.2, one coil current in each of the opposite

pairs is turned off if the corresponding control current becomes too excessive in order

to reduce the power consumption. This scheme is done by the electronic circuit

implemented in the controller and represented as

izu = io + 0.5uz, ize = io - 0.5uz if jus7 < 2io
izu = io + 0.5uz, ize = 0 if IuzI > 2io (4.1)
izu = 0, iz_ = io - 0.5uz if Iuz. < -2i 0

where iz, is the upper coil current, izl is the lower coil current.

Figure 4.1 shows the nonlinear relation among the control current, rotor position,

and magnetic force in the operating range. The range is limited to ±200 pm and ±3

A by the physical limitation. The figure indicates that around the origin, where the

system is linearized and the controllers are designed according to this linearization

in the preceding chapters, there is a flat part. However, when the operating point



deviates from the origin, the slope of the surface significantly changes. This char-

acteristic of the magnetic bearing affects the performance of the system even when

the position is fixed at z = 0. For example, if the magnetic bearing is used in the

gravity environment, where it is usually used, and if the magnetic bearing tilts, the

operating point in Figure 4.1 changes; thus, the characteristics of the system change.

In case that the magnetic bearing is used for precision positioning, the rotor position

frequently changes, and again, the characteristics change.

Afn-"
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c-200

-400
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Figure 4.1: 3-D plot of the magnetic force.
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4.3 Equivalent Uncertainties of the Nonlinearity

Several methods are proposed to estimate the bounds of uncertainties as an equivalent

linear system of a nonlinear system [1]. However, it is impossible to evalutate an

exactly-equivalent uncertainty that corresponds to the nonlinearity. What we can do

is to decide a relatively large uncertainty that covers the nonlinear function. In this

section, an attempt is made to calculate the equivalent linear uncertainties of the

nonlinearity as a mass uncertainty by just comparing the matrix As in Eq.(2.2 at

several points in the surface in Figure 4.1. Then, we can compare the result with the

limitation evaluated in Chapter 3.

The linearized equation at the point of z = zop and uz = Uop is

S2ko(io+0.5uOp) 2  2ko(io-0.5uop) 2] [ko(io+O.5uop) ko(io-O.5uop)
(zo-zop) 3  (zo+zop) 3  (zo-zo) (zo+zo) 2) U

if luoPI < 2iomz = 2ko(io+O.5uoP) 2  ko(io+0.5uop) (4.2)
(oo) 3  (zzo)2 if uOP > 2io

2ko(io-0.5uoop)2  ko(io-0.5uop)U if OP < -2io(zo+zop)3  (zo+zop)2 uZ

The change of the operating point changes the system matrices A and B in Eq.(2.2).

Here, the change of the matrix A is calculated and evaluate the equivalent m, in

Eq.(3.5). The matrices As correspond to the maximum mass and minimum mass are

respectively as follows.
O 1A = 2o) (4.3)

zo mn

A= [4k 2) _ (4.4)

Because of the nonlinearity, the (2,1)-element changes as the operating point changes.

Therefore, by comparing the maximum value and minimum value of (2,1)-element of

changing A with the values in Eq.(4.3) and Eq.(4.4), we can evaluate the equivalent

A2 ; thus, the equivalent ma can be calculated.



Table 4.1 shows the calculated mA with various operating ranges. Considering

the limitation calculated in section 3.3 and 3.4, the range in Figure 4.1 is too large

to achieve the performance bound of Eq.(2.16) with robustness.

Operating Range

z = 0-100 lm
u=0A

z = 0--150 lm
u=OA

z = 0-200 jm
u=OA

u=0--1Az=0 jim

u = 0-2 A

z =0 gim
u = 0-3 A

Equivalent m

1.4 kg

3.8 kg

9.5 kg

3.0 kg

10.5 kg

10.5 kg

Table 4.1: Equivalent mDelta at the points in the operating range.

The results in this section indicate that if the system has strong nonlinearity,

linear controllers may not be able to deal with the change of characteristics, which

occurs when an operating point moves widely, no matter how large the gain of the

controller becomes.

4.4 Adaptive Control Using Local Function Esti-
mation

To overcome the nonlinearity of magnetic force and unknown factors in the system,

the adaptive control method using local function estimation is proposed and report-

edly control the magnetic bearing successfully [5]. This method approximates an



unknown function just around the operating point as the coefficients of the Taylor's

expansion of the unknown function instead of estimating the function globally. By

updating the approximation constantly, this method enables the controller to make a

fast adaptation. In this section, this adaptive control approach is briefly described to

later contrast it with the linear robust approach that was described in the preceding

chapters.

Consider a plant and a reference model described by

k = Ax + f(x) + Bu (Plant) (4.5)

im = Amxm + Bmr (ReferenceModel) (4.6)

where f(x) is an uncertain, nonlinear function, xm is a state vector of the reference

model, r is a command input, and Am and Bm are the system matrices that create

the desired response. The objective is to estimate the unknown function f(x) online

and force x(t) to follow the reference trajectory xm(t). To achieve this objective, the

control law is given by

u = Kx + Ar - Uad (4.7)

where Kx is a full-state feedback component, Ar is a feedforward term based on

the reference input r, and Uad is an adaptive compensating control signal. Figure 4.2

shows the concept of this adaptation. First, we define an n-dimensional moving sphere

4(t) that has the radius of p and whose center is xm(t). Once the state trajectory is

out of the sphere, the controller starts estimating the unknown function f(x). The

function is estimated by using the approximation of the first several terms of the

Taylor's expansion series. For example, if we use the first two terms, the unknown

function f(x) can be approximated as

1

f(x) B Ck(xi)wk(x, xi) (4.8)
k=O
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Figure 4.2: Adaptive control scheme using local function estimation.

where xi is x when the state trajectory becomes out of the sphere in FIgure 4.2,

BCk(xi)'s are the coefficients of Taylor's expansion, wo(x, xi) = [1 ... 1 ]T, and wl(x, x ) =

x - xi. Therefore, the adaptive compensating control signal Uad can be calculated as

1

uad = 3k (Xi)wk ( Xi)
k=O

(4.9)

The coefficients, Ck(Xi)'s, are estimated by integrating the following adaptation law

Ck(Xi) = { BTPew'(x, i) if lell p
othewise

(4.10)

where e is a trajectory error vector defined as e = xm - x, 7 is an adaptation gain,

and P is the solution of a Lyapunov function

ALP + PAm = -I (4.11)

The design guidelines in choosing the adaptation gain are discussed in [5].



In the case of magnetic bearings, the nonlinearity is the function of both x and

u. However, u can be separated from the function by using least square mapping.

Also, to reduce the noise sensitivity, a hysteresis loop is generally used. In this case,

the adaptation is triggered at Ilell > p + a and is turned off at Ile l < p - a. Table

4.2 shows the control parameters used in the later sections for the simulations. The

state feedback gain K is decided to make the closed-loop system have repeated two

poles, -600 rad/s, at z = 0 and uz = 0.

Parameters Numerical Values

Adaptation Gain Y

Sphere Radius p

Hysteresis Width a

State Feedback Gain K

2x 109

1.0 gim

0.5 gtm

[1.71x10 4 52.8]

Table 4.2: Parameters of the adaptive controller using local function estimation.

4.5 Reference Model and Equivalent
Design

For the application of adaptive control to the magnetic bearing,

order reference model

]km = Amxm + Bmr

y-Synthesis

we choose a second-

(4.12)

where

= [ wzm

A = 2 --W -(w

(4.13)

(4.14)
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2w
n

(4.15)

for the desired trajectory. The case that wn = 600 rad/s and ( = 1 are chosen and

that the effect of adaptive control using local function estimation to the real magnetic

bearing is experimentally proven is reported. Here, a linear controller that achieves

the equivalent response is designed and its performance is compared with that of the

system with the adaptive controller.

The sensitivity function of the system described in Eq.(4.12) with wn = 600 rad/s

and C = 1 is shown in Figure 4.3. To achieve this sensitivity with the controller

designed by p-synthesis, the performance bound is set to

18 x 17
Wi(s) = (4.16)

s+17

By using the bandwidth-limit formula in Section 3.5, the range of the uncertainty of

20
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-20

-0q

10"
0

10 1 10 2
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103 104

Figure 4.3: Sensitivity function of the reference model and performance bound.

the rotor mass can be from 2.2 kg to 4.5 kg with w, = 2000 rad/s. The structured
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singular value plot of the closed loop system and sensitivity functions with m = 2.2.

m = 3.0, and m = 4.5 kg are respectively shown in Figure 4.4 and 4.5. As a result,

the step response of the closed loop system becomes similar to that of the reference

model with a proper prefilter. Figure 4.6 and Figure 4.7 respectively show the 10-pm

step responses of the reference model and the closed-loop system controlled by the

linear controller designed by p-synthesis. The prefilter used is

10002
GPF(S) = (4.817)Gpf( =s2 + 2000s + 10002  (4.17)

Even though the responses vary as the mass of the rotor changes, the performance in

both the 2.2-kg and 4.5-kg cases is close to that of the reference model.

4.6 Nonlinear Effect on the System with the Lin-
ear Controller and Adaptive Controller

In Section 4.2, the nonlinearity of magnetic force is examined as a form of equiv-

alent linear uncertainties. Though only the system matrix A at the several points

in the operating region are compared, the result suggests that if the rotor position

or control current changes in the operating range, linear controllers designed by p-

synthesis cannot deal with the equivalent uncertainties that nonlinearity has. In this

case, alternative approaches such as adaptive control may achieve better performance.

Therefore, how much the performance of the system controlled by linear controllers

deteriorates as compared with the adaptive approach is of interest. In this section,

the response of the system controlled by the linear controller or adaptive controller

are simulated with the nonlinear model.
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Figure 4.7: Step responses of the system with a p-synthesis controller.

4.6.1 Effect of Large Displacement

As can be seen in Figure 4.1, the characteristics of the magnetic bearing change if the

rotor moves within the operating range. This change affects the performance of the

system. Figure 4.8 and 4.9 respectively show the 100-pm and 200-pm step responses

of the system designed by M-synthesis with the cases of m = 2.2 kg and m = 4.5



kg. As the step becomes larger, the overshoot becomes larger and the settling time

becomes longer. The response deteriorates more for the larger step because the design

is done by using the plant linearized at z = 0. Including nonlinearity as a form of

linear uncertainties may be possible. However, as it was mentioned in Section 4.3.

considering nonlinearity as linear uncertainties requires large uncertainties, and in this

case, the controller that achieves the required performance does not exist because the

range of m = 2.2 - 4.5 kg is already the maximum range that the linear controller

can achieve.

Using the adaptive control with local function estimation, large deviation from

the nominal plant does not affect the performance as much as the system controlled

by the linear controller. The deviation from the nominal plant is locally estimated

and eliminated by subtracting the deviation. Therefore, the characteristics of the

controlled system at the trajectory are almost the same as those of the nominal plant

as long as the adaptation is properly working. Figure 4.10 and 4.11 are the 100-pm

and 200-pm step responses of the system controlled by the adaptive controller. The

shape of the response is not affected by the height of the step as well as the mass of

the rotor. The tracking errors are converged within the range of p + a (1.5 /pm).

4.6.2 Effect of Gravity

Control input also affects the characteristics of the system. The characteristics of

the system significantly change when the control input widely changes even when the

position of the rotor remains the same. If a magnetic bearing is used in a gravity

environment and if the direction or magnitude of the gravity changes, the control

current must be changed to keep the rotor position. However, this change may cause

performance deterioration. The bias current iG to balance the gravity mg at z = 0 is
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Figure 4.8: 100-pm step responses of the system with the linear controller with m =
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calculated by

z2mg
ic z0 mg (4.18)

2koio

Figure 4.12 shows a 10-Mm step responses when the gravity acceleration g = 4.9 m/s 2

(half of the general earth's gravity) exists. The bias current calculated by Eq.(4.18)

is applied to balance the gravity. The responses are slightly slower and have larger

overshoot than those without the gravity. Figure 4.13 is the case when g = 9.8 m/s2 .

In this case, the settling time when m = 4.5 kg is much longer than that without

the gravity. This result shows that if we design a controller for a precision magnetic

bearing used in a gravity environment that may change, we must take this change

into consideration if we use a linear controller. However, as I showed in Section 4.3,

the equivalent uncertainty is large, and the controller that satisfies the specification

may not exist.

With the adaptive controller, the gravity is estimated as part of the unknown

function and is subtracted as the adaptive compensating control signal uad; therefore,

the shape of the responses is not affected by the magnitude of the gravity (Figure 4.14

and 4.15). Moreover, the bias current to balance the gravity is not necessary because

it is automatically created as part of the adaptive compensating control signal.

4.7 Effect of High Frequency Unmodeled Dynam-
ics

The lowest w, achieved by p-synthesis in Section 4.1 is 2000 rad/s. That means

if there is unmodeled dynamics expressed in a multiplicative uncertainty, and if it

exceeds Wa-2(s) in Eq.(3.6), the closed-loop system may become unstable. Generally,

the rotor levitating with magnetic bearings has elasticity and little damping. For

example, for the case of the turbo-pump of Figure 2.1, whose magnetic bearing we
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are examining, the rotor has the first bending mode at 875 Hz. Therefore, if this

unmodeled dynamics makes the closed-loop system unstable, we have to revise the

performance specification.

Figure 4.16 shows the example of the rotor-elasticity model, and the motion equa-

tions are

mlz' =
m 2A2 =

where Fm is the magnetic force

k i=2.89x10

C1(z2 - ±1) + kl(z 2 - z1) + Fm (4.19)
C1 1 - 2) + kl(zl - z2)
described in Eq.(4.2). The sensor is located at m 2 ;

Z /Cnc

ZI

r

Figure 4.16: Model of the rotor elasticity.

therefore, the transfer function of the actual plant has a resonance at 4000 rad/s

(Figure 4.17). If the damping coefficient cl is 170 Ns/m, A(s) is lower than W31V(s)

(Figure 4.18(a)); therefore, the stability is maintained even when this elasticity exists.

However, if cl is less than 170 Ns/m, A(s) becomes higher than W 1-(s), and the

system is not robustly stable any more. For example, Figure 4.18(b) is the case of

cl = 100 Ns/m; in this case, the closed-loop system has unstable poles at 90 + 3666j.

Therefore, the specification must be revised, and the controller must be redesigned to

ivma611VL I`VI- rm



maintain robust stability. Even though this stability robustness is measured within

the linear frame, and it cannot be applied to nonlinear systems, this is obviously one

of the important issues for the designer.

-100
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-200

.0•13

101 102  103  104  105
Frequency [rad/s]

Figure 4.17: Transfer function of the magnetic bearing with the rotor elasticity.

High-frequency unmodeled dynamics also affects the performance of the system

controlled by an adaptive controller. Figure 4.19 and 4.20 are the 10-pm step re-

sponses of the system controlled by the adaptive controller using local function esti-

mation. The rotor has elasticity described in Figure 4.16 with cl = 100 Ns/m. We

cannot use the adaptive gain y = 2 x 109, which is used in the previous section,

because the system goes unstable. Even the adaptive gain -7 = 1 x 107 does not make

the system stable (Figure 4.19). At y = 1 x 10', the system finally becomes stable,

but the tracking error of the response becomes unacceptable as shown in Figure 4.20

(The tracking error does not immediately settle within the designed sphere, +1.5pm).

If cl = 170 Ns/m, 7 can take as large as 5 x 108 without becoming unstable (Figure
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Figure 4.18: Uncertainty by the rotor elasticity and the stability bound.

4.21). In this case, the response follows the reference trajectory. However, 'y must be

much smaller than the value I designed. At y = 6.5 x 108 , the system goes unstable

as shown in Figure 4.22.

It is difficult to include stability robustness in the adaptive control design because

the controller itself is nonlinear. However, this stability robustness issue is important

for the control of real mechanical system, and as it was shown in Chapter 2, that is

one of the main reasons why the H. design method is developed. In fact, in the real

magnetic bearing, 7 = 2 x 109 cannot be achieved when I conducted an experiment.

4.8 Summary

With the advent of p-synthesis, we can design a controller that achieves performance

robustness. However, because of its linear frame, we cannot design a controller that

tolerates a wide range of uncertainties. In this chapter, an adaptive control method

using local function estimation was presented as an alternative approach for the sys-
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tem with uncertainties, and compared two approaches by the nonlinear simulations.

This adaptive method has a potential for fast adapting and thus, can achieve precise

tracking. The results show that the adaptive approach can achieve high performance

with the existence of strong nonlinearity while the system designed by p-synthesis

has difficulty dealing with the equivalent wide uncertainties that nonlinearity impose.

However, this adaptive control method still has issues to be solved. It was demon-

strated that with high-frequency unmodeled dynamics we have to lower the adaptive

gain, and that may make the performance unsatisfactory. Also, this method requires

the information of full states that may not be available in real systems. Therefore,

the control structure must be chosen by taking all that information into account.



Chapter 5

Conclusions

Total elimination of friction and the active control nature make magnetic bearings

attractive. The ability to control the rotor actively especially is essential for some

purposes, such as precise positioning control, because this feature cannot be realized

by the conventional bearings. However, for this precise use of magnetic bearings,

the consideration on performance robustness is required. This thesis focuses on the

robustness of performance achieved by the controllers and the relationship between

achievable robustness and the existence of the controller.

At first, design examples using an LQG design, H, design, LQG/LTR design, and

M-synthesis to the magnetic bearing are presented for the purpose to show how some

of these methods can achieve stability robustness and/or performance robustness.

The H, design and LQG/LTR design can achieve robust stability by limiting the

gain of the closed-loop transfer function at high frequencies. The H, design method

is particularly attractive because it shows the limitation of an achievable sensitivity

function; thus, the performance can be maximized. However, neither methods can

achieve performance robustness. In contrast, p-synthesis has the potential to solve an

overall robustness problem, and the design example shows that the system designed

by ti-synthesis achieves almost the same performance even when the mass of the rotor

changes.

In order to choose the structure of the controller at an early stage of a design,

the limitation of controllers is of great interest. In Chapter 3, the limitation of the

controller designed by H, and p-synthesis is evaluated. Structured singular value



plots reveal the limitation of linear controllers, and results indicate that if the uncer-

tainty is larger than the certain range, the controller that can achieve the specified

performance does not exist. Also, if the system is close to this limitation, the gain

of the controller becomes especially high; therefore it should be avoided. However,

large control input caused by the high gain of the controller can be avoided by using

prefilters. The order reduction method is also applied to reduce the huge order of the

controller, but the conventional model reduction method does not effectively reduce

the order.

To achieve the performance beyond the limitation of linear controllers, an adaptive

control using local function estimation is introduced. In this part, the equivalent linear

uncertainties to the nonlinearity are calculated, and it is shown that the range of the

uncertainties is much larger than the one that is tolerant to achieve the specified ro-

bustness. Next, the simulations with the nonlinear model of the magnetic bearing are

conducted, and it is shown that the adaptive controller can achieve similar responses

even when the mass of the rotor or operating point changes whereas by the linear

controller designed by p-synthesis, the responses much degrade when the operating

point changes. However, according to the simulation, the adaptive gain must be lim-

ited if high-frequency unmodeled dynamics exist; thus, the achievable robustness be

lowered. In mechanical systems, this problem cannot be avoided. Therefore, further

research on maximizing robustness with the existence of high-frequency unmodeled

dynamics is inevitable.



Appendix A

Design Programs using MATLAB

A.1 LQG Design

% LQG design for a magnetic bearing

% K : State feedback gain matrix

% H : Kalman filter gain matix

k0=4.e-6;
z0=400.e-6;

i0=0.5;

m=2.0;

% Plant parameters

A=[O
4*kO*i0^2/m/zO'3 0];

B=[O
4*kO*iO/m/z0^2];

C=[1 0];
D=0;

L=[0

1/m ;

Q=[1 0
0 1.0e-5];

R=7.5e-10;
[K,S]=lqr2(A,B,Q,R);

Xi=l;
Th=l.e-15;

LXL=L*Xi*L';

[Ht,P]=lqr2(A',C',LXL,Th);
H=Ht';

A.2 H, Design

% System matrices

% LQR index

% Kalman filter index

% H-infinity design for a magnetic bearing



% Ac,Bc,Cc,Dc : Controller

kO=4. e-6;
z0=400e-6;

iO=0. 5;
m=2;

% Plant parameters

A=[0 1
4*kO*i0^2/m/zO'3 0];

B=[O
4*kO*iO/m/z0^2];

C=[1 0];
D=O;

% System Matrices

kwl=6.1; % Weight functions

wwl=200;

ww2_ 1=1400;

ww2_2=0;

nl=2;

A1=[O 1
-ww1^2 -2*wwl];

B= [0
kwl*wwl^2] ;

C1=[1 0];
D1=0;
C2=4*kO*iO/m/zO^2/ww2_^2* [-4*kO*iO02/m/z0^3 ww2_2];
D2=4*kO*iO/m/zO^2/ww2_1^2;

Aa=[A zeros(2,nl) % Augmented plant
B1*C Al

Bal= [zeros(2,1)
B1i ;

Ba2=[B

zeros (nl, 1)];
Cal=[D1*C C1

C2 zeros(l,nl)];

Ca2=[C zeros(l,n1)];
Dall= [D1

0 ];
Dal2= [0

Dl] ;
Da21=1;



Da22=0;

[Ac,Bc,Cc,Dc,Aacl,Bacl,Cacl,Dacl] = ...
hinf(Aa,Bal,Ba2,Cal,Ca2,Dall,Dal2,Da21,Da22);

A.3 LQG/LTR Design

% LQG/LTR design for a magnetic bearing

% Ac,Bc,Cc,Dc : Controller
xo

kO=4e-6;
zO=400e-6;
i0=0.5;
m=2;

% Plant parameters

A= [0
4*kO*i0^2/m/z0^3 01;

B=[O
2*kO*iO/m/zO^2];

C=[E 0];
D=0;
L=[0

1/m];

Sg=[le-7 0
0 50];

Th=8e-9;

[Ht,Sf]=lqr2(A',C',Sg,Th);
H=Ht'

As=A-H*C;
Bs=H;
Cs=-C;
Ds=l;

At=A-H*C;
Bt=H;
Ct=C;
Dt=O;

% System matrices

X Kalman filter indeces

% Sensitivity function

% Closed-loop transfer function

% Singular value plotsigma(As,Bs,Cs,Ds);



pause
sigma(At,Bt,Ct,Dt);

pause

Q=[1e6 0
0 le-3];

R=le-1O;

[K,S]=lqr2(A,B,Q,R);

Ac=A-B*K-H*C;

Bc=H;

Cc=-K;

Dc=0;

nc=length(Ac);

As=[A B*Cc
Bc*C Ac 1;

Bs=[zeros(2,1);Bc];

Cs=[C zeros(l,nc)];
Ds=1;

At=[A B*Cc
Bc*C Ac ];

Bt= [zeros (2,1) ;Bc];
Ct=[C zeros(l,nc)];
Dt=O;

sigma(As,Bs,Cs,Ds);

pause

sigma(At,Bt,Ct,Dt);

% LQR indeces

% Controller

% Sensitivity function

% Closed-loop transfer function

% Singular value plot

A.4 p-Synthesis
% Mu-synthesis for a magnetic bearings

% Ac,Bc,Cc,Dc : Controller

w=logspace(1,4);

kO=4e-6;

% Frequency region design procedure

% evaluates

% Plant parameters

100



zO=400e-6;

i0=0.5;

m=3.6;

A=[O 1
4*kO*i0^2/m/z0^3 0];

B=[O
4*kO*iO/m/zO^2];

C=[1 0];
D=O;

% Nominal value

% System matrices

kw=lO10; % Weight functions

wwl=200.00;

Al=-wwl;

B1=kwl*wwl;

C1=1;

D1=0;

delta=0.055556;
B2=[0

4*kO*i0^2/z^3] ;

C2=[1 0]*delta;
D2=zO/iO*delta;

Aa=[A zeros(2,1)

B1*C Al ];

Bal=[zeros(2,1) B2

Bi o ];
Ba2=[B

0];
Cal=[D1*C C1

C2 0];
Ca2=[C 0];

Da11=[Dl 0
0 0] ;

Da12= [0

% Uncertainty

% Augmented plant

D2];
Da21=[1 0];

Da22=0;

[gamopt,Ac,Bc,Cc,Dc,Aacl,Bacl,Cacl,Dacl]= ...
hinfopt(Aa,Bal,Ba2,Cal,Ca2,Dall,Dal2,Da21,Da22);

% H-infinity optimization

nc=length(Ac); % Transfer function from w to z
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Aacl=[A+B*Dc*C zeros(2,1) B*Cc
B1*C Al zeros(l,nc)

Bc*C zeros(nc,l) Ac ];
Bacl=[B*Dc B2

B1 0
Bc zeros(nc, )];

Cacl=[Di*C C1 zeros(l,nc)
C2+D2*Dc*C 0 D2*Cc ];

Dacl=[Dl 0
D2*Dc 0];

[mu,logd]=ssv(Aacl,Bacl,Cacl,Dacl,w);
semilogx(w,20*loglO(mu'))

% Structured singular values
% and D-scales
pause

[Ad,Bd,Cd,Dd,logdfit]=fitd(logd,w,5);subplot
% Fifth order curve fitting

[Aa,Bal,Ba2,Cal,Ca2,Dall,Dal2,Da21,Da22]= ...
augd(Aa,Bal,Ba2,Cal,Ca2,Dall,Dal2,Da21,Da22,Ad,Bd,Cd,Dd);

X Augmented plant

[gamopt,Ac,Bc,Cc,Dc,Aacl,Bacl,Cacl,Dacl]= ...
hinfopt(Aa,Bal,Ba2,Cal,Ca2,Dall,Dal2,Da21,Da22);

% H-infinity optimization

nc=length(Ac);
Aacl=[A+B*Dc*C zeros(2,1) B*Cc

Bl*C Al zero:
Bc*C zeros(nc,l) Ac

Bacl=[B*Dc B2
Bi 0

Bc zeros(nc,l)];
Cacl=[Dl*C C1 zeros(l,nc)

C2+D2*Dc*C 0 D2*Cc
Dacl=[Dl 0

D2*Dc 0];

% Transfer function from w to z

s(l,nc)

];

[mu,logd]=ssv(Aacl,Bacl,Cacl,Dacl,w);

semilogx(w,20*loglO(mu')) % Structured singular values
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A.5 p-Synthesis (with bandwidth limit)
% Mu-synthesis for a magnetic bearings with bandwidth limit

% Ac,Bc,Cc,Dc : Controller

w=logspace(1,4);

k0=4e-6;
z0=400e-6;

i0=0.5;

m=3.6;

Frequency region design procedure

evaluates

% Plant parameters

% Nominal value

% System matricesA=[0
4*kO*i0^2/m/z0O3 0];

B=[O
4*kO*iO/m/zO^2];

C=[1 0];
D=O;

kwl=10;

wwl=200.00;

Al=-wwl;

Bl=kwl*wwl;
C1=1;
D1=0;

% Weight functions

delta=0.055556;

B2=[0
4*kO*iO^2/zO^3];

C2=[1 0]*delta;

% Uncertainty

D2=zO/iO*delta;

wc=20000;

B3=4*kO*iO/m/zO^2/wc^2*[-4*kO*iO^2/m/z30 0];

D3=4*kO*iO/m/zO'2/wc^2;

Aa=[A zeros(2,1) % Augmented plant
B1*C Al

Bal=[zeros(2,1) zeros(2,1) B2
0 ];

Ba2= [B
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0];
Cal=[D1*C C1

B3 0
C2 0 ];

Ca2=[C O] ;
Dal=[D1 D1 0

0 0 0];
0 0 00;

Dal2= [0
D3

D2 ;
Da21= [1
Da22=0;

1 0];

[gamopt,Ac,Bc,Cc,Dc,Aacl,Bacl,Cacl,Dacl]= ...
hinfopt(Aa,Bal,Ba2,Cal,Ca2,Dall,Dal2,Da21,Da22);

% H-infinity optimization

nc=length(Ac);
Aacl=[A+B*Dc*C zeros(2,1) B*Cc

B1*C Al zeros
Bc*C zeros(nc,l) Ac

Bacl=[B*Dc B*Dc B2
Bi Bi 0

Bc Bc zeros(nc,l)];
Cacl=[Dl*C CI zeros(1,nc)

B3+D3*Dc*C 0 D3*Cc
C2+D2*Dc*C 0 D2*Cc ];

Dacl=[D1 D1 0
D3*Dc D3*Dc 0

D2*Dc D2*Dc 0];

X Transfer function from w to z

[mu,logd]=ssv(Aacl,Bacl,Cacl,Dacl,w);
semilogx(w,20*log10(mu'))

% Structured singular values
% and D-scales

pause

[Ad,Bd,Cd,Dd,logdfit]=fitd(logd,w,5);subplot
% Fifth order curve fitting

[Aa,Bal,Ba2,Cal,Ca2,Dall,Dal2,Da21,Da22]= ...
augd(Aa,Bal,Ba2,Cal,Ca2,Dall,Dal2,Da2l,Da22,Ad,Bd,Cd,Dd);

% Augmented plant
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[gamopt,Ac,Bc,Cc,Dc,Aacl,Bacl,Cacl,Dacl]= ...
hinfopt(Aa,Bal,Ba2,Cal,Ca2,Dall,Dal2,Da21,Da22);

% H-infinity optimization

nc=length(Ac);

Aacl=[A+B*Dc*C zeros(2,1) B*Cc

Bi*C Al zero

Bc*C zeros(nc,1) Ac

Bacl=[B*Dc B*Dc B2

B1 B1 0

Bc Bc zeros(nc,l)];

Cacl=[Dl*C C1 zeros(l,nc)

B3+D3*Dc*C 0 D3*Cc

C2+D2*Dc*C 0 D2*Cc ];
Dacl=[Dl D1 0

D3*Dc D3*Dc 0

D2*Dc D2*Dc 0];

% Transfer function from w to z

s(l,nc)
1;

[mu,logd]=ssv(Aacl,Bacl,Cacl,Dacl,w);

semilogx(w,20*loglO(mu')) % Structured singular values
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