Theory and Practice of Secret Commitment
by
Shai Halevi

B.A. Computer Science, Technioﬁ - Israel Institute of Technology,
1991

M.Sc. Computer Science, Technion - Israel Institute of Technology,
1993

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1997
© Massachusetts Institute of Technology 1997. All rights reserved.

AUhOT ..o i
Depart;x{ent E}éctrlcal Engineering and Computer Science

May 2, 1997

Certified by..... T A e e e et
Silvio Micali

Professor of Computer Science

7 Theﬁ?SEp}rvisor

Accepted by <~ o
| Arthur C. Smith
Chair, Departmental Committee on Graduate Students

JUL 241997

Theory and Practice of Secret Commitment
by
Shai Halevi

Submitted to the Department of Electrical Engineering and Computer Science
on May 2, 1997, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Science

Abstract

In this thesis we study a cryptographic primitive called secret commitment schemes.
A secret commitment scheme is an electronic way to temporarily hide a value that
cannot be changed. Such a protocol emulates the following two-stage process. In
Stage 1, one party (called the Sender) locks a message in a box, and sends the locked
box to another party (called the Receiver). In Stage 2, the Sender provides the
Receiver with the key to the box, thus enabling him to learn the original message.
Protocols for secret-commitment are used in many scenarios in cryptography, and
quite a few variants of these schemes were discussed in the literature.

In the thesis we develop a general formal definition of secret commitment schemes
which includes all the different variants as special cases, and demonstrate some basic
properties of these variants. We also describe two constructions of these protocols
which are more efficient than previous ones in the literature. The first construction
is algebraic, and is based on the hardness of integer factorization, and it improves on
previous schemes in that it does not require a complex set-up mechanism. The other
is a more generic construction which is based on message-digest functions and is very
efficient in terms of both communication and computations.

Thesis Supervisor: Silvio Micali

Title: Professor of Computer Science

Acknowledgments

First I wish to thank my advisor, Silvio Micali, for his guidance and support. Silvio’s
continuous encouragement and sound advice has been an invaluable resource for me
throughout my studies in MIT. His never-ending enthusiasm and non-orthodox views
make working with him an exciting experience.

Next I would like to thank Oded Goldreich and Shafi Goldwasser for teaching me so
much about science and cryptography via classes, joint work, and many conversations.
I also wish to thank them for serving on my thesis committee (and for helping me
understand why I should write a thesis).

I am thankful to many people who influenced my studies and research. A very
partial list of people with whom I had the opportunity to work and interact in-
cludes Shai Ben-David, Amir Ben-Dor, Ran Canetti, Benny Chor, Guy Even, Hugo
Krawczyk, Erez Petrank, Tal Rabin, Ron Rivest and Assaf Schuster. I would also
like to thank Amos Beimel, Rosario Gennaro, Stas Jarecki, Jon Kleinberg, Tal Malkin
and Daniele Micciancio, for their friendship and for sharing knowledge and ideas in
many conversations.

Special thanks to my mother Le’ah and my father Yiga’el, for all their love and
support over the past 31 years.

And finally, I wish to thank (if this is the right word) my wife Tzipi, for putting
up with all this through seven years and two continents, and for being a continuous

source of happiness in my life.

Contents

1 Introduction

1.1 Preface: Information Security and Cryptography
1.2 Secret Commitment,
1.3 Applications of Secret Commitment
1.4 Security Guarantees of Secret Commitment.

1.4.1 Deciding on Security Guarantees
1.5 Communication Models.
1.6 Efficiency of Secret Commitment
1.T Previous Work,

1.7.1 Protocols with Unconditional Secrecy

1.7.2 Protocols with Unconditional Commitment
1.8 Contributions of this Thesis

2 Preliminaries
2.1 Basic Notations and Definitions
2.2 Algorithms and Protocols
2.3 Security e e e e e e
3 Definitions

3.1 Symtaxand Validity
3.2 Defining Security L o e

3.2.1 Towards a Definition

3.2.2 Committing to One Secret Message

10
10
12
15
17
17
19
21
22
22
24
24

27
27
29
32

3.2.3 Committing to Many Secret Messages 40

3.3 Variants of Secret Commitment 42
3.4 Some Properties of Secret Commitment 44
3.4.1 A Characterization of Unconditional Secrecy 44
3.4.2 Computational Assumptions are Necessary 45
3.4.3 Non-interactive Secret Commitment. 47
An Algebraic Construction 49
4.1 Number-Theoretic Background 50
4.1.1 The Factorization Conjecture 51
4.1.2 The GMR Claw-Free Permutation Pairs 52
42 TheBlumScheme., 55
4.3 The GMR-based Scheme 56
4.3.1 Efficiency of the Scheme 57
4.3.2 The Initialization Phase 58
44 OurScheme e 59
44.1 ProofofSecrecy, 60
A Construction from Message-Digest Functions 63
51 Background 63
5.1.1 Message Digest Functions 64
5.1.2 Universal Hashing 65
5.2 A Simplified Construction 66
5.2.1 Security of the Scheme 68
5.2.2 [Efficiency of the Scheme 73
5.2.3 A Slight Generalization. 74
5.3 A Secure MD-based Construction 74

List of Figures

5-1 A simplified MD-based commitment scheme

5-2 A secure MD-based commitment scheme. .

List of Tables

1.1 Comparison between secret commitment protocols.

Chapter 1

Introduction

... the opposite of an introduction, my dear Pooh, was a Contradiction;

A.A. Milne / The House At Pooh Corner

1.1 Preface: Information Security and Cryptogra-
phy

In the last two decades we witness an “information revolution”. These decades are
characterized by an explosive growth in the availability and use of digital communica-
tion which is rapidly changing the ways we deal with information, and implies many
far reaching effects on the way we live and work. The rapid advances in information
technology which we witness these days offer new and exciting ways to communicate
and interact with each another. Applications like automated telephone services, e-
mail, and on-line databases are already a reality. In the near future we can expect to
see electronic-commerce, video-conferencing and many more applications becoming
widely available. All these new applications can be used to make our lives better, but
at the same time they also pose new threats of being misused or abused. Combating
these threats is the goal of information security.

Because of the immense variety of ways in which information is used (and can be

misused), information security encompasses very many different aspects and scenarios.

10

These range from the simplest cases with only a single party and no interaction, to the
ever-so-delicate protocols with many parties in different roles and conflicting interests.

A few examples of scenarios where information security is a concern include

e A party may wish to protect its private information from being accessed by
others. For example, a computer user may wish to make sure that its private

files cannot be read or modified by anybody else.

e Two parties may wish to protect an exchange of information between them from
begin accessed by others. For example, two computer users may wish to carry
out an e-mail correspondence in such a way that no one else is able to read it,

and so that they are assured of the integrity of the exchange.

e Even in the case of only two parties, we may have more involved scenarios. For
example, consider an “identification” scenario where Party A tries to establish
the identity of Party B via electronic communication. In this scenario, Party A
needs a way to verify the identity of Party B, while Party B may wish to reveal
as little as possible about itself in the process (e.g., to prevent Party A from
using what it learns in this process in order to impersonate Party B at some
later time). In this scenario, the parties may already have to follow a more

involved protocol, spanning several exchanges of messages.

e Things become even more complicated when there are more than two parties
involved. For example, a typical credit-card transaction may involve four parties
or more (buyer, seller, credit-card company and a few banks), each with a
different set of interests. Such a transaction may span a few separate protocols
(i.e., establishing the relations among all the participants, issuing the credit
card, the transaction itself, and the transfer of funds). An even more complex
example is electronic elections, where the tally has to be computed accurately
without violating the privacy of the voters. This last scenario may potentially

involve millions of users.

11

Cryptography and Cryptographic Primitives. Roughly speaking, cryptogra-
phy is the algorithmic part of information security. The role of cryptography is to
distill the underlying problems in these real-life scenarios, and to design cryptographic
algorithms and protocols to solve these problems. After two decades of active research,
we now have a wide variety of cryptographic protocols to match the wealth of infor-
mation security needs, ranging from encryption algorithms which protect sensitive
data from being read, to generic protocols for multi-party computations which (in
principle) can be used for complex tasks like electronic elections. Still, cryptogra-
phers keep inventing new protocols, either for solving the same problems in more
efficient ways, or for solving new problems which arise from new applications.

As it turns out, there are several “building-blocks” which are used in a many
different protocols for many different tasks. These building-blocks are called crypto-
graphic primitives. These cryptographic primitives constitute a “bag of tools” which
we can use in the design of many different protocols. This is very much like the way
a steel-door and a lock can be used in a variety of “physical security” settings. Also,
just like a lock can be build in several different ways (e.g., key lock, combination lock,
card reader lock, etc.) these primitives too can typically be implemented in many
different ways.

In this thesis we consider one such primitive, called a secret commitment scheme.
This is a two-party protocol which can be used in some applications, as well as a

building block inside larger cryptographic primitives.

1.2 Secret Commitment

A commitment scheme is a protocol between two parties, called the Sender and the
Receiver. In this protocol, the Sender bound itself to a specific message in front
of the Receiver, so that this message cannot be changed later without the Receiver
knowing it. Clearly, one way to achieve this commitment is by having the Sender
send the message itself to the Receiver. There are, however, situations where the

message should be kept (temporarily) secret from the Receiver. Bounding the Sender

12

to the message without revealing it to the Receiver is the goal of a secret commitment
scheme.

It is a useful to think of a secret commitment scheme as emulating, by means of
a protocol, the process of delivering a secret message to the Receiver in a locked box:
Once the Receiver has the box, it is assured that the Sender cannot change the secret
message in it, but the Sender is assured that the Receiver does not know the secret
message yet. At some later time, the Receiver may be given the key to the box, and
then it can open it and read the secret message in it.

A secret commitment protocol can therefore be viewed as comprised of two phases.
The first phase — called the Commit phase — emulates the delivery of the locked box.
When this phase is completed successfully, the Sender can not change the secret
message any more, but the Receiver still can not read it. The second phase - called
the De-commit phase emulates the delivery of the key. The Receiver can now open

the box, verify that it indeed contains some message, and read this message.

Two Naive Attempts

To gain some intuition to the notion of secret commitment protocols, it may be useful
to look at the following two simple constructions which seem to be doing “more or less
what we need”. As we explain below, however, none of these constructions actually

achieves the security goals which we require from a secret commitment protocol.

Using Message-Digest Functions. A message-digest function is a function which takes
as input a string of arbitrary length and produces as output a “digest” of some fixed
length. The useful property of these functions is that it is typically very hard to find
two different input strings which map to the same digest. Message-digest functions
(such as SHA-1 [14] and RIPEMD-160 [13]) are used in may applications, and quite
a few constructions of such functions are discussed in the literature (see [36] for a
comprehensive discussion about these functions).

A conceivable way to use a message-digest function for secret commitment is to
have the sender apply this function to its secret message and send the digest to the

Receiver in the Commit phase. This way, the Sender is bound to its secret message

13

since it is hard for it to find another string with the same digest, but the Receiver
cannot get the secret message yet since it is “scrambled” via the message-digest
function. In the de-commit phase the Sender sends the secret message itself to the
Receiver, who can check that an application of the function to the string yields the
right digest.

Although “reasonable” at first sight, the above construction is in fact not secure
enough.! First, it is not at all clear that the message-digest function indeed scrambles
the secret message so as to prevent the Receiver from understanding it. Moreover, it is
clear that upon receiving the output of the function, the Receiver may dismiss possible
candidate messages from consideration by checking that applying the function to them
yields a different output. Thus, if there is a fairly small set of possible messages to
begin with, the Receiver can find the right one by means of elimination. We stress
that since we view secret commitment protocols as cryptographic primitive, we must
ensure that they work in any application (e.g., even if only a single bit in the secret

message is not known to the Receiver).

Using One-Way Permutations. Another construction can be obtained by using one-
way permutations. A one-way permutation is a permutation over some domain (i.e.,
a function from the domain to itself which is one-to-one and onto), which is easy to
compute but hard to invert. Namely, given the input to the function if is easy to
figure out what the output is, but given the output is is very hard to find the input.

If the set of possible secret messages is contained in the domain of a one-way
permutation, we may try to get a secret commitment by having the Sender apply
the permutation to its string and send the output to the Receiver in the commit
phase. The Sender is now bound to its secret since there is no other string which
yields the same output. Notice that this is somewhat different than the previous
construction, where the Sender is only bound to its secret as long as it cannot perform
some computational task (namely finding two strings with the same digest). On the

other hand, the Receiver cannot deduce the secret from the commitment since the

I Nevertheless, we show in Chapter 5 how this simple scheme can be fixed to yield a secure and
efficient secret commitment protocol.

14

permutation is hard to invert. As before, in the de-commit phase the Sender sends
the secret itself to the Receiver, who can check that an application of the permutation
to it yields the right output.

In terms of secrecy, this scheme suffers from similar drawbacks as the previous
one. Although the permutation may be hard to invert, it may very well “leak” some
information about the secret. Moreover, we still have the problem that the Receiver is
able to eliminate potential secrets from consideration by checking that an application

of the one-way permutation to them yields the wrong output.

1.3 Applications of Secret Commitment

Secret Commitment plays an important role in the design of cryptographic protocols.

Below we describe a few of their most important applications

Time Stamping. In many communication scenarios, there is a need for time-
stamping mechanism, in which a “certification server” certifies the arrival time of
documents. Possible examples of such scenarios include bidding for a contract (where
all the bids must arrive by some specified deadline), problem-solving contests (where
the first solution wins a prize), etc. In some of these scenarios we may need to keep
the contents of the documents secret from the certification server. For example, when
bidding for a contract, we may not trust the recipient to keep the bid from leaking
to the competitors. (Alternatively, even if do we trust the certification server itself,
we may not have a secure channel on which to send the document.)

A good way to use the certification server while keeping the documents secret is
to have the server certify commitments for the documents (i.e., the box from above)
instead of the documents themselves. Since the commitment bounds the Sender to
its document, a time-stamp on the commitment is as good as a time-stamp on the
document itself. At the same time, since we use a secret commitment, it does not

reveal the contents of this document.

15

Ensuring Randomness. Just about every cryptographic protocol uses randomness
to achieve security. Namely, the security of the parties in the protocol relies on the
premise that some strings of bits which are used in the protocol were “chosen at
random”. Perhaps the simplest example is when two parties exchange a secret key
which is to be used for encrypting future communication between them. When using
this key, both parties rely on the premise that this key is “chosen at random” and
therefore cannot be guessed by an outsider. The question then arises - how to pick
these strings so that both parties can be assured of their randomness?

Using secret commitment as a mean of ensuring randomness was the first example
in the literature of the use of secret commitment inside a larger primitive. It was
shown by Blum [4] (and also in Blum-Micali [5]) how to use secret commitment in
a protocol for “tossing coins over the phone”. The idea in this protocol is that each
party can pick its own random string, and the string which is used is the bitwise
exclusive-or of the two strings. The only problem here is how to let the parties tell
each other about their strings, without giving one of them the ability to determine
its string only after seeing the string of the other. Here is where we use secret
commitment. First, each party commits to its string. Only after this commitment
is completed, the parties go on to exchange their strings. This way, we can be sure
that the choices of the two strings are made independently, and thus - the outcome

is random as long as at least one of the parties choose its string at random.

Zero-Knowledge Proofs. Zero-knowledge proofs, introduced by Goldwasser Mi-
cali and Rackoff in [21] are protocols between two parties, in which one party (the
Prover) convinces the other (the Verifier) of the validity of some assertion, without re-
vealing any information about how to prove this assertion. Zero-knowledge protocols
- in turn - are used in many cryptographic settings.

Though it is not intuitively clear how secret commitment can be useful for such
proofs, Goldreich, Micali and Wigderson demonstrated in [19], that secret commit-
ment can be used to prove any NP type assertion in zero-knowledge. The same

paradigm was employed by Brassard, Chaum and Crépeau in the slightly different

16

setting of argument systems [1, 2].

1.4 Security Guarantees of Secret Commitment

A protocol for secret commitment must satisfy two requirements, corresponding to the
security needs of the two parties involved. The secrecy requirement is that the Receiver
cannot read the secret message before the de-commit phase, and the commitment
requirement is that the Sender cannot alter the contents of the secret message after
the commit phase. Each of these requirements can be satisfied either computationally
(i.e., under the assumption that some computational task is infeasible for one of the
parties), or unconditionally (i.e., without any such assumptions).

To demonstrate the difference between these notions, recall the two naive examples
from above. In the first example (using message digest) the commitment requirement
was satisfied only as long as the Sender was not able to find two strings with the same
digest. However, since there exist many different strings with the same digest, then
we must rely on the assumption that the Sender is unable to find two such strings. In
the second example (using one-way permutations), no such assumption is necessary
since the function we use is one-to-one and thus — for any output value there exists
only one string which yields this output value. When we must make assumptions
on the computational ability of the parties, we refer to these assumptions as the
computational assumptions underlying the security of the protocol.

It is easy to see - and we prove it in Chapter 3 - that no protocol can have both
unconditional commitment and unconditional secrecy. There are, however, construc-
tions which achieve unconditional secrecy, and others which achieve unconditional

commitment.

1.4.1 Deciding on Security Guarantees

A few aspects should be considered when deciding which type of secret commitment

to use for a particular application.

17

1. In some applications, one of the parties has considerably more computing power
than the other. If the strong party is the Sender then there is an advantage
in using unconditionally committing protocol, and if the strong party is the
Receiver then there is an advantage in using unconditionally secret commitment.
When doing this, we can sometimes work with smaller security parameters, since
the computational assumption which we make is that some task is infeasible for
the weak party. Therefore, we may be able to obtain more efficient schemes

without compromising security.

2. In some application we may care more about the security of one party than
about the security of the other (e.g., say that violating the secrecy causes only
a slight discomfort to the Sender, while violating the commitment may cause a
significant harm to the Receiver). In this case, we may choose a commitment
scheme in which breaking the underlying assumption only effects the interests

of the “less important” party.

3. In some settings, it may be sufficient to guarantee the security of one party only
for a limited time. As an example for this scenario, consider a setting in which
many participants submit secrets documents to a competition, in which a single
“winner” is chosen. Then, only the winner is required to reveal its document.
Since the winner is announced soon after the submission of the secrets, then
the participants do not have much time to try and violate the commitment
requirement. On the other hand, we would like the secrets of the losers to

remain secret “forever”.

When this happens, it makes sense to choose a commitment scheme so that
the party whose security should be guaranteed for a longer time is protected
unconditionally, and the other party is only protected computationally. For
instance, in the example above we may wish to use an unconditionally secret
commitment. This may also enable us to use a smaller security parameter, since

the Senders has only very little time to try and break the commitment.

18

4. There are theoretical applications in which one must use one type of commit-
ment schemes or the other to yield the desired result. For instance, in the
zero-knowledge proofs for NP [19], one must use unconditionally binding com-
mitments, whilé obtaining prefect zero-knowledge arguments for NP requires

unconditionally secret commitment [1, 2, 26, 31].

1.5 Communication Models

Recall that a secret commitment is a protocol between two parties, the Sender and
the Receiver. In a construction of such commitment, therefore, we must take into
account the ways these parties can interact with each other. There are several possible

communication models which we can consider. A few such models are described next.

1. Interactive model. In this model, both the Sender and the Receiver remain
on-line throughout the protocol and can freely interact with each other. In
this scenario, both the Commit and De-commit phases may consist of several

messages which are sent back and forth between the parties.

2. Non-interactive model. In this model, the Receiver only operates off-line, and
thus cannot send messages to the Sender. This means that both phases of the
protocol consist only of messages sent from the Sender to the Receiver. (In fact,
we can view each phase as consisting of a single message from the Sender to the

Receiver.)

A protocol which can be implemented in this model may be preferable to a
protocol which requires interaction even in cases where the Receiver is capable
of interacting with the Sender, since eliminating the need for interaction may
make such a protocol more efficient and easier to implement. However, as we

show in Section 3.4, there are settings where such protocols simply do not exist.

3. Non-interactive model with initialization phase. This model is somewhere in be-
tween the previous two models, in that it only allows a limited form of interac-

tion. Specifically, in this model we have an additional phase before the Commit

19

and De-commit phases, called the Initialization phase, where a few “system
parameters” are determined. For example, in a protocol which is based on the
assumption that factoring is hard, the Initialization phase can be used to choose

a random composite number (which is then assumed to be hard to factor).

We stress that these system parameters are set independently of the secret
message which is committed to (i.e., we can think of the Initialization phase as
taking place before the Sender has any secret to commit to). After these system
parameters are set we require that the Commit and De-commit phases be non-
interactive (but both the Sender and the Receiver can use the system parameters
which were set in the initialization phase). Within this model, there are a few

variants, depending on how the initialization phase can be implemented.

(a) Initialization by a Trusted Party. In this scenario there is a randomized algo-
rithm for generating the system parameters, and there is a third party which is
trusted to run this algorithm and send the results to both the Sender and the

Receiver.

(b) Interactive Initialization. In this scenario there is no trusted party, but the
Sender and the Receiver can interact in order to generate the system parameters.
The initialization algorithm from above is thus replaced with an interactive two
party protocol. The Sender and Receiver execute the initialization protocol
first, and each of them keep its state between the Initialization and the other

phases.

We stress again that this model is different than the model of interactive com-
mitment, since the Initialization phase is independent of any secret message,
and thus can be carried out ahead of time. The Commit and De-commit phases

themselves are non-interactive.

Note that any protocol which can be implemented in this model can also be
implemented in the trusted party model (by having the trusted party run the

protocol with itself and send the results to Sender and the Receiver).

20

(c) Initialization with a Public Directory. In this model the Sender and Receiver
cannot interact in the initialization, and there is no trusted party either. In-
stead, there is a public directory service which is only trusted to keep values
which are sent to it by the parties and to make them publicly available. In
the Initialization phase, the parties can therefore deposit some values in the
directory service, and they later can retrieve each other’s values for use in the

Commit and De-commit phases.?

Most of the efficient secret commitment protocols (including the two in Chap-
ters 4 and 5) work in this model. Typically, in these protocols only the Receiver
deposits a value to the directory, and both parties use this value in the other
phases. Also, it is clear that any protocol which can be implemented in this

model can also be implemented in any of the two previous models.

1.6 Efficiency of Secret Commitment

As for any other protocol, there are three important resources to consider when de-

signing commitment schemes, namely interaction, communication, and computation.

1. Interaction. Protocols are typically interactive because their parties communi-
cate by exchanging messages back and forth. As we discussed above, however,
there are cases where interaction is simply not possible, and even when it is
possible - it may be very expensive. Therefore, it is preferable to have non-

interactive schemes, or at least schemes with as little interaction as possible.

2. Communication and State. Another important resource in a protocol is the
pumber of bits sent by the parties. In a commitment scheme, we measure
the number of bits against the length of the secret message and the security
parameter. Also, in a multi-phase protocol we may want to minimize the size

of the state that the parties need to maintain between the different phases. We

%In reality, implementing such a directory service involves many complex constraints and re-
quirements. In this thesis we ignore all these issues, as they are not directly relevant to secret
commitment.

21

therefore would like to obtain schemes in which the number of communicated

bits and state bits is as low as possible.

3. Computation. A third important resource is the amount of (local) computation
that the parties need to spend during the protocol. Clearly, we want protocols

which require as little effort as possible from the parties.

(We stress that the computational efficiency objective is totally unrelated to the
computational assumptions which we make on the parties. The later deals with
the amount of effort it takes a “cheating party” to violate the security of the
other party, while the former deals with the amount of effort it takes a honest

party to execute its role in the protocol.)

1.7 Previous Work

Many protocols for secret commitment were discussed in the literature. We review
these protocols below, and briefly describe their properties. In the discussion below
we separate these protocols according to their security guarantees. In Table 1.1 we
sketch some properties of protocols in the literature, as compared to the ones which

we present in this thesis.

1.7.1 Protocols with Unconditional Secrecy

Many of the protocols in the literature which offer unconditional secrecy and com-
putational commitment are based on number-theoretic constructions. The first such
protocol was suggested by Blum [4], who described a secret commitment protocol
for one bit, where the underlying computational assumption is that the Sender is
not capable of factoring large integers. Blum’s scheme calls for one or two modular
multiplications and a k-bit commit string for every bit which is being committed to
(where k is the size of the composite modulus).

A more efficient construction, which is based on the same computational assump-

tion, is implicit in the work of Goldwasser, Micali and Rivest [22]. Their claw-free

22

permutation-pairs enables one to commit to long secrets using about the same amount
of local computation as in Blum’s scheme, but to send only a k-bit commit string,
regardless of the length of the secret. A similar construction was described explicitly
in [1, 2]>. The GMR-based construction was used since then in many other works
(e.g. 3, 7, 10]).

One common problem of both the above constructions, however, is that they rely
on composite numbers of a special form (i.e., product of two primes which are both
congruent to 3 mod 4). Thus they require a special initialization procedure in which
these special-form numbers are established. It should be noted that we can not let
any of the parties pick these numbers on its own, since the security of both parties
depend on the proper choice of the numbers. We also note that there is no known
algorithm which lets the other party check that a given composite number is of the
right form (although it is easy to check that the composite number is congruent to
1 mod 4, it is not known how to verify that it is indeed a product of exactly two
primes). In Chapter 4 we describe a protocol which eliminates this problem.

Several other constructions are based on the computational assumption that the
Sender in not capable of of extracting discrete-logarithms. In particular, [2] also
show how to use claw-free permutation-pairs which are based on the hardness of the
discrete-log problem for secret commitment. This construction, however, requires one
modular exponentiation per bit in the secret. Pedersen [33] and Chaum, van-Heijst
and Pfitzmann [7], described a construction in which the Sender can commit to a
secret of length k (where k is the size of the prime modulus) by performing two
modular exponentiations and sending a k-bit commit string.

There were also a few constructions of secret commitment protocols using more
generic computational assumptions. Naor, Ostrovsky, Venkatesan and Yung [31] de-
scribed a construction which can use any one-way permutation. Their scheme calls
for 2k rounds of communication and one application of the one-way permutation for

each bit which is being committed to. Finally a construction that uses message-digest

3The description in [1, 2] is stated in terms of a commitment to a single bit, but it can easily be
generalized to allow committing to many bits.

23

functions (which is somewhat similar to the first “naive example” from above) was
first mentioned by Naor and Yung in [30], and was later improved by Damgard, Ped-
ersen, Pfitzmann [12] and by Halevi and Micali [24]. This protocol is described in
Chapter 5. It calls for one application of the digest function to the secret and has a
commit string of size k (where k is the security parameter) regardless of the secret

length.

1.7.2 Protocols with Unconditional Commitment

A protocol for secret commitment which achieve computational secrecy and uncondi-
tional commitment (which is somewhat similar to the second “naive example” from
above) was first presented in [5]. Although it was described in terms of the discreet
logarithm problem, it can in fact use any one-way permutation. This protocol uses
hard-core bits of any one-way permutation and requires one application of the one-
way permutation for each bit which is being committed to. This scheme is described
in [17, Construction 6.21]. In [29], Naor presented another construction which can
be implemented using any pseudo-random generator (or, equivalently, any one-way
function [25]). In the commit phase of Naor’s scheme, the Sender generates a pseu-
dorandom string of length linear in the length of the secret and sends a string of the

same length to the Receiver.

1.8 Contributions of this Thesis

In this thesis we develop further the notion of secret commitment. The contribution
of this thesis is two fold.

Formulation. In Chapter 3 we give a formal and general definition for the notion
of secret commitment, and discuss a few subtleties in these definitions. Although
several definitions of secret commitment can be found in the literature, none of them
is general enough so as to capture all the different variants of this notion (in particular,

none of these definitions includes the notion of an Initialization phase).

Constructions. In Chapters 4 and 5 we describe constructions of secret commitment

24

protocols which have some advantages over previous ones. Specifically, in Chapter 4
we show how to construct a protocol which uses the Goldwasser-Micali-Rivest permu-
tation pairs to obtain unconditional secrecy and computational commitment, under
the assumption that the Sender cannot factor large composite integers. The advan-
tage of our construction over previous ones is in the Initialization phase. The security
of previous scheme rely on the use of composite integers whose prime factorization is
unknown to the Sender, but for which it is known that this prime factorization is of
a special form. Therefore, an interactive Initialization phase is required in order to
convince the Sender that the prime factorization is of the right form without actually
revealing it. Our protocol is unique in that the form of these composite integers does
not effects the security of the Sender, so they can be selected by the Receiver. Thus,
the interactive initialization is not needed.

In Chapter 5 we present another construction for secret commitment protocol
which can use any message-digest function. This construction obtain unconditional
secrecy and computational commitment, under the assumption that the Sender can-
not find two different strings with the same digest. This construction is very efficient
in terms of interaction, communication and computation. It is essentially the same

as the construction in [12], but we provide a more direct proof of security for it.

25

9¢

'S[OOO‘lOJd JuRUI} I UIOd 191998 UsaMm)}oq HOSEIPdUIOQ T°T 219%eL

Committing to an n-bit string with security-parameter k

Protocols with Unconditional Secrecy

computational | #-rounds in length of) .
the scheme assumption Commit-phase | commit-string computation Initialization
factoring n modular-)
Blum [4] Blum-integers 1 O(k n) multiplications Interactive
one-way n one-way permutations o
NOVY [31] permutations 2k O(k n) & nk? XOR’s No initialization
solving O(max{k,n}) Director
Pedersen [7,33] discrete-log 1 O(max{k,n}) modular-multiplications Y
factoring 1 O(k) O(n) modular- Interactive
GMR-based [2] Blum-integers multiplications
Chapter 4 factoring 1 O(k) O(k+n) modular- Directory
(GMR-based) 1 _B!um—i_ntege_rg __________________ m ult_ip_licati:ms_ _ o
Chapter 5 message-digest digest of n+O(k) bits & .
(also [12]) functions 1 O(k) universal hash O(K) bits | Directory
Protocols with Unconditional Commitment
computational | #-rounds in length of) L
the scheme assumption Commit-phase | commit-string computation Initialization
one-way . e e
Blum-micali [5] permutations 1 Ok n) n one-way permutations No initialization
Naor [29] pseudorandom 1 O(n) error-correction encoding | pyire ctory
generators & O(n) pseudorandom bits

Chapter 2

Preliminaries

Pooh looked at his two paws. He knew that one of them was the right, and
he knew that when you had decided which one of them was the right, then
the other one was the left, but he never could remember how to begin.

A.A. Milne / The House At Pooh Corner

2.1 Basic Notations and Definitions

Throughout this thesis, the set of non-negative integers is denoted by Z*. For any
non-negative integer k € Zt, we denote by. {0,1}* the set of binary-strings of length
k, and by {0,1}=F the set of binary-strings of length at most k. We use {0,1}* to
denote the set of all finite-length binary strings.

The notation | - | is used in three different standard ways which can easily be
distinguished by the context: For a binary string s € {0,1}*, we denote by |s| the
number of bits in s. For a finite set S, we denote by |S| the number of elements in

S. Finally, if = is a real number then |z| denotes the absolute value of z.

Distributions and statistical difference. A probability distribution (or just a

distribution) over a countable set .S is a function D : § — [0, 1] for which

Y D(s) =1 (2.1)

sES

27

The support set of a distribution D is the set of elements s € S for which D(s) > 0.

If Dy, D, are two distributions over S, the statistical difference between D; and D,,

denoted || Dy — D,||, is defined as

101~ Dyl & 237 |Dy(s) - Da(o)] (2.2

s€ES

We note that for any two distributions D, D;, we always have 0 < ||D; — D,|| < 1.

Syntax for probabilistic experiments. In the sequel we denote by o « D the
experiment in which we pick a according to the distribution D. Sometimes we also
write o « S (where S is a set) to denote picking o uniformly at random from the set

S. For a predicate p(- -), we use the syntax

a1<—D1

a2<——D2

Pr

| p(a1,0z,...)

to denote the probability of the event in which we first pick oy from D, then a; from
D,, and so on, and in which at the end the a;’s chosen this way happen to satisfy the
predicate p. In the simple case where the experiment consists of picking one element

from one distribution, we use either of the notations

pe| P o (D) or Pt [p(a)]
p(c)

These notations are used interchangeably, depending on which looks more natural in

a certain context.

28

2.2 Algorithms and Protocols

A probabilistic algorithm is an algorithm which is given - in addition to the usual
input - a string of uniformly and independently chosen bits. For any input, the
random choice of these bits induces a probability distribution over the behavior of
the algorithm. This string of bits is often called the random tape of A. If A is a
probabilistic algorithm and z is a possible input for this algorithm, then we denote
by A(z) the distribution over the possible outputs of A, which is induced by running
A on input z. (Below we assume that A halts on any input and any random tape.
This would be true for all the algorithm which are of interest to us in this thesis.)

A probabilistic interactive algorithm can be viewed as a (standard) probabilistic
algorithm A which is run over and over again, retaining its state from one execution
to the next. Every time after A produces an output, it is given a new input and then
it is executed again from its current state, until it produces its next output.! We call
each execution of A in this process a communication round. We view the first input
to A in this process as its “real input” and the rest of the inputs as the messages
which A receives during this execution. The last output of A is considered to be its
“real output” and the other outputs are the messages which A sends.

We describe a two-party protocol by an ordered pair of probabilistic interactive
algorithms (A, B). If (A, B) is a protocol and z,y are possible inputs for A and B,
respectively, then we use the notation {A(z) < B(y)} to denote the distribution over
the possible outputs which is induced by running the protocol (A, B) when A is given

input and B is given input y. The notation

(@, 8) < {A(z) & B(y)}

describes the experiment in which we run the protocol (A, B) on inputs (z,y), and

then denote the output of A by « and the output of B by 8.

1There should also be some syntax for termination: say that this process ends when A produces
an output which ends in the special symbol 4. We ignore this matter from here on.

29

Don’t-care values. In some cases we are only interested in the output value of one
of the parties in a protocol. In these cases we denote the output of the other party

by ‘*’. For example, if s is some binary string, then the expression

{A(z) & B(y)} = (x,9)

denotes the event in which we run the protocol (A, B) on inputs (z,y) and the output

of B happens to be s. That is, the output of A in this experiment is ignored.

Transcripts of protocols. If (A, B) is a protocol and (z,y) are inputs to this
protocol, then a transcript of an execution of (A, B) on (z,y) is a sequence which
consists of all the messages that were sent between the parties in this execution. We
denote by trans{A(z) « B(y)} the distribution over the possible transcripts which
is induced by running the protocol (A, B) on inputs (z,y).

If ¢ is any sequence of messages, A is an interactive algorithm and z is an input,
we say that ¢ is consistent with A(z) if there exists an execution of A(z) (with some
partner) which generates the transcript ¢. Namely, if there exist an algorithm B and
an input y so that the distribution trans{A(z) < B(y)} assigns non-zero probability
to t. (We note that this is equivalent to the condition that there exists some choice
r of random tape of A such that if A is run on input z and random tape r, and if in
each communication round z, A is given the 2:’th message in ¢, then it produces in

that round the 2: 4+ 1’st message in ¢.)

Multi-phase protocols. As we explained in the Introduction, sometimes we log-
ically view a protocol as consisting of a few phases, where each of these phases ac-
complishes a certain task. In order to talk about multi-phase protocols, we view
each phase as a protocol by itself, and the combined protocol is then viewed as a
composition of all these phase protocols. A sequence of protocols (Ay, By), (A2, Bs),
(A3, B3), ... are composed into one protocol by giving the output of each party in

the i’th protocol to the same party in the i 4+ 1’st protocol. We denote an execution

30

of this protocol on inputs (z,y) by

(a1, 61) « {Ai(z) © Bi(y)}
(a2, B2) « {Az(ca) & B(B1)}
(0!3,53) — {As(az) A Bs(ﬂz)}

When considering a multi-phase protocol, we sometimes give an input value to a
party at an intermediate phase of the protocol. For this we use a similar syntax to
the above. For example, if (A1, B1) and (Ag, B;) are two phases of a protocol and

z,y, z are inputs strings, then the notation

(a1, *) — {Ai(z) « Bi(y)}
(a2, B2) + {C(en) & D(z)}

describes the experiment in which we first run protocol (A;, B) on inputs (z,y), and
denote the outputs of A; by oy, and then run protocol (As, B3) on inputs (4, 2), and
denote the output of the parties by (a3, 52).

When we use this notation, we sometimes stress the difference between pre-
specified parameters (such as z,y, 2z above) and the random outcomes in the exper-
iment (such as o, 3,3, above), by denoting the non-random parameters by small

English letters and the random outcomes by small Greek letters.

Polynomial-time algorithms. An algorithm A is Probabilistic Polynomial-Time
(PPT) if there exists some polynomial) : £+ — Z* such that for any input string
z € {0,1}*, the running-time of A on z is always less than Q(|z]).

An interactive algorithm is said to be PPT if there exists a polynomial as above
which bounds the running time of A in each communication round. Namely, for any

input z and sequence of messages m1,my, ..., the running time of A in the :’th round

is always less than Q(|z|).

31

2.3 Security

In most cryptographic protocols, there is always a slight chance that a “cheating
party” will be able to compromise the security of the other party (e.g., by being
very lucky and guessing the secret held by the other party). Thus, the goal in most
protocols is not to make cheating impossible, but only to make the probability of
cheating very small. We quantify what “very small” means via the notions of security-

parameter and negligible functions. These are discussed next.

Negligible functions. We say that a function f : Z¥ — [0,1] is negligible if as k
gets larger, f(k) goes to zero faster than any fixed polynomial in 1/k. Formally,

Ve> 0 Jk. € 2+ so that Vk > ke, f(k) < k= (2.3)

Security-parameter. A security parameter in a cryptographic protocol is simply
an integer that is used in the protocol to denote the required “level of security”.
The behavior of the parties in the protocol may depend on the value of the security
parameter (typically, this value determines the length of the cryptographic keys that
are used by the parties). Formally, the security parameter is given as input to the
parties in the cryptographic protocol. This security parameter is encoded in unary
(so the security-parameter k € Z* is denoted by 1¥), and the parties are allowed to
work in time which is polynomial in this security parameter.

The “cheating probability” in such protocol is considered to be small enough if
it is negligible in the security parameter which is used by the parties. Usually, such
protocols can only guarantee this small “cheating probability” as long as the the

length of the other inputs of the parties is polynomial in the security parameter.

Computational assumptions. As we explained in the Introduction, the security
guarantees of cryptographic protocols may depend on the assumptions which we make
on the computational power of the parties. Notice that when we deal with a “cheating

party”, we typically have no knowledge about the algorithm which this “cheating

32

party” uses. Instead, we may only have some bound on the computational resources
which are available for it. We therefore want to guarantee that the probability of
cheating using these bounded resources (in any way) is low enough.

We formalize the notion of bounded resources using the notion of complezity
classes of algorithm. We consider a class C of all the algorithms which only use
some bounded resources, and allow a cheating party to pick any algorithm from this
class. We formalize our security guarantee by saying that any algorithm from this
class has only very low probability of cheating. In this thesis, the only classes of
algorithm which we consider are the class of all the algorithms, and the class of PPT

algorithms.?

Complexity conjectures vs. computational assumptions. It is worth stress-
ing the difference between the computational assumptions discussed above and the
complexity conjectures which we sometimes rely on when proving security of proto-
cols. A complexity conjecture is a mathematical assertion of the form “no algorithm
in class C can solve problem X” (e.g., “no PPT algorithm can factor large integers
with non-negligible probability”). Such a conjecture is either true or false (and the
reason we call it a conjecture is because as of today, we still do not know which is
the case). On the other hand, the computational assumptions from above assert that
a party in a protocol belong to some complexity class. This assertion does not have
a well-defined truth value, since it depends on the specific application in which this
protocol is used.

To further clarify this distinction, assume that we have a protocol which is secure
as long as one of the parties cannot factor large integers (such a protocol is described
in Chapter 4). Assume now that we were able to prove the conjecture that no PPT
algorithm can factor large integers with non-negligible probability. Notice now that
even in this case, to argue that the protocol is secure for a specific application we still

need to make the computational assumption that this party is bounded to probabilistic

2The definitions in the thesis also make sense for any other “reasonable” complexity classes (as
long as the running time is restricted to be sub-exponential in the security parameter).

33

polynomial time. (For example, this party might still be able to violate the security

if using a “quantum-computer” [39], assuming such computers are at all possible.)

Auxiliary-inputs and non-uniformity. When a protocol is used in a larger en-
vironment (e.g., as a sub-protocol inside some larger protocol), this environment may
contain details which are not used by this particular algorithm or protocol, but are
still available for the parties running this protocol. Note that although the honest
parties does not use these details, a “cheating party” may try to use them to break
the scheme. For example, when using a secret commitment protocol inside a larger
protocol, the parties may have some history at the point where the secret commitment
protocol is involved. This history may include such details as previous commitments
to other secret messages, cryptographic keys which are used for other parts of the
larger protocol, etc. It makes sense, therefore, to strengthen the security guarantees
of the protocol so that they still hold even if the parties try to use these additional
details. Syntactically, we represent these details as additional inputs — called auziliary
inputs — which are available for the algorithms used by a “cheating party”.

If the environment in which this protocol is used is very complex, or if this envi-
ronment is not specified, then we may want to claim that the security guarantees hold
for all auziliary inputs. This forces us to view the algorithms used by the “cheating
party” as non-uniform ones: A non-uniform algorithm can be viewed in this context
as an algorithm which is given a fixed auxiliary input string, which is independent
of all the other inputs to the protocol, except the security parameter. (Equivalently,
non-uniform algorithms can be formulated via the notion of sequences of boolean

circuits. See for example [32, Section 11.4].)

34

Chapter 3

Definitions

. it is a thing which you can easily explain twice before anybody knows
what you are talking about.

A.A. Milne / The House At Pooh Corner

In this chapter we define formally the notion of a commitment scheme, and show how
variants of secret commitment fit within the framework of the general definition. We
also demonstrate a few basic properties of these variants.

(We note that although these scheme should probably be called secret commitment
schemes — since they have elements of secrecy, as well as commitment — they are

traditionally called just commitment schemes, so from now on we stick to this notion.)

3.1 Syntax and Validity

Syntactically, a commitment scheme is combined of three two-party protocols. Below
we refer to the parties in these protocols as Sender and Receiver, and we call the
protocols themselves Initialization phase, Commit phase and De-commit phase.

In the Initialization phase both parties are given the same input, which is the
security parameter of the system, encoded in unary (we denote this by 1¥). The

parties maintain a state between the Initialization and the Commit phase, which (as

35

stated in Chapter 2) is represented by having the parties output this state at the end
of Initialization phase and use it as an input to the commit phase.

In addition to this state, in the Commit phase the Sender is also given another
input (denoted by m), which is the secret message to be committed to. As usual, to
maintain a state between the Commit and De-commit phase, the parties output their
state at the end of the Commit phase and use it as an input in the De-commit phase.

Finally, at the end of the De-commit phase the Receiver either outputs a string
(which is supposedly the secret message of the Sender), or outputs the special symbol
1 (meaning that the commitment was not opened correctly).

In the sequel, we sometimes refer to the states of the Sender and the Receiver after
the Initialization phase as the system parameters, the state of the Receiver after the
Commit phase as the commit string, and the state of the Sender after the Commit

phase as the de-commit string.

The Validity Condition. Before we can even start talking about security, we first
need to make sure that if all the parties are honest, then after the De-commit phase
the Receiver is able to learn the secret message. This is captured by the following

definition.

Definition 1 Let (Ig, Ig),(Cs, Cr),(Ds, Dr) be three protocols, where all the algo-
rithms involved are PPT. We say that these protocols comprise a commitment scheme

if the following requirement hold

Validity: For every k € Z% and every m € {0,1}*,

[(porpr) — {Is(1%) o Ip(1%)}
(TsvTr) A {CS(Psam)HCR(Pr)}
(*, o) « {Cs(7s) < Cr(7)}

m=ao

Pr =1 (3.1)

We note that Definition 1 says nothing about the security of the secret-commitment

scheme. This is discussed next.

36

3.2 Defining Security

3.2.1 Towards a Definition

The semantics of a secret commitment should ensure that after the Commit phase
the Receiver does not know anything about the secret message yet, but the Sender
can not change it anymore. The definition of what it means for the Receiver “not to
know anything about m”, and for the Sender “not to be able to alter m” depends
on the assumptions which we make on the computational power of the parties, which
we formalize using the notion of complexity classes of algorithms (as was explained
in Section 2.3). Below we describe the security guarantees in a somewhat informal

manner, leaving the exact definition to Subsections 3.2.2 and 3.2.3.

Security guarantees. Let Cs,Cr be two classes of algorithms, and let (Is, Ir),
(Cs,Cr), (Ds, Dr), be protocols which comprise a commitment scheme. We say that
this commitment scheme is secure against Sender in Cg and Receiver in Cg, if they

satisfy two requirements, which we term Secrecy and Commitment.

Secrecy: The secrecy requirement tells us that for any two strings m;, mg, no algorithm
from the class Cp (which may be employed by a “cheating Receiver”) can distinguish
between a commitment to m; and a commitment to m;, except with probability
which is negligible in the security parameter.

To make this formal, we fix any two strings m,, ms, and consider the experiments
in which we first run the initialization phase and when run the Commit protocol
either with m; or with m,. The “cheating Prover” is given m;,my and it tries to
guess whether this was a commitment to m; or to m,. The secrecy requirement
asserts that for any m;,m; (of length polynomial in the security parameter), the
advantage of the Receiver in guessing is only negligible in the security parameter.
Commitment: The commitment guarantee of a commitment scheme tells us that no
algorithm from the class Cs (which may be employed by a “cheating Sender”) can first
execute the Initialization and Commit phases and then de-commit in two different

ways, except with negligible probability.

37

To formalize this, we consider an experiment in which we first run the Initialization
and Commit phases, and then run the De-commit phase when the Sender is given an
extra input bit. The goal of the cheating Sender is to cause the Receiver to output
two different strings at the end of the De-commit phase, depending on whether this
“bit” was 1 or 2. The commitment requirement asserts that this goal should only be

achieved with negligible probability.

Auxiliary inputs. As we explained in Chapter 2, when a commitment scheme is
used inside a larger protocol, the parties may have auxiliary inputs from this higher
level protocol, so we should require that the security guarantees still holds in the

presence of such auxiliary inputs.

3.2.2 Committing to One Secret Message

We start by presenting a definition which is good enough for the case where we only
use the system parameters which are generated in the Initialization phase to commit
to a single secret message. In Subsection 3.2.3 we discuss the case where we use the

same system parameters to commit to many secret messages.

Definition 2 Let Cs,Cr be two classes of algorithms, and let (Is,Igr), (Cs,Cr),
(Ds, DR) be a commitment scheme. We say that this commitment scheme is secure

against Sender in Cs and Receiver in Cg, if the following two requirements hold

Secrecy: For any two algorithms I}, C} € Cr and any polynomial Q(-), there ezx-
ists a negligible function neg(-), so that any integer k € Z*, any two strings
m1,ma € {0,1}59®) and any auziliary input z € {0,1}59%)

Pr (ps’ p"‘) — {Is(lk) < I;l(z’ 1k)} < neg(k) (32)

'pl(z7 Psy pr7m17m2) —Pz(z,ps, P?‘7m17m2))| > neg(k)

where py,ps, are shorthands for the probabilities that the algorithm Cp guesses

‘1’ when interacting with a Sender who is committing to my,m,, respectively.

38

Namely, for b€ {1,2} we denote
pb(zaps’pramlsm2) « Pr| {CS(pSamb) o C;%(z, prymi,ma)} = (%,1)]

Commitment: For any three algorithms I, C%, D% € Cs and any polynomial Q(-),
there exists a negligible function neg(-) so that for any integer k € Z* and any
auziliary input z € {0,1}59%*)

[(00 pr) — {I3(2,1%) & In(1%)}
(75,7) « {C3(2,p5) & Cr(pr)}
Pr| (x, 01) « {D3(2,7,1) & Ca(r)} | = neg(k) (3.3)
(%, 02) — {D3(2,74,2) & Ca(r)}

i J1 #J_ and 09 75J_ and g1 # 09

Non-uniformity. As we mentioned in Section 2.3, considering auxiliary inputs
(without specifying how these are generated) has the effect of making the algorithms
used by “cheating parties” non-uniform, and so any complexity conjecture which we
make in order to prove the security of the scheme must hold in the non-uniform model.
Also, since we require that the Secrecy requirement holds for any two strings m;, ms
which are given as inputs to the “cheating Receiver”, then the algorithms used by this
“cheating Receiver” must be considered non-uniform even in the absence of auxiliary
inputs.

If we want to stay in the uniform model, we must restrict the auxiliary inputs and
“secret messages” to those which can be generated by probabilistic polynomial-time
algorithms. Informally, this means that although some strings may help a “cheating
party”, any PPT algorithm has only a negligible chance of finding these strings. We
do not formalize this intuition here. The reader is referred to [16], where similar issues

(for encryption schemes and zero-knowledge proofs) are treated formally.

39

3.2.3 Committing to Many Secret Messages

The above definition only guarantees the secrecy and commitment conditions as long
as we only use the system parameters from the Initialization phase to commit to a
single secret message. In many cases, however, we want to execute the Initialization
phase only once, and then execute many instances of the Commit/De-commit phase
with the same security parameters.

The reason why Definition 2 is not strong enough to handle this case is that,
during the De-commit phase of a protocol, one party may have to reveal some secrets
about the system parameters, which then can help the other party to violate the
security of the system in a subsequent executions.

To illustrate this point, consider the naive attempt at a commitment scheme us-

1 Assume that

ing one-way permutation which was described in the Introduction.
we slightly modify this construction by using a trapdoor one-way permutation. (In-
formally, a trapdoor one-way permutation is a one-way permutation for which there
exists a trapdoor information that enables easy inversion. See, e.g., [17, Sec. 2.4.4]).
This construction can then be modified as follows. In the Initialization phase, the
Sender picks a one way permutation 7 and the corresponding trapdoor information
t, and send 7 to the Receiver. In the Commit phase, on secret message m, the sender
computes 7(m) and send it to the Receiver. In the De-commit phase, the Sender
sends t, to the Receiver, who can then invert © and compute m.

Although this construction does not satisfy the stringent Secrecy condition of
Definition 2, it does provide some measure of secrecy, since it is assumed that the
Receiver cannot compute m from # and w(m). However, it is clear that this con-
struction cannot be used to commit to more than one secret message, since after the
first De-commit the Receiver knows t, and can easily invert . For a more natural
example of this phenomena, see the remark following the commitment scheme at the

beginning of Section 5.2.

1 Although that construction does not satisfy the stringent Secrecy condition in Definition 2, it
still demonstrates the difficultywith this definition in the case of many commitments. Moreover, the
same argument can be made about the construction in [17, Construction 6.21] which does satisfy
Definition 2.

40

One plausible way to augment Definition 2 so that it can handle commitments
to many messages, is to require that the parties “will not use any secrets about
the system parameters”. Formally, this means that the Secrecy and Commitment
requirements still hold even when each of the parties is given both system parameters

Ps, pr as input in the Commit phase. Namely, we have the following definition

Definition 3 Let Cs,Cr be two classes of algorithms, and let (Is,Ig), (Cs,Cr),
(Ds, DR) be a commitment scheme. We say that this commitment scheme is strongly

secure against Sender in Cs and Receiver in Cg, if the following two requirements hold

Strong Secrecy: For any two algorithms If,Ch € Cr and any polynomial Q(-),
there exists a negligible function neg(-) so that any integer k € Z+, any two

strings my, my € {0,1}5°%%) and any auziliary input z € {0,1}5Q¢)

(Psapr) A {Is(lk) « I;i(z7 lk)}
|p1(zaps’ Pr, M1, m2) - p2(za Psy Pr, M1, m2))' > neg(k)

Pr < neg(k) (3.4)

where for b € {1,2} we denote

pb(zapsapram1>m2)) Pr[{Cs(ps’mb) « OE(Z,ps,p,-,mhmz)} = (*vl)]

(The only difference between this and the Secrecy requirement in Definition 2 is

that C% is also given p, as input.)

Strong Commitment: For any three algorithms I%,C%, D% € Cs and any poly-
nomial Q)(-), there exists a negligible function neg(-), so that for any integer

k € Z* and any auziliary input z € {0,1}<9%)

(P> pr) {I3(2,1%) & In(1%)}
(75,77) — {C5(2, psy pr) & Cr(pr)}
Pr | (%, 01) « {D%(2,7s,1) & Cr(7)} | = neg(k) (3.5)
(*, 02) — {D3(2,7:,2) & Cr(r,)}
o1 #L and o, #L and oy # o,]

41

(Again, the only difference between this and the Secrecy requirement in Defini-

tion 2 is that C¥% s also given p, as input.)

It is easy to show that a commitment scheme which satisfies these stronger require-
ments remains secure even when the same system parameters are used to commit for
polynomially many secrets.

Indeed, a “cheating Sender” can perfectly simulate the distribution over the tran-
scripts of its conversations with the honest Receiver. Therefore, if the Sender is able
to open a commitment in two different ways after committing (and de-committing)
for polynomially many other secrets, it is also able to do that without these interac-
tions. Similarly, a “cheating Receiver” can perfectly simulate the distribution over
the transcripts of its conversations with the honest Sender, so executing polynomially
many Commit/De-commit protocols with the Sender cannot help it get more than a
negligible advantage in distinguishing between commitments to other secrets.

We finally note that all the commitment schemes in the literature, as well as the
ones which we presented in this work, satisfy this strengthened requirements (under

the same complexity conjectures used to prove (regular) security).

3.3 Variants of Secret Commitment

We now turn our attention to the different variants of commitment schemes which
were discussed in the introduction, and show how they fit within the framework of

the general definition above.

Unconditional vs. computational secrecy. A commitment scheme is said to
be unconditionally secret if it is secure against an arbitrary Receiver. In terms of
Definition 2, this means that the class Cg is the class of all algorithms. A scheme is
said to be computationally secret if it is secure against a polynomial-time Receiver,

so Cg in Definition 2 is the class of all PPT algorithms.

Unconditional vs. computational commitment. Similarly, we say that a com-
mitment scheme is unconditionally committing if the class Cs in Definition 2 is the
class of all algorithms, and we say that it is computationally committing if Cs is the

class of all PPT algorithms.

Non-interactive schemes. A commitment scheme is said to be non-interactive if
the interaction in both the Commit and the De-commit phases consists of a single
string sent from the Sender to the Receiver. In this case we can assume w.l.o.g. that
the state of the Receiver at the end of Commit phase is equal to the string which
was sent by the Sender in this phase (which is why we termed it the commit string).
Similarly, we can also assume w.l.o.g. that the string which is sent by the Sender
in the De-commit phase is equal to its state after the Commit phase (which is why
termed it the de-commit string). With respect to initialization, we can distinguish

between the following variants:

No Initialization. Syntactically, we say that a scheme requires no initialization
if both algorithms Is, Ir in the Initialization phase are non-interactive (so the
system parameters of each party can be computed directly from the security

parameter, without the need to talk to the other party).

Initialization with a Public Directory. In this model, the Initialization phase con-
sists of both parties depositing a value into a public directory, and retrieving
each other’s value before the Commit phase. Using our syntax, we formulate
this by requiring that the interaction between the Sender and the Receiver in
the Initialization phase consists of (at most) one message in each direction, and
moreover, each honest party computes its message without seeing the other

party’s message.

Interactive Initialization. In this model there is no restriction on the behavior of

the parties in the Initialization phase.

Initialization by a Trusted Party. This model does not fit into the framework

of Definition 2, since Definition 2 allows a “cheating party” to deviate from

43

its protocol during the Initialization phase, whereas the trusted party model
assumes that the initialization is done properly. Definition 2 can be weakened
to include schemes that can only be implemented in this model, by stating that
the Secrecy and Commitment conditions only hold with respect to the pre-
specified initialization algorithms Ig, Ir (instead of for every Iy, € Cgr or every

I € Cg, respectively).

3.4 Some Properties of Secret Commitment

We now proceed to show a few basic properties of commitment schemes.

3.4.1 A Characterization of Unconditional Secrecy

We start with a simple and useful lemma which characterize schemes with uncondi-
tional secrecy in terms of the communication in the Commit phase. We show that
a commitment scheme enjoys unconditional secrecy if and only if for every two “se-
cret messages” my,my, there is only a negligible statistical difference between the

transcripts of committing to m; and to m..

Lemma 3.1 A commitment scheme (Is, Ig),(Cs,CRr),(Ds, Dr) enjoys strong un-
conditional secrecy if and only if the following hold.

For every two algorithms I},C}, and any polynomial Q(-), there exists a negligible
function neg(-) so that for every k € Z¥, every mq,my € {0,1}590) gnd every
auziliary input z € {0,1}59%)

[o) = 11509 o Tz, 140
| T Ra(2, ps, prym1,ma) — T Ra(z, ps, pr,m1,m2))|| > neg(k)

P < neg(k) (3.6)

where TRy, TRy, respectively, are shorthands for the distribution over transcripts in

the Commit phase when the Sender is committing to my,ma. Namely, for b € {1,2},

A A

we denote

TRb(zap-?apraml)m?) déf trans{{CS(ps,mb) A C;-'t(z’ps,pr,mlam2)}

Proof: One direction of the lemma holds since once we fix z, p, pr, m1, M2 and any
setting of the random tape of Cg, the output of Cy becomes a function of the transcript
of the Commit phase. Thus, the statistical difference between the outputs of Cx when
the Sender is committing to my and its output when the Sender is committing to m;
conditioned on this fized setting of the random tape of Cf cannot be larger than the
statistical difference between the transcripts when the Sender is committing to m;
and when the Sender is committing to mq, conditioned on the same random tape.
Since this holds for every setting of the random tapes, then it also holds when we
average over all possible tapes for Cj, which means that for any z, p, p,, m1, ms, we

have

Ip1(2, ps, prym1,ma) — pa(2, ps, pry M1, m2))|

S ”TRI(Z) Pssy Pry M1, mZ) - TR2(27 Psy Pry M1, m2))”
where p,, p; are defined as in Definition 3.

The other direction of this lemma follows since for given inputs (z, ps, pr, m1,m3)
an algorithm Cj, (which is not restricted in its running time) can go over all possible
random tapes for Cs and Cj and compute the list of all transcripts ¢ for which
Pr[T Ry(z, ps, pr, m1,m3) = t| > Pr[T Ry(2, ps, pr,m1, m2) = 1.

Then, C}; can execute the Commit phase with the Sender (using Cj; on the Re-
ceiver’s side) thus obtaining a transcript 7. Finally, if 7 is on the pre-computed list
then C’E outputs ‘1’, and otherwise it outputs ‘2’. It follows by definition that for
every pair (my,m;), the statistical advantage of C}, in distinguishing between m; and
my is exactly || T Ry(z, ps, pr,ym1,m3) — T Ro(2, ps, prym1,m2))||-

N

3.4.2 Computational Assumptions are Necessary

45

Proposition 3.2 There is no commitment scheme which achieve both unconditional

secrecy and unconditional commitment.

Proof: Let (Is,Ig),(Cs,Cr),(Ds,Dr) be a commitment scheme, let m;,m, be
any two messages (e.g., my =0’ my =‘1’). For k € Z* and b € {1,2}, we denote
by Viewgr(k, m;) the distribution over pairs (p,,) where p, is the Receiver’s system-
parameter and 7 is the transcript of the Commit phase when the Sender is Committing

to my. Namely,

Viewg(k, ms) ef (pryT) - (o pr) = {Is(1%) & Ip(1")
7 « trans{{Cs(p;,ms) < Cr(pr)}

There are two possible cases to consider

1. ||Viewg(k,m1) — Viewg(k,m;)|| > 3. In this case there exists an algorithm
which distinguishes between these distributions with advantage of at least .
This algorithm runs the Initialization and Commit phases with all possible
random tapes for Is, Ir,Cs and Cg, for both messages m;, m,, and computes a
list of all the pairs (p,, 7) which have higher probability in Viewg(k,m,) than in
Viewg(k,m;). Then it executes the Initialization and Commit phases with the
Sender (using Ig, Cr on the Receiver’s side) thus obtaining a pair (p,, 7). If this
pair is on the pre-computed list then the algorithm outputs ‘1’, and otherwise

it outputs ‘2’. It follows by definition that this algorithm has advantage at least

1

5 in distinguishing between commitments to m; and commitments to m..

2. ||Viewr(k,m;) — Viewg(k,m)|| < 3. In this case, if we execute the experiment

(ps> pr) — {Is(1¥) & In(1%)
r trans{{Cs(psym1) = Cr(pr)}

then with probability at least %, the pair (p,,7) has non-zero probability ac-
cording to the distribution Viewg(k,ms). In particular, this means that (with
probability at least 1), there exists p} such that the transcript 7 is consistent

with Cg(p), m2).

46

Given such a transcript 7 and enough running-time, a “cheating Sender” can

find ps, p, and random-tapes r,r' so that

(a) The execution of Cs on input (p,;,m;) and random-tape r is consistent

with 7.

(b) The execution of Cs on input (p, m;) and random-tape r’ is also consistent

with 7.

we denote by 6;, 62, respectively, the de-commit strings in the two executions
above. Once 6y, 6, are computed, the “cheating Sender” can open the commit-

ment as m; by running Dg(6;) and as m, by running Dg(8;).

If there exists infinitely many integers £ for which the first case happen then the
scheme is not unconditionally secret, and if there exists infinitely many integers k for
which the second case happen then the scheme is not unconditionally committing.

3.4.3 Non-interactive Secret Commitment

We next show that it is impossible to have a non-interactive commitment scheme
without initialization which is unconditionally secret. More precisely, we prove the

following;:

Proposition 3.3 A non-interactive commitment scheme without initialization which

is unconditionally secret, cannot be (even computationally) committing.

Proof: A non-interactive commitment scheme with no initialization can be de-
scribed solely in terms of the algorithms Cs and Dg. Without loss of generality, we
can assume that the algorithm Cs is given the security parameter 1* and the string
m and it outputs both the commit and de-commit strings, which we denote here, re-
spectively, by v, 6. The string v is sent to the Receiver in the Commit phase and the
string 6 is sent in the De-commit phase. The algorithm Dp is then given 1%, 4, §, and

it outputs either a string o (which is presumably equal to m) or the special symbol L.

47

Below we denote the distribution which Cs(1%,m) induces over the commit strings ~
by COM(1%,m).

Assume that we have algorithms Cg, Dp as above which unconditionally satisfy the
Secrecy requirement. Then, by Lemma 3.1, for any polynomial Q(-) there exists a neg-
ligible function neg(-) so that any k € Z* and any two strings m;, mg € {0,1}59%),
we have

||COM(1k,m2) — COM(lk,ml)” < neg(k)

Therefore, if we fix any k¥ € Z* and two strings my,mg € {0,1}59%®) there exists
a value v for the commit string which has a non-zero probability according to both
distributions COM (1%, m;) and COM(1*,m;). Hence, there exists a random tape 7,
on which Cg with input (1*,m,) generates the commit string 4, and another random
tape r, on which Cs with inputs (1%, m;) generates the same commit string. Denote
by é; the de-commit string which is generated by C's with input (1¥,m,) and random-
tape r1, and by 8, the de-commit string which is generated by Cs with input (1%, m,)
and random-tape ro

Consider now the auxiliary input 2z o (7,861, 62), and a “cheating Sender” which
gets z as an auxiliary input, sends the commit string 4 in the Commit phase, and
sends either é; or §; in the De-commit phase. Clearly, this “cheating Sender” can
be implemented in polynomial-time, and it violates the Commitment condition (with
probability 1). W

A few comments are in order here.

e The proof of Proposition 3.3 relies heavily on the fact that we require security
against non-uniform Senders (namely, that the Sender is given an arbitrary

auxiliary input). Indeed, no such proof is known for the uniform case.

o As opposed to unconditionally secret schemes, it is easy to see that under stan-
dard complexity conjectures (such as the existence of one-way permutations)
one can construct unconditionally committing (and computationally secret)
schemes which are non-interactive and have no initialization (e.g, (17, Con-

struction 6.21.]).

48

Chapter 4

An Algebraic Construction

“Listen to this, Piglet”, said Eeyor, “and then you’ll know what we’re

trying to do”
A.A. Milne / The House at Pooh Corner

In this chapter we present a construction which uses the claw-free permutation-pairs
of Goldwasser, Micali and Rivest [22], and is a modification of the scheme which is
presented in [2]. This construction achieves unconditional secrecy and computational
commitment under the factorization conjecture which we describe below.

A main difference between this construction and the GMR-based construction in
[2], is in the Initialization phase. The original scheme (as well as most other factoring
based schemes) relies on composite numbers of a special form, and it requires an
interactive initialization protocol in which these special-form numbers are established.
In that scheme we cannot let any of the parties pick these special form composites
on its own, since the security of both parties depend on the proper choice.

We present here a new technique which eliminates the need for interactive ini-
tialization. Instead, in our scheme we simply let the Receiver choose the composite
number and send it to the Sender (so it can be implemented in a non-interactive
model with directory). Our scheme is unique in that the form of this composite does

not effects the security of the Sender.

49

This chapter is organized as follows: We start by presenting some number-theoretic
background material which is needed in order to understand the constructions. We
then briefly discuss the scheme due to Blum which was the first scheme to use this
number-theoretic approach. Next we describe a GMR-based scheme similar to [1, 2],
which improves on Blum’s scheme in terms of the length of the commit-string, and
finally we show our scheme which improves on the GMR-scheme by eliminating the

expensive initialization step.

4.1 Number-Theoretic Background

We start by briefly presenting some background material from number theory which
we use in this constructions. The following are a few basic definition, notations and
facts which we need in the sequel. Proofs of the facts below can be found in any

elementary textbook on Number Theory (e.g., [28, Ch. LII}).

1. An integer p > 1 is said to be a prime if the only positive integers which divide it
are 1 and p itself. An integer which is not a prime is said to be a composite. We say

that two integers are relatively primes if their greatest common divisor is one.

2. For any integer N > 1, the set of all the positive integers which are smaller than
N and are relatively primes with N, together with the operation of multiplication
mod N, form an Abelian group. We denote this group by Z%, and the number of
elements in this group is denoted by ¢(N).

3. If p is an odd prime power (i.e., p = ¢° for a prime ¢ and a positive integer
e) then the group Z3 is cyclic. Namely, there exists an element g € Z; such that
Zy={g'mod p : 0<i< ¢(p)}. Such an element is called a generator of Z;.

4. For an integer N > 1, an element y € Z}, is said to be a quadratic residue mod
N is there exists € Z¥ so that 2> =y (mod N). In this case we say that z is a
square-root of y mod N. The set of quadratic residues mod N forms a subgroup of
Zy, which we denote by @ Rn.

5. (The Chinese Remainders Theorem). If p, ¢ are relatively primes and N = pq, then

for any element z € Z and any element y € Z; there exists a unique element z € Z}

50

so that z=z (mod p) and z=y (mod q).

6. If pis a prime and p =3 (mod 4), then for every element z € Z}, exactly one of
the elements z, p — = is a quadratic residue mod p.

7. If p, ¢ are primes, with p =3 (mod 8) and ¢ =7 (mod 8), then 2 is a quadratic
residue mod ¢ but not mod p.

8. If p, ¢ are primes and N = pq, then an element x € Z}, is a quadratic residue mod
N if and only if (z mod p) is a quadratic residue mod p and (z mod g) is a quadratic

residue mod gq.

9. In the sequel, we say that an integer N is a Williams integer [40] if it is a product
of two primes, one which is congruent to 3 mod 8 and another which is congruent to
7 mod 8. (These integers are a special case of Blum integers, which are products of

two primes, both congruent to 3 mod 4.)

10. If N is a Williams integer, then every quadratic residue mod N has exactly four

square-roots mod NN, and exactly one of these square-roots is itself a quadratic residue

mod N.

4.1.1 The Factorization Conjecture

The conjecture we need in order to prove the security of our scheme is that factoring
Williams integers is infeasible. Formally, for any integer k denote by PRIM ES;3(k),
PRIMESy(k), respectively, the uniform distributions over all k-bit primes which are

congruent to 3 mod 8, and 7 mod 8. Then we have

The Factorization Conjecture. For any PPT algorithm A and any polynomial
Q(-) there exists a negligible function neg(-) so that for any k¥ € Z* and any auxiliary
input z € {0,1}<9%),

[p — PRIMES;(k) |
g — PRIMES;(k)

Pr < neg(k)
N « pq

| A(z,N) = (p,q)

51

(where pq denotes the product of the integers p and ¢, and all the integers are repre-

sented in binary).

4.1.2 The GMR Claw-Free Permutation Pairs

In [22], Goldwasser, Micali and Rivest described the following construction: Let N

be a Williams integer, and we start by defining two functions
def 2 def , 2
fno(z) = 2* (mod N) and fni(z) = 42° (mod N)

Then, for any string s = byby - -+ b, we define fno(z) ¥ fap, (- fvsa(z)---). The

properties of these functions which we use in the sequel are described next.

Proposition 4.1 ([22]) If N is a Williams integer, then both function fno(-) and

fna(:) are permutations over the quadratic residues mod N.

Proof: Fact 10 in Section 4.1 immediately implies that squaring is a permutation
over the quadratic residues mod N. Also, since four is a quadratic residue mod N,
then multiplication by four is also a permutation over the quadratic residues mod N.

Finally, a composition of permutation is itself a permutation. W

Corollary 4.2 If N is a Williams integer, then for any string s € {0,1}*, the func-

tion fy s is a permutations over the quadratic residues mod N.

Proposition 4.3 ([40, 22]) Under the factorization conjecture, no PPT algorithm
can find — given a random Williams integer N — two quadratic residues z,y € QRN
for which fno(z) = fni(y). More precisely, for every PPT algorithm A and every
polynomial Q(-) there exists a negligible function neg(-) so that for any k € Z* and

52

any auziliary input z € {0,1}59(%)

[p — PRIMES,(k)
q « PRIMES,(k)
Pr{ N« pq < neg(k)
(z,y) < A(z,N)
z,y € QRN and fyo(z) = fNa(y) |

Proof: Assume that the Proposition statement does not hold for some PPT algo-
rithm A, and we show another PPT algorithm A’ which violates the factorization con-
jecture. Algorithm A’is given the auxiliary input z and the Williams integer N(= pq).
It first runs A(z, N), and obtains its output (z,y). It then outputs p = ged(z+2y, N)
and ¢ = ged(z — 2y, N).

We now show that when N is a Williams integer, if z,y € QRy and z? = 4y?
(mod N), then p,q are the prime factors of N. Since we assumed that the above
conditions hold with probability which is not negligible (for some auxiliary input z),
then A’ indeed violates the factorization conjecture.

Let N be any Williams integer (and denote its prime factors by p, ¢), and let z,y

be any elements in QRy such that 2 = 4y? (mod N). Therefore, we have
2’ —4y* = (z+2y)(z—2y) =0 (mod N) (4.1)

From Fact 8 in Section 4.1 we know that since z,y are quadratic residues mod N, then
they are also quadratic residues mod p and ¢ (when reduced mod p, q respectively).
From Facts 6 and 7 in Section 4.1 we know that 2 is not a quadratic residues mod
p and ¢ — 2 is not a quadratic residues mod ¢, which implies that (2y mod p) is not
a quadratic residues mod p and (—2y mod g¢) is not a quadratic residues mod q. We

therefore conclude that

r#2y (modp) =z—-2y#0 (modp)
r# -2y (modgq) =z+2y#0 (mod q)

53

Denote now u = ¢ — 2y and v et 2y, and consider Eq. (4.1). Since the right-

hand-side of it is divisible by N, the so is the left-hand-side, so we know that uwv is
divisible by both p and g. On the other hand, we know that u is not divisible by p
and v is not divisible by ¢. Since p, ¢ are primes, it must be the case that v is divisible
by ¢ but not p, and that v is divisible by p but not ¢g. Therefore, ged(v, N) = p and
ged(u,N)=¢q. N

Corollary 4.4 ([22]) Under the factorization conjecture, no PPT algorithm can find
— given a random Williams integer N — two quadratic residues z,y € QRn and two
strings so,81 € {0,1}* so that none of so,s1 is a prefiz of the other and fn s (z) =
SN (y)

More precisely, for every PPT algorithm A and every polynomial Q(-) there exists

a negligible function neg(-) so that for any k € Z* and any auziliary input z €
{0,1}<Q()

[p — PRIMES,(k)
q — PRIMES,(k)
N

pr| " "M < neg(k)
(31)32a $7y) — A(z7 N)

S0, 81 are not prefizes of one another

| and z,y € QRN and INs0(2) = fNs (y) |

Proof: Assume that N is a Williams integer and that we have (s1, s2,z,y) as above,
and we show how to compute =,y € QRy so that fnxo(z) = fxi(y). Since none of
So,81 is a prefix of the other, there exists a (possibly empty) string s such that we
can write so as a concatenation so = ssf, and s; as a concatenation s; = ssj, and the
first bit in sg, s} is not the same.

We note that since fn,o(fn,s(2)) = fNv50(2) = fn,(y) = f,s(fv,;(y)), and since
fn,s(-) is a permutation, then fy . (z) = fns (y). Assume now w.l.o.g. that the first

bit in s} is 0 and the first bit in s} is 1. We then can write s = 0sg and s; = 1s7.

54

Finally, denote z’ & fn.y(z) and y’ o fnan(y), then 2,y € QRN and we have

fN,O(m’) = fN,Os{)’(x) = fN,s(’)(w) = fN,s; (y) = fN,ls;'(w) = fN,l(y,)

4.2 The Blum Scheme

The first commitment scheme to use the above algebraic constructions was due to
Blum [4]. The Blum scheme uses a quantity, called the Jacobi symbol, which can be
computed for any element z € Zy. For an element z € Z3,, the Jacobi-symbol of
mod N is denoted (), and it always equals to either +1 or —1. (For a definition
of the Jacobi symbol, see, e.g., [28, §I1.2].) The Blum scheme uses the following

properties of the Jacobi symbol:
a. There is a polynomial time algorithm which, given z, N, computes ().

b. If N is a Blum-integer, then every quadratic-residue mod N has two square-roots

with Jacobi-symbol +1 and two square-roots with Jacobi-symbol —1.

c. If N is a Blum-integer, and if z,y € Z} are such that (§) = 41, (¥) = —1, and
2 =y? (mod N), then given z,y, N, one can compute the prime factorization

of N in polynomial time.

In the Blum scheme, the initialization phase consists of picking a random Blum-integer
with k& bits (on security parameter 1¥), in such a way that its prime factorization is
unknown to the Sender. To commit to single bit & € {0,1}, the Sender picks an
element z € Zy, computes y = z2mod N, s = (&) - (—1)* and Send y, s to the
Receiver. Notice that this means computing one modular-multiplication and one
Jacobi-symbol computation, and sending (k + 1) bits for every bit in the secret.!

To de-commit the bit b, the Sender sends z to the Receiver, who can then compute

(%) and therefore b. Thus, the de-commit string also contains k bits for every bit in

In fact, the Jacobi-symbol computation can be replaced with another modular multiplication
using a simple trick.

39

the message.

We note that the Blum scheme is non-interactive, but has very long commit and
de-commit strings, and it requires interactive initialization to choose the Blum-integer.
In the next section we describe a scheme which is based on the GMR construction and
reduces the size of the commit and de-commit strings, but still requires interactive
initialization. Then, in Section 4.4 we show how me modify the GMR-based scheme

to eliminate the interactive initialization.

4.3 The GMR-based Scheme

The following is a simple commitment scheme that uses the GMR construction (which
is very similar to the schemein [1, 2]). We assume that the Sender and the Receiver use
some prefix free encoding function Enc so that for no two strings m # m’ is Enc(m) a
prefix of Enc(m’). An example of an encoding with this property is Enc(bib; . ..b,) =
5,0050...b,1. Using this simple encoding we have Enc(m) = 2|m|. (There are also
prefix-free encodings where Enc(m) = |m| + O(log |m|).)

Initialization: On security parameter 1*, the Sender and the Receiver “choose at
random” a Williams integer N with k bits, in such a way that the Sender does
not know the prime factors of N. This Williams integer is then used as the
system-parameter for both the Sender and the Receiver. We discuss this phase

in more details below.

Commit phase: Given a secret m € {0,1}*, the Sender computes s = Enc(m),

picks a random element z € Z} and sends y = fn s(z?) to the Receiver.

De-commit Phase: The Sender sends both m and z to the Receiver. the Receiver

computes s = Enc(m) and verifies that y = fn s(z?).

It is obvious from the description that this scheme satisfies the Validity requirement
in Definition 2. To show that it also satisfies the other two conditions we prove two

claims:

56

Theorem 4 The scheme above enjoys unconditional Secrecy, provided that the Ini-

tialization phase guarantees that the system parameter N is a Williams integer.

Proof: If Nisindeed a Williams integer, then by Corollary 4.4, fn , is a permutation
for every s. Thus, for every y (which is a quadratic residue mod N) and every s, there
exists exactly one quadratic residue mod N, denoted z, such that y = fy (z). This

means that for any s and any y € Q Ry

1
|QRn|

P [fan(at) =y] =

Therefore, the distribution which is induced on the message sent by the Sender in the
Commit phase is uniform over @Ry, regardless of s (and hence, also of m), which

implies that the Receiver has no advantage in guessing the Sender’s secret. M

Theorem 5 Under the Factorization Conjecture, the above scheme enjoys computa-
tional Commitment, provided that the Initialization phase guarantees that the distri-
bution induced over the system parameter N is the same as the distribution in the

Factorization conjecture.

Proof: This is an immediate consequence of Corollary 4.4. W

4.3.1 Efficiency of the Scheme

Interaction. The Commit and De-commit phases in the scheme above are non-
interactive. The Initialization phase, however, must be interactive to ensure that the

system-parameter is a Williams integer. We return to this matter in the next section.

Communication. On security parameter 1%, the number of bits sent in the Commit
phase above is always equal to &, regardless of the length of the secret m, since the
system-parameter N is a k-bit integer and Sender sends an element in Zy. In the

De-commit phase, the Sender sends the secret m itself and k£ more bits.

57

Running-time. In the scheme above, the Sender performs one or two modular
multiplications for every bit in s (which has about the same length as m) to compute
the commit string. This amount of work can be somewhat reduced using a construc-
tion by Damgard [8]. This construction uses larger families of permutations to reduce
the number of multiplication. The idea is to use (say) 256 different permutations
rather than just two, and to view s as a sequence of bytes, where each byte specifies
one permutation. Of course, for every r we can use the same idea to get one or two
multiplications per r bits of s using 2" permutations.

Clearly, we pay for this saving in running-time by having to keep many more bits
to describe these larger families of permutations, and by having to choose one of these
families in the Initialization phase. Moreover, the security properties of this scheme
are somewhat weaker than those of the original scheme. In particular, in the original
scheme we could convert an algorithm with probability € of braking the Commitment
requirement into one which factors the system parameter N with the same probability.

In the new scheme, instead, the success probability of the factorization algorithm is

€
gr—1-

something like

4.3.2 The Initialization Phase

The main problem with the above scheme is the implementation of the initialization
phase. Clearly, it is important to choose the system parameter N in such a way that
the Sender will not be able to factor it easily. Notice, however, that it doesn’t matter
whether the Receiver knows the factorization of N. One idea is therefore to let the
Receiver choose N in the appropriate way and send it to the Sender. But if the
Sender doesn’t know the factorization of N, how can it verify that N it is a Williams
integer?

At first glance this may not seem like a real problem. After all, the Sender can
choose the starting point z at random, so it may be able to hide the string s from the
Receiver even if fno, fnv, are not permutations. Unfortunately, this is not the case.
Consider for example N = 5 and a string of one bit b. It is easy to see that for any

element = € Z} we have f50(z%) =1 and f5,1(x?) = 4. Thus the Receiver can recover

58

the bit from the commitment string.

One way to solve this problem by letting the Receiver choose N and then prove
(by means of a zero-knowledge proof) to the Sender that it is of the right form. This
zero-knowledge proof, however, must be interactive, and it can be quite expensive in
terms of running time and communication. It will therefore be desirable to have a
scheme where choosing a “bad N” does not help the Receiver to get any advantage

in guessing m from the commit string. We present such a scheme below.

4.4 Owur Scheme

The only difference between the following scheme and the previous one is that after
computing y = fn,s(z?), the Sender squares y for k¥ more times (where k is the number
of bits in N) and sends the result to the Receiver. Note that using our notation, this

is equivalent to computing fyoxs(z?). The new scheme is:

Initialization: On security parameter 1%, the Receiver picks at random two primes
p— PRIMES; ([g.l) ,q — PRIMES, ([g]), computes N « pq and sends N
to the Sender. The Sender verifies that N is of the right length.

Commit phase: Given the system parameter N (of k bits) and a secret m, the
Sender computes s = Enc(m), picks a random element z € Z} and sends

y — fnors(z?) to the Receiver.

De-commit Phase: The Sender sends both m and z to the Receiver. The Receiver

computes s = Enc(m) and verifies that y = fy gx,(2?).

It is clear that the new scheme still enjoys computational commitment under the
Factorization conjecture. Namely, if the Receiver picks N according to the protocol
then it is infeasible for the Sender to find two different secrets with the same commit
string (if factoring is hard). The harder part is to show that even if the Receiver tries
to “cheat” by picking a “bad” N, it still does not get any advantage in guessing the

secret m from the commit string.

59

4.4.1 Proof of Secrecy

We need to show that the modified scheme satisfies the secrecy requirement for any
integer N (even if N is not “of the right form”). To do that we prove the following

lemma

Lemma 4.5 Let N be any integer and denote the number of bits in N by k, and let

80,81 be any two strings. Then, for any element y € Z we have

s [ivorn(®) = 3] = Pr [fgen (2%) =1

Below we give an elegant proof for Lemma 4.5 which is in part due to Damgard
(private communication).? For this proof, we need to review a few facts. The first

fact about the function f; n(-) was first observed by Goldreich:

Proposition 4.6 ([15]) For any integer N, any string s and any element z € Zj;,

fsn(z) =2% 22! where § is the integer whose binary representation is s.

We now need some facts about the structure of the group Zy. We start with a

definition and a few notations:

Definition 6 Let n be an integer, n > 1, and let = be an element in Z). The order
of z, denoted ord(z), is the smallest positive integer e so that z° =1 (mod n). We

denote by O, the subset containing all the elements of odd order in Z). That is,
0, % {z € 2 : ord(z) is odd}

Proposition 4.7 Let n be an integer, n > 1. Then O, is a subgroup of Z.

Proof: O, is closed under multiplication since for any z,y € Z;, ord(zy) must

divide ord(z) - ord(y). Since ord(z),ord(y) are both odd, then so is ord(z) - ord(y)
and thus so is ord(zy). W

2A longer proof for the same claim can be found in the preliminary version of [23].

60

Proposition 4.8 For any integer n > 1, squaring mod n is a permutation over O,.

Proof: It is sufficient to show that for every z € O, there exists y € O, so that
z =1y?> (mod N). So let z € O, and denote the order of z by 2r + 1. Then if we
=z (mod n). Finally, by

2r+2 2r+1

set y = 2™*' (mod n) we have y? = 2*"*? =z .z

Proposition 4.7,y =z"t1 € 0,. N

Proposition 4.9 For any integer n > 1, any element = € Z; and any £ > |n|,

¥ € O..

Proof: Denote ord(z) = 2¢-r where r is an odd integer. Since ord(z) < ¢(n) < 2!
then i < |n| < £. Moreover, we have ord(z?) = r, so 22 € O,, and since O, is closed

under squaring (Proposition 4.7), then also z?° = (z¥)* " € 0,. W

Proposition 4.10 Letn > 1 be an integer. If we uniformly select an element z — Z
and square it |n| times or more mod n, then we get a uniformly distributed element

in O,. Namely, for any £ > |n| and 0 € O,

1
|0,

Pr [mzl =0 (mod n)] =

Proof: Denote the prime factorization of n by n = ¢; - g2« * - ¢, Where the ¢;’s are
powers of distinct primes (¢; = p{* for some prime p; and positive integer e;). Recall
that Z; is homomorphic to Zy x Z; --- x Z; , and this homomorphism induces a
homomorphism between O,, and Oy, X Oy, - - - X O,,,. Thus, it is sufficient to show that
for each of the ¢;’s, uniformly selecting an element z « Z; and squaring it £ times

yields a uniformly distributed element in OQ,,. We distinguish between two “types” of

g’s:
Type 1: ¢; is a power of two. In this case the only element of odd order in Z is 1,

so |Oy| = 1. Indeed, since £ > |N| > |¢;|, then by Proposition 4.9 we have

Pr [le =1 (mod q;)] = m_I—:'-%; [le € O, (mod q,-)] =1

L]
:m—Zq‘.

61

Type 2: ¢; is a power of an odd prime. In this case Z; is a cyclic group. So let g
be a generator in this group and we denote ord(g) = ¢(g;) = r - 2* where r is an odd
integer and t < |g;|. Also, denote h = g* (mod ¢;). Then the odd-order elements
in Z7 are h,h? k%, --- h" = 1, so we have [Oy| = r.

Consider now some element o = h® € O,,, and we compute the probability that
z* =0 (mod ¢;) when z is chosen at random in Z}. Picking a random element in
Z is equivalent to picking an exponent at random €’ € {1,2,---r2} and computing

el

z=¢° (mod ¢;). Moreover, we have
£L‘2t — (ge')Z' — he' — he’ mod r (mod Q1)
So we have £* =0 (mod ¢;) if and only if e = ¢’ (mod r). Thus we have
Pr [wzt =0 (mod q,-)] = Pr [f=e (modr)]= LY
:L'!—Z;.. e'—{1,-,r2t} r IOQi I

Moreover, since (by Proposition 4.8) squaring is a permutation over O,, then also for
every £ > |¢;| > t we have Pro.z, [x2l =0 (mod q,')] = Tblq_.-l' [

Proof: (of Lemma 4.5) Armed with Propositions 4.6-4.10, we can now prove
Lemma 4.5. Let s be any string, let N be any integer, and denote k = |N|. Consider
a random element z € Z% and denote z = (f,,N(mz))2k. Then from Proposition 4.6

we have

z= (fB,N(IL‘2))2k _ (225(2:2)214)2" _ (225)2;: ‘ m2('"+"+1)

Proposition 4.9 implies that (225) * € Oy, and from Proposition 4.10 we have that
22*"*** is a uniformly distributed element in Oy (which is independent of s). Thus,
z is a uniformly distributed element in Oy, regardless of s. This concludes the proof
of Lemma 4.5. W

We therefore conclude that

Theorem 7 The above commitment scheme enjoys unconditional secrecy, and under

the Factorization conjecture is also enjoys computational commitment.

62

Chapter 5

A Construction from

Message-Digest Functions

In this chapter we present a commitment scheme which uses message-digest functions.
This construction achieves unconditional secrecy and computational commitment un-
der the assumption that the Sender can not find collisions in the message-digest func-
tion which is used for the scheme. The scheme which we describe in this chapter is
essentially the same as scheme due to Damgard, Pedersen and Pfitzmann [12] (which
was later re-discovered by us in [24]). We provide a more direct proof of correctness
for this scheme than the one in [12]. This proof also let us generalize the construction

slightly.

5.1 Background

We start by describing the main tools which are used in this scheme, namely message-

digest functions and universal hash functions.

63

5.1.1 Message Digest Functions

Informally, a message-digest function! is a function f : {0,1}* — {0,1}* (for some
integer k) so that it is infeasible to find two different strings = # y so that f(z) = f(y).
For practical purposes, the SHA algorithm [14] is often considered to be a message-
digest function (for k = 160).

Message-digest function were first defined formally by Damgard in [8]. From
the formal point of view, for every k € Z* we have a family of functions from
{0,1}* to {0,1}*, and the infeasibility requirement is formulated with respect to a
function which is chosen at random from that family. A construction of message-
digest functions can be described by two PPT algorithms: a GENERATE algorithm
which given 1* picks a function f : {0,1}* — {0,1}* and outputs its description, and
an EVALUATE algorithm which — given a description of f and a string z — outputs
f(z). Formally, we have

Definition 8 A pair of PPT algorithms (G, E) comprise a message-digest scheme if

it satisfies the following properties:

Hashing. The functions which G outputs on input 1¥ map arbitrary long strings into

strings of length k. Namely, for every k € Z% and every string z € {0,1}*

f—G(1%)
Pr| y <—E(f,x) =1
ly| =k

For convenience of notations, we often use the shorthand f(z) instead of E(f,).

Collision-Intractability. For any PPT algorithm A and any polynomial Q(-), there
exists a negligible function neg(-) so that for all k € Z* and all auziliary inputs

LThese function are also called collision-intractable hash functions. However, to avoid confusion
with other types of hash functions which we use in this construction, we call them message-digest
functions throughout the chapter.

64

z € {0,1}5Q0%)

f <G
Pr (z,y) « A(2,f) < neg(k)
z #y and f(z) = f(y)

5.1.2 Universal Hashing

Universal hashing was introduced by Carter and Wegman [6] and it plays a very

important role in many areas of computer-science.

Definition 9 Let S and T be two sets, and let H be a family of functions from S to
T. We say that H is a universal family of hash functions if for every two different
elements 8y # 83 in S, and for every two elements ty,t; in T

hEg,[h(sl) =t and h(s) =13 = W

An easy example of such family is the family of all affine transformations between

two linear spaces. In particular, let S = {0,1} and T = {0,1}", then we define
H={hsy: A€ {O’I}nXl’b € {0,1}"}

where we define k4 () ©f Az +b (all the operations take place in a linear space over
GF(2)). It is easy to see that H above is a universal family of hash functions from
{0,1} to {0,1}". In this construction, it takes n(l + 1) bits to specify a function
from H. A more efficient construction is obtained by restricting the matrix A to
be a Toeplitz matrix. Namely, we require that A would be fixed on the diagonals,
A;j = Aiy1,j+1. Again, it is easy to see that this still constitutes a universal family

of hash functions, and it takes 2n + [— 1 bits to describe any function in this family.

65

The Smoothing Property

The property of Universal hash functions which we need in our construction is called
the Smoothing property.? Informally, for a family F of functions from a set S to a set
T, the smoothing property asserts that every subset of § which is much larger than
T is mapped almost uniformly to T by all but a small fraction of the functions in F.

To make this formal, let F' be a family of functions from S to 7', and denote by
Ur the distribution over pairs (f,t) which is induced by picking f « Fand t « T
uniformly at random and independently. Also, for any subset S’ C S, denote by Dgr
the distribution over pairs (f, f(s)} which is induced by picking f « F and s « 5.

uniformly at random and independently. That is,
Ur € {(f,t) : f=F t =T}, Dor®{(fif(s)) : f—F 55}

The celebrated Leftover-lemma [25] asserts that if F' is a universal family of hash
functions, and if |S’| > |T| then Dg r is very close to Ur, and more generally, the
statistical difference ||Dgs/ r — Ur|| deceases with the ratio |S’|/|T'|. More precisely

Theorem 10 (The Leftover-lemma [25]) If H is a universal family of hash func-
tions from S to T, then for every S' C S, the statistical difference between Ur and

Dgi p is bounded by

|T|
|Ur — D p|| < 191

(Note that when |S’| < |T'| the theorem only implies the trivial bound ||Ur — Ds',r|| <

1 which is true for any two distributions.) A self-contained proof of this theorem can

be found in [27, Ch. 8].

5.2 A Simplified Construction

In this section we describe a simplified version of the construction. Although this

simplified version in fact violates secrecy, in that the Receiver learns the length of the

2In some places in the literature it is also called the Extraction property.

66

secret, it demonstrates all the ideas which we later need for the scheme in Section 5.3.

For the rest of this section, let (G, E) be a message-digest scheme. To commit to
a secret of length n with security parameter k, the parties use a universal family of
hash functions (e.g., the family of Toeplitz matrices which was discussed above) from
{0,1}% to {0,1}", where L % n+2k. We denote this family by H, Ln- The commitment

scheme is defined as follows (see Fig. 5-1 for an illustration of this scheme).

Initialization. On security parameter 1%, the Receiver runs G(1*) (where G is the
generation algorithm for the message-digest scheme), and sends the resulting

function f to the Sender.

Commit Phase. To commit to a secret s € {0,1}", the Sender uniformly picks a
string z « {0,1}%, computes y = f(z) and verifies® that |y| = k. It then
uniformly picks a function h « Hi, and computes t = h(z) & s, where @
denotes a bitwise exclusive-or. The Sender sends to the Receiver the commit

string (y, A, t).

De-commit Phase. The de-commit string which the Sender sends to the Receiver,

is z. The Receiver verifies that y = f(z) and computes s = h(z) O ¢.

This scheme clearly satisfies the Validity condition in Definition 1.

Remark. In the scheme above, the Sender can pick z « {0,1}*,h « Hf, and
compute y = f(z) in the Initialization phase, since z, h are independent of the secret.
However, moving the choice of z to the Initialization phase means that this scheme can
not be used to commit to many secrets (since z is revealed in the De-commit phase,
and knowledge of £ compromise the secrecy of the scheme). Somewhat surprisingly,
it is possible to pick h in the Initialization phase and use it for many commitments

without compromising the secrecy of the scheme.

3We note that verifying that |y| = k is important in the case that the Receiver tries to “cheat”
in the Initialization phase and send a function f which is not generated by G(1¥).

67

h is a universal hash-function and f is a message-digest function.

{0, 1}* h {0, 1}"

To commit to s

1. Pick h, x at random
2. Compute y = f{x)
3. Compute t=h(x)® s

4. Send y, h, t to Receiver

Figure 5-1: A simplified MD-based commitment scheme.

5.2.1 Security of the Scheme

It is obvious that the Commitment condition in Definition 2 is an immediate conse-
quence of the Collision-intractability of the message-digest scheme. The less obvious
part is to prove that the Receiver gets almost no statistical advantage in guessing
the secret s from the commit string. Technically speaking, this is not true since the
commit string reveals the length of the secret. However, we can show that it does not
reveal anything else. Specifically, in the following lemma we show that for any two
strings s, 1, of the same length, the distributions which are induced on the commit
strings for sq,s; are statistically close. (This lemma is later used in Section 5.3 to

prove the security of a modification of this simplified scheme).

Notations. In the lemma below we use the following notations. We fix two integers
k,n € Z+ and set L = n + 2k. Then, for any function f : {0,1}¢ — {0,1}* and
any string s € {0,1}" we use the notation Cs(s) to denote the distribution over the
commit strings which is induced by the Commit phase above when committing to the

secret s using the function f.

68

Lemma 5.1 Fiz any two integers k,n € Z* and set L = n + 2k. Then, for any
function f: {0,1} — {0,1}* and any two strings so,s, € {0,1}"

IC(s1) ~ Cy(s0)]| < 273+

Proof idea. The proof of Lemma 5.1 follows from the Leftover-lemma via a se-
quence of claims which are rather straightforward (if somewhat technical). Very
roughly, the idea behind the proof is as follows. Since L > k and f goes from {0, 1}*
to {0,1}*, then “most” strings y € {0,1}* have “very large” pre-images under f.
Therefore, by the Leftover-lemma, if we pick a random element z from any of these
pre-images and a random function » « Hj ,, then the distribution over the pairs
(h,h(z)) is “almost the same” as the uniform distribution over pairs (k,t) (where
t « {0,1}"). Since the former distribution is essentially the same? as the distri-
bution over commit-strings conditioned on y, we conclude that for most y’s, we get

almost the same distribution, regardless of the secret.

Proof: We start by setting a few notations. Let n,k, L and f be as in the statement
of Lemma 5.1, and consider an experiment in which we pick a string x « {0,1}%, a
function n «— Hp, and a string 7 « {0,1}", compute ¢ = f(x),0 = 7 @ n(x) and
output (¢, (n,7),0).

For given strings y € {0,1}*, s,¢t € {0,1}" and a function A € Hy,, de-
note the probability that the above experiment results in outputting (y, (A,t),s) by
ply, (h,t),s]. Below we also consider some of the marginal probabilities and condi-

tional probabilities in this experiment. Using our notations for probabilistic experi-

“The actual distribution, conditioned on y, when committing to a secret s, is on pairs
(h,h(z) @ s}, but this is just as close to the uniform distribution.

69

ments, these are defined as

[x — {0,1}F]
n e HL,'n,

ply, (hyt),s] & Pr
T« {0,1}"

| n=handT=tand f(x) =y and 7 ®n(x) =5 |

df p x < {0,1}F)
il = | fX) =y] (2)

[x — {0,1}L

e N Hyp
ply, (h,1)] & Pr L (= np[y])
T & {0,1}"’ 2 lHL,‘nI

n=hand r=tand f(x) =y

[x — {0,1}%]
n« Hpn (_ 2_n)
7« {0,1}"

pls] = Pr

| TOn(x)=s |
x — ()
n ‘_'HL,n

pl(h,t),s |y] & Pr
T {0,1}"

17=handT=taIld7'®77(X)=3

x < {0,1}*

ne Hpn

n=hand f(x) =y
and n(x) =t Ds |

ply, (h,t) | s] & Pr

(We bind (h,t) together in these notations since we view them as a description of a
function h(z) % h(z) @ t, and also to stress the difference in the roles of ¢ and s.)

It is easy to verify that the following equalities hold for any y € {0,1}*, s,t €

70

{0,1}" and h € Hy,,

(by definition) Pr(Ci(s) = 5,1 8)] = ply, (1,0 (51)
(by definition) VA € {0,1}*, p[(h,t),sly] = pl(h,t® A),s® Aly] (5.2)

(Bayes’es theorem) ply, (&, t)|s] = Plyl- p[([i;]t) 51y = 2"plylpl(h, 1), sly] (5.3)

Let us denote by P the probability distribution over the triples (y, h,t) which is
induced by the above experiment. Namely, for any (y, k,t) we have P({y,h,t)) = def
ply, (k,t)]. For any fixed string so € {0,1}", we bound the statistical difference
between the distributions ||C¢(so) — P||. We do this in three steps: In the first step
we express this statistical difference as a sum of terms, in the second step we show

how to bound each of the terms in this sum, and in the third step we combine these

bounds to obtain the final result.
Step 1. For any string so € {0,1}",

ICs(s0) = Pl = > | PrlCy(s0) = {y, b, t)] = P({y, b 1)) | (5-4)

y,hyt

S S ply, (B lse] — ply, (A1) |

Y hit
(5.3) n ply]
= 3> p[ht)SOIy]——————Qn‘H,
Y hyt Ix’,n‘

Ey:p[y] (2")

hyt

ol = s

denote this by g[y,s0]

(Above, the numbers over the equality-signs represent the equations which were used

to derive these equalities.)

71

Step 2. For every two strings y € {0,1}*, so € {0,1}", we denote the parenthesized

part in the above expression by ¢[y, so]. Namely,

dyrsdl 2 25|l)00 = g

Next we show how to bound gy, so] using the Leftover-lemma. We start by intro-
ducing some more notations. With each h € H,, and t € {0,1}" we identify the
function A, : {0,1}F — {0,1}" which is defined as A,(z) & h(z) @ ¢, and we consider
the family fIL,n def { hy : he Hi,, t € {0,1}" }. Since Hf,, is a universal family of
hash functions, then so is H L

Using the notations of the Leftover-lemma, we denote the uniform distribution
over the pairs (hs,s) (where h; « Hp ,, s — {0,1}") by U i1, - Also, for every subset
X C {0,1}f we denote by DX’}-IL’" the distribution over (ﬁt,s) which is induced by
picking at random h; « Hr,, ¢ « X and setting s = hy(z). In particular, here
we are interested in subsets of the form X = f~!(y) for strings y € {0,1}*. Notice
that these are perfectly good subsets of {0,1}7, so by the Leftover-lemma, for any

y € {0,1}F
2n
D, . —Upgp <, |— 5.5
“ F=r(¥),HLn HL,'n” = If—l(y)l ()

We note that by definition, the uniform distribution Ug, assigns a probability of
m to every pair (7Lt, s), and the distribution D_, Aun assigns to (hy, s) a prob-
ability of p[(h,t), s|y]. Hence, ”Df"(y),fh,n - UI.{L,n” =Y |p[(h,t), sly] — m

h,t,s
The right hand side of the last expression is “almost what we need”, except that it

includes a summation over s, whereas we need just the partial sum for a single string
so. This is where we use Eq. (5.2). For every string so € {0,1}", we can change the

order of summation to get

1

1Ds-1) = Ug Ml = g:s pl(h,1),sly] — e Hl] (5.6)
1
= pl(h,t® A), 30 @ Aly] - n—‘
AE%)?I}"%; 22 IHK,nI

72

1
p[(h,1), s0ly] —]

@ > ¥

Ac{oa}n bt
1
= 2") Ipl(h,t),s0ly] — o = 4y sd]
% (ha2), 22| Hg |

From Eq. (5.5) and (5.6) we conclude that for any y € {0,1}* and any so € {0,1}"

2n
qly, 8] < =0 (5.7)

Step 3. We now have all the ingredients needed to prove Lemma 5.1. Combining

Eq. (5.4) and Eq. (5.7) we have for every so € {0,1}",

I5(s0) = Pl < L sl < > i o (5.8)

*) on _ |f () . 2
< J%}p[y],f_l(y” = \lzy: 2L | f(y)

_ E onL _ olntk-L)/2 _ g-k/2

yG{O,l}k

where the inequality which is marked by (*) holds since the square-root function is

concave. Finally, Eq. (5.8) implies that for any two strings s, s: € {0,1}",
_k
ICs(s0) = Cs(s:1)ll < [ICs(s0) = Pll +||Cs(s1) = Pl < 272

which concludes the proof of Lemma 5.1. W

5.2.2 Efficiency of the Scheme

The Commit and De-commit phases of this scheme are non-interactive and the Ini-
tialization can be done in the public-directory model. The local computation in the
scheme amounts to one application of the message-digest function to a string of length
n 4 2k and one application of a universal hash function to the same string. If we use

the Toeplitz-matrix construction for universal hashing, then the size of the commit

73

string is |y| + |k| + || = 2n + 3k. (In fact, in this case we can reduce the size of
the commit string to n + 3k by combining the descriptions of A = (A,b) and t, so
that instead of sending (y, (4,),t) we send (y, A,bP t).) The size of the de-commit
string is |z| = n + 2k.

5.2.3 A Slight Generalization

We note that the only property of the family Hy, , which we used above is the smooth-
ness property. It follows that any family of functions with this smoothness property
can be used. In fact, for the above scheme we can do with a much weaker smoothness
property than what is guaranteed by universal hashing family. Using the notations

of the Leftover-lemma, any family which guarantees that for every subset S’ we have

|Ur — Dsp|| = O ((ig,il))e) for any € > 0 can be used in our scheme.

5.3 A Secure MD-based Construction

The above construction does not satisfy the Secrecy condition of Definition 2, since
the Receiver still learns the size of the secret. Of course, this can trivially be solved
by padding each secret to the maximum length (which is some polynomial Q(k)
for security parameter 1¥), but this would have a severe effect on the efficiency of
the scheme. Also, the length of the commit-string in the above scheme is linear in
the length of the secret. (Recall that this is worse than in the scheme commitment
schemes in Chapter 4, where the length of the commit-string is only O(k).) In this
section we describe how to modify this scheme so that it also hides the length of the
secret, and at the same time get an O(k)-bit commit string.

The idea is that to commit to the secret s, the Sender first computes the k-bit
message-digest of s, m = f(s), and then apply the above scheme to the string m.
To de-commit s, the Sender sends both the string s and the de-commit string of the
previous scheme. The Receiver computes m = f(s) and checks that m is the “secret”
in the first scheme. Since we always run the previous scheme on a string of length £,

then the Receiver does not learn anything about the secret s. Also the commit string

74

To committo s

1. Compute m = f{s)

{0, 1}) Apply the simplified

scheme to m

Figure 5-2: A secure MD-based commitment scheme.

is of length k + 3k = O(k), regardless of the length of the secret s. The full scheme,

therefore, is as follows (see Fig. 5-2 for an illustration).

Initialization. On security parameter 1*, the Receiver runs G(1*) (where G is the
generation algorithm for the message-digest scheme), and sends the resulting

function f to the Sender.

Commit Phase. To commit to a secret s € {0,1}*, the Sender first computes m =
f(s) and checks that m is a k-bit string. Then it uniformly picks a string
z « {0,1}! (where L = 3k), computes y = f(z) and verifies that |y| = &,
uniformly picks a function h « Hp j and computes t = h(z) @ m. The Sender

sends to the Receiver the commit string (y, k, t).

De-commit Phase. The Sender sends to the Receiver the de-commit string (s, z).

The Receiver verifies that y = f(z) and that f(s) = h(z) & t.

We note that we can save a little in the length of the commit-string (at the price of
adding some local computation), by applying f to the commit string before sending it
to the Receiver. Namely, instead of sending (y, k,t) in the Commit phase, the Sender
can send f(y,h,t) (which is a k-bit string) in the Commit phase and send (y, A,t)

75

themselves in the De-commit phase. This way, the length of the commit string is only

k (rather than 4k).

Theorem 11 The modified MD-based commitment scheme enjoys unconditional se-
crecy and computational commitment, provided that the algorithms (G, E) which are

used in it constitule a message-digest scheme.

Proof: The Validity condition is obvious. For the Secrecy condition, recall that for
any string s, the induced distribution over the commit strings (using message-digest
function f) is C¢(f(s)) (where Cy(-) is the distribution induced by the construction
in Section 5.2.) By Lemma 5.1 we have for any two strings so,s; € {0,1}S@(),
ICs(£(s0)) = Co(f(sn)Il < 273+

The Commitment condition follows since for every two different de-commit strings
(s,z), (s',z') which correspond to the same commit string (y, h,t) either # 2’ and
f(z) = f(z') = y, or ¢ = 2’ in which case s # s’ and f(s) = f(s') = h(z). In
either case, breaking the Commitment condition requires breaking the message-digest

scheme. I

76

Bibliography

[1] G. Brassard and C. Crépeau. Nontransitive Transfer of Confidence: A Perfect
Zero-Knowledge Interactive Protocol for SAT and Beyond. In Proc. 27th IEEE
Symp. on Foundations of Comp. Science, IEEE, 1986. pages 188-195.

[2] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowl-

edge. JCSS, 37(2):156-189, 1988.

[3] G. Bleumer, B. Pfitzmann and M. Waidner. A Remark on a Signature Scheme
where Forgery can be Proved. In I.B. Damgard, editor, Proc. of Eurocrypt’90,
Lecture Notes in Computer Science, volume 473, Springer-Verlag, 1990. Pages
441-445,

[4] M. Blum. Coin flipping by telephone. In Proc. IEEE Spring COMPCOM, IEEE,
1982. Pages 133-137.

[5] M. Blum and S. Micali. Coin flipping into a well. Unpublished, 1981.

[6] L. Carter and M. Wegman. Universal Hash Functions. J. of Computer and
System Science 18, 1979, pp. 143-154.

[7) D. Chaum, E. van Heijst and B. Pfitzmann. Cryptographically Strong Undeni-
able Signatures, Unconditionally Secure for the Signer. In J. Feigenbaum, editor,
Proc. Crypto ’91, Lecture Notes in Computer Science, volume 576, Springer-
Verlag, 1992. Pages 470-484.

[8] L.B. Damgard. Collision free hash functions and public key signature schemes.
In David Chaum and Wyn L. Price, editors, Proceedings of EUROCRYPT §7.
Lecture Notes in Computer Science No. 304. Springer-Verlag, 1988. Pages 203-
216.

[9] I.B. Damgard. On the existence of a bit commitment schemes and zero-knowledge
proofs. In G. Brassard, editor, Proceedings CRYPTO 89. Lecture Notes in
Computer Science No. 435. Springer-Verlag, 1990. Pages 17-29.

[10] I.B. Damgard, Practical and Provably Secure Release of a Secret and Exchange of
Signatures. T. Helleseth, editor, Proc. EuroCrypt ’93, Lecture Notes in Computer
Science, volume 765, Springer-Verlag, 1994. pages 200-217.

(s

[11] W. Diffie and M. E. Hellman, New Directions in Cryptography. IEFEE Trans.
Inform. Theory, IT-22, 1976, pages 644-654.

[12] I.B. Damgard, T.P. Pedersen, and B. Pfitzmann. On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. In Douglas R. Stinson,
editor, Proceedings CRYPTO 93. Lecture Notes in Computer Science No. 773.
Springer, 1994. Pages 250-265.

[13] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A strengthened
version of RIPEMD. Third Workshop on Fast Software Encryption, 1996.

[14] Federal Information Processing Standards, Publication 180. Specifications for a

Secure Hash Standard (SHS).

[15] O. Goldreich. Two Remarks Concerning the Goldwasser-Micali-Rivest Signature
Scheme. In A.M.Odlyzko, editor, Proceedings CRYPTO 86, Lecture Notes in
Computer Science No. 263. Springer-Verlag, 1987. Pages 104-110.

[16] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-
Knowledge. Journal of Cryptology, Vol. 6, No. 1 (1993), Pages 21-53.

[17] O. Goldreich. Foundations of Cryptography — Fragments of a Book (1995)

[18] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge
Proofs Systems for NP. Journal of Cryptology, Vol. 9, No. 2, 1996.

[19] O. Goldreich, S. Micali and A. Wigderson, Proofs that Yield Nothing but their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal
of the ACM, vol. 38, no. 1, 1991, pp. 691-729.

[20] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270-299,
April 1984.

[21] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-
tive proof systems. In SIAM Journal on Computing, 18(1) : 186-208, 1989.

[22] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2) : 281-308, 1988.

[23] S. Halevi, Efficient commitment with bounded sender and unbounded receiver.
To appaer in Journal of Cryptology. Preliminiary version appeared in Proc.
Crypto ‘95. Lecture Notes in Computer Science, volume 963, Springer-Verlag,
1995. Pages 84-96.

[24] S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes
from Collision-Free Hashing. In N. Koblitz, editor, Proc. Crypto ‘96. Lecture
Notes in Computer Science, volume 1109, Springer-Verlag, 1996. pages 201-215.

78

[25] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudo-
random Generator from any One-Way Function. Manuscript, 1993. (To appear
in SICOMP.) See preliminary versions by Impagliazzo et. al. in 21st STOC and
J. Hastad in 22nd STOC.

[26] R. Impagliazzo and M. Yung. Direct minimum-knowledge computations. In
C. Pomerance, editor, Proc. Crypto 87, Lecture Notes in Computer Science,
volume 293, Springer-Verlag, 1988. Pages 40-51.

[27] M. Luby. Pseudorandomness and Cryptographic Applications Princeton Uni-
versity Press, 1996.

[28] N. Koblitz. A Course in Number Theory and Cryptography. Graduate Texts in
Mathematics 114, Springer-Verlag, 1987.

[29] M. Naor. Bit commitment using pseudo-randomness. In G. Brassard, editor,
Proceedings CRYPTQO 89, Lecture Notes in Computer Science No. 435. Springer-
Verlag, 1990. Pages 128-137.

[30] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, 1989. Pages 33-43.

[31] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge
arguments for NP can be based on general complexity assumptions. In Ernest F.
Brickell, editor, Proceedings CRYPTO 92, Lecture Notes in Computer Science
No. 740. Springer-Verlag, 1992. Pages 196-214.

[32] C.H. Papadimitriou. Computational Complexity Addison-Wesley Publishing
Company, 1994.

[33] T.P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Se-
cret Sharing. In J. Feigenbaum, editor, Proc. Crypto ’91, Lecture Notes in
Computer Science, volume 576, Springer-Verlag, 1992. pages 129-140.

[34] B. Pfitzmann. Digital Signature Schemes: General Framework and Fail-Stop
Signatures. Lecture Notes in Computer Science, vol. 1100, Springer-Verlag, Hei-
delberg, August 1996.

[35] B. Pfitzmann and M. Waidner. Fail-Stop Signatures and their Applications.
Securicom 91, Paris, 1991.

[36] J. Pieprzyk and B. Sadeghiyan. Design of Hashing Algorithms. Lecture Notes
in Computer Science, vol. 756, Springer-Verlag, Berlin-Heidelberg, 1993.

[37] R.L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems”, Communications of the ACM, Vol. 21,
1978, pages 120-126.

79

[38] J. Rompel. One Way Functions are Necessary and Sufficient for Secure Signa-
tures. In Proceedings of the 22st Annual ACM Symposium on Theory of Com-
puting, 1990, Pages 387-394.

[39] P.W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and
Factoring. In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, IEEE, 1994. pages 124-134.

[40] H.C. Williams, A Modification of the RSA Public-Key Encryption Procedure.
In IEEE Trans. on Info. Theory, Volume IT-26, No. 6, 1980. Pages 726-729.

80

