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ABSTRACT

Modeling and design of dynamic systems play a major role in determining the closed-
loop system performance. However, many design methodologies still rely on trial-and-
error procedures and numerical simulations. Due to the lack of physical insights, these
approaches not only defer the conceiving of better system configurations but also may
lead to unnecessary loss of efficiency. On the other hand, the study of dynamic in-
teractions provides a valuable guidance for achieving proper system behaviors. In this
research, an energy-based method is used to provide a unified representation for multi-
energy domain systems. By the use of its energy interactions and causality implications,
it is possible to determine the inherent system properties early in the design stage before
detailed element characteristics and equations are determined. The obtained information
in turn suggests feasible directions for design improvement toward better system perfor-
mance. Three main topics are presented in this thesis to demonstrate the capability of
the proposed structural analysis procedures.

The first topic addresses the problem of excess states and their influences to the
system analysis procedures. The excess states usually exist in certain over-constrained
structures. It is found that by using explicit field representations, such ambiguities can
be eliminated. Based on this approach, a set of model revision procedures are developed
to eliminate the excess states so that the existing analysis procedures can be properly
applied.

The second topic is the identification of relative degrees and zero dynamics for non-
linear MIMO systems. A method is proposed to derive the zero dynamics of physical
systems from bond graph models. This method incorporates the definition of zero dy-
namics in the differential geometric approach and the causality manipulation in the
bond graph representation. By doing so, the state equations of the zero dynamics can
be easily obtained. The system structure and elements which are responsible for the zero
dynamics can be identified. In addition, if isolated subsystems which contribute to the
zero dynamics exist, they can be found. Thus, the design of physical systems including
the consideration of the zero dynamics becomes straightforward.

The purpose of the third topic is to build the direct relations between the compo-
nent characteristics and the system eigenvalues. In this thesis, several decomposition
procedures are proposed to identify the physical components which contribute most to a
certain group of eigenvalues. By using the available matrix theories, the bounds of each
eigenvalue group can be represented in terms of the component characteristics. These
bounds will facilitate the design of physical systems.

From the results of this research, it is shown that the analysis and design of dynamic
systems can be conducted in a systematic way by studying the system configurations.
The proposed procedures can be easily coded and become part of a computer-aided de-
sign package.
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Introduction

1.1 Motivation

Modelling is a critical step in dynamic system design and feedback system synthesis.

Although there are many other important factors in the design processes, the overall

performance limitation of the resultant system is usually determined by the use of

dynamic models. Sophisticated models surely predict the system behavior well. How-

ever, a very detailed and accurate model might not provide much useful insight and

information for the design purpose. Efficient models will require the use of simple

elements to capture the essential dynamic characteristics with reasonable valid op-

erating regions. In most of the cases, this depends on whether the model structures

reflect the essential dynamic interactions. Thus, the study and implementation of the

structural analysis of dynamic interactions can provide efficient modelling and design

tools. To fulfill this purpose, the following issues must be considered.

First of all, different model representations could give different levels of insights

to the system structures. For example, a transfer function describes the input-output

relation of a dynamic system, but the internal interactions are totally missing; State

equations preserve the details of state interactions, but the connections of physical

elements are not obvious from the representation. To closely relate the physical

elements with the system dynamic features, the model must preserve the structures

of physical connections. Especially for multi-energy domain systems, the transduction

between different energy domains should be clearly represented.
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Secondly, the models must provide ways of specifying the causal relations. In many

theoretical works which address the structures of dynamic systems, the considered

systems are described by state equations in a general form. This indeed enlarges

the scope of applications. But it also causes the difficulty of relating the theoretical

results with the physical elements and parameters. Since the causal relations imply

the dependency of state variables and serve as a guidance for equation derivation,

they can be adopted to overcome this difficulty if appropriately used.

In terms of implementation, the purpose of the structural analysis is to facilitate

the use of existing numerical software packages rather than replace them. Currently,

many software packages offer powerful simulation functions and parameter searching

tools. However, these functions do not directly inspire useful model structures. The

modelling and design processes which utilize these functions still rely on trial-and-

error procedures or parameter searching algorithms based on fixed structures. Due

to the lack of physical insights, this approach not only defers the conceiving of better

system configurations but also possibly leads to unnecessary loss of efficiency. Thus,

a pre-analysis of the dynamic interactions before using these functions is necessary.

For the above reasons, one of the energy-based methods - bond graph represen-

tation will be used in this thesis to describe the physical connections of multi-energy

domain systems. One main goal of this research is to determine the inherent system

properties at early design stages before detailed element characteristics and equations

are determined. The results can then propose feasible directions for design improve-

ment or suggest useful analysis procedures. By doing so, a better system performance

can be achieved by properly designed system structures. Another emphasis of this

work is to generate systematic algorithms to automate the structural and other dy-

namic analysis procedures.



1.2 Background

1.2.1 Structural Analysis

Many important features of dynamic systems are inherently determined by the struc-

ture of dynamic interactions. Thus the study of system structures has been an im-

portant topic. Theories have been developed for the analysis of dynamic system

structures. The results provide systematic calculation procedures for finding system

properties. For example, the controllability or observability can be found by check-

ing the rank of controllability/observability matrices. The zero dynamics of general

nonlinear systems can be found by a differential geometric approach. However, these

approaches provide limited help for system design or model revision. The calculations

do not suggest possible solutions for the construction of desired structures. For this

reason, certain graphical representations have been used to represent the state inter-

actions and help the calculations. However, it is still difficult to relate the physical

elements with the analysis results. As will be explained in the following sections,

the model representations based on energy methods are suitable candidates for this

purpose.

1.2.2 Models Using Energy Methods - Bond Graph Repre-
sentation

Bond graph models describe the dynamic behavior of physical systems by connect-

ing idealized lumped elements based on the principle of energy conservation. These

network-like models provide very useful insights into the structure of dynamic sys-

tems. Causal relations between subsystems can be assigned according to the element

characteristics and the junction constraints. Once the bond graph model is built, a

set of state variables is easily determined and a set of state equations can be generated

systematically [36, 24]. The state variables in bond graph models are directly related



to the energy storage in the system and are easily interpreted from a physical point

of view [23].

In the literature, it has been demonstrated that useful information can be ex-

tracted from the bond graph representation of physical systems. Important topics

which are related to the design and simulation of physical dynamic systems are listed

as follows.

Order of systems: [2, 23, 24, 37] pointed out the classes of constraints that influ-

ence the order of the systems. [24] introduced a derivative causality assignment

procedure to detect a different class of constraints which can not be detected

by the integral causality assignment procedure (SCAP procedure). [37] shows a

systematic procedure to identify the excess states and the source of constraints

(topologically and source induced).

Implicit equations: [3] pointed out that the implicit equations caused by R ele-

ments can be identified by the existence of free choice of causality assignment

to the R elements. in [46], 4 general way of identifying the existence of implicit

equations is described and defined as zero order path. [50] describes a way of

using Lagrange multiplier to eliminate the derivative causality and obtain the

implicit equations. [42] uses parasite elements to eliminate derivative causalities

and therefore certain class of implicit equations.

Eigenvalues: The problem of obtaining the information about the eigenvalues di-

rectly from a bond graph model was also considered in [51, 52, 53]. For a class of

systems with uniform parameters, certain bounds of eigenvalues were obtained.

The results can be useful for interactive computer-aided system design.

Controllability/Observability: Methods of examining structural properties such



as structural controllability and observability are developed in [41, 43, 44]. Some

design methods have been addressed, e.g. how to determine the minimum

number of actuators and sensors and their appropriate locations in a physical

system [44].

Relative degrees: An inspection rule for the identification of relative degrees in

SISO systems was proposed in [47]. For the application of feedback decoupling

problems, the vector relative degrees of MIMO systems were studied in [29, 30].

Zero dynamics: Some heuristic rules are found to identify the zeros for a certain

class of linear SISO mechanical systems [31]. This can be done directly from the

mass-spring-damper schematic. The idea is extended in [47] by using the bond

graph representation. For a class of nonlinear SISO systems, the zero dynamics

can be obtained by recognizing the junction structure patterns.

Synthesis: Synthesis of a class of linear physical systems which exhibit desired

system response by the use of bond graphs is discussed in [34, 35].

1.2.3 Software Packages

Software packages have been developed for the purpose of simulating dynamic sys-

tems. These packages may be divided in two categories. The first category deals with

simulating mathematical models of systems and possibly providing tools for the anal-

ysis and processing of results. Some of these packages include THTSIM, TUTSIM,

SIMNON, MATLAB, CONTROL - C, MATRIXX, UNYSIS and HYCAD.

Such packages provide results and allow the processing of results in the time domain,

frequency domain or both domains. The input information can be in the form of line

code (transfer functions and state space representation) and/or graphic form (block

diagrams). Most of these programs are for general applications and provide a good



environment for simulation and analysis.

Another category deals with packages designed for modelling purposes. These

include ENPORT and CAMAS whose input information is graphical in the form of

a bond graph. In this case, the software generates the system's equations and simulates

the system model. The software has improved in the last few years. Other programs,

such as GEM, CAMS and MS - BOND, provide only the state equations of a

system. Several other programs based on the bond graph theory have been developed

[6]. The characteristics and the applications of most of them are summarized in the

survey paper [12]. Some schemes dealing with the generation of symbolic equations

are discussed in references [32, 33, 49].

Currently, there is no known software package available which provide diagnostic

functions or deal with design (synthesis) and analysis of dynamic systems. Thus, this

research will concentrate on the development and implementation of rules, procedures,

and algorithms for extracting physical system properties from their graphical models.

1.3 Scope and Contents of the Thesis

Three main topics are presented in this thesis to demonstrate the capability of the

proposed structural analysis procedures.

The first topic addresses the problem of excess states and their influences to the

system analysis procedures. The excess states usually exist in certain over-constrained

structures. In these models, although the representations are legitimate in terms of

physical meaning, the resultant excess states cause pitfalls in the inspection of system

properties. It is found that by using the explicit field representations, such ambiguities

can be eliminated. Based on this approach, a set of model revision procedures are

developed to eliminate the excess states so that the existing and the being-developed

analysis procedures can be properly applied.



The second topic is the identification of relative degrees and zero dynamics for

general nonlinear MIMO systems. Relative degrees and zero dynamics are impor-

tant features for the design of feedback control laws. For certain systems, the zero

dynamics even directly determines the performance limits. Since the intrinsic zero

dynamics can not be influenced by any feedback compensation, it is important to

design the physical systems so that they possess desired zero dynamics. However, the

calculation of the zero dynamics is usually complicated, especially if a form which is

closely related to the physical system and suitable for design is required. A method

is proposed to derive the zero dynamics of physical systems from bond graph models.

This method incorporates the definition of zero dynamics in the differential geometric

approach and the causality manipulation in the bond graph representation. By doing

so, the state equations of the zero dynamics can be easily obtained. The system

elements which are responsible for the zero dynamics can be identified. In addition,

if isolated subsystems which exhibit the zero dynamics exist, they can be found.

Thus, the design of physical systems including the consideration of the zero dynamics

become straightforward.

The purpose of the third topic is to build the direct relations between the com-

ponent characteristics and the system eigenvalues. It is known that the symbolic

solutions for the eigenvalues of high order systems are not available. Even if the

exact solutions exist, they may be too complicated, and therefore do not point out

useful design directions. In this thesis, several decomposition procedures are pro-

posed to identify the physical components which contribute most to certain group of

eigenvalues. By using the available matrix theories, the bounds of each eigenvalue

group can be represented in terms of the component characteristics. These bounds

will then facilitate the design of physical systems so that they have the eigenvalues

roughly at the desired locations.



The thesis is organized as follows: The study of excess states and the model

revision procedures are presented in Chapter 2. The identification of zero dynamics

for SISO systems is discussed In Chapter 3. The extension of the proposed procedures

for MIMO systems are given in Chapter 4. The system decomposition issues and the

bounds of eigenvalues are studied in Chapter 5. Finally, concluding remarks are given

in Chapter 6.



Chapter 2

Explicit Fields and Their Application to
Structural Property Inspection of
Physical Systems

2.1 Introduction

Bond graph models describe the dynamic behavior of physical systems by connecting

ideal lumped elements based on the principle of energy conservation. These network-

like models provide very useful insights into the structure of dynamic systems. One

major advantage of these graphical notations is the clear representation of constraints,

power flow and independent state variables. However, certain over-constrained struc-

tures are not dealt with adequately with this approach. Such a situation arises when

several energy storage elements of the same type are directly coupled by a junction

structure. In these models, although the representations are legitimate in terms of

physical meaning, the resultant excess states cause pitfalls in the inspection of sys-

tem properties. In this chapter, a method using the explicit field representations is

proposed to eliminate these ambiguities.

In bond graph representations, elements of the same type can be grouped as a

field. According to the definition in [22], the representations of fields with explicit con-

stitutive equations which describe the input-output relation between the field ports

are referred to as explicit fields. On the other hand, the representations containing

unsolved junction structures are referred to as implicit fields. While both represen-

tations are legitimate, the choice of representation would depend on the purpose of



modeling. In an extreme case, all the elements of the same type in the system are

grouped as fields. This representation is suitable for a systematic way of deriving

state equations. On the contrary, when one examines the structure of a system, the

junction connections provide very useful information. Thus the implicit form is pre-

ferred. Furthermore, if explicit fields exist in the model, one can use decomposition

schemes to represent fields in an implicit form when it is necessary [7]. In this chapter,

we will group only certain related elements into an explicit field for the purpose of

eliminating the structural ambiguity.

The use of explicit fields has been proposed to eliminate derivative causalities

[22, 25] and help the analysis of systems which contains implicit equations [3]. Once

the constrained elements are identified and grouped into an explicit field, the revised

models usually appear to be clear and compact. In these applications, the grouping

scheme is a key issue. Similarly, in order to eliminate the excess states, the identifi-

cation of the constrained elements need to be addressed first.

By the Sequential Causality Assignment Procedure (SCAP) [22], a set of differ-

ential equations in the familiar form x = f(x, u) can be derived. The constraints

between the states x are represented by the derivative causality in the model. Yet,

the constraints between the derivative of the states i remain unidentified. Therefore,

this class of constraints influences the results of many structural inspection rules. By

an alternative causality assignment procedure [24], from the same model, an alter-

native set of integral equations in the form ft zdt = f(z,u) can be derived. The

constraints between z, which corresponds to the variables x in the previous equation,

are represented by the integral causality remaining in the model. Thus the possible

excess states can be identified. However, due to the imposed sources, this procedure

also drops independent states in some cases[23, 24]. In the attempt to avoid such

an overestimate of excess states, versatile procedures were developed [2, 37]. Never-



theless, due to the subtlety of this issue, exceptions to these procedures still exist.

Also, a systematic way of revising the model for the purpose of structural inspection

is still left open. In this chapter, we will refine the procedures of detecting the con-

straints between z (or k) and derive a systematic model revision procedure by the

use of explicit fields. For the convenience of description, in the following contents,

the states which are coupled by the constraints in the form of f(5) = 0 are defined

as type 1 excess states. the states which are coupled by the constraints in the form

of f(c, u) = 0 are defined as type 2 excess states.

An example is presented in section 2.2 to point out the issues of excess states. The

properties of explicit field representations and their interactions with other elements

are discussed in section 2.3. Section 2.4 describes the procedures of utilizing the

explicit fields to eliminate excess states. Several examples are presented in section

2.5 to illustrate the use of these procedures. The conclusion is in section 2.6.

2.2 Example

Consider the inductive sensor in Figure 2.1, the input source supplies a reference

signal so that the position can be obtained from the measurements Vs and V2. The

gaps between the ferromagnetic teeth are modeled as nonlinear capacitances. The

corresponding bond graph models are shown in Figure 2.2 (a) when the input is a

voltage source and Figure 2.2 (b) when the input is a current source. The causality

is assigned using SCAP procedure.

It is well-known that usually the number of integral causalities indicates the num-

ber of independent states. Therefore, the number of independent states appears to be

4 in Figure 2.2 (a) and 3 in Figure 2.2 (b) respectively. However, the actual number

of independent states in these models are 3 and 2 respectively. This is due to the

excess states (type 1) caused by the junction constraints. For simple systems, these



Figure 2.1: Schematic of an inductive sensor.
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Figure 2.2: Bond graph models of an inductive sensor.

excess states can be easily detected by either deriving the state equations directly

or examining the physical system structure. But in general, these excess states can

be very confusing, especially if one is interested in the inspection of other structural

properties. Since many rules for structural inspection depends on the manipulation

of causality and the count of causality, a systematic treatment of this problem is

needed. For this example, one can see that if all the capacitances are grouped into a

field as shown in Figure 2.3, the number of independent states would be exactly the

number of ports which exhibit integral causality. Thus the new model structure is

more appropriate for system analysis. This is an example of using the explicit field
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Figure 2.3: Revised bond graph models.
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to eliminate excess states. In the following sections, we will generalize this procedure

and extend the use of explicit fields.

2.3 Properties of Explicit Energy Storage Fields

In this section, some properties of energy storage fields in the bond graph represen-

tation will be reviewed. For the purpose of generality, the fields in a mixed causality

form will be considered. Also, the port variables are allowed to be dependent if the

constitutive equations indicate so. We assume that the causality of the field in a

model is determined by the SCAP procedure. The causality assignment will depend

on its environment and the constitutive equations of the field as well. The following

content uses C fields to illustrate the properties of explicit energy storage fields. I

fields will have similar properties with appropriate variable representations.

Consider a nonlinear n-port C field with a general form of constitutive equations

Ic (el, e2, ..., Cn ql, q2, ..., qn) = 0 (2.1)

where 'c is a vector of n functions bcl, V02, ... OCn. One can assign the causality

in the form shown in Figure 2.4 if and only if the energy stored in the field can be



e(+1) e n = [e, e, 2 ... e ]T

q ou=[ q, q,2 ... qj]T

qin = [ qj+, qj+2 ... qn ]T

eot = [ ej+l, e,+2 . * en]T

Figure 2.4: A C field with mixed causality assignment.

represented as E = E(qin, ein), where qin, e,,ot are the variables associated with the

ports in integral causality and ei,, qout are the variables associated with the ports in

derivative causality. This also implies that the functions in Eqn.(2.1) must be able

to be represented in the form

S= F 1 (el, e2 ..., ej, q(j+l), q(j+2), ... , qn)

q = F (e, e2, ... ej, q(j+), q(j+2), **, qn) (2.2)

e(j+l) F(j+l) (el, e2 ... , e, q(j+), q(j+ 2), ... , qn)

en = Fn (e, e 2 , ...,ej, q(+), q(j+ 2), ... qn)

According to the principle of thermodynamics [9], the energy of a stable field is

a convex function of its extensive variables and a concave function of its intensive

variables. In the case of a C field, the generalized displacements q's are intensive

variables and the generalized efforts e's are extensive variables. Therefore, for a C

field, we have the relation
02E

S> 0 where i =1 ... n (2.3)

This in turn implies that the Jacobian matrix formed by the elements ' ( where

i, j =1 ... n) is positive semi-definite. Also, by Maxwell's reciprocity relations and

e(i+2) en



Legendre transformations, Eqn (2.2) must satisfy the following relations:

DFk F,= - where k, f = 1,2,...j (2.4)

OFk,' F,= = q where k', = j + 1, j + 2, ...n (2.5)

SFk,," OF,,
- D= k- where k" = 1,2,...j (2.6)

8qr,, Bek"

and " = j + 1,j + 2, ...n

The negative sign in Eqn.(pn4) comes naturally from the Legendre transformation

due to the cross coupling of the function relation Fe,,, ek" and Fk",, Iqe,.

For linear fields, Eqn.(2.2) can be written as

eout ) = [ C 11 C1 2  (2.7)
qot C 21 C2 2  ) (2.7)

with eout, qout, ei, qin as defined before. By Eqn.(2.3) to Eqn.(2.7), to form a mean-

ingful energy storage field, this matrix must have at least the following properties:

1. The matrix C1 C12 is positive semi-definite.

2. C11 and C22 are symmetric positive semi-definite.

3. C 12 = -C1.

Since the submatrices C11 and C22 are only semi-definite, the causality assignment

which can be accepted by the field might be constrained. Also, the independent states

which can be contributed by this field might be different from what the causality

indicates. By considering the constitutive equations of the field, the following results

can be obtained.

Lemma 2.1:

1. The number of independent states contributed by a multiport C field is determined



by the rank of the submatrix C 11.

2. If the submatrices C11 and C 22 in Eqn.(2.7) are full rank (therefore positive def-

inite), this field can accept any combination of causality assignment if this is not

prevented by any other physical constraints, and the number of integral causality in-

dicates the number of independent states.

Furthermore, the rank of the matrices C 11 and C 22 can be tested by the following

causality manipulations.

A proof is given in Appendix A.1.

Lemma 2.2:

1. If the integral causalities on the ports of a field can be reversed, the C 11 submatrix

of a linear field or the corresponding submatrix in the Jacobian matrix of a nonlinear

field must have full rank. If not, the remaining ports with integral causality indicate

the rank deficiency in the corresponding submatrix.

2. If the derivative causality on the ports of a field can be reversed, the C 22 subma-

trix or the corresponding submatrix in the Jacobian matrix must have full rank. If

not, the remaining ports with derivative causality indicate the rank deficiency in the

corresponding submatrix.

A proof is given in Appendix A.1.

Based on the above lemmas, the following rules can be used to determine the num-

ber of independent states which can be contributed by a field under the constraints

between the field ports.

Proposition 2.1: In a bond graph model, if a field can accept reversed causality on

the ports which exhibit integral causality, the number of integral causality will indicate

exactly the number of independent states contributed by this field in this model. If

not, the number of integral causality remaining indicates the number of type 1 excess

states.



Proposition 2.2: If a field can accept reversed causality on all ports, this field can

accept any combination of causality assignment, and the number of integral causality

indicates exactly the number of independent states.

Proposition 2.3: If a field can not accept reversed causality on all ports, and some

of the ports have integral causalities which are directly imposed by the sources, type

2 excess states might exist. If we keep the integral causality which is imposed by the

sources unchanged and reverse the causality of other ports with integral causality, the

number of integral causality remaining is the number of type 2 excess states.

A proof is given in Appendix A.1.

2.4 Model Revision for Structural Property In-
spection

In this section, the issues concerning when a model revision is necessary and how it

can be done using the explicit field representations are discussed.

2.4.1 The existence of type 1 excess states

As shown in section 2, type 1 excess states cause confusion on the order of dynamic

systems. Also, many other structural inspection rules can not be applied properly

due to this type of excess states. Therefore, it would be useful if certain test can be

performed to detect the existence of type 1 excess states. For this purpose, a testing

procedure can be derived [37].

Testing procedure 1 :

(1) Apply SCAP procedure.

(2) Remove any energy storage elements with derivative causality and the bonds as-

sociated with them.

(3) Remove all causality strokes.



(4) Relax1 the causal constraints of the sources and assign derivative causality to the

energy storage elements whenever it is possible (under the junction constraints).

(5) If any energy storage element still remains with integral causality, the test fails.

That is, correct system order can not be predicted using the SCAP procedure.

Note that step 2 in the above procedure is to remove the constraints which have

been taken care of by the SCAP procedure. The purpose of step 3 and 4 is using the

derivative causality assignment procedure to expose the constraints which were im-

plicit when using the SCAP procedure as explained at the beginning of this chapter.

Although this procedure is easy to implement, removing elements is not an appro-

priate way of model revision. This is obvious when one would like to use the same

model for further structural property inspection. In the following, a procedure us-

ing explicit fields is proposed to eliminate the excess constraints without removing

essential structural informations.

2.4.2 The use of explicit fields

For the purpose of model revision, we can eliminate the topological constraints (which

cause type 1 excess states) by grouping the over-constrained junction structure and

the associated energy storage elements into an explicit field. Therefore, the ports of

the fields in the revised model would be independent and many pitfalls can be avoided

in the further use of the model. The procedure is listed as follows.

Model revision procedure :

(1) Relax the causal constraints of the sources and apply SCAP procedure.

(2) If there is any energy storage element which exhibits derivative causality, identify

the energy storage elements of the same type which are directly causally connected'2 to
1Here it means to ignore the constrains imposed by the sources and treat them like R elements

without any causal constraint.
2Two elements are said to be directly causally connected if there is a causal path between these



this element.

(3) Group the directly casually connected energy storage elements with all the con-

straints in the junction structure and form an explicit field.

(4) Remove all causality strokes.

(5) Relax the causal constraints of the sources and assign derivative causality to the

energy storage elements whenever it is possible (under the junction constraints).

(6) If there is any energy storage element which exhibits integral causality, identify

the energy storage elements of the same type which are directly casually connected to

this element.

(7) Group the directly casually connected energy storage elements with all the con-

straints in the junction structure and form an explicit field.

In this procedure, steps 1, 2 and 5, 6 use SCAP and the derivative causality assignment

procedure respectively to detect the constraints. In step 3 and step 7, grouping is

used to deal with the detected constraints instead of removing elements. By doing

so, the model is described by an equivalent yet more appropriate representation.

The information concerning dynamic interactions is preserved. Therefore, the revised

model can be used for further structural study.

Using this procedure, an explicit field whose port variables are all independent

can always be found. According to proposition 2.2, this field accepts any form of

causality combination and the number of independent states equals the number of

ports which exhibits integral causality. So if the testing procedure is reapplied, the

revised model will always pass the test. That is, the topological constraints have been

eliminated by this manipulation.

two elements without going through elements other than the junctions.



2.4.3 The existence of type 2 excess states

After the model revision shown in the previous section, the existence of type 2 excess

states can be detected by the following procedure.

Testing procedure 2 :

(1) Keep the causal constraints of the sources and assign derivative causality to the

energy storage elements whenever it is possible (under the junction constraints).

(2) If any energy storage element still remains with integral causality, the system has

type 2 excess states. Also, the number of remaining integral causalities indicates the

number of excess states.

Remark : After applying the model revision procedure, all the topological con-

straints will be eliminated. Therefore, it is not necessary to deal with type 1 excess

states. On the other hand, if we skip the model revision procedure and directly apply

the testing procedures for type 1 and type 2 excess states, incorrect predictions of

excess states might result. The reason is that testing procedure 1 does not leave a

complete model for further inspection and testing procedure 2 does not exclusively

detect type 2 excess states.

2.5 Applications

In this section, some applications regarding system structural properties are shown to

illustrate the use of the explicit field representations described in the previous section.

2.5.1 Independent state variables

Figure 2.5 shows a schematic diagram of a rotor levitated by a set of magnetic bear-

ings and the corresponding bond graph model. In this model, R, is the electrical

resistance; Re represents the resistance due to eddy currents in the magnetic domain;
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Figure 2.5: Bond graph models of a magnetic bearing.

According to the model revision procedure in the previous section, by assigning

derivative causality to energy storage elements, we obtain the direct causal paths as

shown in Figure 2.6. Thus an explicit field is obtained by grouping these directly

causally related elements as shown in the Figure. Using the port variables of this

field, we can obtain a set of independent state equations. Therefore, the number of

the independent states is 3. The new model indicates that there are 3 type 1 excess

states in the original model of Figure 2.5.

2.5.2 Structural property examination

For the previous example, if one is interested in examining the structural control-

lability of the system, further causality manipulations are necessary [43]. However,

before this test, it can already be concluded that the original model is uncontrollable

C, represents the reluctance of the permanent magnet and C,,,p is the energy field

between the magnetic domain and the mechanical domain.
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Figure 2.6: Bond graph model with derivative causality assignment and the revised
model.

by the result shown in Figure 2.6. Since the derivatives of the states are coupled, it is

impossible to achieve full state regulation for the states shown in the original model.

On the other hand, using the revised model shown in Figure 2.6, one can find that the

new states defined by the field ports are controllable. Note that this is not a special

case. Since the excess states can be eliminated by explicit fields, any system which is

revised by the model revision procedure in section 4.2 is actually structurally control-

lable. Therefore, the port variables of the fields contribute a maximum independent

set of controllable states associated with the constrained energy storage elements. If

one really would like to control the states in the original system, either some dynamic

elements or even sources must be added to break the topological dependency. This

provides a guidance of designing the physical systems.

2.5.3 The equilibrium states

From the bond graph model, the equilibrium states of the system can be directly ob-

tained if the causalities are used properly [8, 13]. At equilibrium points, the derivatives

Se



of the states are identically zero. This status can be represented in the bond graph by

setting the flow to a C element and the effort to an I element zero. Thus if we replace

the C nodes by zero flow sources and I nodes by zero effort sources and propagate

the causality, the equilibrium states ( the effort to the C nodes and the flow to the

I nodes) then can be solved directly from the graph. It is found that this procedure

can only be applied to the revised model. Using the original model, causality conflicts

would result if the sources mentioned above were imposed. As shown in Figure 2.7,

the equilibrium states are el = n - il ; e2 =n i2 ; e3 = mg ; f4 = 0.

This result shows that in the equilibrium status, the magnetomotive force on port

1 and 2 are n - il and n - i2 respectively; the force acting on the rotor equals to the

gravity force mg; and the velocity of the rotor is zero.
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•- 1Sf:O |-- 1
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Figure 2.7: Equilibrium states from bond graph model with field representation.

2.6 Computer Implementation

After working out several examples, one might find that usually the C elements around

1 junction and the I elements around 0 junction are likely to generate excess states.

Thus they should be grouped into an explicit field. For example, the capacitances



in Figure 2.8 (a) should be viewed as an equivalent capacitance in Figure 2.8 (b) so

that correct structure properties can be determined. However, this kind of rule is too

ambiguous for system property inspection, especially for computer implementation.

To develop an application program for automated model processing, the elements and

bonds which should be included in a field need to be exactly identified. This is an

important reason of adopting the causal searching rules in this thesis. As shown in

Figure 2.6, the part of the system which belongs to a local explicit field is identified

without any ambiguity. The computer program may then blindly obtain a 6 port

field as shown in Figure 2.9.

C

--C - Ceq

(a) (b)

Figure 2.8: A simple example of grouping capacitances.

By proposition 2.1 in Section 2.3, this is a legitimate representation since the 3

integral causality indicates that there are actually only 3 independent states con-

tributed by the field. However, by examining the equations of this field, an algorithm

can be easily derived to release the constraints between the ports. For example, the
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junction equations in the field are
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where
0 -1 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 -1 -1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0

[JS]=-
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 00

Because there are only 3 independent columns in the left lower submatrix in the above

equation, it is clear that the equations can be rewritten as

e 0 0 0 j 1 1 0 0 0 0 fi
e7  0 0 0 0 0 -1 -1 00 f7
el 0 0 0 0 0 0 0 1 1 fil

f3 1 0 0 0 0 0 0 0 0 e3
f4 1 0 0 0 0 0 0 0 0 0 e4
fs 0 1 0 0 0 0 0 0 0 es
fs 0 1 0 0 0 0 0 0 0 es
f9 0 0 1 0 0 0 0 0 0 e0
flo L0 0 1 0 0 0 0 0 0 e lo

and 3 extra 1 junctions can be defined. Thus a 3-port C field in Figure 2.6 can be

obtained automatically. The details of this process are shown in Appendix A.2.

2.7 Conclusion

In this chapter, a method using the explicit field representations is proposed to elim-

inate the excess states for the purpose of structure inspections. For the constraints

caused by linear junctions, it was shown that the excess states caused by the topology

structures can be totally eliminated by field representations. The excess states caused

by the imposed sources then can be identified properly. Several applications of the

explicit fields are shown to illustrate their use.



Chapter 3

Zero Dynamics of Physical Systems
from Bond Graph Models - Part I : SISO
Systems

3.1 Introduction

Zero dynamics is an important feature in system analysis and controller design. Its

behavior plays a major role in determining the performance limits of certain feedback

systems. For example, it is known that perfect tracking of arbitrary trajectory can

not be achieved by any controller if the zero dynamics is unstable [39]; H, controller

design needs the sensitivity functions to satisfy certain interpolation condition at

the location of non-minimum phase zeros [10]. Thus the bounds of the achievable

performance is partially determined by the zero dynamics; The application of input-

output linearization schemes also requires the stability of zero dynamics [21]. Since

the intrinsic zero dynamics can not be influenced by feedback compensation, it is

important to design physical systems so that they possess desired zero dynamics.

However, the derivation of the zero dynamics is usually complicated, especially if a

form which is closely related to the physical system and suitable for design is required.

In order to address such issues, a method of designing the zero dynamics from the

bond graph point of view is proposed in this chapter.

The zero dynamics is interpreted as the resultant internal dynamics when suitable

initial conditions and control inputs are applied to maintain the outputs zero for all

time. For simple physical systems, part of or full zero dynamics may be obtained by



direct inspection of the system structure. For example, some heuristic rules are found

to identify the zeros for certain class of linear SISO mechanical systems [31]. This can

be done directly from the system models consisting of a series of mass-spring-damper

units. The idea is extended in [47] by using the bond graph representation. For a

class of nonlinear SISO systems, the zero dynamics can be obtained by recognizing the

junction structure patterns. These results point out a potential direction of structural

analysis for zero dynamics directly from model representations.

Bond graph models describe the dynamic behavior of physical systems by the con-

nection of idealized lumped elements based on the principle of energy conservation

[22]. These network-like models provide very useful insights to the structure of dy-

namic systems. With the help of the encoded structures and the causality technique,

the structural inspection and the derivation of zero dynamics can be generalized for a

much broader class of systems. In this chapter, the definition of zero dynamics in the

differential geometric approach is incorporated with the causality manipulation in the

bond graph representation. By doing so, the state equations of zero dynamics can

be easily obtained. The system elements which are responsible for the zero dynamics

can be identified. In addition, if isolated subsystems which exhibit the zero dynamics

exist, they can be found. These subsystems, which describe the zero dynamics, are

often of low order and consequently are easier to analyze. Thus, the design of phys-

ical systems including the consideration of zero dynamics become straightforward.

Since this approach does not depend on the heuristic rules for systems with specific

patterns, the results can be applied for general SISO systems and can be generalized

for MIMO systems.

In section 3.2, the definition of the zero dynamics in the differential geometric

approach is reviewed. Section 3.3 describes the general procedure of deriving the

zero dynamics of SISO systems from the bond graph models. Section 3.4 shows some



applications of the proposed procedure, and the conclusion is given in Section 3.5.

3.2 Zero Dynamics in the Differential Geometric
Approach

In this section, the definition of the zero dynamics from the differential geometric

point of view is reviewed [21, 39]. This approach deals with a class of nonlinear

systems with the general form

C = f(x)+ g(x)u (3.1)

y = h(x) (3.2)

where u E R P is the input vector, y E R m is the output vector and x E R" represents

the state vector. The zero dynamics is defined as the internal dynamics of the system

when the required initial conditions and controls are applied to keep the outputs zero

for all time. Thus the zero dynamics can be described as

5 = f(x) + g(x)u* (3.3)

with suitable initial states. The conditions for u* to exist and how the system evolves

under these conditions can be derived in a rather systematic and rigorous way by

considering a local coordinate transformation problem. This analysis will in turn

lead to the application of input-output linearization and certain dynamic decoupling

problems. In this chapter, the relevant existing results are stated since the details

can be found in [21, 39].

From the differential geometric approach, it can be derived that the zero dynamics

of an SISO system in the form of Eqn.(3.1), (3.2) will evolve on the subset

Z* = {x C R" : h(x) = .... = L-'h(x) = 0) (3.4)

or equivalently, Z* = {x E R" : y(x) = y(x).... = y(r-1)(x) = 0) (3.5)



when the system is under the control u*(x) given by,

-Lrh(x)u*(x) = L rL f h(x) (3.6)

and the initial conditions lie in the subset described by Eqn.(3.4). In the above

equations, the symbol L represents the Lie derivative which operates as Lab(x) =

Vb a; r represents the relative degree of the system; Ljh(x) represents an rth order

consecutive Lie derivative Lf.....Lfh(x). An SISO system is said to have a relative

degree r at a point x0 if [21]

(i) LgLh(x) = 0 for all x in a neighborhood of xo and all k < r - 1.

(ii) LgL - 1lh(xo) # 0.

Thus, assuming that the control of Eqn.(3.6) is applied, the zero dynamics can be

viewed as the residual dynamics of Eqn.(3.1) under the constraints in Eqn.(3.4). By

substituting these constraint equations into Eqn.(3.1), a minimal set of state equations

which represents the zero dynamics can be obtained.

Note that the representation of the zero dynamics is not unique. If a local coor-

dinate transformation z = 1(x) is found to transform the state equations into the

normal form,

Z1 = Z2

z 2 = Z3

r-1 = Zr (3.7)

z,, = b(, q) +a(+ , /)u

S= z( (38)

y = Zl (3.8)



where

= , ... (3.9)
then the zero dynamics can be easily identified as

ý = q(0, y) (3.10)

by choosing ((0) = 0 and u = - . However, the calculation of this transformation

usually requires more effort than the derivation from the original equations. Also,

the coefficients in the normal form often do not have any physical meaning. Thus,

Eqn.(3.1) and Eqn.(3.4) are more suitable for our design purpose.

3.3 Zero Dynamics of SISO Systems from Bond
Graph Models

The bond graph representation encodes the structure of dynamic systems into abstract

graph symbols. Thus the models can provide a useful guidance for the derivation

of the zero dynamics, which is far from straightforward as shown in the previous

section. For certain systems, the properties of zero dynamics can be found simply

by inspection. In this section, we will discuss the derivation and inspection of zero

dynamics with the help of bond graph models for SISO systems. The extension to

MIMO systems follows directly from this method as will be shown in the next chapter.

A key technique in using the bond graph models is the use of causal implications.

The causality indicates the dependency of bond variables lin the bond graph model.

Thus, it in turn implies the way of deriving the equations. For example, the state

equations which describe the system dynamics can be derived systematically by the

use of causality [36]. From this procedure, it can be shown that, in general2 , the

1The effort or flow variable associated with a bond is called the bond variable.
2If the system contains excess states, this statement is not true [17].



integral causality in the bond graph models indicates an independent state variable.

By the help of causality, many useful system structural properties can be identified

[22, 24, 41, 43, 45]. In what follows, a systematic way of identifying the independent

states for the zero dynamics will be presented. Then the constraints of Eqn.(3.4) are

imposed by certain causality manipulations. Finally, the partitions from the original

dynamics which exhibit the zero dynamics appears directly from the inspection of

causality.

3.3.1 Definitions

In this chapter, the considered bond graph models contain3 one port dissipative ele-

ment R; one port energy storage elements C, and I; linear junctions 1, 0, TF, GY;

and sources Se, Sf. To facilitate the description of model processing, the following

definitions are introduced.

Causal path : In a bond graph model, a series of bond variables which connects one

specific variable to another according to the causality assignment is called a causal

path between these two variables.

Shortest causal path : Among the alternative paths connecting two bond vari-

ables, the one that yields the minimum number of independent energy storage elements 4

less dependent energy storage elements 5 on the path is called the shortest causal path.

Simple shortest causal path : A shortest causal path which passes through no

dependent energy storage elements is called a simple shortest causal path.

Causal input (output) variable : The bond variable which represents an inde-

pendent (dependent) variable in the constitutive relation of a bond graph element

3 For the models which contain modulated junctions, fields or even subsystem representations,
procedures similar to the one described in this chapter, although more complicated, can be developed
and used in the same manner.

4 Elements with integral causalities.
5Elements with derivative causalities.



according to the causality assignment is called a causal input (output) variable.

For simplicity, the shortest causal path mentioned in this chapter means simple

shortest causal path unless specifically emphasized.

3.3.2 Relative degree

Since our purpose of modeling is for the control or dynamic analysis of physical

systems, the output of interest is mostly related to only one of the states like dis-

placement, velocity, and not a combination of the states. In this case, the output

is related to certain bond variable in the graph. Thus a causal path from the input

to the output variable can always be found. This kind of causal path might not be

unique. With the use of these causal paths, the following propositions are derived to

identify the relative degree of SISO systems.

Proposition 3.1: In an SISO bond graph model with the choice of suitable causality

assignment, a simple shortest causal path which connects the input to the output

variable (a state variable) always exists.

Proposition 3.2: In an SISO bond graph model, the number of elements with integral

causality on the simple shortest causal path described in proposition 3.1 indicates the

structural relative degree of this system.

A proof is given in Appendix B.1

Note that proposition 3.1 rules out the necessity of dealing with the shortest causal

path which contains derivative causalities. As will be shown in the following sections,

this provides a clear choice of candidate states for the zero dynamics. Proposition 3.2

is a modified version of the rules which are derived in [30, 47].

The above propositions follow from the interpretation of the relative degree as

the number of times one has to differentiate the output so that the input explicitly

appears. Since the relative degree is also the difference between the order of the

overall system dynamics and the order of the zero dynamics, the result also implies



that the number of integral causalities which are not on the shortest path indicates

the order of zero dynamics. In fact, each independent energy storage element which

is not on this path contributes an independent state for the zero dynamics. Using

these states, a set of state equations representing the zero dynamics can be derived.

Example: To illustrate the use of these propositions, a simple mass-damper-spring

unit shown in Figure 3.1 is considered as an example. In this system, the input is

the force applied on mass 1 and the output is chosen as the velocity of mass 3. A

bond graph model of this system is shown in Figure 3.2. According to the definition

of causal path, there could be several choices. For example, Figure 3.3 and Figure 3.4

show different choices of causal paths. These two causal paths pass 5 and 3 energy

storage elements respectively. Obviously, the causal path in Figure 3.4 is the shortest

causal path. According to the propositions, this system has a relative degree 3.

I y=~3
kl k2 I k3

R2 R3

Figure 3.1: A mass-damper-spring unit.

3.3.3 Zero dynamics

By the definition in section 2, the zero dynamics evolve on the subset described by

Eqn.(3.4). On the bond graph model, if we trace back the shortest causal path from

the output y = h(x) to the input u, it will be found (See Appendix B.2) that the

causal output variable of each energy storage element (the state variable) on this

path appears explicitly in order when the Ist to (r - 1)th derivatives of the output



C:1/kI R:RI C:1/k2 R:R2 C:l1/k3 R:R3

1 1 1
ein=F
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y=x3
I:ml I:m2 I:m3

Figure 3.2: A bond graph model of the mass-damper-spring unit.

:R " R:R2 :/k3 R:R3

ein=F
Se:u 1 - 0 1 0 1 1 0 --j 1 - 0 - I:m4

y=x3

I:ml I:m2 I:m3

Figure 3.3: A choice of causal path.

are taken. Taking the model in Figure 3.4 as an example6, the output is y = f3 .

The causal output variable of m 2, which is f2, first appears in the expressions of y' as

shown in Eqn.(3.19). The causal output variable of mi, which is fl, first appears in

the expression of y and not y or y as shown in Eqn.(3.20). Finally, the input u appears

when the third derivative of the output is taken as shown in Eqn.(3.21).. This is made

clear by the meaning of the shortest causal path itself. Since L-h(x) equals the kth

derivative of y when k < r - 1, each algebraic equation in Eqn.(3.4) indicates that

6The state equations are derived in the following section.



C:1/kl

ein=F
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Figure 3.4: The shortest causal path.

exactly one causal output variable of the energy storage element on this path becomes

dependent to other states. This dependency of bond variables can be represented by

the causality. Thus the zero dynamics can be derived by the following procedure. We

will refer to this procedure as the Zero Dynamics Identification Procedure (ZDIP) in

this thesis.

ZDIP procedure

(1) Apply the normal Sequential Causality Assignment Procedure (SCAP) to the sys-

tem bond graph model.

(2) Determine the shortest causal path between the input and the output as described

in proposition 3.1. If there are more than one of such causal paths, pick one of them

arbitrarily'.

(3) Remove the bond which is related to the output variable, and assign a zero value

to the junction which this bond is connected to. This indicates that the common effort

of the 0 junction or the common flow of the 1 junction is zero.

(4) Reverse the causality on the bond which is connected to the input.

7This situation indicates that alternative choices of independent state variables for the zero
dynamics representation are possible.



(5) Replace every integral causality on this causal path by a derivative causality.

(6) Keep every integral causality which is not on this causal path unchanged. These

are the candidates of the independent state variables for the zero dynamics.

(7) Complete the causality assignment while imposing the junction constraints.

(8) Derive the zero dynamics according to the causality assignment.

(9) If the above derivation requires the causal outputs from the elements whose causal-

ity has been reversed, solve for these variables using the algebraic equations in Eqn. (3.4)

so that they can be represented by the independent state variables determined in step

6.

Note that step 2 is to identify the relative degree and determine which variables

can be state variable candidates of the zero dynamics. Step 3 imposes the algebraic

equations y = h(x) = 0 and y = Lfh(x) = 0. Step 4 reflects the fact that when

deriving the zero dynamics, the input u* is determined by the system states. Steps

5, 6 and 7 impose the rest of the algebraic equations in Eqn.(3.4) by setting the effort

of the inertance and the flow of the capacitance on the shortest causal path as the

causal output from the energy storage elements (please see Appendix B.2 for details).

In this case, the causality is used to indicate the dependency of the bond variables.

The constitutive equations of the corresponding energy storage elements will not be

used in this zero dynamics model. Instead, the constraints in Eqn.(3.4) are used to

determine the causal outputs. Using the equations Lýh(x) = 0, where 0 < k < r - 1,

these efforts and flows can be written as functions of the independent state variables

in step 6. If necessary, these equations will be used in step 9. However, step 9 is only

necessary for certain complicated systems where isolated subsystems which represent

the zero dynamics do not exist. For simple systems, this step can usually be skipped.

Using this procedure, the zero dynamics of a nonlinear SISO system can be derived

systematically. The physical elements or subsystems which are responsible for the zero



dynamics can be easily identified. Thus, the properties such as the stability of zero

dynamics can be studied from the graph. By doing so, the dynamic features can be

related directly to the physical system configuration. This would be very useful in

the design of physical systems.

Example: Consider the system of Figure 3.1, the zero dynamics of this system can

be easily identified by the ZDIP procedure. Since the shortest causal path is the

one shown in Figure 3.4, the energy storage elements I1 and 12 are on the path.

Also, because the output is the velocity of element 13, the bond associated with the

element 13 is removed according to step 3. For step 4, the causality of the effort

source is reversed. For step 5, causalities associated with the elements I1 and I2 are

reversed. After the causality assignment is complete, the model is shown in Figure

3.5. The dynamics represented by this model is the zero dynamics of the original

model.

C:l/kl R:RI C:1/k2 R:R2 C:1/k3 R:R3

e 1o \ 1 1 1
ein=F T

Se:uf- 1 0 -~ 1 - 0 1 k 0 I:m4

SiT y=x3
-, "- I:m3

I:miI:m

Figure 3.5: The zero dynamics model.

To illustrate the purpose of these steps in the ZDIP procedure, the state equations

of this system are derived as follows. For simplicity, all elements are assumed linear.

The velocity associated with the masses mi, m 2, nM3 and m 4 are fl, f2, f3 and f4.

The forces associated with the springs C1, C02 and C3 are el, e2 and e3 .



J4 - [3 - (f3 - f 4 )R 3 ] (3.11)
m4

e3 = (f3- f4)k3 (3.12)

13 = - + (f2 - f3)R2 - e3 - (f3 - f4)R3] (3.13)
m3

ez2 - (f2 - f3)k2 (3.14)

f2 = [el + (f - f2)R1 - e2 - (f2 - f3)R2] (3.15)
m2

1 = (fl - f2)ki (3.16)

f1 = - el - (fi - f 2 )R1] (3.17)

According to the differential geometric approach, the zero dynamics will evolve on

the set defined by Eqn (3.4). In other words, if the constraints in Eqn (3.4) are

imposed on the system dynamics, the residual dynamics will be the zero dynamics.

In this case, since the relative degree has been found as 3 in the previous section, the

constraints are y(k) = Lkh(x) = 0, where 0 < k < 2.

Y = f3=0 (3.18)

S= f3 -[ + (f2 - f3)R2 - e3 - (f3 - f 4)R3] = 0 (3.19)
m3

= f3 [ 2  (2 - 3)R2 - 3 -• (f3 - 4)R3] = 0 (3.20)
m3

Suppose these constraints are substituted into the state equations, the residual

dynamics should be of order 4. Therefore, there will be only 4 independent states

in the residual dynamics. The first step to do the substitution is to determine these

independent states. Recall that the relative degree can be determined by the shortest

causal path. Since the relative degree is the difference between the order of the overall

system and the zero dynamics, it is reasonable to choose the state variables which are



not on the shortest causal path as the independent states. Therefore, the purpose of

the substitution is obviously to eliminate the state variables which are on the shortest

causal path. In this case, they are f3, f 2 and fl.

First of all, y = f3 = 0 can be easily substituted into Eqn.'s (3.11) and (3.12).

Also, y = f3 = 0 eliminates Eqn. (3.13). These substitutions are shown in the bond

graph of Figure 3.5 by removing the bond which is associated with the output in

step 3 of the ZDIP procedure. Eqn.(3.14) should be preserved since e2 is not on the

shortest causal path. However, the right hand side of this equation contains state

variables f2 and f 3, which should be eliminated. Using Eqn. (3.19), (f2 - f3) can be

represented as -R2[-e2 + e3 + (f3 - f 4)R 3]. This is exactly what the causality shows in

the zero dynamics model of Figure 3.5. Finally, using Eqn.(3.20), j 2 can be written as

1[-e2 + f 3R 2 + 63 + (f 3 - f 4)R 3], where f 3 = 0 from Eqn. (3.19), f4 can be found in

Eqn. (3.11), and e2 has been derived above. In the bond graph model, this is shown

by reversing the causality of the bond associated with I2. Therefore, Eqn. (3.15) now

can be removed. Also, (f2- f3) can be represented as - e + e - (f2 - f3)R2,

where (f2 - f3) and f 2 have been derived above. This substitution is again exactly

what the causality shows in the zero dynamics model. Up to this point, the zero

dynamics has been derived. However, if one is interested in finding the necessary

control input for keeping the output zero for all time, Eqn. (3.21) will be considered.

y) = f(3 ) + (2 - 3)R 2 - - (3 - f 4)R 3] = 0 (3.21)
m3

In this equation, ft will appear in the expression of f2. Using Eqn.(3.17), the necessary

input u* can be found as mlfi + el + (fi - f 2)R 1, where ft can be found using Eqn.

(3.21), and (fi - f2) has been derived earlier. This derivation is shown in the bond

graph of Figure 3.5 by reversing the causality associated with the effort source.

By examining the causality in the model of Figure 3.5, the zero dynamics of



this linear(nonlinear) system can be partitioned as shown in Figure 3.6. Note that

in the partitioned model, the elements in each individual subsystem are energetically

coupled. Between the subsystems, there are dashed lines with arrows, which represent

one way interactions. For example, the input of subsystem 2 is from the output

effort of subsystem 1. On the other hand, subsystem 1 is isolated, since the input

flow to this subsystem is zero. The directed line associated with I2 indicates that

the input to subsystem 3 depends on not only the output from subsystem 1, but

also on the expression of j 2. From the above derivation, it is clear that f2 can be

represented by a function of e2, e3 and f4. If the system is linear, these one way

interactions have no contribution to the eigenvalues of the zero dynamics. Therefore,

the zeros will be the eigenvalues of the individual subsystems: i- - and the rootsR,' R2

of m 4s 2 + R 3s + k3 = 0. If the system is nonlinear, the one way interactions should

be considered when determining the stability of the zero dynamics.

Subsystem 3 Subsystem 2 Subsystem 1
----------------- it---------------~

C:l/ki R:R1, C:1/k2 R:R2 C:1/k3 R:R3

S1 1 1

ein=F

Se:u 1- 0- 0 - - 1 0 1 0 1 - I:m4
L -"----C--t---•- i"- Y--  ----------

I htI
:mil :m I:m3

Figure 3.6: The partitioned zero dynamics model.



As shown in the previous section, the complicated derivations can be represented

by simple causality manipulations. Therefore, using the ZDIP procedure, the zero

dynamics can be identified by simple causality reasoning. The following applications

illustrate the use this procedure.

3.4.1 Systems with the input and the output on the same
bond

If the input and the output variables are on the same bond, we can find that the

causal path from the input to the output will go through at most one energy storage

element. Therefore, by the rules in section 3.2, the relative degree 8 is either 0 or 1.

In either case, steps 1, 2, 3 and 5 in the ZDIP procedure can be skipped. So after the

source-imposed causality is reversed, the model would represent the zero dynamics.

If the system is linear, the eigenvalues of this dynamics would be the zeros of the

original system. For example, the linear system shown in Figure 3.7 (a) has the state

equation as

de 1 1 1 ei - e e- =I f = -(fout - f) = I( --- C )

dt C C C R2  R1
-1 R 1 + R 2  1

= C R +  e (3.22)
C RR R2 CR2

,thus the pole is at C RR . Using the ZDIP procedure, the zero dynamics is given
by the system shown in Figure 3.7 (b). According to the causality assignment, since

the source of this bond graph is fout = 0, the state equation can be derived as

de 1 1 ed- = f = 1(- ) (3.23)
dt C C R1

This indicates that the original system has a zero at -1CRy.

'This result is consistent with the well-known network theory.

3.4 Applications
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Figure 3.7: (a) Bond graph model of a simple RC system. (b) The zero dynamics.

3.4.2 Systems with simple structures

For certain simple systems where step

turn out to be in a special chain form,

9 can be skipped, the zero dynamics usually

1 = f 1,(xI)

=2 f2 (X1,X 2)

Xcn-r fnr(Xli .... Xn-r)

where x 1 , x 2, .... n, are the state

procedure. If all these subsystems

zero dynamics can be determined

vectors of the subsystems partitioned by the ZDIP

are globally stable, then the stability of the overall

by the stability of the isolated subsystems,

51 = fl (xl)

=2 f2(x2)

Otherwise, the range of stability must be defined. This will influence the acceptable

initial condition range in the controller design of nonlinear systems.

R1 C

feI



One example of such systems is the model of Figure 3.6 in the previous section. In

that model, the zero dynamics is derived for a simple mechanical system. However,

the systems of this class do not have to be in the same energy domain. Since the

interactions between the subsystems are basically determined by the system structure,

a chain form can exist even if the system contains several energy transductions. For

example, the model shown in Figure 3.8 also has zero dynamics in such a chain form.

This is a simplified dynamic model of a speaker. The output is selected as the velocity

v of the inertance on the right hand side of the transformer. The dotted line in Figure

3.8 shows the shortest causal path. The causality assignment in determining the zero

dynamics is shown in Figure 3.9. By examining the causality, it is found that the zero

dynamics can be partitioned as shown in Figure 3.10. Note that the zero denoted on

the 0 junction indicates that the common effort is zero. Thus the input to subsystem

1 is zero. On the other hand, the input to subsystem 2 is the state from subsystem

1. So the zero dynamics is in a chain form. If the system is linear, it will have a zero

at -1 Ri+R 2, which is determined by subsystem 1 and a zero at the origin, which isC2 RI R 2 '

determined by subsystem 2.

R C

- I

R , C IIR

Se:u • . i gr GY38 Bn1 g- r- - TF m 0de 1 -a R:e--------- -- -- ----------------

Figure 3.8: Bond graph model of a speaker.
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Figure 3.9: The causality assignment after ZDIP procedure.

Subsystem 1

R1 C2
Subsystem 2

R I i C1 1

Se:u* H- 1 GY- I 1 -I TF -i O 1 - R---R

Figure 3.10: The zero dynamics identified by ZDIP procedure.

3.4.3 A Design Example : Prosthesis Arm Design

As shown in the above examples, the ZDIP procedure can be used for a quick anal-

ysis of dynamic models. However, a more important purpose of finding the zero

dynamics is to facilitate system design. In the following, a design example is shown

to demonstrate that the ZDIP procedure allows the system designer to conceive a

system configuration with desired zero dynamics.

A schematic of a simple prosthesis mechanism [1] is shown in Figure 3.11. The

input of this system is the current to the motor and the output is the angular velocity

of the arm prosthesis. The corresponding bond graph model is shown in Figure 3.12.

Note that due to the kinematic relations, the model contains a junction loop. By
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Figure 3.11: The schematic of an arm prosthesis.
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Figure 3.12: The bond graph model of an arm prosthesis.

causality shown in Figure 3.13,

pm = qc T2

Cb
A

(3.24)

(3.25)

y

From the original model, f, can be found as • (wa = 0). Thus the zero dynamics

is

m = cT 2
Cb

C Pm

Im Tl

(3.26)

(3.27)

applying the ZDIP procedure, the zero dynamics model is shown in Figure 3.13.

Assuming that all elements are linear, the following equations can be derived by the

- - - - - - - - - - -
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Figure 3.13: The zero dynamics model of an arm prosthesis.

This system has two zeros +- on the real axis of the s-plane. The positive

zero makes this system a non-minimum phase system. Suppose that the purpose is to

redesign this system so that it becomes a minimum phase system, the system structure

must be modified. It is not difficult to find that if the mechanism is reconfigured

so that the transformer parameters T1 or T2 becomes negative, there will not be no

positive zero. However, the zeros ir|CJT J will then be on the imaginary axis. The

system is still a "marginally" non-minimum phase system, which will cause difficulty

in optimal controller design [10]. Thus, in addition to this change, some damping

resistance must be added to the zero dynamics so that the zeros can be moved to

the left half plane. From the zero dynamics model in Figure 3.13, we can see that

the resistance elements (Rm, Ri, Rf) are either not causally related to Cb,•m or not

involved because warm is required to be zero. As a result, they do not play any role

in the zero dynamics. So it will not help to add resistance elements at any of these

locations. Also, since the junction loop is formed due to the kinematic relations, there

is no physically possible way to add resistance on the bonds between warm and Winertial,

or Wrelative and Winertial. A possible solution is to add the resistance element parallel

or serial to the capacitance element (belt flexibility). The corresponding bond graph

models are shown in Figure 3.14 and Figure 3.15. By applying the ZDIP procedure,



it can be found that both designs lead to minimum phase systems. However, design

1 requires the resistance element to be built serially in the belt. In this configuration,

there is no constraint to stop the belt from elongating. This is not a desired behavior.

On the other hand, design 2 can be implemented by adding a parallel damping device

between the motor shaft and the pinion shaft. Thus, it is a possible configuration

with minimum phase zeros. The added resistance will provide the force to eliminate

the non-minimum phase behavior.

R:Rm C:Cb R:Ri R:Rf

Motor G O:relative T1 T2

Sf GY 1 ~ TF H-- 0 -- 1 -- TF ~ 1 -- I:If
b-elt & pulley gear

S 0 R:Rb Se: gravity
I:Im - 0 Rb

O:inertial

Figure 3.14: Design 1 of an arm prosthesis.
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Figure 3.15: Design 2 of an arm prosthesis.

Note that if the zeros were found by calculating the transfer function, there will be

no clues on how to modify the system structures. This procedure makes it possible to

shift the zeros by changing system configurations without a trial-and-error process.



In this chapter, a Zero Dynamics Identification Procedure (ZDIP) is proposed to

derive the zero dynamics of physical systems from the bond graph models. This

method incorporates the derivation of zero dynamics in the differential geometric

approach and the causality manipulation in the representation of bond graph models.

Using the proposed procedure, the system elements which are responsible for the zero

dynamics can be identified. Isolated subsystems which exhibit the zero dynamics can

be found if they exist. Because the procedure utilizes the causality manipulation to

partition the original systems, specific heuristic rules for the systems with specific

patterns are not necessary. This approach is generalized for MIMO systems in the

next chapter.

3.5 Conclusion



Chapter 4

Zero Dynamics of Physical Systems
from Bond Graph Models - Part II :
MIMO Systems

4.1 Introduction

Zero dynamics is an important feature in system analysis and controller design. Its

behavior plays a major role in determining the performance limits of certain feedback

systems [10, 21, 39]. Since the intrinsic zero dynamics can not be influenced by feed-

back compensation, it is important to design physical systems so that they possess

desired zero dynamics. However, the derivation of the zero dynamics is usually com-

plicated even for SISO systems, especially if a form which is closely related to the

physical system and suitable for design is required. Thus a method of designing the

zero dynamics through structural analysis is proposed in this thesis.

The zero dynamics has an interpretation as the resultant internal dynamics when

suitable initial conditions and control inputs are applied to maintain the outputs zero

for all time. For simple SISO physical systems, part of or full zero dynamics may be

obtained by direct inspection of the system structure [31, 47]. Although these results

do not provide a systematic way for dealing with general systems, the approach of

using the models at a more abstract level such as bond graph models does point out

a potential direction. In the previous chapter, the definition of the zero dynamics

in the differential geometric approach and the causality manipulation in the bond

graph representation are incorporated. By doing so, the design of physical systems,



including the consideration of the zero dynamics, become straightforward. Since this

approach does not depend on the heuristic rules for systems with specific patterns,

the results can be applied for general SISO systems. In this chapter, this approach is

generalized for MIMO systems.

In section 2, the definition of the zero dynamics for MIMO systems from the

differential geometric approach point of view is reviewed. Section 3 discusses the

vector relative degrees of MIMO systems and a dynamic extension procedure in the

bond graph representation. Section 4 shows the extension of the proposed procedure

for MIMO systems with a relative degree. Section 5 considers the classes of MIMO

systems without a vector relative degree and the application of the mentioned dynamic

extension procedure. The conclusion is given in Section 6.

4.2 Zero Dynamics in the Differential Geometric
Approach

In this section, the definition of the zero dynamics for MIMO systems from the differ-

ential geometric point of view is reviewed [21, 39]. This approach deals with a class

of nonlinear systems with the general form

C = f(x) + g(x)u (4.1)

y = h(x) (4.2)

where u E R P is the input vector, y C R m is the output vector and x E R'

represents the state vector. The zero dynamics is defined as the internal dynamics

of the system when the necessary initial conditions and control inputs are applied to

keep the outputs zero for all time. So the zero dynamics can be described as

x = f(x) + g(x)u* (4.3)



with suitable initial states. The conditions for u* to exist and how the system evolves

under these conditions can be derived in a rather systematic and rigorous way by

considering a local coordinate transformation problem. This analysis will in turn

lead to the application of input-output linearization and certain dynamic decoupling

problems. In this paper, the relevant existing results are stated since the details can

be found in [21, 39].

For nonlinear MIMO systems, if the system has a vector relative degree, the

definition of the zero dynamics is a straightforward extension from the one for SISO

systems. Assuming that an MIMO system has the same number of input and output

channels, say m, this system is said to have a vector relative degree {rl, r 2, ...rm} in

the neighborhood of a point x0 if

(i) LjL'hi(x) = 0 for all1 < i < m, 1 j < m, for all k < ri - 1 and for all x

in a neighborhood of xo.

L LgfL -hi(x) ... LgmLf'-1hi(x)
. L r2 -1h2(x) ... LML -th2 X)(ii) The decoupling matrix LmL lh( is nonsin-

LLgLj m- i hm(x) ... Lgm Lfm- lh(x) X xo
gular.

Simply speaking, r's are determined by differentiating each output yi = hi(x) until

at least one of the inputs appears. The differentiations can be represented as

yi = hi(x) (4.4)

yi = Lfhi(x) (4.5)

..... (4.6)

yri-1) = L ri- )hi(x) (4.7)
yri ) = L(r )hi (x)+ 1LjLx)?uJ (4.8)

j=1

The decoupling matrix is constructed by the terms LjL'-ih.(x), 1 < j < m in

Eqn.(4.8) for each output yi, 1 < i < m.



r + r2 +... + rm = r < n (4.9)

If a system has a relative degree r = rl + r2 
t ... rm = n, this system has no zero

dynamics. Otherwise, the system has a zero dynamics of order n - r. Similar to

the SISO case, the zero dynamics in such an MIMO system will evolve under the

following constraints if the required control and initial states are applied,

Z* = {x R : hi(x) = .... = L'-lhi(x) = 0
or equivalently, Z* = {x e Rn :y(x) = yi(x).... = y(rt)(x) = 01

(4.10)

(4.11)

where i is corresponding to the outputs, and 1 < i < m. These constraints can be

easily derived through a transformation z = (D(x) which converts the state equations

to the following normal form,

zi = z2
z1  2

z2 3

·Zn

Zn

(4.12)i
= Zr

m

Sa(E 1 , 2 , "'' n , 7 + E bj(6, 26 1*z .. n )uj
j=1

= q(l, (2, ... n, r)

yi = Z (4.13)

where I < i < m, and

(1 -- ... ,

Szrl.
(4.14)

z 1 z· ~ 1m l z, + x1zr+1
S r2 m = ... , = ....zr2. Z m . Zn

According to this definition, if an MIMO system has a vector relative degree in

the neighborhood of a certain point, the r's have the following property



If the initial conditions and control inputs are chosen so that the system states are

initiated in the set 1 = =2 = ... = ,m = 0, the system will always evolve in this set.

Therefore, the zero dynamics is given by the following differential equations.

q = q(0,1, 0, ..., 0, q) (4.15)

In the original coordinates, this leads to the constraints of Eqn.(4.10) or (4.11). In

this paper, Eqn.(4.1) and Eqn.(4.10) or (4.11) will be used to evaluate the properties

of the zero dynamics.

For MIMO systems which do not have a vector relative degree, the zero dynamics

may be found by a more general zero dynamics algorithm under a weaker hypothesis

[21]. However, a simpler approach is to add integrators at certain input channels

so that the relative degree may be defined in terms of the nominally defined inputs.

This approach is called dynamic extension because the feedback signals through these

channels are not static anymore. Since the zero dynamics is left unchanged under the

dynamic extension [21], the definition of the zero dynamics through a vector relative

degree can still be applied for the revised model which contains the extra states from

the dynamic extension. If the vector relative degree of a system can not be defined

even through this approach, it can be proved that the relative degree of such a system

can not be defined through any other dynamic extension of the following general form,

u = a((, ) + ((, x)v (4.16)

S= Y(,x) + S6(,x)v (4.17)

In this case, the existence of a reasonablly defined zero dynamics is questionable. An

example of this class of systems is discussed in section 5.2.



4.3 Zero Dynamics of MIMO Systems from Bond
Graph Models

In this section, the ZDIP procedure [20] is extended for MIMO systems. If an MIMO

nonlinear system has a vector relative degree as defined in section 2, a similar proce-

dure of deriving the zero dynamics can be developed by a straightforward extension

of the one for SISO systems. However, for MIMO systems, the relative degree and

zero dynamics are not always well-defined in terms of system configuration. Thus,

the existence of relative degree and zero dynamics in MIMO systems is first discussed.

The application of ZDIP procedure to MIMO systems will be shown in the following

sections.

4.3.1 Vector relative degree

As described in section 4.2, the notion of relative degree can be extended to MIMO

systems under the assumption that the decoupling matrix is nonsingular. The sin-

gularity of the decoupling matrix depends on the operating points, the system pa-

rameters and the system structures. In this thesis, the concern is the structural

configurations which cause the relative degree of physical systems unable to be de-

fined. It will be shown that a certain category of such systems can be modified by

a dynamic extension method so that the relative degree can be rendered. The zero

dynamics can then still be found by using the revised models.

The decoupling matrix is structurally singular if and only if it contains (1) zero

columns (2) zero rows (3) dependent rows or columns, at any operating point with

any set of system parameters. Note that condition 2 never happens according to

the definition of the decoupling matrix itself unless part of the system is isolated and

certain output is not causally related to any input. Also, if two inputs are deliberately



chosen to be at the same location, the corresponding columns will be exactly the same.

This is a trivial example with condition 3. Since these cases rarely happen and can

be detected easily, they are not considered in this paper. Condition 1 and the non-

trivial cases of condition 3, however, are not obvious from system configurations.

The following propositions describe the corresponding structures in the bond graph

representation.

Proposition 4.1: In an MIMO bond graph model, if any one of the inputs can not be

connected to at least one output with a shortest causal path, under the condition that

there are no other inputs that can be connected to this output with a "shorter" causal

path, in other words, if there are always other inputs "closer"' to all the outputs, then

this system does not have a vector relative degree.

Proposition 4.2: In an MIMO bond graph model, if any two of the shortest causal

paths between the input and output pairs share any of the junctions, dissipative ele-

ments, or energy storage elements, (i.e. these two causal paths partially overlap) and

there is no other alternative causality assignments, choice of shortest causal paths to

avoid this overlapping, then this system does not have a vector relative degree.

Proofs for both propositions are given in Appendix B.3

4.3.2 Dynamic extension procedure

The system configurations described in proposition 4.1 cause the decoupling matrix to

be singular because of condition 1 (zero columns). This condition can be eliminated if

integrators are added at certain input channels to increase the order of the dynamics

between these inputs and the outputs[21]. As mentioned in section 2, this procedure

is one form of dynamic extension. Using the bond graph interpretation of the rela-

tive degree for each input-output pair[20], a corresponding bond graph procedure for

1"Shorter" or "closer" is defined in the sense that the causal path contains a smaller number of
energy storage elements with integral causality.



dynamic extension is derived and stated as follows,

Dynamic extension procedure:

(1) Determine the shortest causal path between each output, 1 < i < m, to the "near-

est" input2 and denote the number of energy storage elements with integral causality

on these shortest causal paths as nWs. Denote the unconnected inputs3 as u-s.

(2) Determine the shortest causal path between each unconnected input ui to the near-

est outputs iuj and denote the number of integral causality on the shortest causal paths

as n is.

(3) Add ni; - ni integrators at the control channels which are originally connected to

output iZ"js by the shortest causal paths in step 1. The inputs to the integrators now

are treated as the new system inputs.

(4) Reapply step 1 for the modified model. In this process, there should be at least

two shortest causal paths for each output i'js. One leads to the control channel in

step 3 where integrators are added. Another one leads to an originally unconnected

inputs uj in step 2. The latter path should be selected as the shortest causal path

for output iuj. By doing so, the unconnected inputs u s are paired with i'js and the

system configuration in proposition 4.1 does not exist.

Remark : After applying the dynamic extension procedure, the structural condition

in proposition 4.2 may still exist. Due to condition 3 (dependent rows), the decoupling

matrix of such a system is always singular. In this case, the relative degree can not

be defined through any dynamic extension. From design point of view, this is an

undesirable structure with inherent difficulty in controller implementation. Thus,

as a guideline, the inputs and the outputs of MIMO systems should avoid such a

2"Nearest" is defined in the sense that the causal path contains the least number of integral
causality.

3The inputs which are not connected by any shortest causal path after this process are called
unconnected inputs.



configuration.

In this chapter, the systems or the revised models which have vector relative

degrees in terms of system configuration are considered as the candidates for the

ZDIP procedure.

4.4 MIMO Systems with a Vector Relative De-
gree

If an MIMO nonlinear system has a vector relative degree as defined in section 2,

the relative degree ri associated with output yi is indicated by the number of integral

causality on the shortest causal path which connects this output to its "nearest"

input. This is a direct extension of the rules for SISO systems [20]. Using these

shortest causal paths, the zero dynamics can be identified by a procedure similar

to the SISO ZDIP procedure. A revised version of the ZDIP procedure for MIMO

systems is listed as follows.

ZDIP procedure for MIMO systems

(1) Apply the normal Sequential Causality Assignment Procedure (SCAP) to the sys-

tem bond graph model.

(2) Determine the non-overlapping causal paths which define the vector relative degree

{rir2, ... m} 4

(3) Remove the bond which is related to the output variables, and assign a zero value

to the junctions which these bonds are connected to. This indicates that the common

efforts of the 0 junctions or the common flows of the 1 junctions are zero.

(4) Reverse the causality on the bonds which are connected to the inputs.

(5) Replace every integral causality on these shortest causal paths by a derivative

4The order of the zero dynamics can be determined by the number of energy storage elements
with integral causality not on any of these paths.



causality.

(6) Keep every elements with integral causality not on these shortest causal path un-

changed. These are the candidate elements which will contribute the independent state

variables for the zero dynamics.

(7) Complete the causality assignment without violating the junction constraints.

(8) Derive the zero dynamics according to the causality assignment.

(9) If the above derivation requires the causal outputs from the elements whose causal-

ity has been reversed, solve for these variables using the algebraic equations in Eqn. (4.10)

so that they can be represented by the independent state variables determined in step

6.

Example : Consider the MIMO system of Figure 4.1. The inputs and the outputs of

this system are ul, u2 and fl, f2 respectively. By searching the causal paths, since ul

is much "closer" to fi than u2 and u2 is much "closer" to f2 than ul, the decoupling

matrix is a diagonal matrix. It is clear that this system has a vector relative degree

in terms of system configuration. So the procedure can be executed as shown in

Figure 4.2. The resultant model shows that the zero dynamics of this system can be

partitioned as a first order system in subsystem 1 and a 3 rd order system in subsystem

2 as shown in Figure 4.3. The dashed line with an arrow indicates that the input

variable (effort) at port b2 of subsystem 2 is determined by the output variable at

port bl of the same subsystem. The other input variables at port bl, b3 and b4 are

all zero. Thus these two subsystems are isolated. Their properties can be studied

separately no matter whether the system is linear or nonlinear.

Assuming that the constitutive equations for Ci, Ii and Ri are eci = ci(qci) ,

fAi = PIi(pii) , eRi = ?Ri(fRi) respectively , the state equations of the zero dynamics
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Figure 4.1: Bond graph model of an MIMO system.
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Figure 4.2: The causality assignment after ZDIP procedure.

can be derived as follows

qC2

4c1

R-1 (5 -V'C2(qC2))

= -0•R1(Oci(qc1) + OI(PI1)g)

PI1 = - cl(qc1)t - OR1(CnI1(PI1)) - g4'I2(PI2 )

-g [@-i(•'cI(qc1) + n(pV)g) + 0((VpII1)g)]

PI2 = 01(PI1)g

With linear constitutive equations eci = ', fi = , eRi = fRiRi, , the state

equations can be written as

C2 qc2
R5C2

I\

Se:ul*• 00 ,

JJ
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Figure 4.3: The zero dynamics identified by ZDIP procedure.
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Thus, R5C2 and the eigenvalues of the matrix in the above equation would be the

transmission zeros of the overall MIMO system.

Note that if the equations are transformed into the normal form of Eqn.(4.12),

the representation of the isolated subsystems is not revealed. The properties (e.g.

stability) of such a high order nonlinear zero dynamics would be difficult to determine,

not to mention the effort of finding the transformation functions. Even for linear

systems, the calculation of the MIMO transmission zeros also requires significant

efforts. By this procedure, the zero dynamics of MIMO systems can be derived in

a systematic way. The zeros can be found by solving the eigenvalues of the lower-

order subsystems. This approach can reduce the effort of computation and the risk

of unstable numerical errors in addition to its design purpose.



4.5 MIMO Systems without a Vector Relative
Degree

If an MIMO nonlinear system does not have a vector relative degree, the dynamic

extension procedure in section 4.3.2 may be used to revise the model. If the revised

model has a vector relative degree in terms of system configuration, the ZDIP pro-

cedure can be applied in the same manner as shown in the previous section. The

following examples illustrate the use of the dynamic extension procedure. To explore

the relations between the proposed approach and the traditional methods, three ap-

proaches will be used to derive the system's zeros (zero dynamics) for each example

: numerical computations, differential geometric derivation and the proposed ZDIP

procedure using the bond graph representation.

4.5.1 Systems with a relative degree under dynamic exten-
sion

In this subsection, a typical example of the class of systems with a relative degree

under dynamic extension is discussed. Consider a simple mass-damper-spring system

shown in Figure 4.4. The inputs are ul = F1, u2 F2 and the outputs are yl = xl,

Y2 - X2.

I yll y2-*2
kl k2 k3

R1 R2 R3

Figure 4.4: A 2-input 2-output mechanical system.



R:R2 C: /k3

1

ein=F1 1 ein=F2
Se:ul • 1 0 1 0 - 1 00 1 t-0 • Se:u2

yl=Il y2=ki2

I:ml I:m2 I:m3 I:m4

Figure 4.5: A corresponding bond graph model.

Numerical computation

For simplicity, all elements are assumed linear5 . The velocities associated with the

masses mi, m2, m 3 and m 4 are fl, f2, f3 and f 4 respectively. The forces assocated

with the springs C1, C2 and C3 are el, e2 and e3 . According to the bond graph model

in Figure 4.5, the state equations are derived as follows.

1f4 = [3 - (f3 - f)R3 - U2]
m4

e 3 = (f3 -4)k

f3 1 [e2 + (f2 - f3)R2 - e3 - (f3 -
m3

e2 (f2 -3)k2
1

f M2 l[el (f -- f2)R1 - e2 - (f2m2

el = (fi - f2)kl

1
f = [u1 - el - (fi - f2)R1]

mi

Y1 = fi

f4)R 3]

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

f3)R2]

procedure, the system does not have to be linear.

C: R:R31/kI R:R1 C:i/k2111- X14 \1
/

5Using the ZDIP



Y2 = f2 (4.26)

In a matrix form, the state equations can be written as follows.

xc = Ax+Bu

y = Cx+Du

J4

f 3
e2

f2

47
\ JI /

-R 1 _ 0 0 0 0
m4 m4 m4

-k 3 0 k3 0 0 0 0
_ 1 -1 -R2-R3 1 R2 0 0
m3 m3 m3 m3 m3

0 0 -k 2  0 k2 0 0
0 0 R_ -1 -R -R2  1 _L

m2 m2 m2 m2 m2

0 0 0 0 -K 1  0 k1

0 0 0 0 Rn -_ 1 -R-&

J4

e3

f3
e2

f2

el
f,

-,1 )/

+

0 -1
m4

0 0
0 0
0 0
0 0
0 0
1 0

M1

(yl) [0 0 00001
Y2 0 0 0 0 10 0

J4
e3
f3
e2
f2

elC 1i

00 UO2)

For the convenience of calculation, the following numerical values are selected. R 1 =

1 N , R 2  2 Nsec, R 3 =4 sec, k = 4 N , k2 = 2 N , k 3 - 8 , m1 = - 2 = M 3

m 4 = 1Kg.

One way to obtain the system's transmission zeros is by calculating the determi-

nant of the system's transfer function matrix. For this system, the transfer function

matrix is calculated as follows.

(Y1 = G(s) u

G(s) = D(s) N21 N22

1 6+ 13s5 + 58s4 + 138 3  176 2 + 112s + 64 -8S 3 - 56 2 - 112s - 64
7S1 s s + 14s 4 + 66s 3 + 128s 2 + 112s + 64 -8s4 - 32s 3 - 72s 2 - 12s - 64

U(
U2

/ \ ]l- ,

\Jlj

/ r\

\ J* /
.. .1 M .



,where D(s) = s 7 + 14s 6 + 74s5 + 230s 4 + 424s 3 + 448S2 + 256s. The zeros of the

determinant of G(s) are -7.1429, -2.1888, -1.5381±2.3328i, -0.7959±1.2097i, -2,

-1, 0, 0. Note that -7.1429, -2.1888, -1.5381 ± 2.3328i, -0.7959 ± 1.2097i and 0

are just the repeats of the poles. Therefore, the transmission zeros of this system are

0, -1 and -2. This result can also be obtained by solving the generalized eigenvalue

problem,

s -A -B xo
C - - =0 (4.27)

,where the A, B, C, D matrices are defined as above, xo is the corresponding initial

condition vector and uo is the corresponding input amplitude vector. The eigenvectors

of the generalized eigenvalues 0, -1 and -2 are listed as follows.

S 0 0.3162 0.2182
0.4472 0.5060 0.8729

0 0.2530 0
0.4472 0.5060 0

0 0 0
0.4472 ' 0 0

0 0 0

0.4472 0 0
0.4472 / 0.5692 i 0.4364

Note that these eigenvectors show the nontrivial eigenmodes of the system motion,

where both the outputs are kept zero for all time. The first mode shows that when

elo = 0.4472, e20 = 0.4472, e30 = 0.4472 and all the initial velocities of the masses

are zero, if ul = 0.4472 and u2 = 0.4472 are applied, the outputs will be kept zero

for all time6 . The corresponding generalized eigenvalue of this mode is 0. This is

obviously the case when the system achieves an static force equilibrium and all the

6The absolute amplitude of these numbers are of course not important, if only the ratios are kept
the same.



masses have a zero velocity for all time. Similarly, the second mode shows that when

f 40 = 0.3162, f3 0 = 0.2530, e3 0 = 0.5060, f20o = 0.5060 and other states are zero, if

ul = 0 and u2 = 0.5692e - 1 are applied, the outputs will be kept zero for all time. The

third mode shows that when f 40 = 0.2182, e3 0 = 0.8729, and other states are zero, if

ul = 0 and u2 = 0.4364e - 2 are applied, the outputs will be kept zero for all time.

Differential geometric approach:

According to the differential geometric approach, the zero dynamics will evolve on

the set defined by Eqn.(4.10) or (4.11) if the system has a vector relative degree.

In other words, if the constraints in Eqn.(4.10) or (4.11) are imposed on the system

dynamics, the residual dynamics will be the zero dynamics. So first, the system's

relative degrees are examined by taking successive differentiation of the outputs.

Y1 = fi (4.28)

1 = f = [ul - el - (fi - f 2)R 1] (4.29)

y2 = f2 (4.30)

y2 = 2 = -[el + (f1  - f 2)R1 - e2 - (f2 - f 3)R 2] (4.31)
m2

1
22 = f2 = [1 - 1+ (f1 - f 2)R 1 - 62 - (12 - f 3)R 2 ] (4.32)

rn2

Note that fi, which is a function of ul, appears in Eqn.(4.32). Therefore, the decou-

pling matrix is -[--_0[ i 0 (4.33)

The zero column shows that the input u 2 does not appear in the differentiations of

the outputs. One way to cope with this problem is using the dynamic extension

procedure. For this example, an integrator added at input ul will suffice.

C = u1 (4.34)



(4.35)

The nominal input u* is treated as an input and u1 is treated as a state. For this new

system, the differentiations of the outputs are

Yi = f

91 = f/1--1 [( - el -
mi1

1 1

=- 1 [ -ex- (f1
mi

Y2 = f2

2 = f2 = l 1e + (fl
m2

12 = 21
m2 - f)R 1 - 62

Note that in Eqn.(4.42), f, contains ut; f3 contains f4, which is a function of u2 .

1
Af = [u* - e1 - (f -i 2)R1]

mil

1
f3 62 + (f2 3)R2 - 3 - (

m3

(4.43)

(4.44)- f 4 )R3 ]

Therefore, the new decoupling matrix is now

1 0
-R 2 R3

m2m3m4

(4.45)

By this derivation, rl is found as 2 from Eqn. (4.38) and r 2 is found as 3 Eqn. (4.42).

Since n* - r = n* - (r1 + r2 ) = 8 - 5 = 3, the zero dynamics of this system should

By substituting Yi = Y2 = 0 and y2 = ý2 = ý2 = 0 into the state

(fi - f 2)R 1]

(f1 - f 2)R 1]

(4.36)

(4.37)

and

- f 2)R 1] (4.38)

(3)
Y2

(4.39)

(4.40)

(4.41)

(4.42)

u1 =

)(3 " " " "

f2] - - [1 + (f1 - f2)1- -E 2 - (f2 - f3)-2]
M2

be order of 3.



equations, the residual dynamics will have eigenvalues 0, -1, -2. This is consistent

with the numerical computation shown above.

Remark: By comparing these two methods, it is found that the numerical calculation

considers each transmission zero separately with a corresponding eigenmode motion,

while the differential geometric approach considers the zero dynamics as a whole (a

subset of the system dynamics). Therefore, in the differential geometric approach,

a dynamic extension at ul is necessary. This means that the information of ul is

necessary to compute the required control inputs so both the outputs can be kept

zero for all time.

ZDIP procedure

The proposed ZDIP procedure is based on the differential geometric approach. How-

ever, the complexity of manipulation is drastically reduced by the bond graph repre-

sentation. For this given system, the shortest causal paths from the outputs to the

"nearest" inputs are shown in Figure 4.6. Since input u2 is not connected to any

output, the relative degree can not be defined. This can be fixed by the dynamic ex-

tension procedure as shown in Figure 4.7, where an integrator has been added before

ul. The relative degree can be defined now as rl = 2, r 2 = 3 by the causal paths

from il to yl and u2 to y2. Including the integrator at channel ul, the order of this

system is 8. Therefore the order of the zero dynamics must be 3. Using the ZDIP

procedure, the subsystems which represent the zero dynamics are shown in Figure

4.8. As partitioned in the figure, subsystems 1, 2 and 3 are in a chain form'. The

input flow to subsystem 1 is zero because yl and y2 are kept zero. So this subsystem

is isolated. The input effort to subsystem 2 is from the output of subsystem 1. The
7 Using the constraints in Eqn.(4.10), the causal output from 13 can be represented by the states

in subsystem 1 and 2.



input effort to subsystem 3 is from subsystem 2 and the causal output from 13. For

linear systems, the one way interactions between subsystems do not influence the

eigenvalues. Therefore, the transmission zeros of this system are 0, : and :

Remark 1: By inspecting the decoupling matrix, it is found that the shortest causal

paths between the inputs and the outputs have a strong relation with the components

in the matrix. In this example, the parameters of the physical elements which are on

the shortest causal path appear in the corresponding components of the decoupling

matrix. This indicates that the proposed approach effectively explores the structural

information of physical systems with a systematic procedure.

Remark 2: Using the bond graph representation, alternative approaches may be

found to ensure the existence of the system relative degree. For example, instead

of adding an integrator at ul, one might increase the order of dynamics between ul

and yl by considering the actuator dynamics at channel ul. From the differential

geometric point of view, this is just another type of dynamic extension. However,

from design point of view, one can modify the model or system design to facilitate

dynamic analysis or controller design. This is usually not possible by using only

equations.

4.5.2 Systems with ill-designed input-output configurations

In this subsection, an example of the class of systems with the structural condition

of Proposition 4.2 is discussed. This example reveals the physical meaning of the

described ill-designed configurations. Consider a simple mass-damper-spring system

shown in Figure 4.9. The inputs are now ul = F1, u 2 = F2 and the outputs are

Y1 = i 2, Y2 = X3 "
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Figure 4.6: The shortest causal paths of an MIMO model.
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Figure 4.7: The shortest causal paths of an MIMO model by dynamic extension.

Numerical computation

For simplicity, all elements are assumed linear. The velocities associated with masses

mi, m 2, m 3 and m 4 are fl, f2, f 3 and f4 respectively. The forces assocated with the

springs C1, C2 and C3 are el, e2 and e3 . According to the bond graph model in Figure

4.10, the state equations are derived and found to be,

1
- Ie3 -

M4
(f3 - f4)R3 ]

"y

(4.46)
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Figure 4.8: The zero dynamics identified by ZDIP procedure.
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Figure 4.9: A 2-input 2-output mechanical system.
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el = (fi - f2)kl
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Figure 4.10: A corresponding bond graph model.

In a matrix form, the state equations can be written as follows.

R
m4

k3
-R 2 -R 3

m 3

-k2
_2L
m2

0
0

(yl0 0 0 0 1 0 0
Y2 0010000

0 0 0
0 0 0
1 _ 0

m3 m3

0 k2 0
-1 -R 1 -R 2  1
m2 m2 m2

0 -K1 0
0 R' -1

M1'• MT1

f4
e3

f3
e2

f2

el

fi

0
0
0
0

-

M2

ki
-R1

/ \

J4

e3

f3
e2

f2
el
f,
J1 /

+

0 0
0 0
0 0
0 0
0 1

m2

0 0
1 0

(U1
U2

For the convenience of calculation, the following numerical values are given. R1 =

1 Nec, R 2 =2 Nsec- , R 3 =4 Nse k = 4:, k2 = 2 k3 -= 8-, m 1 = m2 = m3

m4 = 1Kg.

One way to obtain the system's transmission zeros is by calculating the determi-

nant of the system's transfer function matrix. For this system, the transfer function

ein=F1

I:ml

I \
J4

63

f3
62

f2
e1

\ J /

m3M3

0
0
0
0

1
m4
0
-1
m3

0
0
0
0

R:R3C:l/kl

*

Se:u2



matrix is calculated as follows.

(Y1 = G(s) u)

G(s) 1 N11 N 12

D(s) N21 N22

1 s5 + 14s 4  66 3 + 128s 2 + 112s + 64 s6 + lls 5 + 40s 4 + 90s 3 + 144s 2 + 112s + 64
S2s 4 + 18s3 + 64s 2 + 112s + 64 2s5 + 12s 4 + 42s 3 + 80s 2 + 112s + 64

where D(s) = s7 + 14s 6 + 74s 5 + 230s4 +424S 3 +448s2 + 256s. However, in this exam-

ple, the determinant of the transfer function matrix is identically zero: det[G(s)] = 0,

Vs. Also, it is found that the whole s space is the solution of the generalized eigen-

value problem. This indicates that the transmission zeros of this system can not

be reasonablly defined. However, it is not obvious from the computation procedure

which part of the system structure causes this problem.

Differential geometric approach

According to the differential geometric approach, the zero dynamics will evolve on

the set defined by Eqn.(4.10) or (4.11) if the system has a vector relative degree.

In other words, if the constraints in Eqn.(4.10) or (4.11) are imposed on the system

dynamics, the residual dynamics will be the zero dynamics. So first, the system's

relative degrees are examined by taking successive differentiation of the outputs,

Y1 = f2 (4.55)

1 2 = -[el + (fi - f 2 )R 1 - e2 - (f2 - f 3 )R 2 + U2] (4.56)
m2

Y2 =f3 (4.57)

Y2 = 3 - 2= [e2 + (f2 - f 3)R 2 - e3 - (f3 - f4 )R 3] (4.58)
m 3

2 = f= [2 + (2 - f3)R2 - e3 - (f3 - f4)R3 ] (4.59)
m3



Note that f2, which is a function of u 2, appears in Eqn.(4.59). Therefore, the decou-

pling matrix is

0 1 ] (4.60)
m2M3

The zero column shows that the input ul does to appear in the differentiations of

the outputs. One way to cope with this problem is using the dynamic extension

procedure. For this example, an integrator added at input u2 will suffice to eliminate

the zero column,

( = u2 (4.61)

u2 = ( (4.62)

The nominal input u* is considered as an input and u2 is now treated as a state. For

this new system, the differentiations of the outputs are

Y1 = f2 (4.63)

P1 = f2 l[e + (fi - f 2)R 1 - e2 - (f2 - f 3 )R 2 + (• (4.64)
m2

1
= +2 -JV -( f 2)R 1 -- 2 (2 - j 3)R2 + ]

m2

1[61 + (1f - f 2)R 1 -2 - (2 - f 3)R 2 + u2] (4.65)
m2

and

Y2 = f3 (4.66)

ý2= 3 = -[e2 + (f2 - f 3)R 2 - e3 - (f3 - f 4)R 3] (4.67)
m3

1
i2 = M3= [2 + (j2 - f 3)R 2 - e3 - (f3 - f 4)R 3] (4.68)

m3

Y23) f 3 ) - [2 + (f2 - f3 )R 2 - E3 - (f3- f 4)R 3] (4.69)
m3

Note that in Eqn.(4.65), f2 contains u* and fi, where ft is a function of ul. Also,

in Eqn.(4.69), f( 3) contains f2. Therefore, although the decoupling matrix does not



have any zero column as shown below, it is still structurally singular.

mlm2 m(4.70)

mlm2m3 m2m3

This is due to the fact that both outputs finally reach the inputs through the term f 2.

Even if this system contains nonlinear elements, the result will not change. Therefore,

the zero dynamics can not be identified by this procedure.

ZDIP procedure

The proposed ZDIP procedure is based on the differential geometric approach, there-

fore no more results can be obtained than what has been shown above. However,

using the bond graph representation, one can explore the physical meaning of the

above results and predict them by simple system structural analysis. As a result, a

simple solution can be found by relocating the inputs.

The shortest causal paths from the outputs to the "nearest" inputs are shown

in Figure 4.11. Since input ul is not connected to any output though these paths,

the relative degree can not be defined. This can be fixed by the dynamic extension

procedure as shown in Figure 4.12. However, the causal path between ul and yl and

the one between u2 and y2 share the energy storage element 12. By proposition 4.2 in

section 4.3.1, this system can not have a relative degree through any dynamic exten-

sion. In fact, from the outputs point of view, the two control inputs are misplaced so

that their effects are not separable. Thus, the independent tracking controls of both

yl and y2 can not be performed at the same time.

From the above discussion, it appears that unless the system dynamics is modified

or augmented to reroute the shortest causal paths, not only the decoupling matrix will

always be singular but also the controller design will be very difficult. One simple

solution for this problem is redesigning the input locations. For example, if u2 is



C:1/k3 R:R3

1

S 03 1:14

y2=-3

I: I:IU2 1:3 I3

Figure 4.11: The shortest causal paths of a MIMO model.
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Figure 4.12: The shortest causal paths of a MIMO model by dynamic extension.
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applied on element 13, two non-overlapping shortest causal paths can be selected as

shown in Figure 4.13. Therefore, the relative degree and zero dynamics of this system

can be defined. The independent controls of both outputs become possible. Note that

this solution is not easy to see if only system equations are used.
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Figure 4.13: An alternative input-output configuration design.

4.6 Conclusion

In this chapter, the proposed Zero Dynamics Identification Procedure (ZDIP) pre-

sented in chapter 3 is extended for MIMO systems. It is shown that for MIMO

systems, an essential issue of system design is the existence of the vector relative

degree. If a system has a vector relative degree, it's zero dynamics can be identified

by a straightforward extension of the SISO ZDIP procedure. If a system does not

have a vector relative degree, a dynamic extension procedure may be used to fix the

structure. Then, the zero dynamics can still be identified in a similar manner. It is

also shown that if the input-output configurations are ill-designed, not only the rela-

tive degrees do not exist, but also the zero dynamics can not be reasonably defined.

In that case, separate tracking controls for the outputs are impossible. As a result, a

useful guideline is provided for the design of the input-output configurations as well

as the zero dynamics of MIMO systems.

C:l/kl
> C:1/k2 R:R2 C:1/k3 R:R3



Chapter 5

Decomposition of Linear Dynamics in
the Physical Domain and Eigenvalue
Estimations

5.1 Introduction

The eigenvalues of a linear system is the most essential dynamic feature in the design

considerations. From the system design point of view, it dominates the open-loop

system behaviors and contributes to the performance limits of feedback systems. In

an analysis process, the numerical eigenvalues can be easily computed by existing

software programs. However, for the purpose of design, these numerical values do

not indicate any possible improvement toward better system performance unless by

a huge number of trial-and-error iterations. Therefore, it is important to build the

direct relations between the component characteristics and the system eigenvalues in

order to perform a systematic design.

It is known that the symbolic solutions for the eigenvalues of high order systems

are not available. Even if the exact solutions exist, they may be too complicated,

and therefore do not point out useful design directions. So instead of using the exact

solutions, the approximations or the bounds of the eigenvalues may be more feasible.

If they can be found by simple computations, the influences of the system components

would be shown effectively. In the literature, many efforts has been made to find the

numerical bounds of the eigenvalues to save the computation time for a large system

[4]. Also, a variety of matrix theories have been proposed to find the bounds of



the eigenvalues in terms of the matrix components [16]. [51] proposes a method to

obtain the formulas of the eigenvalues for a class of systems with uniform parameters'.

However, in many design cases, these approaches still do not provide a satisfactory

result.

In this chapter, the difficulty of directly using the existing approaches is exam-

ined. Several decomposition procedures are proposed to improve the results. These

procedures identify the physical components which contribute most to certain group

of eigenvalues. By using the available matrix theories or other existing approaches,

the bounds of each eigenvalue group can be represented in terms of the component

characteristics. These bounds will then facilitate the design of physical systems so

that the eigenvalues are approximately at the desired locations.

In section 2, currently available methods are examined. Section 3 describes the

decomposition procedure for fast-slow dynamics. Section 4 shows the decomposition

procedure for high-low frequency oscillation modes. Section 5 shows the decomposi-

tion procedure for the heavily-damped modes and the lightly-damped modes. The

eigenvalue estimations for general systems are discussed in section 6. Several design

examples are shown in section 7. The conclusion is given in section 8.

5.2 Currently Available Methods

The currently available methods for eigenvalues estimation can be divided into two

categories. One is using the matrix theories such as the Gersgorin's theorem and

its many versions of extensions [16]. These theories give a simple estimation of the

bounds in terms of the matrix components. For example, given a complex n x n

'A system has uniform parameters if all the inertance elements, capacitance elements and dissi-
pation elements in the system have the same parameters respectively.



all a12 . . . . . . . aln

aj3  aj2 ... .... ajn (5.1)

anl an2 ... .... ann

a set of Gersgorin discs Dj(A) can be formed on the S-plane by choosing the diagonal

terms as the center and the absolute sum of the off-diagonal terms in each row as the

radius,

Dj(A)= zECC:z-aj.~I jaj , I for j = 1,2,...n (5.2)

The theorem proves that each eigenvalue of A lies in some Gersgorin's disc of A.

Although these theories are easy to apply, they can not be directly used for system

design. One obvious reason is that since the physical system parameters are real

numbers, the A matrices of the state equations are real. In this case, the center

of the Gersgorin's discs will be real. If the system possesses complex eigenvalues,

the radii of some discs have to be very large to include the eigenvalues in the discs.

Therefore, the bounds would be too far from the eigenvalues. To solve this problem,

the A matrices need be pre-conditioned so that the diagonal terms contain more

system characteristics [11]. However, the purpose of this pre-conditioning procedure

is different from those numerical procedures which are used to save the computation

time in the finite element applications. Since the purpose is for system design, a

symbolic matrix description is required after the pre-conditioning. Therefore, this

procedure needs to be carefully designed so that a symbolic transformation can be

carried out, yet the diagonal terms possess the most possible dynamic features of the

system. The details of such a procedure will be discussed in section 5.6.2.

Another problem is that in some systems, the values of certain system parameters

are much larger than the others. If the Gersgorin's theorem is applied to these

matrix A,



systems, some of the Gersgorin's discs will inevitably become large. For example,

Figure 5.1 shows a simple R-C circuit. The state equations of this system are

R1 R2  R3

C C2 C3_

Figure 5.1: An R-C circuit.

-1 1 0
ql ciR1 C2R1 q, q

1 -(RI+R2) 1
q2 ) CiR 1  C2(R1R2) C3R q2  = A q2 (5.3)

43 0 1 -(R2+R3) q q3
C2R2 C3 (R2 R3)

A set of symbolic bounds for the eigenvalues can be derived by Gersgorin's theorem.

Suppose the parameters of this system are chosen as C1 = C3 = 1, C2 = 0.1, R 1 =

R2= R3 = 1. The numerical A matrix becomes

-1 20 0
A= 1 -20 1 (5.4)

0 10 -2

The numerical bounds are shown in Figure 5.2. From the passivity of this system

and the fact that this system has no inertance elements, it can be concluded that

the eigenvalues must be on the negative real axis. The bounds are still too large

to provide any indication of the eigenvalue locations. For this type of systems, the

eigenvalues usually can be separated into different groups which are far from each

others. Therefore, unless the physical elements which are mostly responsible for

each group of eigenvalues are identified and partitioned, no matter whether pre-

conditioning procedures are applied, the Gersgorin's theorem can not obtain useful

results.

The second category of approaches assume that the system has uniform parame-

ters, In that case, it would be easier to obtain the eigenmodes of the physical systems.



Figure 5.2: An estimation of eigenvalues from Gersgorin's theorem.

Then the eigenvalues can be easily calculated and the formulas can be formed. For

example, Figure 5.3 shows the first oscillation mode a mass-spring system. Since the

system has uniform parameters, there must be a node at exactly the center of the

system. Therefore, the eigenvalue of this mode can be determined by either one of

the subsystems separated by the node. Similarly, the highest frequency oscillation

mode of the same system is shown in Figure 5.4. In this case, there is a node in the

middle of each adjacent mass pair. The eigenvalue of each subsystem should be the

same and equal to the eigenvalue of this mode. So the exact positions of the nodes

can be easily identified and a formula for the eigenvalue of this mode can be obtained.

Figure 5.3: The first oscillation mode of a mass-spring system.

However, for general systems with non-uniform parameters, the only result this

method can obtain is certain bounds of the eigenvalues. These bounds are obtained by

forming systems with the uniform parameters which generate the largest and smallest



Figure 5.4: The highest frequency oscillation mode of a mass-spring system.

possible eigenvalues. It is obvious that if a system has elements with very different

values, these bounds would be very big.

Therefore, to obtain meaningful bounds for the eigenvalues, the physical systems

should be decomposed in a way that each subsystem represents a compact group

of eigenvalues if it is possible. Then many techniques can be used to estimate the

eigenvalues and get tighter bounds. Since these bounds are closely related to the

characteristics of physical elements, they can be directly used in a design process.

In the following sections, three decomposition procedures are presented individu-

ally for certain categories of dynamic systems. Then the considerations for general

systems follows.

5.3 Decomposition of Fast-Slow Dynamics

One common technique in the application of eigenvalues is the decomposition of fast-

slow dynamics. When a system contains fast and slow dynamics, it is well known

that the slow dynamics dominate the system behavior. Therefore, the eigenvalues

corresponding to the fast dynamics usually can be safely ignored in the analysis.

However, this process does not involve the identification of physical elements which

contribute to the fast and slow dynamics. If a design task needs to modify the

eigenvalues of the dominant dynamics, such a numerical decomposition does not help.



According to the singular perturbation theory [26], if a system has dynamics with

different time scales, the state equations can be decomposed as follows.A 5C All A12 X1 )
SAx 6=5C2 A 21 A 22  X2 (5.5)

where xl is the state vector of the slow dynamics, x 2 is the state vector of the fast

dynamics, c is a normalization factor. In this representation, all the components in

the A matrix have the values with the same order of magnitude.

From the fast dynamics point of view, the states of the slow dynamics are quasi-

static. Therefore, the fast dynamics can be represented as

ei2 = A22X2 (5.6)

Since the fast dynamics has much faster transient response, the slow dynamics will

evolve with the states X2 at equilibrium status, i.e. 5 2 = 0. So the slow dynamics

can be derived as

-i- = [All - A 12A-1A21A21X1 (5.7)

With this approach, if the computation can be carried out with symbolic descriptions,

the system elements which contribute to the fast and the slow dynamics can be

identified individually. However, this method would fail to explore the influence of

the system structures to the eigenvalue locations.

5.3.2 Decomposition in the physical domain

To include the system structure information, the decomposition should be carried out

in the physical domain. Namely, this decomposition should be performed directly on

a system model such as bond graph models. For a class of systems, this is particularly

5.3.1 Singular perturbation theory



easy. If the system contains only R, C elements or R, I elements, the eigenvalues will

always be real. The elements which are involved with the fast dynamics or the slow

dynamics can be identified by the local loop gains [45]. For example, a bond graph

model of the system in Figure 5.1 is shown in Figure 5.5. In this model, the element

C:C1 R:R1 C:C2 R:R2 C:C3

1UuTLJLJTL
Sf i O 1- 0 0-- 1 -- 0 b' R0 -RR3

Figure 5.5: The bond graph model of an R-C system.

C1 impose effort to the zero junction, then through the one junction to the element

R 1 . The element R1 impose flow to the one junction and through the zero junction

to the element C1. Therefore, a causal loop is formed between these two elements.

The loop gain of this path is .1 Similarly, a causal loop is formed between the

elements R1 and C2, 02 and R 2, R2 and C3, C3 and R3. Suppose the element C2 has

a particularly small value, the loop gains RW and R will become much larger than

others. This means that the energy stored in the capacitance C2 will be dissipated

by R, and R2 very quickly. Therefore, the elements R1 , 02 and R 2 along with the

junctions which the causal loops pass through represent the fast dynamics as shown

in Figure 5.6. Once the fast dynamics reaches its equilibrium status q2 = 0, the

element C2 plays no role in the slow dynamics. The condition 42 = 0 can be imposed

by replacing the element C2 with a flow source of 0 value. The slow dynamics can

then be represented by the model shown in Figure 5.7.

Remark 1 : If the state equations are derived according to the models in Figure

5.6 and 5.7, they will be exactly the same as those derived from the perturbation

theory. The inverse of the matrix A 22 in Eqn. (5.7) is automatically solved by the

manipulation of the causality. With this approach, the physical elements and the
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Figure 5.6: The bond graph model of the fast dynamics.
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Figure 5.7: The bond graph model of the slow dynamics.

system structures which are responsible for the fast or the slow dynamics can be

clearly identified.

Remark 2 : If this method is applied to electrical circuits, it is identical to the well-

known "open-circuit", "closed-circuit" manipulations. For example, when a local loop

is isolated, the subsystems which do not belong to this loop are "open-circuited". As

indicated in Figure 5.8, the local loop is formed when R 2, C2 are isolated. Also, when

an inertance element is replaced by an effort source with zero value, it is equivalent to

the case where the two ends of this element are "short-circuited" as shown in Figure

5.9.

R R3

1 CI C2 C3

Figure 5.8: An isolated R-C loop.

Remark 3 : Using this method, even if the system becomes large, the number of loop



Figure 5.9: A short-circuited I element.

gains which need to be examined will not grow fast and become difficult to handle.

For each energy storage element, only the elements which are directly causally related

to it form local loops. Therefore, if the system contains N elements, the number of

loop gains which need to be examined will be2 kN and not N2 or3 C2N

5.3.3 A numerical example

To verify the results of this decomposition, the state equations corresponding to the

fast and the slow dynamics are derived as follows according to Figure 5.6 and 5.7.

-(R 1 R2)
C2 = q2  (5.8)

(-1 1 1
1 C(Ri+R2) C3(Ri+R2  q (59)

3 - 1 -(R+R2+ 3) (5.9)
C1 (Ri +R2) C3 R3(R2+R3 ) (

If the system parameters of this example in the previous section are applied, the

numerical A matrix of the slow dynamics becomes

-0.5 0.5 (5.10)
0.5 -1.5

The eigenvalue of the fast dynamics is -20. The bounds obtained by the Gersgorin's

theorem is shown in Figure 5.10. This result shows that although the decomposed

systems represent only the approximations of the eigenvalues, the bounds provide a
2k is a constant.
3This is the number of all the possible combinations of any two elements in the system.

R1 L R3
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Figure 5.10: The bounds of the eigenvalues.

5.4 Decomposition of High-Low Frequency Oscil-
lation Modes

If a system contains only energy storage elements, i.e. I elements or C elements, and

no dissipative elements, the eigenvalues will be all on the imaginary axis, since such

a system can only exhibit oscillations but not dissipations. In this case, the singular

perturbation theory will fail to provide any conclusion. However, by the following

auxiliary transformation, an I - C network can be transformed into a fictitious R - C

or R - I network. The singular perturbation theory and the decomposition procedure

described in the previous section can then be applied to the fictitious systems if the

system contains eigenvalues which are far apart. After transforming the system back

to the original form, the subsystems which exhibit high-low frequency oscillation

modes can be obtained respectively.

good estimation on the influences of the physical elements. The symbolic bounds

obtained from Eqn. (5.9) and the approximated eigenvalue obtained from Eqn. (5.8)

can be directly used for system design.



The state equations of an I - C system can always be represented in the following

general form if they are derived from a bond graph model.

(e C (5.11)f i fo
where e is a state vector which represents the efforts associated with the C elements,

f is a state vector which represents the flows associated with the I elements, C is a

submatrix which contains the parameters associated with the C elements and I is a

submatrix which contains the parameters associated with the I elements. This set of

state equations can also be represented as the following alternative forms.

e = CIe or f = ICf (5.12)

Note that from this representation, it is clear that the nontrivial eigenvalues of Eqn.

(5.11) will be the square roots of the eigenvalues of matrix CI or matrix IC.

For the general I - C systems discussed above, if all the I elements are replaced

by R elements with the same parameters, the following equations can be derived from

the bond graph model in a similar manner.

(fe0 (5.13)

The state equations can then be represented as

e = CRe (5.14)

Note that the matrix CR will be exactly the same as the matrix CI of the original

system.

Similarly, if all the C elements are replaced by R elements with the same param-

eters. the following equations can be derived from the bond graph model.

(e )= 0 R e (5.15)

5.4.1 An auxiliary transformation



f = IRf (5.16)

Note that the matrix IR will be exactly the same as the matrix IC of the original

system.

By the above derivations, it can be concluded that if the eigenvalues of matrix

CR (or CI) can be separated into two groups which represent fast-slow dynamics,

the eigenvalues of Eqn. (5.11) can be separated into two groups which are respon-

sible for the high-low oscillation modes. Similarly, if the eigenvalues of matrix IR

(or IC) can be separated into two groups which represent fast-slow dynamics, the

eigenvalues of Eqn. (5.11) can be separated into two groups which are responsible for

the high-low oscillation modes. Therefore, a auxiliary transformation can be defined

so that the singular perturbation theory can be used to justify the decomposition

of oscillation modes. This transformation procedure simply replaces all the I or C

elements in an I - C system by R elements with the same parameters. The effect of

such a transformation can be visualized by Figure 5.11. This transformation bring

the eigenvalues of the original systems from the imaginary axis to the real axis by a

one-on-one mapping. Note that in the actual implementations, such a derivation or

transformation is not necessary. Since this transformation is always possible, the ap-

plication of the decomposition procedure discussed in the previous section is extended

to I - C systems without any modification.

5.4.2 Physical interpretations

By applying the decomposition procedure, the elements and structures which are re-

sponsible for the high-low frequency oscillation modes can be identified in a systematic

way. These results have their physical interpretations, which are sometimes observed

The state equations can be represented as



Figure 5.11: The effects of the auxiliary transformation.

by experienced system designers. An important advantage of the proposed systematic

procedure is that it provides an easy solution for programming, while an inspection

procedure based on the designer's intuition is difficult to do so. In the following,

two examples are used to illustrate the physical interpretations of the decomposition

results.

Figure 5.12 shows a simple cascaded mass-spring system. In the first case, suppose

that the element C2 has a much smaller value, i.e. this spring is much stiffer than

others, and the other elements have values with the same order of magnitude. By

examining the local loop gains, it will be found that the loop gain associated with

elements C2, 1 (1 ) and the one associated with C2, 12 (-) are much larger than

others (kl k k-2-). The decomposition procedure concludes that the subsystemm11 m2 I M3

shown in Figure 5.13 represents the high frequency oscillation mode. Also, the sub-

system shown in Figure 5.14 represents the low frequency oscillation modes. In this

subsystem, since the elements I1 and 12 are directly causally connected, i.e. there

is a causal loop between these two elements, according to the results in Chapter 2,

they can be grouped and represented by an equivalent I element as shown in Figure

5.15. The physical interpretation of this decomposition is that in the high frequency

I-C networks - N- fictitious R-C or R-I networks

SX
-- 10
y ×%



oscillation mode, the soft springs have only minor effects on the system behavior.

Therefore, they do no appear in the model. On the other hand, in the low frequency

oscillation mode, the stiff spring behaves like a rigid link. The effects of elements I,

and 12 are therefore difficult to distinguish.

C: C1 I: 11 C: C2 I:12 C: C3

1TL TUIJ iL_
Sf 0 1 -- 0 - •1 [-----1 O .. _I: 13

V mi A ý m2 -A L m3

ki k2 k3

Figure 5.12: An I - C system.

I: I C:C2 I:12

T I T ml1 m2

Figure 5.13: Case 1: high frequency oscillation mode.

C:C1 I:I1 Sf:0 1:12 C:C3

Sf -0- 11----- 0-- N-0  ---I:I3

Figure 5.14: Case 1: low frequency oscillation modes.

Suppose that in another case, the mass m 2 has a much smaller value than others,

and the other elements have values with the same order of magnitude. In this case, the

loop gains - and k-2 are much smaller than - Ik and -. Therefore, the subsystem2 the high frequency oscillation mode is shown in Figure 5.16. Also, the

representing the high frequency oscillation mode is shown in Figure 5.16. Also, the



subsystem representing the low frequency oscillation mode is derived by replacing 12

with a flow source of zero value as shown in Figure 5.17. In this subsystem, since

the elements C2 and C3 are directly causally connected, they can be grouped into

an equivalent C element as shown in Figure 5.18. The physical interpretation of

this decomposition is that in the high frequency oscillation mode, the large inertance

elements behave like rigid boundaries. On the other hand, in the low frequency

oscillation mode, the small mass almost has no effect on the dynamics. Therefore, it

does not appear in the model.

C C1 I eq C: C3

Sf 1 0 11- 0 C I: 13

-A ml m2 m3
Figure 5.15: Case 1: low frequency oscillation modes.

C: C2 I: 12 C: C3

Figure 5.16: Case 2: high frequency oscillation modes.

C:Cl I:11 C:C2 Se:0 C: C3

I T Tl i iI
Sfh-- 0 --- a1 --- -0 ----• 1 --- I: 13

Figure 5.17: Case 2: low frequency oscillation modes.



C: C1 I: I Ceq

Sf I - 0 - 11-0 0 I: 13

Sml m3

Figure 5.18: Case 2: low frequency oscillation modes.

5.5 Decomposition of Heavily-damped and Lightly-
damped Dynamics

In the previous sections, it is shown that for R - C, R - I or I - C networks, a

simple procedure can be employed to decompose the physical systems according to

their eigenvalue distributions. For general systems, I, R, C elements will present

at the same time. However, under certain assumptions, the proposed decomposition

procedure can be reasonably applied. For example, if a system contains very little

dissipation, the eigenvalues will be very close to the imaginary axis. Therefore, the

system can be legitimately considered as an I - C network. On the other hand, if a

system contains very large dissipation everywhere, the eigenvalues will be separated

into two groups on the real axis. One group represents faster dynamics. The physical

system behaves like an I - R network under the corresponding eigenmodes. The C

elements contribute very little to these modes. Another group will be close to the

origin. The physical system behaves like an R - C network under the corresponding

eigenmodes. Since this dynamics is slow, the I elements have no obvious effect4 . For

each group, the proposed procedure can be applied if a decomposition is possible.

4 For example, in the case of a simple second order system mmi + Ri + kx = 0, the two roots
approach to R and - when R gets large.



(
Figure 5.19: The eigenvalue distribution of the systems with both light and heavy
dissipations.

5.5.1 The decomposition procedure

The decomposition procedure is still based on the local loop gains as discussed before.

The I - R or C - R loop gains represent the energy dissipation rates in the local

loops for the corresponding energy storage elements. On the other hand, the square

roots of the I - C loop gains represent the energy exchange rates in the local loops.

Therefore, for each energy storage element, instead of a single loop gain, the local

damping ratio becomes a dominant factor. For each directly causally related I - C

pair in the system (with R elements causally connected to either the I or C or both

elements), the local damping ratios are determined as - and - for the C and

the I elements respectively, where GIC is the I - C loop gain, GRC is the sum of the

R - C loop gains and GRI is the sum of the R -I loop gains. This is the same way the

damping ratio of a standard second order system is determined. In the following, a

In this section, the decomposition procedure will be extended for the systems

which contain both light and heavy dissipations. The eigenvalue distribution of such

systems is shown in Figure 5.19. The eigenvalues will be either close to the imagi-

nary axis or to the real axis. The purpose of this decomposition is to identify the

subsystems which are responsible for these two groups of eigenvalues

B



procedure is presented to decompose the physical system into a subsystem H, which

represents the heavily-damped eigenmodes and a subsystem L, which represents the

lightly-damped eigenmodes.

Decomposition Procedure 1:

(1.1) Replace all the C elements by flow sources with zero value, identify the remaining

R - I pairs which are directly causally related. Denote these R - I elements and the

involved junctions as part of the subsystem H.

(1.2) Restore the C elements which are replaced in step (1.1), identify the C elements

which are directly causally related to the above I elements. If VG/-C >> GIR, replace

the C elements by flow sources with zero value. Denote these flow sources as part of

the subsystem H. If GC << GIR, ignore the identified C elements.

(1.3) Identify the I elements which become dependent due to the causalities imposed

by the above sources. Denote these I elements as part of the subsystem H.

(1.4) Replace all the I elements by effort sources with zero value, identify the remain-

ing R - C pairs which are directly causally related. Denote these R - C elements and

the involved junctions as part of the subsystem H.

(1.5) Restore the I elements which are replaced in step (1.1), identify the I elements

which are directly causally related to the above C elements. If VG/- >> GRC, replace

the I elements by effort sources with zero value. Denote these effort sources as part

of the subsystem H. If v/_c << GRC, ignore the identified I elements.

(1.6) Identify the C elements which become dependent due to the causalities imposed

by the above sources. Denote these C elements as part of the subsystem H.

(1.7) Identify the resistances which are involved in heavily-damped local loops (loops

with large local damping ratio). Denote these R elements and the involved I-C pairs,

junctions as part of the subsystem H.

(1.8) Identify the C elements which are not involved in step (1.7), but are directly



causally related to the above I elements. If G/-c >> GIR, replace the C elements

by flow sources with zero value. Denote these flow sources and the involved junctions

as part of the subsystem H. If VG/-c << GIR, ignore the identified C elements.

(1.9) Identify the I elements which are not involved in step (1.7), but are directly

causally related to the above C elements. If V/UI >> GRC, replace the I elements

by effort sources with zero value. Denote these effort sources as part of the subsystem

H. If V/Uj << GRC, ignore the identified I elements.

(1.10) Remove the elements which are not denoted as part of the subsystem H. The

remaining subsystem is the heavily-damped subsystem H.

Decomposition Procedure 2:

(2.1) Identify the I - C pairs which are involved in lightly-damped local loops (loops

with small local damping ratio), denote these I - C elements as part of the subsystem

L.

(2.2) Identify the R elements which are not involved in step 1, but are directly causally

related to the above I or C elements. If VG7c << GRI or v << GRC, replace

the resistive R elements by flow sources with zero value, and conductive R elements

by effort sources with zero value, Denote these sources as part of the subsystem L.

(2.3) Identify the energy storage elements which become dependent due to the causal-

ities imposed by the above sources. Denote these elements as part of the subsystem

L.

(2.4) Remove the elements which are not denoted as part of the subsystem L. The

remaining subsystem is the lightly-damped subsystem L.

Remark 1 : In procedure 1, step (1.1) identifies the R elements and the I elements

which are surely responsible for the heavily-damped modes since even if all the ca-

pacitances are disabled, these elements still has dynamics. Step (1.2) and step (1.3)

identify the I elements which are involved in the heavily-damped modes by the power



Figure 5.20: A simple mass-damper-spring system.

Suppose that in this system, R2 has a large value, R 1 and R 2 are very small,

the other elements has the values with the same order of magnitude. In this case,

the I - C pairs which are causally related to the element R 2 are involved in the

heavily-damped modes. Since the natural motion of the lightly-damped subsystems

transmission through I - C loops. Step (1.4) to step (1.6) repeat the same proce-

dure for the R - C elements. Step (1.7) includes the over-damped subsystems. Step

(1.8) and (1.9) identify the I or C elements which are involved in the heavily-damped

modes by the power transmission through other I - C loops.

Remark 2 : In procedure 2, step (2.1) includes the lightly-damped subsystems. Step

(2.2) and (2.3) identify the I or C elements which are involved in the lightly-damped

modes by the power transmission through other I - R loops.

Remark 3 : As will be shown by an example in section 5.7.2, if two elements are

causally connected by multiple paths, one must notice that the effective loop gain is

different from the sum of the loop gains corresponding to each individual path. In

the latter case, the coupling between the multiple paths is not taken into account.

Other than this, the use of the proposed method is not changed.

Example:

Consider a system shown in Figure 5.20. The bond graph model is shown in Figure

5.21. By applying the steps (1.1) and (1.4), it is found that no remaining R - I or

R - C pairs are directly causally related. Therefore, only step (1.7) to (1.9) needs to

be considered for procedure 1.



: :R C2 R :R2 C: C3 R :R3
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Figure 5.21: The corresponding bond graph model.

is oscillatory, their effects on the heavily-damped modes are negligible unless the loop

gains of elements 12 - C1 and 13 - C3 are particular large. The subsystem shown in

Figure 5.22 represents the heavily-damped dynamics.

C: C2 R:R2

1: 12 1:13

1 i-h-o --- I 1

Figure 5.22: The bond graph model representing the heavily-damped modes.

On the other hand, when the system evolves under the oscillation modes, the

subsystem associated with the resistance R 2 can not follow the motion easily since

its natural motion is heavily-damped. As a result, this part of system behaves like a

rigid mass in the oscillation modes. This constraint can be represented by replacing

the resistance R 2 with a flow source with a zero value as shown in step (2.3). The

corresponding model is shown in Figure 5.23. The model can also be represented as

Figure 5.24, since the element C2 plays no role in this system. According to step

(2.2), if the subsystem associated with the resistance R 2 has a large damping ratio

due to a small R2 and an almost negligible C2, the model representing the oscillation

modes becomes two separate subsystems as shown in Figure 5.25.



C: C3 R :R3

Y. I3%_
I : II 0 - 1 1 I: I4

Figure 5.25: The bond graph model representing the lightly-damped modes.

5.5.2 A numerical example

As discussed before, the results from the decomposition procedure are approxima-

tions. To demonstrate the accuracy of such approximations, a numerical example

is presented in the following. However, the purpose of the decomposition is not to

obtain the numerical eigenvalues. The ultimate goal is to obtain the symbolic bounds

of eigenvalues and to use them for system design.

Suppose that in the system of Figure 5.20, mi = m2 = = m4 = 1, and

ki = k2 = k3 = k4 = 1. Under this assumption, since the I - C pairs all have
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C: C R:R1 C: C2 Sf:0 C: C3 R:R3

1 1: 12 1 1: 13

Figure 5.23: The bond graph model representing the lightly-damped modes.

C. C1 :RI C.C3 :R3

:I :12 Sf:O 1: '1

0 1I
I: I--- 0 -O - 1 -- 0 0--• 1 9-- 0 - I: I4

Figure 5.24: The equivalent bond graph model representing the lightly-damped
modes.
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Figure 5.26: The decomposition results (a) (2 = 0.7. (b) (2 = 1.4.

Note that in the first case, the imaginary parts of the estimated eigenvalues with

heavier damping ratio are off about 30%. This is because the damping ratio (2 is

not large enough. Therefore, the imaginary parts of these eigenvalues are close to the

imaginary parts of the other eigenvalues. As a result, the coupling of these eigenvalues

is not negligible. In case (b), the distribution of the eigenvalues shows the pattern as

Figure 5.19. The estimations are much closer to the true eigenvalues.
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.46 U

the same loop gains, there are only three different damping ratios (1 =- Vk (from

the local loops formed by R 1, I, and C1, 11 as indicated in Figure 5.21), or R ,I

= = and (3 = R . Figure 5.26 (a) shows the eigenvalue

distribution of the case (1 = =3= 0.07 and C2 = 0.7. Figure 5.26 (b) shows the

eigenvalue distribution of the case (1 = (3 = 0.07 and ( 2 = 1.4.
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low freq.modes I-R-C systems fast dynamic

Figure 5.27: A summary of the proposed decomposition procedures.

By applying these procedures, it is possible that only a few eigenvalues out of a

large system are extracted by the decomposition. In this case, whether the results

provide useful information probably depends on the system itself. If the extracted

5This includes the case where only one type of energy storage elements appear in part of the
system. In that case, the corresponding local damping ratios would be infinitely large.
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5.6 Eigenvalue Estimation for General Systems

Based on the discussions in the previous sections, the proposed decomposition pro-

cedures are summarized in Figure 5.27. If all the local damping ratios are large, the

system can be easily decomposed into a R - C and a R - I network5 . The proce-

dure described in section 5.3 can be applied to both networks if a decomposition is

possible. On the other hand, if all the local damping ratios are small, the system

can be treated as an I - C network. The procedure in section 5.4 can be applied.

If the system contains both large and small local damping ratios, the procedure in

section 5.4 can be applied. Also, the decomposed heavily-damped subsystem can be

decomposed again into R - C and R - I networks and be processed by the procedure

in section 5.3.



Figure 5.28: A decomposable distribution of eigenvalues.

significant influences in more than one group of eigenvalues. As a result, almost all

the physical elements are important in every eigenmode. None of the subsystems
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eigenvalues are the dominant eigenvalues, the system's performance can be drasti-

cally improved by only modifying the characteristics of very few elements, which

are strongly related to the dominant eigenvalues. On the contrary, if the extracted

eigenvalues are far from the origin, the result would provide only a limited model re-

duction. As will be shown in the example of section 5.7.2, the result clearly indicates

how to locate the oscillation poles and the real pole by choosing the parameters T1

and T2 . Even if this system is only a 3 rd order system, it is not easy to do the same

by observing the A matrix of the state equations.

5.6.1 Undecomposable systems

From the above summary, a missing link in dealing with the general systems is that

if a system contains subsystems with local damping ratios in the middle of 0 and

1, none of the proposed procedures would apply. However, this does not mean that

a decomposition is always impossible for the systems with moderate local damping

ratios. For example, if the system eigenvalues have the distribution shown in Figure

5.28, it can be processed by a modified procedure from the results of the previous

sections. On the other hand, it is almost impossible to provide a decomposition

for the distribution in Figure 5.29. In this case, some physical elements may have
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Figure 5.30: The eigenvalue distribution of a Butterworth type filter.
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Figure 5.29: An undecomposable distribution of eigenvalues.

can be considered individually responsible for a certain eigenmode. This situation

indicates that for such kind of systems, it is not easy to change the dynamic behavior

by modifying only a few elements or subsystems. It may only be possible to move the

whole group of eigenvalues by modifying the characteristics of all the energy storage

elements or all the dissipative elements. As shown by the eigenvalue distribution

of Figure 5.30, Butterworth type of filters are common practical examples of such

undecomposable systems. For this category of systems, the best information that can

be obtained for design may be the bounds of the eigenvalues in terms of the physical

parameters. As described in section 5.2, the Gersgorin's theorem or similar matrix

theories can not be directly applied to obtain meaningful bounds for design. In the

following, a pre-conditioning procedure is proposed to provide a possible solution.



When deriving the state equations from bond graph models, the states are usually

chosen as the power or the energy variables of the energy storage elements. In this

case, each energy storage element is considered as a simplest subsystem. The system

imposes a flow or effort to each of these subsystems and the subsystem reflects a

effort or flow back to the system. The dynamics of such a subsystem is simply an

integrator. By assembling these dynamics through the junction connections, a set of

state equations can be obtained. For example, in Figure 5.31, each energy storage

element provides an integrator. The state equations of this system will be in the

following form.

(0e( C (5.17)I R f
As discussed in section 5.2, such an A matrix do not satisfy our needs for finding

R:RI C:C2 R:R2 C: C3 A3

o 1 012 13 0

Figure 5.31: A bond graph model.

useful eigenvalue estimations. This is because the eigenvalue information scatters in

the matrix, which does not fit the application of Gersgorin's theorem. Therefore, a

pre-conditioning procedure is necessary to move the eigenvalue information to the

diagonal terms as much as possible. However, for the purpose of design, the existing

numerical procedures can not be used since a symbolic manipulation is required.

Under this constraint, the tolerable complexity of the computation is very limited.
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5.6.2 A pre-conditioning procedure



Figure 5.32: A simple partition.

5ci = Aixi + Biui (5.18)

Yi = Cixi + Diui (5.19)

where i = 1, 2, 3. Note that the inputs ui are from the outputs of other subsystems

and the outputs yi are the inputs to other subsystems. Since the term Diui only

reflects the input to the output, it can always be eliminated by combining its effects

to the adjacent subsystems. If the state equations of these subsystems are assembled

as the following, they will be exactly the same as Eqn (5.17).

5C 1A A1  B 1C2  0 Xl

52 B 2C 1  A 2  B 2C3  x2 (5.20)
53 0 B3C2 A3 ( X3

However, before the state equations are assembled, if a diagonalization is performed

to each subsystem, the state equations will be in a more useful form. Suppose the

state equations of each subsystem are diagonalized as follows

zi = WiAiVizi + WiBiui (5.21)

Yi = CiVizi (5.22)
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To solve this problem, instead of performing a transformation directly on the A

matrix, a different way of assembling the state equations provides a better solution.

For example, as an extension of the traditional method, the state equations can

be derived by assembling the dynamics of the partitioned subsystems shown in Figure

5.32. For each subsystem, a set of state equations can be derived as
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, where Wi and Vi are the left and the right eigenvector matrices of each subsystem.

The assembled state equations become

"[ W1AiVj W1BiC 2V 2  0 z1
i2 W2B 2C1V1  W2A2V2  W 2B2C3V3  Z2 (5.23)
z3 0 W 3B 3C 2V 2  W 3A 3V 3  Z3

In this set of state equations, the diagonal blocks contains the eigenvalues of each

subsystems. The off-diagonal blocks represent the coupling effects between the sub-

systems. If the partitions are chosen so that the off-diagonal terms are small, while

the symbolic computation for the diagonalization of the subsystems are possible, this

method provides a useful transformation for general dynamic systems. Note that

without the partitions in the physical domain, it is not easy to obtain Eqn. (5.23) di-

rectly from Eqn. (5.17) by symbolic manipulations. Therefore, this pre-conditioning

procedure emphasizes the use of physical models. As a rule of thumb, the partitioned

subsystems must be of low orders or with uniform parameters so that it is possible

to obtain the eigenmodes in symbolic forms. In the cases where the characteristics of

certain subsystems are not to be determined by the designer, i.e. these subsystems

are considered with fixed parameters because of physical constraints or other reasons,

numerical values will be used instead of symbolic forms. These subsystems with fixed

numerical parameters should be grouped together whenever it is possible since the

numerical diagonalization can always be performed.

5.7 Design Examples

To illustrate the proposed procedures, several design examples are presented in this

section.



R4=0.1 m 5 R5=0.1

Figure 5.33: A mechanical structure.

C C / :RI :C2 :R2 CC3 :R3

I 2  1: 13
1: I 0 -- 0 1 I-0 --- 1I: I4

C:C4 ' 1 1  C: C5

R:R4 I: 15 R:R5

Figure 5.34: The corresponding bond graph model.

Assume that in this system, m1 = m2 = m3 = m4 = m5 = 1 and the other param-

eters are as shown in Figure 5.33. First of all, the local damping ratio = 3.16 is

much larger than any others (maximum 0.0316, minimum 0.0032). Therefore, accord-

ing to the proposed procedure,the system can be decomposed into two subsystems

representing the heavily-damped modes and the lightly-damped modes respectively

as shown in Figure 5.35. Also, in the lightly-damped subsystem (as shown in Fig-

ure 5.35 (b)), the local loop gain -A = 1000 is much larger than others (maximumm 5
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5.7.1 A mechanical structure

Figure 5.33 shows the schematic of a mechanical structure. The corresponding bond

graph model is shown in Figure 5.34.



andk when R is large. Therefore, the heavily-damped subsystem can be further

decomposed into fast-slow dynamics shown in Figure 5.37.

m3
k3=10 4

(R3=10

(a)

m 2 k2=20 m 3
m i kl=100 VMMAAA. 4

2=0.1
k4=10 k5=10

R4=0.1 m 5 R5=0.1

(b)

Figure 5.35: The decomposition of heavily-damped (a) and lightly-damped (b) modes.

1110 R4=0.1 m 5

Figure 5.36: The decomposition of high (a) -low (b) frequency oscillation modes.

m3
m4 k3=10

R3=R3=1010

R3=10

(a) (b)

Figure 5.37: The decomposition of fast (a) -slow (b) dynamics.

The decomposed subsystems and the numerical eigenvalues are shown in Figure

5.38. Suppose that for a design task, the focus is only on the dominant dynamics
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100, minimum 10). The lightly-damped subsystem can be further decomposed into

high-low frequency oscillation modes as shown in Figure 5.36. Finally, as mentioned

before, the two roots of a second order system m5n + Ri + kx = 0 approach to m_m

,,



as circled in Figure 5.38. The considered physical system should include the low

frequency oscillation modes: subsystem 2 and the slow dynamics: subsystem 4. As

a result, the complex system in Figure 5.33 is simplified into the system in Figure

5.39. Since this simplified model reasonably approximate the behavior of the original

system, the next step is to estimate the symbolic bounds of the eigenvalues.

As discussed in section 5.4, the state equations of an I - C system can be written

in the form of Eqn. (5.11). In this case, the A matrix of subsystem 2 in Figure 5.38

can be written as

0 0 0 -o 1 0
2 3

-- (5.24)
-ki 0 0 0 0
k1  -k2' 0 0 0
0 k2' 0 0 0

,where m' = m 2 + 3 -m3 ' m=4 , k+ = k2+ k5 and R' = R 2 + R 5.The eigenvalues

of this matrix will be the square roots of the eigenvalues of the matrix

1 -1 0 -kl O ] K LSm; -1 ki -k2' k k (5.25)
-m 2 3 0 k2' m2 ma m2

By applying the Gersgorin's theorem, the bounds of the eigenvalues are shown in

Figure 5.40. By these symbolic bounds, it can be concluded that the most efficient

way to increase the lower bound of the oscillation frequency is to increase the value

of element k2. On the other hand, the most efficient way to reduce the upperbound

is by reducing the value of kl. However, when k' becomes too large and kI becomes

too small, their roles exchange. Note that k3 and R 3 have very little effects on the

oscillation modes. They are mostly responsible for the over-damped mode.
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Figure 5.38: The estimated eigenvalues from the decomposed subsystems.

Figure 5.39: The physical systems representing the dominant dynamics.

5.7.2 An arm prosthesis design

In chapter 3, a simple arm prosthesis model is used to illustrate the design procedures

concerning a system's zero dynamics. However, the eigenvalues of such a system has

not been addressed. The bond graph model of this arm prosthesis is shown in Figure

5.41. The A matrix of this system is shown below.

-1
CbT1

If

1
ImT1

Im
-Rm
Im

(5.26)

111

#01 A
nC

\Jý .90 /
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k3
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Figure 5.40: The oscillation modes for the dominant dynamics.

R:Rm C:Cb R:Ri R:RfI-
Sf G Y I  1 j TF 0 -- -1 TF EI:If

I-I- - - -belt & pulley gear

I:Im 1 0 Se: gravity

CO:inertial

Figure 5.41: The bond graph model of an arm prosthesis.

The eigenvalue locations of this system are in a pattern shown in Figure 5.42, as-

suming that the dissipations are reasonably small. Although this is only a 3rd order

system, there is no simple way to address the influence of the system parameters

to the eigenvalues. On the other hand, the decomposition procedures discussed in

this chapter can be employed to provide a useful insight about the relation between

the system parameters/structures and the eigenvalues. First of all, by examining the

causal relations, it can be found that the capacitance Cb has multiple causal paths

leading to the inertance If. This does not change the fact that local loop gains serve

as a guide line for decompositions. In this case, the effective loop gain associated

with the multiple causal paths must be calculated. Such a loop gain associated with
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Figure 5.42: The eigenvalue distribution of the arm prosthesis.

Cb and If is (_ + _-) 2 ' as indicated by the dashed loop shown in Figure 5.436'.

Secondly, since the capacitance Cb is also causally related to the inertance Im

(the loop gain is - c as indicated by the dashed loop shown in Figure 5.44), the

elements Cb, I,, and If are all responsible for an oscillation eigenmode unless the

dissipations are extremely large. If Im is much larger than If or T2 is particularly

small, the Cb, If loop will dominate. In this case, the frequency of the oscillation mode

would be close to V( + )2 1 On the contrary, if If is particularly large, the

frequency would be close to . On the other hand, if the loop gains concerning

R:Rm C- :cb R:Ri R:Rf

SMotor G 1 O:relative T1 T2 (:arm
S---.. - I f- -

Sf --- GY -- 1 TF 0 1- 1 :i~ -F-------------O--~F-~----- ------
- belt & pulley gear

I:Im ! 0 - Se: gravity

(O:inertial

Figure 5.43: The local loop of Cb, If.

Cb, If and Cb, Im are about the same order of magnitude, the coupling between

these three elements can not be neglected. Figure 5.45 shows the bond graph model
6 Note that this gain is not just the sum of the loop gains associated with each single causal path:

(-1 + -1 ) .1" The coupling between the two causal paths should be also considered.
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Figure 5.45:

C:Cb

T1 T2

The bond graph model representing the pure oscillation eigenmode.

The system under consideration is a 3 rd order system. Therefore, the last eigen-

value must be a real number. In section 5.5, it is shown that a system with lightly-

damped and heavily-damped modes can be effectively decomposed. A single real

114

R:Rm :C:Cb, R:Ri R:Rf

Motor G :relative T1 T2 ):arm

Sf GY 1 - TF 0 1 - TF 1 I:If
I------ belt & pulley gear

---------- Se: gravity
SI:Im - 0 0-

O:inertial

Figure 5.44: The local loop of Cb, In.

corresponding the pure oscillation eigenmode by removing the dissipations and the

inputs. By the results in chapter 2, the subsystem enclosed by the dashed lines should

be represented by an equivalent inertance. Figure 5.46 shows the revised model. From

this model, the frequency of the oscillation mode should be c - m + (- + -L)2Cl

Since this is only an approximation, the exact value would be smaller due to the

dissipations. However, this expression is already useful in designing the parameters

to increase or decrease the frequency of the oscillation mode.
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C:Cb

0

1

Ieq:
1 1+--•-2• --

ImT1 TI TIT2 2
T1+T2

Figure 5.46: The equivalent bond graph model representing the pure oscillation eigen-
mode.

eigenvalue can be treated as an extreme case of heavily-damped modes. Also, in this

arm prosthesis model, there is no dissipative elements directly causally connected to

the capacitance Cb. So this real eigenvaue must be from the R and I elements. As-

suming the all the R elements are reasonably small, by applying step (1.1) to (1.3)

of the procedure in section 5.5, this real mode can be represented by replacing the

capacitance using a flow source with zero value. The model is shown in Figure 5.47.

From the causality, it can be concluded that this system has only one eigenvalue.

The model can be simplified step by step as shown from Figure 5.48 to Figure 5.51.
R. +RiT,2 +Rf T12T

Finally, from Figure 5.51, the eigenvalue can be obtained as 1m )+RfT T1 T2Im(1+Tl T2 )2 +If TTT "

R:Rm Sf:O R:Ri R:Rf

Motor G 1 :relative T1 T2 w:arm

Sf - GY 1 -I TF 0 ( 1 TF A :If
S- belt & pulley gear

I:Im - 0 Se: gravity

O:inertial

Figure 5.47: The bond graph model corresponding to the real eigenvalue.

To evaluate the accuracy of the above approximations, several numerical examples
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R:Rm R:Ri T12 R:Rf TIT22

I-

Motor G

Sf [ GY-~ 1 1 1 I:IfT1 T2

Te:T2
I:Im 0 TF Se:mgTm2F

Figure 5.48: A simplified bond graph model.

R:Rm+RiT2+Rfl½T22

1 - I:IfT12T22

TiT2

I:Im - 0 0- TF

Figure 5.49: A simplified bond graph model.

R:Rm+RiTl+RflliT22

1 h 1:IfT12T22

I:Im A--1 TF:1+T1T2

Figure 5.50: A simplified bond graph model.

are presented in Table 5.1. In these examples, the errors of the oscillation frequen-

cies increase when the local damping ratios increase. However, if the values of the

dissipative elements are held the same, the approximated oscillation frequencies are

roughly proportional to the true frequencies. On the other hand, the approximated
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R:Rm+RiTi+RfLiT22

1

I:Im(1+TIT2 +IflT2

Figure 5.51: The bond graph model representing the real eigenmode.

real eigenvalues are very close to the true values when the values of R's are within a

range. In fact, if only the values of this system satisfy the decomposition conditions,

the decomposed models give very approximations.

Note that the purpose of such decompositions in this example is not to obtain the

eigenvalues with very precise numerical values or to save the computation efforts since

there are other much more efficient ways to do so. The importance of this result is that

the influences of the element characteristics such as the transformer parameters T1

and T2 to the eigenvalues are effectively shown by the obtained eigenvalue expressions.

The result shows that T1 and T2 are coupled with other elements in particular ways

for different groups of eigenvalues. Also, it is shown that Cb has very little influence

to the eigenvalue on the real axis. These are very useful guidelines for the design of

this arm prosthesis system, which can not be obtained by other approaches.

5.8 Conclusion

In this chapter, several decomposition procedures are proposed to identify the physical

elements or structures which are responsible for separate groups of eigenvalues. For

a category of systems, the bounds of the estimated eigenvalues are improved by the

decomposition results. Since these bounds are represented by the physical parameters,



Table 5.1: Numerical evaluations of the approximated eigenmode models

they can directly contribute to the design of physical systems. For general systems,

the decomposition procedures do not always provide a satisfactory result. In this case,

a pre-conditioning procedure along with the existing matrix theories may be applied

to find the bounds of the eigenvalues. Several examples are presented to illustrate

the use of the proposed procedures.
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If I,, I, T1 T RM  1 R J true eigenval- approximated
L I ues eigenvalues

-1.022839605
0.2 0.1 0.05 2 1.5 0.1 0.1 0.2 ±38.87301264j±38.85747217j

-.6765430139 -.6764705882
-4.192776386

0.2 0.1 0.05 2 1.5 0.4 0.6 0.8 6 ±38.87301264j&38.60241316i
-2.947780567 -2.941176470

0.2 0.1 1.0 2 1.5 0.4 0.6 0.8 ±8.692269875j±7.375683411j
-3.117846751 -2.941176470
-0.7302916315

1.0 1.0 1.0 2 1.5 0.4 0.6 0.8 3 ±3.333333333j-3.2266597734
-0.4060834040 -0.4000000000



Chapter 6

Conclusion and Recommendations

In this thesis, three main topics are presented to demonstrate the use of the proposed

structural analysis procedure. All three topics rely on the causalities and the junction

structures in the bond graph representation to explore the structural information. The

results provide useful insights for design and analysis of dynamic systems, which are

impossible to obtain by using system state equations or transfer functions.

The first topic addresses the problem of excess states and their influences to the

system analysis procedures. The excess states usually exist in certain over-constrained

linear junction structures. In these models, although the representations are legiti-

mate in terms of physical meaning, the resultant excess states cause pitfalls in the

inspection of system properties. It is found that by using the explicit field represen-

tations, such ambiguities can be eliminated. Based on this approach, a set of model

revision procedures are developed to eliminate the excess states so that the existing

and the being-developed analysis procedures can be properly applied. The class of

systems under consideration includes general nonlinear systems with linear junction

structures.

The second topic is the identification of relative degrees and zero dynamics. Rel-

ative degrees and zero dynamics are important features for the design of feedback

control laws. For certain systems, the zero dynamics even directly determines the

performance limits. Since the intrinsic zero dynamics can not be influenced by any

feedback compensation, it is important to design the physical systems so that they

possess desired zero dynamics. However, the calculation of the zero dynamics is usu-
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ally complicated, especially if a form which is closely related to the physical system

and suitable for design is required. A ZDIP procedure is proposed to derive the zero

dynamics of physical systems from bond graph models. This method incorporates the

definition of zero dynamics in the differential geometric approach and the causality

manipulation in the bond graph representation. By doing so, the state equations of

the zero dynamics can be easily obtained. The system elements which are responsible

for the zero dynamics can be identified. In addition, if isolated subsystems which

exhibit the zero dynamics exist, they can be found. Thus, the design of physical sys-

tems including the consideration of the zero dynamics become straightforward. The

class of systems under consideration includes general nonlinear MIMO systems with

linear junction structures, one port energy storage and dissipative elements.

With suitable modifications, the proposed approach can handle the systems with

multi-port fields and the systems with modulated junctions (nonlinear junctions)

or modulated elements in a similar manner. In the first case, part of the junction

information is embedded in the field constitutive equations. Therefore, additional

information from the fields is necessary for the search of the shortest causal paths.

The differential geometric approach can be employed to provide such information.

The same procedure can then be applied to identify the relative degrees and the zero

dynamics. In the second case, if the shortest causal path only go through the energy

bonds, the proposed procedure can be applied without any modification. However, if

the shortest causal paths do go through the information bonds which are associated

with the modulated elements, the causality manipulation may need to be modified

so that the variable dependency is properly represented by the zero dynamics model.

In both cases, the modified procedures should be consistent with the proposed ZDIP

procedure.

The purpose of the third topic is to build the direct relations between the com-
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ponent characteristics and the system eigenvalues. It is known that the symbolic

solutions for the eigenvalues of high order systems are not available. Even if the

exact solutions exist, they may be too complicated, and therefore do not point out

useful design directions. In this thesis, several decomposition procedures are pro-

posed to identify the physical components which contribute most to certain group of

eigenvalues. By using the available matrix theories, the bounds of each eigenvalue

group can be represented in terms of the component characteristics. These bounds

will then facilitate the design of physical systems so that they have the eigenvalues

roughly at the desired locations. The class of systems under consideration includes

linear systems with decomposable eigenvalue groups. For general linear systems with

heavily coupled eigenvalue groups, the proposed decomposition procedures may not

provide a satisfactory solution. In this case, by appropriate partitions, useful eigen-

value bounds may be obtained by the proposed pre-conditioning procedure. Since

there is no systematic partitioning procedure to guarantee this result, further study

is recommended in this direction.

From the results of this research, it is shown that the analysis and design of

dynamic systems can be conducted in a systematic way by studying the system con-

figurations. The proposed procedures are ready to be coded and be included into a

computer-aided design package.



Proofs concerning the explicit fields

A.1 Independent state variables contributed by
explicit fields

Proof of Lemma 2.1:

1. Consider the constitutive equations of the field in Eqn.(2.7).

(out C 11 C12  qin

qout C 21 C 2 2  ein

Suppose the imposed flows to the qi, ports are fi,. The state equations associated

with this field would be

4li. = fin (A.1)

Once qin are obtained by integration, the output variables eout, qout can be determined

by Eqn.(2.7). However, if C11 is not a full rank matrix, then the output variables

eout can not be determined independently by the inputs fin. Namely, the inputs fin

can drive qin freely, but not eot. This is because the following equation do not exist

if C11 is not invertible.

qi= = C1'eout + Cll'C1 2ein (A.2)

Furthermore, by matrix theories [16], the number of variables in eo,,t which can be

determined independently by the inputs fin is equal to the rank of matrix C 11. There-

fore, the number of independent states this field can contribute is determined by the

rank of the submatrix C 11. El
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2. Suppose that Eqn.(2.7) is written as the following by making eout = el, ein = e2,

qin = ql, qout = e 2.

( e _ Cl1 C12 I(q,
q2 C 21 C 22  e2

If the submatrices C11 and C22 are full rank, Eqn.(2.7) can be transformed into the

following form. This is equivalent to assigning all integral causalities to the field.

(el) = C - C12C C2 2 2int(A.3)

Also, in the same manner, Eqn.(2.7) can be transformed into the following form. This

is equivalent to assigning all derivative causalities to the field.

q(q) [ C l  --C1C12  ] ( e el  (A.4)
q2 C21C 1  C22 - C21C1"112 e2 de 2

By the above two equations, the following relations can be obtained.

Cder = Cnt1 (A.5)

Cint = Cdel, (A.6)

Therefore, the matix Cint and Cder are full rank.

Suppose that a certain causality assignment to this field is desired, the associated

constitutive equations can be derived by partitioning the matrix Cint (or Cder in the

same manner) as follows.

e ) C , C/12, , (A.7)

The new constitutive equations are

( -el Cl - 12 22 21 C12- 22  ( q(A.8)
eC / -C2,- 1 2- 2 -1 2 (A.8)
2 •K22 21 C22  2

The field can not accept this causality assignment if and only if the submatrix C' 2

is not invertible. However, if the submatrix CI 2 is one of Cint's diagonal sub-blocks.



If it is not invertible, the matrix Cint is not full rank. This contradicts with the fact

found in the above. Therefore, this field can accept any combination of causality

assignment. Also, combining with Lemma 2.1.1, it is certain that the number of the

independent states contributed by this field is indicated by the number of ports with

integral causalities. O

Proof of Lemma 2.2:

Similar to the discussion in the proof of Lemma 2.2.2, if we would like to reverse

the causality of the ports associated with variables e' in Eqn.(A.7), then the inverse of

the submatrix C' 2 must exist as shown in Eqn.(A.8). For nonlinear fields, the inverse

of the associated Jacobian submatrix must exist. If C'2 is not full rank, however, we

can repartition matrix Cint and get a full rank submatrix C 22" associated with part

of the variables in e'. By matrix theories, the rank of C 22" is equal to the rank of

C 2. The number of variables in e' are not included in the partition is the number

of ports whose causality can be be reversed. Therefore, the number of these ports

indicates the rank deficiency of the submatrix C' 2.

Proof of Proposition 2.1:

1. This statement is self-proven by the results of Lemma 2.1.1 and Lemma 2.2.1. O

2. This statement is self-proven by the results of Lemma 2.1.2 and Lemmaa 2.2.1 El

3. This statement is self-proven by the results of Lemma 2.1.1, 2.2.1 and the definition

of type 2 excess states. O

A.2 The coupling in explicit fields

As discussed in section 2.3, for general systems, the submatrices C 11 and C22 are not

necessarily strictly positive-definite, the causality assignment which can be accepted

by the field might be constrained. In this case, the independent states which this field

can contribute might be different from what the integral causalities indicate. This
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is caused by the dependency of the bond variables associated with the field ports.

Lemma 2.1 and lemma 2.2 are self-proven when deriving the state equations of a sys-

tem and the constitutive equations of a field according to the causality. The following

procedure further illustrates that such constraints in a field can be "released" into

the junction structure. The result of this procedure is a new explicit field which can

accept all kind of causality assignment (at least mathematically). All the constraints

in the original field will be represented by augmented junction structures.

This procedure is demonstrated by the following example. Consider a C field with

the constitutive relation as follows.

dll d12  d13  all all
d12  d22  d23  a 21  a22  q2

e2 d13  d23  d23  a31  a32  q(A.9)
e3 -I-3

q5 bn b12 b13 d44  d45  e4
5 b21 b22 b23 d54 d55  e

Sdil d12  d13
Suppose the submatrix d12 d22 d23  is not full rank, i.e. the columns are depen-

d13 d23 d23
dent. For example, if the rank is 2, there are 2 and only 2 independent columns in

this matrix. Without loss of generality, suppose the first and the second columns are

independent, the third one can be represented as

d31 dil d21
d3 2  = a d12 + d22  (A.10)
d33 d13  d23

where a and 3 are real numbers and not both zero at the same time. The constitutive

relation can be written as

el d11 d21 all a12

e 2  = d1 2  (q + aq3) + (q2 3) + a22  e4 + a22  eA.11)
e3 d13 d23 a33 a32



d13
d23  is symmetric. Thus the following equations
d23

e3 = a(e 1 - alle4 - a 12e5) + /(e 2 - a21 e4 - a22 e 5) ± a 3 1e4 + a3 2e 5

- ael + /+e2 + (-al - a 21 + a31)e4 + (-aa1 2 - /a 2 2 + a32)e 5

-ae + 6e2 + lee4 + K 2e 5

(A.12)

(A.13)

(A.14)

If the field in represented as Figure A.1, the explicit field equations become

dl1 d12 all a11( ae a2  ( q1 + aq3d12 d22 a21 a22
e2 - -- - - -q 2 +/q 3  (A.15)
4 bll b12 d44 d45  e4

5 b21 b22 d 54  d55  e
By the above derivation, it is shown that the new constitutive equations together with

the newly added junction structure are equivalent to the original explicit field. There-

fore, the constraints are successfully represented by the junction structure. This is

possible mainly because of the property C 12 = -C1 (shown in section 2.3). Since now

the diagonal submatrices of the resultant explicit field are strictly positive-definite,

the field will be able to accept any causality assignment.

An example

Consider a system from [25] as shown in Figure A.2-(a). If the implicit field form in

Figure A.2-(b) are represented by an explicit field. The constitutive relation will be

f5 P5
7 I1 I12 P7

P6 121 122 A
P8 As

0
0

T,1

0 T, T, P5
0 T2  -T2 P7

_+T2 2 +1 T12 _T2 f

I 2 12 T2 13 1' -I 12

I1 12 I1 2
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dll
Note that the submatrix d1 2

d13
can be obtained.
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Figure A.1: A new representation of explicit field with no constraints inside.

Note that Ill being 0 indicates that this field contributes no independent states.

This is consistent with the prediction from the causalities in Figure A.2-(a) but not

from the causalities in Figure A.2-(b). Obviously, the explicit field contains hidden

constraints. Using the procedure described in the previous section, the constraints in

this field can use represented by transformers and zero junctions as shown in Figure

A.3-(c). The new I field now becomes

S 1 12 3 I2 (A.16)
I' 12 2 1 12 14

This is a positive definite constitutive relation which can accept any combination

of causality assignments. The causalities now correctly indicate the number of the

independent states, which is 0 as shown before. Finally the graph can be simplified

as shown in Figure A.3-(d).
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Figure A.2: (a) The original system. (b) An implicit field form.
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Figure A.3: (c) The system after releasing the constraints. (d) The final form.
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Proofs concerning the relative degrees
and the zero dynamics

B.1 Relative degrees

In [30, 47], it has been proved that the structural relative degree is the number of

integral causality on the shortest causal path less the number of derivative causality on

the same path. Thus, in what follows, proposition 3.1 will be proved and proposition

3.2 would be self-proved by the application of proposition 3.1 and the results in

[30, 47].

Proposition 3.1 will be proved by the use of the following lemmas. For simplic-

ity, the following statements consider only the equivalent bond graph models where

elements have been reflected to the same energy domain.

Lemma B.1.1: In an SISO bond graph model where elements have been reflected

to the same energy domain, if a causal path which connects the input to an output

variable (a state variable) contains an energy storage element with derivative causality,

there must be an energy storage element of the same type with integral causality on

the same path and directly causally related' to this energy storage element.

Proof: According to the definition, the causal path can be represented by a sequence

of bond variables, for example,

input-...-fi, - fj - ej - ej+l - fj+l - fout .....- output

1Two elements are said to be directly causally related if there is a causal path between these two
elements without going through elements other than the junctions.
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I

input .- fin• l fout __ output
Se:u ~ l1 -~- 0 S - 0 - 1

I Iej+i fj+1

Figure B.1: A causal path which contains a derivative causality.

I

input _ _ output
Se:u --- 1 0. . - Ok-- 1 [----- - 1

- R orC

Figure B.2: An alternative causality assignment.

,where e's represents efforts and f's represents flows as shown in Figure B.1. For

generality, the dashed bonds and causalities indicate the possibility of other valid

structures. The variable type changes only when the path passes through the one

port R, C, or I element. Suppose that a causal path which connects the input to an

output variable (a state variable) contains an I element with derivative causality such

as the one in the model of Figure B.1, the input variable to this element would be a

flow variable and the output variable would be an effort variable. For the sequence to

go on, the input variable to the next one port element on the path must be an effort

variable. If this next element was an R element or a C element, according to the

Sequential Causality Assignment Procedure, the I element would have been assigned

an integral causality as shown in Figure B.2. Thus this next element on the causal

path must be an I element with integral causality. Note that same arguments apply

to C elements.

Lemma B.1.2: If a causal path which connects the input to an output variable (a

state variable) contains an energy storage element with derivative causality, an alter-
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native causality assignment exists such that the new causal path which connects the

same input and output does not pass through this element with derivative causality.

Proof: Suppose that this element with derivative causality is an I element, the

causal path would be

input-...-fin - fj - ej - ej+i - fj+i - fout.....-output

,where fj, ej are the input and output variable of the I element with derivative

causality, ej+l , fj+l are the input and output variable of the I element with integral

causality. Since these two I elements are directly causally connected from lemma

B.1.1, there exists an alternative causality assignment with the causality of both I

elements reversed as shown in Figure B.3. By reversing the causality of this two I

elements at the same time, the input and output variables of the I elements switches

and the sequence becomes

input-...-fin - fot .....- output

I

input ---- ej --- _ output
Se:u -- 1 ---- 0 [ 1 -___ 0 1

, ej+i fj+1

_ I

Figure B.3: An alternative causality assignment.

Thus this causal path does not pass through these two I elements. Note that same

arguments apply to C elements.

Proof of proposition 3.1:

By lemma B.1.1 and lemma B.1.2, if a shortest causal path contains a derivative

causality, an alternative causality assignment exists so that the new shortest causal

path becomes a simple causal path. Thus the statement in proposition 3.1 is true. O
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B.2 Supplements to the ZDIP procedure

Suppose the output y is one of the states (bond variable of an energy storage element).

From the junction structure, y can be represented as a function of the output variables

(wl) of the energy storage elements which are semi-directly causally related 2 to the

output y. Thus, j can be represented as a function of wl. The variables in the

vector wil can then be written as functions of the output variables (w 2) of the energy

storage elements which are semi-directly causally related to the elements involved in

vector wl. By this derivation, if the differentiation continues, one and only one new

bond variable of the energy storage element on the shortest causal path appears in

(wi) after each differentiation. It can be concluded that y(k) can be represented as a

function of Wk, which contains the output variable of the kth energy storage element

on the shortest causal path from the output to the input. Equivalently, y(k) can be

represented as a function of wk-1, which contains the input variable of the kth energy

storage element on the shortest causal path from the output to the input. Therefore,

if the constraints y = 0, y = 0, ...y(r-1) = 0 are imposed to the bond graph, the

corresponding graph can be represented by making the input variables of the energy

storage elements on the shortest causal path dependent on other variables in wk-1.

That is, the input variables, which are originally determined by the system, now

become output variables, which are determined by the constraints.

B.3 The vector relative degrees

Proof of proposition 4.1:

If any one of the inputs is in the condition as described in proposition 4.1, i.e. all

outputs can be connected to other inputs by shorter causal paths than to this one, the
2Two energy storage elements are said to be semi-directly causally related if there is a causal

path between these two elements without going through any other energy storage element.
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corresponding column to this input in the decoupling matrix in section 4.2 will contain

only zero elements. For example, if input j is such an input, then LgjL" -'hi(x) = 0

for all 1 < i < m. This is because the smallest ki for LgjLk'hi(x) to be non-zero for

each output i is always larger than ri - 1. Thus the decoupling matrix is singular at

any operating point. The vector relative degree of such a system can not be defined.

Ol

Proof of proposition 4.2:

This proposition will be proved by the following description and the lemmas listed

below.

Assume that the shortest causal paths of input-output pairs ul, yl and u2, Y2

partially overlap. The energy storage elements (all with integral causalities) on the

non-overlapping part of the shortest causal path beginning from the input ul side

are denoted as A1 ...A,. The energy storage elements on the non-overlapping part of

the shortest causal path beginning from the input u2 side are denoted as B1 ...Bq. If

the differentiations of output yl are taken consecutively, to some order k, the bond

variables of the energy storage elements AP and Bq will explicitly appear. Namely,

y(k) is the function of the bond variables of A, and B,. If the differentiation continues,

then the bond variables of Ap- 1, Bq-1; Ap-2, Bq-2 ... appear consecutively. Finally,

ul appears explicitly first if p < q and u2 appears explicitly first if q < p. Similarly, if

the differentiations of y2 are taken, to some order £, the bond variables of the energy

storage elements AP and Bq will explicitly appear. Thus the same sequence Ap- 1,

Bq-1; Ap- 2, Bq-2 ... results. Similarly, ul appears explicitly first if p < q and u2

appears explicitly first if q < p.

Lemma B.3.1: If a system has partially overlapped shortest causal paths as de-

scribed above, ul and u2 will appear at the same order of differentiation of yi, i = 1,2

, i.e. p = q.
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Proof: Since ul, yl and u2 , Y2 are taken as input-output pairs on shortest causal

paths, the system configuration in proposition 4.1 has been ruled out (and one would

use dynamic extension procedure if necessary). Suppose that p / q, then the dif-

ferentiations of yi and y2 both would have reached only ul or only u 2 first. This

contradicts the previous statement. Thus p = q is guaranteed. Note that one of ul

and u2 might be the nominal input from dynamic extension.

Lemma B.3.2: If a system has partially overlapped shortest causal paths as de-

scribed above, the row vectors D 1 = [Lg1L -1 hi(x), LLr2-1h 2 (x)] and D 2 = [Lg 2 L (x),

Lg2L2-1h 2(x)] will be structurally dependent.

Proof: From the previous lemma, p = q is guaranteed. Thus all elements in the

vectors Dl(x) and D 2(x) are non-zero. However, since the inputs ul and u 2 appear

by differentiating the bond variables of the energy storage elements AP and Bq for

both outputs, the two row vectors are related by

Dl(x) = a(x)D 2 (x) (B.1)

where a(x) is a scalar function of x. Namely, Dl(x) and D 2(x) are structurally

dependent.

Lemma B.3.3: If a system has partially overlapped shortest causal paths as de-

scribed above and there are no other ways to avoid this overlapping, the decoupling

matrix is singular.

Proof: Suppose that the considered system has more than two inputs and outputs,

the singularity of the decoupling matrix can not be determined only by the row

vectors in the previous lemma. However, if any of the column vectors [LjLf-i hi(x)

LjL -'h 2(x)]T, j > 2 contains non-zero elements and are independent to the column

vectors [LgjLf-'hi(x) LjLr2-1h2(x)]T, j = 1,2, it would be possible to select an

alternative shortest causal path for yl or y2 to the corresponding uj so that the shortest
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causal paths for yl and y2 are non-overlapping. This contradicts the statement of this

lemma. Thus the column vectors [LgjLr,-lhl(x) LjL f 1h2 (x)T, > 2 are either

zero vectors or are dependent to [LjLl-lhli(x) LgjLr2 -1h2 (X) T ,  = 1,2. This

indicates that the corresponding row vectors for yl and y2 in the decoupling matrix

are dependent. Therefore, the decoupling matrix is singular.

By lemma B.3.1, B.3.2, and B.3.3, the decoupling matrix will be singular if a

system has partially overlapped shortest causal paths as described above and there

are no other ways to avoid this sharing. Thus the statement of this proposition is

true. O



A maple procedure

To verify the results of the proposed analysis procedures in this thesis, the state

equations of all the bond graph models are derived by a MAPLE 1 procedure. The

use of this procedure is shown by an example in Figure C.1. This is a simplified version

of the arm prothesis model discussed in section 3.4. The corresponding command for

the derivation of the state equations in MAPLE is shown below.

R:Rm C:Cb R:Ri R:Rf

1 4 6 8
Se - 1 0 - 1 1 i:If

3 10

I:Im - 0
12 11

Figure C.1: The bond graph model of an arm prosthesis.

pp:=bdlin(5, [Se,R,C,R,R,I,I], [1,2,5,7,9,10,12],

[-3,1,-2,-4] ,1, [-5,4,-6] ,0, [-8,6,-7] ,1, [-10,8,-9,-11] ,1, [3,11, -12] ,0);

First of all, the bonds in the model are numbered by the user. According to

these numbers, the user will input the bond graph structures by a set of data strings.

The first argument is the number of junctions contained in this model. The second

argument is a list which represents the types of the elements in the model. The third

'MAPLE is a software package for mathematical symbolic derivations by Waterloo Maple Com-
pany .
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argument is a list of numbers which represent the corresponding bonds connected to

the elements in the previous list. The rest of the arguments describe the junctions and

the bonds connected to them. For example, the next two arguments: [-3, 1, -2, -4],

1 show that bonds 1, 2, 3 and 4 are connected to a one junction where the power

directions of bonds 2, 3 and 4 are pointing out of the junction and the power direction

of bond 1 is pointing into the junction. The first number in the list also shows the

bond which dominates the causality of this junction. For this one junction, bond

3 imposes the flow. Therefore, the causalities of other bonds are determined. The

other junctions are described in the same manner by consecutive arguments. This

procedure is designed for the derivation of linear state equations. The resultant

A and B matrices of this model are shown in Figure C.2. The source codes of this

procedure are listed in the following pages. For nonlinear systems, a similar procedure

in MAPLE is used to verify the analysis results.

0 -2 LIO L12
2
- (-R2 -R7- R9) LIO R2 L12

1 1R2 LIO -R2 L12
C5

Figure C.2: The results from the MAPLE procedure.
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# This MAPLE procedure derives the state equations automatically #
# from a set of data strings which describe the bond graph #
# structures. #

# bdlin(jn,eletype,outbond,bondsl,jnl,bonds2,jn2...... #

# jn : number of junctions #
# eletype: the element list in the bond graph #

# outbond: the bonds which are connected to the eletype elements #

# bondsl: the bonds which are connected to the first junction #
# + power goes into the junction #

# - power goes out of the junction #

# the first bond dominates the causality #

# jnl: the junction type of the first junction (0 or 1) #
# .... continue the bonds# and jn# strings #

# Version 1.30 Jan,1995 by Shih-Ying Huang, Copyright Reserved #

bdlin:=proc()

local jn,eletype,outbond,obnumber,etype,jun,bnumber,bind,eln,junn,

inv,efin,prej,tempj,i,efout,perm,swi,pirt,j,ptest,outv,prejn,inbnumber,

jll,j12,j21,j22,II,junction,efins,efouts,efoutse,Cn,In,DCn,DIn,Rn,Gn,Sn,invv,

juneqn,CImatrix,DCImatrix,RGmatrix,S11,S12,S13,S14,S21,S24,S31,S32,S33,S34,Iden,

A,B,TPKsd,Ksd,EU;

# read in the input strings

jn:=args[1] ;
eletype:=args[2] :
outbond:=args[3] :
obnumber:=nops(outbond):

etype:=array(l..jn):

jun:=array(l..jn):

bnumber:=array(1..jn)

bind:=0:

# assembling the junctions and the state vectors
for eln from 1 to jn do

jun[eln :=args[3+(eln-1)*2+1];
etype[eln :=args[3+(eln-l)*2+2]:
bnumber[eln :=nops(jun[eln]):
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junn:=jun[eln]:

if eln=1

then inv:=matrix(1,bnumber[eln],O):

efin:=matrix(1,bnumber[eln] ,O):

else inv:=extend(inv,0,bnumber[eln],0):
efin:=extend(efin,0,bnumber[eln],0):

fi:

if eln=1

then prej:=matrix(bnumber[eln],bnumber[eln],O):

else prej:=extend(prej,bnumber[eln],bnumber[eln],0):
fi:

if 1=1 then

tempj:=matrix(bnumber[eln],bnumber[eln], ):
fi:

if etype[eln]=0 or etype[eln]=1
then for i from 2 to bnumber[eln] do tempj[i,1]:=1 od:

for i from 2 to bnumber[eln] do

tempj[1,i]:=csgn(junn[1])*(-1)*csgn(junn[i]) od:

elif etype[eln]=g
then tempj[1,2] :=cat(g,convert(eln,string)):

tempj[2,1] :=cat(g,convert(eln,string)):

elif etype[eln]=t
then tempj[1,2] :=cat(t,convert(eln,string)):

tempj [2,1] :=cat(t,convert(eln,string)):
fi:

if eln<>1 then

bind:=bind+bnumber[eln-1] :
fi:

if 1=1 then

copyinto(tempj,prej,bind+1,bind+1):

fi:

for i to bnumber[eln] do inv[1,i+bind]:=abs(junn[il]) od:

if etype[eln]=0
then efin[1,bind+1]:=1:
elif etype[eln]=1 then for i from 2 to bnumber[eln] do efin[1,i+bind]:=i od:
elif etype[eln]=g then for i from 1 to bnumber[eln] do

if junn[1]>0 then efin[1,i+bind]:=1
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else efin[1,i+bind]:=0 fi: od:
elif etype eln]=t then

if junn[1]>O then efin[1,(l+bind)]:=1:
efin[1,(2+bind)] :=0:

else efin[1,(l+bind)]:=0:
efin[, (2+bind)]:=1: fi:

fi:
od:

bind:=bind+bnumber [jn] :
efout:=matrix(1,bind,O):
for i to bind do if efin[1,i]=1 then efout[1,il:=0

else efout[l,il:=l fi: od:
perm:=matrix(bind,bind,O):
swi:=array(1..bind):
pirt:=0:

for i to obnumber do
for j to bind do

if inv[l,j]=outbond[i]
then pirt:=pirt+l: swi[pirt]:=j:

fi:
od:

od:

pirt:=0:
ptest:=0:

for i to bind do
for j to obnumber do

if inv [1, i] =outbond[j]
then ptest:=1:
fi:

od:
if ptest<>1 then

pirt:=pirt+1:
swi pirt+obnumber] :=i:

fi:
ptest:=0:

od:

for i to bind do perm[i,swi[i]]:=1 od:
inv:=transpose(multiply(perm,transpose(inv))):

efin:=transpose(multiply(perm,transpose(efin))):

efout:=transpose(multiply(perm,transpose(efout))):
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outv: =inv:

prejn:=multiply(perm,prej,inverse(perm)):

inbnumber:=bind-obnumber:

jl:=submatrix(prejn,1..obnumber,1..obnumber):

j12:=submatrix(prejn,1..obnumber,(obnumber+1)..bind):

j21:=submatrix(prejn,(obnumber+1)..bind,1..obnumber):
j22:=submatrix(prejn,(obnumber+1)..bind,(obnumber+1)..bind):

perm:=matrix(inbnumber,inbnumber,0):

swi:=array(1..inbnumber):

for i from (obnumber+1) to bind do

for j from (obnumber+1) to bind do

if efout[1,j]=efin[1,i] and inv[I,i]=outv[1,j] then

swi[i-obnumber] : =j-obnumber:
fi:

od:

od:

for i from 1 to inbnumber do perm[i,swi[i]]:=1 od:

II:=matrix(inbnumber,inbnumber,O):

for i to inbnumber do II[i,il:=1 od:

# assembling the junction equations
junction: =

matadd(j l,multiply(j 2,perm,
inverse(matadd(II,scalarmul(multiply(j22,perm),-1))),j21)):

efins:=array(1..obnumber):

efouts:=array(1..obnumber):

for i to obnumber do

if efinl[,i]=1 then efins[il:=cat(e,convert(inv[1,i],string)):

else efins[i]:=cat(f,convert(inv[1,i],string)) fi:

if efout[1,i]=1 then efouts[i]:=cat(e,convert(inv[1,i],string)):

else efouts[il:=cat(f,convert(inv[1,i],string)) fi:
od:

# Permute the junction equations for the derivation of state equations
efoutse:=multiply(junction,efins):

perm:=matrix(obnumber,obnumber,0):

swi:=array(l..obnumber):

pirt:=0:



for i to obnumber do
if eletype[i]=C and efin[1,i]=l then pirt:=pirt+l: swi[pirt]:=i: fi:

od:

Cn:=pirt:
for i to obnumber do

if eletype[i]=I and efin[1,i]=0 then pirt:=pirt+l: swi[pirt]:=i: fi:
od:

In:=pirt-Cn:

for i to obnumber do
if eletype[i]=C and efin[l,i]=0 then pirt:=pirt+l: swi[pirt]:=i: fi:

od:

DCn:=pirt-Cn-In:

for i to obnumber do
if eletype[i]=I and efin[l,i]=l then pirt:=pirt+l: swi[pirt]:=i: fi:

od:

DIn:=pirt-DCn-Cn-In:

for i to obnumber do
if eletype[i]=R and efin[1,i]=l then pirt:=pirt+l: swi[pirt]:=i: fi:

od:

Rn:=pirt-DCn-DIn-Cn-In:

for i to obnumber do
if eletype[i]=R and efin[1l,i]=O then pirt:=pirt+1: swi[pirt]:=i: fi:

od:

Gn:=pirt-DCn-DIn-Cn-In-Rn:

for i to obnumber do
if eletype[i]=Sf or eletypeLi)=Se then pirt:=pirt+l: swi[pirt]:=i: fi:

od:

Sn:=pirt-DCn-DIn-Rn-Cn-In-Gn:
for i from 1 to obnumber do perm[i,swi[i]]:=l od:

# perform permutations
efins:=(multiply(perm,efins)):
efouts:=(multiply(perm,efouts)):
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efoutse:=(multiply(perm,efoutse)):

invv:=submatrix(inv,l..i,1..obnumber):

invv:=transpose(multiply(perm,transpose(invv))):

# assembling the junction equations with permutated states

juneqn:=multiply(perm,junction,inverse(perm)):

# preparing the matrices describing the element characteristcs

if (Cn+In)>=1 then

CImatrix:=matrix((Cn+In),(Cn+In),O):

for i to Cn do CImatrix[i,il:=i/cat(C,convert(invv[1,istring)) od:

for i to In do CImatrix[i+Cn,i+Cn] :=cat(L,convert(invv[1,i+Cn],string))
od: fi:

if (DCn+DIn)>=I then
DCImatrix:=matrix((DCn+DIn),(DCn+DIn),O):
for i to DCn do

DCImatrix[i,il:=cat(C,convert(invv[l,i+Cn+In],string))
od:

for i to DIn do
DCImatrix[i+DCn,i+DCn]:=i/cat(L,convert(invv[1,i+DCn+Cn+In],string))
od:

fi:

if (Rn+Gn)>=l then RGmatrix:=matrix((Rn+Gn),(Rn+Gn),O):
for i to Rn do RGmatrix[i,i]:=cat(R,convert(invv[l,i+Cn+In+DCn+DIn],string))

od:
for i to Gn

do RGmatrix[i+Rn,i+Rn]:=1/cat(R,convert(invv[1,i+Cn+In+Rn+DCn+DIn],string)):
od:

fi:

# assembling the submatrices for the state equation derivation
Sll:=submatrix(juneqn,1..(Cn+In),1..(Cn+In)):
if (DCn+DIn)>=I then

S12:=submatrix(juneqn,l..(DCn+DIn),(Cn+In)+1..(Cn+In+DCn+DIn)):
fi:

if (Rn+Gn)>=l then
S13:=submatrix(juneqn, ..(Cn+In),Cn+In+DCn+DIn+1..(Cn+In+DCn+DIn+Rn+Gn)):

fi:

S14:=submatrix(juneqn, ..(Cn+In),(Cn+In+DCn+DIn+Rn+Gn)+1..(Cn+In+DCn+DIn+Rn+Gn)+Sn):
if (DCn+DIn)>=1 then
S21:=submatrix(juneqn,(Cn+In)+l..(Cn+In+DCn+DIn),1..(Cn+In)):



S24:=submatrix(juneqn,(Cn+In)+l..(Cn+In+DCn+DIn),
(Cn+In+DCn+DIn+Rn+Gn)+l..(Cn+In+DCn+DIn+Rn+Gn)+Sn):

fi:

if (Rn+Gn)>=l then
S31:=submatrix(juneqn,(Cn+In+DCn+DIn)+l..(Cn+In+Rn+Gn+DCn+DIn),1..(Cn+In)):
if (DCn+DIn)>=1 then
S32:=submatrix(juneqn,(Cn+In+DCn+DIn)+l..(Cn+In+Rn+Gn+DCn+DIn),

(Cn+In)+l..(Cn+In+DCn+DIn)):
fi:
S33:=submatrix(juneqn,(Cn+In+DCn+DIn)+l..(Cn+In+Rn+Gn+DCn+DIn),

Cn+In+DCn+DIn+1..(Cn+In+DCn+DIn+Rn+Gn)):
S34:=submatrix(juneqn,(Cn+In+DCn+DIn)+l..(Cn+In+Rn+Gn+DCn+DIn),

(Cn+DCn+DIn+In+Rn+Gn)+l..(Cn+In+DCn+DIn+Rn+Gn)+Sn):
fi:

if (Rn+Gn)>=l then
Iden:=matrix((Rn+Gn),(Rn+Gn),O):
for i to (Rn+Gn) do Iden[i,i]:=1; od:

fi:

# assembling the A,B matrix
if (Rn+Gn)>=l then

A:=multiply(matadd(S11,multiply(Sl3,RGmatrix,
inverse(matadd(Iden,scalarmul(multiply(S33,RGmatrix),-1))),S31)),CImatrix);

B:=matadd(Sl4,multiply(S13,RGmatrix,
inverse(matadd(Iden,scalarmul(multiply(S33,RGmatrix),-1))),S34));

else
A:=multiply(Sll,CImatrix);
B:=(S14);

fi:

# assembling the A,B matrix if there are derivative causalities
if (DCn+DIn)>=1 then

Iden:=matrix((DCn+DIn),(DCn+DIn),O):
for i to (DCn+DIn) do Iden[i,i]:=1; od:

fi:

if (DCn+DIn)>=l then
TPKsd:=scalarmul(multiply(Sl2,DCImatrix),-1):
Ksd:=multiply(S13,RGmatrix,

inverse(matadd(Iden,scalarmul(multiply(S33,RGmatrix),-1))),S32,DCImatrix):
Ksd:=matadd(TPKsd,Ksd):

A:=multiply(inverse(matadd(Iden,multiply(Ksd,S21,CImatrix))),A):
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B:=multiply(inverse(matadd(Iden,multiply(Ksd,S21,Clmatrix))),B):
EU:=multiply(inverse(matadd(Iden,multiply(Ksd,S21,Clmatrix))),Ksd,S24):
RETURN(A, B, EU);

end;
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