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Abstract

In tackling the problem of minimizing the deformation of a loaded
structure, by varying the shape of the original structure, past sec-
ond order optimization efforts have focused on general Newton tech-
niques like the Davidon-Fletcher-Powell (DFP) update formula and
the Broyden- Fletcher-Goldfarb-Shanno (BFGS) formula which itera-
tively build estimates of the structure's Hessian. This thesis bypasses
the above mentioned need for explicit estimation of the Hessian by
exploiting the inherent symmetry of the problem and, thus, is able to
use a matrix-free Krylov subspace method like GMRES as the New-
ton solver. In addition to this computationally efficient solver, the
thesis algorithm also uses stochastic perturbations to escape from its
Newton stalls. Results will be presented to illustrate the algorithm's
convergence.
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Title: Assoc. Prof., Dept. of E.E.C.S.



1 Background

The task of minimizing the deformation of a particular structure, given a
particular load vector, can be viewed as a non-linear optimization problem.
Moreover, with the appropriate initial guess of the optimal shape, which
can ensure that the iterates do not impinge upon any physical constraint
and that the converged structure will have the general shape desired, the
optimization problem becomes effectively unconstrained and local. Given
these conditions, the shape optimization problem thus becomes amenable
to local first and second order methods such as the Conjugate Gradient
algorithm and the Newton method respectively.

Due to the Newton method's quadratic convergence property, there have
been efforts to use the Newton method to perform unconstrained optimiza-
tion. The main problems faced by researchers in applying this particular
second order method have been the computationally expensive task of esti-
mating the gradients and the Hessian and, especially for higher dimensional
problems, the efficient storage and manipulation of the data structures re-
quired.

To bypass the difficulty of explicitly estimating the Hessian, Quasi-
Newton or Variable-Metric algorithms, which seek to estimate the Hessian
by iteratively building better approximations using gradient information,
were pursued and had resulted in the Davidon-Fletcher-Powell (DFP) up-
date formula [3] and, its successor, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) formula [1]. Subsequently, modifications by Toint [10], Shanno [9],
Curtis, Powell and Reid [2] and Powell and Toint [8] have enabled this class
of algorithms to preserve and exploit any inherent sparsity of the optimiza-
tion problem.

However, as with any class of numerical algorithms - which had been
designed to be robust for general problems - much of the implicit properties
of a particular problem, such as symmetry, would be unexploited. There-
fore, to achieve better computational efficiency for this particular problem
of shape optimization, a customized matrix-free, i.e., the Hessian is never
explicitly constructed, Newton method will be implemented instead. The



gradients will be estimated using the method of adjoints while the Hessian
operator will be constructed, by exploiting the fact that any given two suc-

cessive nodal perturbations are transitive, from the estimated gradients.

2 The Newton Algorithm

The Newton method was chosen primarily because of its quadratic con-
vergence property, its potential to use computationally efficient matrix-free
techniques and the shape optimization the problem's need for only a local
minimizer - a global minimizer, if unconstrained, would only collapse the
initial shape of the structure to some globally minimal, but ultimately not
too useful, shape.1 As such, the Newton method will begin with a suitable
initial configuration from which it will locally optimize the node positions.

2.1 The physical model

Since the main issue of this research is not the fidelity of the physical model
used but the numerical issues of implementing a fast Newton solver, it was
decided that a linearized struts and joints model would be used in favor
of a model based on continuum mechanics. After satisfactory progress has
been made in implementing the Newton method, it will only be a matter of
switching the structural model to achieve better physical correspondence.

Definitions:

A Connectivity matrix
f Strut force vector
m Nodal load vector

p Nodal position vector
P5 Nodal displacement vector
u Strut displacement vector
ii Incremental strut displacement vector

'Please see the Results section for an example.



F Linearized strut force matrix

D Deformation

J Deformation Jacobian

H Deformation Hessian

n Number of nodes

Af = m (1)

AT = ii (2)

f = f(u) P F(p)ii (3)

By putting the linearized (3) into (1), we get

SP =m (4)

where S = S(p) = AFAT.

Also, the structural deformation, D, and its first and second derivatives,
J and H respectively, are defined as follows:

D = pTP (5)

3D 3D 3D
J D= [ D JD ]T (6)
J-p• 'tpi""' 'P2n

6J 6J 6J
H =[ Pl . ]  (7)

Hence, to minimize D, the algorithm will iteratively search, via an

damped Newton method, for some p such that IIJ1I = 0.

2.2 The algorithm

With the previous section's definitions, the iterative Newton algorithm is

specified by the following pseudocode where Erel, Eabs, Pinitconfig and ztol are



the relative and absolute tolerances, the initial nodal positions and the zero
tolerance respectively.
1 k=l1
2 Pk = Pinitcon fig
3 Do
4 H(pk)Ap = -J(Pk) [GMRES]
5 Do

6 If (IIJ(pk + Ap)lI > IIJ(Pk)ll and I Apll > ztol) then Ap = Ap
7 Else

8 If ]]Apll < ztol then randomly find a Av where

IIJ(Pk + AP)HI < IIJ(Pk1D)
Pk+1 = Pk + AP

Until (llJ(pk+)l < IIJ(Pk)ll
k++

Until (4k < crel and 11JIl < Eabs)

Other than the four tolerances mentioned above, the magnitude of nodal
perturbations, A, is crucial to the solution of the Newton step. The accu-
racy of J and H estimates and the magnitude of the Newton step are all
determined by A. Moreover, A also controls the magnitude of the stochastic
perturbations. As such, A is closely linked to the following sections which
will cover the algorithmic issues of estimating J, formulating the matrix-free
representation of H and the stochastic perturbative method used. Follow-
ing that, section 3 will illustrate how A determines, whether it is Newton
or stochastic, the search technique used by the algorithm, i.e., this hybrid
stochastic-Newton algorithm will switch between the two methods depend-
ing on the magnitude of the nodal perturbations, A.

/2



2.3 Accelerating gradient approximations: The Method of

Adjoints

The deformation Jacobian, J, can be estimated by successively perturbing
each node and noting the change in D due to each nodal perturbation.
However, this naive approach would entail 2n matrix inversions. To handle
this computational bottleneck, the algorithm uses the method of adjoints
which only requires a single matrix inversion and 2n dot products for each
structure.

By noting that the nodal perturbations are small, i.e. 116SI| < IIsli, the
resultant small changes in the nodal positions, 65, can be approximated in
the following manner :-

From (4),

(S + 6S) ( + ) = m
Sp+ Sc + SP +m

6 P -S - 16sp

With this approximation for 61, the variation in D due to the nodal
perturbations can be found rapidly for different perturbations - requiring
only a single matrix solve for y and the use of the 6S operator for each
perturbation.

D = 3(1T1)

x 2(-S -lJSP)Tp

- 2(6Sy)Ty

where y = (ST)- ,
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Figure 1: Transitivity of nodal perturbations

2.4 Using an iterative solver: A matrix-free approach

In line 4 of the pseudocode, Ap can be obtained without explicitly forming

H by using a Krylov subspace iterative solver such as GMRES - which only

needs an operator that performs the H matrix-vector product. This implicit

formation of H from the J vector is possible because of the transitivity of any

two sequential nodal perturbations with respect to the final deformation, i.e.

perturbing node 1 followed by node 2 gives the same resultant deformation

as perturbing node 2 first before node 1. See Figure 1.

6D(p + 6pj)
6Pi

where i $ j.
By using (8), the approximation

62D

6D(p + pi)
6Pj

of H becomes anti-symmetric:

6D(p) _ 6D(p)
6pj 6Pi

A
52D

6piS~3j

where i 5 j and A is the magnitude of the p perturbations.

0



However, since the above approximation will result in zero entries for
the diagonals of H, these entries are approximated by the following pertur-
bation:

62D 6D(p+6p) _ D(p)

From the above approximations of the H entries, it is therefore possible
to construct an approximate H operator, except for the diagonal H entries,
from pair-wise differences of the J entries. The H operator has only to
perform 2n individual gradient estimations - instead of n(2n - 1) gradient

estimations - in addition to the simple differences required for the off-
diagonal entries.

2.5 Escaping from Newton stalls: A stochastic perturbative
approach

While testing the algorithm, without the random perturbation code (lines
8 - 10), it was found that the Newton method stalled frequently in the
later iterations, i.e., no IIJII reduction was possible in the current Newton
direction. To overcome these stalls, [11] suggested many approaches but
the random perturbative approach was chosen because of its simplicity and
ease of implementation: the algorithm was augmented to randomly select
search vectors, uA, that do result in IIJ11 reductions where {u E R2n : ui are

uniformly distributed between - 1 and ½ for i = 1, 2,..., 2n}. The effect of
these random perturbations can be seen in the discontinuous reductions of

IIJ11 and D during later iterations (See Figures 4,5,7 and 8).

3 Results: The importance of A

After the above mentioned algorithm was implemented successfully, a simple
16 node test structure (See Figure 2) was optimized with different magni-
tudes for the nodal perturbation parameter, A, to investigate the behavior



of the hybrid stochastic-Newton algorithm. As will be demonstrated below,
higher A resulted in poor Jacobian estimates which had caused the New-
ton component of the algorithm to stall early. After this initial stall, the
algorithm effectively switched to a simple stochastic search method. For-
tunately, the test A used had been sufficiently large thereby allowing the
algorithm to find a structure which was close to the global minimum. How-
ever, there is neither an apriori way of choosing a suitable A nor is the
global minimum necessarily the desired result since the globally minimum

structure may be physically unsuitable. Therefore, the algorithm has to be
a predominantly local optimizer that starts from an appropriate structure
which takes into account the desired physical characteristics of the struc-
ture, e.g., general shape and span of the structure. During implementation,
this means that the Newton method has to remain dominant for as many
iterations as possible by using some relatively small A, e.g., in the second
optimization described below, the A was set to -- th of the initial nodal
spacing.

Starting with a relatively large A = .01 = 10% of the initial nodal spac-
ing, the algorithm managed to converge, in 300 iterations, to a structure
with 95% less deformation (See Figures 4 and 5) relative to the initial struc-
ture's deformation. This dramatic reduction in deformation relied mainly
on random perturbations (See Figures 4 and 5) as the deformation had
fallen smoothly only until the 68-th iteration, i.e., Newton's method was
active only during the early stages of the optimization. After the Newton
phase, the perturbations had resulted in discontinuous variations, mostly
reductions, of the deformation and its Jacobian. In fact, the predominantly
stochastic optimization was able to converge near the expected global min-
imum for the unconstrained problem - a structure with the loaded node
located internally (See Figure 3: Note that the load is exerted in the negative
vertical direction at the node in the center of the dashed diamond symbol).
Despite the algorithm's convergence near the global minimum, this partic-
ular performance was due to the serendipitously large A used where the
relatively large random perturbations (see previous section) and the initial



Newton steps had enabled the algorithm to sample this particular search

space sufficiently. Since the goal of this particular optimization is not to
find the global minimum but to locate the closest local minimum, the accu-
racy of the local Jacobian estimates had to be improved so as to maintain

the Newton convergence for as many iterations as possible.
To prevent the algorithm from collapsing the structure, as had happened

previously with high A, the algorithm was restricted to local searches by re-

ducing the A. This reduction would result in better Jacobian estimates and

hence smoother D and 11JiI evolution. For the 16 node structure mentioned
above, the algorithm's A was reduced by a factor of 20. As expected, af-

ter the algorithm had converged, the deformation was reduced by only 75%
while the structure had retained much of the nodal ordering of the initial

rectilinear configuration (See Figures 6, 7 and 8).
Unlike the globally optimal structure mentioned previously, the deforma-

tion of this structure smoothly dropped with iteration number until around

the 2004-th iteration where the Newton method had finally stalled. After

that first Newton stall, the deformation continued lower mostly due to ran-
dom perturbations in the same manner as that of the higher A optimization.

In effect, the local optimizer had been able to approximate the local J and
H with sufficient accuracy such that the Newton method was able to find
the local minimum closest to the initial structure.

Even though the locally and globally optimal structures differed in their
convergence behaviors, both structures managed to align most of their struts

to coincide with their respective predicted nodal displacement vectors (See

Figures 3 and 6). From this observed alignment of the struts, the algorithm
had been able to replicate the obvious optimization heuristic of positioning
the struts such that they are aligned to the predicted nodal movements or
forces. Moreover, in comparison to the topological optimization result of
[6, page 542], the locally optimal structure is in agreement with the con-
verged structure found by Bendsoe and Kikuchi. Relative to pre-existing
mechanical designs, the familiar crane-like upper two nodal rows of the lo-
cally optimal structure can be interpreted as the optimal truss to support



the downward acting load while the lower nodes form a structure similar to
a cantilever truss.

4 Conclusions

From the results obtained, the algorithm was able to produce physically rea-
sonable optimized structures based on the magnitude of A and the initial
structure used. Although relatively2 large A allowed for much faster con-
vergence in the test structure's optimization, the physically unconstrained
algorithm had wandered too far from the initial structure to arrive at a phys-
ically reasonable structure. This was corrected when the algorithm used a
smaller A. With better estimates of J and H, the algorithm used the
damped Newton search for a sufficient number of iterations to approach the
local minimum of D before the simple stochastic converged upon it. There-
fore, the algorithm would be greatly improved if an adaptive A scheme can
be devised to retain both the rapid convergence and the locally optimal
characteristics. A possible scheme is one where the algorithm starts with
some small A which is then increased with each iteration while checking
that 11jj11 and lip - Pinitll are both below some suitable thresholds.

In addition to benefiting the shape optimization problem tackled in this
thesis, the dependence of the hybrid stochastic-Newton algorithm on A also
suggests the possibility of a locally-accelerated, global optimizer where the
thesis algorithm can be used to provide a seamless integration of the New-
ton method within a more sophisticated stochastic optimizer like simulated
annealing. This approach promises a global optimizer which can smoothly
accelerate its local or "low temperature" searches using the Newton method
where A will be closely linked to the annealing algorithm's temperature
parameter.

2 Relative to the physical scale of the initial structure and the magnitude of the load
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Figure 2: Initial 16 node structure with displacement vectors
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Figure 3: Converged 16 node structure with displacement vectors (418 iter-
ations, A = .01)



Figure 4: Reduction of D with each iteration of 16 node structure (418

iterations, A = .01)

17

50



x10
'

0

Figure 5: Reduction of IIJII with each iteration of 16 node structure (418

iterations, A = .01)



Figure 6: Converged 16 node structure with displacement vectors(5277 it-
erations, A = 5x10 - 4)
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Figure 7: Reduction of D with each iteration of 16 node structure (5277

iterations, A = 5x10 - 4)
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Figure 8: Reduction of IIJJI with each iteration of 16 node structure (5277

iterations, A = 5x10 - 4)
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