
Inspection and Feature Extraction of Marine

Propellers

by

Michael Oliver Jastram

Submitted to the Department of Ocean Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Ocean Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 1996

© Massachusetts Institute of Technology 1996. All rights reserved.

Author .. ............... ... . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .

Department of Ocean Engineering
December 13, 1996

/' I

Certified by.................
Nicholas M. Patrikalakis

Professor of Ocean Engineering
Thesis Supervisor

- / / f

Accepted by .........
J. Kim Vandiver

Chairman, Departmental Graduate Committee
.. Department of Ocean Engineering

APR 2 9 1997



Inspection and Feature Extraction of Marine Propellers

by

Michael Oliver Jastram

Submitted to the Department of Ocean Engineering
on December 13, 1996, in partial fulfillment of the

requirements for the degree of
Master of Science in Ocean Engineering

Abstract

Localization Localization is the process of determining the rigid-body translations and
rotations that must be performed on a set of points measured on a manufactured surface
(like a propeller blade) to move those points into the closest correspondence with the ideal
design surface. An additional parameter is an offset distance, such that the Euclidean
motion brings the measured points as close as possible to an offset of the design surface.

An algorithm to determine the seven parameters (three rotations, three translations,
one offset) was developed in 1991 by R. A. Jinkerson. But that algorithm makes some
assumptions about the surface and the measured points, which are sometimes not fulfilled.
Specifically, it assumes, that a measured point has always an orthogonal projection on the
offset surface, regardless of the translation and rotation parameters.

This thesis extends Jinkerson's algorithm, so that these assumptions are not necessary
any longer. This involves the development of a new objective function and its gradient.

Feature extraction During the manufacturing process, a propeller blade surface is
subject to manufacturing inaccuracies, that result in small changes to the data describing
its features. It is therefore desirable to recompute these features for comparison with the
original design data. Most of the characteristics of a propeller blade are embedded in the
camber lines of its hydrofoil sections. The objective of this part of the thesis is to recompute
the camber line from a hydrofoil shape curve.

An algorithm for this task has already been developed, but it makes the assumption
that the blade thickness has a single maximum, which is often not fulfilled, especially, if the
hydrofoil has been generated from measured data.

In this thesis, a new algorithm has been developed. It generates a highly accurate camber
line by using a two pass iteration method: The first pass generates an approximation of the
camber line, and the second pass refines this approximation to the desired accuracy.

Thesis Supervisor: Nicholas M. Patrikalakis
Title: Professor of Ocean Engineering



Acknowledgments

This thesis is dedicated to the many people who have made it possible.

Starting back in Germany, I want to thank the staff of the "Institut fiir Schiffbau"

in Hamburg for preparing me for survival at MIT.

During my tenure in the Master's program, several people and organizations I

have been in contact with have provided tremendous support. First and foremost,

my advisor, Professor N. M. Patrikalakis, whose support made it possible for me to

finish the program within a short period of time.

I also got a lot of support from the whole staff of the design laboratory. Specifically

I want to thank Mr. Stephen Abrams, who always was willing to take time to give

technical support. Dr. Seamus Tuohy helped me to get started with the work and

Dr. Takashi Maekawa accompanied me to the finishing line. Many people inspired me

throughout the project, like Professor Andre Clement, who made useful comments

and suggestions on the thesis.

Finally I want to thank the U.S. Navy for helping me cover my expenses. Funding

for this work was obtained in part from the Naval Sea Systems Command of the U.S.

Navy under grant number N0002496WR10553.



Contents

Abstract ................. . ............ ...... 2

Acknowledgem ents ................ .. ............. 3

C ontents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 7

List of Tables . . . . . . . . . . . . . . . . .. . . . . . . . .. . .. . 9

1 Introduction and outline 10

1.1 Localization ........... .................... 10

1.2 Camber line extraction .............. ... ......... .. 12

1.3 O utline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature review 14

2.1 Localization ........ .. .... .......... ...... 14

2.2 Feature extraction ............................ 16

3 General localization algorithm 18

3.1 Introduction ................................ 18

3.2 Problem formulation ........................... 19

3.2.1 Distance function ...................... 21

3.2.2 Objective function ....... .... ......... .. 24

3.3 The gradient vector ........ ........ .... ....... 24

3.3.1 Derivatives with respect to V), 0, .. .............. 25



CONTENTS CONTENTS

3.3.2 Derivatives with respect to tx, t, tz ................. 26

3.3.3 Derivative with respect to h . .................. 27

3.4 Interpretation of the gradient vector . .................. 29

3.4.1 "Corner" point ... .. .. ... .. .. .. .. ... .. .. . 29

3.4.2 "Border" point ......................... 30

3.5 Relation to the earlier formulation of the gradient . .......... 33

3.6 Constrained gradient function ................... ... . . 34

3.6.1 Introduction ................... .. ...... 34

3.6.2 Selecting a constraint function . ................. 35

3.6.3 Constrained localization algorithm . .............. 36

3.6.4 Constrained function and gradient . ............... 36

3.7 Tangent plane distance ................... ...... 38

3.8 Conclusion ....... . ... . ... ........... .. 39

4 Examples of the general localization algorithm 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Example 1: Biquadratic B-spline patch . ................ 41

4.2.1 Measured points with orthogonal projections . ......... 41

4.2.2 Measured points with non-orthogonal projections ....... 42

4.3 Example 2: Westinghouse turbine blade . ............... 45

4.3.1 Influence of the starting position of the data points ...... 48

4.4 Example 3: ARL propeller blade ................... . 50

4.5 Constrained localization ................... ...... 52

4.5.1 Examples ............. ................ 53

4.6 Conclusion ............. .. . .............. 54

5 Camber line extraction 55

5.1 Introduction .................. .............. 55

5.2 Problem formulation ........ . ......... ....... 56



5.3 Intersection cur

5.4 Properties of B

5.4.1 Multipl

5.4.2 Slope of

5.5 PRAXITELES

5.6 Camber line ge

5.7 Accuracy analy

5.7.1 Error d

5.7.2 Error in

5.7.3 Interpre

5.8 Camber line ref

rve . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

rooks ribbons ........................ . 58

e Brooks ribbons define one shape ............ 59

thickness function at the leading edge . ........ 60

.... ... ... . ... .. ... .... .. . 6 3

neration . . . . ........ .......... ....... 64

1sis . .................. .......... 66

ependency ................ . ...... 67

terms of spine curvature . ............... 67

tation of accuracy .................... 71

finement ................... ...... 75

5.9 Approximation .................

5.9.1 Approximating the camber line .

5.9.2 Approximating the thickness function .

5.10 Conclusion . ...................

6 Examples of camber line extraction

6.1 Introduction .. .... .. .. ... .... ..

6.2 ARL fan blade .............. ..

6.2.1 PRAXITELES 8.0 (from design) . . . . .

6.2.2 Bisector method .............

6.2.3 PRAXITELES 9.0 (From design surface)

6.2.4 From measured surface . . . . . . . . .

6.3 Praxiteles logo blade ..............

6.4 Conclusion . . . . . . . . . . . . . . . . . . . .

A Additional tables

Bibliography

80

.... .... .... . 8 0

.... .... .... . 8 1

. . . . . . . . . . . . 8 1

. ... ..... .... 8 2

. . . . . . . . . . . . 83

. . . . . . . . . . . . 86

. .... .... .... 87

. ... ..... .... 88

CONTENTS CONTENTS



List of Figures

3-1 Interior, border and corner points and a design surface .

3-2 Relation between a measured point and the surface .....

3-3 Distance to tangent plane . .................

4-1 The experimental patch . ...............

4-2 Measured points near the border of the patch .....

4-3 Westinghouse turbine blade . .............

4-4 Localization results on the Westinghouse turbine blade

4-5 Westinghouse turbine blade, localization results from a

sition . .........................

4-6 Wrong distance measure . ...............

4-7 ARL fan blade . ....................

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

"bad" starting po-

Two Brooks ribbons, generating the same shape

Leading edge and camber line . . . . . . . . . .

Brooks ribbon representing a hydrofoil . . . . .

Generation of the camber line . . . . . . . . . .

Accuracy analysis ................

Error in thickness function for NACA 24xx . . .

Error in camber position for NACA 24xx . . . . .

Refinement of the camber line . . . . . . . . . .

6-1 Camber line from design generated by PRAXITELES 8.0

59

60

64

64

68

74

74

75



LIST OF FIGURES LIST OF FIGURES

6-2 Camber line from design generated by PRAXITELES 8.0 ........ . 82

6-3 Camber line generated by PRAXITELES 8.0 ................ 83

6-4 Camber line from ARL fan blade (from design surface) . ......... 83

6-5 Leading edge region of ARL fan blade . .................. 84

6-6 ARL blade thickness function . .................. .... 85

6-7 Camber line from ARL fan blade, using PRAXITELES 9.0 (from measured

surface) ............. ...... ............. 86

6-8 Camber lines at leading edge . .................. .... 86

6-9 Camber line from PRAXITELES logo blade (from design) . ....... 87

6-10 PRAXITELES logo blade thickness function . ............... 88



List of Tables

4.1 Localization with centered, critical data points. . .............. 43

4.2 Localization result of a set of data points with critical points ....... 44

4.3 Localization performed on the Westinghouse turbine blade ........ 47

4.4 Localization with measured points bad starting condition ......... 49

4.5 Localization performed on the ARL propeller blade . ........... 52

4.6 Constrained localization on sample patch . ................ 53

A.1 The input file of the sample patch ................... .. 91

A .2 A set of data points . . ... .. ... .. .. ... . .. ... .. .. 91

A.3 Localization result of a set of measured points with orthogonal projections

on the patch ................. ............... 92

A .4 A set of data points . .. ... ... ..... .. .. .. ... .. .. . 92



Chapter 1

Introduction and outline

1.1 Localization

A fundamental problem in manufacturing is the determination whether a manufac-

tured piece meets the requirements of its original design specifications. The evaluation

of positional tolerances to ensure that a manufactured item is an acceptable rendering

of the original design is a basic element of manufacturing inspection.

In few areas of manufacturing is the need for precise inspection and evaluation

of tolerances more important than in the area of marine propellers, especially naval

propellers. The manufactured item is an exceedingly complex sculptured surface

which must be produced with extremely high fidelity to the original design. Very

strict positional tolerances must be achieved by a difficult manufacturing process to

prevent severe compromise of the propeller's performance.

The inspection of marine propellers has traditionally involved highly skilled tech-

nicians checking the surface of a manufactured propeller with numerous mechanical

gauges. The blades are cut to specified dimensions under the direction of a manufac-

turing engineer who interprets the specifications of the propeller designer. Although

rigid guidelines are provided for placement of the gauges on the blade, errors in

measurement can result from inappropriate decisions of the technician or inaccurate



Introduction and outline

alignment of the gauge on the manufactured blade. Moreover, the direct gauge mea-

surements only evaluate the blade at the local site where the measurement is made.

A fully satisfactory method for evaluating global compliance with specified tolerances

is not yet available. Often expensive and inefficient rework of propellers has been

necessary because it was not possible to quickly and confidently ascertain whether

the manufactured product would satisfy the requirements of the designer.

The recent development of automated methods of inspection using coordinate

measuring machines (CMMs) and laser-based measuring devices has made it pos-

sible to obtain voluminous quantities of highly accurate spatial measurements of

manufactured propellers. These robotic devices have provided a reliable source of

measurement data, but methods for best using that data are still in the process of

development.

The first part of this thesis will be built on existing approaches to utilize measured

data from manufactured propellers for the automated inspection of those propellers.

It will deal with the problem of optimally positioning a set of measured points from a

manufactured propeller blade relative to the design surface from which the blade was

manufactured. The first problem investigated in this thesis may be simply stated as

follows:

Given a set of measured data points from a manufactured surface, deter-

mine the rigid body translations and rotations which must be applied to

the set of measured data points to bring those points into closest corre-

spondence with the design surface from which the measured surface was

manufactured.

If all measured points contribute equally to the determination of the set

of rigid body transformations, then the problem is one of unconstrained

localization.

If some measured points have greater effect on the determination of the

set of rigid body transformations than other points, then the problem is

|

Localization



one of constrained localization.

1.2 Camber line extraction

Once a propeller blade section has been designed, it is desirable to recompute the

features of the blade. Important features include camber line, section thickness func-

tion, pitch, rake, skew, chord length, maximum thickness, and leading edge. During

various design steps, such as section and surface fairing, the propeller blade surface

undergoes slight modifications resulting in small changes of the value of its features.

It is desirable to recompute these features and compare them with design values.

Given that manufacturing always involves error, it is even more important to re-

compute the features of a manufactured blade. The real features of the manufactured

propeller always differ slightly from the design features. Using the design surface of

the blade and a set of measured points, it is possible to create a procedural surface

representing the manufactured blade from which features can be extracted.

The design process of a propeller blade usually involves a set of intersection curves

of the blade with a cylinder, cone or plane. Thus, to compare the manufactured blade

with the design blade, it is desirable to generate the intersection curves for the man-

ufactured blade. The intersection curve can be further analyzed, by determining

leading and trailing edge and generation of the camber line. From this, other impor-

tant features like pitch, rake, skew, etc. and the related features may be extracted.

Traditionally, the blade surface is defined in terms of sections with cylindrical

surfaces coaxial with the propeller axis of rotation. Two-dimensional hydrofoil sec-

tions are first produced using a camber line and a thickness function. They are

subsequently translated and rotated in three-dimensional space and mapped onto a

cylinder, to define the surface by lofting through those sections. Thus, the first step of

extracting features from a mathematical surface is the regeneration of those hydrofoil

sections. Once the section is generated, the camber line and thickness function have

Introduction and outline Camber line extraction



Introduction and outline Outline

to be extracted to determine all other features.

The second part of this thesis deals with the problem of finding the camber line

and thickness function of a given hydrofoil-like intersection curve.

1.3 Outline

The thesis is structured as follows:

Chapter 2 will present a review of current literature relevant to the problem of

localization and feature extraction.

Chapter 3 will discuss the theoretical basis for the localization algorithm (both,

unconstrained and constrained). It will describe the optimization problem and

how it has been solved. An extension to an existing localization algorithm will

be presented, which improves the reliability of the localization results.

Chapter 4 will present experimental results which demonstrate the applicability to

the localization on artificial test surfaces and existing propeller blades.

Chapter 5 will present the process of generating the camber line and thickness func-

tion of a given intersection curve. The intersection curve might be generated

from a design surface or from a procedural surface representing a manufactured

blade and produced from measured data.

Chapter 6 will present some examples of camber lines and thickness functions gen-

erated from intersection curves from propeller blades.



Chapter 2

Literature review

2.1 Localization

There has been much interest in the problem of localization in recent years. This

chapter will review the literature that is relevant to the localization problem and

the work of this investigation. The intent is to provide some pertinent background

information which will give the reader a broader perspective concerning this particular

work.

Localization of surfaces was accomplished by Thorne et al. using a "least squares

matching of associated boundary edges" [29]. Gunnarsson and Prinz developed a lo-

calization method between "a set of points and parametric surfaces" by "dynamically

faceting the design surface" and finding a rigid body transformation matrix which

minimizes the sum of squared distances from the data points to associated planar

faces [14, 15]. This formulation required the solution of a constrained minimization

problem with twelve unknowns, which are the nine elements of the rotation matrix

with three translations, and six constraints which are the necessary relations between

elements of the Euclidean rotation matrix.

One basic question in the formulation of the localization problem is the selection of

an appropriate norm to use in distance minimization. Bourdet and Clement analyzed



this problem in [7]. The general guidelines of the paper can be summarized by saying

that "for point sets of fewer than 12 points the L, (or minmax) norm should be used,

while the L2 (or least-squares) norm should be used for point sets of greater than 12

points." An interesting algorithm which allows for computation of both the L 2 and

the L, norms at the same time is presented in [13].

The work of this thesis, as applied to the unconstrained localization problem, is

based on earlier work presented by Bardis and Patrikalakis [25, 4].

This work has been continued by Jinkerson et al. [18, 19] and being implemented

in the Interrogation System PRAXITELES 1. To speed up the localization process, a

modified Newton algorithm, provided by Numerical Algorithms Group (NAG) [24],

is used. This algorithm uses the gradient vector of the sum of the squared oriented

distances (the objective function) to find the "optimal rigid body movement of the

measured points to the design surface." So the objective function has to be analytical

(so the gradient vector can be provided). Jinkerson uses the "oriented distance",

which is an important concept in his work. The idea was developed by Kriezis et

al. [21, 22] for use in the solution of surface intersection problems. It is the oriented

distance function which is defined as "the inner product between a vector from a given

point to its nearest point on a surface, and the unit normal vector of the surface at

that point." The derivative of the oriented distance has been developed by Jinkerson

et al. [19].

Another extension incorporated by Jinkerson et al. [19] was to apply the localiza-

tion on an offset of the design surface instead of the design surface itself. The offset

distance is a seventh independent variable, besides the three Euler angles and the

three translations. This results in much better localizations for real world problems,

as this method is adapted from the manufacturing process with machining tools.

At about the same time Sahoo and Menq [28] developed a universal localization

1 PRAXITELES is an interactive geometric modeling system for sculptured curves and surfaces. It
has been developed in the Ocean Engineering Design Laboratory at MIT with funding from various
U. S. government agencies [17, 30, 2]

Literature review Localization



algorithm, which extends the manufacturer's software of CMM systems. Their sys-

tem processes several different types of parametric and implicit surfaces. For every

surface type a distance calculation algorithm is given. In contrast to the algorithm

by Jinkerson et al. [19], Sahoo and Menq do not use the analytic gradient function

of the distance function.

Choi and Kurfess [11] developed, like Sahoo and Menq, a localization algorithm

which works on several different surface types.

2.2 Feature extraction

The alluded hydrofoil-like curve defined as the intersection of the blade surface with a

cylinder coaxial to the axis of rotation can be computed and expanded on this cylinder.

The camber line of the resulting two-dimensional curve on the expanded cylinder was

defined by Patrikalakis and Bardis [26] as the spine of a Brooks ribbon [9, 27]. A

Brooks ribbon is generated by a planar curve called the "spine" or "directrix", and

straight-line segments of varying length called the "generators" or "bones", which are

"swept along the spine while being normal to the spine with their midpoints on the

spine" [9]. Thus the hydrofoil section, generated by a camber line and a thickness

function, is a Brooks ribbon. Other classes of ribbon-like structures are Blum ribbons

[6] and Brady ribbons [8]. "While a Blum ribbon is completely determined by the

boundary of a planar shape, the spine of a Brooks ribbon or Brady ribbon is not

uniquely determined by the boundary of the region alone" [27]. Each Brooks ribbon

also depends on the initial point chosen as its starting point.

Patrikalakis and Bardis [26] developed algorithms for the "extraction of gross

geometrical features" of ideal design geometries of marine propeller blades represented

by B-spline surfaces. They used an extension of a Brooks ribbon to describe the

camber line, and they derived a system of nonlinear differential equations to define

the camber line. The approximation of the camber line with a B-spline curve uses a

Literature review Feature extraction



Feature extraction

complicated error evaluation scheme.

The features extracted from the design of a propeller blade were highly accurate.

Also, the surface of a manufactured propeller blade could be approximated by using

measured data and the corresponding design surface. However, this surface could not

be used directly for feature extraction. The problem was embedded in the integration

scheme developed by Patrikalakis and Bardis [26]. The algorithm required some

specific characteristics of the hydrofoil shape intersection curve from the surface (i.e.

that the blade section thickness has only one maximum). Those requirements were

not reliably fulfilled for intersection curves generated from measured data.

This work has been extended by Jinkerson et al. [19] and Abrams et al. [2]. Their

objective was to recompute camber lines from manufactured propeller blades. From

a set of measured points they generate a faceted surface, from which they extract

hydrofoil shaped curves by "intersecting the faceted surface with a cylinder." For this

hydrofoil, they compute the camber line. As the algorithm developed by Patrikalakis

and Bardis [26] is not reliable on hydrofoil shaped curves generated from measured

data, Abrams et al. [2] uses a simple marching scheme to approximate the camber

line.

This marching scheme, using a bisection method, has been implemented in PRAX-

ITELES 8.0 for the case of a hydrofoil curve generated from measured data. By using

a different approach to compute the camber line from a hydrofoil section, this thesis

tries to find a stable, highly accurate algorithm, which can be applied on both, design

and measured data surfaces.

Literature review



Chapter 3

General localization algorithm

3.1 Introduction

Localization can be defined as the problem of determining the optimal positioning of

a set of measured points on a manufactured artifact relative to its design surface.

Unconstrained localization addresses the problem of determining the optimal po-

sitioning of a set of measured points relative to a design surface, when each measured

point has an equal effect on the determination of positioning. Constrained local-

ization, on the other hand, involves the problem of determining a feasible, but not

necessarily optimal, positioning of a set of measured points relative to a design surface,

when subsets of the measured points can have unequal effects on the determination

of positioning.

These problems have been successfully solved [19]. The localization problem can

be formulated as an optimal parameter estimation problem involving seven param-

eters. Those parameters are the three translations and three Euler angles, which

correspond to a general three-dimensional translation and rotation of a rigid body

in 3D-space. We introduce a seventh parameter, the offset distance to the design

surface.

In this context the measured points represent physical points in space that are



determined by direct measurement of the surface of a manufactured part. The intro-

duction of the offset parameter produces much better results for real manufactured

surfaces like propeller blades. The reason is the manufacturing process, which uses

NC milling tools. The tool moves along an offset surface to produce the design surface.

If the tool is not perfectly adjusted, a small offset remains on the surface.

The algorithm developed by Jinkerson et al. [19] puts some requirements on the

design surface and the data points, which restrict its application. The algorithm

requires, that the shortest distance of a data point to the design surface is the point's

orthogonal projection on the surface. Fig. 3-1 shows the three possible cases we

can encounter. We call them "interior point", "border point" and "corner point",

respectively. Jinkerson's algorithm requires all points to be interior points.

The localization algorithm developed by Jinkerson et al. [19] has been implemented

in the interrogation system PRAXITELES 8.01. The problem described above has been

suppressed by ignoring points that have no orthogonal projection. This is not an

appropriate solution, as we assume that a unique solution of the problem of finding

the nearest position of a point on the surface exists. If the objective function changes

during the localization, as a point can have an orthogonal projection in one iteration

step and in the next step it does not any longer, we are not sure that we will find the

optimal global solution.

3.2 Problem formulation

Consider a parametric surface P(u, v), which will be called the design surface, repre-

senting the desired design geometry. Consider also a set of m points R/, 1 < i < m,

Ei E R3, which will be called measured points. Finally, consider another set of m

points Qi, 1 < i < m, on the design surface P(u, v) which are the nearest points to

1PRAXITELES is an interactive geometric modeling system for sculptured curves and surfaces. It
has been developed in the Ocean Engineering Design Laboratory at MIT with funding from various
U. S. government agencies [17, 30, 2].

General localization algorithm Problem formulation



General localization algorithm Problem formulation

Corner

4U

The figure shows a patch with three measured points. To show the orthogonality properties better, the
patch is cut by a plane, which is orthogonal to a u = const isoparameter line at some value v. The
dotted frame indicates the region, where points have an orthogonal projection (this region is not limited
above or underneath the patch). The "interior point" illustrated has an orthogonal projection (and thus,
lies in the cutting plane). The "border point" illustrated has an orthogonal projection on the u = 0
isoparameter line only. Finally, the "corner point" has no orthogonal projection on the patch or its four
boundary curves.

Figure 3-1: Interior, border and corner points and a design surface

each measured point Ri. It is assumed that the nearest points Qi of Ri on P(u, v)

are unique. The points Qi will be subsequently called footpoints.

It can be shown that under some reasonable conditions, the nearest point will be

unique [22]. Furthermore, in most cases the nearest point can be expected to be an

orthogonal projection of the measured point onto the patch. Jinkerson makes this

assumption in his approach [18].

Problem formulationGeneral localization algorithm

.....----



3.2.1 Distance function

The objective function for minimization is the sum of squared distances of each point

from the design surface. Each measured point Ri has a nearest point Qi on the design

surface. The minimum distance from each measured point to the design surface is

the distance between the points /R and Qi. If the distance between two points is

denoted by d(Pi, P2), then the minimum distance from a measured point !iR to the

design surface P(u, v) is defined as

d(Ri, Qi) = IRi - il = minu,v,(AR - P(u, v) ) (3.1)

But we are not interested in the minimum distance to the design surface, but in

the minimum distance to the offset surface with distance h to the design surface.

The offset to a given footpoint Qi is Qi + nih, where n'i is the unit normal vector of

A(u, v) at QQ. Thus, the minimum distance d of a measured point to the offset h of

the design surface is

d( i, , h) = (R - - h)(3.2)

The normal vector ni can be computed by

S (u, v) X P(u, v)ni = (3.3)
=PU(U' V)× PV( , v)l

The minimum distance function (3.2) describes the Euclidean distance between

two points. Still, there is another way to calculate the same distance. If Ri has an

orthogonal projection on P(u, v), then the oriented distance gives the same value:

d(Ri, Qi, h) = n'i (/• - •i) - h (3.4)

Jinkerson uses this distance function in [18]. It is important to remember that

this function is only valid, if an orthogonal projection of Ri- on P(u, v) exists!

General localization algorithm Problem formulation



General localization algorithm Problem formulation

:e h

Figure 3-2: Relation between a measured point and the surface

To gain consistency with the algorithm described here, we use a slightly modified

version of (3.4):

d(Ri h) = n'i. (Qi -Ri) - h (3.5)

The difference is the definition of whether a negative distance is on one or on the

other side of the patch.

The process of finding the footpoint Qi is described in [18]. A modified Newton

method is used, and the process is stable even if no orthogonal projection of the

measured point on the surface exists.

The two distance measures, the signed distance and the Euclidean distance, are

measures which we can understand intuitively. But one might wonder whether there

are better measurements for the distance, where "distance" does not necessarily has

to represent the Euclidean distance any longer. One such distance measure has been

suggested by Professor Andre Clement. In this new approach we do not measure the

distance to the footpoint, but the distance to the tangent plane of the surface at the

initial footpoint and shifted by the offset (see Fig. 3-3).

In this approach, we refer not only to the measured points Ri with their corre-

sponding footpoints Qi; we also refer to the rotated, translated and offset points r'i

General localization algorithm Problem formulation



General localization algorithm Problem formulation

In this approach the distance of a translated and rotated point ri depends on its original position Ri,
before the localization process started. Qi is the footpoint to the measured point Ri. In this approach,
we measure the minimum distance to the plane t, which is tangent to !(u,v) at Qi, instead of the
minimum distance to the patch P(u, v). This plane t is determined by the footpoint Qi (which does not
change during the localization process) and the offset distance h, which might change. (The offset is
not shown in this sketch, to keep it simple.)

Figure 3-3: Distance to tangent plane

with their new footpoints j'. For their exact definition, refer to section 3.2.2.

The approach suggested by Professor Andre Clement is similar to Jinkerson's. In

fact, it is identical to (3.5), except that we always refer to the original footpoint Qi

(instead to the moved footpoint q). With the notation suggested above, we use the

distance measure

(3.6)

where n'i is the unit normal vector of I(u, v) at Qi.

In the following we will concentrate on developing a framework to implement the

localization algorithm using the Euclidean distance. In the end of this chapter we

will investigate the tangent plane distance further.

Problem formulationGeneral localization algorithm

d(Fi, Q, h) =i (si - i - h



3.2.2 Objective function

Localization is an iterative procedure searching for improved positions for the mea-

sured points. During each iteration the initial measured points Ri are rotated by

angles V, 0 and 0 about the x, y and z axis, respectively, and are translated by the

vector t = [t, ty, tz]. The angles are the Euler angles of rotation. Let ,i be the

positions attained by the measured points after the completion of an iteration step.

Vei = [C]Ri + t (3.7)

We use the notation q for the point nearest to the transformed points r'i on the

offset surface with distance h from the design surface .(u, v). The position of the

point q- varies together with the motion of the point 'i depending on the six motion

parameters. Therefore q- can be viewed as a vector-valued function depending on

the variables 4, 0, 0, tx, t,, tz and h. The rotation matrix [C] = [C](V, 0, 0) was

introduced by Jinkerson in [18] and has been proved to be orthogonal:

cos 0 cos q - cos 0 sin ¢ sin 0

[C] = cos 'sin 0 + sin 0 sin V cos q cos4 cos - sin 0 sin q sin 0 - sin 4 cos 0

sin V sin 0 - sin 0 cos 0 cos V sin 7 cos 0 + sin 0 sin 0 cos 4 cos 0 cos ,

(3.8)
Altogether the objective function is

m

F(4, 0, 0, tX, ty, tz, h) = di (ri, q, h) (3.9)
i=1

3.3 The gradient vector

The algorithm used to find the optimal rigid body transformation of the measured

points to the design surface uses the gradient of the objective function (3.9) to speed

General localization algorithm The gradient vector



General localization algorithm The gradient vector

up the minimization process.

Using the gradient vector is not strictly necessary; there are other approaches,

which perform the localization by using a numerical estimate of the gradient vector,

but they are slower. The advantage of not using the symbolic gradient is generality.

Choi and Kurfess [11], for example, developed a localization algorithm which works

on several different types of surfaces, which can be implicit or parametric. If a new

surface type has to be added, the algorithm requires only the implementation of a

distance function for the new surface type.

As the unit normal vector n'i and the distance vector di do not necessarily have

the same direction (as required by Jinkerson in [18]), we have to use the Euclidean

distance function (3.2) instead of the oriented distance function (3.5). So we use the

distance function

di = (ýi -q - ih) 2  (3.10)

It is helpful to define the distance vector

di = ri - q-# - nlih (3.11)

The objective function (3.9) has to be minimized. We want to provide its gradient

vector, which consists of the following seven components:

Od? Od? Odi Od? Od? adq Od?
a0' 0 ' IO ' Ot' aty' Otz' ah

3.3.1 Derivatives with respect to 0, 0, q

First we want to take the derivative of (3.9) with respect to the angles. This process

is equivalent for all three angles, so it is shown here only for 0. We omit subscript i

for d for simplicity.



;eneral localization algorithm

dd2(-i, -, h)
0¢

2 d q-#i ýh) q-# h) 22d(-, j, h)=~~a 2d(:;,h) o-V(  - Qi - h)( -)
= 2 (/ -# - -h)

substituting (3.7) yields:

d2('i , h)
00 2(• i n h) -([c]Ri + t- q -

= 2(7/- q- - fih). ([C]o/-i + {' - (q)¢Ti= iR o-W

and- and d can be developed in the same way. With i =
Llly

Od2(7i, , h)

0d2(i, j, h)

0q5

= we get

= 2(- - q- - - h) ([C]o• - (*), -

= 2(- - -' - -,h). (IC i, - (()~) - (

(3.12)

(3.13)

(3.14)

.2 Derivatives with respect to tx, ty, tz

take the derivatives of (3.9) with respect to the translations in
ess is equivalent for all three translations, so it is shown here

way. This

S 2d(/, q-, h) 0
2 8ijh2

-qi-

2d(7/, q, h)do(7i, -, h)

= 2d(i, q, h)o• i7 -q-ih)2



ation algorithm

d 2(ri, , h)
at, - 2d(-, ', h)dt. (r-, q, h)

2d (ri, , q h) a qi - ntiih

2d(r-~, , h) 0

2d(i, q, h) &
-2 h, h) t i )2

-2 q -i - nih) a ixatx'r
: (3.7) yields:

x, h)tx

can be developed in the same way. With [C]tx :

(3.15)
-(4)t - (

-j (z -

(3.16)

(3.17)

vative with respect to h

rivative of (3.9) with respect to the offset h can I

atx
2(i, - , h)

aty
2-("i, q ,h)

at,

- 2(r - q- - n h) -(t-t

ri2(6 - - Ah) -(tq

- 2(r•+ - i - nh) . (Et

- #ih)2

- qj -

2- qi -- ih)-• ([C] i  t -[- -

= 2(T - 4 - nih) - ([C]tR-i + tt, - (q-)



General localization algorithm

dd2( , qi, h)
Oh

The gradient vector

- 2d(fi, 4, h)dh( , 4, h)

- 2d( i jh)q h O(h)
2 (i

2d(r-, q-', h) a

2d(r-, A, h)h -0

2(-(i - q - h) (i -
Oh

substituting (3.7) yields:

Od2 (r, , h)
Oh

= 2(t- q, - dih). ([C]hRir th -

But [C], tand - do not depend on h, and therefore thei
to h vanish. Consequently:

Od 2((i, qi, h)
Ah -2(ri - qj - nih) 0

But -h = 1, and ni is independent from h, so we get fir

d h 2( h) h)-
Ah -2(• - q-• - •ih) . ni

gradient vector from (3.12) to (3.18) an

(3.18)

Sq2( -- i n- ih) - ([C]Ri + t

We assemble the



2(r - q - n'ih) ([C]Oi - (q)¢ - (n4i)Vh)

VF = S 2(i -q -ih) . (tt - (q-)t - (i)th) (3.19)
i=1

2(ri -q- - n'ih) ([i - (q'i) - (n'i)oh)
2(,r i - - n'ih) QC]O. i - (q'it o - (nii)oth)

-2(2ri - q-i -n'ih) - n'i

It should be noted that the expression ('i -- - niih) appears in all components

and has already been defined in (3.11) as the distance vector di.

3.4 Interpretation of the gradient vector

Measured points can be classified into three categories, depending on their location:

Interior point: The point has an orthogonal projection on the surface.

Border point: The point has an orthogonal projection on one of the four border

curves.

Corner point: All remaining points.

An example of each case is shown in Fig. 3-1.

In the following we will see, that all cases simplify to one simplified gradient vector.

3.4.1 "Corner" point

This case can be visualized as the "Corner point" in Fig. 3-1. Suppose the measured

point 'p- is moved by a small amount in either direction. If the movement is small

enough, the position of the footpoint q- will not change at all, and neither the position

General localization algorithm Interpretation of the gradient vector



of the normal n'i. So

(•)= )= )€ WO WO= ('00i) K = (i i) ---0

qit= = = (7~, = (i7t z = (-t 0

and (3.19) simplifies to

2d -[C]VRi
2dz [C] Ri

2d, [C],RO

VF = 2dZ (3.20)
i=1

2dY

2di

-2di ni

where superscripts x, y, z denote components. All unknowns disappear, so all

information is available to compute this gradient vector.

3.4.2 "Border" point

A border point is a measured point in a position, where the footpoint q is located on

the border of the patch, and the projection of the measured point pi is not orthogonal

(like the "Border point" in Fig. 3-1). As it will turn out, for the resulting gradient

vector it does not matter which of the four borders we observe.

Equation (3.19) can be simplified by using orthogonality properties. The key idea

is, that the q and n'i can only slide along the border. That means, all derivatives of

j and ni have the direction of the tangent to the border curve.

First we rewrite (3.19) by multiplying some of the components out. Fp can be

written as follows:

General localization algorithm Interpretation of the gradient vector



General localization algorithm Interpretation of the gradient vector

m2(- -- - nh). ([C1Rj - (•)O - (ih)Oh)
i=1

= 2[(r- - ). [CO - (i - q). (')O - (r - q). (nj)Oh

-i * [C]4Oh + n'i -(q'i)h + n'i -(n'i) h2] (3.21)

As sliding is

dent. Assuming

i (0f)l (1i)O
follows

only possible along the border, all derived vectors are linear depen-

that V is the direction of the border, we have the parallel properties

and the orthogonality properties (#i - -) -I and n-i I V. From this

ii. (qi)ph 2

hi"- (n--i)V¢h

0

= 0

= 0

= 0-o-o-o

So (3.21) simplifies to

m

F = E 2 [( - ) -[C]~pi - i. -[Ch h] = 2d- [C]i 4i (3.22)
i= 1

The same orthogonality properties can be applied on the other partial derivatives:

= 2d [C]oRi
= 2d - [C]4IO

(3.23)

(3.24)

Similar conditions can be found for the translations:

Interpretation of the gradient vectorGeneral localization algorithm



General localization algorithm Interpretation of the gradient vector

Ft = 2(•-- - - ih) . (tt - (i)t - (i7i)th)
i=1

m

i=1

- 4i tzh + i4 " (i)t~h + ni - (ni)txh2 ] (3.25)

By using the orthogonality properties, we obtain

m

F = 2dz
i=1

Ft = 2di
i=1

Fez = Z2dy
i=1

The component Fh can not be simplified any more. Altogether the gradient vector
is

2d~ . [C]oJ
2d~. [C] 0Ri

VF = 2dx (3.26)
i=1

2dY

2df

-2di •- *i

Surprisingly, this vector is identical with (3.20), the gradient vector of the "Corner
point".



3.5 Relation to the earlier formulation of the gra-

dient

The gradient vector developed by Jinkerson in [18] is

m
VF = Z-

i=1

2di(n'i- [C],Ri)

2di(n-i [C]oii)

2din

2dinr

2din z

-2di

(3.27)

This gradient is only valid, if the measured points ri have orthogonal projections

qi on the patch. If (3.26) is compared with (3.27) for measured points with orthogonal

projections on the patch (e. g. the scope of Jinkerson's gradient), the following terms

are identical:

= dip7i

d = dinx

dý = diny

dZ = dinz

If the above four expressions are substituted in (3.26), it yields (3.27). That means

that Jinkerson's gradient vector can be substituted by (3.26) and that again means,

that we do not have to distinguish between the three different cases at all.

Relation to the earlier formulation of the gradientGeneral localization algorithm



3.6 Constrained gradient function

3.6.1 Introduction

Unconstrained localization addresses the problem of determining the optimal posi-

tioning of a set of measured points relative to a design surface when each measured

point has an equal effect on the determination of positioning. Constrained local-

ization, on the other hand, involves the problem of determining a feasible, but not

necessarily optimal, positioning of a set of measured points relative to a design surface

when subsets of the measured points can have unequal effects on the determination

of positioning.

The unconstrained localization problem seeks to minimize one global objective

function so the measured points are all collectively brought as close to the design

surface as possible. In this problem each point contributes with the same weight

to the minimization of the objective function. In contrast, the constrained localiza-

tion problem starts with the rotations and translation produced by the minimized

objective function of the unconstrained localization problem and determines a rigid

body transformation which will allow the measured points to satisfy a set of nonlin-

ear constraints. The constrained localization problem does not minimize an objective

function, but rather uses minimization techniques to find a feasible transformation

that will satisfy the constraints imposed by a set of constraint functions. Satisfying

the constraint functions has the effect of changing the importance of each measured

point.

The need for constrained localization of marine propellers is evident because of

the tougher positional tolerances that are required near the leading edge of a blade.

A method is required which will provide for greater influence on the localization by

measured points that are close to the leading edge.

General localization algorithm Constrained gradient function



General localization algorithm

3.6.2 Selecting a constraint function

The selection of an appropriate constraint function is fundamental to the formulation

of the constrained localization problem. The constraint function must certainly be a

distance measure, but careful definition of this measure may facilitate the solution of

the problem.

Jinkerson [18] discusses the choice of the constraint function. It was considered to

choose the squared distance as the constraint function. A drawback of that approach

is less precision. Furthermore, the squared distance function as an unsigned function

causes all sense of position of a measured point relative to the design surface normal

vector orientation to be lost. The loss of positional sense of a measured point relative

to the design surface is undesirable in the context of using the process as an inspection

tool.

Using the oriented distance as the constraint function, the localization has m

constraining functions ci, one for each transformed measured point 'i, so that

ci = d(r-i, - , h) (3.28)

where d is the oriented distance (3.5). The bounds for the constraining function

ci depend upon the u, v parameters of the initial footpoint Qi. Assume chordwise

parametrization of the design surface in the parameter u and that Umin and umax are

the isoparameter lines describing the leading-edge region boundaries, umin < Umax.

Let E be the constraining bounds for ci if the u parameter of the corresponding

footpoint Qi is inside the leading-edge region and let 6 be the bounds otherwise.

Typically, e < 6. Then the constrains are:

-e < ci • E if umin • Ui u< Umax (3.29)

-6 < ci < 6 otherwise (3.30)

|

Constrained gradient function



3.6.3 Constrained localization algorithm

The constrained localization is the problem of determining the rotations and trans-

lations which must be performed on the set of measured points so that they will

satisfy the required localization constraints. The problem of determining the set of

six parameters which will allow the set of measured points to satisfy the localization

constraints is solved using the routine E04UCF for nonlinear constrained optimiza-

tion problems provided by Numerical Algorithms Group (NAG). The routine uses an

iterative sequential quadratic programming algorithm in which the search direction

is the solution of a quadratic programming problem [12, 24].

The nonlinear constrained optimization routine estimates gradients of user-supplied

functions with difference quotient unless the user can also supply those gradients.

The latter situation produces a great improvement in computational accuracy and

efficiency. For this reason, part of the implementation of this algorithm involves pro-

viding symbolic gradients for each of the functions that are supplied to the NAG

routine.

3.6.4 Constrained function and gradient

As the algorithm requires a signed distance, we can not just substitute the Euclidean

distance (3.10) in (3.28). To solve this problem, we calculate both, the oriented

distance (3.5) and the Euclidean distance (3.10). We use the sign of the oriented

distance and assign it to the Euclidean distance.

For the gradient vector we have to distinguish two cases. Depending on the sign

of di we have to use the right gradient of the following two:

Vdi = V( -( •--ii h)2

•(d)= V - vJ(T - g h)•

General localization algorithm Constrained gradient function



General localization algorithm

The process of taking derivatives is almost identical to the steps shown in section

3.3.1 and 3.3.2 and it yields

,. ([c] ,Ri - (')0 - (n'i)h)
ul. ([C]ORi - (qi) - (n'i)oh)

iR. - - (,0)h)

i Z (tt. - (q-)t - ('~i)tzh)
-0i " (t - (q-*)t, - (-'i)t,h)

Ui .('ýý - (q-•)t, - (n'i)t,h)
-ui • ni

(3.31)

where

S= - q-- h) (3.32)

uii is simply the unit vector in the direction of di. The sign of d influences the

whole gradient vector by changing the sign of all components.

As for the gradient vector of the objective function, three cases can be distin-

guished. The measured point as in Fig. 3-1 can be an interior, a border or a corner

point. Again, all cases simplify to one case which includes the gradient introduced

earlier by Jinkerson et al. [19]. As the calculations are quite similar to the way shown

for the objective function, only the result is presented here:

2u x# - [C]oRi

2u-i -[C],Oii
2u'

2u0

-2u'*i -n-'i

(3.33)

Constrained gradient function

VC i = ±-

Vci = ±



Compared to the earlier approach, this algorithm is computationally more ex-

pensive, as the distance is calculated twice (oriented distance, to get the sign, and

Euclidean distance, to get the value).

3.7 Tangent plane distance

As mentioned earlier, an approach similar to Jinkerson's is the use of the tangent

plane distance, which is given by (3.6). For this distance function we do not have to

derive the gradient vector, as it is identical with the one developed by Jinkerson, as

we just have to substitute q' by Qi.

What can we expect from such a distance function? First, as the initial position

of the point set determines the footpoints used to create the tangent plane, we have

to expect that the localization results depend on the initial position of the measured

point set. Second, we can also expect a performance increase. Using tangent planes

assigns a plane to every measured point, and this plane does not change during the

localization process. Thus, the distance of a measured point to its plane is now a

linear function with respect to a translation to, ty, tz and the offset h of this point

(with respect to the rotations, the distance is well approximated by a linear function,

if we assume small angles). The numerical solver we use to minimize the objective

function uses a modified Newton method [24]. But the Newton method converges

very fast on a linear function (in fact, on a linear function with one unknown it finds

the solution in one iteration step).

And last, we must expect the "real" RMS (defined by (3.9) and using the Eu-

clidean distance) to be larger or equal to the RMS found by the localization using

the Euclidean distance to the tangent planes. As we do not localize to the curved

patch any more (but to a faceted approximation), we cannot expect an exact result.

And as we assume that the Euclidean distance method finds a global minimum of

the objective function, every approximation to that solution can only create a larger

General localization algorithm Tangent plane distance



General localization algorithm Conclusion

RMS.

3.8 Conclusion

A new gradient vector (3.26) for the objective function has been developed. It turns

out that this new gradient is valid for all measured points, including interior, border

and corner points. Inside the patch it simplifies to the earlier formulation of the

gradient vector, that was introduced by Jinkerson et al. [18]. So this approach extends

the existing localization algorithm, rather than substituting it. As the objective

function does not change during the localization process, even if points do not have

orthogonal projections, the localization process has been stabilized and guaranteed

to find a unique best solution.

Also a new constraint function (3.28) and its gradient (3.33) have been developed,

which are generally valid, no matter whether an orthogonal projection of the measured

point on the design surface exists.

We also studied the "tangent plane distance function", which is strongly related

to the signed distance function. It is worthwhile exploring this approach, as it might

lead to a method to speed up the localization procedure.



Chapter 4

Examples of the general

localization algorithm

4.1 Introduction

The focus of chapter 3 was to extend the method developed by Jinkerson et al.

[18], from now on called old algorithm, to a more general methodology, to cover

also exceptional points, where no orthogonal projection of a measured point on the

design surface exists. Jinkerson's algorithm has been proved to be reliable, so the

improvement presented here would be worthless if it can not be shown to be stable

and consistent.

First it will be shown that the new algorithm delivers the same rigid body trans-

formations as the one introduced by Jinkerson, as long as all measured points have

orthogonal projections on the design surface. Then some examples from existing

applications will be shown.

The algorithm has been implemented in PRAXITELES 9.01. To compare the lo-

1PRAXITELES is an interactive geometric modeling system for sculptured curves and surfaces. It
has been developed in the Ocean Engineering Design Laboratory at MIT with funding from various
U. S. government agencies [17, 30, 2]. PRAXITELES 9.0 was in the alpha testing phase during the
development of the new localization algorithm.



Examples of the general localization algorithm

calization performance with the earlier localization algorithm, the same localizations

have been performed with PRAXITELES 8.0, which has the implementation of Jinker-

son's algorithm.

Although it has not been investigated in detail, the localizations have also been

performed using the tangent plane distance function.

4.2 Example 1: Biquadratic B-spline patch

To check systematically the properties of the new localization algorithm, a simple

patch has been defined (Fig. 4-la). The patch is a biquadratic B-spline patch and

has a four by four control polyhedron.

a. A biquadratic B-spline patch with a four by four control polyhedron. The control points are listed in
Table A.1.
b. If a small displacement is performed on the point set shown here, all points will still have an orthogonal
projection on the patch. The data points are listed in Table A.2, the result of the localization in Table
A.3.

Figure 4-1: The experimental patch

4.2.1 Measured points with orthogonal projections

The first sample point set consists of nine points, which are distributed regularly over

the patch (Fig. 4-1b). The control points are chosen in a way, that the optimal position

Example 1: Biquadratic B-spline patch



Examples of the general localization algorithm

requires a displacement in z-direction, no displacement in x- or y-direction and no

rotations. As expected, the localization results of PRAXITELES 8.0 and PRAXITELES

9.0 are identical. During the localization process the projections of the measured

points were always orthogonal. Both algorithms need exactly the same number of

iteration steps and deliver the same result (Table A.3). This shows that the new

localization algorithm has the same capabilities as the earlier algorithm.

4.2.2 Measured points with non-orthogonal projections

If a small displacement of a measured point can cause the projection not to be orthog-

onal any more, (Fig. 4-2 a), the old algorithm will start to disable those points during

the localization process. The number of disabled points can vary from iteration step

to iteration step.

z
z

a. Six of the nine measured points are in a critical position, as a small rigid body transformation can
change the orthogonality property. The set of measured points is documented in Table A.4.
b. Localization result of PRAXITELES 8.0. Although the program reported an improvement, it is clearly
visible that three measured points are far away from the patch. As those points have no orthogonal
projection, PRAXITELES 8.0 simply ignores them. The localization results are listed in Table 4.1.

Figure 4-2: Measured points near the border of the patch

Example 1: Biquadratic B-spline patch



Examples of the general localization algorithm Example 1: Biquadratic B-spline patch

PRAXITELES 8.0 PRAXITELES 9.0 Tangent Plane

Points: 6 (of 9) 9 (of 9) 9 (of 9)
Iterations: 50 39 17

Results: "Successful" "Very good solution" "Very good solution"
RMS, before: 0.05318910 0.05318910 0.05318910

RMS reported: 0.02512345 (52.8%) 0.04383439 (17.6%) 0.04383603 (17.6%)
RMS all Points: 0.10507048 (-97.5%) 0.04383439 (17.6%) 0.043834389 (17.6%)

-0.14698086 0.00000000 0.00000001
Tx, Ty, Tz: 0.00000000 0.00000000 -0.00000001

0.1012604 0.03158004 0.03157916
0.00000000 0.00000000 0.00000000

Rx, Ry, Rz: 0.01745329 0.00000000 0.00000000
0.00000000 0.00000000 0.00000001

Iteration Tolerance: 0.001

The values shown in this table represent the output of PRAXITELES with the three different localization
algorithms described in the previous chapter. "Result" is a rating made by PRAXITELES. Furthermore,
PRAXITELES returns only "RMS reported", even if not all measured points have been used. "RMS all
Points" has been generated separately to evaluate PRAXITELES' results. The "Iteration Tolerance" is
an input parameter of the localization.
PRAXITELES 8.0 reports the best RMS, but only, because it is ignoring three points. If they are consid-
ered, the result looks much worse. The other two algorithms deliver both the same, correct result.
The patch with the set of measured points is shown in Fig. 4-2.

Table 4.1: Localization with centered, critical data points.

PRAXITELES 8.0 reports an improvement of the RMS2 distance by 52.8%, while

PRAXITELES 9.0 reports 17.6%. This might be confusing, but gets clear by observing

the results closer. The reason is, that PRAXITELES 8.0 determines the RMS only from

the measured points that were actually used for the localization, and in this case only

six (out of nine) have been used. If the RMS is computed from all nine points,

PRAXITELES 8.0 yields a deterioration by -97.5%, while PRAXITELES 9.0 gained an

improvement of 17.6% (see Table 4.1). The tangent plane distance algorithm also

delivers the right result, and even better, it needs only 17 (vs. 39) iteration steps!

These numbers show that the RMS distances reported by PRAXITELES 8.0 after

a localization can lead to wrong conclusions, which might have serious consequences.

2 RMS = Root Mean Square



Examples of the general localization algorithm Example 1: Biquadratic B-spline patch

Sometimes, but certainly not always, a visual inspection of the localization results can

help (Fig. 4-2 b). With PRAXITELES 9.0 these problems will be avoided in the first

place. We also see, that the tangent plane distance method looks promising, although

we still have to investigate the relevance of the initial position of the measured points.

The results of the localizations are shown in Table 4.1.

To see the effect of the initial position of the measured points on the localiza-

tion algorithm, the same localization has been performed again. But this time, all

points have been shifted by t, = 0.4. We want to explore how many more iterations

the Euclidean distance uses (PRAXITELES 9.0), and especially the influence on the

localization with the tangent plane distance.

PRAXITELES 8.0 PRAXITELES 9.0 Tangent Plane

Points: 6 (of 9) 9 (of 9) 9 (of 9)
Iterations: 53 38 30

Results: "Successful" "Very good solution" "Successful"
RMS, before: 0.24187098 0.24187098 0.24187098

RMS reported: 0.02512345 (89.6%) 0.04383439 (81.9%) 0.04865827 (79.9%)
RMS all Points: 0.10507048 (56.5%) 0.04383439 (81.9%) 0.079913972 (67.0%)

-0.25250131 -0.40000000 -0.25488617
Tx, Ty, Tz: 0.00000000 0.00000000 -0.03589469

0.04192221 0.03158004 0.06442748
0.00000000 0.00000000 0.00165219

Rx, Ry, Rz: -0.01745329 0.00000000 0.01745329
0.00000000 0.00000000 0.01745329

Iteration Tolerance: 0.001

The initial position of the data points has been shifted by tx = 0.4, what mainly affects the tangent
plane method. The patch with the set of measured points is shown in Fig. 4-2. Note that the reported
RMS gives the impression that PRAXITELES 8.0 works best. But by observing all points we find that
only PRAXITELES 9.0 achieved an improvement.
For a description of the table entries see Table 4.1.

Table 4.2: Localization result of a set of data points with critical points

The localization results are shown in Table 4.2. PRAXITELES 9.0 seems to be

stable with respect to the initial position of the data points-the number of iteration

does not change significantly (39 vs. 38 iterations). The result is identical for the



Examples of the general localization algorithm Example 2: Westinghouse turbine blade

unshifted and the shifted point set (RMS of 0.04383439). By contrast, the tangent

plane distance algorithm does not only need more iterations with respect to that

in Table 4.1 (17 vs. 30 iterations), it also delivers a result twice as bad as with

PRAXITELES 9.0 (RMS of 0.04 vs. 0.08). An explanation is, that the algorithm

now operates on different tangent planes in comparison to the unshifted point set.

Although the starting position chosen here is unrealistically high, it shows that results

delivered by this algorithm have to be verified.

4.3 Example 2: Westinghouse turbine blade

The following example is a turbine blade manufactured by Westinghouse. The blade

has been measured with a laser CMM device, which delivered two rows of measured

points with 81 points per row. One row is very close to the hub of the propeller. The

blade is shown in Fig. 4-3.

Figure 4-3: Westinghouse turbine blade

Fig. 4-4 shows the new location of the measured points on the blade, localized

with PRAXITELES 8.0 and PRAXITELES 9.0. There is almost no visual difference.

Table 4.3 shows the results reported by PRAXITELES 8.0, PRAXITELES 9.0 and the



Examples of the general localization algorithm Example 2: Westinghouse turbine blade

a. The localization has been performed using PRAXITELES 8.0. Visual inspection gives no evidence that
the localization process might not have been successful. Also, PRAXITELES 8.0 reports a "Very good
solution". Still, the localization result is significantly worse than the result from PRAXITELES 9.0.
b. The localization has been performed using PRAXITELES 9.0. The position of the measured points
has been improved by 28.1%, compared to only 20.0% with PRAXITELES 8.0.

Figure 4-4: Localization results on the Westinghouse turbine blade

tangent plane method.

The reported RMS distances are almost equal for the three algorithms: 28.5%,

28.1% and 28.8%. But the number of iterations differs drastically. PRAXITELES 9.0

needed 109 iterations, while PRAXITELES 8.0 and the tangent plane method per-

formed the localization in about 30 steps. Besides that, PRAXITELES 9.0 exits with

the message "No lower point", which means that it was not possible to set all com-

ponents of the gradient vector to zero.

If we take a closer look at the displacements and rotations, we see that PRAX-

ITELES 9.0 localized in a significantly different direction than PRAXITELES 8.0 and

the tangent plane method-still all come up with an almost identical RMS. Another

look at the results tells us, that PRAXITELES 8.0 ignored two points. As we want to

know the overall RMS, we recompute it, using the Euclidean distance and taking all

points into account. We want to recompute the RMS for the tangent plane method

as well, as the tangent plane distance is different from the Euclidean distance. In

Table 4.3, the entry "RMS all Points" shows the recomputed RMS. Considering this

instead of "RMS reported", we find that PRAXITELES 9.0 gives us a much better re-

sult. The RMS has been improved by 28.1%, compared to 20.0% with PRAXITELES

8.0 or 21.5% with the tangent plane method.

PRAXITELES 9.0 was not able to set the gradient to zero, so no "success" mes-



Examples of the general localization algorithm Example 2: Westinghouse turbine blade

PRAXITELES 8.0 PRAXITELES 9.0 Tangent Plane
Points: 160 (of 162) 162 (of 162) 162 (of 162)

Iterations: 31 109 30
Results: "Very good solution" "No lower point" "Successful"

RMS, before: 0.02200943 0.02200943 0.02200943
RMS reported: 0.01574296 (28.5%) 0.01581896 (28.1%) 0.01567308 (28.8%)

RMS all Points: 0.017599042 (20.0%) 0.01581896 (28.1%) 0.017287083 (21.5%)
0.20912135 0.27480449 0.20843612

Tx, Ty, Tz: 0.15783089 0.12888266 0.15442764
-0.14917195 -0.05523181 -0.14169407
0.00235642 0.00178970 0.00229875

Rx, Ry, Rz: -0.00264264 -0.00402547 -0.00265736
-0.00090982 0.00000760 -0.00083448

Iteration Tolerance: 0.001

These are the localization results of the three different localization algorithms. Although the reported
RMS values are almost identical, only PRAXITELES 9.0 reports the true RMS. PRAXITELES 8.0 and the
tangent plane distance method perform worse.

Table 4.3: Localization performed on the Westinghouse turbine blade

sage was reported, although an improvement was achieved. By ignoring two points,

PRAXITELES 8.0 was able to set the gradient to zero within the iteration tolerance, so

a "Very good solution" could be reported-although the solution is not acceptable.

One might be concerned about the drastic difference in the number of iteration

steps. But this is not a problem with the localization algorithm, but with the numeric

solver, which tries to set the gradient vector to zero. With this specific point set, this

is not possible for PRAXITELES 9.0. The localization algorithm stopped, because the

iteration limit has been reached, and not, because the solver found a solution. But

the solver still minimizes the gradient, which yields a better result than the other two

methods.



Examples of the general localization algorithm Example 2: Westinghouse turbine blade

4.3.1 Influence of the starting position of the data points

This example has been repeated with a different starting position of the measured

points. The reason for doing so was mainly to explore the effect on the tangent plane

distance, as with this method the localization depends on the initial position of the

footpoints and thus on the initial position of the data points.

a. Localization performed with PRAXITELES 8.0. This is the result of the localization, if the measured
points are in a "bad" starting position. The bad result is caused by ignoring five data points (see Table
4.4) and the fact that the distance function operates on the wrong footpoint.
b. Localization with PRAXITELES 9.0 and the same initial position. Some of the points might not
have orthogonal projections on the patch, but the algorithm still takes them into account. Although the
result is usable, it is not strictly correct, as the algorithm used the "wrong" footpoint for some measured
points (i.e. a closer footpoint than the selected one exists). This can be detected by the fact that "RMS
reported" and "RMS all Points" differ in Table 4.4.

Figure 4-5: Westinghouse turbine blade, localization results from a "bad" starting position

But during the exploration of these cases, another problem appeared, which in-

fluenced all three localization algorithms. The point set has been shifted towards

the hub of the blade. The localzation results are shwon in Fig. 4-5, and Table 4.4.

The "RMS reported" is not identical with "RMS all points" for PRAXITELES 9.0 any

more. But PRAXITELES 9.0 is supposed to take the Euclidean distance of all points

into account, no matter whether they have an orthogonal projection or not. It turns

out that this is not a problem with the localization algorithm, but with the numerical

solver, which is supposed to find the minimum distance of a measured point to the

surface.

Especially in the leading and trailing edge region of the blade a situation like the

one shown in Fig. 4-6 might happen: a measured point R is only slightly closer to one

side of the blade. The distance function uses a Newton method to find the footpoint



Examples of the general localization algorithm Example 2: Westinghouse turbine blade

PRAXITELES 8.0 PRAXITELES 9.0 Tangent Plane

Points: 157 (of 162) 162 (of 162) 162 (of 162)
Iterations: 44 107 51

Results: "Successful" "No lower point" "Successful"
RMS, before: 0.17044979 0.17044979 0.17044979

RMS reported: 0.05326337 (68.8%) 0.05453509 (68.0%) 0.05282697 (69.0%)
RMS all Points: 0.088213166 (48.4%) 0.027822316 (83.7%) 0.071998054 (57.8%)

Tx, Ty, Tz: 0.31599731 0.11077120 0.25805664
0.32980352 0.91196762 0.43623420
0.00438112 0.00046560 0.00340569

Rx, Ry, Rz: 0.00589277 -0.00113366 0.00607396
0.00010913 0.00581073 0.00116466

Iteration Tolerance: 0.001

These are the localization results of the three different localization algorithms, reported by PRAXITELES.
The starting position is shown in Fig. 4-4a. This example shows drastically that PRAXITELES 9.0 not
only improves the result, but also stabilizes the localization process. From the reported results one would
not notice that something is wrong. Only by determining the RMS for all points or visual inspection
shows the serious mis-localization.

Table 4.4: Localization with measured points bad starting condition

Q which minimizes the distance I• - RI. During the iteration, the footpoint of the

previous iteration is used as a starting point to find the new footpoint for the new

location of r' (the position of ' changes during the localization process, see equation

(3.7)). Although ql and q' are close together in 3D space, they are far away in the

uv parameter space of the surface. Thus, the minimum distance algorithm does not

realize that q is closer to r' than q. Or in other words: The footpoint will hardly

ever jump from one side to the other side of the blade, even if the footpoint on the

other side is much closer to the measured point.

If the set of measured points has a "good" initial position before the localization

starts, all points get the footpoints assigned an the side of the blade where they

belong. But if the position is "bad", some points might start with footpoints on the

wrong side of the blade, and this will not change during the localization process.

One way to correct this problem is to keep track of two footpoints per measured



Examples of the general localization algorithm Example 3: ARL propeller blade

This figure shows a cross section of a propeller blade, as it is easier to describe the issue in 2D. A measured
point like the point R can easily mess up the localization process. Before the localization starts, R gets
a footpoint Q assigned, which is the closest point on the surface.
During the localization process, the footpoint of the previous iteration is used as a starting point for
finding the new, exact footpoint. If R moves to ', the old footpoint Q is used to find the new footpoint.
But in the parametric space of the surface, the closest point q' is "far" away. The Newton algorithm
finds q' as being the closest point to ', as the distance function has a local minimum.

Figure 4-6: Wrong distance measure

point during the localization. Only the closer point should be used.

4.4 Example 3: Applied Research Laboratory pro-

peller blade

The following example has been provided by the Applied Research Laboratory (ARL)

at Pennsylvania State University. They agreed to provide a fan blade that had been

designed, manufactured and inspected at ARL.

The propeller design was received as a NURBS surface. The inspection data was

received as x, y, z coordinates of measured points on the blade that was manufactured

from the NURBS design description. These measurements were made at ARL using

the Intelligent Robotic Inspection System (IRIS), which uses laser interferometry to

obtain highly accurate measurements of surface coordinates. 1381 data points were

received representing measurements on the pressure and suction sides of the blade.

The design surface was a bicubic NURBS patch parameterized with 53 knots in the

u-direction and 20 knots in the v-direction. The blade had a nominal radius of 12

inches from root to tip.

The blade with the measured points (not yet localized) is shown in Fig. 4-7. It

Examples of the general localization algorithm Example 3: ARL propeller blade



Examples of the general localization algorithm Example 3: ARL propeller blade

Figure 4-7: ARL fan blade

should be noted that all measured points are "far" away from the trailing edge, hub

and tip. Those are the only areas, where a point could loose the property of having

an orthogonal projection on the design surface. Keeping this in mind, PRAXITELES

8.0 and PRAXITELES 9.0 should deliver the same solutions. And this is the case, the

results are shown in Table 4.5.

This localization process has been timed on a Silicon Graphics Onyx with four

150 MHz IP19 Processors. As it is not direct possible to determine CPU time for an

interactive program, real time is used instead. The localization time was PRAXITELES

8.0: 501 sec while PRAXITELES 9.0 used 552 sec (10.2% longer). The tangent plane

method performs the localization in only 60% of the time as PRAXITELES 8.0, and

the RMS is worse only in the fifth digit.

Examples of the general localization algorithm Example 3: ARL propeller blade



PRAXITELES 8.0 PRAXITELES 9.0 Tangent Plane
Points: 1316 (of 1316) 1316 (of 1316) 1316 (of 1316)

Iterations: 37 37 31
Results: "Successful" "Successful" "Very good solution"

RMS, before: 0.03325171 0.03325171 0.03325171
RMS reported: 0.02533208 (23.8%) 0.02533208 (23.8%) 0.02528483 (24.0%)

RMS all Points: 0.02533205 (23.8%) 0.025332082 (23.8%) 0.025339513 (23.8%)
0.12419584 0.12419584 0.13318697

Tx, Ty, Tz: -0.06620158 -0.06620158 -0.07005748
-0.03601131 -0.03601131 -0.02478989
-0.00268015 -0.00268015 -0.00287191

Rx, Ry, Rz: -0.00469398 -0.00469398 -0.00522915
0.00377788 0.00377788 0.00398723

Localization Time: 501 sec 552 sec 302 sec

Iteration Tolerance: 0.001

This example shows, that PRAXITELES 8.0 and PRAXITELES 9.0 find identical results, as there are no
"critical" points. The tangent plane distance performs the localization with less iteration steps with
almost the same accuracy as the PRAXITELES 8.0 and PRAXITELES 9.0.

Table 4.5: Localization performed on the ARL propeller blade

4.5 Constrained localization

The constrained localization problem for propeller blades normally differs from the

unconstrained localization problem because measured points near the leading edge

of a manufactured blade have greater influence on the localization than do points

in other parts of the blade. The method uses the unconstrained localization as a

starting point with the implicit assumption that global minimization of distances of

measured points to the design surface is achieved before the start of the constrained

localization.

In contrast to unconstrained localization, measured points with non-orthogonal

projections are used and checked in the old implementation (although those points are

not used in the gradient vector). That means that results from PRAXITELES 8.0 are

reliable. Errors like the one shown in section 4.3 are impossible. Using PRAXITELES

Examples of the general localization algorithm Constrained localization



Examples of the general localization algorithm

9.0, should create the same, correct results. Effects may be found with respect to

stability and number of iteration steps, but the localization result should be the same

as with PRAXITELES 8.0.

4.5.1 Examples

The first example is again the patch introduced earlier (Fig. 4-2a.). To have equivalent

starting conditions for both algorithms, the point set used has been localized with

PRAXITELES 9.0 first. In that case both algorithms deliver exactly the same result

(Table 4.6).

PRAXITELES 8.0 PRAXITELES 9.0

Points: 8 (of 9) 9 (of 9)
Iterations: 4 4

Results: "Successful" "Successful"
High, Before: 0.03143148 (3) 0.03143148 (3)

High, After: 0.00700000 (3) 0.00700000 (3)
Low, Before: 0.06841996 (6) 0.06841996 (6)

Low, After: 0.07000000 (6) 0.07000000 (6)
0.00333820 0.00333820

Tx, Ty, Tz: 0.00004010 0.00004010
-0.02426456 -0.02426456
0.00011938 -0.00268015

Rx, Ry, Rz: -0.01501282 -0.00469397
-0.00145290 0.00377787

Constrained area: u = [0... 0.1], v = [0... 1]
High constraint: 0.007, low constraint: 0.07

Table 4.6: Constrained localization on sample patch

Applying constrained localization on the Westinghouse blade does not show any-

thing new either. It turns out that the unconstrained localization, which is always

performed before the constrained, is much more important for the success of the con-

strained localization. If the unconstrained localization has been performed properly,

the old and the new constrained localization algorithm lead to identical results.

Constrained localization



Examples of the general localization algorithm Conclusion

Finally, for the ARL blade PRAXITELES 8.0 and PRAXITELES 9.0 lead to identical

results.

4.6 Conclusion

The new localization algorithm, using the Euclidean distance, works reliably, even

if some measured points do not have an orthogonal projection as the nearest point

throughout the localization process. Especially in unconstrained localization the im-

provement is clearly visible. Misleading results are prevented successfully.

We also discovered the sensitivity of the localization to the starting position of

measured points. If the footpoint of a measured points is closer to the "wrong" side

of the propeller blade, there is little chance that it will "flip" over once it gets closer

to the right side. This phenomenon should be explored further.

The implementation of the constrained localization in connection with the Eu-

clidean distance works, but there is no obvious improvement. As the signed distance

method also uses the Euclidean distance to verify the constraint conditions, mislead-

ing results did not occur. Nevertheless, the implementation of the improved constraint

function makes sense, as this gives PRAXITELES 9.0 a consistent design.

Finally, the tangent plane distance method turns out to be fast, but it usually

does not find the closest position of the point set to the design surface. The use of

this algorithm might be a promising approach to speed up the localization process.

Although only very few real examples were available, the above sample cases

give a good impression of the applications for the new localization algorithm, as no

exceptional cases can occur any longer.



Chapter 5

Camber line extraction

5.1 Introduction

This thesis also covers the impact of manufacturing errors on the change in hydro-

dynamically relevant features for a propeller blade. Those features include leading

edge, chord length, skew and others, as described later.

It is desirable to recompute these features for comparison with the original design

data. Features such as the camber surface and the blade thickness function provide

a basis for idealizations that are useful in hydrodynamic and structural dynamic

analyses. The availability of feature extraction techniques is also an important part

of assessing the quality of a manufactured blade with respect to its ideal design

description.

The first step, in extracting features from a blade design, is generating an inter-

section curve with a cylinder coaxial to the propeller axis (other intersection surfaces

are possible and described later). The generated intersection curve can be expanded

in the plane and yields a hydrofoil-type section. This thesis deals with the problem

of extracting the camber line and thickness function from such a hydrofoil section.



Camber line extraction Problem formulation

5.2 Problem formulation

The surface of a marine propeller is, in general, a free-form (sculptured) surface of

complex geometry. A surface definition in terms of a mathematical surface provides a

stable framework for automated interrogation, such as calculation of numerically con-

trolled machine tool paths and discretization for hydrodynamic or structural dynamic

analysis of propeller blades. The design process of a propeller blade is as follows: Tra-

ditionally, "the blade surface is defined in terms of sections with cylindrical surfaces

coaxial with the propeller axis of rotation. Two-dimensional hydrofoil sections are

firstly produced using a camber line and a thickness function. These sections are sub-

sequently translated and rotated on their plane in an appropriate fashion and, then,

the underlying plane is bent to form a cylindrical surface of a given radius, thereby

transforming these hydrofoil sections to three-dimensional curves. Several sections

are prepared as above on coaxial cylinders having increasing radii. The shape and

position of these sections, with respect to a fixed coordinate system, changes gradually

as a function of the underlying cylinder radius. Finally, the propeller blade surface is

produced by lofting through all sections" [26]. Some gross geometric features [3] with

important hydrodynamic function, such as camber line, section thickness function,

pitch, rake, skew, chord length, maximum thickness and leading edge, govern the

above procedural definition of a propeller blade.

Instead of sections lying on cylindrical surfaces, the propeller blade can be de-

scribed in terms of sections lying on planar surfaces or on conical surfaces coaxial

with the propeller axis. But all those methods use planar hydrofoil sections which

are transformed in a similar way like above to define the three-dimensional propeller

surface.

In this thesis, we are interested in the inverse problem, that is, to recover the above

important gross geometric features characterizing the propeller blade if its surface is

described as a mathematical surface. "During various design steps, such as section and

surface fairing, the propeller blade surface undergoes slight modifications resulting



Camber line extraction Problem formulation

in small changes of the value of its features" [26]. It is desirable to recompute these

features and compare them with design values. But most importantly, the availability

of feature extraction techniques is an important component of assessing the quality

of a manufactured blade with respect to the ideal blade specified by the designer.

We assume here, that the design surface is described as a mathematical surface

(usually a B-spline patch or a NURBS patch). However, by using a faceted surface

generated from measured data we can derive the features of a manufactured blade.

This application is even more important, as it is desirable to compute the features of

the manufactured propeller blade, to compare them with the original specifications.

The first step of the procedure of generating a mathematical surface from measured

data is described in [2] (and partly covered by chapter 3 and 4 of this thesis):

A set of measured space points from the manufactured propeller blade is moved to

the closest overall position to the design surface (localization). To achieve a contin-

uous representation of the manufactured surface, we first compute the projections of

these localized points on the design surface. We then triangulate the projected point

set in the parameter space of the design surface. With each vertex of this triangula-

tion we associate the distance error for each corresponding 3D point after localization

and we produce a piecewise linear faceted offset surface. Delaunay (or Thiessen) tri-

angulation of the points produces a triangulation that is as equiangular as possible

[23]. Now the manufactured blade is represented by the following procedural offset

surface:

.Ii(u, v) = P(u, v) + N(u, v)h(u, v) (5.1)

where 13 (u, v) is the design surface, h(u, v) is the height of the faceted surface

found by interpolating the height values di, dj and dk associated with the vertices

of the triangle facet, whose parametric coordinates enclose (u, v), and N(u, v) is the

normal of the design surface at (u, v).

Either from the design surface 3 (u, v) or from the procedural surface (5.1) we can



generate an intersection curve with a cylinder, plane or cone. We can develop the

curve on the cylinder or cone, to get a planar curve. Now we can state the problem:

Given a planar hydrofoil-shape curve R(u), and the parameter value of the leading

edge ULE, find the camber line C(t) and thickness function f(t), which describe the

curve.

5.3 Intersection curve

The intersection curve of the propeller blade surface with a cylinder (or plane, or

cone), can be found approximately by computing a series of intersection points of

the two surfaces. Using the approximating technique developed in [31], we obtain a

highly accurate cubic B-spline approximation of this intersection curve.

The same approximation technique can be applied on the faceted surface (5.1).

Although the faceted surface has edges with CO continuity (on the border from one

facet to the adjacent facets), the approximated intersection curve is a cubic B-spline,

with C2 continuity and given accuracy.

The details of the intersection algorithm are beyond the scope of this thesis. For

the camber line extraction it is just important that we control the accuracy of the

intersection curve.

5.4 Properties of Brooks ribbons

The definition of a hydrofoil section, consisting of camber line and thickness function is

equivalent to the definition of a Brooks ribbon [9]. Thus, it is important to understand

the characteristics of Brooks ribbons.

A Brooks ribbon is generated by a planar curve called the spine or directrix, and

straight-line segments of varying length called the generators or bones, which are swept

along the spine while being normal to the spine with their midpoints on the spine.

Camber line extraction Intersection curve



A A'
a. b.

Although the generated shape is identical, the underlying Brooks ribbons are quite different. This example
shows, how the starting point can significantly change the shape of the spine (and the thickness function).
While A and A' are quite far away from each other, B and B' are almost identical. Within machine
precision, they might even be identical. So if we pick B (or B') as a starting point, which spine do
we generate? It will turn out that the algorithm developed later tends to produce a spine which is as
"straight as possible".

Figure 5-1: Two Brooks ribbons, generating the same shape

5.4.1 Multiple Brooks ribbons define one shape

The shape generated by a Brooks ribbon can be identical, even if spine and thickness

function are different. An example is shown in Fig. 5-1. Those ribbons are discussed

in [27] in detail.

As the objective of this thesis is to generate the spine, we have to analyze the

stability of the algorithm generating it. As we will see later, it works by iterating

along the spine. Concerning stability, in the case of Fig. 5-1 the question would be,

which spine do we generate if we use B (or B') as a starting point? Those two points

might even be identical within machine precision. The preferred solution would be

Fig. 5-la. We will develop an algorithm later, which approximates the spine with

straight line segments. As a straight line segment has zero curvature, the algorithm

tends to find the solution with the least curvature, as in Fig. 5-1a, as desired.

Camber line extraction Properties of Brooks ribbons
Camber line extraction Properties of Brooks ribbons



Camber line extraction Properties of Brooks ribbons

C(t)LE

The camber line C is orthogonal to the tangent of the hydrofoil curve at the leading edge (LE).

Figure 5-2: Leading edge and camber line

5.4.2 Slope of thickness function at the leading edge

As in Fig. 5-la, the shape produced by a Brooks ribbon can have GO continuity at

the endpoint A of the spine. In this particular example, the thickness function is a

linear function, assuming an arc length parameterized spine. In our problem, we want

to represent a hydrofoil section with a Brooks ribbon, where the end points are the

leading and trailing edge. At least at the leading edge, the intersection curve is C2

continuous (we approximated the intersection curve with a cubic B-spline). This is

a problem for the generation of the spine and thickness function of a Brooks ribbon,

particularly for the thickness function. To understand the problem, we observe the

leading edge area of a hydrofoil, see Fig. 5-2. Specifically, we observe the leading edge

(LE). The spine C(t) and the thickness function d(t) generate the hydrofoil R by

R(t) = c(t) ± d(t)N(t) (5.2)

where N(t) is the unit normal vector to C(t) at t. Considering that the thickness

d(tLE) is zero at the leading edge, we have:

' (tLE) = C/ (tLE) ± dL(tLE)N(tLE) (5.3)

We know that R is C2 continuous at the LE. We observe R' at the LE. Equation

Camber line extraction Properties of Brooks ribbons



(5.3) implies two equations, one for the "upper half" of the hydrofoil curve, one for

the "lower half".

R' has to be identical for the upper and lower half at LE, except for a switch in

sign, which yields

'(tLE) + d'(tLE)N(tLE) = -C /(tLE) + d'(tLE)N(tLE) (5.4)

This equation can only be fulfilled either for C'(tLE) = 0 or d'(tLE) = ±00. We

have to investigate the implications of either of those conditions.

The condition d'(tLE) = 6 means, that C(t) is irregular at t = tLE.

It is however desirable that the parameter value t is approximately equal to arc

length on the camber line. But

dC(s) ds
ds dt

where s is the arc length. Therefore

ds (5.6)
c'(t) = ?(t) (5.6)dt

where T(t) is the unit tangent vector of C(t). Therefore, it follows

S ds
C'(tLE) = - = 0 (5.7)

dt

which is unacceptable and therefore we cannot fulfill C'(tLE) 0

The condition d'(tLE) = ±oo allows us to keep a uniform parameterization of C(t).

Even more, it reflects the design process of a hydrofoil more realistically. Traditionally,

the camber line and the hydrofoil are expressed as functions of the normalized chord.

If we use a typical thickness function, like the NACA four-digit wing sections [1], we

have

Camber line extraction Properties of Brooks ribbons



Camber line extraction Properties of Brooks ribbons

dt(x) = o (0.29690v/ - 0.126x - 0.3516x 2 + 0.2843x 3 - 0.1015x 4) (5.8)
0.2

where x is the parameter value equal to chord length measured from LE and to

the maximum thickness. If we take the derivative of (5.8):

Odt(x) to 0.14845(x) t( - 0.126 - 0.7032x + 0.8529x 2 - 0.4060x 3 ) (5.9)
1x 0.2 VG

we see that

lim dt = o00 (5.10)
x-+O ax

An algorithm to generate the camber line has already been developed and has

been implemented in PRAXITELES 8.0 [2]. This algorithm generates a camber line,

parameterized according to the normalized camber line length (not to the normalized

chord length). Thus, it can not fulfill C'(tLE) = 6. Also the thickness function is

represented as a B-spline, so it cannot fulfill d'(tLE) = ±00 either. Thus, the camber

line generated with PRAXITELES 8.0 is not exactly orthogonal to the intersection

curve at the leading edge. From this follows, that there is a small, but measurable

difference to the real camber line and/or the real thickness function. This follows also

from the mechanism of that algorithm: A set of differential equations, describing the

arc-length parameterized camber line, is integrated along the camber line. All the

boundary conditions describing the Brooks ribbon are embedded in the differential

equations. As those equations are integrated by a numerical integration scheme, oo

for the derivative of the thickness function at the leading edge cannot be represented.

This slight difference has been discovered, because the algorithm developed later

works in a different way and generates a camber line which is orthogonal to the

Camber line extraction Properties of Brooks ribbons



derivative of the intersection curve at the leading edge.

5.5 PRAXITELES

Earlier versions of PRAXITELES performed gross feature extraction from blade-like

NURBS surfaces. These features have hydrodynamic importance and include: pitch,

rake, skew, chord length, maximum camber, and maximum thickness [3]. Where-

as previously this capability could only be applied to a design surface, it had been

extended to extract features from a representation of the manufactured blade in version

8.0. The manufactured blade is represented by the procedural surface (5.1).

The hydrodynamic features are defined in relation to the camber line, the spine

of a Brooks-type ribbon that is the locus of midpoints of line segments that span

the intersection curve of the blade with an intersection surface, which can be a cylin-

der, plane or cone. The section curve is approximated by a cubic B-spline curve.

PRAXITELES 8.0 uses a numerical differential equation integration scheme to find the

camber for the design surface. This technique is no longer feasible for measured blade

surfaces, because the integration scheme allows only one local maximum in the thick-

ness. The intersection curve from measured design tends to oscillate slightly, and this

prevents proper integration [5].

PRAXITELES 8.0 has the capability of computing the camber line for a hydrofoil

generated by measured data. But it does not use the integration scheme described

above. Instead, it generates a series of bisectors of matching segments from the

pressure and suction side of the blade. Those straight line segments are trimmed and

connected with line segments. This yields a piecewise linear camber line.

Camber line extraction PRAXITELES



5.6 Camber line generation

The camber line of a hydrofoil section is the spine of a Brooks type ribbon, which is

in accordance with the creation process of the section from camber line and thickness

function [20]. The camber line, C(s), is defined as the locus of midpoints of straight

line segments spanned across the section, such that the normal to the segment at its

midpoint is tangent to the camber line, Fig. 5-3. The camber line is a parametric

curve, parameterized with respect to its arc-length, s. If P R (u) is one such segment

in Fig. 5-4, it should be noted here that the angles formed between P/5 (u) and the

tangents to the section at P and R respectively, are in general not equal.

Figure 5-3: Brooks ribbon representing a hydrofoil

RIu)

The camber line generation can start at any point. A useful point to start is the leading edge, as this
point is exactly defined as the point with maximum curvature of the hydrofoil. Then we can step along
until the camber line is complete. Assuming that F is the last generated point of the camber line, from
where we want to proceed, we get the next point as follows: A point on the pressure or suction side of
the blade has to be picked (P), for which we look for the next point on the camber line, the point C.
The point C is defined by the orthogonality condition (C - P) - (C - F) = 0 and the condition, that
d, = d, which follows the definition of a Brooks ribbon. It turns out that those conditions define an
equation with one unknown, the parameter value u.

Figure 5-4: Generation of the camber line

As indicated in [27], the camber line or spine of a section according to Brooks is not

unique. Several spines exist depending on the choice of the initial pair of matching

Camber line extraction Camber line generation



points on each side of the section. Of all possible spines we are interested in the

particular spine running from the leading edge to the trailing edge of the hydrofoil.

Its construction is described as follows.

The camber line generation requires a starting point. Possibilities are the leading

edge or the trailing edge1 . To find the best starting point, it should be noted that

the camber line extraction will be implemented in PRAXITELES 9.0. PRAXITELES

represents propeller blade surfaces as open NURBS patches. The patch is open at

the trailing edge (this can also be seen in Fig. 5-4, if the trailing edge is observed

carefully). Thus, the hydrofoil curve is an open curve with a gap at the trailing

edge. So there does not really exist a single point representing the trailing edge. The

midpoint of the end points of the intersection curve is an approximation of the trailing

edge, but as we do not generally have enough information about how the blade surface

has been generated, we do not know whether that point really lies on the camber line.

The leading edge, on the other hand, is defined as the point of maximum curvature

of the planar hydrofoil curve. Picking it as the starting point, we find the camber

line according to its definition.

To generate the camber line, we iterate along the pressure or suction side of the

blade to the trailing edge. This is illustrated in Fig. 5-4. We interpret P as the end

point of the bone of the camber line at C. We also need a starting point F, from

where the camber line should continue (initially, that is the leading edge). During

every iteration step, the starting point F is set to the last point of the camber that

has been generated in the preceding step. To determine the position of C, we have

the following conditions:

(F - ) - (P - 0) = 0 (5.11)

1It should be noted that there are other possible starting points. For example, we could also
pick a point in the middle of the camber line, where the suction and pressure side of the blade are
parallel. Then we could develop the camber line in both directions, to the leading edge and the
trailing edge, so as to get the complete camber line.

Camber line extraction Camber line generation



Camber line extraction Accuracy analysis

This condition follows from the definition of a Brooks ribbon: The bone 1iR(u)

is orthogonal to the camber line at C. As we approximate the camber line with line

segments, (5.11) follows. This equation implies the unknown vector C. Also:

P- C= C- R(u) (5.12)

This equation follows from the fact that both segments of the bone of the camber

line (d, and d2 in Fig. 5-4) have the same length and the same orientation - they

have to be identical. This equation adds another unknown u. But C is defined, as C

is the midpoint of P and R(u):

P + Mu
C = 2 (5.13)

So (5.11) is a function of u:

(F- 1 J( -u = 0 (5.14)2 2
This nonlinear equation with one unknown can quickly and with high accuracy be

solved by the NAG routine C05AJF, which attempts to locate a zero of a continuous

function by a continuation method using a secant iteration [24].

5.7 Accuracy analysis

With the method described, we can step from any starting point (like the leading

edge of the hydrofoil curve) along the camber line. This produces a set of points on

the camber line. During the camber line generation, we can also store the length of

the bones to generate the thickness function at the same time.

It is desirable to process those points further, to get a smooth curve. This is

possible by approximating the generated points on the camber line using a cubic B-

spline. To do that, we can use the same approximation method which has been used



to generate the hydrofoil curve. We can determine the accuracy of the approximation

of the cubic B-spline in relation to the given points.

But we also have to know the accuracy of those points we found on the camber

line. As we iterated by assuming the camber segments as straight line segments, an

error is involved, which depends primarily on the curvature of the camber line and

the thickness.

5.7.1 Error dependency

We can picture a symmetric Brooks ribbon with an appropriate starting point to get

a straight spine with zero curvature. An example of such a Brooks ribbon is Fig. 5-1.

Applying the algorithm described above on this shape will generate a spine with no

error, no matter how the thickness function looks. The reason is, that in this case line

segments represent the exact (and not approximated) spine. As the spine is exact,

also the right thickness values will be reported. So it seems that the curvature of

the camber line has a big impact on the accuracy of the algorithm. With curvature

present in the spine, the thickness will also have an impact on the accuracy. To

investigate the influence of these variables, we closely examine the following case of

a spine with a constant thickness function.

5.7.2 Error in terms of spine curvature

To simplify the analysis, we observe a Brooks ribbon with a spine of constant curva-

ture (a circular arc with radius r + d) and constant bone length d, see Fig. 5-5a. All

points are denoted with capital letters, and the line segments with small letters. To

make the figures easier to read, the vector arrows have been left out in this section.

In the figure P is the fixed point, according to the algorithm described earlier. The

corresponding point on the camber line would be C, but as we approximate the spine

with a straight line segment a, we get C'.

We want to establish a relation between the segment length a = FC, the spine

Accuracy analysisCamber line extraction



Camber line extraction Accuracy analysis

P

t Bs M

To get an accuracy estimation, we assume a Brooks ribbon with constant bone length and constant spine
curvature. Using simple trigonometric relations, we can estimate the accuracy of the camber position C'
and the accuracy of the bone length PT' as functions of the spine radius r + d, the thickness d and the
stepsize a.

a. shows a circular Brooks ribbon with constant bone length. F and C are points on the spine, PT is
one bone. Using the algorithm described earlier, we get PT' as the bone and C' as a point on
the camber line.

b. shows the triangle APT'M enlarged to show the geometric relations.

Figure 5-5: Accuracy analysis

radius r + d and the thickness d. To do so, we have to establish a relation between a

and the triangle APT'M. We approximate o by the angle ýp' formed at C by a and

the tangent to the spine:

a
ýp 9' = arcsin (5.15)

2(r + d)

We observe the triangle AMT'P closer (Fig. 5-5b.). To picture the idea, we use

the angle 0 as an intermediate step:

h
tan 9 = - (5.16)

We can express h and t in terms of 0:

II

Camber line extraction Accuracy analysis

T' f



Camber line extraction Accuracy analysis

h = r sin 0 (5.17)

The segment PM is given by r + 2d (see Fig. 5-5a.), so by subtracting s = r cos 0

we get the segment t:

t = r + 2d - rcos0 (5.18)

This yields for (5.16):

r sin 0
tan y =

r + 2d- rcos0

We can use the approximations sin 0 e 0 and cos 0 e 1, since 0 is very small.

Using those approximations, we can express 0 in terms of p:

2d tan yo0 el'
(5.19)

Now we observe the triangle ABPT'. As we know h and t from (5.17) and (5.18),

we can compute the new bone length PT'. Again, the trigonometric functions can be

approximated as described above:

PT' = /+h 2

- (r + 2d - rcos 0) 2 + (r sin 0)2

(2d) 2 + (2d tan o) 2

= 2d1 +tan 2

(5.20)
cos Wo

This is the bone length of the generated camber segment. The length of the real

bone is 2d, so

Camber line extraction Accuracy analysis



2d
Ebone = 2d - 2d (5.21)

cos O

is the absolute error in the thickness function.

Further on, we are looking for the error in the position of C'. The first step is

finding the length MC'. Again, simplifications in the trigonometric functions apply:

MC = + + t2 2
r sin 0 2 + cos8+ r + 2d - r cos 0 2

2 2
V (dtany )2  (r+d)2  (5.22)

The correct value would be MC = r + d. Thus, the sought absolute error is the

difference

E- = (r+ d) - /(dtan () 2 + (r + d) 2  (5.23)

We derived the errors in terms of cp. Using (5.15), we can substitute tan2 P.

Applying basic trigonometric rules2, we can eliminate the trigonometric functions, as

tan arcsin n (5.24)
2(r + d) 4r 2 + 8rd + 4d2 - a2

This finally yields the absolute errors for bone length and camber position as a

function of a, r and d:

Error in bone thickness:

2 ' (r + d)2Ebone = 2d - 4d d)2 (5.25)4r2 + 8rd + 4d2 - a2

2tan(arcsin(x)) = x-

Camber line extraction Accuracy analysis



Error in camber:

E = r +d -4r4 - 16r3 d - 24r 2d 2 + 2 a2 - 16rd3 + 2rda2 - 4d4  (526)
-4r 2 - 8rd - 4d2 + a2

Instead of the above absolute error, it can be desirable to find a relative mea-

surement for the accuracy. An appropriate measurement is the chord length. The

advantage of the chord length (in contrast to maximum thickness or minimum camber

radius) is, that the chord length is a feature, which can be extracted at once from

the intersection curve. Furthermore, the chord length is always used as a reference to

describe wing sections (like the NACA series). We get the relative errors by dividing

(5.25) and (5.26) by the chord length.

5.7.3 Interpretation of accuracy

In the previous section, we developed the error functions (5.25) and (5.26) to deter-

mine the error of a generated Brooks ribbon.

First we want to make sure that the approximations in the previous section are

reasonable. Therefore we try to determine the range of camber curvatures and the

range of maximum thickness of real hydrofoil sections.

NACA wing section properties

To determine practical values of camber curvature and thickness of hydrofoils, we

consider the NACA four-digit wing sections [1, 20].

For NACA hydrofoil sections, the camber line is expressed as a function y, = f(x),
where y, is an offset to the chord line. The chord has unit length. The camber line

is defined as an analytical function by:

m
Yc = 2 (2px - x 2) forward of maximum ordinate (5.27)

m

Camber line extraction Accuracy analysis



Yc = 2 [(1- 2p) + 2px - 2] aft of maximum ordinate (5.28)

where m is the maximum ordinate of the camber line expressed as a fraction of

the chord, p is the chordwise position of the maximum ordinate, and x is measured

from the leading edge along the chord of the hydrofoil. The chord is a straight line,

connecting the leading edge with the trailing edge.

Observing (5.27) and (5.28) carefully, we see that those are two parabola segments,

which meet at the vertices. The vertex is also the point of highest curvature of a

parabola. Thus, the point of maximum curvature is x = p. At x = p there exists

a discontinuity of curvature. The "shorter" arc has the higher curvature (e.g. for

p < 0.5 (5.27) has the higher curvature at x = p). As (5.27) and (5.28) are symmetric

with respect to the maximum ordinate m, we observe only (5.27). The curvature of

an analytic, twice differentiable explicit curve y = f(x) is given by [16]:

If"(x) I

[1 + (f'(x))2]3/2

We apply this on (5.27). We set x = p (the point of maximum curvature), and we

consider that m and p are both positive and get for the maximum curvature (after

some transformations):

2m
Kmax p2 (5.29)

All the information needed is encoded in the four digits of the wing section:

First digit N1 This indicates the maximum value of the mean line or camber line

ordinate in per cent of the chord. Therefore we have the relation N1 = 100m.

Second digit N2 This indicates the distance from the leading edge to the location

of the maximum camber in tenths of the chord, N2 = 10p. If the digit is greater

than five, we use 10 - N2 (instead of using (5.28)) to get the right value for the

Camber line extraction Accuracy analysis



curvature.

Third and fourth digits N3 4 The last two digits indicate the section thickness in

per cent of the chord, which yields N34 = d in Fig. 5-5a.

E. g., the NACA 2415 wing section has 2% camber at 0.4 of the chord from the

leading edge and is 15% thick.

We investigate the error function on the NACA 24xx wing section. We modify

the thickness from zero to 25% of the chord length (25% is the upper limit used in

applications). The camber radius and thickness in terms of a unit chord are:

p2  N2
rmax = 2m 2N 1  (5.30)2m 2N,
dmax = N 3 4  (5.31)

When we developed the error function Ebone (5.25) and EK--d (5.26), we frequently

used the approximations cos 0 x 1 and sin 0 - 0. So first we will investigate whether

these approximations were appropriate. Using the software package Maple [10], it

is possible also to visualize the exact error functions, without the approximations

cos 0 % 1 and sin 0 _ 0. We call them "real" error function and "approximated" error

function. However, the approximation Wp - W' cannot be eliminated, as it is part of

the analysis.

Fig. 5-6 and Fig. 5-7 show the error functions Ebone and Eq--. The independent

variables are N34 (the maximum thickness) and the stepsize a. N1 and N2 are kept

constant. If the two graphs in Fig. 5-6 and Fig. 5-7 respectively would be identical,
the approximation described would be perfect. But this is not the case. The larger the

values of the independent variables are, the more the "approximated" error function

differs from the "real" error function. It should be noted, that the approximated error

function reports a better accuracy than actually achieved.

Camber line extraction Accuracy analysis



Camber line extraction Accuracy analysis

Error in Thickness Function (approx) Error in Thickness Function (real)

The graphs show the error in the thickness function of a NACA 24xx wing section, calculated with the error
function approximation and also with the real error function, where the only approximation is Wp '.

Figure 5-6: Error in thickness function for NACA 24xx

Error in Camber Function (approx) Error in Camber Function (real)

The graphs show the error in the camber position of a NACA 24xx wing section, calculated with the error
function approximation and also with the real error function, where the only approximation is Wp - '.

Figure 5-7: Error in camber position for NACA 24xx

Error for an average wing section

In Fig. 5-6 and 5-7, a value of a = 0.1 means ten steps along the camber line, as a is the

fraction of the normalized chord length. Although the results are relatively accurate,

Camber line extraction Accuracy analysis



we must not forget that the curvature is not constant, as assumed. Furthermore,

experiments showed, that the stepsize must not be selected too small, to prevent C

and F from being practically coincident (see Fig. 5-4).

5.8 Camber line refinement

The algorithm described above generates a number of points which are located ap-

proximately on the camber line. Still, numerical experiments showed, that a camber

line, approximated using those points, is not yet accurate enough for practical use.

Thus, an investigation was made to refine these points.

R u2 )

Once an approximation of the camber line is available, we can generate a number of refined points on
the camber line. Picking any point on the camber C(t), we can find the corresponding points A(uj) and
R(u 2) using the orthogonality property. The midpoint of R(ul) and R(u2) is the refined point on the
camber line.

Figure 5-8: Refinement of the camber line

Using the generated points, we can approximate the camber line with a cubic

B-spline C(t) (see section 5.9 for details).

Once an approximation of the camber line is available, we can generate a new set

of more accurate points. Given a parameter value t, to refine the point C(t), we find

the corresponding points JR(ul) and 1R(u 2) on the hydrofoil curve (see Fig. 5-8). Those

points are the intersection of the extended bone at 0(t) with the hydrofoil curve ~(u).

We can generate the derivative of the spine C'(t) (as C(t) is a cubic B-spline, the

derivative is available), which has to be orthogonal to R(ul) - C(t) and J(u 2)- C(t)

respectively, as the bone has to be orthogonal to the spine. In mathematical terms,

we have to solve the following equation:

!

Camber line extraction Camber line refinement



Camber line extraction Approximation

C'(t) -(R(u) - C(t)) = 0 (5.32)

This equation has two solutions, ul and u2. To solve this equation with one

unknown, we again use the NAG routine C05AJF, which attempts to locate a zero of

a continuous function by a continuation method using a secant iteration [24]. The

refined point on the camber line is the midpoint of R(uI) and !(u 2). If requested, at

this time also the refined thickness may be reported, which is

R(Ul) + 1(U2) (533)
2

Using this method, an arbitrary large set of points can be produced, which can

be used to compute a new, better approximation of the camber line.

It turned out that this refinement achieved significant improvement, compared to

the algorithm described earlier. The accuracy can be measured by recomputing the

hydrofoil curve using camber line and thickness function. By comparing the original

and recomputed hydrofoil, we find the error involved. We will use this method in the

next chapter to check the accuracy of some examples.

5.9 Approximation

Both camber line and thickness functions are finally approximated by a cubic B-spline

curve through the point set. We use the NAG routine EO02BAF, which approximates by

a least square method [24].

An important question was, which ratio of control points to data points should

be used. If the ratio is one, we have an interpolation. But an interpolation tends to

oscillate. On the other hand, an approximation generally produced an error. Still

we have control over the approximation error. If the desired accuracy can not be

achieved with a specific number of data points and control points, with the algorithm

Camber line extraction Approximation



Camber line extraction

described in the previous section more data points can be generated, and more control

points might be used for the approximation without increasing the ratio.

In the implementation in PRAXITELES 9.0, a small ratio is picked. If the desired

accuracy can not be achieved, the ratio is raised to a maximum of 0.6. If at this

stage the accuracy is still not reached, the process is repeated with a higher number

of data points. Experiments showed, that a maximum ratio of 0.6 safely prevents an

oscillation of the approximation.

The approximations for the camber line and thickness function respectively, both

follow this algorithm. Still, there are also differences.

5.9.1 Approximating the camber line

For the approximation of the camber line, the NAG routine E02BAF is not called di-

rectly, but the function approx_cubic_curv is used instead. This function has been

developed formerly and has the big advantage, that it creates a knot vector (in this

case, arc length parameterized), and it returns the maximum error.

5.9.2 Approximating the thickness function

The approximation for the camber line delivers highly accurate results. Still, for the

thickness function we have a problem with the accuracy. The thickness function is a

scalar function d(t). The parameter t describes the position on the camber line, where

the thickness is d(t). The thickness function is arc length parameterized, according

to the camber line.

As described in section 5.4.2, the derivative of the thickness function at the leading

edge is ±oo (under the assumption, that the derivative of the camber line equation

is not zero at the leading edge). We represent the thickness function as a cubic B-

spline, so the derivative of the thickness function is a polynomial. But a polynomial

can never have a slope of o-00. This means, that we can never exactly represent the

thickness function correctly at the leading edge.

77

|

Approximation



Camber line extraction

One way to bypass this problem would be to change the representation of the

thickness function. For example, we could represent the thickness function paramet-

rically as d(u), t(u). This representation would allow to assign several thickness values

d to one point on the camber line with parameter value t (e.g., t(0.00) and t(0.01)

might both be 0, but may have the thicknesses d(0.00) = 0 and d(0.01) = 0.1. But

then we do not have an explicit function d(t) any more. Assuming the parametric

representation, if we wanted to have the thickness at a parameter value t, we first

would have to compute u (numerically), then we could compute d(u).

Finally it was decided not to choose a parametric representation. The main reason

for this decision was that in practice the thickness function is not processed any

further. For the task of extracting gross geometric features (as listed earlier), the

thickness function is not used at all, but only the camber line. For visual inspection

the explicit thickness function is accurate enough, and it should be considered that

the inaccuracy occurs only in the leading edge region (experiments showed, that 3%-

7% of the leading edge region are out of tolerance, see next chapter). And last, the

explicit representation is very convenient, as there is no need for a numerical solver,

to compute the thickness at a given parameter value.

5.10 Conclusion

Two algorithms have been introduced in this chapter: An algorithm, which generates

a camber line approximation with limited accuracy by approximating it with straight

line segments. And a refining algorithm, which can be repeatedly applied, until the

desired accuracy of the camber line is achieved. Both algorithms are highly stable

and allow feature extraction from design and measured propeller blade surfaces.

Having a set of points on the camber line, we can create a B-spline approximation

of the camber line. This approximation is highly accurate and the maximum error of

the approximation is known.

Conclusion



Camber line extraction Conclusion

The thickness function can also be approximated, but as a result of the repre-

sentation as a scalar B-spline function, it is not very accurate in the leading edge

region. It should be emphasized again that this inaccuracy affects only the thickness

function, and not the camber line.

|



Chapter 6

Examples of camber line

extraction

6.1 Introduction

The camber line generation algorithm described in the previous chapter is meant to

substitute two existing algorithms implemented in PRAXITELES 8.0: The integration

method [26], which is used to compute the camber line of a design hydrofoil, and the

bisector method [2], to compute the camber line from measured data.

In section 5.4.2 we showed, that the camber line generated by the integration

method is not accurate at the leading edge, as the camber line is not orthogonal to

the tangent of the leading edge. Thus, if we want to judge the quality of camber line,

it does not make sense to compare it with a camber line generated by the integration

method. More extreme is the situation with the camber line generated from measured

data. As it can be seen in the following, the results from the bisector methods have

an accuracy which is far too low to be used as a reference.

Instead, we keep in mind that the objective is to represent a hydrofoil with a spine

and a thickness function. Thus, we can regenerate a hydrofoil by using the camber

line and thickness function, and compare this hydrofoil with the hydrofoil curve we



started with. Specifically, we generate a set of points on the hydrofoil by

P = C(t) + d(t)N(t) (6.1)

where C0(t) is the camber line, d(t) the thickness function and N(t) the unit normal

of C(t) at t. Using the capabilities of PRAXITELES to find the minimum distance of

a point to a curve, we can check the accuracy of the regenerated points with respect

to the starting hydrofoil curve.

It should also be kept in mind that even if the camber line is highly accurate,
the thickness function can not be very accurate near the leading edge, because its

representation does not allow it (see section 5.4.2).

Concerning the selected accuracy of the camber line, it turns out that it does not

make sense to choose an accuracy which is higher than the accuracy used to generate

the hydrofoil curve by the intersection method. This occurs, because the intersection

curve itself is oscillating within tolerance, so if we try to force a higher accuracy on the

camber line, the camber line tries to follow this oscillation. In the following examples,
the highest possible accuracy has been chosen to generate the intersection curve, and

the same accuracy has been used to compute the camber line.

6.2 ARL fan blade

The following example uses the same blade described in section 4.4 and shown in Fig.

4-7. As for this blade a faceted surface is available, it is useful to show all aspects

of the old and the new algorithm for computing the camber line, from design and

measured data.

6.2.1 PRAXITELES 8.0 (from design)

Fig. 6-1 shows the intersection curve and camber line generated from design data with

PRAXITELES 8.0. The picture alone does not indicate too much. But an amplification

Examples of camber line extraction ARL fan blade



This camber line has been generated from the ARL fan blade at a radius of 10.0 by using the integration
method implemented in PRAXITELES 8.0. The selected accuracy was 10- 4 . The camber line is not
orthogonal to the hydrofoil at the leading edge. The dashed rectangle is amplified in Fig. 6-2. Thus, the
camber line has a "big" error at the leading edge, which decreases towards the trailing edge.

Figure 6-1: Camber line from design generated by PRAXITELES 8.0

In this amplification of the leading edge it can be seen, that the starting direction of the camber line is
visibly not orthogonal to the intersection curve in the leading edge region.

Figure 6-2: Camber line from design generated by PRAXITELES 8.0

of the leading edge region, together with the normal of the intersection curve at the

leading edge, shows, that the camber line is not normal to the intersection curve (see

Fig. 6-2). The error produced by the "wrong starting direction" decreases towards

the trailing edge.

6.2.2 Bisector method

The old implementation of camber line extraction from measured data worked with

a bisection method and delivered results, which were usable only to a very limited

degree. Fig. 6-3 shows such a camber line. The hydrofoil shown here has been

Examples of camber line extraction ARL fan blade



extracted from the ARL fan blade at a radius of 10.0.

This camber line has been generated from measured data with PRAXITELES 8.0. The hydrofoil has
been extracted from the ARL fan blade at a radius of 10.0. The bisection method has been used at an
accuracy of 10- 4 .

Figure 6-3: Camber line generated by PRAXITELES 8.0

6.2.3 PRAXITELES 9.0 (From design surface)

The following example uses a hydrofoil section generated from the ARL fan blade, by

intersection with a cylinder of radius 10.0 and at an accuracy of 10-4 . The intersection

curve could not be generated with higher accuracy (for more information about the

intersection algorithm, see [26]).

Camber line, extracted from the ARL fan blade at r = 10.0 and an accuracy of 10- 4. Hollow points
represent points within tolerance, solid points without tolerance. The leading edge region (as indicated
with a dashed rectangle) is amplified in Fig. 6-5.

Figure 6-4: Camber line from ARL fan blade (from design surface)

Fig. 6-4 shows the camber line itself and regenerated points on the intersection

curve. The points have been generated using camber line and thickness function:

P = M(t) +± (t)d(t) (6.2)

If camber line and thickness function would be "perfect", for all t = [0..1] 13(t)

should be located on the intersection curve. PRAXITELES has the capability to de-

Examples of camber line extraction ARL fan blade



Examples of camber line extraction

The regenerated camber line is not accurate in the leading edge region. But the error is symmetric with
respect to the camber line (e.g., Idi - d21 < tolerance). Thus, the thickness function is inaccurate, but
not the camber line.

Figure 6-5: Leading edge region of ARL fan blade

termine the minimum distance of a point to a curve. In Fig. 6-4, hollow points are

within tolerance, filled points are out of tolerance. Only at the leading edge points are

out of tolerance. The inaccuracy at the leading edge is produced by the inaccurate

thickness function. If we observe the leading edge magnified (Fig. 6-5), we notice that

the error is symmetric to the camber line (e.g. two mating points of the same bone

on the suction and pressure side are both either inside or outside the hydrofoil). It

seems that the points are oscillating around the hydrofoil, while the amplitude of the

oscillation is decreasing towards the trailing edge. The maximum error involved is

10- 2

To confirm, that the camber line is accurate in the leading edge region, while the

thickness produces the error, we compare the two branches of the bone (see Fig. 5-8):

ARL fan blade



Minimum,maximum = -2.12351e-05 1.30611
1.4

1.26

1.12

0.98

0.84

0.70

0.56

0.42

0.28

0.14

0

0 0.1

Thickness function of
measured data cannot

I I I

0.2 0.3 0.4

ARL fan blade at r =
be distinguished visually.

Figure 6-6: ARL

I I I I I

0.5 0.6 0.7 0.8 0.9

10. The thickness function generated

blade thickness function

error = IT(t1) + T(t2)- 2C(t) (6.3)

This error refers to the difference of length of the bone segments, rather than to the

bone length itself. The difference stays within the given tolerance for all parameter

values t, including the leading edge region. Thus, the inaccuracy is produced by the

thickness function, and not by the camber line.

The thickness function alone is shown in Fig. 6-6. As the intersection curve is

open at the trailing edge, the thickness is not exactly zero at the trailing edge t = 1.

It is also obvious that the slope at the leading edge, although large, is not oo.

1

from design or

Examples of camber line extraction

'--- ----- ;-- --- --------- ----- --- ---------: --------- -----

-~ ~ ~ ~----------' --------- '-------- ----------- -- - -- --- - -- ---------- ----------- ---------

I -------- -- ---------- - ---: - ---- - --- ---- --------

ARL fan blade

I

I



6.2.4 From measured surface

For the ARL fan blade, there is a faceted surface available. The intersection algorithm

generated an intersection curve at r = 10 with an accuracy of 5 - 10-

Camber line, extracted from the ARL fan blade at r = 10.0 and an accuracy of 5 - 10- 3 . Hollow points
represent points within tolerance, solid points out of tolerance. Note the new position of the leading
edge.

Figure 6-7:
surface)

Camber line from ARL fan blade, using PRAXITELES 9.0 (from measured

a. Close-up of Fig. 6-3, generated with PRAXITELES 8.0. Especially in the leading edge region, the
bisector method can only give a rough idea of the camber line.
b. Close-up of Fig. 6-7 from PRAXITELES 9.0. The camber line is within tolerance. The leading edge
moved, as the point of maximum curvature of the intersection curve moved.

Figure 6-8: Camber lines at leading edge

The result is shown in Fig. 6-7. Again, we can observe the problem at the leading

edge. It is interesting to notice that the position of the leading edge has moved, as

the leading edge is defined as the point of the highest curvature of the intersection

Examples of camber line extraction ARL fan blade



Examples of camber line extraction

curve. This can be seen even better in the close-up, see Fig. 6-8b. The definition of

the leading edge used here is only one out of several possible definitions. Another

definition defines the leading and trailing edge as the points with the largest distance

from each other [20]. Others are available. This example demonstrates that the used

definition is probably not the best one. In this particular example, the camber line

has a high curvature at the leading edge, which decreases, if we march along the

camber line. But this is not the shape of a typical camber line. I.e. a camber line,

as defined by the NACA series (see section 5.7.3) is described by a parabola with

the vertex at the point of maximum camber. Its curvature is continuously increasing

from the leading edge to the point of maximum camber.

Finding a better definition for the position of the leading edge might be a subject

of future research.

The thickness function alone is not shown here, as it cannot be distinguished

visually from Fig. 6-6. An amplification would show slight differences.

6.3 Praxiteles logo blade

For the following blade (Fig. 6-9), there were no measured points available. It is just

another example of camber line generation. The intersection curve has been generated

with an accuracy of 10- 5. Again, except a few points in the leading edge region, the

approximation is accurate.

Camber line, extracted from the PRAXITELES logo blade at r = 3.0 and an accuracy of 10- 5 . Hollow
points represent points within tolerance, solid points are out of tolerance.

Figure 6-9: Camber line from PRAXITELES logo blade (from design)

The thickness function is shown in Fig. 6-10. A characteristic of the representation

Praxiteles logo blade



Examples of camber line extraction Conclusion

used in PRAXITELES are a non-infinite slope at t = 0 and a nonzero

as the intersection curve is open at the trailing edge.
Minimum,maximum = 5.7158e-06 0.283672

n 90•

value at t = 1,

0.261

0.232

0.203

0.174

0.145

0.116

0.087

0.058

0.029

0.000

0

Thickness functior

I I I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n of PRAXITELES logo blade at r = 3.

Figure 6-10: PRAXITELES logo blade thickness function

The algorithm has been applied on the blades shown above at different radii as

well as on other blades. The algorithm worked properly and without any problems.

6.4 Conclusion

The examples show that the algorithm developed here delivers highly accurate and

reliable approximations of the camber line. It also shows that the representation

of the thickness function is convenient, but not accurate close to the leading edge.

But as long as the thickness function is not processed any further (except for visual

inspection), the current solution is sufficient. It should be noted again, that the

problem is not finding an accurate value for the thickness, but approximating the

points representing the thickness function with an explicit B-spline.

88

------------ '--------- '--------- --- ----- ------- '--- ------- -------- - -- ---- -- -- -

Examples of camber line extraction Conclusion

I
:).9



Examples of camber line extraction

Another subject of future research might be an exploration of other definitions of

the leading edge.

Conclusion



Appendix A

Additional tables



Additional tables

The patch generated by this input file for PRAXITELES 8.0 and 9.0 is shown in Fig. 4-1. This simple
patch is ideal to verify the localization algorithm.

Table A.1: The input file of the sample patch

0.2 0.2 0.0 1.5 0.2 0.0 2.8 0.2 0.0
0.2 1.5 0.0 1.5 1.5 0.4 2.8 1.5 0.0
0.2 2.8 0.0 1.5 2.8 0.0 2.8 2.8 0.0

The location of these data points is shown in Fig. 4-1b.

Table A.2: A set of data points

# Order and Number of Control Points

3344

# Knot Vector in u and v direction

0.0 0.0 0.0 1.0 2.0 2.0 2.0
0.0 0.0 0.0 1.0 2.0 2.0 2.0

# The Control Points

0.0 0.0 0.0 1.0
0.0 1.0 0.0 1.0
0.0 2.0 0.0 1.0

0.0 3.0 0.0 1.0

1.0 0.0 0.0 1.0
1.0 1.0 0.5 1.0

1.0 2.0 0.5 1.0
1.0 3.0 0.0 1.0

2.0 0.0 0.0 1.0
2.0 1.0 0.5 1.0

2.0 2.0 0.5 1.0

2.0 3.0 0.0 1.0

3.0 0.0 0.0 1.0
3.0 1.0 0.0 1.0
3.0 2.0 0.0 1.0
3.0 3.0 0.0 1.0



Additional tables

Points: 9 (of 9) from 9
Iterations: 24
Results: "Very good solution"
RMS, before: 0.06858704
after: 0.03768735 45.1%
Tx, Ty, Tz: 0.00000000 0.00000000 0.06007877
Rx, Ry, Rz: 0.00000000 0.00000000 0.00000000 Rad

PRAXITELES 9.0
Points: 9 (of 9) from 9
Iterations: 24
Results: "Very good solution"
RMS, before: 0.06858704
after: 0.03768735 45.1%
Tx, Ty, Tz: 0.00000000 0.00000000 0.06007877
Rx, Ry, Rz: 0.00000000 0.00000000 0.00000000 Rad

Iteration tolerance: 0.001

The patch is shown in Fig. 4-1. The set of measured point is shown in Table A.2. The results of
PRAXITELES 8.0 and PRAXITELES 9.0 are identical. These results show that the new localization
algorithm has the same capabilities as the earlier algorithm.

Table A.3: Localization result of a set of measured points with orthogonal projections on
the patch

0.0 0.2 0.0 1.5 0.2 0.0 3.0 0.2 0.0
0.0 1.5 0.0 1.5 1.5 0.4 3.0 1.5 0.0
0.0 2.8 0.0 1.5 2.8 0.0 3.0 2.8 0.0

The location of these data points is shown in Fig. 4-2

Table A.4: A set of data points

PRAXITELES 8.0



Bibliography

[1] I. H. Abbott, A. E. von Doenhoff, and L. S. Stivers, Jr. Summary of airfoil data.

Technical report 824, National Advisory Committee for Aeronautics, Washington

DC, 1945.

[2] S. L. Abrams, L. Bardis, C. Chryssostomidis, N. M. Patrikalakis, S. T. Tuohy,

F.-E. Wolter, and J. Zhou. The geometric modeling and interrogation system

Praxiteles. Journal of Ship Production, 11(2):116-131, May 1995.

[3] D. W. Allen, A. F. Harsch, and J. D. Machin. Computer-aided marine propeller

inspection data analysis. Naval Engineer's Journal, 107(2):33-40, March 1995.

[4] L. Bardis, R. A. Jinkerson, and N. M. Patrikalakis. Localization for automated

inspection of curved surfaces. International Journal of Offshore and Polar En-

gineering, 1(3):228-234, September 1991. Errata, 2(2):160, June, 1992.

[5] L. Bardis and M. Vafiadou. Ship-hull geometry representation with b-spline

surface patches. Computer Aided Design, 24(4):217-222, April 1992.

[6] H. Blum. Biological shape and visual science (part I). Journal of Theoretical

Biology, 38:205-287, 1973.

[7] P. Bourdet and A. Clement. A study of optimal-criteria identification based

on the small-displacement screw model. Annals of the CIRP, 37(1):503-506,

January 1988.



[8] J. M. Brady and H. Asada. Smooth local symmetries and their implementation.

International Journal of Robotics Research, 3(3):36-61, 1984.

[9] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, RA-2(1):14-23, 1986.

[10] W. C. Bruce, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and

S. M. Watt. First Leaves: A Tutorial Introduction to Maple V. Springer-Verlag,

1992.

[11] W. Choi and T. R. Kurfess. Data localization algorithms for automated inspec-

tion. In B. J. Gilmore, D. A. Hoeltzel, S. Azarm, and H. A. Eschenhauer, editors,

Proceedings of the 19th ASME Design Automation Conference, Advances in De-

sign Automation, Albuquerque, NM, September, 1993, volume 2, pages 1-6. New

York: ASME, 1993.

[12] P. E. Gill, S. J. Hammarling, M. A. Saunders, and M. H. Wright. User's guide for

LSSOL (Version 1.0). Technical Report SOL 86-6R, Department of Operations

Research, Stanford University, Palo Alto, CA, 1986.

[13] G. Goch and H. J. Renker. Efficient multi-purpose algorithm for approximation

and alignment problems in coordinate measurement techniques. Annals of the

CIRP, 39(1):553-556, 1990.

[14] K. T. Gunnarsson. Optimal Part Localization by Data Base Matching with Sparse

and Dense Data. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, 1987.

[15] K. T. Gunnarsson and F. B. Prinz. CAD model-based localization of parts in

manufacturing. Computer, Journal of the Computer Society of the IEEE, 20:66-

74, August 1987.

[16] F. B. Hildebrand. Advanced Calculus for Applications. Prentice-Hall, Inc., En-

glewood Cliffs, New Jersey, 1976.

BIBLIOGRAPHY BIBLIOGRAPHY



[17] G. R. Hottel, S. T. Tuohy, P. G. Alourdas, and N. M. Patrikalakis. Praxite-

les: A geometric modeling and interrogation system. In Marine Computers '91:

Proceedings of the Second Symposium on Computer Applications in the Marine

Industry, Burlington, MA, September 1991. SNAME, New England Section. Pa-

per CC5.

[18] R. A. Jinkerson. Unconstrained and constrained localization for automated in-

spection of marine propellers. Engineer's thesis, Massachusetts Institute of Tech-

nology, Department of Ocean Engineering, Cambridge, Massachusetts, 1991.

[19] R. A. Jinkerson, S. L. Abrams, L. Bardis, C. Chryssostomidis, A. Clement,

N. M. Patrikalakis, and F.-E. Wolter. Inspection and feature extraction of marine

propellers. Journal of Ship Production, 9(2):88-106, May 1993.

[20] J. E. Kerwin. 13.04 Lecture Notes: Hydrofoils and Propellers. Massachusetts

Institute of Technology, Cambridge, MA, 1990.

[21] G. A. Kriezis. Algorithms for Rational Spline Surface Intersections. PhD thesis,

Massachusetts Institute of Technology, Cambridge, Massachusetts, March 1990.

[22] G. A. Kriezis, N. M. Patrikalakis, and F.-E. Wolter. Topological and differential

equation methods for surface intersections. Computer Aided Design, 24(1):41-55,

January 1992.

[23] C. L. Lawson. Software for C1 surface interpolation. In J. R. Rice, editor,

Mathematical Software III, pages 161-194. Academic Press, New York, 1977.

[24] Numerical Algorithms Group, Oxford, England. NAG Fortran Library Manual,

Volumes 1-8, Mark 14 edition, 1990.

[25] N. M. Patrikalakis and L. Bardis. Localization of rational B-spline surfaces.

Engineering with Computers, 7(4):237-252, 1991.

BIBLIOGRAPHY BIBLIOGRAPHY



[26] N. M. Patrikalakis and L. Bardis. Feature extraction from B-spline marine pro-

peller representations. Journal of Ship Research, 36(3):233-247, September 1992.

[27] A. Rosenfeld. Axial representations of shape. Computer Vision, Graphics and

Image Processing, 33:156-173, 1986.

[28] K. C. Sahoo and C.-H. Meq. Localization of 3-D objects having complex sculp-

tured surfaces using tactile sensing and surface description. Journal of Engineer-

ing for Industry, Transactions of the ASME, 113:85-92, February 1991.

[29] H. F. Thorne, F. B. Prinz, and H. O. K. Kirchner. Robotic inspection by database

matching. Technical Report CMU-RI-TR-85-4, The Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA, March 1985.

[30] S. T. Tuohy and N. M. Patrikalakis. Geometric representation of marine propul-

sors. In Marine Computers '91: Proceedings of the Second Symposium on Com-

puter Applications in the Marine Industry, Burlington, MA, September 1991.

SNAME, New England Section. Paper CC4.

[31] F. E. Wolter and S. T. Tuohy. Approximation of high degree and procedural

curves. Engineering with Computers, 8(2):61-80, 1992.

BIBLIOGRAPHY BIBLIOGRAPHY


