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Abstract

From a first principles theory for the behavior of smooth grarular systems, we de-
rive the form for the instantaneous dissipative force acting between two grains. The
present model, which is based on the classical harmonic crystal, reproduces the depen-
dence of the kinetic energy dissipation on the grain deformation obtained by models
that assume a viscoelastic behavior (without permanent plastic deformations) during
the collision.

We then derive kinetic equations for the rarified granular gas from the Fokker-
Planck equation that describes the time evolution of the reduced distribution function
for the translational granular degrees of freedom. We obtain the inelastic dissipation
rate term and calculate the time evolution of the granular temperature for the ho-
mogeneous granular gas. We also derive kinetic equations for the non-homogeneous,
rarified granular gas and obtain hydrodynamic equations for the system.

Thesis Supervisor: Irwin Oppenheim
Title: Professor of Chemistry

Statistical Mechanics of Granular Systems



First and foremost, I would like to thank my supervisor Prof. Irwin Oppenheim for

the help and guidance throughout my graduate studies. His patience and able advice

were of invali... le imnortance for me. his friendly character always made scientific

research a fun thing to do.

I would like to thank all the members of my thesis committee, and in particular

Profs. A. Nihat Berker and Mehran Kardar for their kindness and help, and also

for being great teachers. I always felt inspired by their excellent classes and by the

amazing amount of knowledge I gained from them. In the same breath, I would like

to thank Prof. Tom Greytak for making being a TA something of a great learning

experience.

I would like to recognize the fundamental importance that CAPES (brazilian

funding agency) and the Department of Physics had in making possible my graduate

studies.

It was always a great pleasure to work, grade and teach under the guidance of

Profs. George Benedek, Jacqueline Hewitt, Daniel Kleppner, David Pritchard, George

Stephans and Claude Williamson.

I am indebted to all my friends and to all people who helped me in one way or

another during this journey. I will name but a few, but all of them who are not here are

not forgotten. I would like to thank in special my brazilian and non-brazilian friends:

Frank Brown, Rodrigo Capaz, Claudio Chamon, James Chen, Shanhui Fan, Mari

Ferreira, Robert Ferrell, Francisco Justo, Cliff Liu, Luis Pedrosa, David Reichman,

Joan Shea, Flavia Vidal, Sophia Yaliraki.

And to my family goes my last and most important thank you of all.

Acknowledgments



1 Introduction

1.1 What are granular systems? . . . . . . . . . . . . . . .

1.2 The problem . . . .......................

1.3 Granular collisions . . ....................

1.4 Expansion and time extension techniques . . . . . .

1.5 Application to the rarified granular gas (GG) . . . .

1.6 Limitations of the model and possible extensions .

2 A Model of Inelastic Dissipation for Granular Particles

2.1 Introduction . . . ........................

2.2 Deformations and Potential Energy . .........

2.3 Interaction Between Two Granular Particles . . . .

2.4 Dissipation of Energy . . ..................

2.5 Dissipative Equation of Motion .............

2.6 The Frictional Coefficient y ...............

2.7 Discussion . . . . .........................

3 Expansion Techniques and Kinetic Theory Methods

3.1 Introduction .............................

3.2 The basic Fokker-Planck equation . ..............

3.3 The generalized BBGKY hierarchy .............

3.4 Order of Magnitude of the BBGKY terms ..........

3.5 Equations for the one-body and the two-body distribution

6

6

7

9

. . . . 10

11

. . . . 11

. . . . 12

... 16

... 17

... 18

.. 21

... 25

Contents



3.6

3.7

3.8

3.9

3.10

3.11

4 The

4.1

4.2

4.3

4.4

4.5

5 Hydrodynamic Behavior for the Low Density

5.1 Introduction ...................

5.2 Hydrodynamic Quantities . . . . . . ...

5.2.1 Variation of Density . .........

5.2.2 Particle Flow ..............

5.2.3 Granular Temperature . . . . . . ...

5.3 Solution of the Kinetic Equations . . . .

5.4 Linearized granular hydrodynamics . . .

5.4.1 Modified Navier-Stokes equations . . .

5.4.2 Linearized Hydrodynamics . . . . . . .

5.5 Discussion . ..................

Extension of the Time Variable.

Initial Conditions . ........

Elimination of Secular Terms . .

The Boltzinann Collisional Terrm

The Dissipative Contribution . .

Discussion ..............

Homogeneous Granular Gas

Introduction .............

Form For The Potential . . . . .

H-Function .............

Time Dependence of the Granula:

Discussion ..............

Temperature

Granular Gas

.. . . . 50

.. . . . 50

.. . . . 51

52

.. . . . 54

.. . . . 56

.. . . . 58

.. . . . 58

.. . . . 59

.. . . 60

6 Conclusions

A Elimination of secular behavior from expansions

B Chapman-Enskog results

63

66

.. . . . . . . . 36

.... 38

.... ..... ..... .... 3 9

. . . . . . . . . 40

.... ..... ..... .... 4 1

.................. 4 3

44

.. . . . 44

........ ... . . . . 4 5



Chapter 1

Introduction

1.1 What are granular systems?

Granular systems (GS) are one of the most interesting forms of organization of

matter[1]. They are large conglomerates of discrete macroscopic particles. They are

present, in many ways, in our day-to-day lives: in industrial applications, geological

phenomena, in a stroll at the beach.

One of the characteristics that makes GS special, is the fact that they possess

a very large number of internal degrees of freedom. In fact, this is basically what

distinguishes GS from molecular systems [2]. Their presence makes a single grain

behave as a thermal bath by itself. It is thus impossible to keep track of the internal

degrees of freedom in an exact way. Averaging procedures that eliminate the redun-

dant fast degrees of freedom will be necessary in order to understand the behavior of

these systems[3]. The consequence is that some information is irreversibly lost when

grains interact. This is the cause of inelasticity in granular collisions. Friction and

the excluded volume (due to the repulsive hard core of the grains) play a fundamental

role in the way GS organize themselves[l]. That arrangement is determined by grav-

itation and the boundary conditions on the system. For instance, a sand pil- that

lies on a horizontal table (static case) behaves quite differently from one in which

that same table is tilted at some large angle (flow, dynamic case). For dry granular

systems, intersticial fluids, such as air, can be neglected for most of the flow or static



properties of system[4].

A remarkable characteristic of these systems is that the internal (or thermo-

dynamic) temperature T, is basically irrelevant for the dynamical behavior of the

system[5]. The t,-:: al granular kinetic energy is many times larger (1012 is a typi-

cal value for grains of sand in flow) than kBT. This limits severely the phase-space

sampling ability of GS. After the dissipative dynamical relaxation, most of the ki-

netic granular energy is lost and the grains can get "stuck" in a given configuration

indefinitely.

1.2 The problem

In the present work, we want to analyze the flow properties of classical GS. The reason

to use a classical approach for treating GS is that the de Broglie wavelength for these

systems is completely negligible compared with the physical lengths of the problem.

Our goal is then to derive kinetic and hydrodynamic equations of motion that

describe the behavior of GS in the regimes of low density and small gradients. These

limitations are imposed upon us primarily by the complexity of the task, in the sense

that we need to make expansions and truncations on the original Liouvillian problem

with the help of small parameters of the theory (density & gradients)[6].

The flow properties of GS are unusual from the point of view of simple molecular

fluids. In general, motion occurs in segregated laminar layers, needing strong exter-

nal perturbations in order to excite bulk motion[7]. We are interested in finding a

description for the fluidised rarified phase.

As a brief summary, in chapter 2, we will study the granular collision and the vis-

coelastic kinetic energy dissipation mechanism, for a system of identical, smooth and

spherical granular particles. In chapter 3, we develop the mathematical techniques

necessary to obtain the kinetic or hydrodynamic equations for GS in the regime of

low density and small gradients. In chapter 4, we study the homogeneou. 6_anul~r

gas and the time dependence of the granular temperature (defined as the average

kinetic energy of a grain). In chapter 5, we study the hydrodynamic behavior of the



1.3 Granular collisions

As stated above, kinetic energy is dissipated in an irreversible manner via the excita-

tion of internal vibrational modes during a collision[12]. These modes act like an ideal

sink of energy, given that the number of internal degrees of freedom is vast. They

are capable of absorbing a large amount of thermal energy without any appreciable

increase in their internal temperature, T.

There are several mechanisms of relaxation of the internal degrees of freedom.

The most important for us being the viscoelastic[9, 10] and the plastic[11l mecha-

nisms (others are: crack formation and propagation[8], elastic vibration of the grains,

sound wave excitation on the surrounding fluid, etc). Plastic deformation occurs

in collisions which create strains and stresses that exceed a certain threshold, leav-

ing permanent changes in the shape of the grains (an example of hysteresis)[11].

Viscoelastic dissipation occurs because the relaxation of the excited internal modes

occurs much faster than the time-scale for the external perturbations. The internal

modes "adapt" fast to the new environment created by the external perturbation[12].

When the latter are removed, the grain's shape relaxes to the original form if the

deformation does not exceed the plastic threshold.

The object of our study will be the viscoelastic mechanism of dissipation. We

will base our developments on a theory developed by Schofield and Oppenheim[13],

in order to obtain the transport coefficients that govern the irreversible transfer of

kinetic energy to the internal degrees of freedom. The internal relaxation time-scale

is shown to be fundamental to the viscoelastic dissipative mechanism[12].

1.4 Expansion and time extension techniques

Starting with the Liouville equation for the complete GS (internal and external de-

grees of freedom), we take advantage of the different physical time-scales of the system

non-homogeneous granular gas (GG).



in order to make it tractable.

In order to do so, we need to identify and separate the degrees of freedom into fast

(internal) and slow (external or kinetic) ones[14]. Averaging over the fast degrees of

freedom while keeping the external ones, yield , a Fokker-Planck equation that gover::s

the behavior of the distribution for the granular (external) degrees of freedom[13].

Based on that equation, we obtain a generalized BBGKY hierarchy for the multi-

grain distribution. From that hierarchy, we can obtain the kinetic equations that

describe the temporal behavior of the one-body distribution. We will use techniques

similar to that of Bogoliubov, in order to truncate the generalized BBGKY at some

convenient point[15].

By extending the time variable into many different time-scales associated with

the physical time-scales of the GS (collisional, dissipative, internal relaxation, etc.)

we can isolate the correct behavior of the system on the appropriate time-scale, thus

avoiding the appearance of secular terms that render the approximation invalid at

longer time-scales.

1.5 Application to the rarified granular gas (GG)

Using the kinetic equations obtained above (generalized Boltzmann equations), we

proceed to investigate, in more detail, the behavior of GS. Up to this point, we

have studied the collision between grains, energy dissipation and the behavior of the

distributions for the granular degrees of freedom. The next step will be to analyze

the hydrodynamic behavior of the system. Two cases of interest present themselves:

the homogeneous and the non-homogeneous GG.

The study of the homogeneous GG (a somewhat unrealistic system) permits us

to understand the way kinetic energy is lost irreversibly, as a function of time[16].

The more realistic non-homogeneous model permits us to study transport properties

and somc of the cbh- icteristics of GS. Amon·g those, we are specially interested 1"

evidence for the appearance of instabilities in the homogeneous density profile that

are associated with the phenomena of clustering of the grains[17].



1.6 Limitations of the model and possible exten-

sions

The points in which the piesent kinetic modes is somewhat limited are ba i& .

* Low density expansions: most applications of granular flow correspond to regimes

in which the density is high.

* Small gradients: in general, GS are extremely lumpy. fluctuations of density happen

on the length scale of a grain.

* Only two-body collisions are taken into account. In real systems, simultaneous

collisions, in which static friction plays an important role, are the norm.

Despite the theoretical limitations presented above, kinetic nrndels are known to

work well for real and simulated systems. The breakdown occurs when the rate of

collisions per particle increases quickly, during cluster formation. The multi-body

collisions become non-negligeable then.

With that in mind, we will limit ourselves to the goal of finding an appropriate

way to describe the low density flow phase.

Future improvements of the model might allow for

* Treatment of non-identical grains of different sizes and of non-spherical shape.

* Higher density systems, in the manner of the Enskog solution of the Boltzmann

equations.

* Calculations that use higher order diagrammatic expansions of the generalized

BBGKY hierarchy in order to account for simultaneous multiple collisions.



Chapter 2

A Model of Inelastic Dissipation

for Granular Particles

2.1 Introduction

The term granular system designates a wide range range of physical systems that

are characterized by certain common features[2]: they exist in macroscopic portions

(grains), which, in the dry state, interact mainly repulsively through rigid elastic

interactions; there is contact friction between the grains; and energy is dissipated

during collisions due to the excitation of the internal modes. Sand, powders, particles

in planetary rings[18], salt and sugar, grains in a silo[19] are just a few of the many

examples of granular systems. These systems are extremely important for a number

of industrial applications[20] (transport properties of powder or grains, mixtures of

grains and fluids, etc). Thus, it is important to understand their flow properties

[2, 21, 22]. The loss of kinetic energy via heating the grains makes the granular

gas fundamentally different from a molecular system[l] and an important medium

to study non-equilibrium phenomena. Granular systems present a rich variety of

behavior ranging from solid-like to liquid-like, depending on the external stresses

applied to the system[23].

The inelastic character of granular collisions can be summarized in terms of a

coefficient of restitution which is a proportionality relation between the final and



initial relative velocities in a collision. Even though the coefficient is known to depend

on the initial relative velocity[24], for simplicity and computational economy, several

authors have assumed it to be independent of the collision parameters[2, 21, 22]. In

order to improve the understanding of ins, antaneous energy dissipation, some( tlthors

have tried to model relative velocity-dep .ident dissipation functions. Self-consistent

dimensional arguments were used[20], but a more promising line assumes that the

collision is slow enough so that a weak viscoelastic frictional force is superimposed

onto the elastic repulsive force[9, 10].

In the present study, we propose to investigate a simple microscopic model for

harmonic grains. Under the assumption that the collisions are slow enough so that

no plastic deformations occur, the present model reproduces the results obtained

using a viscoelastic interaction between the grains [9, 10].

This chapter is organized as follows: In section 2, we develop the model for the

potential energy of deformed harmonic grains from the classical harmonic crystal

model. In section 3, we study the case of two interacting grains. In section 4, a trans-

port coefficient describing the instantaneous kinetic energy dissipation is obtained.

In section 5, we obtain the equation of motion for colliding grains and evaluate the

magnitude of the dissipative term. In section 6, we present a brief summary of our

results.

2.2 Deformations and Potential Energy

In this section we derive the potential energy of a deformed spherical granular particle.

We assume that its atoms interact through microscopic two-body potentials. The

atoms in the granular particles (GP) are arranged in a crystalline lattice form. Let

Ri denote the equilibrium, non-deformed position of atom i, (Ri = af + bb + cc,

where fi, , are the Bravais lattice basis vectors, and a, b, c are integers)[25]. Let pi

denote the displacement from equilibrium for atom i, and let ui - u(R,) A"-note the

displacement of atom i's equilibrium position due to external constraints. The atom's



actual position, di, is therefore given by:

di = Ri + ui + pi.

The distance betwe, -A two atoms in the defo med medium is then a function of the

initial undeformed distance and of the elastic and thermal displacements,

di. = (R, - Ri)+ (u - ui) + (Pj - pi) . (2.1)

The difference uj - ui depends on the deformation experienced by the crystal. If R, -

Ri is small compared to the characteristic length associated with the deformations,

we obtain

uj - u, (R,- Ri). VRU(R)]R=R

(Rj - R) d a u(x) , (2.2)

where greek subscripts denote coordinate indices and repeated indices imply summa-

tion (for 3 = 1, 2, 3). The distance between atoms i and j is then given by

d -j = (Rj - Ri) + (Rj - Ri) -- u(Ri) + (p - pi). (2.3)

We will assume that effects associated with displacement of dislocations and other

crystal defects are small. Thus, we can expand the total crystal potential energy

around the new positions of the atoms up to second order in the variations of the

positions. By expanding the potential

1
I- Ez Eij

around the equilibrium distance of (Rj - Ri) [26], we obtain:

O-j = 0(1 d. I),



01j O (lRj - Rij) + (0)j.(V)O(Rj - Ri) +
1

+2 (Oij-V) •2 j - Ri
1

1
+4 ( ij_ ) 2 ( tj - R,1),

up to quadratic order, where 3ij = 3j - 3i = (Rj - Ri) .Vu + (p3

indices i and j run over all atoms in the GP.

We define the matrix D"'gVV

- Pi) , and the

k 2 ik
= ij 6 - .

k O II OX,

With the properties:

= Di•

(2.5)

all atoms

Z D Vj = 0.

Thus 1 can be written in the form

1
= 21 O(Rj - R2 ) +.

1
2, D

(2.6)

The potential 1D can be separated into ground state energy, harmonic potential,

elastic potential and coupling parts as follows:

1
(D= 0o + 1+ PiD pj, +

z,3

+1 Ou1 u ,+- RiDjRjoi Ox +
2 ,.]0X, O ,

+ E Ri D2i, -, p,,
2,3 Pv

(2.7)

(2.4)

0 2 oi j

OXILOXV

D1



where Do = Ej Ej<j O( Rj - Ri ).

The elastic potential term (due to the deformation) which is given by

1 R
) Rio oDzMR pel 2 ij1 --- (Ri) (R,)

(/xc, OX,3

accounts for the classical elastic energy of the material [25]. Using the properties of

D'j we can rewrite VeI in the form:

1 Ou,

2 OX,
(Rj) (R ),

where the derivatives of u are taken at the point Ri and

1 allatoms
Eapv= z Ri D

The above expression can be further transformed by noticing that a pure rotation does

not change the solid energy. This implies that VeT can depend on '> only through

the strain tensor, which for small deformations has the form

SOU O=U. (2.8)

The elastic term then becomes[25]

1Vel -- -• E(on)(plu) ual(Ry)uufl(RJ) , (2.9)

where the symbols (ayi) and (p3v) denote the symmetric part of E(aA)(,p) with respect

to (ap) and (pu) respectively.

The term

SO (Ri)Y,ALV Oxa V

is responsible for the coupling between the internal degrees of freedom, pi, and iu

distance between the two GPs centers of mass, through the derivative , which can

be taken at Rj to a very good approximation.



Due to a similar argument to (2.9), we can write the coupling term as

V¢ = Z E(aj)vuopjv, (2.10)

where E(g)v, is the symmetric tensor (on acp) given by

1
E(ap), = 4 (RjoD,,,(Rj) + RjyDav(Rj)). (2.11)

2.3 Interaction Between Two Granular Particles

When two GPs interact, the results of section 2 must be generalized to include cross-

terms between the degrees of freedom of the two grains. We have to take into account

the terms that correspond to direct interaction between GPs 1 and 2. Before doing

the expansion for Oij (where i belongs to particle 1 and j belongs to particle 2), we

can eliminate those dij's which are small (those for which rij I> ro - interaction

range of the order of the lattice parameter). Since this is a short range interaction,

only those atoms close to the interface between particles 1 and 2 will contribute.

Their number being proportional to the area of the interface, we will neglect them in

comparison with the bulk contribution to the coupling energy. The coupling potential

can then be written as (where the superscripts denote the grain)

(1) (2)
E(1) (1)(1) + E( 2 )  ( ) ( )  (2.12)

2 J

where the superscripts (1) and (2) denote particles 1 and 2, and the strain tensor

depends on the Bravais summation index. We are going to use the convention that

whenever there is a sum over Bravais vectors on the following, the strain tensor

depends on the summation index.

The total elastic A:tribution will be

1 (1) (1) (1) (2)
2 (ap)(lv) Uf LUv + 2± (o)(v) aji (2.13)



and the total harmonic contribution is given by

V 1 (1) 1) - ) +
VH = 2 ..

,2)

+- (2) - p ) (2)Dij(p) (2) (2.14)

2.4 Dissipation of Energy

Schofield and Oppenheim[13] proposed a mechanism for the dissipation of energy

that occurs when two GP (1 and 2) collide. It is mediated by a transport coefficient

defined as follows:

(2) = dr Ve-Lr VV§, >f, (2.15)

where < ... >f means a statistical average keeping the center of masses fixed, Li, is

the Liouvillian operator for the internal granular degrees of freedom only, (i.e., center

of mass positions and total momentum are kept fixed), and A = A- < A >f. The

typical variation of pi is smaller than a, the typical lattice spacing. Given that

the typical macroscopic deformation is h, and uo is the GP's diameter, we have the

inequalities a << h < a.

The coefficient y(r12) will be given to lowest order in the strain tensor (which is

assumed to be small) by[13]

7(r12) = dT < VVo-LharmrVV2V >f.

The linearity of VO in Pi leads to 1VV¢ = VpV, due to the symmetry of a harmonic

oscillator. Cross averages like < O(1) (2) >f will also vanish. Thus, we have for 7(r 12)

(1)

*r2) Ek)V E 1 (EE V 12U (2 )( i1 ) X
2,j

dT < p$iv Pýj (7) >f +

(2)
+ E E( E-)O (l12U)(V3 12 o) X

i~j



00 (2) (2) (2.16)dr < pf P0 (7T) >, (2.16)

where V 12 = Vr 2.

The harmonic form for 1:',1 potential '( in first approximation[14, 2-

< PivPj(T) >f= D-•ikBTF(T), (2.17)

where the correlation function F(T) can be assumed to decay fast for a large range of

interatomic potentials to insure the convergence of the time integrals. We will assume

the form[27]

F() = e-

where 7, sets the vibrational time scale. The time integrals in equation(2.16) become

7-, D " k T.

Since the particles are identical, we can re write 7(rl2) as

7(T12)

- Tv E E(ap)UE(Oy)oD7o2j X

((V12U()) (V12 ( 1) ) + (V12U 12 a(2)) . (2.18)

Equation (2.18) describes the energy dissipation occurring during the collision of two

GPs, as will be seen in the next section.

2.5 Dissipative Equation of Motion

When two identical GPs of mass m collide, kinetic energy is dissipated through ex-

citation of the internal modes of vibration. In our simple model we neglect plastic

deformation effects. Since the collision time is much longer than the vibrational time

(rT > 7T), "we can assume that the interaction between two GPs is very well de-

scribed by the elastic Hertzian quasi-static force[28]. The form for the interparticle

interaction can also be obtained from a Fokker-Planck equation for the probability



distribution W(Xt, t) of a granular system[13]:

r '(xt, t)

SP-• .Vr,• ZV r (U + ).Vp,) + (2.19)

NN

-2E E jjkf•jk (Vp - Vpk)
j kfj

((Vp- VP,) + PJ Pk)]W(t)

where pi, ri, i =1, ..., N are the momenta and positions, respectively, of the centers

of mass of the grains, Xt = {pN, r"}, N = , where T is the internal temperaturekBT'

of the GPs, 7ijk = (rjk) is the dissipative coefficient calculated in section 4 and irjk is

the unit vector in the direction between particles j and k, and U + w is the effective

interaction potential between the grains.

In the case of two particles, we define rl,2 (t) =< r 1,2 >t and V1,2(t) =< r 1 ,2 >t,

where < B >t= f dXtH'(t)B. Assuming that W(Xt, t) is sharply peaked, we can

approximate v1 ,2(t) 1 i 1,2 (t). We also define relative and center of mass coordinates:

r12 - r2 - rl,

rcml2 = I(r2 +r).

The deformation parameter k i- defined as

h - 12 if o > r 12

0 otherwise

where a is the diameter of a GP.

From the basic result
dd< B >t= dXTWB,dtf



and equation(19), after assuming that U + w V21, we obtain

< 12 >t- <Pl >t

S dXt(p 2 - 1) (Vri 2'1.Vpi + Vr2 V2P 2) 
TV(t) +

(Vp1 - VP2) ((VpL- Vp 2) + 3 PI - P2W(t)

Pi - P2=- JdXtW (t) (V2V12- Ve2)--fdXty12r12 12P- P2 (t)

=< el >t < 7y12f12f12.(p1 - P2) >t,m

where F1, =-vel(h)'12

The elastic potential between the grains is a function of the tensor E(a,,)(3,) defined

in equation (2.9). The microscopic summation form of V2 reduces to the usual

macroscopic elastic energy derived from phenomenological theories. In terms of the

particles -Young modulus E, Poisson ratio E, and radius 2, VIl2(h) in equation(2.13)

can be derived, and is given by[9, 29]

1 5
VI~1(h)= kh2, (2.20)

2

where for three-dimensional isotropic spheres[28]

k (15,21 -E 2 R.

The equation for the time variation of h for a frontal collision becomes

md2h 5 3 07(h) dh-- - -- kh2 (2.21)2 dt 2  4 m dt

In the equation above, we observe that the energy dissipation is desrd;'- d by a



frictional force mediated by Y(r 12)

Ff = - (r 2) (k.p12)k.
m

We vill next evaluate %(r12) -= -(h) as inction of h so that way we can solve

equation (2.21) and thus determine the velocity dependent coefficient of restitution

for a quasi-elastic collision.

2.6 The Frictional Coefficient -7

From equation (2.18), the expression for qy(h) when the particles are identical is given

by

E F(a1 p)(fY) ((V12 u(I)\)(Vi 2 oa/--D

+ (V12U 1)(V2 u 2)) , (2.22)

where F(aN)(37) = ,vkTE(ol)vE(_y) )oD•oj.

The behavior of 2y(h) can be obtained by a scaling argument following Landau[28].

The equation for the radius of the contact region, b, as a function of the curvature of

the particle, A = , where a is the diameter of the particles, is given by[28]

FD f d<A= OA Jo (b2 2)()

The deformation h is given by[28]

FD f dh = _
7 o (b2 +

where F is the force between the spheres and[28]

3
D= 2

(1 E.



In order to keep the above equations invariant, we scale lengths by a factor a-

(b - Vcvb, a - c( and x -+ v-x), and the force by a factor NI (F - aa F). We

then obtain for h --- ah, showing that the force varies as hl[29]. The z-component

(collision axis) for tli. deformation vector uzx) is given by[30]

u,(X) - 2 J dz'dy'
27a x'+y 2X2 + (y - y') 2 + z2

x'2  2 y'2

x 1 2- (2.23)

Using the variable x" = bx', we show that uz(x) scales as

uz (x) -- u(cvax) = auz(x). (2.24)

From above, we obtain the scaling behavior of the strain tensor:

uaO(x) -> UaO( cx) = un(x). (2.25)

The tensors E(,/,)(0.) and F(,,)(,3,) are invariant under the a scale t -insformation.

The derivatives of the strain tensor scale as

0u_ _ (x) du- (/x) 1 au, (x)
O hah X - h X(2.26)all adh V/ Bh

We deduce from this that the total elastic energy scales as a2c and the dissipative

function y(h) as co', implying that lV c( h0 and -y(h) oc h.

Due to the scaling properties of the strain tensor uO and its derivative 0,(X)

we can write
0ua(x) B

where B is h

where B is a proportionality constant.



We deduce from the above and equation (2.22) that

-y1(h) (UIiIYy ( U I tU1  U2 _Y U2 h 2, (2.27)

where (o,,)(a ) = B F(,,)(a~p). The tensor ~F(,)(3,) possesses the same symmetry

properties as E(op)(B,). Consequently, y(h) will be a function of different phenomeno-

logical parameters but of the same form as Vll = Ve(E, E).

Given that the elastic force between the GP is obtained by taking the derivative

of V•Y equation (2.20) with respect to h. we obtain for 2 (h) in equation (2.22)

y(h) = k'h-h2 = k'h, (2.28)
2 2

where k' is a function of the tensor F(ap)(ýy), and has the same form as k with E -+ rj7

and E -+ r 2, where ql and rq2 are the corresponding viscoelastic coefficients.

The equation of motion for the GP on a frontal collision then becomes

md 2h 5 a 5 1 dh-- - _ kh -k'h•-. (2.29)
2 dt2  4 2 dt

Equation (2.29) reproduces results obtained by heuristic methods[9, 10].

The above equation will describe the behavior of smooth spherical GP at speeds

much smaller than the speed of sound inside the grain.

The relative importance of dissipation can be obtained by assuming typical values

for the physical parameters in question. The typical interatomic potential is denoted

by 0o, the typical value of uc is u, the typical elastic energy is 0 o Z o00uu, the

typical lattice spacing is a. We may assume 4 U kT, (hard-sphere approximation),

where T, is the granular temperature, and mv17, kTq.

The coupling tensors are given by

D,, ,, E(po)(ap) u Oo,

thus showing why E O C uu. In addition, we obtain for the symmetric tensor



0

a

and the typical correlation function

d• < xx(t) > kTa7T,
00

Thus, we obtain for 7

_,2 2 Ta2, kTTr, kTTr,
a2 L2 o0  L2 0 L2

where L corresponds to the typical deformation length with L < c.

We are now prepared to evaluate the inelastic term in the fundamental Fokker-

Planck equation for the distribution, TW - W(rN, pN), which is a function of the

granular degrees of freedom {rN, pN}. Let T be an arbitrary time-scale, and let

the terms with asterisks be dimensionless (0(1)). Given that O* is a second order

differential operator, the dissipative contribution will be[13]

SW 7 kTgy
7 Ot* m 2 v 2 kT

Replacing the value obtained for y, we have

1OW kTrT7• 1 kTg 7V-9O*W 1 *
7T t* L2  m2 v2 kT mL 2

Letting 7iT • , where 7T is the time a granular particle takes to move a distance

corresponding to its deformation length (~ L), we obtain

1 8 W 7,
T Ot* T2

If we set ihe timý -,ale 7 = 7, we obtai1 ,

O- (  O*W. (2.30)89t* (T



So we observe that the order of magnitude of the dissipative term on the time-scale

of Ti with respect to the streaming term is given roughly by the ratio between the

granular velocity and the velocity of sound in the material that constitute the grains.

The relative order of magnitude of the dissipa 'ive term in the Fokker-Planck equation

for W17 relative to the streaming term is given approximatively by

Tv c _ UV9

Tj2  LLv

For typical vsound ' 103 - 104Vg and L 10-2, one sees that the ratio is small as

expected, but not extremely small.

In a recent paper [10], the authors propose a model which implies that in order to

break the asperities of the surface of two grains (plastic deformation) in contact, the

tangential stress (which is a function of shear deformation) has to exceed a material

dependent threshold. In other words, the collision has to be energetic enough to

conquer the elastic potential barrier. We believe then, that the present viscoelastic

frictional model will describe satisfactorily slow collisions for rough and also smooth

granular systems (in which case the energy dissipated by plastic deformations of

asperities will be far smaller than that for typical systems found in nature).

2.7 Discussion

We obtain the coefficient of instantaneous energy dissipation for collisions between two

grains by an appropriate separation of the potential energy into internal, granular and

coupling parts and with the help of a first principles theory for granular distribution

functions.

The form for the dissipative coefficient 7(r) that we obtain is identical to the ones

obtained elsewhere[9, 10] assuming phenomenological viscoelastic dissipative coeffi-

cients. The agreem',nt suggests that the plhenomenological model is a plausible one

to describe the interaction between GPs that do not involve plastic deformation of

the grains.



We are extending the present model in order to include the case of rough granular

systems.



Chapter 3

Expansion Techniques and Kinetic

Theory Methods

3.1 Introduction

Put in a simple way, classical granular systems are collections of grains, formed by

large numbers of atoms. One immediate consequence of that fact is the existence of

two (or more) distinct time-scales that govern the system's time evolution.

One of them (Ti) is associated with the rapid internal vibrational phenomena

that involves the grains internal coordinates (positions and velocities of the atoms

themselves, under the constraint that total internal momentum is zero identically).

The other (Tr, and possibly others) is associated with the motion of the grains as

z unit. It deals with the positions and velocities of the centers of mass of the grains.

The second time-scale is sufficiently slower than the first one, under usual circum-

stances, so that we can look for a treatment of the equations of motion that takes

advantage of the small expansion parameter L.

The method we are going to follow consists of eliminating the fast degrees of free-

dom (the internal ones)[31] through an averaging of the Liouville equation for the

complete system (internal + external degrees of freedom), thus obtaining a Fokker-

Planck equation that describes the behavior of the external degrees of freedom. We

then obtain a generalized BBGKY hierarchy for the distributions of the external



degrees of freedom. By using the small parameter defined above to expand the distri-

butions of the hierarchy, we extract the equations that describe the kinetic behavior

of the system.

3.2 The basic Fokker-Pianck equation

We start by outlining the method used, by Schofield and Oppenheim[13], to obtain a

Fokker-Planck equation that describes the time evolution of the granular (external)

degrees of freedom.

The system consists of N granular particles with translational degrees of freedom

Xt = (rN. p") (mass m) and internal degrees of freedom Xi = ("N, 71) (mass p <<

m). The Hamiltonian for the system is given by:

H(Xt, Xi) = Ht(Xt) + Hi(Xi) + 0(Xt, XS), (3.1)

where

N N

Ht(Xt) = + U(rN),
2m

N

H2 (XI) = (.J +V(
j=1 2p
N

d(x,,X ) = E E (rij, , ,j),
i=1 j>i

where ( (and rj) denote all the internal coordinates (momenta) of particle j.

The potential U(rN) includes the effects of external fields (e.g. gravitation) and

the Hertzian interaction amongst the granular particles. Thus U(rN) can be written

U(rN) = Uext + Uint,
N

i=1 i<j

The potentials uij and Oij are short range.



The Liouvillian operator for the system is given by:

(3.2)

where

pN

Lt = - .rN
m

+ VrN U(rN).VpN,

I'

LO = -VrN O.VpN + VýN 3.VN.

By using projection operator techniques we can derive a Fokker-Planck equation

for the translational degrees of freedom Xt since they change on a much slower time

scale than the internal degrees of freedom.

Let the distribution for the complete system be p(Xi, Xt, t). The Liouville equation

-p (Xi, Xt, t) = Lp (Xi, Xt, t) = (Lt + Li + LO) p(Xi, Xe, t).at (3.3)

The projector operator, P, we are going to use, to eliminate the fast degrees of

freedom of the system, is defined by

(3.4)

where B(Xi Xt, t) is an arbitrary dynamical function of (Xi, Xt), and '"N(Xi, Xt, t)

is defined in what follows.

Let 1Wi(Xt, t) = f dXip(Xi, Xt, t) be the distribution function for the translational

degrees of freedom.

The equilibrium distribution is given by

C-OH e-H
Pe f dXidXte-H Z

PB(Xi, Xt, t ) = p(Xi, Xt, t ) f d X i B ( X i , X t , t ) ,

(3.5)



and

e = dXtPe =I JdX-•h-Hi- (3.6)

We now Jefine

Pe -a(v-w)P= pie

where pi = Hi (which is the distribution for the internal degrees of freedom,f dXie-3Hi

irrespective of the external ones), and w = -1 In f dXipie - "' , the potential of mean

force.

We observe that

dXi P = WTI t at
and by defining p = y + z, where y = Pp = 15W and z = Qp = (1 - P)p, we obtain

allparticles a0 a
S dXi +pjOrJ Op,

allparticles

/ X I z(t).
i r p

The formal solution for z(t) is given by

ft

Z(t)= i QLtz(O) + 0latnQLF L(,W(t - T).

After some manipulations with equation (3.7), we have

= .V, r N

( Nm
+ VrN (U + w).VpN)

+ Fr(r N) VpN (Vp +-
4N

m
(3.9)

where

F(rN) = fo•T d Xipf(VN n)e(Li+ f+VN7 TN AT(V r0 ),

p(Xi, Xt, t) is the conaltional distribution function of the internal degrees of f cedom

W = LtW +± (3.7)

(3.8)

W(Xj, t)



in the presence of fixed particles[13],

-_Y f dXi e - BHi - 4d
e fdX H0 (3.10)f dXi e-oHi ,

the correlation function in F(r") decays to zero rapidly and R = T where T is the

temperature of the internal degrees of freedom which is assumed to be constant in

time. The potential of mean force w can be written as a sum of two-body terms at

low densities, i.e.

L;(rN)= (rij)
i<j

Due to the short-range nature of 4, we can write at low densities

F(r") P N 1Vs + ± - e

•/krfjkfjk : (Vp2 - Vpk)
j<k

x ((Vpj- Vpk) + Pj m Pk, (3.11)

where

Tjk = dT r dXi,(Vrjk jk)e(L ~+V V )T(Vrjk jk).

We write then

Tv (A7, t)

_ Pi(, +i F( + Xi .Vp +
i=1 j=1 j i

1 N
2 E kjkfjk (Vp - pk) X

j j1k

(Vpj - pk Pj Pk)] (3.12)

We will express the equation above in a system of units natural to the 4anulal

system under investigation. that will reduce equation (3.12) to a dimensionless form.

Our choice will be: ro, the particle's radius for the unit of length; ri = m, where
Vg

m



v9 is the typical granular velocity, for the unit of time; and the mass of a grain, m,

as the unit of mass.

We can now represent the important physical quantities as a product of units and

dimensionless functions (with asterisks):

mro mrTo m2
Pj tr Fij -Fj, -F i -

7i 7T: 7-:

and
m2 2  mr 2  mr 2

i -7, kBgT = 2 T*, kBT, = O T*
2 3 i722

where 6ij is the elastic potential associated with Fij.

The derivatives behave as: Ta _ a _ 1 D 0 1
Opj mro Op ' at ri Os ' ar ro OrJ

3.3 The generalized BBGKY hierarchy

A classical system is completely described by a set of initial conditions in phase space

and the corresponding Liouville equation. In principle, the solution of the latter gives

the temporal b havior of the system. Unfortunately, the extremely large number of

internal degrees of freedom present in a grain makes it extremely hard to take into

account the evolution of the whole system (internal plus external degrees of freedom).

In the previous section, we obtained a Fokker-Planck equation (3.12) that de-

scribes the behavior of the slow external degrees of freedom by means of averaging

out the fast behavior of the internal degrees of freedom. That equation is equiva-

lent to a hierarchy of equations, a generalized BBGKY hierarchy, that describe the

reduced distributions of degrees of freedom[15, 32].

In order to obtain the generalized BBGKY hierarchy, we need to define the reduced

distributions f(n) f(n) (X, .., X", t),

) = (N - n)! dX,,,l dXNW(Xt, t), (3.13)

where Xi = (ri, pi) and dXi = dridpi.

m



From the definition of p*, we see that O(p) = 1. In the strong coupling, short

range limit, O(qij) = mvy, which implies that O(F) = , where L is the typical

deformation of the grain during a collision. In the case of "Y*, we have to use the fact

that[12]

0 (-) = L Tv

where T7 is a typical relaxation time for the granular material. We obtain then

O(y*) = T* V

We also have O(X*) = 1. The integrals on X,+1 on equation (3.15) are of order nra.

We can also set the time scale to T,, t = T-s, in which the interparticle interaction

will be of order one.

By integrating equation (3.12), we obtain[16]

a (,), fA* E *g f ,g n

i=1

n n nan

i=1 jyi p - i=1 O f
+ ~ZZ? jkrjkrck: • ap) x

k j k j k pj k

n aZf dX,+1 Fi~ apf(n+l)* +-n* IdX n f( + (3.14)

+On' dX in+in+i,n+
i=1

. Tp * p t p - p, n+)

where g* is the normalized value for the gravitational field, g* = 4, A* = AL s = I

0 = O and ,n* nriTc



3.4 Order of Magnitude of the BBGKY terms

The time-scale for the variation of the distributions f(")*, is set with respect to the

time scale T, the duration of a collision. We observe that the most important termTn for

f(n' 2)* is the one that corresponds to the direct interaction of the colliding iicles.

which happens at the time-scale T.

The time-scale A* (g*) corresponds to the time in which density inhomogeneities

are smoothed out. The time-scale 0 correspond to the time a typical grain needs to

interact with another grain in order to lose all its kinetic energff. The time-scale n*

corresponds to the rate of change that synchronizes the multibody distribution to the

one body distribution and n*O is the rate of dissipation of kinotic energy.

Reverting to the fully dimensional form for the hierarchy, we define the operators

nG" = mg. p,i=1 Opj
i=1 Ori

I = F j. -
j<i

Inn
ME _7jkijkfjk r

S -2 j jk i9Pj Op

(pj apk mkBT [p-Pk
n

Nn "dXn+1i)i,n+1ri,n+1ri,n+ 1

i=1-

api Pi + mkBT ----

whereI = i = 0. We also define H = K n + In.

We can now write equation (3.15)

f f(n) - A*KX f(n) - I•f(n)
as



-9*Gn f( n) + OA" f"(n )

-n*L f (n+1) + On*No nf(n+l) (3.15)

where the diff•"---t lmagnitude of each term is made explicit.

3.5 Equations for the one-body and the two-body

distribution

As a first step, we rewrite equation (3.15) for fl and f 2:

f
Os

-= A*P1 0 fl - g*a fa +
-n dX2F12-

+On* f dX2?7 2f12i~12

Opi Oap
1

+ [PI
mkBT

- P2]) f (3.16)

= -A'* (p.m Or,
-F 12- ( p

-g*mg. a
(a 1

Op1 - Op2

+ P2 9 )f2
m Or2

± 0 f2 ++ f2
dP2

0pl OP2

+ - [PI -
mkBT

p21)

-n* dX3Fl30 f

-* dX3F23 ap +

+On* f dX3lY 13l13 13

and

af2
Os

f 2 -



S( + [ - P3]) f 3 +

+On* dX317 23i 23 2 23

Op2 Op2 mkBT

The small parameter A*, associated with the variations in the density, will be

assumed to be very small. Realistically, since L a 10- 5- 6m, v 100m/s and

g • 101m/s 2 , the factor g*,
* = gLg 2 io1-4,- 5.

We also assume n* e 10-3 (for a dilute granular gas) and 0 e 10- 2 (corresponding

to a total dissipation of the order of a few percentage points of the total kinetic energy

of the grains during a collision). It is natural to assume that A* k g* <K n* < 0.

For simplicity, let's assume that A* = ag*, where ca = 0(1). We are left with 3

small parameters: A* (small gradients), n* (small density) and 0 (small dissipation).

We can now rewrite equations (3.16) and (3.17):

fl 1* -A*(K[ + GI)f 1* - n*Llf 2* + n*ONl f 2*,(s
Sf2 = -H 2 f 2* - A*G2f 2* + OM2 f 2 _ n*L2 f3,

Os
+n*ON 2f 3*.

Above, we used the fact that we can assume A'* = 0(1) in this time scale. The

evolution of f 2* is set by both the interaction (through the operator containing the

force) and the kinetics (through the kinetic part of the operator above).

3.6 Extension of the Time Variable

Equation (3.15) cannot be simply solved by a perturbative expansion of the ';qtribu-

tions fn. The reason is that secular terms will appear in the expansion, liniuing the

validity of the expansions. In order to eliminate these terms, we are going to use the

method of extending the time variable s.



We have basically three small expansion parameters: 0 (dissipation during a col-

lision); n*(rate of mixing); A*(diffusional). The extension of the time variable is done

in the following way To = s, T7 = Os, 2 = n*s, r3 = As, T4 = 02s, T5 = n*Os, etc.

A fiunction f(s) Is thus extended into a function of the variables T,, j (s)

f(To, 1 T2, T3, 7T 4, 7T 5 , ...). The final dependence in the time variable is obtained, after

solving the extended problem, by substituting the ri variables by their true depen-

dence on the time variable s. The next step is to do an extension of range of the time

variable[33, 16]. The basic idea is to obtain the kinetic behavior of the system (if

it exists) and to separate each phenomena according to the time-scale in which they

occur[33, 34].

The time derivative becomes

s - + 0
0  + n* 2 +

A* +  2 + 1'n ... (3.18)aT3  aT4  a75

Our goal is to decouple the BBGKY system and at the same time avoid secular

behavior that limits the validity of our expansions.

By expanding equation (3.15), using the method mentioned above, we obtain for

fl* in the successive orders of magnitude,

00 fo 0, (3.19)
a a

± + fo = 0, (3.20)
O1  O

aTaf2± • = -Ll fo, (3.21)

f7-0 fa 0f  = -(K + G')fo, (3.22)

d f4  -- f+ = 0, (3.23)

a 1f + a 1f2a 1o a1

-+•72 +1 r f0 = - L f +N 2o , (3.24)

I



and for f 2*

a f2 +dOS

and for f 3*

af02
a70
a

f0

f31870

0  0

a70 f 3 + f71

_ H2f2 + 2f02,

S-H 3f03,

=-H f•3 + 3f03

A convenient set of initial conditions is given in the next section.

3.7 Initial Conditions

We want to obtain kinetic equations of motion for the distributions f"i, in other words,

S--f = O(fo) + O(higher order),aO 0

where O(fo) is a function of fol. The multibody distributions, f0,>2 will also be

synchronized to fol.

We need, in special, to find the solutions for the equations (3.19-3.28). We assume

simple initial conditions, which are not a bad choice, given Grad's theorem [35].

Specifically:

fon (s = 0)

fo (s = 0)

fi(s =0)

fil (s = 0)

= IAfo1,

= f0,or n > 1

= Oforn>1,i>1,

- 0 for ; > 1.

(3.25)

(3.26)

(3.27)

(3.28)



3.8 Elimination of Secular Terms

In appendix A, we obtain the kinetic equations for the system as consistency condi-

tions by using the method of elimination of secular terms. From equation (3.19) we

get that f 0 = 0 and from equation (3.25), we have

f02 e- H 2Fo (02 ( = S ) = e H 2 To 01 f0o

We also obtain that fl = 0. From equation (3.23) we get that f,4 = 0 and

fo 0 - f(T 2, T3, T5 ).
We rewrite equations (A.2), (A.3) and (A.4)

a forT2
a f1

f oT73
foao~f g

= -L' Sl 2ffol

= -(K' + Gl)fl,

= + N S12fdf 0

Equations (A.2), (A.3) and (A.4) are the kinetic equations for our model of gran-

ular systems. We can write them in a more explicit form as

0 fdoa72

a0
fo

f05
Or7f ;

= dX 2F1 2 .OS1,•f

drdPlP2) a
J dr 2dP 2( m rI2 SS12f '

m Brl2 o~

= . +rlm Ori

(3.29)

(3.30)Mg. 0 fo ) ,Op ,
= fdrxdp2712ii1212 "

1
mk [PmkBT - P2]) S12f0f0, (3.31)

where, in equation (3.31), we can use the approximation that

S1 2 01 0101 01 folC T



In dimensional form, we finally obtain the kinetic equation

at
p\ 0

m Or,

= dX2F12- F l. 12 f

+ f dr 2dp 2712r 12f 12 •

Opl Op, (3.32)[P1 - P21 S12folfl.mkBT

The equation above is valid in the limit of small density and small kinetic energy

dissipation. Our goal in the next chapter is to derive from it the physical behavior of

flowing granular systems.

3.9 The Boltzmann Collisional Term

The collision term is of the same form as the usual elastic Boltzmann collision term.

The only difference is the presence of an effective force created by the interaction

between internal degrees of freedom. For T0 large, we have from equation (A.2)

afo
a72

- L'S 12f f01. (3.33)

where S 12 = limo-oo e- H270. Using the definitions of L1 and S12, we obtain:

a fa72
Ja 0 foff.= dX2dp2F12.-- PS12fx 01 (3.34)

Using the property that as ro -+ oc, K2S 12fd fd -+ 1 2S2f 01f01 we have:

&T72
J= dx 2dp 2 (P- P2) a7XdP "OX12f fo(

Using Bogoliubov'" integration scheme[1 5. 33, 36]:

a9fo072
= dp 2 Pl - P2 bdb de dx S12f f1 1

+ mg. fo

,,

II



We finally obtain:

aTf
872

-= fdp• (- P2 o (P,) fo(P2)
-/• (P1)fO'(P2)) , (.3t.)t/

where the collisional cross-section per solid angle is defined as o(Q2)dQ = bdbde (see

ref.[36]), and (p'1, P2) are the momenta of the grains before the collision that generate

(Pi, P2). The collisional term in equation (3.35) is identical with that for elastic

svstems[15, 32].

3.10 The Dissipative Contribution

NWe have then (from Eq.(A.4)):

OT4
- NS 12fo ff. (3.36)

Equation (3.36) then becomes:

f = f dX2dPri27J 12 1 2 12

. -. o

1p1 (pi

(PI - P2) Sl 2f
mkBT (3.37)

It can be expressed in a Fokker-Planck form:

9 fof . dx2dp 21212 r 12 . (P1 - P2) S11aT4 0  PI f M

+ :p (p dx 2dP2"12f12i1'2S12f0f1. (3.38)

The first term on the RHS above corresponds to an irreversible transfer of energy into

the internal degrees of freedom. The secoi,n term corresponds to diffusional enerf,

_1

074



exchange with the internal modes. When the granular temperature,

3
Tg = < p2 > T,

the two terms are of the same order.

As for the expression S12 f f~, we have, in the rarified gas limit, for times larger

than T2 = 0(1),

S12f0101 = S12f 0(Pl )fo1(P2
f12

fo(Pl)fo (P2 e kBT,(r4)

where 012 is the elastic potential energy between the grains.

The approximation above is valid because variations from the main term (zero-th

order in Enskog's theory) are small (proportional to the gradients of thermodynamic

functions). For the inelastic contribution term, we keep only the leading order term

in fo1(2), in dimensional form[36]

3

f( (p) n. e 2mkB Tg(9-4 ) (3.39)
( 2wmgT, (74) P2

in the dissipative integral.

Equation(3.38) can be approximated by

0T4f  = 0P ( plA) +
T a

+ :T 7- (fopA) , (3.40)T,(T4) OP1 OP1

where

A = dfdrr7(r)ffrre kBT('4)

Since

d f = 4rr I
3



where I is the unitary tensor of second rank, we have

aa a 1
f-f = D(T) p1 +. - p~ fl, (3.41)

074 Op, Lpa mkBT J

where

D(Tg) = ] dr-(r)e T9(-4)

3.11 Discussion

Starting from first principles (the Liouville equation and the derived Fokker-Planck

equation for the positions and momenta of the granular particles) for a GS, we ob-

tained a generalized BBGKY hierarchy that describe the multi-granular distributions.

Using the small parameters of the theory (small gradients of slow variables, small

density and small inelastic dissipation coefficient) we use the methods of perturbation

theory and time extension in the several physical time-scales of the problem to open

the problem: we obtain the behavior of each term in perturbation theory and eliminate

the secular (diverging) terms up to the maximum order possible.

The kinetic equations that describe the time evolution of the one-body distribution

are obtained as consistency conditions in the process above described. We recover

the standard Boltzmann collisional term and a new collisional term that describes

the rate of dissipation of energy.



Chapter 4

The Homogeneous Granular Gas

4.1 Introduction

Recently, granular materials have become the object of much attention[1]: on a prac-

tical level, many industrial processes deal with grains or powders (pharmaceutical

industries, storage and transport of grains, transport of mineral ore, etc); geophysical

phenomena like sand dunes motion, landslides, etc, also correspond to flow of gran-

ular particles; on a more abstract level, granular systems are exceptionally rich in

terms of the non-equilibrium phenomena they present: kinetic energy dissipation[22];

solid-like to liquid-like transition[37]; dilatancy[38]; arching, and many more[37, 39].

The goal of the present work is to develop kinetic equations for the homogeneous,

smooth rarified granular gas based on the kinetic theory methods developed in the

previous sections.

We show that these equations obey a generalized H-theorem that works well up

to the time-scale that describes the rate of dissipation of kinetic energy.

We will also study the behavior of the granular temperature with respect to time,

for the homogeneous solution. The choice of a homogeneous solution is valid as long

as we are careful to restrict the system's size so that effects of instabiliPt- of the

homogeneous state will not be important for a small rate of dissipation[40, 41].



4.2 Form For The Potential

The interaction potential corresponds to the elastic (Hertzian) interaction due to the

elastic deformation of the grains. We assume that no permanent plastic deformations

occur; n other wor.,, the collisions happen ý>owly compared with the speeds neces-

sary to reach the plastic deformation threshold. For spherical grains, the potential is

of the form [28]
1 5
-12 = 2kh2 (4.1)

where k is an effective elastic constant and h = 2ro - r 12 , when 0 < r12 < 2ro. The

restoring force between the grains is then [28]

0 3
Fr = -kil 2h2. (4.2)

4

Using a simple classical harmonic crystal approximation, one can obtain the form

for the dissipative coefficient 712(h) [12], which can also be obtained by other phe-

nomenological approaches [9, 10]. The radial frictional force between the particles is

given by
5 1

Ff = -k' 12kh/ ,

where k' is a dissipative coefficient. That gives us [12, 10, 9]

712(h) 5 ,
= -k . (4.3)

kBT 4

The order of magnitude of 7 12 (h) is[12]

kBTrTF

L2

4.3 H-Function

If the kinetic energy lost during a collision between two granular particles is a small

fraction of the total kinetic energy, then, there should be a function that measures



the disorder present in the system. A natural candidate is the generalization of the

Boltzmann H-function.

Let's define:

H = Jdxidp fl log fl. 1.

After a few collisional times, '1  0(1), -f 21 f 0, d we can write

H - dxidplfo' log fo. (4.5)

The time variation of H is given by

H = n* H + n*O H. (4.6)

The first term will give the usual negative-definite result. For the second term we

have:

aH = dx'dp fo(1)(1 + log fo(2));
OT4 H dxldpl 074 fo

/ dxdpidrl2dp 2 (1 + 10og f(2)) x(8 89
Y12r12r12 1p p2(( ( /  (pi - P2)

((+ kBT ) S 12f fJ. (4.7)
OPI Op2 mkBT

The equation above can be approximated as before using equation (3.39). Then, we

can write:

H J- dxldpidx2dp2(2 + log fol(2)fol(1)) x074 2=

O p, (pi- P2)( () + - ) kBT) (4.8)Opi Op2 mkBT S o ~



1
2

HT4
874

(kBT

S712
dxdpdx2dp2 (f o(2) fl (1))

1 \

kBT((71))

Op2)

thus giving in fully dimensional form

a
HT4

7-4
k1T()) 1

kT,(T4) kBT,(T4)

dXldp1 ldX 2dp 22 12
(PI - P2)

12.

We observe that H is a monotonically decreasing function of time, up to the time

when Tg(T4) r T.

4.4 Time Dependence of the Granular Tempera-

ture

For the homogeneous system, energy dissipation translates into a decrease of granular

temperature. The Boltzmann collision term is conservative so only the friction term

will contribute to energy loss. Substituting of equation (3.39) into equation (3.38)

yields (in dimensional form, 712 = k'hi)

(fo
OT4

SdrJ 2 2712712r12

a8 _

p1  1p

m kBT

1
(PI - P2) S12fo fo,mkBT

Sdrl2dp2712
kBT,(T4))

(PI - P2)( fol) x

(4.9)

2

S 12fl fd

(4.10)

Integrating by parts we obtain:

(fol (2) fol (1)),

-(1
kBT



2

2 rnkB Tg (- 4 )

(1 I
xkBT kBT,,(T4 )

3mkBT,(T 4 ) i kh2
dh' 12e 2kBTg(r4)

Using the fact that

afo
074

3
f2Tg(7 4 )

we have:

0 Tg(74)074 3 m
0 5 1 kh

1dh-4k'h2e 
2kBT9(74)

The integrul becomes

" 5  1 h 1 4 2kBTg(T4)- 4 2 k-
Jo"O 4 4h k 1

We then have

- Tg (74)
aT4

107
3

from which we obtain (for Tg(r 4) > T)

T(7T4 )

( 1 +

) 3
2kB 5

k k( J

We observe that for Tg(T4) > T, and for long times (74 -+ oc), we have iT,(T 4) OC

1
4fo -

m

4w(i

2p ) aTg(T74)

1T
kBT 1T

kBT,(T4))

(4.11)

3
r(-).5

r(3) x
5

kT 9I (T4)T• (T4)kBT,(T4))
(4.12)

lrrk' (2kB)53
3mkBT k

r())5 (4.13)

(pl.12) 2) 27T )3/2

mkBT, (T4 )) k2mmT.(- 4)

i

k' 1
m kBT



8 5

Tg(T4)3 and T9 (T4) oc 4 5 3. The exponent - compares to the value 2 obtained by

assuming a constant phenomenological coefficient of restitution, as we see below.

From a heuristic method in which use of a constant coefficient of restitution is

made, one obtains for a one-dimensional granular gas [42]

a

a_- (qfl(1) dp2 PI - P2 (P1 -P2)f1(2)) , (4.14)
apl"

with a similar form for three dimensional granular gases.

Using the gaussian approximation for the one-particle distribution functions a-

bove, one obtains that the time variation for the granular temperature is given by

Tg oc -Tf. The solution of which gives Tg(74) O T4-2 , for large 74.

4.5 Discussion

Based on the kinetic equations for the GS derived earlier, we study the behavior of

the granular temperature for the case of the homogeneous rarified GG, in the limit

of small dissipation.

We derive an appropriate H-theorem for the system and use it to show that the

one-body distribution tend to a Maxwellian form on the time scale of the collision

rate. Furthermore, it is also shown that the H-theorem is well defined up to the point

when the granular temperature becomes comparable with the internal temperature

of the grains.

We then obtain the behavior of the granular temperature as a function of time. We

compare its assimptotic behavior with that obtained using phenomenological theories

that make use of a coefficient of restitution for the granular collision.

m



Chapter 5

Hydrodynamic Behavior for the

Low Density Granular Gas

5.1 Introduction

The goal of this section is to obtain the hydrodynamic behavior of the slow variables

(not all conserved) of the GS. We extend the methods of the previous section in order

to include the gradients in the system.

Other atthors have developed hydrodynamic and kinetic equations for granular

flow[2, 42]. They were obtained by assuming an effective interaction between the

grains (elastic and frictional forces) [2, 42] that average out the actual stochastic

interactions between the grains. The advantage of the present method is that the

stochastic interactions due to the exaitence of the internal degrees of freedom are

naturally taken into account from the beginning[13].

5.2 Hydrodynamic Quantities

We can use hydrodynamic methods for the analysis of GS, if we understand its limi-

tations. There are many problems associated with taking the low wave-number limit

of the conserved quantities', among them [2]: the length associated with fluctuations

of density are comparable with the size of the particles since the particles are large



n(ri, s)

u(ri, s)

T.(r 1, s)

= Jdpi f(ri,pl,s),

1

mn J
1

3nm

(5.1)

(5.2)

(5.3)J dp (pl -

where u(rl,s) is the flow vector field, n(rl, s) is the density and T,(ri, s) is the

granular temperature.

5.2.1 Variation of Density

We have
OnJ
19s - dpl - f01-

Using the extension for the time derivative, we obtain

070 0T - 972 -

+ 0o2 + n*O-)n
873

From above we obtain

= dp*0 + ...+ n*0 f
07-5) f .

(5.4)

an an
0a aT

On
OaT3
0 n
7r4

a72

Jdpi a

an
75"

(5.5)

(5.6)

(5.7)

(in some situations, comparable with the container's length, as in large grains flowing

through a pipe); kinetic energy is irreversibly dissipated during a collision; With that

in mind, we are going to propose a model that tries to fit the behavior of a rarified

granular gas.

Using the solutions of the kinetic equations obtained earlier, we define:

(dplpl f (rl, Pl, s),

mu)2 f" (rl p1, s),



We can deduce from above that n = n(r 3 ).

From (5.6) we obtain

On

073
Jdp1 faT3

- dpi (-a, + mg. f
- /p "Or ip, f

Or, mn

from which we get
On a

3 - .(nu)d73 ar1
(5.8)

5.2.2 Particle Flow

For a granular system, momentum is a conserved quantity, which is not true for the
granular temperature (translational kinetic energy). By taking the time derivative

(with respect to s) of equation(5.2), we obtain the variations of u at all orders of
magnitude:

a (n u )
0a
l (nu)

&2(nu)
072

S(nu)
073

a (nu)
a04
a(nu)

OT5

= 0,

0,

=- dpl p 1 t fo,

1 f
= - dpip, fo1,

= 0,

in f O5 A

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

From equations (5.9,5.10,5.13), we obtain that u = u(T2 , -3, T 5). From equation
(5.11) and the fact that gradients of the density are of order A*, we obtain that
u = u(T3 , T5).

I



Our next step is to analyze the final term

SUo = dplp fo1I

= dpipl /p2dr 2712r12r12

ap (rPl + mk [Pl - P21 f)

The integral above is zero due to the symmetries of fo2. From that we obtain

u u((3 ).

Let's define the pressure tensor:

P= fdpi (pi - mu) (p, - mu) fo
m
1 (- fdplp1p1 fo - nmuu. (515)

We can write equation (5.12) on the detailed form

_ p( _ aa(nmu) dpiprl Pr + mag. fo.

The external force integral above gives the value

-m dpipig.p fo = nmg.

The kinetic part above can be written in the form

Sdpipipio (P + nmuu).lm r d f -Or

We then write
8 10 8u = .P - u. + g (5.16)aT3 nm Or,1 rl

m



5.2.3 Granular Temperature

We define the energy flow vector

2 2 f dpi (p - ,7Uj 2 (pi - rMU)f01. (3.17)

from which we obtain

1 f3_
q idpip2p1 f0 - u P - -nuT,2m2  2

1
----nuu
2

since from equation (5.3)

1 dpf u2

S3n7m 1:3

We proceed to investigate the temporal behavior of T,. We can show that T, does

not depend on r0, T1, 72 or T4 . The latter happens because the integral

dpldp 2drplF 12 .a IpS 12f0 fo

is of higher order.

\Ve have to calculate the time dependence of Tg on 73 .

- /dppJp2 a
-3J1 aT3

0
-a7

O73 3 '

= .dplplplf2 1 _-nmg.u
3m 2(rl 3

We obtain from above:

a
n a T9 -873

a
T, (nu),ar1

(nT,)073

a (nT,)

I



2
dpxippifo + -nmg.u3

nu2

3

After substitution and a little algebra, w( obtain:

no T0 + nu. Tg 2 0
3 Orl
2 0

-- P : u.3 ar1
The dependence of Tg on T5 is given by

If dpp2• s f8 ,
3 1075

a5a nmu2

OT5 3
-

a
ap1 ap1

where we can use once more that

S1 2flfol 11 folf 0le •,

finally obtaining

a75
opd ol

and[16]

a75

j dplp2 J dp 2dr 2'712 I12f 12

1
+ kI[P

mkBT
P21 )f f e F,9

f0dhTy(h)e 2T,• t)

where h = - r 12 and q 12 (h) is the Hertzian potential between two grains.

0(nT,)OT

(5.18)

dpp dp 2dr 2712r 12f 12

+ • [P 1- P21 S1 2f0fo0
mkBT

83rn22 Tg(t)
3 m T T, (t)

(5.--,

3m2 0 rl

I



Equations (5.8),(5.16),(5.18) and (5.19) define the hydrodynamic behavior of the

rarified, quasi-uniform granular gas.

5.3 Solution of the Kinetic Equations

In our search for the behavior of the quasi-homogeneous, rarified granular gas, we

have assumed in the previous sections that the gradients of the thermodynamical

variables were small compared to the density parameters, A < n*. We will expand

the solution for equation (3.32) around the zeroth order Enskog solution for the

Boltzmann equation (obtained from the above mentioned equations by making 712 
-

0)[36].
We write

fo = o + o 1, (5.20)

where 2o0 corresponds to the zeroth order Enskog solution[36].

The order of magnitude of 21 is given by

1AI r00( = -- () < 1,
IG n*lG

showing that the expansion will be valid for small gradients only. It is also important

to compare the order above with the magnitude of the rate of dissipation, n*O. The

solution above will be meaningful in the case when 1 > O((p) > n*O > n*2. ",We

need
1 1 IG 1--- > -- >>--

We write equation (3.32)

• fdo + KfO =_ J(f0f0) + (f'ofJ), (5.21)



and

and

F(folof) J= dr 2dp2712i12i12

1
+ m [pmkBT - P2]) S , 2f f1 .

The function 0o is of the order of the densitv of the system and O(p,1) > A. In

consequence, we assume that -1 corresponds to the first order Enskog approximation.

We write then

Po = (2rmTg)2 exp
(2mT,) I

(5.22)
2m T,

and (see appendix B)

S ( )2
n m A - In Tg -

Or,
2 a

B : u,
n Brl

where (O(A. B)= V).
v9 ar0

The expressions for the pressure tensor P and the heat flux vector q are given by

P = nTU -
ar, O arU

2 -a 1 u

3 ar,

and

OrI

where r7 is the viscosity coefficient, AT is the thermal conductivity coefficient (see

appendix B) and [Ail is the transpose of A

We observe that the only difference, from the usual hydrodynamical equations

that we obtain, for the rarified, quasi-homogeneous granular gas, corresponds to the

Kf' =(a- ar + mg ~.) f,

J(ffo) = dX 2F 2. a S12 0

ap, OP,.1 (

(5.23)

where



result obtained by Schoffield and Oppenheim in the limit of small gradients[13].

5.4 Linearized granular hydrodynamics

The analysis of stability was done for graiiilar systems has been done by several

authors for different models of granular systems[40]. In what follows we use the

notation

Orl

5.4.1 Modified Navier-Stokes equations

We will study the effect of dissipation on the long-time behavior of the solution (5.20).

In order to do so, let's rewrite the hydrodynamic equations obtained for the rarified,

quasi-homogeneous, quasi-elastic granular gas:

Un
On= -V.(nu). (5.24)

8 1au V(nT,)
at mn

2

-uT Vu + g, (5.25)
a 2 2

n T, =-u T + -nu T+-V (ATVT 9) - -3nTgV uat 3 3

-77 (Vu + [Vult) :Vu - 217 (V U)2

kBT
-D(Tg)(1 - ), (5.26)

where r = shear viscosity, AT - thermal conductivity,

87rn2 2T _ 2 12 (h)

D(Tg) - 0 dhy (h)e 2T•(t)

3m o

and Tg > k3T.

Using the forms[12]
1

y(h)= k'h
4



012(h)= -khJi
2

we obtain approximativelv[16]

D(Tg)
107lorcr2 2

- 3- (k 58
=-Dk'nT2T(t)"

F(0.6) T,(t) E

The results obtained in equations (5.24),(5.25) and (5.26) correspond to those

obtained in reference [40] with the absence of the term that in [40] corresponds to

higher order, namely -Vn, which is of order n*OA in the present theory.

For the same reason as above, several terms obtained in reference [13] are ignored

for being of higher order.

5.4.2 Linearized Hydrodynamics

We expand the generalized Navier-Stokes equations around the small values defined

by

n = 2no + n,

U = 6u,

T, = To+S 6T,

where the delta variables are the small deviations from the uniform state.

We obtain

a 6
at

at

= -noV.(su).

= -noV(6T) - ToV(6n)

+70 (7V26u
1
3 Sau) + g,

(5.27)

(5.28)

2AT V-26T - n0TOV .6 u3 3

b

and



8 8 8
-Dk'To(t) n - -Dk'noTo(t)> T,

io To = -Dk'noTo .  (5.29)

The next step will be to analyze the ',ehavior of the hydrodynamic mod, of the

system.

5.5 Discussion

In this section, we obtain a set of generalized Navier-Stokes equations for the gran-

ular gas. An unusual term, proportional to a power of the granular temperature. is

obtained. that reflect the inelastic dissipative behavior of the grains during a collision.

Using a method similar to the one invented by Chapman and Enskog, we solve the

kinetic equations obtained earlier and obtain the generalized Navier-Stokes equation

for the low density, non-homogeneous GG.

We then study the effect of the inelasticity on the stability of a class of solutions

for the behavior of the hydrodynamic (the slow ones: the same as the ones for usual

molecular gases) variables of the system.



Chapter 6

Conclusions

In summary, in this Thesis, we study the flow and collisional aspects of granular

systems (GS).

WVe first obtain the coefiicienit of instantaneous energy dissipation for collisions

between two grains by an appropriate separation of the potential energy into internal,

granular and coupling parts and with the help of a first principles theory for granular

distribution functions.

The form for the dissipative coefficient -y(r) that we obtain is identical to the ones

obtained elsewhere[9, 10] assuming phenomenological viscoelastic dissipative coeffi-

cients. The agreement suggests that the phenomenological model is a plausible one

to describe the interaction between GPs that do not involve plastic deformation of

the grains.

We the1 i proceed to study the flow aspect of GS. Starting from first principles

(the Liouville equation and the derived Fokker-Planck equation for the positions and

momenta of the granular particles) for a GS, we obtained a generalized BBGKY

hierarchy that describes the multi-granular distributions.

Using the small parameters of the theory (small gradients of slow variables, small

density and small inelastic dissipation coefficient) we take advantage of perturbation

theory and time extension in the several physical time-scales of the problem to make

it tractable: we obtain the behavior of each term in perturbation theory and eliminate

the secular (diverging) terms up to the maximum order possible.



The kinetic equations that describe the time evolution of the one-body distribution

are obtained as consistency conditions in the process above described. We recover

the standard Boltzmann collisional term and a new collisional term that describes

the rate of dissipatic-i of energy.

Based on the kinetic equations for the G' derived earlier, we study the behavior

of the granular temperature for the case of the homogeneous rarified GG, in the limit

of small dissipation.

We derive an appropriate H-theorem for the system and use it to show that the

one-body distribution tends to a Maxwellian form on the time scale of the collision

rate. Furthermore, it is also shown that the H-theorem is well defined up to the point

when the granular temperature becomes comparable with the internal temperature

of the grains.

WVe then obtain the behavior of the granular temperature as a function of time. We

compare its asymptotic behavior with that obtained using phenomenological theories

that make use of a coefficient of restitution for the granular collision.

In the last section,we obtain a set of generalized Navier-Stokes equations for the

granular gas. An unusual term, proportional to a power of the gra;'ular tempera-

ture, is obtained that reflects the inelastic dissipative behavior of the grains during a

collision.

We then use a method similar to the one invented by Chapman and Enskog,

in order to solve the kinetic equations obtained earlier and obtain the generalized

Navier-Stokes equation for the low density, non-homogeneous GG.

We then study the effect of the inelasticity on the stability of a class of solutions

for the behavior of the hydrodynamic (the slow ones: the same as the ones for usual

molecular gases) variables of the system.
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ff (To)
Dft

= c (TO - 0) To fo
9T1O

= 7-

The behavior of f' becomes secular when ro -s oc. Since we can rearrange the terms

inside the perturbative expansion of the distributions, we choose fo such that

= 0.
O9T

That implies that fl = 0 and fo1 - fo1 ( 2, 73, 74, 7T5)

We proceed in the same way up to the precision order we want to attain. From

equation (3.25), we obtain:

f02 To) -H27of02 (0),

e-H2To 0fl ~,l

63

(A.1)

Appendix A

Elimination of secular behavior

from expansions

From equation (3.19), we obtain that fo - f1(71, 72, 73 , 74 , 5 ). Integrating equation

(3.20) with respect to ro, we have

1



- L dAe -H2A fl0
-Of L1H2 A ff
1972J

From equation (3.26), we obtain (after replacing f02 by e- H2T0 fo0

f2 = TO dAe-H 2(TO-)i)2e-H 2A •f

The expression L1 foO dAe-H2 f01 fo diverges when 70 -+ o because

lim e-H2"TOfjf 01 - Co e-3012f 2fl,0

where Co does not depend on 70 . In order to remove the secular term above, we write

L' TO dAe-H2A fl l =- L j dA (e - H2A - S12) f0df 1

+ToL S12f 0f1,

where S 12 = limTo~, e- H2 TO, and the first term above converges. We then eliminate

the secular term on fl (To) and obtain the consistency equation

UT2

a ol - L'S,12 fo1fo, (A.2)

which is equivalent to the Boltzmann collisional term for molecular theories.

From equation (3.22), we obtain

f (1T70) = -70 TO 0f

The secular term abovo is eliminated by choosing

- -(K 1 + G')1fJ.

f21(7O)

and the integration of equation (3.20) with respect to To gives us

)OfI
f2 T(0) ' 70OT2

+ (K1 + G1)f01 ) -

(A.3)



From (3.24), using that

F 0,
o71

we finallv obtain, in the limit when ro -+ 00,

= lim (-L f 2 + 'l f2)
S-+S 12 f00

=+N'S12fo 01 1.

a 9 f, lOT5

From (3.23), we obtain f4 = 0 and

= 0.
874

(A.4)



Appendix B

Chapman-Enskog results

W\e rewrite some of the results that can be found in reference [36j for the approxima-

tion of fol in section 10.

The vector A is a solution of

1 f dca - P2 ff(A'l + A' - A - A) =

= f ( - ) C, (B.1)

where a 12 is the collisional cross-section, and the normalized peculiar velocity C, is

defined by

C= 2 u .)(B.2)

The vector A has the form

A = 4(1 C )C,

where A(1 C ) is a function of IC 1, n and T,.

The tensor B is a solution of

S d6dc12 P2 f (B'1 + B' - B - B) =

=f CC - UC C). (B.3)
fP3



B=B( C) CC- C-C,

where B(I C . also a function of C , C and Tg.

The results for AT and -, are

AT 75 T 1 (B.4)
8 m all'
5 1

/IV - Tgbl 1  (B.5)
2 b and b are constants that depend on the sstem36

where a11 and b11 are constants that depend on the system [36].

The tensor B has the form
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