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Abstract

The design of geometric shapes subject to physical constraints, such as the generation
of lift from hydrofoils, remains an important problem in Computer Aided Geometric
Design (CAGD). In such design problems, the quality of the shape is judged by how
well it satisfies certain physical constants rather than just its geometric properties.
In this thesis, two variations of the functional design of lifting shapes will be con-
sidered. First, a method to functionally design a mean camber surface (3D) from
hydrodynamic data generated by a propeller analysis code will be presented. This
method involves the approximation of a grid of position vectors and the kinematic
boundary condition sampled over an initial blade shape. To linearize the problem,
the physical constraint is formulated in terms of a constraint on the surface normal
allowing for a direct solution with linear equation system solvers. Next, an algorithm
to functionally design the mean camber line of a foil shape (2D) is presented in which
an interpolation approach is used to satisfy the kinematic boundary condition at a set
of points along a foil's mean camber line. Given a coefficient of lift, circulation distri-
bution, and desired order of the curve, the algorithm "evolves" a flat line described
in terms of a B-spline curve into a mean camber line carrying the prescribed load-
ing. Examples of the two methods are given. Possible related applications for fitting
curves and surfaces to sets of data points and normal vectors are also presented.
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Chapter 1

Introduction

In Computer Aided Geometric Design (CAGD) and Computer Aided Design (CAD),

B-spline curves and surfaces (polynomial and rational) are the most widely used for

free-form applications [14]. Mainly controlled by their control vertices, a B-spline

curve is an approximation to its control polygon and a surface is an approximation

to its control mesh. Both can be used for interpolating or approximating (e.g. least-

square fitting) grid points [14]. In addition, surfaces can be generated from curves by

using skinning, cross-sectional design, or feature lines techniques [14, 4, 41].

Currently, B-splines are used mainly for shape representation, but not as widely

and directly for shape design [7]. In the context of shape representation, only geometric

data and no underlying physical constraints are considered. The use of B-spline curves

and surfaces in this context is a pure mathematical representation which has many

advantages such as geometrical intuitiveness, rich representation capability, and data

reduction. In the context of shape design, however, geometric shapes are intended

to serve certain functions. They are designed according to their underlying physical

constraints such as hydrodynamic and aerodynamic constraints. For example, from

the hydrodynamics point of view, the essential problem in designing a propeller blade

is to find a so-called mean camber surface which carries a prescribed load distribution

such that the kinematic hydrodynamic boundary condition [22]

V-·i=O (1.1)



is satisfied on that surface in the presence of a given flow, where V is the velocity of

the flow and i~ is the surface normal vector. In this thesis, we use the term functional

design instead of shape design.

Functional design is different from fair curve or surface design. The quality of

the former design is judged by the functional performance, whereas the latter one by

fairness criteria [8, 28, 37]. The former one involves physical measures such as energy

efficiency, whereas the latter one involves geometric measures such as curvatures.

Nevertheless, they are sometimes related since fairness criteria frequently represent

physical measures (such as thin plate energy [28]). However, it is possible to have

curves or surfaces with fair geometries but which perform poorly.

Functional surface design is widely used in engineering. In fact, every engineering

design is a functional design which serves certain application purposes. Examples

include the blade surface design method developed by Kerwin et al. [22] and the

design of ship hull forms developed by Nowacki [26]. In both methods, the design of

the shape of the surfaces is coupled with flow analysis.

Although sometimes involving curvatures or higher order derivatives of surfaces,

physical constraints for functional surface design frequently involve only surface nor-

mal vectors. The hydrodynamic constraints for propeller blade surfaces and the

aerodynamic constraints for airfoils are two examples for such kind of constraints.

This thesis focuses on functional design of surfaces and curves due to physical con-

straints. Specifically, the design of mean camber lines and surfaces of hydrofoil and

propeller blade shapes is studied. The performance of the shape influences the design

directly through the incorporation of the physical constraints into the design process.

The hydrodynamic constraint considered here is the kinematic boundary condition

which involves the velocity of the fluid and the geometry (position and tangent plane)

of the shape. First, a new method to functionally fit the mean camber surfaces of

propeller blades to a set of position data and velocity vectors is presented. In this

method, the non-linear physical constraints imposed on the surface are converted to

constraints on the surface normal vectors at the given node points. The modified

surface is generated by a weighted least-squares fitting of the grid points and the



normal vectors at these points. This fitting problem is then converted to a linear

problem with a larger number of equations by means of vector calculus, significantly

reducing the complexity of the problem and saving computation time. As an appli-

cation example, the functional design of propeller blade surfaces is studied. Next, a

functional design method to design the mean camber line of a hydrofoil is considered.

In this method, an interpolation approach is used to gradually evolve the shape of a

B-spline curve from a straight line into a mean camber line producing the specified

coefficient of lift and circulation distribution. For a given loading on the foil, the flow

is evaluated at a set of points and a new curve is constructed, parallel to the sampled

velocity vectors. The degrees of freedom in this design process are reduced to permit

interpolation and a scaling step is used to help achieve convergence.

The remainder of this thesis is organized as follows.

First, in Chapter 1, relevant background material will be covered, including an

overview of the physics behind the generation of lift and B-spline curve and surface

representation. This will be followed by a brief literature review of past work on the

design of functional shapes in Chapter 2.

In Chaper 3, the functional design of mean camber surfaces of propeller blades will

be introduced. The kinematic boundary condition is first formulated as a non-linear

physical constraint which is then converted into a constraint on the surface normal

vectors at given node points. Furthermore, it is shown how this type of non-linear

problem can be converted to a linear problem. A method to prescribe the surface

normal vectors from other given physical field vectors, such as flow velocity vectors

at the node points, is also developed. A least-squares fitting method of B-spline

surfaces with normal vector constraints is then presented and extended to weighted

least-squares fitting in an effort to better approximate the boundary curves such as

the leading edges of propeller blades. Next, some examples of functional surface

design by using the new method together with a propeller blade analysis program

are presented. Differences between surface fitting of only position vectors and fitting

of position and normal vectors with different weights are discussed, illustrating the

influence of the normal vector constraints on the performance measures.



After the explanation of the least-squares methods of designing functional surfaces,

an interpolation method to functionally design the mean camber lines of hydrofoils

is developed in Chapter 4. This approach uses the physical constraint imposed by

the kinematic boundary condition, but also requires that the grid of node points be

repositioned such that they lie along lines normal to the previous curve and pass

through their previous positions, thereby reducing the number of unknowns. In this

manner, the number of equations can be balanced with the number of constraints and

a solution can be found. The design process begins with a line described in terms of

a B-spline curve of arbitrary order. The coefficient of lift and circulation distribution

is also specified. Starting from zero, the loading on the foil is gradually increased,

dictating modifications in the foil's shape to satisfy the boundary condition until

the desired loading is reached. The result is a mean camber curve for a hydrofoil

producing the specified coefficient of lift and lift distribution. Examples from the

implementation of this design method illustrate the process.

Finally, in Chapter 5, some possible related applications for the fitting methods

discussed in this thesis are presented. These include the shape preserving interpola-

tion of sets of data and the approximation of constant distance offset curves.

In Chapter 6, conclusions and recommendations concerning this research are pre-

sented. The contributions from this thesis to the CAD community are summarized

and discussed, followed by suggestions for future work in this area.



Chapter 2

Background

2.1 Introduction and background

This thesis deals with the design of mean camber lines and surfaces of lifting foils

described in terms of B-splines. Before the actual research can be presented, some

background material must be reviewed. First, the physics behind how lift is generated

will be discussed. Potential flow will then be introduced as a means to represent

ideal fluid flow passed a foil. Next, the geometric representation used to represent

and manipulate the shape of the foil will be introduced. Finally, the inverse design

process will be described, through which one designs the shape of a foil by specifying

the desired lift distribution over the foil's geometry.

2.2 The physics behind the generation of lift

As a body moves through a fluid, it experiences forces generated by the pressure of

the fluid as it flows around the body. The force exerted on a body can be resolved

into two components, lift and drag. Lift is defined as the force acting normal to the

body's direction of travel while drag is the force acting parallel and opposite to its

motion. As the object moves through a fluid, the fluid's motion (flow) is dictated by

the laws of physics and the geometry of the body. By creating an asymmetric flow

as it travels, unbalanced regions of high pressure and low pressure will occur over the



body creating a pressure difference across it. This pressure difference acts over the

surfaces of the body to generate a net force. The generation of force due to a pressure

imbalance is illustrated in Figure 2-1a.

High velocity

7~2
High pressure Low velocity

(a.) (b.)

Figure 2-1: Generation of hydrodynamic force due to pressure difference.

In the early eighteenth century, Bernoulli postulated an equation relating the total

pressure exerted by an inviscid, incompressible, steady fluid flow on its surroundings

to the velocity at which it is flowing [25, pp. 107-8]. This relation has become known

as Bernoulli's equation and relates the pressure in an inviscid, incompressible, steady

flow to the local velocity as given by

1
p + _pV2 = constant,2

(2.1)

where V is the magnitude of the local flow velocity. Therefore, to generate a given

pressure distribution, one can expect a corresponding velocity field as defined by

Equation 2.1. As a fluid's velocity increases, the pressure it exerts on its surroundings

decreases and vice verca. A simple illustration of the velocity field which might have

generated the pressure distribution in Figure 2-la is shown in Figure 2-lb. The fluid

particles traveling over the top of the foil need to travel faster to keep up with their

neighboring particles traveling along the bottom side of the foil. As a result, the

flow over the top of the foil travels relatively faster than the flow over the bottom

resulting in a pressure difference across the foil. As previously described, this pressure

difference acting on the foil's surface will generate a force acting on the foil resulting

in lift and drag.



In addition to the assumptions that the flow is inviscid and incompressible, if we

also assume that the flow is irrotational, the flow can be represented by potential flow

theory. With potential flow theory, the flow is modeled by distributing singularities

outside of the fluid domain. The flow needs to satisfy kinematic and dynamic condi-

tions along the boundaries of the fluid and the requirement that the velocity of the

fluid remains finite. The singularities consist of sources, sinks, dipoles, and vortices.

The work presented in this thesis involves vortex singularities, the kinematic bound-

ary condition, and the requirement that the velocity of the fluid remains finite, as

given by the Kutta condition.

A single vortex filament can be visualized as a whirlwind in the fluid. In two

dimensions, the fluid flow reduces to concentric circular paths about the vortex as

given by

0= 0 (2.2)
2rr

where F is the vortex strength, r is the distance from the center of the vortex to

a point in the fluid, and 0 is the unit vector in the tangential direction about the

point [38, p. 198].

This can be extended to three dimensions where the flow circulates about a vortex

filament or space curve C [25, p. 191]. The velocity at any point in the fluid is

evaluated by integrating along the entire length of the vortex, as given by

F Rx dl
V= 47 (2.3)

where R is a vector pointing from the differential element dl of the curve C to a

point in space where we wish to calculate the velocity and R = JRI. The ability to

superpose flows in potential flow theory allows the flow about a foil or blade to be

represented as the superposition a uniform flow with a distribution vorticity over the

mean camber line/surface.

The kinematic boundary condition, the first physical constraint in this design

problem, states that the velocity of an ideal, inviscid fluid along a solid boundary must

be parallel to the boundary. Mathematically, this can be expressed as a requirement



on the scalar product of the fluid velocity V with the normal of the boundary of the

fluid domain f~ as

V . = 0 (over a stationary body). (2.4)

Intuitively, this makes sense since we know from experience that fluid cannot flow

through a solid boundary, hence the component of the fluid velocity parallel to a

boundary's normal must vanish.

The Kutta condition is the second physical constraint which must be considered

in the functional design of foils. In any real flow, the velocity of the fluid at any

point must remain finite. This creates a special condition at any sharp edge along the

boundary of the fluid, known as the Kutta condition. Since a sharp edge presents no

radius for the fluid to flow around, infinite velocities will occur if the flow does not

leave the edge smoothly (i.e. parallel to the boundaries). Therefore in order for the

velocity to remain finite, the Kutta condition requires that the flow leave any sharp

edge smoothly.

By strategically positioning the vortices along the mean camber line/surface of a

foil in a uniform flow and adjusting their strengths such that the kinematic boundary

condition and the Kutta condition are satisfied, the flow about the foil can be modeled.

A conceptual illustration of this is shown in Figure 2-2. The flow about the foil is

equivalent to the flow about a distribution of vorticity/circulation along the mean

camber line placed in a uniform stream.

Figure 2-2: Representation of ideal flow over mean camber line with potential flow
theory.

In three dimensional flow, the vorticity becomes a vector quantity w' and the total

vorticity in the fluid must be conserved, as required by the Helmholtz equation shown



in Equation 2.5 [42, p. 90].

= (p V)V + v V 2  (2.5)Dt W +(2.5)Dt

where - denotes the substantial derivative, V denotes the del or gradient operator,

V 2 denotes the Laplacian, and v is the kinematic viscosity. In representing a 3D lifting

surface, both the kimematic boundary condition and the conservation of vorticity

must be satisfied over the surface. In addition since the Helmholtz equation states

that a vortex filament may not begin or end in a fluid, vorticity leaving the lifting

the surface must leave as a trailing wake, carrying the vorticity off to infinity.

2.3 Overview of B-spline representation

Before discussing the functional design of shapes, a method of storing, manipulating,

and interrogating the shape of a lifting surface must be introduced. Ideally, the

method of shape representation would efficiently provide all of these aforementioned

functions with minimal memory and computational time requirements. For purposes

of shape representation, B-spline representation has been chosen, providing a compact

representation of the shape of the curves and surfaces to be functionally designed,

while still providing efficient methods to evaluate, interrogate, and manipulate these

shapes. Due to these desirable properties, B-spline geometry representation has grown

in popularity to the point where it has become an industry standard and is included on

most CAD, CAM, and FEM packages [11, 14, 15]. By choosing to follow the industry

standard, integration of the design method presented here with current CAD packages

is possible, making this research more applicably to industry.

The B-spline representation of a shape, the curve or surface is described in terms

of control vertices and blending (basis) functions. In the simplest and most intuitive

sense, a B-spline curve or surface can be considered an approximation to a polygon or

net of control vertices, respectively. For a more complete understanding of B-splines,

the B-spline basis functions and how they are used to evaluate a B-spline curve or



surface must first be explored. For a full description of B-spline representation, the

reader should consult [2, 11, 14, 20, 35].

2.3.1 B-spline basis functions

The B-spline basis functions are used as blending functions which determine the

influence which each control vertex has on a point of a curve or surface at a given

parametric value. Each basis function of a given order k is a piecewise polynomial of

degree k - 1 and is defined recursively with respect to a knot vector U according to

Equations 2.6-2.7 [20].

Bý (u) = 1 if ui < i+l (2.6)
S 0 otherwise

Bk(u) = - u Bf -(u) + i+k - B 1
1 (u) if k > 1. (2.7)

Ui+k-1 - Uji  Ui+k - Ui+1

The knots in the knot vector U represent values at which discontinuities may exist.

Each B-spline basis function is at least k - p - 1 times continuously differentiable at

the knots, where p is the knot multiplicity. By convention, the undefined ratio 0 is

taken to be zero thereby allowing the introduction of higher levels of discontinuities at

a parametric value by repeating internal knot values. Several B-spline basis functions

of varying orders are illustrated in Figures 2-3a-d. Note that the sum of all of the

basis functions defined by a knot vector is unity and each individual basis function is

non-negative for all values of u. From this observation, the B-spline basis functions

can be considered to form a partition of unity.

2.3.2 B-spline curves

When the B-spline basis functions are used as blending functions with a polygon

of control vertices, a B-spline curve can be formed. The influence of an individual

control vertex Pi at a particular parametric value u along the curve is determined

by the value of the control vertex's corresponding basis function Bk(u). When the



(a) U = {0 0 0.333 0.6681 1}, k = 2 (b) U = {0 0 0 0.5 1 1}, k = 3

(c) U = {0 0 0 0 1 1 1}, k = 4 (d) U = {0 0 0 0 0.3 0.4 0.5 1 1 1 1},
k=4

Figure 2-3: Examples of several B-spline basis functions with different orders and
knot vectors.



influences of all of the control vertices are combined, a point on the curve can be

evaluated. Mathematically, this is written as

m-1

1P(U)= r 1iBi(u), (2.8)
i=O

where m is the number of control vertices. Therefore, a B-spline curve is defined

by m control vertices (defining a control polygon) and the corresponding m B-spline

basis functions. The basis functions are of order k and are evaluated with respect to

a knot vector. For the open B-spline curves considered in this thesis, each knot vector

contains m + k knots. Inheriting the continuity properties of the basis functions, a

B-spline curve overall is at least Ck- p - 1 continuous, where p is the knot multiplicity.

In between knot values, however, the curve is C"O continuous. Examples of B-spline

curves defined in terms of the basis functions plotted in Figure 2-3a-d are shown in

figures Figure 2-4a-d, respectively.

2.3.3 B-spline surfaces

A B-spline surface is a logical extension of a B-spline curve to a higher dimension.

One can visualize a B-spline surface as the surface swept out by dragging a B-spline

curve through space such that the paths followed by each of the control vertices are

themselves B-spline curves. The surface S(u, v) is formally defined in Equation 2.9

by using a net of m x n control vertices •ij and the basis functions B (u) and B (v).

rn-ln-1

S(u,v) = SijS B(u)B~(v) (2.9)
i=o j=o

The basis functions are evaluated by the same recursive definition used for B-spline

curves given in Equations 2.6-2.7 with each parametric direction assigned its own knot

vector ({u0 ul ... um+k-1} and {vo viv ... vun+1-1}). Similar to the curve's continuity

properties, a B-spline surface will be at least Ck- p i-1 and Cl- P2-1 continuous in the

u and v directions, respectively, where pi and p2 are the knot multiplicities in the u

and v knot vectors. An example of a B-spline surface and its control net are shown



(a) k = 2 (b) k = 3

..................... ........... ................... ".....

(c) k = 4 (d) k = 4

Figure 2-4: Examples of several B-spline curves of different orders and knot vectors.
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Figure 2-5: Example of a B-spline surface control net and the resulting surface.

in Figure 2-5. In the control net is translated for clarity.

2.3.4 Derivatives of B-splines

In order to facilitate functional design, the chosen shape representation must be able

to provide ways of interrogate properties of the shape, such as evaluation of points at

particular parameter values, curve/surface tangent(s), surface normals, and curvature.

By using B-spline representation, derivatives of curves and surfaces can readily by

evaluated by taking the derivative of the basis functions as shown in Equation 2.10

representing the derivative of a B-spline curve.

m-1

P(u) = E 1iB• (u) (2.10)
i=0

The first order derivative of the B-spline basis functions Bik(u) is a combination of

two lower order B-spline basis functions Bik-(u) and Ban+ 1 (u) as follows [2, 20, 35]:

dBk (u) B-(u) B 1'i+ (u)=-(k-B() = +(2.11)
du Ui+k-1 - Ui Ui+k -k Ui+1

By repeatedly applying Equation 2.11, any order derivative can be evaluated allowing

the direct evaluation of tangent planes, curvature, and normals at any point on a curve

or surface.



2.3.5 Efficient implementation of B-spline representation

As was previously stated, it is desirable to be able to represent the shapes being

designed with minimal computational and memory expense. The B-spline represen-

tation of geometries has been found through experience to provide sufficient shape

representation flexibility with a relatively low number of control vertices for a wide

range of applications [14]. Since the memory requirements for storage of the rep-

resentation are directly proportional to the number of control vertices used in the

representation (O(m) for curves or O(m x n) for surfaces), a complete representation

of a shape can be maintained with minimum overhead.

The process of evaluating and interrogating a B-spline geometry can also be per-

formed with relatively little memory and computational requirements. First note

that due to the local support of the basis functions, at most only k functions will be

non-zero at any given parameter value u for functions of order k. Therefore, only k

basis functions need to be evaluated. Furthermore, the recursive definition of the ba-

sis functions and their derivatives can readily be implemented into a memoized table.

Memoization involves storing the answers to common subproblems of a larger prob-

lem so the answers can simply be looked up when they are encountered again [10].

By using memoization when evaluating the B-spline basis functions, the evaluation

of each lower order/derivative basis function occurs only once, at which time it is

stored in a table. For any subsequent computation involving that function, the value

is simply looked up from the table rather than recomputed. The end result is that all

of the basis functions can be evaluated in O(k2 ) time. Furthermore, any derivative

of the basis functions can also be efficiently evaluated in the same manner. Since

the basis functions are differentiable at most k - 1 times, an algorithm to evaluate

all derivatives of the B-spline basis functions can be executed in at most O(k3 ) time,

requiring O(k3 ) memory. The end result is that any point on a B-spline shape can be

interrogated in time asymptotically bounded by the cube of the order of the B-spline

functions being used. The number of control vertices, representing degrees of freedom

to represent shape, affect the storage requirements and not the computational time re-



Figure 2-6: Insertion of a knot into a B-spline curve increases the degrees of freedom
of the geometry without changing the shape.

quired to interrogate the shape at some particular value(s). The memoized algorithm

used for the evaluation of the B-spline basis functions is given as Algorithm 1 [34].

2.3.6 Knot insertion: addition of degrees of freedom

Besides providing an efficient and compact form for representing a shape, the use

of B-spline geometries also allows the addition of degrees of freedom to a geometry

without inadvertently altering its shape. This can be accomplished by inserting a

knot into the knot vector which introduces another control vertex to a curve's control

polygon (or a row/column of control vertices in the case of a surface) [2, 20]. With

the insertion of each new knot, the positions of the control vertices, along with any

new control vertex, are recomputed so as to represent the original geometry exactly,

as in Figure 2-6. In fact, since only at most k basis functions are affected by the

value of any knot, the position of only the control vertices whose corresponding basis

functions were affected by the new knot must be recomputed. With the ability to

efficiently introduce new degrees of freedom, B-spline representation becomes an ideal

choice for functional design since a shape with few degrees of freedom can be used

initially and knots inserted where additional freedom is needed to satisfy the physical

constraint as the shape converges to a solution. Knot insertion is documented as



.3Bk

Algorithm 1 Calculate ij for 0 < i < m.

Require: k, order of basis functions; d, order of derivative; m, number of basis func-
tions to be calculated; U, knot vector of length k + m containing non-decreasing
elements; u, value at which functions are to be evaluated.

Ensure: B is an array of length m containing the desired derivatives of the B-spline
basis functions of order k evaluated at parameter value u with respect to knot
vector U.
{Find the index of the non-zero, first order basis function.}

1: i +- 0

2: while u > Ui do
3: i -i+ 1
4: i--- i - 1

{Initialize the first column of the memoized table.}
5: To,o +- 1 {Value of the ith (only non-zero) first order basis function.}
6: for r = 1 to d do
7: Tr,o -- 0 {All derivatives of 1st order function are zero.}

{Fill in first row of memoized table.}
8: for c = 1 to k - 1 do
9: i+-i-1

10: for r = 0 to c - 1 do

1: W0,( +r )  Ui+r+c-Ui+r 0,(E +r-1) U+r+c+i+ i+r+l -2 +r
{Fill in higher order derivatives. (remaining rows)}

12: for j = 1 to d do
13: i +- i + k - 1
14: for c =1 to k - 1 do
15: i +- i - 1
16: for r = 0 to c- 1 do
17: T 0, c(C+ + r,

1S~: (u-Ui+r)To,--+r-"- +T j-1,- +r-1

Ui+r+c-Ui+r
(Ui+r+c-u)T +r 1, ,-T :+r

19:
gi+r+c+1 -Ui+r+l

{Place basis functions into array to be returned}
20: for r = 0 to m - 1 do
21: if r < i or r > i + k- 1 then
22: Br 0
23: else
24: Br +- Td, k )+r-i



Algorithm 2 below [2].

Algorithm 2 Knot insertion into B-spline curve.

Require: k, order of curve; m, number of control vertices; U, knot vector of length
k + m containing non-decreasing elements; u*, knot to be inserted; P, array of
control vertices.

Ensure: i*(u) = - (u), B-spline curve P*(u) is defined by m* control vertices P*
and knot vector U*.

1: loc +- 0

2: while u* > Uto, do {Find location of knot in knot vector.}
3: loc +- loc + 1
4: U*10o +- U 10o {Copy beginning knots}
5: U*oc = u* {Insert new knot.}
6: for i = loc to m + k do
7: U*i+ +- Ui {Copy remaining knots.}
8: for i = 0 to m + 1 do {Compute new vertices.}
9: if i < loc - k then {Vertex unchanged.}

10: Pf + Pi

11: else if i > loc - k + 1 and i < loc then {Compute new vertex.}
12: _U*-Ui

Ui+k--1-Ui

13: 5 +- aP i + (1 - a)Pi-1

14: else {Vertex unchanged}
15: Pj+I +- Pi

16: m* = m

2.3.7 B-spline surface fitting of grid points

The functional design of a foil mean camber line or surface involves finding the shape

of a foil satisfying a set of physical constraints. Before introducing how one includes

these physical constraints into a design problem, however, a brief overview of fitting

a B-spline surface to a grid of data will provide an introduction to the traditional

method of fitting a B-spline (through interpolation or approximation) to a set a data.

A set of grid points (Qij : i = 0,-.-, m, - 1; j = 0,-.-, n,- 1} is initially

given. The (position) approximation of the point set using a B-spline surface in form

of Equation 2.9 in the least-squares sense (called B-spline least-squares fitting [14])

involves finding the control vertices {Si: i =0, , m - 1; j = 0,, n - 1} such

that, with predetermined orders k, I and knot vectors U and V, the following total



position approximation error Ep is minimized:

mp-1 nP-1

Eq= E E [ (ui, v) - 4iPjp ]= min. (2.12)
ip=O jp=O

where uip and vjp are the parametric coordinates assigned to each grid point.

That is to say,

m-i np-1 m-1 n-1

EQ = j jj fýisi(ui),a(V) - = min. (2.13)
ip=O jp=O i=O j=0

This minimization problem can be converted into the following linear equation

system(s):

Q 0 ( = 0,1,.-,m- 1; = 0,1,...,n- 1) (2.14)

That is to say:

m,-1 np-1 m-1 n-1 mp-1 np-1

_ C aipjjp _ • aiipjjpiqjq -= C aipajpipjp  (2.15)
ip=O jp=O i=0 j=0 ip=O jp=O

(i= 0,1,--.,m-1; j= 0 1,--.,n-1)

where, aii, = Bin(uip) and ijjP = Bjn(vjp).

Equation 2.15 is actually a vector-valued banded matrix equation (i.e., many

linear equation systems) which can be solved row- and column-wise or converted into

one vector-value banded linear equation system by arranging the control mesh into a

control vertex array. In both approaches the equation system can be efficiently solved

by using the fact that the coordinates X, Y, and Z of S(u, v) and Q2j are independent

of each other permitting the reduction of the larger (three times as large in row and

column) system to three smaller linear equation systems with a common coefficient

matrix.

The order (k, 1) and number of the control vertices (m, n) of the surface S(u, v) is

usually specified by the user. The bicubic case (i.e., k = 1 = 4) is the most frequently

used, since this is the lowest degree which can provide curvature continuous surfaces



demanded by most applications.

The knot vectors U and V are usually automatically computed by the approxi-

mation method. The most frequently used approach for least-squares fitting is the

(quasi-)uniform knots [14] which are normalized as follows:

1 2 m-k
U = 0, 0, 0, 1,1,. ,1 (2.16)m - k + 1'm - k + 1 7n - k + 1'%.

k k

1 2 n-1
1 1

There are two frequently used approaches to choose the parametric values { (ui,, vji,):

ip = 0, 1, .. , mp- 1; jp = 0, 1,.. ---, n- 1} corresponding to the given grid points.

One is the uniform approach. In which case, the parametric points are uniformly

distributed in the parametric space. They are chosen as follows:

u i,= P (i = 0,1,1 . - 1); v - p (ip = 0,1 --. ,n,- 1)
mp -1 np -1

(2.18)

Another usually better approach is to choose the parametric values by using the

average chord-lengths. For example,

Si -np- IQkj - QkEj
k= p=0 Qkp - Qk-,jp (ip > 0) (2.19)

10 = O; UiI = #-
Ek=1 E=0o IQkj, - Qk-ljpl

For interpolation of the data points, the number of degrees of freedom in the B-

spline surface must be equal to the number of equations. If m = mp and n = np, an

exact solution can be found and the resulting B-spline surface will interpolate the set

of data points. Mathematically, for interpolation, the objective function representing

the error in Equation 2.13 becomes:

mp-1 1p-1 m-1 np- 1 2
EQ = S -I ijB (ui B(vjp) - ,j = 0 (2.20)

ip=O jp=O i=O j=O

The technique presented here is used to fit a B-spline surface to a set of data.



Fitting a curve is the simpler case where n, = 1, reducing the complexity of the

process but the same fundamental approach still holds. In many design schemes, the

design process starts with a set a data roughly representing the desired shape and

then fitting a B-spline curve or surface to it. To achieve the final shape, the control

vertices of the B-spline geometry are tweaked using performance related criteria.

2.4 Design process of lifting surfaces

The design of lifting surfaces can be divided into two general methods: optimiza-

tion and inverse design. The first method, optimization, involves the assumption of

an initial shape which then is analyzed, by using either computational analysis or

experimental techniques, and iteratively adjusted until the observed loading is opti-

mum. The inverse design method, on the other hand, consists of initially prescribing

a desired loading over the lifting shape and then modifying the shape to achieve this

loading without violating any physical constraints. This method involves prescribing

the loading (pressure distribution) over the planform of a wing, foil, or propeller blade

from the start. Since the initial shape of the lifting surface is a guess (usually based

upon past experience), the flow generating the desired pressure distribution may not

be physically possible. The design process then becomes a problem of finding the

shape which carries this lift distribution without violating the boundary conditions.

Of the two methods, typically the inverse method of design requires less comput-

ing time [13, 19] and is, therefore, more desirable. To introduce the inverse design

method, the Kutta-Joukowski theorem will first be presented, giving an equation for

the computation of the lift force experienced by a single vortex in a flow. The the-

orem will then be expanded to represent a series a vortices from which a qualitative

explanation of how a mean camber lifting surface can be found through the inverse

design method.

The Kutta-Joukowski theorem relates the lift L experienced by a vortex to its



strength F, the free stream velocity of the flow Vo, and the fluid density p

L = pVoF. (2.21)

The lift acts perpendicular to the direction of the flow had the vortex not been

present [3, 25].

Through potential flow theory, it is possible to represent the flow about a lifting

body by replacing the body with a distribution of vorticity. In conjunction with the

Kutta-Joukowski theorem, it then becomes possible to relate the lift generated by

a lifting surface to a corresponding distribution of vorticity over the surface which

models the fluid flow. The total vorticity, or circulation, about the lifting surface can

be inserted directly into the Kutta-Joukowski theorem to obtain a calculation of the

lift acting on the surface.

Instead of analyzing the lifting surface and its surrounding flow for the amount of

lift produced, the inverse design method goes the other way. For the desired distri-

bution of lift over a given planform, the necessary vorticity distribution is computed

and the design method searches for the shape which the mean camber line or surface

must have in order to satisfy both the kinematic boundary condition and the Kutta

condition. To accomplish this, potential flow theory is used to calculate the velocity

over the initial shape from the free stream velocity and the prescribed distribution

of vorticity. The flow is then checked to see if it satisfies the kinematic boundary

condition. Most likely there will be some degree of violation and the shape is altered

in such a way as to better satisfy this physical constraint. The Kutta condition can

be met from the start if the prescribed vorticity vanishes at the sharp trailing edge of

the foil. The process continues iteratively until the physical constraints are satisfied

and a shape is found which will carry the prescribed loading.



2.5 Literature review

Functional design of shapes is not a new concept to the CAD/CAGD and engineering

communities. The method of geometric representation and how to apply the physical

constraints to the design process, however, has been evolving over the years. The

inverse design method described is one example of functional design which has been

used successfully for the design of airfoil shapes and mean camber surfaces of wings

and propeller blades. In this section, a survey of some of the techniques developed

by other researchers in the field will be introduced. First, two different methods of

airfoil design will be presented. Next, a novel method of geometric representation

and functional design involving the description of a propeller's geometry in terms of

partial differential equations will be discussed. Finally, the design of propeller blades

using B-spline geometry will be explained from which the motivation of this work will

become apparent.

The first example of airfoil design comes from Giles and Drela [19], which actually

uses a mixed inverse design method for arriving at a new airfoil shape. Part of the

geometry of a foil is initially prescribed while the pressure distribution is specified

along the undefined section (which is most of the upper surface). Through a discrete

volume formulation of the Euler equations governing the flow, the flow is analyzed and

the shape of the undefined suction edge is found such that it satisfies the kinematic

boundary condition as well as a condition of geometric continuity along the top surface

of the airfoil.

The next example of airfoil design, from Eppler [13], uses a panel method to solve

for the flow. As previously described, an inviscid, irrotational flow can be modeled

with a distribution of singularities outside of the fluid domain. This method involves

modeling the airfoil as a polygon of line segments which each have an associated

dipole. The strengths of the dipoles are specified according to the desired loading.

Next, a Newton method is used to adjust the shape of the foil, minimizing the error in

satisfying the kinematic boundary condition. When the solution converges, an airfoil

shape which will carry the prescribed load is found.



More recently, a Partial Differential Equation (PDE) method has been developed

by Bloor, Wilson and their students in which the geometry of the functional shape is

defined terms of a PDE with prescribed geometric boundary conditions [7, 6, 5, 12, 23].

A surface is the solution of an elliptic or biharmonic partial differential equation with

suitably chosen boundary conditions. Other examples include the methods introduced

in [26, 27, 40]. As an example, for the functional design of a propeller blade, an initial

blade shape is first assumed in terms of a PDE geometry. Next, the shape is evaluated

and its performance analyzed through the use of a panel method. From the analysis,

form parameters in the PDE description of the geometry are altered to optimize the

blade's geometry. Despite the fact that the blade shape is iteratively analyzed using

a panel method, the design process is expected to be fast since the cost of evaluation

of the PDE geometry is negligible compared to the computational cost of the analysis

and the number of parameters (degrees of freedom) in the PDE can be kept to a

minimum while still providing sufficient flexibility to represent complex shapes [12].

An overview of the methods for the systematic variations of ship hull form charac-

teristics and for their evaluation from a hydrodynamic point of view is given in [26].

The form parameters used in [26] include local parameters (data points and deriva-

tives at these points), regional form parameters (characteristics of forebody, midbody,

afterbody, etc.), and global form parameters (displacement, centroids, principal di-

mensions, etc.). The form variation problems are converted to nonlinear optimization

problems with geometric and physical constraints such as area constraints [27] and

volume constraints [40].

A very popular method of shape representation involves the use of B-spline func-

tions. With the standardization of B-splines to represent shapes in CAD/CAM sys-

tems and to exchange such shapes between systems, designers have started to incor-

porate B-spline geometries directly into their functional design methods. An example

of this is the method developed by Kerwin et al. [22] in which B-spline surfaces are

incorporated directly into the design process of marine propulsors. In their method,

the mean camber surface of a propulsor blade is described in terms of a B-spline

surface. The control vertices represent the degrees of freedom for adjusting the shape



which are adjusted so as to satisfy the kinematic boundary condition over the surface.

Since this method of functional design is the basis and motivation behind this thesis,

a more detailed explanation of the method is warranted.

Kerwin et al.'s design process [22] begins by assuming an initial propulsor ge-

ometry, which may be derived from experience or from a former propulsor shape.

Next, a desired loading is prescribed. With an initial shape and target loading, a

design loop is entered through which the shape is modified. The first step of the

loop is the evaluation of the velocity field of the ship's wake (in which the propulsor

will operate) through the use of an axisymmetric, Reynolds Averaged Navier-Stokes

analysis program. From this velocity field, along with additional velocity induced by

the prescribed loading distribution, the total velocity at the mean camber surface is

evaluated. Since the velocity at these points may not satisfy the kinematic boundary

condition, the magnitude of the violation of this physical constraint must be evalu-

ated over the surface. If the violation is greater than a maximum allowable tolerance,

the control vertices of the geometry are iteratively adjusted (one at a time) by the

computer according to a Newton-Rhapson scheme to find the shape which minimizes

the normal component of the total fluid velocity at a grid of points (in a least squares

sense) [22]. Since the geometry of the blade has changed, the process is repeated to

find the new velocity field and the kinematic boundary condition is checked again.

When the fluid flux through the surface is found to be below an allowable threshold,

the solution is considered to have converged. The final shape represents the mean

camber surface of a propulsor producing the desired thrust. This design process is

illustrated in Figure 2-7.



Figure 2-7: Design loop for the functional design of propeller blades, as described by
Kerwin et al.[22].



Chapter 3

Shape modification through

approximation of a grid of velocity

vectors

The first approach to functional surface design involves examining the "Modify shape"

step in the propulsor design loop shown in Figure 2-7. This step begins with an initial

blade geometry and a velocity field evaluated at a grid of points on the surface of the

blade. To arrive at this step, the convergence check had to indicate that the current

geometry violates the kinematic boundary condition beyond an allowable threshold.

This section presents a method to improve the shape of the initial blade to better

satisfy the kinematic boundary condition based upon the approximation of a grid of

velocity vectors and the current blade geometry. Several examples are then given

utilizing this shape modification approach in the design process developed by Kerwin

et al. [22]. A summary of the work presented in this chapter has been published in

the Computer Aided Design Journal by Ye, Jackson, and Patrikalakis [44].



3.1 Formulation of shape modification

3.1.1 Statement of problem

Let us first consider the kinematic boundary condition given in Equation 2.4 on the

propeller blade's mean camber surface. There are two possible approaches to solving

for a surface producing a desired distribution of lift while satisfying this physical

constraint. The first method satisfies the boundary condition at every point of the

desired surface whereas the other is concerned with satisfying it at only a discrete set

of points on the surface. The former way involves functional variation which is not

convenient due to its high complexity. The latter approach, however, requires that

the boundary condition be satisfied on a grid of points, allowing conventional fitting

techniques (as described in Section 2.3.7) to be used. In CAD and CAGD, the latter

way is generally preferred. For this reason, this thesis deals only with the discretized

form of the physical constraints. The problem of modifying the design of a propeller

blade can thus be formulated as follows:

Given a grid of points {(fi,j : ip = 0, -- , mp - 1; jp = 0, -.- , n, - 1} sampled

from the original surface as well as the velocity vectors {Vj,,} at these grid points

(see Figure 3-1), find a new surface S(u, v) which satisfies (in the least-squares sense)

the kinematic boundary condition (Equation 2.4) at these grid points.

Mathematically, the discretized form of the shape modification problem can be

represented as follows:

S(ui,, ~~ ) = Qi,7, (i, = 0,--..,mp - 1;j, = 0,... n, - 1) (3.1)

(u,,) , = 0 (i O,= .. , mp - 1;jp = O,..,np- 1) (3.2)

where fu(ui,, v,),=)
ISe(up, vjP) x S9 (ui,, vjp)l

where (uip, vjp) are the parametric values corresponding to the point Q(pjp and ~,P,

is the flow velocity at the sampled point on the initial surface, and subscripts u, v

denote partial derivatives. Notice that Equation 3.1 implies simply the fitting of a
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Figure 3-1: The grid points sampled over a blade surface with the corresponding flow
velocity vectors shown at these points.

surface to a grid of points, as described in Section 2.3.7. Equation 3.2 introduces the

physics, imposing the kinematic boundary condition on the solution. Taken together,

Equation System 3.1-3.2 is a non-linear vector equation system. This can be clearly

seen if we assume the target surface S to be in integral B-spline form. In this case,

the surface's normal i~ in Equation 3.2 is nonlinearly related to the positions of the

control vertices of S, yielding the nonlinear equation system:

[ (ui,, vj,) x (ui, vj,) ].Vij = 0 (ip = 0,... -m -1;j = O,...,n,-1) (3.3)

Solving a non-linear equation system is generally very time-consuming. Therefore,

non-linear equation systems are often solved by local methods based on linearization

which introduces approximation error and makes the solution imprecise. However,

the non-linear Equation System 3.1-3.3 can be converted to a linear equation system

·L.
4~

C4,

N41



by introducing auxiliary variables. The solution of this linear system is a subset of

the solution set of the initial non-linear equation system. This conversion has the

advantages that it reduces the complexity of the problem, saves computation time,

and increases the precision and reliability of the solution.

3.1.2 Conversion of hydrodynamic constraints to linear form

Equations 3.1 and 3.3 can be converted to the following constraints by assuming that

a grid of desirable surface normal vectors ii,,j, can be determine a priori:

Find a surface S(u, v), such that S(u, v) fits the given position vectors {QjiPj,

(ip = 0, ... mP, - 1; j, = 0, -.. , n - 1)} of a grid of points and prescribed normal

vectors {ippj " : (ip = 0, p, - 1; jp = 0, ... , n, - 1)} which are perpendicular to the

corresponding velocity vectors {Vi,jP : (ip = 0, mp, - 1; j, = 0,.. -, n, - 1)} at the

grid points (see Figure 3-4).

Mathematically, the above constraints can be represented as follows:

v(uip, vj) = Qi,•, (3.4)

(ip = 0,1..-,mp- 1; jp = O,--.,nP- 1)
v Vj ) (Uip II Vihi (3.5)

(i, = 0,---,mp-1; j,= 0,-.-,np- 1)

where, fipjp is the desired surface normal vector satisfying the kinematic boundary

condition at the grid point Qi•jP.

Equation System 3.4-3.5 is again a non-linear vector equation system. Fortunately,

Equation 3.5 can be converted to two linear equations. To see this, as shown in

Figure 3-2a, the condition that the cross product of two vectors A and B is parallel

to a third vector C requires that A and B lie in the plane normal to C. Therefore, the

inner products of A with C and B with C must be zero. Hence, Equation System 3.4-

3.5 is equivalent to the following linear equation system:

(ui,, ) = (i= 0, (i = ... , mp - 1; jp = 0,...,np - 1) (3.6)



S,(ui, v, jp)' i jp = 0 (ip = 0,..., mp - 1; jp = 0,..., np - 1) (3.7)

S,(Uip, p) nip•p = 0 (ip =0,..., mp - 1; jp = 0,..., np- 1) (3.8)

Notice that the linear equation system 3.6-3.8 is not equivalent to the non-linear

equation system 3.1-3.3. The number of equations in the linear equation system at

each grid point of the surface increases from four in the original non-linear equation

system to five. Selection of niipjp represents one degree of freedom in the non-linear

equation system. By imposing a constraint on h(ui,, vjp) of the surface i(u, v), a

subset of all the possible solutions of the non-linear equation system can be found

from the linear equation system.

(a) (b)

Figure 3-2: (a): Transform the non-linear vector parallelization problem to the linear
zero inner product problem: A x B 1I C is equivalent to the requirement that A.
C = B . C = 0; (b): The normal vector iipjp of the surface at Q~ij, is taken to
be the projection of the normal hi* of the initial surface S*(u, v) into the plane
perpendicular to the velocity vector Vipjp.

3.1.3 Specification of the target normal vectors

To solve the linear equation system 3.6-3.8, the normal vectors nipp (ip = 0,... , m -

1, jp = 0, ... , n, - 1) at the given grid points Qipjp must be available. They may

be specified by the user or determined automatically by using the method presented

here. With the belief that the initial design is a good approximation to the final

design after modifying the shape, the following steps can be used to determine these

normal vectors:



Determine the desired unit normal vector i,,ip of the new surface at Qipjp such

that ipjp, is the normalized projection of the original surface normal i*p into the

plane perpendicular to the velocity vector ViPj, (see Figure 3-2b). This is equivalent

to determining the unit normal to the plane defined by the velocity vector Vi,j, and a
-4

vector perpendicular to initial normal and velocity vector *Qj, X V4jP :

Vj, x (i, x ', ) ,)•"• I•,j, X (ii p X ×ioP)

Recognizing the above equation as the vector triple product, the equation can be sim-

plified as a ratio of scalar products:

(Vipip * VZOPNOP - (Vipjip * 1d )pi
ipp =- (3.9)

Figure 3-3 shows the unit normal vectors of the initial blade surface at the given

grid points corresponding to the velocity field in Figure 3-1 . Figure 3-4 shows the de-

sired normal vectors for the modified at the grid points as computed by Equation 3.9.

3.2 B-spline surface fitting with normal vector con-

straints

3.2.1 B-spline surface approximation vs. interpolation

The linear equation system 3.6 to 3.8 for a B-spline surface S(u, v) can be solved in

the sense of either strict interpolation or approximation. Although there are many

applications which require interpolation [14], for this problem we choose the approx-

imation (least-squares) fitting method based on the following considerations:

1. In engineering applications, frequently the measured/computed data themselves

are only approximations;



Figure 3-3: The unit normal vectors of the initial blade surface {ijpj ip

0, ... , mp - 1;jp = 0, .. , n,p- 1} at the grid points {Qipj,: ip = 0,-.., mp- 1;j, =
0, ... , n, - 1}. The surface is generated by least-squares fitting of the grid points in
Figure 3-1.

2. Practical experience has shown that B-spline approximation provides more rea-

sonable and fair results than interpolation;

3. There exists a practical difficulty in solving the linear equation system 3.6-3.8

by interpolation. The difficulty becomes clear when we analyze the number of

equations in the system. Equation 3.6 has mpnp vector equations, i.e., 3mpnp

equations. Equations 3.7 and 3.8 each provide mpn, equations. So the total

number of equations is 5mpnp. If we assume that the number of the control

vertices of the B-spline surface S is mn, then we have 3mn unknowns (in three

dimensions x, y, z). To make the equation system balanced and therefore achieve



Figure 3-4: The prescribed unit normal vectors of the blade surface at the grid points
in Figure 3-1. They are generated by the method shown in Figure 3-2(b).

interpolation, the number of equations and unknowns should be the same, i.e.,

3mn = 5mpnp (3.10)

Equation 3.10 is not generally solvable for arbitrary integer values of m, n, mp,

and np. By choosing to use least squares fitting, we can approximate a new

blade shape even when Equation 3.10 is not satisfied.

3.2.2 B-spline surface least squares fitting with normal vec-

tor constraints

Similar to the B-spline least squares solution of grid points (see Section 2.3.7), the

least-squares solution of the equation system 3.6-3.8 can be mathematically formu-



lated as the problem of minimizing an error function E defined as the weighted com-

bination of the errors in approximating the position data and the normal constraints:

E = E- + wE- = min. (3.11)

EQ is the position approximation error previously defined by 2.13 for the regular

approximation of a grid of data. Ef is the normal vector approximation error ac-

counting for the physical constraints. The influence between the two is determined

by the weighting factor w.

The normal approximation error Ef is defined as follows:

mp-1 np-1

= E { (uip, vjp) fyj~]2  [•(" Uip, vjp)
ip=O jp=O
mp-1 np-I m-1 n-1 2 m-1 n-1 2

Saiipjjp (Sij fiipjp) + E aiip ajp
ip=o jp=O i=o j=0 i=0 j=o

where a' = B k (ui) and a-·j = Bl(vj).

Similar to Equation 2.13, the minimization problem posed by Equation 3.11 can

be converted to the following linear equation system:

OE =0 (i= 0, 1,..., m - 1; j = 0,1,..., n - 1) (3.12)

That is to say,

mP-1 np-1 m-1 n-1 (

ip=O jp=O i=O j=O

P (d d + a-. I  -I -IA 1
waip ajujpaii ajjp + Uip 33jpaiip), a pj, " Sij)nipJ

mp-1 np-1

= a aipajjp, ,ipp ( = 0,1,-..,m-1; - = 0,1,.-.-,n-1) (3.13)
ip=o jp=O

The weight w has a great affect on the shape of the final surface S(u, v). Letting

w = 0 results in only position approximation, as was presented in Section 2.3.7. By



increasing w, the prescribed normal vectors for the new surface at the grid points

contribute more to Equation 3.11, and therefore contribute more to the shape of

the surface. The weight w should be chosen carefully. The decision about how

much weight to apply to the prescribed normal vectors is entirely data dependent.

With greater weight, the deviation from the original design can significantly increase.

Depending upon the application, the designer must decide how much of the shape

will be dictated by the prescribed normals.

Notice that in Equation 3.13, because of the presence of the term ajP, -. Sij, the

x, y, and z components of the control vertices can not be treated independently as

in Equation 2.15, a unique feature of the fitting process with normal constraints. In

matrix form, Equation 3.13 can be expressed as follows.

First, let the 3 x 3 submatrix M11 be defined as:

M = aiip adjjajjP I 3x3 +

ip=O jp=O

ip=o0 jp=0

where I3x3 is the 3 x 3 unit matrix.

With the definition of the submatrix M! in Equation 3.14, the linear Equation

System 3.13 can be rewritten more compactly as:

m-1 n-1 mp-1 n,-1

Z M-'Sij = m1 ani-jjP3jP (3.15)
i=O j=O ip=0 jp=O

(-t= 0,1,...,m-1; 3j= 0,1,..., n - 1)

The coefficient matrix of Equation 3.15 is a sparse matrix. In fact, it is banded.

The solvability of the equation system Equation 3.15, i.e., the non-singularity of

the coefficient matrix is not easy to prove theoretically. However, according to our

experience, if the number of the node points is chosen not to exceed the number of

the grid points given in both of the fi and 0 directions, i,e., m < mp and n < n,,

then the coefficient matrix is most likely full ranked and well-conditioned resulting in



a fair surface. When more node points are used ( m > mp or n > np), the additional

degrees of freedom may introduce oscillations in the surface. Considering that m < mp

and n < np are required in applications, we can conclude that the linear equation

system provides reliable solutions in practice. Due to the local support property of

the B-spline basis functions [14], the matrix is sparse. Therefore, to solve the linear

equation system efficiently we use algorithms specifically designed to take advantage

of the matrix's sparsity, solving the system quickly and efficiently [29, 18].

In some applications, some points are more important than others in terms of

approximation error. For example, in the functional design of blade surfaces, it is

sometimes desirable to maintain the new leading edge of the modified shape as close

as possible to the original (see Figure 3-6). In this case, additional weights should be

attached to the points representing the leading edge and the position approximation

error in Equation 2.13 should be defined as:

mp-1 np-1 m-1n-1 2
E(ý = EE 'ij , ,B(ui)(vj,)-- 1 = mrin. (3.16)

ip=O jp=O i=O j=O

where, wij > 0 is the weight attached to the point Qipjp. Generally, the greater the

weight attached to a point, the closer the new B-spline surface will be to that point.

Therefore, greater weights can be attached to the grid points which need to be closely

approximated.

3.3 Implementation of approximation method

This section presents some examples and discussion of the functional modification

of propeller blade surfaces. To facilitate testing of this functional design method,

we incorporated it with the propeller design program PBD described in Section 2.5

and [22]. The surfaces are displayed by PRAXITELES, a geometric modeling and

interrogation system developed in the MIT Design Laboratory [1].

To implement the functional design process described in this thesis, the shape

modification step in Figure 2-7 was replaced. In the original version of PBD used



for this thesis, the modification of the blade shape involved successively adjusting

the position of each control vertex of the B-spline net in order to minimize the error

in satisfying Equation 2.4. After several iterations of adjusting the control vertices,

the velocities at the node points on the new blade surface were computed and the

satisfaction of the kinematic boundary condition checked. The design loop given

in Figure 2-7 was then repeated until the shape finally converges (i.e. no further

improvement in satisfying Equation 2.4 is required). In order to test our method, the

iterative process of moving individual control vertices of the B-spline net was replaced

with the functional surface fitting method described in this section to modify the blade

shape. With this method, a new B-spline net is found by solving one system of linear

equations in one step rather than sequentially adjusting the control vertices of the

initial surface individually.

The first test of this functional design method consists of fitting surfaces to the

grid of points on the initial blade surface (Figure 3-6) for which PBD has computed

the corresponding flow velocities (Figure 3-1) for different weighting schemes. For

this case, the initial blade is approximately 0.8 m high with a chord length of 0.3

m. The maximum velocity of the flow over the blade is 3.75 m/s. From the surface

approximating the grid points and the velocity vectors at these points, the prescribed

normal vectors are computed, as shown in Figure 3-4. The reduction in the error

associated with the physical constraint before and after shape modification can be

seen in Figure 3-5.

The errors associated with the new surfaces approximating the grid points and

velocity vectors are shown in Tables 3.1 and 3.2. The average and maximum errors

associated with approximating position (S(uI , vj)- Qif ) and the boundary condition

(SU ((u*, v ) x S(u*, vi)). -ViI) over all grid points are listed for increased weighting

w of the prescribed normals. The average and maximum angles (in degrees) between

the tangent plane of the functional surface and the velocity vector (Z(Ts(u*, vi), V/j))

are also given in the last column to provide a physical understanding of the effect of

minimizing the boundary condition error. It can be seen that as the weight on the

normal constraint on the surface increases, the error associated with the boundary



condition decreases at the cost of introducing more error in the approximation of the

grid. The effect of emphasizing some of the grid points more heavily than others is

evident by comparing the two tables. In Table 3.2, with the leading edge points more

heavily weighted, the errors associated with boundary condition are greater than in

Table 3.1, in which all of the grid points are equally weighted. This difference is due

to the increased emphasis on the accuracy of the approximation of the position of the

leading edge grid points, resulting in surfaces which are closer to the leading edge of

the initial surface.

Some of the results of the fittings are shown in Figures 3-7 to 3-10. By introducing

weight on the normal constraint, a functionally designed blade (Figure 3-7) is created

with greater camber than that of the original blade (Figure 3-6). Further weighting

increases the camber more (Figure 3-8). Upon comparison with the initial blade,

however, the leading edge appears to pull away from its initial position with increased

weighting of the normal. To maintain the leading edge as close as possible to the

leading edge of the initial blade, the position of the leading edge grid points are

weighted more heavily. The results of weighting the leading edge can be seen in

Figures 3-9 and 3-10, in which the displacements of the new leading edges from the

initial leading edge are significantly reduced. The normals from the functionally

designed blade in Figure 3-10 are illustrated in Figure 3-11, and are closer to the

prescribed normals (Figure 3-4) than are the normals of the initial blade (Figure 3-

3).

The second test of our fitting technique involves iterating the blade surfaces de-

signed by the new method with flow analysis by PBD until it converges. An initial

blade shape (Figure 3-12) is first analyzed by PBD producing a grid of points and

corresponding velocity vectors on the surface. The new method is then used to fit this

data with the prescribed normals weighted one and a half times the grid points and

the leading edge and tip points weighted ten times the other grid points. The result-

ing surface is used as input to PBD which in turn produces another grid of points and

velocity vectors. This process continues until no further significant improvement in

satisfying Equation 2.4 is expected. The functional surfaces during the first, second,



I
Figure 3-5: Reduction of angle between tangent plane of the blade surface and fluid
velocity at the surface after four iterations of the design process. The shading shows
the error in satisfying the kinematic boundary condition as measured in terms of this
angle in degrees.

and third iterations of this process are shown in Figures 3-13 to 3-15. The errors

associated with the blades in these figures are shown in Table 3.3. Notice that the

difference between the fitting errors of successive iterations decreases. When this dif-

ference is small enough to be considered negligible, the design process is stopped as

was the case between our third and fourth iteration.

As shown from the error data in Tables 3.1 and 3.2, a compromise must be made

between approximating the grid points and the prescribed normals. As the error in

the fitting of the normals decreases, the grid approximation error increases and vice

versa, depending upon the weighting of the normal constraints. Greater weighting

increases position error, moving the surface further away from where the prescribed

normals (dependent upon the flow velocity at these positions) are considered relevant.

Therefore, it is up to the designer to find the weights which produce the optimal results

for the application.

· IC C 1C



SvP) - . (SU(up, vP) X S,, ( vP)) V Z(T§(UipVjp)) Vipjp)

w Average Maximum Average Maximum Average Maximum
0.0 0.000189 0.000719 0.316499 1.401494 8.495245 23.902126
0.5 0.003810 0.011586 0.267714 1.304629 7.095615 20.240933
1.0 0.008635 0.023435 0.197120 1.233383 4.951475 19.045220
1.5 0.011889 0.029980 0.153630 1.199562 3.614010 18.553754
2.0 0.014109 0.033564 0.128116 1.162141 2.842993 17.954885
2.5 0.015822 0.035743 0.111388 1.128429 2.360101 17.523712
3.0 0.017270 0.037112 0.099107 1.084555 2.026850 16.868928
3.5 0.018556 0.039727 0.089406 1.081881 1.779790 16.916087
4.0 0.019724 0.044701 0.081488 1.080979 1.589116 16.901566
4.5 0.020796 0.049194 0.074968 1.074931 1.439891 16.804180
5.0 0.021785 0.053238 0.069656 1.062591 1.324160 16.605648

Table 3.1: Errors from functional surface fitting.

IS(ui,, v3,) - ipjPI I(Su(ui, vi,)) x S vUP)) . Vi,jI Z(Tg(U. V ipjp),
w Average Maximum Average Maximum Average Maximum

0.0 0.000189 0.000740 0.316394 1.401205 8.492818 23.919587
0.5 0.003381 0.011600 0.293909 1.302441 7.809112 20.165175
1.0 0.007363 0.024075 0.249149 1.225216 6.413096 18.914309
1.5 0.010750 0.032323 0.210755 1.186805 5.205370 18.349376
2.0 0.013603 0.037664 0.183556 1.149414 4.339277 17.751676
2.5 0.015947 0.041263 0.164151 1.117463 3.726943 17.347980
3.0 0.017889 0.043775 0.149082 1.072330 3.271409 16.732444
3.5 0.019533 0.045588 0.136639 1.076268 2.915895 16.825698
4.0 0.020957 0.047599 0.126044 1.075508 2.629034 16.813471
4.5 0.022214 0.052566 0.116937 1.148366 2.393004 18.477771
5.0 0.023338 0.057075 0.109132 1.275384 2.197280 20.609227

Table 3.2: Errors from functional surface fitting with points on the leading edge
weighted ten times as much as the other grid points.

IS(ui, vip) - QO,3,I (S9(Uip~,v3 ) X 9V (, Zp)). Z(T-U. v), ViPjp)

w Average Maximum Average Maximum Average Maximum
Input Blade 0.217072 0.453817 6.809438 18.122740
Iteration 1 0.008883 0.033422 0.063430 0.375692 1.654174 7.213728
Iteration 2 0.003073 0.009160 0.042570 0.344234 1.058455 6.588828
Iteration 3 0.001782 0.005836 0.037425 0.323409 0.916337 6.180788
Iteration 4 0.001408 0.005564 0.036323 0.302023 0.885490 5.767881

Table 3.3: Errors associated with the functional surface design of a propeller blade
at different stages in the hydrodynamic analysis and surface fitting process.
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Figure 3-6: The initial blade shape used as input into the propeller analysis program.

Figure 3-7: The requirement of the hydrodynamic boundary condition introduces

more camber into the blade when the data is functionally fitted (w = 1.5 for the

normal vectors).



Figure 3-8: Increasing the weight of the prescribed normals further increases the
camber of the blade (w = 2.5 for the normal vectors).

Figure 3-9: Applying increased weight (10 times) to the position data at the leading
edge approximates the initial leading edge more closely (w = 1.5 for the normal
vectors).



Figure 3-10: Increased prescribed normal weight (w = 2.5 for the normal vectors)
with the leading edge positions weighted (10 times) more heavily than the other grid
points.



Figure 3-11: The field of normal vectors of the functional surface at the parametric
locations (ui~, vjp). For this fitting, the normal vectors were weighed 2.5 times the
effect of the interior position data and the leading edge position data were weighed
10 times more than position data at the interior of the blade.



Figure 3-12: Initial blade shape to be analyzed in computer hydrodynamic simulation
and improved through a series of shape modifying iterations.

Figure 3-13: The functionally improved blade surface after one modification iteration,
fitted to the output of the hydrodynamic analysis of the blade surface shown in
Figure 3-12.



Figure 3-14: The functionally improved blade surface after two modification itera-
tions, fitted to the output of the hydrodynamic analysis of the blade surface shown
in Figure 3-13.

Figure 3-15: The functional blade surface after three hydrodynamic analysis and
surface fitting iterations.



Chapter 4

Functional design with B-spline

curves

4.1 Introduction

This chapter presents a complete design method for the functional design of mean

camber lines of foil shapes described in terms of B-spline curves. This design method

is an attempt to provide a robust method of functional design in which any lift

distribution can be specified. The user inputs a desired (target) coefficient of lift of

the mean camber line and the order of B-spline curve to be used for the geometric

representation. For this method, the user need not provide a decent approximation

of the final shape as an initial guess for the design process. The shape of the initial

mean camber line is automatically set to represent a straight line of unit length

satisfying all of the boundary conditions for uniform flow. By gradually modifying the

shape to satisfy increasingly greater loads, a shape carrying the prescribed circulation

distribution and total lift is found.

The shape modification process used in this design method differs from the pro-

cess presented in the last chapter for designing propeller blades in two ways. First,

additional constraints are applied to the positions of the node points (where the kine-

matic boundary condition is imposed), thereby reducing the number of degrees of

freedom. This reduction of the number of degrees of freedom acts to prevent self-



intersections and singularities from occurring during the design process. Second, a

scaling constraint is introduced, preventing the curve from stretching or shrinking.

With these two constraints, the number of degrees of freedom is reduced and an in-

terpolation method can be used to find the new positions of the control vertices, as

will be described below.

4.2 Representation of foil

Before describing the complete design process, the method of representing of the foil

must be presented. As was stated before, the mean camber line of the foil is rep-

resented by a B-spline curve of arbitrary order with an associated knot vector and

control vertices. In addition to the geometric description of the curve, additional

properties need to be defined in order to facilitate functional design. These proper-

ties include the target coefficient of lift of the foil and circulation distribution from

which the free stream velocity and total circulation about the foil are calculated. An

additional property to be maintained internal to the fitting process is the loading,

which is a coefficient indicating what fraction of the total desired circulation should

be used when evaluating the flow. These hydrodynamic properties are then used to

evaluate the flow velocity at the node points (i.e., the locations along the curve where

constraints are applied during shape modification). These points are positioned para-

metrically midway between the nodes of the knot vector which are evaluated as the

average of k consecutive knots. The circulation distribution along the foil is then

divided up as discrete vortices which are positioned at these node points. From these

lumped vortices and the free stream velocity, the velocity of the flow at the node

points is evaluated. All of these properties are summarized in Table 4.1.

4.3 Design process

The design process developed for the functional design of mean camber lifting lines

is illustrated in Figure 4-1. The first step of this design method involves initializing a
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Qip : 0 < ip <m - 2
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Vip: 0 < ip m - 2
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Order of curve.
Number of control vertices of curve.
Position of control vertices.
Knot vector of curve.
Target circulation about foil at 100% loading.
Circulation distribution over foil.
Target coefficient of lift at 100% loading.
Fraction of total loading at a given modification step.
Parametric locations of node points along the curve.
Position of node points.
Free stream velocity.
Velocity evaluated at the node points.
Lumped vorticity associated with each node point.

Table 4.1: Properties associated with the functional design of a mean camber line
represented in terms of a B-spline curve during the functional design process.

mean camber line and the inflow velocity. The user specifies a desired lift coefficient

and the order of the curve. A vorticity distribution y(u) is also supplied; currently, this

is predefined within the program although this can be modified to accept an arbitrary

input file. The program then instantiates a B-spline foil of order k with m > k control

vertices, as specified by the user. An open, uniform knot vector U is automatically

generated, as given by Equation 2.16. The control vertices are initially positioned

such that the B-spline curve represents a line segment extending from (0, 0) to (1, 0).

The free stream velocity Vo to be used during the design process is calculated by

Equation 4.1, taking into acount the Kutta-Joukowski theorem (Equation 2.21), the

total circulation F contained in the vorticity distribution y(u), and the definition of

the coefficient of lift C1.

1
L = -pC1 V = pVoF

2 fl.o 7C(u)du
CV0

The last step in the initialization process is to set the loading to zero so that no

circulation is associated with the current geometry. Hence, the foil starts as a straight

line described in terms of a B-spline curve and satisfies all of the physical constraints

(4.1)
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Figure 4-1: Flow chart for the functional design of a mean camber line.

for a mean camber line generating zero lift, as shown in Figure 4-2.

V- / Initial foil shape.

(0,0) (1,0)

Figure 4-2: Initial mean camber line and flow in functional design process of the mean
camber line of a foil.

The next phase of the design method progressively modifies the shape of the mean

camber line by increasing the circulation until the desired coefficient of lift is reached.

It consists of four steps: increasing the circulation, modifying the shape according

to the kinematic boundary condition, rescaling, and adding additional degrees of

freedom when needed. The steps of this loop will now be described in the order in



which they are performed.

The first step in the loop is to increase the circulation over the foil. In increasing

the circulation, the flow will no longer be parallel to the curve but will violate the

kinematic boundary condition. The amount to increase the circulation must be cho-

sen carefully. By increasing the circulation an amount which does not introduce an

error (as measured by the angle between the velocity vector and the curve tangent

at the node points) greater than a maximum allowable amount, the new curve shape

after modification will be only slightly different than the preceding one. The new

shape, however, will better satisfy the boundary condition for the increased loading.

If the loading is allowed to increase too much in a single step, however, too great

an angle between the velocity and the curve tangent can result in instabilities and

self-intersections during the modification process, resulting in a physically unrealiz-

able flow and foil shape. The loading is initially increased by some set amount (say

50% of the total loading) and then reduced until the error in satisfying the kinematic

boundary condition for the current geometry is measured to be less than some per-

missible angle (say 50). For each loading, the velocity at the node points is evaluated

and the violation of the kinematic boundary condition is evaluated in terms of the

angle formed between the curve's tangent and the velocity at these points. By only

allowing the circulation to increase slightly, the current geometry will violate the

kinematic boundary condition but the amount the shape will need to be adjusted can

be controlled, as shown in Figure 4-3.

-"

Figure 4-3: Given a mean camber line satisfying the physical constraints for a distri-
bution of circulation, an increase in the circulation will introduce a violation of the
kinematic boundary condition requiring the shape of the curve to be slightly modified.

Modification of the shape begins by allowing the curve to move in such a way as

to better approximate the kinematic boundary condition. This is done by allowing

the node points to be repositioned normal to the curve such that the tangent of



the new curve at these points will be tangent to the velocity vectors measured at

these node points' previous positions. By putting a limit on the maximum angle

measuring the error in satisfying the boundary condition (in the previous step), the

node points will only need to be adjusted slightly and the velocity vectors at their

previous positions Qi will be a good approximation to the velocity at their new

positions Qip. In addition, since the tangent of the curve is affected by the relative

position of the control vertices, the first control vertex can be kept fixed, thereby

keeping the leading edge of the curve fixed throughout the modification process. This

stage of the modification process can be stated as follows:

Given an initial B-spline curve representing a mean camber line of a foil with the

control vertices { P* : 0 < i < m - 1} and a set of velocity vectors {fiK : 0 < ip <

m - 2} and sampled at node locations {Q* = P* (uip) : 0 < ip < m - 2} along the

curve, reposition the control vertices {( : 1 < i < m - 1 such that the curve at

the parametric locations corresponding to the node points is now tangent to this set

of velocity vectors. In addition, the new positions of the node points {Qip = P(ui,)

0 < ip < m - 2} must lie along lines normal to the initial curve and passing through

the previous node point positions {Qi* : 0 < iP m - 2}.

Locus of possible solutions for QiP,
along line normal to initial geometry.

ition for P(u)

:urve geometry.

Figure 4-4: Example of the constraints imposed at one node point during the shape
modification of a mean camber line.

In order to pose this problem mathematically, let us first define the vector 6PiP =
J(ui,) - P*(uip) as the vector normal to the curve at node point (p = P*(uip).

Also, let us assume we can prescribe a normal vector hii, which satisfies the physical

constraint. The constraint on the position of the each node point and the physical

Qil



constraint on the tangent P'(ui,) of the new curve at each point can then be expressed

as in equations 4.2 and 4.3, respectively.

61, i* = 0 (i =0,... m-2) (4.2)

P'(Uip) .i, = 0 (ip=0,... ,m-2) (4.3)

where i*p is the tangent of the initial shape at ui,.

Substituting for the definition for 6Pip and noticing that hi, must be perpendicular

to the measured velocity vector Vip, the equation system becomes

(uip) - ] - = 0 (ip = 0,..,m - 2) (4.4)

P'(uip) x p = 0 (ip = 0, , ,m-2). (4.5)

This is a linear equation system and can readily be solved using a standard matrix

equation solver. To show this, Equations 4.4-4.5 are written in matrix form with the

unknown control vertices on the left hand side:

m-1
-[/iBi(u,) t [Q* - PoBo(Ug,)] t (4.6)

i=1

(ip= 01,-.-,. m - 2)
m-1

[(Pi,ZVi,y - PiyVi,,B k i = (- POxVip,!y + Po,YVi.,,)Boki, (4.7)
i=1

(i, = 0, 1, .-. , m - 2)

Each constraint yields m - 1 equations resulting in a matrix system of 2m - 2 equa-

tions total. Since each control vertex has two degrees of freedom (x and y), 2m - 2

unknowns are present in the problem which, provided the coefficient matrix is well

conditioned, can be solved for exactly. The solution represents a modified shape

which better approximates the kinematic boundary condition for the given loading of

the circulation distribution. The new shape will not satisfy the boundary condition

exactly, however, since the shape has changed and the velocity along the curve will

have changed accordingly. This is due to the fact that since the geometry of the prob-



lem has changed, the flow and position in space where the boundary condition must

be satisfied have changed. It is for this reason that we maintain an upper limit on

the increase in the loading of the circulation on the foil, thereby ensuring the velocity

along the new shape to be reasonably close to the initial velocity.

Presumably, the shape of the mean camber line has been modified to better carry

the prescribed loading. In the process of modifying the shape, however, the mean

camber line may have stretched or shrunk and may no longer be of unit length. This

is an undesirable degree of freedom in the design process as it may result in the foil

shrinking and possibly degenerating to a point or stretching and possibly growing

without convergence. To correct for this, the control vertices of the line must be

rescaled. There can be several ways of doing this. The method employed here is to

rescale the vertices such that all of the node points remain the same distance from

the leading edge. For simplicity, the parametric value assigned to each node point

is used as the distance it is to be positioned from the leading edge. Formally, the

problem of rescaling can be stated as:

Given a B-spline curve P(u) and node points {(Qý : 0 < i < m - 2} positioned

at parametric locations {ui : 0 < ip, m - 2} along the curve, reposition the

control vertices {Pi : 1 < i < m - 1} such that the new positions of node points

(Qip = P(Uip) :0 < ip < m - 2} are located at distances {uip : 0 < ip < m - 2}

from the leading edge Po.

of curve.

Curve after scaling.

Figure 4-5: Example of repositioning the node points during functional design of a
mean camber line to maintain a chord length of unity. Each node point Qj, is placed
its respective distance of uip from the leading edge.

This can be achieved by simply performing a linear interpolation of the desired

new node point positions. To begin with, the new positions of the node points must



be calculated at their respective distances from the leading edge, along on a line

passing through the leading edge control vertex and the previous position of the

node point. Let Qp represent the position of the i1 node point found after the

previous modification step involving the kinematic boundary condition, which may

not be a distance uip from the leading edge. Let Qip be the new position of the

node point which lies a distance of uip from the leading edge along a line passing

through the leading edge P0 and its previous position Q* . This rescaling process is

illustrated in Figure 4-5. Again, the leading edge is kept fixed, fixing the curve in

space. Mathematically, this rescaling step can be expressed as:

(uip) = Qi, (ip = 0,-...,m- 2) (4.8)

:ip7 (q- )+P ( = i,. m - 2) (4.9)

The assumption being made here is that the distance each control vertex will have to

be adjusted to rescale the mean camber line is relatively small relative to the chord

length, thereby not tremendously altering the nature of the flow. Provided the control

vertices were not moved exceedingly far during the previous modification (ensured by

limiting the increase in the loading), this is a safe assumption.

Rescaling is simply followed by straightforward interpolation of the set of scaled

nodes with a B-spline curve, and the solution can be found directly though a linear

equation solver. The equations to be solved for the control vertices (except for the

leading edge) are:

m-iZ PB(-1) U ( p 0)+ P0 1 = 0,. , m -2) (4.10)i=1 ( iP - o I

Again the number of unknowns (2m - 2) is balanced by the number of equations,

and provided that the matrix is full-ranked, the Equation System 4.10 is solvable.

Unlike the previous step, however, the problems for the x and y coordinates of Pi are

uncoupled and only a smaller (m - 1) x (m - 1) system needs to be solved.

The rescaling step just described is purely geometric and does not involve the



kinematic boundary condition. As a result, the rescaled shape may not satisfy the

kinematic boundary condition as well as it might for the given number of control

vertices and loading. To check to see how much the shape had to be adjusted to

satisfy the scaling requirement, we compare the control polygon before and after

the rescaling step. If any one control vertex had to be adjusted by more than an

allowable maximum distance (say 1% of the chord length), then the velocity at the

node points is recomputed and the boundary condition and scaling modification steps

are performed again. Given that the loading has not changed, the mean camber line

will converge to a shape which satisfies both the boundary condition and the scaling

requirement to within some acceptable tolerance (as measured by the changes in the

control polygon), at which point we move on to the next step.

So far, all constraints involving the shape design (the kinematic boundary condi-

tion and scaling) have been enforced at node points positioned at prescribed para-

metric values along the curve. Although the kinematic boundary condition may be

satisfied at these points, there is no guarantee that it will be satisfied at other points

along the curve. At this stage, a check is made at locations along the curve midway

between consecutive node points. The angle between the velocity vector at these

locations and the corresponding tangent of the curve is measured. If the error in sat-

isfying the physical constraint (measured by this angle) at any one of these positions

is greater than some allowable tolerance (say 50), more degrees of freedom are added

and a new solution found which better satisfies the current circulation distribution

over the foil. These additional degrees of freedom are introduced by inserting a new

knot between each pair of consecutive, non-repeating knots in the knot vector of the

curve. With each new knot, a new control vertex is added providing two additional

degrees of freedom. New node points, accordingly, are also created providing the ad-

ditional points on the curve where constraints must be satisfied. After all of the new

knots are added, the foil shape is modified as outlined above for the same loading,

yielding a shape which will better approximate the kinematic boundary condition

over a larger portion of the foil. Once a solution is found which satisfies the bound-

ary condition acceptable at both the node points and the locations midway between



them, the whole process is repeated until the loading reaches 100%, generating the

target coefficient of lift.

Each time through the loop outlined above, a foil mean camber line is found which

will carry a given circulation distribution within a prescribed tolerance. Progressively

the loading is increased each time through the loop, until the load on the foil is 100%,

and the foil is generating the desired coefficient of lift. At this point, the design

process is finished and a converged solution is found. This solution represents a mean

camber line which will generate the specified coefficient of lift and carry the prescribed

loading in terms of a B-spline curve.

4.4 Examples of the functional design of mean cam-

ber lines

In this section, some examples are presented, demonstrating the functional design of

mean camber lines.

4.4.1 Effect of tolerance threshold on the functional design

of mean camber lines.

y(u)
1

0

0 0.5 1.0

Figure 4-6: Saw tooth circulation distribution over length of mean camber line.

The first two mean camber lines to be considered are both designed to produce the

same coefficient of lift with the same circulation distribution, as given in Figure 4-



6. A different tolerance threshold for the error in satisfying the kinematic boundary

condition, however, was used resulting in slightly different results, illustrating the

effect of adding degrees of freedom to introduce more shape flexibility to a design.

In both cases, the design process started with a cubic (4 th order) B-spline curve

with m = 4 control vertices and the target coefficient of lift was C, = 1.5. As

previously described, the curve shape was initialized as a straight line segment of

unit length described in terms of a B-spline curve with the desired order and number

of control vertices, as listed in Table A.1. Maximum allowable tolerance e defined as

the angle between velocity vectors at the node points and the tangent of the curve

is the only difference between the two examples. The first curve, given in Figure 4-7

and Table A.2, is functionally designed with a tolerance of e = 5' . In the design

process of this curve, three knots had to be inserted to provide the additional degrees

of freedom (control vertices) to satisfy the tolerance specified. The velocity vectors

at the 6 node points are also shown in Figure 4-7. For the same target coefficient of

lift and circulation distribution, a slightly more refined shape results if the tolerance

is decreased to 30 as shown in Figure 4-8 and Table A.3. To satisfy this decrease in

tolerance, several more knots had to be inserted thereby increasing the curve's degrees

of freedom to m = 19. With the added degrees of freedom, additional node points

are needed as shown in Figure 4-8 by the increased number velocity vectors along the

curve. The difference in the two designs can be seen upon comparison of Figure 4-7

and Figure 4-8. The design satisfying a stricter tolerance contains a tighter radius of

curvature midway along the curve.

Figure 4-7: Mean camber line designed to generate loading distribution shown in
Figure 4-6 with C, = 1.5 and e = 50. Velocity at the node points is also illustrated.



Figure 4-8: Mean camber line designed to generate loading distribution shown in
Figure 4-6 with C, = 1.5 and c = 3' . Velocity at the node points is also illustrated.

4.4.2 Effect of coefficient of lift on the shape of a mean cam-

ber line.

To illustrate the effect the specification of the coefficient of lift has on the functional

design of a mean camber line, the same circulation distribution given in Figure 4-6

is used to generate a foil shape with a coefficient of lift of C, = 2.0. Again, the

design process starts with the same straight line represented as a cubic B-spline curve

given in Table A.1. The final curve shape and the velocity vectors at the node points

is given in Figure 4-9 and Table A.4. To generate the higher coefficient of lift for

the line given in Figure 4-9, the functional design process introduced more camber

than for a foil with a coefficient of lift of only C, = 1.5 (Figure 4-7). In addition, to

achieve this greater camber, degrees of freedom had to be added to keep the design

within tolerance. Whereas the final shape of the curve with C, = 1.5 has only m = 7

control vertices to satisfy the functional requirements, the curve producing the greater

coefficient of lift C, = 2.0 needs m = 11 control vertices.

Figure 4-9: Mean camber line designed to generate loading distribution shown in
Figure 4-6 with C, = 2.0 and e = 5' .

From these examples, the satisfaction of the kinematic boundary condition can

be seen. The velocity at the node points is tangent (within the specified tolerance)

to the curves, thereby satisfying the physical constraint with which the curve was

designed. By either lowering the tolerance or increasing the coefficient of lift, degrees



of freedom will need to be added to provide enough shape flexibility to satisfy the

physical constraint.

4.4.3 Effect of curve order on the functional design of a mean

camber line of a hydrofoil.

'y~u)
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Figure 4-10: Circulation distribution producing nearly constant loading over the first
half of the foil, linearly varying to zero over second half.

The next examples illustrate the effect of the curve's order on the shape found through

the functional design process. All the curves produce a coefficient of lift of C, = 1.5

with the circulation distribution given in Figure 4-10. As before, the process starts

from a straight B-spline curve of the specified order with m = 6 control vertices.

The shapes of the mean camber lines are given in Figures 4-11 to 4-14 and the

corresponding data are given in Tables A.5 to A.14. The data for the initial shapes

for each design are given in Tables A.5, A.9, A.11, and A.13. The final design data are

listed in Tables A.6 to A.8, A.10, A.12 and A.14. Upon comparison of the four curves,

one can readily observe that the shapes are very similarly despite the difference in

the order of the curves. To satisfy the kinematic boundary condition, however, more

degrees of freedom had to be added to the lower order curves than for the higher

order curves for the given tolerance (e = 50). In fact, for the 2nd order curve (which

is piecewise linear) given in Tables A.6-A.8 a total of m = 161 control vertices were

needed! For the 3 rd order, quadratic curve given in A.10, only m = 10 control vertices

were used. For the higher order curves k = 4 and k = 5 given in A.12 and A.14,



respectively, no additional degrees of freedom beyond the six control vertices initially

provided were needed to satisfy the boundary condition. To capture the nature of

the flow in the design, it would appear that a cubic curve provides sufficient shape

flexibility. During the physical constraint check midway between node points, the

lower degree curves did not naturally follow the flow about the foil and thus required

the insertion of more degrees of freedom-more control vertices. The higher degree

curves followed the nature of the flow between node points, requiring fewer degrees

of freedom to satisfy the physical constraint.

Figure 4-11: Mean camber line designed to generate loading distribution shown in
Figure 4-10 with C1 = 1.5 using a B-spline curve of order k = 2.

Figure 4-12: Mean camber line designed to generate loading distribution shown in
Figure 4-10 with C, = 1.5 using a B-spline curve of order k = 3. Velocity vectors are
shown at the node points.

Figure 4-13: Mean camber line designed to generate loading distribution shown in
Figure 4-10 with C1 = 1.5 using a B-spline curve of order k = 4. Velocity vectors are
shown at the node points.



Figure 4-14: Mean camber line designed to generate loading distribution shown in
Figure 4-10 with C, = 1.5 using a B-spline curve of order k = 5. Velocity vectors are
shown at the node points.



Chapter 5

Related applications

Fitting a set of normal vectors as well as a set of data points is not limited to the

functional design of lifting surfaces. Two other possible applications are in the areas

of data fitting and offsets. In data fitting, constraints on the fitting curve's normals

can produce a curve more representative of the trends in the data. For offset curves

and surfaces, normals from the progenitor can be used to produce a more accurate

approximation to an offset or parallel curve. This chapter formulates these ideas and

provides some examples.

5.1 Shape preserving interpolation of 2D data with

B-splines

Interpolation of data with B-splines is a fairly straightforward process. Parameter

values are assigned to a set of points and the shape of a B-spline is found such that

the spline passes through these points at these parameter values:

P(uip) = Qi (ip = 0,..., m - 1). (5.1)

Equation 5.1 can be formulated as a linear equation system and the positions of the

control vertices of the B-spline can be computed directly. There is no guarantee,

however, that the interpolating spline will preserve the same intrinsic "shape" of the



corresponding data set. By shape preservation, we mean that the variation in the

shape of the curve follows the implied variations in the data. Where the variation in

the data is monotonously increasing/decreasing, the curve should be also. Traditional

methods of interpolation do not guarantee this. Consider, for example, the data set

given in Figure 5-1. Two possible interpolating curves which do not preserve the

shape of the data are shown in Figures 5-2 and 5-3. In the former case, the curve

overshoots an intrinsic corner and in the second, the curve oscillates where the data

implies a smoother form. The most desirable curve fit for both design applications

and fitting of scientific data, is the one which preserves the implied shape of the

data [16, 17, 39], without unintended oscillations or overshoots.

0 0 0 0

0

0

0

Figure 5-1: Data set to be interpolated: Qi-

Figure 5-2: Interpolating curve overshooting corner implied by data set.

Previous methods of shape preserving interpolation involve a procedural approach.

Desired curve tangents are computed at the data points and piecewise, Hermite curves

are fit to the data maintaining G 1 continuity between segments [17, 39]. Another

approach is to use a global method in which a tensioning parameter to each of the

data points is first assigned. Then, a variational technique is used in which the tension



Figure 5-3: Interpolating curve oscillating more than data set.

of the curve at the data points is selected to best preserve the shape implied by the

data.

The condition of orthogonality developed in this thesis to satisfy the kinematic

boundary condition can be adapted to shape preserving interpolation. This is accom-

plished by assigning a desired normal to the curve at each of the data points and then

interpolating both the data points and the specified normals:

P(ui) = Qip (ip = O,...,m - 1) (5.2)

'(uip) - fip = 0 (iP = 0,- -,m- 1) (5.3)

The solution is a curve P(t) which interpolates both the set of data and normals.

Equation System 5.2-5.3 is a linear equation system and, provided that the nor-

mals are well chosen, the solution can be directly found through traditional matrix

solvers. In this method, an arbitrary degree of continuity can be maintained. In

fact, any parametric curve representation can be used (polynomial, spline, etc.) for

which the tangent can be easily computed. B-spline curve representation was used to

demonstrate the concept since this allows the user to specify an arbitrary degree of

continuity but maintains local support.

The selection of the prescribed normals and knot vector is still an outstanding

problem. Two possible approaches for determining a set of normals have been con-

sidered. The first is to fit a quadratic, Bezier curve to every three consecutive data

points and use the normals of the curve at the middle data points as the prescribed



normal for the curve interpolating all of the data. In this way, the prescribed normals

are computed based upon the local variations in the curve thereby insuring shape

preservation. The second method involves taking the normal at each interior point

as the normal to a circle interpolating every three consecutive data points. For both

methods, the normals at the ends of the curve are taken as normals to straight lines

interpolating the end data points and their neighbors. Examples of computing the

desired normal vectors by each method are shown in Figures 5-4 and 5-5.

0 0O 0 OQ
Qm-2 Qm-1

Qi+1 fm-1

Figure 5-4: Computation of desired normals for based upon the normal to a quadratic
Bezier curve interpolating the data.

Qi-1

Figure 5-5: Computation of desired normals for based upon interpolating circles.

With the normals specified, a curve can be found interpolating both the data set

and satisfying the orthogonality condition imposed by the normal vectors at the data

points. Assuming that the prescribed normals reflect the intrinsic trends in the data

set, the resulting curve should tend to preserve the form of the data. The task of

computing the most appropriate knot vector is still left unresolved. In the implemen-

tation of this data fitting approach, the knot vector is determined interactively by the

user. With further research, perhaps an automatic method to compute the optimal

knot vector based upon the data and normal sets can be determined.



An example of fitting data with this approach is shown in Figure 5-6. The normals

are determined at the data points according to the Bezier method illustrated in Fig-

ure 5-4. The tighter curve (the one with fewer oscillations) was produced through the

interpolation of the data points and the normals. The second curve (with unwanted

oscillations and overshoots) was generated through standard interpolation of the po-

sition data using a standard fitting routine supplied in the Praxiteles library [1, 21].

Even though the constrained interpolation presented in Figure 5-6 produces a tighter

fit (more closely resembling the intrinsic form of the data than standard interpola-

tion), user interaction was required to adjust the position of the knots, thus creating

the more desirable curve.

Figure 5-6: Interpolation of a data set by traditional interpolation and constrained
interpolation with the prescribed normals shown. The constrained curve provides a
"tighter" fit to the data.

5.2 Approximation of offsets of planar curves

Another possible application for the interpolation of a set of data points and a set

of normals is in the approximation of offset or parallel curves and surfaces. An

offset curve or surface is defined in terms of a progenitor curve or surface and an

offset distance. For an offset curve, each point along the curve is determined by

moving predetermined distance from the progenitor curve along normal lines to the

progenitor [32]. Similarly for the offset surface. Some of the engineering applications

for offset curves and surfaces are shown in Figure 5-7 including planning tool paths



for NC machining [9, 15], describing tolerance regions [36, 30], determining access

space for motions of robots [24], representation of curved shells in solid modeling [33],

and feature extraction from the Medial Axis Medial (MAT) [31, 43].

Offset curves and surfaces of B-spline progenitors are functionally more complex

than B-spline functions. If the CAD/CAM system processing and interrogation is

based on the properties of B-splines, offsets need to be approximated with B-splines

to permit their further processing. Current techniques for approximating offset curves

involve sampling the progenitor curve over its length, interpolating points offset a pre-

scribed distance normal to the progenitor at these sampled points, and then checking

if the offset curve is within the acceptable tolerance of the exact offset curve. The

density of the sampling is increased and the process repeated until a satisfactory offset

is found.

Since the offset curve should have the same unit tangent at each of the sampling

points as the progenitor, the interpolation of a set of normals could provide a more

accurate approximation of the exact offset curve. This can be accomplished by im-

posing the condition of orthogonality developed for functional shape design on the

offset curve's tangent with respect to the sampled normal of the progenitor curve.

Therefore, instead of interpolating simply a set of points, the offset curve will also

satisfy a set of perpendicularity conditions as well, ensuring that both curves will be

parallel at these points. This process of constructing an offset curve through this

technique can be described more precisely as follows:

Given a progenitor curve P*(u), sample the position and normal of the curve

uniformly to create a set of data points { *(uip) = Q*p : 0 < iP _ mp-1} and normal

vectors {Ifip : 0 < ip, mp - 1}. Next, offset each data point by a constant distance

d along its respective normal from its initial position {Qi, = Qp + diP : 0 < iP <

mP - 1}. The approximate offset curve P(u) is the interpolation of the data points as

well as the sampled normal vectors {P(uip) = Qip, P' (u2 ip) -nip = 0 : 0 < ip < mp- 1}

Mathematically, this discrete formulation of computing approximate offset curves
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Figure 5-7: (a) NC machining; (b) Tolerance regions; (c) Access space represen-
tation in robotics; (d) Plate/shell representation. (Adapted from Patrikalakis and
Maekawa [32])



P(u) becomes:

P* (uip) x k
P(ui,) = P(ui,) + d - (ip = O, 1, ... , mP - 1) (5.4)

|P* (uip) I

'(Uip) I = 0 (iP = 0, 1, . ., m, - 1) (5.5)

where k is the unit vector normal to the plane of the curve. The progenitor and offset

curves are represented by P*(u) and 13(u), respectively. The parametric values at

which interpolation is enforced are {ui, : 0 < ip < mp - 1}. As in the functional

design of hydrofoil mean camber lines, additional control vertices are needed in order

for the numbers of equations and unknowns to balance. Equation System 5.4 provides

2 equations (for the x and y dimensions) and Equation System 5.5 only provides 1

equation for each sample. Therefore, the complete system is balanced if the number of

unknown control vertex coordinates 2m equals the number of constraining equations

3mp, where m is the number of control vertices and mp is the number of sampled

points along the progenitor. Due to this fact, the number of samples mp of the

progenitor curve is required to be an even number, i.e. m, = 2m, and therefore

m = 3m'

Some examples of approximate offset curves computed by this method are shown

in Figure 5-8. No tolerance threshold is enforced-the offset curves are the results

of a single interpolation of a set a data points and the corresponding normals from

the progenitor curves. For simplicity, the knot vector for the offset curve is chosen

to be a uniform knot vector. Despite the fact that the number of equations equals

the number of unknowns, the system of equations may still be ill-conditioned or even

singular. This may be due to the position of the offset data points, directions of the

normal vectors, or choice of knot vector.

Although this method only approximates the exact offset geometry, the interpo-

lation of the normal vector as well as offset data points provides more information

about the shape of the offset curve for a given number of sampling points. Rather

than needing to more densely sample a curve to accurately represent the tangent of
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Figure 5-8: Samples of approximate offset curves generated by interpolating a set of
data points and normal vectors. With relatively fewer samplings of the progenitor
curve, an acceptable offset curve approximation can be found with normal constrained
fitting.



the offset as in traditional methods, this approach allows the exact tangent to be

maintained at a discrete set of points. Although this method is presented in terms of

planar B-spline curves, it is easily extensible to space curves, B-spline surfaces, and

other more general parametric representations of curves and surfaces.



Chapter 6

Conclusions and recommendations

6.1 Conclusions

This thesis presented methods to functionally design hydrodynamic lifting surfaces.

Whereas geometric design methods may only involve the interpolation of data sets

and fairness criteria, functional design incorporates the physical constraints determin-

ing the performance of a shape directly into the design process. For the lifting curves

and surfaces considered here, the physical constraint is the kinematic boundary con-

dition which is considered in conjunction with a potential flow method for describing

the ideal flow about a lifting surface. To create a new hydrofoil shape, the designer

prescribes a desired pressure (or circulation) distribution about an initial shape, deal-

ing directly with the physical nature of the flow (lift) rather than the foil's geometry.

A new shape is then functionally designed to better carry this prescribed loading

by finding a new blade or foil shape which better satisfies the kinematic boundary

condition at a discrete set of points along its shape.

The first method presented uses an approximation approach for the modification

of a mean camber surface. The hydrodynamics code developed by Kerwin et al. [22]

is used to evaluate the flow along the mean camber surfaces of a propeller blade.

The blade shape probably will not carry the prescribed pressure distribution exactly

resulting in some degree of violation of the kinematic boundary condition. From

the velocity vectors at a discrete grid of points of the blade, a set of normals are



computed which would better satisfy the physical constraint by a method developed

in this thesis. Next, a new surface is fit to the set of data points and prescribed

normals, resulting in a modified blade shape better carrying the specified loading.

The novelty of fitting a prescribed set of normal vectors satisfying the kinematic

boundary condition is that the problem is transformed without approximation to

a linear problem. Therefore, standard linear equation system solvers can be used

and solutions found quickly, robustly, and efficiently. In this approach, however, the

violation in the kinematic boundary condition must not be too excessive so that

only a slight alteration of the blade shape is needed (the prescribed normals deviate

only slightly from the normals sampled from the initial blade shape). Once the new

shape is found, the hydrodynamic code its used to reevaluate the blade shape and

the process continues until the error in satisfying the kinematic boundary condition

at the discrete set of grid points is found to be within an acceptable threshold.

The second design method determines the shape of the mean camber line of a

hydrofoil cross-section. Starting from an arbitrary initial shape, the vorticity dis-

tribution is gradually increased from the initial distribution (satisfying the natural

flow around the initial shape) until the specified coefficient of lift is achieved. In this

approach, an interpolation method is used to fit a new curve to a set of normals

determined from the initial mean camber line and flow field. By gradually increasing

the loading to the desired level and adding degrees of freedom where needed, the

initial shape of the curve need not be a good approximation to the final shape.

In both approaches, the additional constraint of the kinematic boundary condition

leads to a practical problem in balancing the number of equations with the numbers

of unknowns. In the approximation of mean camber surfaces, this obstacle is avoided

by always restricting the control mesh to be of equal or lower dimensions than the

grid of points at which the flow is sampled over the surfaces. In the interpolation

design method for mean camber lines, an additional constraint is imposed, creating

an interdependence between the x and y dimensions of the B-spline's control vertices.

This interdependence is determined by requiring each parametric point along the new

curve corresponding to a sampled to point to be positioned along a line perpendicular



to the initial mean camber line, passing through the sampled point. This reduction

of the degrees of freedom allows an interpolation approach to be used, where a set

of normals for the new shape (prescribed by the kinematic boundary condition) are

interpolated determining the foil's new shape.

Even with the equations and unknowns balanced, there is no guarantee that the

resulting blade or foil shape will result in a physically realizable shape or an improve-

ment over the last iteration. To overcome this obstacle, the restriction is imposed

that the violation of the kinematic boundary condition most not be excessive. In

other words, the new shape will be a close approximation to the initial shape. The

need for this becomes obvious when one considers that the information about the

flow for the design process comes from the set of velocity vectors sampled along the

initial shape. This set of velocity vectors is only an approximation of the velocity

along the new shape, and the more the new shape deviates from the initial shape, the

less accurate the new shape will be in satisfying the kinematic boundary condition.

Therefore, the flow field must not excessively violate the boundary condition and the

boundary condition must always be checked after shape modification.

During the iteration process, the shape of the lifting surface or curve may shrink

or grow, possibly leading to degeneracies in the shape or divergence of the design

process. Two possible approaches for solving this problem were considered. The

first was applied to the design of mean camber surfaces of propeller blades. Since

this design method uses an approximation scheme, weights could be applied to those

data points representing boundaries such as the leading edge and root of the blade.

This approach did work for preserving shape along these curves, but contraction or

expansion of the shape elsewhere along the blade could still occur indicating that

this is not the best solution. For the design of mean camber lines for hydrofoils, a

two step approach to solving this problem is implemented. The first step involves

restricting the degrees of freedom of the problem such that control points on the new

foil shape to be on lines normal to the initial slope at corresponding positions. Next,

the control vertices of the polygon are rescaled to maintain the same relative distance

between control points along the curve. In this way, the shape of a mean camber line is



restricted so that it cannot grow or shrink uncontrollably. In addition, by reducing the

degrees of freedom, the complexity of the problem was reduced requiring less memory

and time to solve the problem. To eliminate shrinkage or growth, the reduction of

the degrees of freedom as well as the rescaling step provides very good results.

After the description of the functional design of hydrodynamic shapes, some pos-

sible related applications were introduced. These included shape preserving interpo-

lation of data sets and the approximation of offset curves. In both approaches, the

normal constraint is used when fitting a B-spline curve to a set of points. By incorpo-

rating more information about the shape of either the data set or exact offset curve

into the fitting process, an acceptable fit could potentially be found more efficiently.

6.2 Recommendations

Following our research on the functional design of shapes, many questions have arisen

and remain unresolved. These issues require additional research.

The first issue is the determination of the knots and parameter values used in the

fitting process. In both the approximation and interpolation approaches for functional

design developed here, the same knot vectors and parameter values could be used

for both the initial and the final shape since they are of the same dimension. In the

related applications of offset curve approximation and shape preserving interpolation,

parameter values and knot vectors had to be assigned. In the implementation for this

thesis, uniform knot vectors and parameter values were initially assigned. The user

then may interactively adjust these values to find a desirable fit and explore the

relationship between these degrees of freedom and the quality of the resulting curves.

Although acceptable shapes were obtained for both the functional design examples

using the initial knot values and for the related work which allowed user interaction,

a more robust method of automatically determining the knots and the parameter

values is needed. In the simple interpolation of points, the selection of these values

is still being researched for purposes of generating a fair curve, but the invertibility

of the coefficient matrix can be guaranteed in existing methods. For the fitting



methods described here, however, the invertibility of the matrix is data dependent

since the prescribed normals are included in the matrix. There, in order to guarantee

a coefficient matrix of full rank, traditional methods of specifying knot vectors and

parameter values need to be extended to include the normal vector constraint.

Even when the number of degrees of freedom and constraints are balanced and

the knots and parameter values are suitably chosen, the coefficient matrix may not

be of full rank. This is due to the possibility that combinations of sets of data points

and normal vectors exist which can not be satisfied by a given number of degrees of

freedom. An example of such a problem is shown in Figure 6-1. Here, even though

the number of equations 3 x 4 due to the constraints (position and normal vectors)

is balanced by the number of unknowns 2 x 6 unknowns introduced by six control

vertices, a 4th order B-spline curve cannot be fit to this set of constraints. Again, the

issue of robustness will require more research into determining these impossible com-

bination of data sets automatically and then adding degrees of freedom or reducing

constraints where necessary.

Figure 6-1: Set of data points and prescribed normals to which it is impossible to fit
a 4th order B-spline curve with only 6 control vertices.

Although both 2D and 3D approaches to the functional design of hydrodynamic

shapes are considered, the problems are solved by different methods. The method

used for designing 2D mean camber lines is perhaps the more desirable since it reduces

the degrees of freedom of the problem and rescales the shape after each modification

step, thereby finding an acceptable design more efficiently. Extension of this method

into 3D is possible but will involve the incorporation of 3D potential flow theory

(bound/unbound vorticity, trailing vortex wake, etc.) as well as a method to specify

an initial shape. Unlike the 2D case where the shape of a line can be modified

directly into any curve, the added dimension in 3D will require the specification of

the planform of the lifting surface, an additional constraint which would reduce the



degrees of freedom and ensure a unique solution. This constraint could be in the form

of a function for the variation of chord length over the span which would be used in

the rescaling step to maintain the overall gross surface dimensions. With these issues

resolved, the extension of this fitting approach to 3D could then be used to "evolve"

a flat planform into a shape carrying the prescribed loading. Although the theory of

satisfying a physical constraint involving a shape's normal is shown to be possible in

this thesis, the complete design of a 3D hydrofoil or propeller blade and its validation

through an independent analysis method is left open and should be investigated to

more accurately compare this method to existing design methods.

Finally, the issue of convergence needs to be resolved. Ideally, the convergence of

the functional design process with normal constraints should also be proven, thereby

proving the robustness of the method. This may not be in general possible, however,

since the possibility of finding a solution depends on the particular sets of data points

and normal vectors, unlike traditional fitting methods. For data sets in which the

present method is found to converge, it should be possible to determine its rate of

convergence and compare the present method with other methods of functional design

and evaluate its overall performance.



Appendix A

Tables

m=4 k=4 C1 =0 Vo =0.638310
U = [0, 0, 0, 0, 1, 1, 1, 1]

Control vertices Node points

i Pi Uip ip Vi , Tip
0 (0.000000, 0.000000) 0.166667 (0.166667, 0.000000) (0.638310, 0.000000) 0.000000
1 (0.333333, 0.000000) 0.500000 (0.500000, 0.000000) (0.638310, 0.000000) 0.000000
2 (0.666667, 0.000000) 0.833333 (0.833333, 0.000000) (0.638310, 0.000000) 0.000000
3 (1.000000,0.000000)

Table A.1: Initial data for a functional B-spline curve of order k = 4 with m = 4
control vertices.

m = 7 k = 4 C1 = 1.5 Vo = 0.638310
U =[0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1,1, 1]

Control vertices Node points

i _ ui_ Qi •i VYiP
0 (0.000000, 0.000000) 0.041667 (0.038970, 0.014702) (0.588069,0.217134) 0.006944
1 (0.077564,0.030267) 0.166667 (0.158051, 0.053068) (0.607750, 0.210573) 0.055556
2 (0.237260,0.080735) 0.375000 (0.363062,0.093618) (0.649309,0.092922) 0.187500
3 (0.488031,0.110931) 0.625000 (0.617870, 0.093391) (0.648527, -0.095180) 0.187500
4 (0.747554,0.080318) 0.833333 (0.832025,0.052161) (0.609400, -0.204004) 0.055556
5 (0.917224, 0.028981) 0.958333 (0.957826, 0.013027) (0.591492, -0.208719) 0.006944
6 (0.998929, -0.002016)

...Table A.2: Data for a functional design curve of order k = 4 with a coefficient of lift

of 1.5. The tolerance used in satisfying the kinematic boundary condition was 5'.



m = 19 k = 4 C1 = 1.50000 Voo = 0.63831
U = 0.0, 0.0, 0.0, 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5,

0.5625,0.625, 0.6875,0.75,0.8125,0.875,0.9375,1.0, 1.0,1.0,1.0]
Control vertices Node points

i Pi uip iP Vi P Yip
0 (0.00000, 0.00000) 0.01042 (0.00976, 0.00363) (0.56540, 0.21350) 0.00043
1 (0.01956,0.00716) 0.04167 (0.03886, 0.01503) (0.56035,0.22672) 0.00347
2 (0.05823,0.02274) 0.09375 (0.08695,0.03507) (0.55832,0.23835) 0.01172
3 (0.11570,0.04732) 0.15625 (0.14431,0.05991) (0.56307,0.24599) 0.01953
4 (0.17291,0.07253) 0.21875 (0.20176,0.08453) (0.57925,0.24087) 0.02734
5 (0.23054,0.09668) 0.28125 (0.25989,0.10751) (0.60492,0.22305) 0.03516
6 (0.28913,0.11859) 0.34375 (0.31921,0.12754) (0.63813,0.18925) 0.04297
7 (0.34915,0.13686) 0.40625 (0.38021,0.14310) (0.67506,0.13294) 0.05078
8 (0.41108,0.14990) 0.46875 (0.44348, 0.15184) (0.70208,0.04119) 0.05859
9 (0.47565,0.15457) 0.53125 (0.50926,0.15127) (0.69622, -0.06601) 0.05859
10 (0.54273,0.14875) 0.59375 (0.57663,0.14154) (0.66549,--0.14168) 0.05078
11 (0.61053,0.13487) 0.65625 (0.64417,0.12533) (0.63398, -0.18341) 0.04297
12 (0.67787,0.11613) 0.71875 (0.71105,0.10491) (0.60817,--0.20866) 0.03516
13 (0.74431,0.09393) 0.78125 (0.77696,0.08172) (0.58850,-0.22251) 0.02734
14 (0.80971,0.06963) 0.84375 (0.84182,0.05703) (0.57572, -0.22687) 0.01953
15 (0.87402,0.04443) 0.90625 (0.90567, 0.03229) (0.57140, -0.22078) 0.01172
16 (0.93740, 0.02006) 0.95833 (0.95825, 0.01248) (0.57242, -0.21119) 0.00347
17 (0.97918,0.00473) 0.98958 (0.98958, 0.00129) (0.57626, -0.19959) 0.00043
18 (1.00000, -0.00226)

Table A.3: Data for a functional design curve of order k = 4 with a coefficient of lift
of 1.5. The tolerance used in satisfying the kinematic boundary condition was 3'.

m = 11 k = 4 C1 = 2.00000 V, = 0.47873
U = [0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1, 1]

Control vertices Node points

i Pi ip ip Vi Yi
0 (0.00000, 0.00000) 0.02083 (0.01860,0.00937) (0.39841,0.21106) 0.00174
1 (0.03730,0.01855) 0.08333 (0.07409,0.03816) (0.40032,0.22509) 0.01389
2 (0.11065,0.05825) 0.18750 (0.16733,0.08457) (0.42719,0.22332) 0.04687
3 (0.22350,0.11194) 0.31250 (0.28498,0.12814) (0.47630,0.18547) 0.07812
4 (0.34577,0.14610) 0.43750 (0.41069,0.15078) (0.51686,0.07036) 0.10937
5 (0.47513,0.15750) 0.56250 (0.54230,0.14918) (0.51184, -0.08322) 0.10937
6 (0.60926,0.14289) 0.68750 (0.67646,0.12330) (0.47037,-0.18144) 0.07812
7 (0.74380, 0.10547) 0.81250 (0.80893,0.07645) (0.43082, -0.20645) 0.04687
8 (0.87440,0.04840) 0.91667 (0.91623,0.02802) (0.41118,-0.20562) 0.01389
9 (0.95856, 0.00786) 0.97917 (0.97913, -0.00111) (0.41016, -0.19372) 0.00174
10 (0.99984, -0.01039)

Table A.4: Data for a functional design curve of order k = 4 with a coefficient of lift
of 2.0. The curve is 4 th order and contains m = 11 control
used in satisfying the kinematic boundary condition was 50.

verteices. The tolerance
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m =161 1 k = 2 C = 1.50000 I V, = 0.92096 1 I
U = [0.0, 0.0, 0.00625, 0.01250, 0.01875, 0.025, 0.03125, 0.03750, 0.04375, 0.050, 0.05625, 0.06250, 0.06875, 0.075,

0.08125, 0.08750, 0.09375, 0.1, 0.10625, 0.11250, 0.11875, 0.125,
0.13125, 0.13750, 0.14375, 0.150, 0.15625, 0.16250, 0.16875, 0.175, 0.18125, 0.18750, 0.19375, 0.2,

0.20625, 0.21250, 0.21875, 0.225, 0.23125, 0.23750, 0.24375, 0.250,
0.25625, 0.26250, 0.26875, 0.275, 0.28125, 0.28750, 0.29375, 0.3, 0.30625, 0.31250, 0.31875, 0.325,

0.33125, 0.33750, 0.34375, 0.350, 0.35625, 0.36250, 0.36875, 0.375,
0.38125, 0.38750, 0.39375, 0.4, 0.40625, 0.41250, 0.41875, 0.425, 0.43125, 0.43750, 0.44375, 0.450,

0.45625, 0.46250, 0.46875, 0.475, 0.48125, 0.48750, 0.49375, 0.5,
0.50625, 0.51250, 0.51875, 0.525, 0.53125, 0.53750, 0.54375, 0.550, 0.55625, 0.56250, 0.56875,

0.575, 0.58125, 0.58750, 0.59375, 0.6, 0.60625, 0.61250, 0.61875, 0.625,
0.63125, 0.63750, 0.64375, 0.650, 0.65625, 0.66250, 0.66875, 0.675, 0.68125, 0.68750, 0.69375, 0.7,

0.70625, 0.71250, 0.71875, 0.725, 0.73125, 0.73750, 0.74375, 0.750,
0.75625, 0.76250, 0.76875, 0.775, 0.78125, 0.78750, 0.79375, 0.8, 0.80625, 0.81250, 0.81875, 0.825,

0.83125, 0.83750, 0.84375, 0.850, 0.85625, 0.86250, 0.86875, 0.875,
0.88125, 0.88750, 0.89375, 0.9, 0.90625, 0.91250, 0.91875, 0.925, 0.93125, 0.93750, 0.94375,

0.950, 0.95625, 0.96250, 0.96875, 0.975, 0.98125, 0.98750, 0.99375, 1.0, 1.0]
Control vertices Node points

P; ui Qi, iiP
0 (0.00000,0.00000) 0.00313 (0.00269,0.00160) (0.73164,0.44187) 0.00020
1 (0.00537, 0.00320) 0.00938 (0.00806, 0.00479) (0.71889, 0.46413) 0.00059
2 (0.01074, 0.00639) 0.01562 (0.01337, 0.00809) (0.71080, 0.47953) 0.00098
3 (0.01599, 0.00978) 0.02188 (0.01862, 0.01148) (0.70664, 0.49154) 0.00137
4 (0.02125, 0.01318) 0.02813 (0.02385, 0.01491) (0.70518, 0.50070) 0.00176
5 (0.02645, 0.01665) 0.03438 (0.02905, 0.01838) (0.70685, 0.50801) 0.00215
6 (0.03165, 0.02012) 0.04063 (0.03425, 0.02185) (0.71067, 0.51322) 0.00254
7 (0.03685, 0.02358) 0.04688 (0.03945, 0.02532) (0.71731, 0.51699) 0.00293
8 (0.04205, 0.02705) 0.05313 (0.04468, 0.02874) (0.72581, 0.51865) 0.00332
9 (0.04730, 0.03044) 0.05937 (0.04992, 0.03214) (0.73709, 0.51869) 0.00371
10 (0.05255, 0.03384) 0.06563 (0.05522, 0.03547) (0.74991, 0.51631) 0.00410
11 (0.05788, 0.03710) 0.07188 (0.06055, 0.03873) (0.76539, 0.51193) 0.00449
12 (0.06322, 0.04036) 0.07813 (0.06594, 0.04189) (0.78218, 0.50419) 0.00488
13 (0.06867, 0.04343) 0.08438 (0.07140, 0.04496) (0.80184, 0.49324) 0.00527
14 (0.07413, 0.04649) 0.09063 (0.07694, 0.04788) (0.82200, 0.47669) 0.00566
15 (0.07975, 0.04928) 0.09688 (0.08257, 0.05067) (0.84482, 0.45233) 0.00605
16 (0.08538, 0.05206) 0.10313 (0.08829, 0.05329) (0.86662, 0.42121) 0.00625
17 (0.09120, 0.05452) 0.10938 (0.09411, 0.05574) (0.88264, 0.39298) 0.00625
18 (0.09701, 0.05697) 0.11563 (0.10000, 0.05805) (0.89476, 0.37065) 0.00625
19 (0.10298, 0.05914) 0.12187 (0.10596, 0.06022) (0.90273, 0.35137) 0.00625
20 (0.10894, 0.06131) 0.12812 (0.11197, 0.06228) (0.91014, 0.33425) 0.00625
21 (0.11500,0.06326) 0.13438 (0.11803,0.06423) (0.91564,0.31865) 0.00625
22 (0.12106,0.06521) 0.14062 (0.12412,0.06610) (0.92109,0.30438) 0.00625
23 (0.12719, 0.06699) 0.14688 (0.13025, 0.06788) (0.92564, 0.29121) 0.00625
24 (0.13332, 0.06877) 0.15313 (0.13641, 0.06958) (0.92994, 0.27877) 0.00625
25 (0.13950, 0.07039) 0.15938 (0.14259, 0.07120) (0.93337, 0.26699) 0.00625
26 (0.14568, 0.07201) 0.16563 (0.14879, 0.07275) (0.93688, 0.25585) 0.00625
27 (0.15190, 0.07350) 0.17188 (0.15502, 0.07424) (0.94002, 0.24531) 0.00625
28 (0.15813, 0.07498) 0.17813 (0.16126, 0.07566) (0.94295, 0.23513) 0.00625
29 (0.16439, 0.07634) 0.18438 (0.16752, 0.07702) (0.94533, 0.22532) 0.00625
30 (0.17065, 0.07770) 0.19062 (0.17379, 0.07833) (0.94782, 0.21589) 0.00625
31 (0.17693, 0.07895) 0.19688 (0.18008, 0.07958) (0.95016, 0.20684) 0.00625
32 (0.18322, 0.08020) 0.20312 (0.18638, 0.08077) (0.95230, 0.19800) 0.00625
33 (0.18953, 0.08134) 0.20938 (0.19269, 0.08191) (0.95401, 0.18939) 0.00625
34 (0.19585, 0.08248) 0.21563 (0.19901, 0.08300) (0.95586, 0.18104) 0.00625
35 (0.20218, 0.08352) 0.22187 (0.20535, 0.08404) (0.95767, 0.17294) 0.00625
36 (0.20851, 0.08456) 0.22813 (0.21169, 0.08503) (0.95928, 0.16497) 0.00625
37 (0.21486, 0.08550) 0.23438 (0.21804, 0.08597) (0.96054, 0.15717) 0.00625
38 (0.22122, 0.08644) 0.24062 (0.22440, 0.08687) (0.96195, 0.14953) 0.00625
39 (0.22758, 0.08729) 0.24688 (0.23077, 0.08772) (0.96339, 0.14207) 0.00625
40 (0.23395, 0.08815) 0.25312 (0.23714, 0.08853) (0.96462, 0.13470) 0.00625
41 (0.24033, 0.08891) 0.25938 (0.24352, 0.08929) (0.96554, 0.12745) 0.00625
42 (0.24671, 0.08967) 0.26562 (0.24991, 0.09001) (0.96661, 0.12030) 0.00625
43 (0.25311, 0.09035) 0.27188 (0.25630, 0.09070) (0.96776, 0.11328) 0.00625
44 (0.25950, 0.09104) 0.27813 (0.26270, 0.09133) (0.96870, 0.10632) 0.00625
45 (0.26590, 0.09163) 0.28438 (0.26911, 0.09193) (0.96935, 0.09945) 0.00625
46 (0.27231, 0.09223) 0.29063 (0.27552, 0.09249) (0.97016, 0.09264) 0.00625
47 (0.27872, 0.09275) 0.29688 (0.28193, 0.09301) (0.97108, 0.08591) 0.00625
48 (0.28514, 0.09327) 0.30313 (0.28835, 0.09349) (0.97178, 0.07922) 0.00625
49 (0.29156, 0.09370) 0.30938 (0.29477, 0.09392) (0.97221, 0.07260) 0.00625
50 (0.29799, 0.09414) 0.31563 (0.30120, 0.09432) (0.97280, 0.06601) 0.00625
51 (0.30442, 0.09450) 0.32188 (0.30763, 0.09469) (0.97352, 0.05945) 0.00625
52 (0.31085, 0.09487) 0.32813 (0.31407, 0.09501) (0.97401, 0.05293) 0.00625
53 (0.31729, 0.09515) 0.33438 (0.32051, 0.09529) (0.97424, 0.04645) 0.00625
54 (0.32373, 0.09543) 0.34063 (0.32695, 0.09554) (0.97464, 0.03997) 0.00625
55 (0.33018, 0.09564) 0.34688 (0.33340, 0.09575) (0.97519, 0.03349) 0.00625
56 (0.33662, 0.09586) 0.35313 (0.33985, 0.09592) (0.97549, 0.02703) 0.00625
57 (0.34308, 0.09599) 0.35938 (0.34630, 0.09605) (0.97554, 0.02060) 0.00625
58 (0.34953, 0.09612) 0.36563 (0.35276, 0.09615) (0.97575, 0.01414) 0.00625
59 (0.35599, 0.09617) 0.37188 (0.35922, 0.09620) (0.97612, 0.00763) 0.00625
60 (0.36245, 0.09623) 0.37812 (0.36568, 0.09622) (0.97624, 0.00114) 0.00625
61 (0.36891, 0.09621) 0.38438 (0.37214, 0.09620) (0.97611, -0.00534) 0.00625
62 (0.37538, 0.09619) 0.39062 (0.37861, 0.09614) (0.97613, -0.01190) 0.00625
63 (0.38184, 0.09609) 0.39688 (0.38508, 0.09604) (0.97633, -0.01853) 0.00625
64 (0.38831, 0.09599) 0.40313 (0.39155, 0.09590) (0.97625, -0.02517) 0.00625
65 (0.39479, 0.09581) 0.40938 (0.39803, 0.09572) (0.97593, -0.03182) 0.00625

Table A.6: Data for a functional B-spline curve of order k = 2 with a coefficient of
lift of C, = 1.5.



Control vertices Node points

66 (0.40126, 0.09563) 0.41563 (0.40450, 0.09550) (0.97574, -0.03859) 0.00625
67 (0.40774, 0.09538) 0.42188 (0.41098, 0.09525) (0.97574, -0.04548) 0.00625
68 (0.41422, 0.09512) 0.42813 (0.41747, 0.09494) (0.97542, -0.05242) 0.00625
69 (0.42071, 0.09477) 0.43438 (0.42395, 0.09460) (0.97488, -0.05940) 0.00625
70 (0.42719, 0.09442) 0.44062 (0.43044, 0.09421) (0.97442, -0.06656) 0.00625
71 (0.43368, 0.09399) 0.44688 (0.43693, 0.09378) (0.97417, -0.07393) 0.00625
72 (0.44017, 0.09356) 0.45312 (0.44342, 0.09330) (0.97354, -0.08139) 0.00625
73 (0.44666, 0.09303) 0.45938 (0.44991, 0.09277) (0.97269, -0.08898) 0.00625
74 (0.45316, 0.09251) 0.46563 (0.45641, 0.09219) (0.97185, -0.09685) 0.00625
75 (0.45966, 0.09188) 0.47187 (0.46291, 0.09157) (0.97121, -0.10511) 0.00625
76 (0.46615, 0.09126) 0.47812 (0.46941, 0.09089) (0.97004, -0.11361) 0.00625
77 (0.47266, 0.09052) 0.48438 (0.47591, 0.09015) (0.96863, -0.12252) 0.00625
78 (0.47916, 0.08979) 0.49062 (0.48242, 0.08936) (0.96678, -0.13207) 0.00625
79 (0.48568, 0.08893) 0.49688 (0.48893,0.08850) (0.96470, -0.14294) 0.00625
80 (0.49219, 0.08807) 0.50313 (0.49545, 0.08757) (0.96163, -0.15434) 0.00621
81 (0.49871, 0.08707) 0.50937 (0.50197, 0.08657) (0.95784, -0.16428) 0.00613
82 (0.50523, 0.08606) 0.51562 (0.50849, 0.08551) (0.95438, -0.17285) 0.00605
83 (0.51175, 0.08495) 0.52188 (0.51501, 0.08439) (0.95082, -0.18043) 0.00598
84 (0.51827, 0.08383) 0.52812 (0.52153, 0.08322) (0.94731, -0.18739) 0.00590
85 (0.52479, 0.08261) 0.53438 (0.52805, 0.08200) (0.94355, -0.19366) 0.00582
86 (0.53131, 0.08139) 0.54063 (0.53456, 0.08074) (0.94017, -0.19971) 0.00574
87 (0.53782, 0.08008) 0.54688 (0.54108, 0.07943) (0.93696, -0.20548) 0.00566
88 (0.54433, 0.07878) 0.55313 (0.54759, 0.07808) (0.93369, -0.21088) 0.00559
89 (0.55084, 0.07739) 0.55937 (0.55409, 0.07669) (0.93024, -0.21583) 0.00551
90 (0.55735, 0.07599) 0.56563 (0.56060, 0.07526) (0.92709, -0.22069) 0.00543
91 (0.56385, 0.07453) 0.57187 (0.56709, 0.07380) (0.92413, -0.22542) 0.00535
92 (0.57034, 0.07307) 0.57812 (0.57359, 0.07230) (0.92108, -0.22984) 0.00527
93 (0.57683, 0.07153) 0.58437 (0.58008, 0.07076) (0.91787, -0.23390) 0.00520
94 (0.58332, 0.06999) 0.59062 (0.58656, 0.06920) (0.91493, -0.23793) 0.00512
95 (0.58980, 0.06840) 0.59688 (0.59304, 0.06760) (0.91216, -0.24188) 0.00504
96 (0.59627, 0.06680) 0.60312 (0.59951, 0.06596) (0.90931, -0.24557) 0.00496
97 (0.60274, 0.06513) 0.60938 (0.60597, 0.06430) (0.90631, -0.24894) 0.00488
98 (0.60921, 0.06346) 0.61563 (0.61243, 0.06260) (0.90356, -0.25230) 0.00480
99 (0.61566, 0.06174) 0.62187 (0.61889, 0.06088) (0.90098, -0.25563) 0.00473

100 (0.62212, 0.06002) 0.62813 (0.62534, 0.05913) (0.89831, -0.25870) 0.00465
101 (0.62856, 0.05824) 0.63437 (0.63178, 0.05735) (0.89552, -0.26150) 0.00457
102 (0.63500, 0.05646) 0.64062 (0.63821, 0.05554) (0.89295, -0.26430) 0.00449
103 (0.64143, 0.05463) 0.64687 (0.64464, 0.05371) (0.89055, -- 0.26709) 0.00441
104 (0.64786, 0.05280) 0.65312 (0.65106, 0.05186) (0.88807, -0.26964) 0.00434
105 (0.65427, 0.05092) 0.65937 (0.65748, 0.04997) (0.88548, -0.27193) 0.00426
106 (0.66069, 0.04903) 0.66562 (0.66389, 0.04807) (0.88311, -0.27425) 0.00418
107 (0.66709, 0.04711) 0.67188 (0.67029, 0.04614) (0.88089, -0.27656) 0.00410
108 (0.67349, 0.04518) 0.67812 (0.67668, 0.04419) (0.87860, -0.27865) 0.00402
109 (0.67988, 0.04321) 0.68437 (0.68307, 0.04222) (0.87622, -0.28049) 0.00395
110 (0.68627, 0.04123) 0.69063 (0.68945, 0.04023) (0.87404, -0.28237) 0.00387
111 (0.69264, 0.03922) 0.69687 (0.69583, 0.03822) (0.87201, -0.28424) 0.00379
112 (0.69901, 0.03721) 0.70312 (0.70219, 0.03618) (0.86993, -0.28591) 0.00371
113 (0.70537, 0.03516) 0.70937 (0.70855, 0.03413) (0.86776, -0.28735) 0.00363
114 (0.71173, 0.03310) 0.71562 (0.71491, 0.03206) (0.86579, -0.28883) 0.00355
115 (0.71808, 0.03102) 0.72188 (0.72125, 0.02998) (0.86396, -0.29030) 0.00348
116 (0.72443, 0.02894) 0.72812 (0.72759, 0.02788) (0.86209, -0.29159) 0.00340
117 (0.73076, 0.02682) 0.73438 (0.73392, 0.02576) (0.86016, -0.29265) 0.00332
118 (0.73709, 0.02470) 0.74063 (0.74025, 0.02363) (0.85841, -0.29376) 0.00324
119 (0.74341, 0.02256) 0.74687 (0.74657, 0.02149) (0.85679, -0.29486) 0.00316
120 (0.74973, 0.02042) 0.75313 (0.75288, 0.01933) (0.85515, -0.29578) 0.00309
121 (0.75603, 0.01825) 0.75937 (0.75918, 0.01716) (0.85346, -0.29649) 0.00301
122 (0.76233, 0.01607) 0.76562 (0.76548, 0.01498) (0.85195, -0.29724) 0.00293
123 (0.76862, 0.01388) 0.77188 (0.77177, 0.01279) (0.85056, -0.29799) 0.00285
124 (0.77491, 0.01170) 0.77812 (0.77805, 0.01059) (0.84917, -0.29856) 0.00277
125 (0.78119, 0.00949) 0.78438 (0.78433, 0.00838) (0.84774, -0.29894) 0.00270
126 (0.78747, 0.00727) 0.79063 (0.79060, 0.00616) (0.84648, -0.29935) 0.00262
127 (0.79373, 0.00505) 0.79688 (0.79687, 0.00394) (0.84534, -0.29974) 0.00254
128 (0.80000, 0.00283) 0.80313 (0.80312, 0.00172) (0.84421, -0.29997) 0.00246
129 (0.80625, 0.00060) 0.80937 (0.80938, -0.00052) (0.84305, -0.30002) 0.00238
130 (0.81250, -0.00164) 0.81563 (0.81562, -0.00276) (0.84206, -0.30009) 0.00230

Table A.7: Data for a functional B-spline curve of order k = 2 with a coefficient of
lift of Cl = 1.5. (cont.)



Control vertices Node points

i Pi Uvi QiP vi P
131 (0.81874, -0.00388) 0.82188 (0.82186, -0.00499) (0.84120, -0.30013) 0.00223
132 (0.82498, -0.00611) 0.82812 (0.82809, -0.00724) (0.84035, -0.30002) 0.00215
133 (0.83121, -0.00836) 0.83438 (0.83432, -0.00948) (0.83949, -0.29973) 0.00207
134 (0.83744, -0.01060) 0.84063 (0.84054, -0.01172) (0.83879, -0.29945) 0.00199
135 (0.84365, -0.01284) 0.84688 (0.84676, -0.01396) (0.83821, -0.29912) 0.00191
136 (0.84987, -0.01508) 0.85313 (0.85297, -0.01620) (0.83766, -0.29865) 0.00184
137 (0.85607, -0.01732) 0.85938 (0.85918, -0.01844) (0.83712, -0.29800) 0.00176
138 (0.86228, -0.01955) 0.86563 (0.86538, -0.02067) (0.83673, -0.29734) 0.00168
139 (0.86848, -0.02178) 0.87187 (0.87157, -0.02289) (0.83646, -0.29661) 0.00160
140 (0.87467, -0.02400) 0.87813 (0.87777, -0.02510) (0.83623, -0.29574) 0.00152
141 (0.88086, -0.02621) 0.88437 (0.88395, -0.02732) (0.83603, -0.29469) 0.00145
142 (0.88705, -0.02842) 0.89062 (0.89014, -0.02951) (0.83597, -0.29359) 0.00137
143 (0.89323, -0.03061) 0.89688 (0.89631, -0.03170) (0.83604, -0.29241) 0.00129
144 (0.89940, -0.03279) 0.90312 (0.90249, -0.03388) (0.83616, -0.29107) 0.00121
145 (0.90558, -0.03496) 0.90938 (0.90866, -0.03604) (0.83632, -0.28954) 0.00113
146 (0.91175, -0.03713) 0.91563 (0.91483, -0.03819) (0.83664, -0.28792) 0.00105
147 (0.91791, -0.03926) 0.92188 (0.92099, -0.04032) (0.83707, -0.28618) 0.00098
148 (0.92407, -0.04139) 0.92813 (0.92715, -0.04243) (0.83757, -0.28425) 0.00090
149 (0.93023, -0.04348) 0.93437 (0.93331, -0.04453) (0.83814, -0.28210) 0.00082
150 (0.93639, -0.04558) 0.94063 (0.93947, -0.04661) (0.83886, -0.27981) 0.00074
151 (0.94255, -0.04763) 0.94687 (0.94562, -0.04866) (0.83971, -0.27731) 0.00066
152 (0.94870, -0.04968) 0.95312 (0.95178, -0.05068) (0.84065, -0.27457) 0.00059
153 (0.95485, -0.05168) 0.95937 (0.95793, -0.05269) (0.84170, -0.27153) 0.00051
154 (0.96100, -0.05369) 0.96562 (0.96408, -0.05466) (0.84291, -0.26821) 0.00043
155 (0.96715, -0.05562) 0.97188 (0.97023, -0.05659) (0.84427, -0.26454) 0.00035
156 (0.97330, -0.05756) 0.97812 (0.97637, -0.05850) (0.84579, -0.26041) 0.00027
157 (0.97945, -0.05943) 0.98438 (0.98252, -0.06037) (0.84749, -0.25570) 0.00020
158 (0.98560, -0.06130) 0.99063 (0.98867, -0.06219) (0.84947, -0.25020) 0.00012
159 (0.99175, -0.06307) 0.99687 (0.99482, -0.06396) (0.85186, -0.24326) 0.00004
160 (0.99790, -0.06485)

Table A.8:
lift of Cl =

Data for a functional B-spline curve of order k = 2 with a coefficient of
1.5. (cont.)

m 6 k = 3 Cl = 0 Vo = 0.93350
U = [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1]

Control vertices Node points

i P,(ip 10 Vi0 P 0i
0 (0.00000,0.00000) 0.06250 (0.06250, 0.00000) (0.93350,0.00000) 0.00000
1 (0.12500,0.00000) 0.25000 (0.25000, 0.00000) (0.93350,0.00000) 0.00000
2 (0.37500,0.00000) 0.50000 (0.50000,0.00000) (0.93350,0.00000) 0.00000
3 (0.62500,0.00000) 0.75000 (0.75000,0.00000) (0.93350,0.00000) 0.00000
4 (0.87500,0.00000) 0.93750 (0.93750,0.00000) (0.93350,0.00000) 0.00000
5 (1.00000, 0.00000)

Table A.9: Initial mean camber line shape for k = 3 and m = 6.



m = 10 k = 3 C1 = 1.50000 Vo = 0.93350
U - [0, , 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.87500, 1, 1, 1]

Control vertices Node points

fi i, Qi Vi
0 (0.00000, 0.00000) 0.03125 (0.02871, 0.01243) (0.82648, 0.41826) 0.01953
1 (0.05705,0.02594) 0.12500 (0.11712, 0.04320) (0.89723, 0.30487) 0.11687
2 (0.17719, 0.06046) 0.25000 (0.24028, 0.06904) (0.95899, 0.14079) 0.12500
3 (0.30337, 0.07761) 0.37500 (0.36698, 0.07847) (0.97492, 0.00717) 0.12500
4 (0.43059, 0.07932) 0.50000 (0.49472,0.07246) (0.95772, -0.12304) 0.12164
5 (0.55885,0.06559) 0.62500 (0.62255, 0.05428) (0.92507, -0.22428) 0.09375
6 (0.68624,0.04296) 0.75000 (0.74951,0.02719) (0.89611, -0.26993) 0.06250
7 (0.81277,0.01142) 0.87500 (0.87511, -0.00552) (0.88108, -0.26988) 0.03125
8 (0.93745, -0.02247) 0.96875 (0.96811, -0.03161) (0.87786, -0.25553) 0.00391
9 (0.99887, -0.04060)

Table A.10: Data for a functional B-spline curve of order k = 3 with a coefficient of
lift of C, = 1.5.

m = 6 k = 4 C 1 = 0 V7 = 0.93901
U = [0, 0, 0, 0, 0.33333, 0.66667, 1, 1, 1, 1]

Control vertices Node points
i Pi Uip (•i Vi P Yip
0 (0.00000, 0.00000) 0.05556 (0.05556, 0.00000) (0.93901, 0.00000) 0.00000
1 (0.11111, 0.00000) 0.22222 (0.22222, 0.00000) (0.93901, 0.00000) 0.00000
2 (0.33333, 0.00000) 0.50000 (0.50000, 0.00000) (0.93901, 0.00000) 0.00000
3 (0.66667,0.00000) 0.77778 (0.77778,0.00000) (0.93901, 0.00000) 0.00000
4 (0.88889,0.00000) 0.94444 (0.94444,0.00000) (0.93901,0.00000) 0.00000
5 (1.00000,0.00000)

Table A.11: Initial mean camber line shape for k = 4 and m = 6.

m = 6 k = 4 Ct = 1.50000 Vo = 0.93901
U = [0, 0, 0, 0, 0.33333, 0.66667, 1, 1, 1, 1]

Control vertices Node points

i Pi uii Vi P Yi
0 (0.00000, 0.00000) 0.05556 (0.05096, 0.02213) (0.87449, 0.33643) 0.06107
1 (0.10002, 0.04872) 0.22222 (0.21277, 0.06412) (0.95263,0.14554) 0.22222
2 (0.32404, 0.09143) 0.50000 (0.49508,0.06995) (0.95463, -0.08881) 0.30437
3 (0.66615, 0.05536) 0.77778 (0.77756, 0.01858) (0.90674, -0.23062) 0.09877
4 (0.88983, -0.01204) 0.94444 (0.94406, -0.02688) (0.88627, -0.24943) 0.01235
5 (0.99876, -0.04217)

Table A.12: Data for a functional B-spline curve of order k = 4 with a coefficient of
lift of C, = 1.5.



m =6 k = 5 Cl = 0 Vo = 0.93955
U =[0, 0, 0, 0, 0, 0.5, 1, 1, 1, 1, 1]

Control vertices Node points

i Pi Uip 1ip ViP Yi
o (0.00000, 0.00000) 0.06250 (0.06250,0.00000) (0.93955,0.00000) 0.00000
1 (0.12500, 0.00000) 0.25000 (0.25000, 0.00000) (0.93955, 0.00000) 0.00000
2 (0.37500, 0.00000) 0.50000 (0.50000, 0.00000) (0.93955, 0.00000) 0.00000
3 (0.62500, 0.00000) 0.75000 (0.75000, 0.00000) (0.93955, 0.00000) 0.00000
4 (0.87500, 0.00000) 0.93750 (0.93750,0.00000) (0.93955, 0.00000) 0.00000
5 (1.00000,0.00000)

Table A.13: Initial mean camber line shape for k = 5 and m = 6.

m = 6 k = 5 Cl = 1.50000 V, = 0.93955
U =[0, 0, 0, 0, 0, 0.5, 1, 1, 1, 1, 1]

Control vertices Node points

i Fi uip ii iY Tip
0 (0.00000, 0.00000) 0.06250 (0.05786, 0.02363) (0.88061, 0.32183) 0.07529
1 (0.11382, 0.05153) 0.25000 (0.24050, 0.06827) (0.95790, 0.12737) 0.25000
2 (0.36285, 0.10963) 0.50000 (0.49513, 0.06959) (0.95840, -0.10243) 0.23524
3 (0.62801, 0.06240) 0.75000 (0.74967, 0.02241) (0.90951, -0.22467) 0.12500
4 (0.87466, -0.01089) 0.93750 (0.93708, -0.02810) (0.88647, -0.24936) 0.01563
5 (0.99933, -0.04555)

Table A.14: Data for a functional B-spline curve of order k = 5 with a coefficient of
lift of Cl = 1.5.
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