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Abstract

New global information-bearing features improved the modeling of individual letters, thus
diminishing the error rate of an HMM-based on-line cursive handwriting recognition
system. This system also demonstrated the ability to recognize on-line cursive
handwriting in real time. The BYBLOS continuous speech recognition system, a hidden
Markov model (HMM) based recognition system, is applied to on-line cursive handwriting
recognition. With six original features, delta x, delta y, writing angle, delta writing angle,
PenUp/PenDown bit, and sgn(x-max(x)), the baseline system obtained a word error rate of
13.8% in a 25K-word lexicon, 86-character set, writer-independent task. Four new
groups of features, a vertical height feature, a space feature, hat stroke features, and
substroke features, were implemented to improve the characterization of vertical height,
inter-word space, and other global information. With the new features, the system
obtained a word error rate of 9.1%, a 34% reduction in error. Additionally, the space
feature and the substroke features each reduced the word error rate approximately 15%.
In addition, we demonstrated real-time, large vocabulary, writer-independent, on-line
cursive handwriting recognition without sacrificing much recognition accuracy of the
baseline system by implementing minor modifications to the baseline handwriting
recognition system. The details of the on-line cursive handwriting recognition system, the
feature experiments, and the real-time demonstration system are presented.

Thesis Supervisors: Dr. John Makhoul and Dr. Victor W. Zue
Titles: Chief Scientist, Speech and Language Department, BBN Corp. and

Senior Research Scientist, Dept. ofEECS, MIT
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1. Introduction

Handwriting recognition can be divided by its input method into two categories:

off-line handwriting recognition and on-line handwriting recognition. For off-line

recognition, the writing is usually captured optically by a scanner. For on-line recognition,

a digitizer samples the handwriting to time-sequenced pixels as it is being written. Hence,

the on-line handwriting signal contains additional time information which is not presented

in the off-line signal. This thesis addresses the problem of on-line handwriting recognition.

On-line handwriting recognition technology has great potential for improving

human-machine interaction. For example, without a keyboard, portable computers could

be smaller; writing down a mathematical equation by hand would be more natural; and

taking notes with a pen-based portable computer would be free of keyboard clicking.

These are just a few of the possible benefits. Products including the NewtonTM from

Apple and personal digital assistants from AT&T and Hewlett Packard have already

started to incorporate on-line handwriting recognition technology.

About ten years ago, advances in tablet digitizer technology brought on a wave of

interest in the on-line handwriting recognition research arena. However, after ten years,

some of the toughest problems of on-line handwriting recognition remain. A few on-line

handwriting recognition systems have demonstrated highly accurate recognition results by

imposing constraints such as printed writing style, writer-dependence, and small

vocabulary size. Each of these issues will de discussed in detail in the next section. These

constraints can make on-line handwriting recognition considerably easier, but for on-line

handwriting recognition technology to have the full benefits mentioned above, the systems

must be independent of these constraints.

The focus in this thesis will be an on-line handwriting recognition system that is

mostly free of these constraints. Namely, a system performs cursive, large vocabulary,
and writer-independent (WI) on-line handwriting recognition, as well as the ability to

perform this task in real time.



1.1 Issues of On-line Handwriting Recognition

1.1.1 Styles of Handwriting: Printed vs. Cursive

The difficulty of handwriting recognition varies greatly with different writing

styles. Figure 1-1 illustrates different writing styles in English. The writing style of the

first three lines is commonly referred to as printed or discrete handwriting, in which the

writer is told to write each character within a bounding box or to separate each character.

The writing style of the fourth line is commonly referred to as pure cursive or connected

handwriting, in which the writers are told to connect all of the lower case characters

within a word. Most people write in a mixed style, a combination of printed and cursive

styles, similar to the writing on the fifth line.

Spaced Discrete Characters

Ruinma dl-crmij wr04g4e, cam-ICsrs

Figure 1-1: Types of English writing styles [1].

Both printed and cursive handwriting recognition are difficult tasks because of the

great amount of variability present in the on-line handwriting signal. The variability is

present both in time and signal space. Variability in time refers to variation in writing

speed, while variability in signal space refers to the shape changes of the individual

characters. It is rare to find two identically written characters. The difficulty of

recognizing handwriting lies in constructing accurate and robust models to accommodate

the variability in time and feature space.

In addition to these two types of variability in time and signal space, cursive

handwriting has another type of variability in time which makes this task even more

difficult. This additional type of variability is due to the fact that no clear inter-character

boundaries (where one character starts or ends) exist. In printed handwriting, a pen-lift

defines these boundaries between characters. However, in cursive handwriting the pen-lift



cues simply do not exist. Cursive-style handwriting recognition is more difficult because

the recognizer has to perform the error-prone step of character segmentation, either

explicitly or implicitly. In this project, only cursive handwriting will be directly

investigated.

1.1.2 Writer-Dependent vs. Writer-Independent

A writer-independent (WI) system is capable of recognizing handwriting from

users whose writing the system has not seen during training. In general, WI systems are

much more difficult to construct than writer-dependent (WD) ones. Humans are capable

of WI recognition. However, we are better at WD recognition than WI recognition tasks,

i.e., generally we can recognize our own handwriting better than a stranger's handwriting.

The WI systems are more difficult to construct because the variability of

handwriting across writers is much greater than the handwriting of a writer. For WD

tasks, the system is only required to learn a few handwriting styles. On the other hand, for

WI tasks, the system must learn invariant and generalized characteristics of handwriting.

1.1.3 Closed-Vocabulary vs. Open-Vocabulary

Vocabulary is also a major factor in determining how difficult a handwriting

recognition task is. Closed-vocabulary tasks refer to recognition of words from a

predetermined dictionary. The dictionary size is arbitrary. Open-vocabulary tasks refer to

recognition of any words without the constraint of being in a dictionary.

Closed-vocabulary tasks are easier than open-vocabulary ones because only certain

sequences of letters are possible when limited by a dictionary.

Closed-vocabulary tasks using a small dictionary are especially easy because: 1) a

small vocabulary size can mean a smaller number of confusable word pairs; 2) a small

vocabulary size enables the direct modeling of individual words, whereas a large

vocabulary size necessitates the modeling of letters, which is due to the computational

complexity of modeling words directly; 3) with the usage of letters for large vocabulary

tasks, the search space of all possible sentences is usually much larger due to an increase in

the number of nodes in the search graph. When letters are used for modeling instead of



words, the number of nodes is m x n instead of n where n is the number of words, and m

is the average number of letters per word (generally between three and ten).

As the vocabulary size increases, the occurrence of out-of-vocabulary words is

less frequent. Thus, the performance of the large vocabulary tasks is approximately the

same as of the performance of the open-vocabulary tasks.

1.2 Background

Since the improvement of tablet digitizer technology about ten years ago, many

researchers around the world have developed an interest in on-line handwriting

recognition. Initially, research focused on template matching approaches. While these

approaches gave reasonable results on printed or discrete handwriting, they had very

limited success with cursive handwriting due to difficulty in accurately and reliably

locating character boundaries. Tappert gives a complete review of this approach [2].

Recently, several research sites have started to focus on statistical approaches,

especially hidden Markov models (HMMs), for on-line handwriting recognition. HMMs'

success in the speech recognition domain has motivated the use of HMMs in the on-line

handwriting domain. HMMs have proven themselves to be effective mathematical models

for characterizing the variance both in time and signal space presented in speech signals [3,

4]. Several research sites have built on-line handwriting recognition system using HMMs.

Below is a summary of their work with emphasis on the features used:

* Nag et al. [5] at Cambridge University (CU) utilized angle and sharp turning-point

indicators to recognize the words for the numbers one to ten. It achieved a 98.5%

correct rate.

* Bellegarda et al. [6, 7] at IBM used local position, curvature, and global information

bearing features to recognize characters from on an 81 character data corpus. It

achieved an 18.9% character error rate without grammar in WI mode.

* Starner et al. [8] [9] at BBN used angle, delta angle, delta x (x is the horizontal

position), delta y (y is the vertical position), pen lifts, and sgn(x-max(x)) features to



recognize words from a 25K word corpus. With a bi-gram grammar, it achieved a

4.2% word error rate in WD mode. In the WI mode, the word error rate was 13.8%..

Schenkel et al. [10] at AT&T used x and y coordinates, pen-lifts, speed, direction, and

curvature features to recognize words from a 25K word corpus, it achieved an

approximately 20% word error rate with a dictionary in WI mode.

Table 1-1: Summary of HMM-based on-line handwriting recognition systems

Features WI Character Voca- Grammar Char- Word
vs. Set bulary acter Error

WD Size Size Error (%)

CU '86 angle, sharp turning - 15 10 No - 1.52

IBM local position, WI 81 300 No 18.9 -
'94 curvature,

global information
BBN angle, delta angle, WD 89 25,595 bi-gram 1.4 4.2
WD '94 delta x, delta y,

pen-lifts, sgn(x-max(x))
BBN same as above WI 89 25,595 bi-gram - 13.8
WI '95
AT&T x, y, pen-lifts, speed, WI 52 -25,000 No 112 202
'94 direction, curvature

Table 1-1 illustrates the most important

recognition systems. Bear in mind that the

systems with each other because these e

features of HMM-based on-line handwriting

error rates alone do not suffice for comparing

rror rates were obtained using very different

parameters, such as variable data corpora, grammar usage, etc. This comparison of error

rates is only valid if the data corpora and other conditions are the same.

1.3 Summary and Research Goals

With the increasing demand for general purpose on-line handwriting recognition

technology, research in the area of on-line handwriting recognition has shifted away from

the traditional template-matching techniques. More sophisticated techniques have been

'The writer-independent result was not reported in [8] [9]. The author of this thesis obtained the writer-
independent result for comparison purposes.
2 The error rate is commonly referred to as the sum of three separate error components: the insertion error,
the deletion error, and the substitution error. Here, the original author reported the substitution error
only, so the error percentage should be even larger.



experimentally applied to the harder problems of cursively written, WI, and large

vocabulary on-line handwriting recognition.

Much of the recent work in on-line handwriting recognition has been on adapting

well-known HMM algorithms in speech recognition to these difficult on-line handwriting

problems. However, most of the work has been in feasibility studies. These studies have

shown HMMs to be effective in solving these difficult on-line handwriting problems.

Little research has been focused on the optimal representation of on-line handwriting, i.e.,

the kind of features that should be used. In the speech domain, after years of research and

experimentation, Mel-frequency cepstral coefficients and delta Mel-frequency cepstral

coefficients have become the de facto features of choice. In the handwriting domain, it is

not yet clear which features are best.

In this thesis, answers to some of these questions will be explored while focusing

on useful features to effectively adapt the modeling and decoding techniques of an

HMM-based pattern recognizer. We will also attempt to build a real-time handwriting

recognition system. It is only through a real-time system that a potential user can

effectively evaluate how usable this on-line technology really is.

In Chapter 2, a clear definition of hidden Markov models will help to explain how

they are used for on-line handwriting recognition. For the feature experiment, we will

describe the on-line handwriting data corpus in Chapter 3, the baseline on-line handwriting

recognition system in Chapter 4, and the details of the feature experiments in Chapter 5.

In Chapter 6, the real-time on-line cursive handwriting recognition demonstration system

is described. Chapter 7 draws conclusions and suggests directions for future work.



2. Hidden Markov Models for On-line Handwriting

Recognition

Hidden Markov Models (HMMs) were initially developed in the 1960's by Baum

and Eagon at the Institute for Defense Analyses (IDA) [11-13]. In the 1970's, Baker at

Carnegie-Mellon University (CMU) [14], Jelinek at IBM [15], and other applied HMMs

to the problem of speech recognition. In 1980, IDA invited a number of research

organizations in speech recognition, among them were AT&T and BBN, for a workshop

on HMMs. In the mid 1980's, several HMM-based speech recognition systems from

AT&T, BBN, and CMU showed superior results [16-18]. The success of these systems

dramatically increased interest in applying HMMs to continuous speech recognition and

other difficult pattern recognition problems such as handwriting recognition.

There are two types of HMMs classified by their observation densities:

discrete-density HMMs and continuous-density HMMs. For simplicity, the discussion

here will be limited to discrete-density HMMs. A more detailed explanation of HMMs can

be found in [4, 18, 19].

2.1 Model Parameters of Hidden Markov Model'

Hidden Markov models (HMMs) can be viewed as extensions of discrete-state

Markov processes. To fully understand HMMs, a review of the discrete-state Markov

process is necessary, as well as an explicit definition of the extension.

2.1.1 Discrete-State Markov Process

A Markov process is a stochastic process whose future behavior depends only on

its present state, not on the past, i.e., it satisfies the Markov condition. A discrete-state

Markov process can be in one of a set of N distinct discrete states, S , S2, ..., SN at any

given time. In Figure 2-1, the number N of distinct discrete states is 3. Let Q' denote the

process state at time n. The probability of the process being in state Si at time n is denoted

1 The material presented in this section is based on [20], [4], and [18].



by P(Q.=Sd. Specifically, the Markov condition (or the state-independence assumption)

states:

P(Q.=SiIQ. =SiQ-S, 2a,... ,Qo=Sd)=P(Q.=S1IQ..( =S), Vi,j, a, b, and n. ( 2.1)

Figure 2-1: Illustration of a Markov chain with 3 states (labeled S1, S2, and S3).

Since a discrete-state Markov process satisfies the Markov condition, the initial

state probabilities and the state transition probabilities together characterize the process

completely. The initial state probabilities are denoted I=(r,i), where:

;r,=P(Qo=Sdi, 1 •i _N. (2.2)
The state transition probabilities are denoted A= {af), where:

ay.=P(Q,=SjyQ,.I=Sd, 1 _i, j <N, and (2.3 )

a. = 1, Vi. (2.4)

In Figure 2-1,

a a,2  a,1 (2.5)
A= {a}= a2, a22 a23  and

[a3, a32 a33 j,

Pr{= [k};lr, ;r2 .r3 (2.6)

The duple, (A, I}V, completely parameterizes a discrete-state Markov process. For a more

detailed treatment, refer to [21].



2.1.2 Hidden Markov Models: An Extension of Discrete-State Markov

Processes

Each state of a discrete-state Markov process can be associated with a

deterministic observation, i.e., the symbol O is always observed when the process is in the

state i. However, for most speech or handwriting recognition applications, the constraint

of a deterministic observation for each state in the model is too restrictive. When this

constraint is eliminated by allowing the observation within each state to be probabilistic,

we obtain a hidden Markov model. In this extended model, the observation sequence

does not have a corresponding deterministic state sequence. In general, there are many

possible state sequences which generate an observation sequence. Hence, the state

sequence is hidden.

bnl

Figure 2-2: Illustration of a hidden Markov model with 3 states.

Now, a formal definition for HMMs will be given. Let M be the number of distinct

observation symbols in each state. Let On be the observation at time n. An event for

which the observation symbol is k is denoted by vk. The state observation probabilities

are B = {b, }I, where

bk = P(O,=vk, =S,), 1•i<Nand l•k<M. (2.7)

Since an HMM satisfies an additional output independence assumption, we have:

I



P(OnvklO,.I=va,O,.2=vb,...,Oo=vc,Qn=S,=P(On=vklQn=S), Ik, a, b, c, and n. (2.8)
The triple, (A, B, IV, is a complete parameter set of an HMM. Let X denote this triple,

i.e., 2A= A, B, 17}. In Figure 2-2, the number of distinct discrete states, N=3. The number

of observation symbols, M=2. The state transition probabilities are

a,, al2  a13
A= {a)=|, a2 , a a (2.9)

a31 a32  a33

The state observation probabilities are

bb,o b,1
B=(b•, =l b20b21  (2.10 )

Lb3 b31 .

And the initial state probabilities are

1I=(ck}=[rk I , 2 ; 3]. (2.11)

2.2 Three Basic HMM Problems'

Given the hidden Markov model defined in the previous section, three basic

problems of interest need to be solved efficiently; an explanation for why the three

problems will be given in the next section:

* The Evaluation Problem: Given an observation sequence, 0=002... OT, and the

complete parameter set of an HMM, A2=(A, B, IM}, what is P(OJA), the probability of

the observation sequence O given the model parameter set 2?

* The Decoding Problem: Given an observation sequence O and the complete

parameter set of an HMM 2, what is the optimal state sequence Q=QIQ2... QT which

maximizes P(Q, 01A)?

* The Training Problem: Given an observation sequence O, what is the optimal model

A which maximizes P(01A)?

' The material presented in this section is based on [20], [4], and [18].
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2.2.1 A Solution to the Evaluation Problem - The Forward Algorithm

The evaluation problem is to compute P(OjA), the probability of the observation

sequence, 0=0102... Or, given the model parameter A.

Since the state sequence, Q=QQ2... Qr, corresponding to the observation

sequence O is hidden, P(01i2) has to be computed by summing P(O, QjiA) over all possible

state sequences.

P(01) = A P(O, QjI) (2.12)

P(O, QjA) =P(OIQ, 2) P(Q I2). (2.13)

According to the state independence assumption ( 2.1 ), we can write:

P(QI ) = ~rqo aa , ,1aQ, 2 ...aQ, ,. (2.14)

Also, the output independence assumption ( 2.8 ) allows us to conclude:

P(OlQ, A) = bQoo bo20 ... bQ?, . (2.15)

Therefore,

P(014) = 2r• ( - a a. .. .a •,, (b, bQOo ...b2o). (2.16)
allQ

The direct calculation of P(OI) ( 2.16 ) involves calculations on the order of

2TNr. This computation becomes unfeasible as the number of possible states, N, or the

length of the observation sequence T increases. This necessitates a more efficient way of

computing P(01 ).

Fortunately, an efficient algorithm exists. First, let us define the forward variable:

aj(i)=P(O 02 ... Oh, Qt=SI 2). (2.17)

The variable af(i) denotes the joint probability of the partial observation sequence,

010 ... Ot, and the state Si at time t, given the model A. It can be calculated recursively:

S n,b, t=l, l<iN

a,(i) = F j =1  t=1 :,o, (2.18)
at_(j)a , , 2<VT aT ý,I<iN.

From the definition of the forward variable ( 2.17 ), it is clear that the probability of the

entire sequence can be expressed as:



N (2.19)
P(OIA) = a(i).

i=1

Equations ( 2.17 ) through ( 2.19 ) illustrate how to compute P(OIA) by first

recursively evaluating the forward variables, aWi), from t=l to t=T ( 2.18 ), and then

summing all the forward variables at time T, the ar(i)'s ( 2.19 ). The above steps are often

referred to as theforward algorithm. The number of calculations involved is on the order

of TN2 instead of 2TNT ( 2.16 ). Hence, the forward algorithm can be used to solve the

evaluation problem much more efficiently.

2.2.2 A Solution to the Decoding Problem - The Viterbi Algorithm

The decoding problem involves finding an optimal state sequence given the

observation sequence, 0=0102...Or, and the model parameter A. Assume that the

optimality criterion is to maximize P(Q, 012), the joint probability of the state sequence,

Q=QQ2... Qr, and the observation sequence O given the model X. The optimal state

sequence is denoted by Q*.

The well-known Viterbi algorithm, based on dynamic programming, solves exactly

this optimization problem. In it, 8(i) denotes the maximum probability of the optimal

partial state sequence, QIQ2...Qt,, with the state S, at time t and observing the partial

observation sequence, 0102... Ot, given the model X.

8,(i)= max P(Q, Qe,...Qt-_Q, =S,,OO,...oIA). (2.20)
QIQ2 ...Ot-I

Much like the forward variable aWi), 8(Y) can be calculated recursively:

I xb~o t = 1, 1<i<N

8t(i)= max, ,(j)abo 2t Tr, 1_i.N. (2.21)
! g gN N - 1t 

5 _--

From the definition of 8(i) ( 2.20 ), it is clear that

P(Q', 0A) = max• (i). (2.22)

Using ( 2.21 ) and ( 2.22 ), one can compute the joint probability of the optimal

state sequence and the observation sequence given the model, P(Q*, 01A). Note that the

memory usage is very efficient, i.e., at any time t, only N forward variables, 4(i) need to



be stored. By keeping track of the argument i in both equations as P(Q, 012) is being

maximized, one can recover the optimal state sequence completely.

Also note that P(Q;, 01) can be viewed as the biggest component of P(OIA) in

( 2.12 ). When P(Q", 01) is a good approximation of P(OIA), one can use the Viterbi

algorithm instead of the forward algorithm for the evaluation problem. This will conserve

computation. Since the computational complexity of the Viterbi algorithm is even less

than that of the forward algorithm. For speech recognition applications, this

approximation is sometimes used during recognition or training.

2.2.3 A Solution to the Training Problem - The Baum-Welch Algorithm

The training problem computes the optimal model parameter, X, given an

observation sequence, 0=0102... Or. Here, the optimality criterion is to maximize

P(O2), the probability of the observation sequence given the model X. The training

problem is by far the most difficult of the three basic problems. In fact, no known

analytical solution exists for this optimization problem. However, an iterative procedure

known as the Baum-Welch algorithm or forward-backward algorithm guarantees a locally

optimal solution to the training problem. The Baum-Welch algorithm is a special case of

the EM (Expectation-Maximization) algorithm [22]. In this section, we describe the

Baum-Welch Algorithm.

First, let us define the backward variable:

f(i)=P(O,+, O, 2 ... OrlQt=S,, ). (2.23)

The variable &l1() denotes the probability of the partial observation sequence, Ot+l Ot,2 ...

OT, given the state S, at time t and the model A. The backward variable is similar to the

forward variable ( 2.17 ). It can also be calculated recursively:

S 1 t = T, 1 i< N

A W(i)= l (j)abo,+, 25t: T, l :i<N. (2.24)

From the definition of the backward variable ( 2.23 ) and the definition of the initial state

probabilities ( 2.2 ), it is clear that



N( 2.25)P(ol ) = (i)r ,( 5
i=1

Second, let us define 4(i, j), the joint probability of the state Si at time t and the

state S, at time t+1, given the observation sequence 0 and the model X.

,t(i, j)=P(Qt = Sj, Qt+, = SJlO, iA). ( 2.26 )

ýt(i, j) can be completely expressed in terms of the forward variable, the backward

variable, and the model X.

P(Q, = S, Q,,, = s, ,oIA)
P(OIA)

a, (i)aub0o, ,+i U() ( 2.27)
NN

Sat (i)aybio,,f+, •()
i=1 j=1

Note that the denominator of ( 2.27 ) needs to be calculated only once. This quantity,

which is equivalent to P(OIA), is often referred to as the alpha terminal. It indicates how

well the model X matches the observation sequence O.

With the current model as A=(A, B, 1I), we can iteratively reestimate the model,

2= (A,B, i), where

T-I

- _t=, (2.28)
lij = T-I N

t=1 j=1

T N

- t=nO,-v- j-- and (2.29)
i N ,and

t=1 J=1

N (2.30)
KE = (ij)A

j=I

a. can be seen as the ratio of the expected number of transitions from state S, to Si to the

expected number of transitions from state Si to any state. Similarly, bL. can be seen as the

ratio of the expected number of times in state i while observing the symbol vk to the



expected number of times in state i. ir, can be seen as the expected number of times in

state Si at time t=l.

The above iterative procedure for updating the model X is the essence of the

Baum-Welch algorithm. Baum and others have proven that P(OI2) > P(01•A) for every

iteration of the algorithm [22, 23]. Hence, P(OlI0) P(OjA) is used as the stopping

criterion for the algorithm. The likelihood function, P(O1A) will eventually converge to a

local maximum.

2.3 Using HMMs for On-line Handwriting Recognition

Now, armed with these tools, one can solve all the basic problems associated with

an HMM. Why should one use HMMs to model on-line cursive handwriting? How does

one use HMMs for on-line cursive handwriting recognition?

These questions will be answered by showing how one can model letters, words,

and sentences with HMMs, and how one can perform the recognition of isolated words

and sentences based on the solutions to the three basic HMM problems.

2.3.1 Modeling Letters, Words, and Sentences with HMMs

In this section, the modeling of letters, words, and sentences is described

respectively.

2.3.1.1 Modeling Letters

The most natural unit of handwriting is a letter. A letter is represented by a 7-state

left-to-right HMM. The HMM model is illustrated in Figure 2-3.

Figure 2-3: A 7-state HMM for a letter.
The left-to-right type of HMM, a special class of HMMs, have an additional

property that the state index is non-decreasing as the time increases, i.e.



ay = P(Qn=SyIQn.,=S = O, i > j. ( 2.31)

Since the left-to-right HMM can effectively model the time-dependent property in a signal,

the on-line handwriting signal can be modeled by the left-to-right model. The number of

states, 7, was chosen experimentally to maximize the recognition accuracy [5].

Every state of the HMM has a self transition loop. Also, the first five states can

make transitions which skip the immediate next states. These skipping transitions give the

HMM flexibility to model the variability in time. Because of these skipping transitions, the

minimum length of an observation sequence for a letter is four, i.e., going through the

state Si, S3, Ss, and S7 once each. For this on-line cursive handwriting recognition

task, 89 letter symbols were used. Consequently, we used 89 different 7-state HMMs to

model them. However, one 7-state HMM per letter symbol is not enough. Contextual

effects of cursive handwriting introduce some variability. For example, the letter "i"

written after an "m " can be very different from that after a "v" (see Figure 2-4). HMMs

modeling trigraphs instead of HMMs modeling letters can be used to model these

contextual effects. Each trigraph represents a combination of three letters. "p[e]n"

denotes a trigraph of letter "e" with left-context letter "p" and right-context letter "n".

Theoretically, up to 704969 (893) trigraphs would be used. However, in English only a

small subset of them are frequently presented (about 6,500 in the training data portion of

the BBN handwriting data corpus).

Figure 2-4: Illustration of contextual effects on a cursively written "i". The left "i"
is written after an "m"; the right "i" is written after a "v".

2.3.1.2 Modeling Words

A word is made of a sequence of letters. Knowing how to model a letter with HMMs,

one can model words simply by concatenating a number of 7-state HMMs, each of which

models a letter. For example, an HMM for the letter "p ", an HMM for the letter "e ", and

an HMM for the letter "n " form the HMM model for the word, "pen" (see Figure 2-5).



Figure 2-5: Illustration of an HMM modeling of the word "pen ", consists of three
7-state HMMs for the trigraph " [pe", "p'[e]n", and "e[n] ".

As a rule in cursive writing, for words with the letters "i", 'j", "x i, or "t", the

writer adds the dots or crosses at the end of writing the word. Let call these dots or

crosses the dot and cross strokes. To model these words, letter-HMMs modeling three

special characters, the "i" or "j" dot, the "t" cross, and the "x" cross, can be concatenated

to the end of the HMM modeling these words. However, since these dots and crosses can

be written in an arbitrary order, each of these words would have multiple word-HMMs

representing each of them. The number of word-HMMs representing the same word can

grow quite large as the number of "i", 'Y", "x", or "t" letters increase. To simplify,

these special letters are represented by a single letter, the "backspace" character.

Therefore, for each letter, "i", 'Y", "x", or "t" in any word, we simply concatenate one

more 7-state HMM for the "backspace" letter. For example, the HMM model of the

word 'it' consists of four individual 7-state HMMs, each of which represents the letter

i, "t", "backspace ", and "backspace ", respectively.

2.3.1.3 Modeling Sentences

Although the number of all possible words is limited in this recognition task

(25,595 words in total), the number of sentences that can be composed with these words

is very large. To model each sentence explicitly is simply computationally impossible.

Fortunately, a probabilistic sentence network can be constructed to represent all of the

possible sentences.

Let us assume that the words in a sentence satisfy the Markov condition:



P(WnI Wn.., Wn-2,..., Wa)=P(WnI Wn.), ni. (2.32)

The Markov condition of word in a sentence means that the current word is only

dependent on the previous word, and not any other previous words. P(WI W..) is called

the bigram probability. The bigram probabilities and the initial word probabilities,

P(W), together specify a bigram grammar for sentences. The probability of any sentence

composed of a set of words, WoW,... W. W,., can be approximated with this bigram

grammar:

P(WoWI ...W,.I Wn #P(Wo)P(WI|W)P(W2 Wi),...P(W,.II Wn-.Z)P(W I W•.). (2.33)

For example, Figure 2-6 shows a simple bigram grammar made up of words such as "It",

'"IT "is", "am", "orange", and "young". This bigram grammar encodes knowledge about

what sentences made out of words "It", "I", "is", "am", "orange", and "young" are more

likely and which are not. For instance, "It is orange", "It is young", and "I am young",

these three sentences are all quite plausible, while the sentence, "I am orange", is not.

n %%-

Figure 2-6: Illustration of a simple bigram grammar for sentences composed of the
words "It", "I", "is", "am", "orange", and "young".

The bigram grammar can be estimated from a sentence data corpus. Here, the data

corpus consists of approximately two million sentences taken from the Wall Street Journal

from 1987 to1989. The sentences were used to compute the bigram probabilities and

initial word probabilities.

To model all possible sentences made of the 25,595 words with HMMs, we

constructed a bigram grammar with all of these words using the Wall Street Journal

sentence data corpus. Then, we replaced each node of the bigram grammar with the

HMM model for the corresponding word. This new composite HMM represents all

possible sentences made of the 25,595 words.



2.3.2 Recognition of Handwritten Isolated Letters Using HMMs

Now, let us assume that an observation sequence, 0=010... OTr, is to be obtained

from someone writing an isolated letter. Furthermore, let us assume that the HMM model

parameters, A=({Ai, B,, TI}, for each of the 89 letters are known. The problem of

recognizing isolated handwriting letters is equivalent to deciding from which one of 89

letters the observation sequence O is observed.

Since we are able to solve the evaluation problem, it is possible to perform isolated

letter recognition using HMMs. First, we can compute P(OjA.), which is the probability of

the observation sequence O given the HMM model parameters for each of 89 letters using

the forward algorithm. Then the letter corresponding to the maximum probability, P(OjIA),

is chosen as the optimal answer. According to Bayesian classification theory, picking this

letter minimizes the probability of error, therefore:

lo, = arg max P(OI2). (2.34)
E{ss88 ledes)

2.3.3 Recognition of Cursively Handwritten Sentences Using HMMs

The problem of recognizing cursively handwritten sentences is equivalent to

deciding from which sentence an observation sequence, 0=0102... OT, is observed. Here,

we not only assume that the HMM model parameters of each letter, A=({Ai, Bi, 1I}, are

known, but that the parameters of the bigram grammar are also known.

Since the decoding problem is now solvable, it is possible to perform sentence

recognition using HMMs. First, we can compute the optimal state sequence,

Q*'=Q*Q2* ...Q which corresponds to the observation sequence using the Viterbi

algorithm. Since the optimal state sequence is associated with a deterministic sequence of

letters and words, this sequence of words is the desired result for the sentence. One might

suggest using the forward algorithm for isolated letter recognition to solve the problem of

sentence recognition. In fact, one could. Imagine having a unique HMM for each

sentence i. It would then be necessary to compute the probability P(OijA2 for each

sentence. Since the number of possible sentences grows exponentially with the number of

words, this method of utilizing the forward algorithm is computationally impractical.



Therefore, it is necessary to use the Viterbi algorithm in order to solve the problem of

sentence recognition.

2.4 Summary

By extending the discrete-state Markov process to define HMMs, the HMMs are

able to model both the variance in time and signal space presented in cursively written

letters, words, and sentences. Solutions to three basic problems of HMMs enabled us to

perform various cursive handwriting recognition tasks: the solution to the training problem

for training the HMM model parameters, the solution to the evaluation problem for

handwriting recognition of isolated letters, and the solution to the decoding problem for

handwriting recognition of sentences. The solutions to these problems are fundamental in

explaining the feature experiments for HMM-based on-line handwriting recognition

systems. Before one can fully appreciate the details of the feature experiments, an in-

depth description of the data corpus as well as the baseline system is necessary.



3. BBN On-line Cursive Handwriting Data Corpus

3.1 Overview

The feature experiments were run on the BBN on-line cursive handwriting data

corpus. The corpus contains cursive handwritten sentences from the ARPA Wall Street

Journal task [24]. It contains 25,595 words made up of 89 unique symbols: 52 lower and

upper case letters, 10 digits, 24 punctuation marks, a special symbol, space, and

backspace. Refer to Appendix A for a detailed listing of the symbols. Individual digits

and punctuation marks are considered as words. Refer to Appendix B for a sample list of

words from the data corpus. The backspace symbol models "t" and "x" crosses, and "i" and

'f' dots. On average, a sentence has about 25 words. Figure 3-1 illustrates a typical

sentence from this corpus.

Figure 3-1: Sample handwriting from experimental corpus. (Transcription: Pierre
Vinken, 61 years old, owes AT&T $30,981 by Nov. 21, 1989.)

3.2 Building BBN On-line Cursive Handwriting Data Corpus

3.2.1 Data Collection

The handwriting was sampled by a GRiD TM Pen Top computer (Model 2260). The

GRiDTM computer runs on an Intel 80386SL CPU with Microsoft Windows for Pen

Computing 1.0 as its operating system. It has a side-lit, 9.5 inch, liquid crystal display

(LCD). Unlike most LCDs, a person can write on the LCD with a wireless pen; the LCD

not only displays what one has just written, but also records the pen location at 400 dots

per inch (dpi) resolution at the same time. The display also has a mechanism to detect

whether the pen is touching the display by sensing a micro-switch tip inside the wireless

pen. If the pen is touching the display, the display would sense the on state of the micro-

switch, thus detecting a PenDown. Otherwise a PenUp would be detected. Once the

display detects a PenDown, it starts to sample the handwriting at 100Hz until a PenUp is



detected. Through a rolling median filter, the computer calculates and records the current

pen x and y position.

Figure 3-2: Screen caption of the GRiDTM LCD during a data collection session

The data were collected from students and young professionals from the

Cambridge, Massachusetts area. The writers were financially compensated for their time.

Sitting down at a table or desk for about 90 minutes per data collection session, the

writers were told to copy the text displayed on the GRiDTM LCD by writing in cursive on

the lines below the text of the same screen.

Figure 3-2 shows a screen caption of the GRiDTM LCD during a data collection

session. The writers were also told that it is preferred that they write capitals in cursive

but that it was not necessary. Additionally, all lower case letters had to be connected, i.e.,

the pen could not be lifted to dot i's orj's or cross x's or t's as a word was being written,

only after the last letter was finished. Furthermore, no touch-ups by the writers were

allowed, i.e., letters could not be made to look more distinct after they were written.

Edit

Write (In cursive) the sentence or address below on these lines

Senate Democrats are to meet today to consider the GOP proposal.l

2- -LacA



However, subjects were allowed to "erase" or "undo" the last pen strokes made to correct

mistakes.

3.2.2 Data Preparation

After the handwriting data were collected, they had to be visually verified. Using

an in-house software package, only three types of touch-ups were made: a) adding missed

i-dots (mostly not picked up by the computer); b) deleting stray marks (including extra i-

dots and periods); c) correcting stroke order (period and commas should come after i-dots

and t-crosses).

The handwriting on the GRiD TM LCD was written on multiple lines. To model

handwriting on multiple lines would be unnecessarily difficult. Fortunately, the

unwrapping filter could join handwriting on multiple lines into text on a single line. The

writer still saw the writing on multiple lines, but the "image" of the handwriting for the

computer was converted to be on a single line by the unwrapping filter. Since the line

heights of the multiple lines were constant, the unwrapping filter could decide on which

line the sampled data was originally written by its y position. From this line number

information, the filter could simply shift both its x and y positions by some constant

amount to transform a sample point. After applying the unwrapping filter to the entire

sample, point by point, the resulting data points appeared as if they were written on a

signal line.

The resulting data from the unwrapping filter was processed by a sampling

distance filter. The original handwriting data was sampled at 400dpi, but the writer could

only view the same data at about 80dpi (GRiDTM LCD displaying resolution:

640x480-pixel on a 9.5 inch screen). Hence, the mismatched sample and display

resolution can potentially cause problems. For example, the sampled data could resemble

a miniature zero, "0", while the intended writing was a period, ". ". The sampling

distance filter eliminates this type of problem. While preserving the endpoints of each

stroke, the filter eliminated any data points within 10 sampling units of the preceding data

point. This can also be viewed as a filter which removes some spatial noise.



3.3 BBN On-line Cursive Handwriting Data Corpus and

UNIPEN

In the literature of on-line handwriting recognition, performance results have been

reported on different data corpora. This makes the comparison of recognition

performance very difficult. In contrast, speech recognition research has benefited from

using common data corpora for many years. UNIPEN, a project sponsored by the US

National Institute of Standards and Technology (NIST) and the Linguistic Data

Consortium (LDC), is addressing this issue by constructing a common corpus for on-line

handwriting recognition [25].

Today, UNIPEN has gathered on-line handwriting data from over thirty

organizations. NIST has distributed the data for research. It is also planning to have the

first evaluation using this data in 1997. Unfortunately, the UNIPEN data were unavailable

for the feature experiments because the official evaluation data were not released at the

time. However, the BBN data corpus is a significant part of the UNIPEN data.

Therefore, future evaluation results on the BBN portion of the UNIPEN data can be

meaningfully compared with the results obtained in this thesis.

3.4 Training Data Set and Testing Data Set

For the feature experiment, only a subset of the BBN data corpus was used. This

subset includes handwriting data from six different writers. Their initials are aim, dsf, rgb,

shs, slb, and wcd. Table 3-1 summarizes the amount of data from each writer. Overall,

this subset contains 3,637 sentences or 98,420 words of cursively handwritten data.

Table 3-1: Summary of handwriting data of the six writers.

subject No. of sentences No. of words
aim 634 17867
dsf 609 16674
rgb 653 17767
shs 634 16976
slb 618 15323
wcd 489 13813
total 3637 98420



The data from each writer is divided into two parts. One part of 70 sentences is

for testing, and the rest is for training. To obtain WI recognition performance on the

testing data of a writer, the training data from other five writers is used for training the

model. Table 3-2 summarizes the size of training data and testing data for each writer. In

summary, the testing data size is 420 sentences. Note that the actual training data only

contains 3,217 non-duplicated sentences (3217 = 3637 - 420).

Table 3-2: Summary of training data set and testing data set.

Subject No. of training No. of training No. of testing No. of testing
sentences words sentences words

aim 2653 71844 70 1623
dsf 2678 73159 70 1745
rgb 2634 72131 70 1810
shs 2653 72794 70 1682
slb 2669 74419 70 1654
wcd 2798 76093 70 1818



4. The Baseline BYBLOS On-line Cursive Handwriting

Recognition System

4.1 Overview

The BYBLOS on-line cursive handwriting recognition system is based on the BBN

BYBLOS Continuous Speech Recognition (BYBLOS CSR) system [26]. The BYBLOS

CSR system is an HMM-based recognition system. Since the on-line handwriting

recognition task is very similar to the task of continuous speech recognition, the two

systems are also similar. Each system consists of three major components: the front-end,

the trainer, and the decoder. The two systems only differ in their front-ends.

In 1994, Starner et al. first adapted the BYBLOS CSR system to the task of on-

line handwriting recognition [8] [9]. In [8] and [9], the performance of the writer-

dependent (WD) system was published. However, the performance of the writer-

independent (WI) system has never been published. For the purposes of these

experiments, the WI system will be used as the baseline system. In the following section,

we will first discuss the functionality of the three modules for the BYBLOS on-line

handwriting recognition system. The performance of the WI system will then be stated in

the results section.

4.2 Modules

4.2.1 Front-end

The goal of the front-end module is to generate an observation sequence for the

HMM from the input handwriting data. In this case, the data is assumed to be from the

BBN on-line cursive handwriting data corpus. This is accomplished in three steps:

preprocessing the original data, computing the feature vectors, and calculating the

observation symbols.



4.2.1.1 Preprocessing

Two sub-modules are involved with the preprocessing of handwriting data. One is

the invisible stroke construction sub-module, and the other is the padding filter.

In Section 3.2.1, it was said that the GRiDTM LCD samples the handwriting

between each PenDown and PenUp. However, no data samples were generated between

PenUp and PenDown. To simulate a continuous-time signal for the HMM, the invisible

stroke construction sub-module connected a straight line between the PenUp sample and

the PenDown sample and then it sampled the line ten times. Since the straight line were

never explicitly written by the writer, we refer to them as invisible strokes. Figure 4-1

gives some examples of invisible strokes, where the dash parts are the invisible strokes.

Note that these invisible strokes are not only results of spaces between words, but can also

be the result of dotting i's andj's and crossing t's and x's.

Figure 4-1: Illustration of invisible strokes. The highlighted dash lines are the
invisible strokes.

A stroke consists of the writing from PenDown to PenUp or from PenUp to

PenDown. Writing from PenDown to PenUp will be referred to as visible strokes. Since

each stroke can potentially represent a letter which is modeled by a 7-state HMM, each

stroke must have an observation sequence made up of at least four observation symbols,
i.e., four data points. The padding filter fulfills this minimum stroke length criterion.

While preserving the endpoints of each stroke, the filter re-samples the stroke path at 10

equal-time locations. This re-sampling process is only done on strokes consisting of less

than 10 data points.

4.2.1.2 Computing Feature Vectors

An analysis program computes a six-element feature vector for each data point.

The six features used in the baseline system are the writing angle, the delta writing angle,

the delta x position, the delta y position, the PenUp/PenDown bit, and the sgn(x-max(x))



bit. The first four elements have real number values, while the last two elements have

binary values.

Assigning the PenUp/PenDown bit for each data point is quite simple. The

PenUp/PenDown bit denotes whether a data point is actually written by a writer or is

artificially generated (e.g., invisible strokes). Therefore, we assign PenUp to a data point

which is inside an invisible stroke, and we assign PenDown to all other data points.

The delta x position and the delta y position are computed locally. For any data

point, the delta x position is equal to the difference between the x position of the data

points two samples after and the x position of the data points two samples before.

However, there are a couple of exceptions. Since "two samples before" is not well

defined for the first and the second data points, their own x positions are used as the "two

samples before" instead. Also since "two samples after" is not well defined for the last

and the second to last data point, their x positions are used as the "two samples after"

instead.

xt+2 - t t = 0, 1

delta_xt = x.,- x,_2 2<t5N-2 (4.1)

x, - t-2 t = N- 1, N.
The deltay positions are calculated similarly to the calculation of delta x positions.

The writing angle is computed from the delta x position and the delta y position. It

is approximated by the arctangent of the ratio between the delta x position and the delta y

position. The delta writing angle of the first data point is set to 0.0. For all other data

points, the delta writing angle is equal to the difference between writing angles of the data

point and the previous data point. Figure 4-2 illustrates the writing angle and the delta

writing angle features.

_ AO9,= 0.-8 A-1

e * * 0n-I

Figure 4-2: The writing angle and the delta writing angle features.



The sgn(x-max(x)) bit indicates whether the x position of the current data point is

greater or less than the x positions of all of the preceding data points. A value of 0

denotes when it is less, and a value of I denotes when it is greater. For example, as

illustrated in Figure 4-3, the lighter portions are encoded with 0, and the darker portions

are encoded with 1. To compute the sgn(x-max(x)) bit, the maximum x position of all the

preceding x positions is update, and called max(x). Then the x position of the current data

point is compared with max(x). If it is greater, it is assigned 1. Otherwise, it is assigned

0.

/

.€..t

Figure 4-3: Calculation of the sgn(x-max(x)) bit for the word "the" only. The
highlighted portions are encoded with 1 and the gray portions are encoded with 0,
for the sgn(x-max(x)) bit.

The six features for each data point can be sorted into three groups. The first

group, which includes the information presented in the delta x position, the delta y

position, and the PenUp/PenDown bit, can be used to reconstruct the original handwriting

image. This reconstruction can also be done with the second group, which consists of the

writing angle, the delta writing angle, and the PenUp/PenDown bit. Hence, these two

groups of three features can separately characterize the handwriting image completely.

Naturally, one would ask the question, "Are the two separate descriptions redundant?"

Yes, they are. However, the two descriptions used together outperformed either of the

two used alone. We can think of the two descriptions as two different views of the same

handwriting image, and as such they provide the HMM with different statistical

information. The third group consists of the sgn(x-max(x)) bit, which simply provides

additional information for the HMM.

4.2.1.3 Calculating Observation Symbols

Since a discrete-density HMM is used, observation symbols for each data point

must be supplied to the HMM instead of the feature vectors. Essentially, the 6-

dimensional feature vector needs to be converted into a set of M discrete observation



symbols. For the baseline system, the number of observation symbols, M, is equal to 256.

So, how does one convert a multi-dimensional feature vector into M observation symbols?

This is essentially a data compression step. It is done through vector quantization

(VQ) [27], a technique to convert a multi-dimensional vector into a discrete symbol. A

VQ codebook is first computed by k-means clustering [28] on a quarter of the training

data (about 805 sentences). A VQ codebook consists of Mprototype vectors. The M

prototype vectors divide the 6-dimensional feature space into M clusters, where each

prototype vector characterizes the centroid of the cluster. To obtain the discrete

observation symbol, a feature vector is compared with each of the prototype vectors

according to some distance measure, and the feature vector is assigned the observation

symbol i, which corresponds to the index i of the prototype vector of the shortest

distance. The distance measure used here is the Euclidean distance. Note that the VQ

codebook is only calculated once, and it is used for the computation of all of the discrete

observation symbols.

4.2.2 Trainer

The goal of the trainer module is to train the HMM parameter, A=(A, B, 17}, for

each letter and trigraph. The trainer utilizes the Baum-Welch algorithm extensively. Refer

to section 2.2.3 for details on the Baum-Welch algorithm.

The HMM models for letters are trained first, so they can be used to initialize the

models for trigraphs. To train the HMM models for letters, their own model parameters

need to be initialized. The transition probabilities, ay, are assigned such that the expected

time of going through all 7 states of the HMM is 30 frames. (In the BBN data corpus, the

"length" of each letter is 30 frames on average.) The observation probabilities, bwh, are

set to reflect a uniform distribution. Note that the initial model for each of the 89 letters

are exactly the same; they do not need to be initialized with actual data.

With the initial model for each letter, five iterations of the Baum-Welch algorithm

are run on the 3,217 training sentences. For each sentence, one can create a sentence

model using the letter models according to its transcription (refer to Section 2.3.1 for

detail on how to construct the sentence model). Finally, all of the letter models inside this



sentence model are trained against the actual observation sequence of the sentence using

the Baum-Welch algorithm.

After five iterations of training the letter models, the trigraph models are initialized

with the corresponding letter models. Now, the trigraph models are ready to be trained.

Instead of creating a sentence model using the letter models, a sentence model is

constructed with the trigraph models. Then the trigraph models inside each sentence

model are trained against the actual observation sequence of the sentence using the Baum-

Welch algorithm. Six iterations of the Baum-Welch algorithm are run for training of the

trigraph models.

Since the training data is limited, some trigraphs would appear in the training data

only a few times. Thus, the observation probabilities, b,k , for these trigraphs would not

be reliable. To ensure that all of the trigraph models are dependable, we can smooth all of

the observation probabilities of each trigraph model using the following smoothing

function:

b trigrhmoothed = igraph * rigraph + ( tgraph )*bletter (4.2)

where Agrap~h is positively correlated with the number of trigraph occurrences in the

training data, fNfigaph. If t igryaph is very large, then the smoothed trigraph observation

probability, bigrph  d , would be very close to the trigraph observation probability,

bgr8~ ph .  On the other hand, if I'g r'ph is very small, then the smoothed trigraph

observation probability, bgraphh smoothed , would be very close to the letter observation

probability, btr'. However, it is tricky to choose the optimal r"r.Ph. It is usually done

heuristically.

4.2.3 Decoder

The baseline decoder uses the forward-backward search (FBS) algorithm [29]
[30] [31]. The FBS algorithm is mathematically related to the Baum-Welch algorithm. It
involves two search passes, the first pass is a forward fast-match search, and the second

pass is a detailed backward Viterbi's beam search (VBS).



The VBS algorithm is an approximate Viterbi algorithm. Refer to Section 2.2.2

for details on the Viterbi algorithm. Recall that the Viterbi algorithm stores N of the

variables 4(i) at any given time t. The number N is the number of possible states at time t.

Each variable () represents the maximum probability of the optimum partial state

sequence, QIQ2... Qt.1, with the state S, at time t given the model X. We can treat the N

variables (i) as the scores of each N candidate state sequences. However, for this large-

vocabulary, cursive handwriting recognition task, keeping N to be the number of all

possible states at time t is simply too computationally expensive. Therefore, a direct

application of the Viterbi algorithm is computationally unfeasible. Fortunately, the Viterbi

algorithm can be approximated with the VBS algorithm by limiting the number N with a

pruning beamwidth or threshold on the scores. For example, the pruning beamwidth can

be set to 100, so only the top 100 4(i) are kept at any given time. Similarly, the threshold

to the scores can be set such that only forward variables within 50% of the best score are

kept, and the rest are disregarded. With appropriate pruning beamwidth or threshold, the

VBS algorithm can approximate the Viterbi algorithm. As the pruning beamwidth

increases and the threshold lessens, the VBS algorithm approaches the Viterbi algorithm.

However, picking the "appropriate" pruning beamwidth or threshold for the VBS

algorithm is usually very difficult. The pruning beamwidth or threshold of a VBS

algorithm is usually based on the variable &(i), but unfortunately, a high value of (li) does

not guarantee a high overall probability for the entire observation sequence because the

future observation is not taken into account. Additionally, the algorithm can waste

resources by keeping this high 4t(i) as a candidate. Similarly, a low forward score does

not mean a low overall score, and the algorithm can impair performance by dismissing the

low value of &1) as a candidate.

The FBS algorithm avoids the above problem. It modifies the VBS algorithm by

first performing a forward fast match, thus enabling the backward VBS algorithm to use

P(01A), an approximation of the probability of the entire observation sequence given the

model, P(01A), as a pruning threshold. The key insight of the FBS algorithm comes from

the following equation:



N (4.3)
P(O •A) = [ a,(i)(i), i)1 t _ T.

i=1

The equation can be easily derived from the definitions of forward and backward variables

( 2.17 ) and ( 2.23 ). From the equation, one can realize that the probability of the entire

observation sequence given the model P(OIx) can be calculated by their forward and

backward variables at any given time t. During the forward fast match pass, a list of

a (i), an approximation of the forward variables, a0(), are stored. To conserve memory,

only those a, (i) which occur at the ends of words are stored. During the backward VBS

pass, P(OilA) are computed along with the backward variables ft() by:

N

i=1

max at(i)fp,(i)irlj ....N) (4.4)

To use P(01A) for the pruning threshold, let us first define _"`(O01) to be the

maximum of all ?P(OI) at a given time t. For the backward VBS pass, only the

backward variables which have P(011) within some percentage of Pm" 01(o) are kept.

The percentage can define the pruning threshold for the FBS algorithm. Varying the

threshold also varies the complexity of the search.

Experimentally, the FBS algorithm has shown an increase in search speed by a

factor of 40 over the VBS algorithm while maintaining the same recognition performance

[29]. Because of the FBS algorithm's speed saving and its more intuitive pruning

threshold, we decided to use the FBS algorithm instead of the VBS algorithm for the

decoder of the baseline system.

4.3 Results

The results of the baseline system were obtained after using the training data and

testing data. During training, the training data set with transcriptions is first passed to the

front-end module to generate observation symbols. These observation symbols are passed



to the trainer module to generate the HMM model parameters. Figure 4-4 shows the

block diagram of the training process.

Training data Front-end Observation Trainer HMMAImodel
with transcriptions module symbols module parameters

Figure 4-4: Block diagram of the training process.

For testing, the data of the testing data set is also first passed to the front-end

module to generate observation symbols. With the HMM model parameters from the

training process along with the observation symbols, the decoder module decodes the

most likely sentence. Figure 4-5 shows the block diagram of the testing process.

HMM model
parameters

Testing Front-end Observation Decoder Most Likely
data module symbols module Sentences

Figure 4-5: Block diagram of testing process.

Table 4-1: Baseline BBN on-line cursive handwriting recognition system.

Subject Correct Substitution Deletion Insertion Total
(%) (%) (%) (%) (%)

aim 85.8 10.2 3.9 1.2 15.3
dsf 80.1 16.7 3.3 5.7 25.6
rgb 90.9 6.6 2.5 1.5 10.6
shs 94.7 3.7 1.6 1.0 6.2
slb 84.2 12.3 3.6 1.5 17.3
wed 92.6 4.5 3.0 0.6 8.0
Ave. 88.1 8.9 3.0 1.9 13.8

The results of the baseline BBN on-line cursive handwriting recognition system is

shown in Table 4-1. The testing data consists of 420 sentences in total, 70 sentences per

writer for six writers. The total writer-independent word error rate is 13.8%.

The performance of the baseline system is quite good, especially for the few

constraints under which the system is evaluated. However, the baseline system is still far

from the being usable in any realistic large vocabulary handwriting recognition application.

In the next chapter, experiments which attempted to improve the performance by adding

new features to the feature vector will be discussed.



5. Features Experiments

5.1 Introduction

In the baseline system, a six-dimensional feature vector is calculated for each

sample point of the handwriting signal. The features are delta x position, delta y position,

writing angle, delta writing angle, PenUp/PenDown, and sgn(x-max(x)). Refer to Section

4.2.1.2 for a detailed description of the features. With these features, the baseline system

obtained a word error rate of 13.8% under writer-independent mode on the BBN data

corpus.

Since handwriting recognition systems have reported their error rates under

different conditions in the research literature, it is hard to compare their performance

directly. However, the baseline system would more than likely obtain one of the lowest

error rates if the same large vocabulary, writer-independent, cursive on-line handwriting

recognition task were performed by all the system.

Nevertheless, the error rate of the baseline system is still unacceptable for some

handwriting recognition applications. We believe that significant portion of the error rate

can be attributed to the inadequate information represented by the feature vector. The

performance of the baseline system can be improved significantly by augmenting the six

baseline features with new features, which would provide the HMM with information that

was not represented by the original features.

There are several sources of inadequately represented information. Since the

baseline feature vector does not contain explicit information about the y position, the

baseline system had difficulties distinguishing an apostrophe, " ' ", from a comma, " , "

because the two punctuation marks are very similar in shape and the only way to

distinguish the two is by their y position information. In Section 5.2.1, a new vertical

height feature tries to incorporate they position information into the feature vector.

Spaces between letters or words could help the system to determine the boundaries

for letters and words. In the baseline system, due to the binary nature of the



sgn(x-max(x)) feature, the spacing is inadequately characterized. In Section 5.2.2, a new

space feature attempts to represent the space information better.

HMM has an inherent output independence assumption ( 2.8 ), i.e., the current

output is only dependent on the current state. But the on-line handwriting signal does not

satisfy this assumption of output independence. For example, the 1-shaped stroke of "t"

and the "t" cross stroke are very dependent on each other, but they can be separated by

many HMM states. In Section 5.2.3, the hat stroke features were designed to overcome

this type of problem.

In Section 5.2.4, the substroke features are used to incorporate more global

information bearing features into the feature vector since the original features only

represented information locally.

These four proposed features were investigated to see how they each would affect

the recognition performance. The features were studied incrementally using the BBN data

corpus, and the potential benefits of each feature were studied as well.

5.2 The Four Feature Experiments

5.2.1 The Vertical Height

The x position denotes the horizontal position. The y position denotes the vertical

position. Figure 5-1 shows the definition of the x and y directions. The six features of the

baseline system did not include the x position nor the y position. Can we possibly use

them for our new system?

x

Figure 5-1: Definition of the x and y directions.

The x position of a particular sample measures the horizontal distance between the

first sample of the sentence and the sample itself. Suppose that the handwriting has been

normalized in the x direction and that the x position is measured from the first sample of



the character instead, then the x position information can indeed be useful. However,

computing the distance by this method would require an error-prone step of pre-

segmentation at the character level. In addition, normalizing the samples by the writing

size is also very difficult. Therefore, it is impractical to adopt the x position as a new

feature for the system.

The y position of a particular sample measures the vertical distance between the

sample and a baseline. If the writing is not slanted and written on a straight baseline, and

with some normalization in the y direction, the y position can provide useful information

for classifying the different characters. For example, most handwriting of English can be

divided into three zones: the upper zone, the middle zone, and the lower zone. Figure 5-2

illustrates the concept of the three zones. Guerfali and Plamondon had suggested the

usefulness of the zones in [32]. For example, letters "a", "c", and "e" are completely

inside the middle zone. On the other hand, letters "b", "d", and "h" are inside the middle

and upper zones, and "g", "p", and "q" are inside the middle and lower zones.

upper zone

middle zone

lower zone

Figure 5-2: Illustration of three zones, lower, middle, and upper zones, of English
handwriting.

If the zones can be reliably estimated for each sample, the zone information can be

directly used for on-line handwriting recognition. To reliably estimate the zones,

preprocessing steps such as correcting the baseline and normalizing the character slant are

necessary. However, these steps are difficult and would be worthwhile as thesis projects

of their own. Here, though, a very simple algorithm was used to convert the y position to

the height feature.

First, the mean and standard variance of the y position were calculated for each

sentence. The height feature of a sample was represented by the distance between the y

position of the sample and the mean in standard deviations. Note that the height feature

could be either positive or negative. Since most samples of a sentence fell into the middle

zone, the samples with height feature value more than 1 was more likely to be in the upper



zone, the samples with value less than -1 was more likely to be in the lower zone, and the

remaining samples were more likely to be in the middle zone. The probability of a

particular sampling being in one of the three zones was related to the height feature.

The newly calculated height feature was added to the six baseline features to form

a seven dimensional feature vector. By training and decoding with this new feature

vector, the new system achieved a word error rate of 13.6% comparing to the baseline

performance of 13.8%. The reduction in error rate' is 1.4%. Table 5-1 illustrates the

detailed results.

Table 5-1: Results of the feature experiment with vertical height.

Subject Correct Substitution Deletion Insertion Total
(%) (%) (%) (%) (%)

aim 86.7 7.6 5.7 0.8 14.1
dsf 83.4 13.8 2.9 3.8 20.5
rgb 87.5 8.9 3.6 1.5 14.0
shs 93.5 4.5 2.0 1.0 7.4
slb 85.5 11.1 3.4 2.1 16.6
wcd 91.6 5.0 3.4 0.6 9.0
Ave. 88.1 8.5 3.5 1.6 13.6

From the performance of the new system, it is clear that this simple height feature

did not give any significant improvement over the baseline system. However, it is not

enough to conclude from this experiment that other y position-transformed features are

not useful for on-line handwriting recognition. Quite possibly, with better baseline

normalization and slant correction algorithms, the usage ofy position-transformed features

would improve the performance of on-line handwriting recognition systems.

5.2.2 Space Feature

How were the spaces between words modeled in the baseline system? Since the

acceptable spaces between words for handwriting could vary greatly, an OptionalSpace

model and a Space model were used for modeling inter-word spaces. The Space HMM

would model the mandatory and minimum-size space between two words. The

OptionalSpace HMM would model the portion of space longer than the minimum-size

1 Reduction in error rate = (new error rate - original error rate) I original error rate.



space. Every model for words was extended by an extra Space model. When

constructing a model for a sentence, the OptionalSpace model is inserted between two

HMMs modeling words. A skipping transition, connecting the two words directly without

connecting to the OptionalSpace model, is also inserted. Figure 5-3 illustrates the

sentence model with OptionalSpace for the sentence, "Lassie was rewarded'. This setup

accommodates variable length inter-word spaces very well. However, it is not without

problems.

Figure 5-3: HMMs with OptionalSpace modeling the sentence, "Lassie was
rewarded". The dark ellipses represent HMMs modeling a word and the white
circles represent HMMs modeling an OptionalSpace. Skipping transitions connect
the two neighboring words directly.

The root of the problem lies in the requirement for mandatory and minimum-size

spaces between any two words because a space may not always exist between certain

two-word pairs. For example, there does not usually exist any space between the word
"over" and the word period ".". Actually, there usually exist no space between any word

composed of ciphers and any word composed of punctuation marks. Therefore, when the

HMM is forced to train Space models with some data which does not correspond to any

actual space, the Space models are poorly constructed.

Two major changes were made to overcome this problem of poorly constructed

Space models. First, the Space models were removed from the end of each word model.

Thus, all the spaces were modeled by the OptionalSpace model. Second, a new space

feature was used to characterize the spaces.

Only invisible strokes should represent gaps between words. Therefore, the space

feature is only calculated for invisible strokes. The space feature of a visible stroke is

simply assigned with 0 to represent a gap size of 0. For invisible strokes, the feature was

calculated in two steps. First, a variable gap was calculated. Second, the variable gap



was scaled for the space feature. The variable gap represents the horizontal spaces

between two words. Figure 5-4 illustrates the calculation of the variable gap.

ma x prev --4 -min x after.gap

Figure 5-4: Calculation of the variable gap for the highlighted dash invisible stroke.

The variable gap is computed by the following algorithm for invisible strokes only:

The space feature is a scaled version of the variable gap. The sampling resolution

of GRiDTM LCD is 400dpi. A gap value of 100 represents a quarter inch wide space.

Scaling any gap values of more than 100 on a logarithmic scale is equivalent to narrowing

any inter-word spaces of more than a quarter inch to around a quarter inch. For gap less

than 100, it is not scaled.

p gap gapg 100 (5.5)
space = 100+ logo(gap- 99), gap>100.

....... , . .I
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Figure 5-5: Scaling function of the variable gap for the space feature.

The newly calculated space feature was added to the other seven features, six

baseline features and the height feature. Now, an eight dimensional feature vector

represented the original handwriting image. By training and decoding with this new

feature vector, the new system achieved a word error rate of 11.3% comparing to the

1. max_x rev - max_x of the visible stroke before the current invisible stroke.
2. min _xafter - minimum x position of all the visible strokes after the current

invisible stroke.
3. gap = min x after - max _xrev.



previous system performance of 13.6%. The reduction in error rate is 16.9%. Table 5-2

illustrates the detailed results.

Table 5-2: Results of the feature experiment with space.

Subject Correct Substitution Deletion Insertion Total
-%) (%) (%) (%) (%)

aim 89.4 7.2 3.4 1.0 11.6
dsf 85.8 11.8 2.4 2.7 16.9
rgb 89.1 8.7 2.3 1.2 12.2
shs 95.1 3.9 1.1 0.5 5.4
slb 87.1 10.6 2.4 1.2 14.1
wcd 92.8 5.6 1.6 0.3 7.5
Ave. 89.9 8.0 2.2 1.2 11.3

The new system shows a big improvement over the previous system. It is clear

that the new method of representing inter-word spaces is superior over the original

method because the new OptionalSpace model takes into account the inter-word space

more accurately. It is not surprising to see such a large reduction in the error rate since

the OptionalSpace model is one of the most frequently used word models.

5.2.3 Hat Stroke Features

Since the dots and crosses for the letter "i", "7', "'Y and "x" are always written at

the end of a cursively written word containing these letters, these letters were actually

modeled with two separate letter-HMM models within the baseline system. For example,

the letter "f' is modeled with an HMM modeling a partial letter "f' and an additional

HMM modeling the backspace character. Within an HMM model for a word, these two

letter-HMM models can be separated by several other letter-HMM models. With the

features in the baseline system, the feature vectors corresponding to the partial letter "f' is

not distinguishable from the feature vectors which correspond to the letter "f'. Therefore,

within the baseline system, the word "late" and the word "tale" can not be distinguished

by the underlying HMM models.

The hat stroke feature attempts to solve this problem by attaching the feature

vector of the dot and cross stroke with the feature vector of the associated letter. The hat

stroke features consists of six separate features: hat_stroke, dist _tohat_x, dist tohaty,

closest_hat_length, closest_hat_angle, and closest_hat_error. They are computed in



three steps. First, a decision is made about whether a visible stroke should correspond to

a dot and cross stroke. Second, three features, hat angle, hat_length, and hat_error, are

computed for each dot and cross stroke. Third, the samples close to the dot and cross

strokes are attached with features about the dot and cross stroke. They are computed by

the following algorithm:

The purpose of the first step is to determine whether a visible stroke is a hat

stroke. For this, there are two necessary conditions to satisfy:

1) the space feature of the preceding invisible stroke must be negative;

2) the entire stroke must be less than 20 samples long or a quarter of the samples

must be less than the current max x.

In the second step, for each hat stroke, the total length of the stroke is calculated

for its hatlength. A straight line is fitted to the hat stroke. Then, the orientation of the

line is calculated for its hatangle, and the estimation error is calculated for its hat_error.

1. for (each visible stroke)
if ((the space feature of the preceding invisible stroke is negative) and

((the entire stroke is less than 20 samples long) or
(a quarter of the samples in the stroke has x less than current max_x)))
hat_stroke = 1. 0;

else hatstroke = 0. 0;
2. for (each stroke such that hat_stroke is 1.0)

hat_length 4- total length of the stroke;
Estimate the best line fit of the hat stroke samples;
hat_angle 4- orientation of the line;
hat_error 4- residue of the linear fit;

3. for (each sample)
closest_hat_stroke 4- the closest hat_stroke from the sample;
if (xdistance(sample, closest_hat stroke) <MAX_TO_HA T_DIST)

closest_hat length -- hat_length of closest_hat_stroke;
closest_hat angle -- hat angle of closest_hat stroke;
closest hat_error - hat error of closest_hat_stroke;
dist_ tohat x <- x_distance(sample, closest_hat_stroke);
dist to hat-y -ydistance(sample, closest hat_stroke);

else
closest_hat length = -1.0; closesthat _angle = ir,
dist tohatx =MAX TO HAT _DIST; dist tohat y = 0.0;
closesthat error = -1. 0;



In the third step, for each sample point, if a hat stroke is within the

MAX TO_HAT_DIST distance, then the hat length, the hat_angle, and the hat_error

features are assigned to the sample point. The minimum distance in x and y between the

sample and the hat stroke are assigned to the disttohat_x and dist tohaty features

respectively. If no hat stroke is within MAX_TO_HAT_DIST distance, the features are

assigned with some constant values.

In summary, the six new features were calculated for the hat stroke feature. The

previous calculated eight dimensional feature vector were augmented to include the new

features. By training and decoding with this new fourteen dimensional feature vector, the

new system achieved a word error rate of 10.7% comparing to the previous system

performance of 11.3%. The reduction in error rate was 5.3%. Table 5-3 lists the detailed

results.

Table 5-3: Results of the feature experiment with hat stroke.

Subject Correct Substitution Deletion Insertion Total
S (%) (%) (%) (%) (%)

aim 89.7 7.0 3.3 0.6 10.8
dsf 86.1 10.9 3.0 1.8 15.8
rgb 88.7 8.7 2.5 1.3 12.6
shs 95.4 3.5 1.1 0.3 4.9
slb 87.2 10.0 2.8 0.8 13.7
wcd 93.9 4.4 1.7 0.2 6.3
Ave. 90.2 7.4 2.4 0.8 d 10.7

From the performance results of the new system, one can see that the new features

improved the performance somewhat, which means the new features were useful. The

suspected reason for only slight reduction in error was that not very many confusible word

pairs, e.g. "late" and "tale", exist in the 25K vocabulary. If this experiment had been done

on a baseline system which did not have a closed vocabulary, these new features would

have improved the baseline system more substantially than in this experiment.

5.2.4 Substroke Features

All six baseline features for a data sample were calculated from local data only.

During the calculation of delta x and delta y position, the two samples before and two

samples after were used. Thus, the original feature vector of a particular sample contains



at most information of five sample points, i.e., within two samples away from the original

sample. Substroke features attempt to incorporate information about samples within a

bigger neighborhood of the sample.

To compute the substroke features, each stroke is first divided into substrokes. A

straight line is fitted to each substroke. Each substroke is constrained such that the

maximum error of the estimation stays below a constant, ERRORTHRESHOLD. Here,

the variable ERRORTHRESHOLD is set to 10.0. The number of the samples within each

substroke is assigned to the feature substroke_pixels. The length of the substroke is

assigned to the feature substroke_length. The error of estimation between the line and the

substroke data is assigned to the feature substroke_error. The orientation of the line fit to

the substroke is assigned to the feature substroke_angle.

In summary, four new features, substrokepixels, substrokelength,

substroke_error, and substroke_ angle, were calculated for the substroke features. These

four new features were added to the previously calculated fourteen dimensional feature

vector. By training and decoding with this new eighteen dimensional feature vector, the

new system achieved a word error rate of 9.1%, an improvement over the previous system

performance of 10.7%. The total reduction in error rate at this point was 15.0%. Table

5-4 lists the detailed results.

Table 5-4: Results of the feature experiment with substrokes.

Subject Correct Substitution Deletion Insertion Total
(%) (%) (%) (%) (%)

aim 89.6 7.1 3.3 0.5 10.9
dsf 89.2 8.9 1.9 1.5 12.3
rgb 91.5 6.7 1.8 1.0 9.6
shs 95.7 3.4 0.9 0.5 4.8
slb 89.5 7.8 2.7 0.4 10.9
wed 93.6 4.6 1.9 0.1 6.5
Ave. 91.5 6.4 2.0 0.7 9.1

From the performance of the new system, one can see that the new features

improved the performance markedly. Since it was not our goal to find the "optimal" way

to represent the substroke feature and global information, it is quite possible that other

representations of substroke features can improve the recognition performance further.



5.3 Summary of Results

In this chapter, four separate feature experiments were performed. With all four

sets of new global-information bearing features, the system obtained a word error rate of

9.1%, a 34% reduction in error from the performance of the baseline system of 13.8%.

Among them, the space feature and the substroke features were most effective. Each of

them reduced the error rate approximately 15%. Table 5-5 summaries the error rates from

all four feature experiments.

Table 5-5: Summary of total word error rate of all four feature experiments.

Experiments baseline height space hat stroke substroke
Total (%) Total (%) Total (%) Total (%) Total (%)

aim 15.3 14.1 11.6 10.8 10.9
dsf 25.6 20.5 16.9 15.8 12.3
rgb 10.6 14.0 12.2 12.6 9.6
shs 6.2 7.4 5.4 4.9 4.8
slb 17.3 16.6 14.1 13.7 10.9
wcd 8.0 9.0 7.5 6.3 6.5
Ave. 13.8 13.6 11.3 10.7 9.1

Reduction in error 1.4 16.9 5.3 15.0
Tot. red. in error 1.4 18.1 22.5 34.1

Figure 5-6 illustrates the results of the feature experiments.

Figure 5-6: Total word error rates of four feature experiments.



6. Real-time On-line Cursive Handwriting Recognition

Demonstration

6.1 Introduction

For most on-line handwriting recognition systems, the ability to perform in real

time, i.e., displaying recognition results immediately, is essential. For example, a schedule

book with handwriting recognition technology requiring users to wait for several seconds

after completing an entry would not be very effective. With this in mind, a system was

constructed to show how the baseline system could be modified to run in real time.

Two factors affect an on-line cursive handwriting recognition system's ability to

run in real time. One is the amount of computation power of the underlying hardware,

and the other is the efficiency of the underlying algorithm in the software. In essence, the

algorithm has to be capable of running in real time on the underlying hardware. In this

BYBLOS on-line system, all algorithms have to run in real time on an SGI Indy

workstation and GRiDTM PC.

Since the input tablet digitizer runs on a PC and both the front-end feature

extraction and HMM recognizer run on a UNIX workstation due to computation and

memory constraints, a real-time data link between the PC and the UNIX workstation was

required. The design and implementation of this data link and its associated control

structure posed interesting and difficult technical challenges.

6.2 Design & Implementation

The least error rate and modularity were a few of the design principles that guided

the overall design of the real-time cursive handwriting recognition system. Smaller error

rates generally improve the usability of a system. Modularity simplifies the processing of

modifying a system. Since the communication cost between modules was not expensive

computationally, four stand-alone modules were designed. These are the real-time data

sampling module, the real-time front-end, the real-time decoder, and the results module.



The detailed functionality of the four modules is discussed in the following sections.

Figure 6-1 illustrates how the four components were connected to construct the real-time

recognition system.

GfRIDTW PC:

User's Real-time :Handwritin
Handwriting Data Sampling data

Module

Results
Module

Figure 6-1: Block diagram of the real-time cursive handwriting recognition system.

To obtain the lowest error rate, the observation symbols have to arrive at the

real-time decoder as early as possible. To achieve this, the real-time front-end must be as

fast as possible. Since the SGI Indy workstation is much faster than the GRiDTM PC, the

real-time front-end and the real-time decoder were implemented on the workstation.

However, the real-time data sampling modules have to run on the PC because the

handwriting can only be sampled in through the GRiDTM LCD, and the results module also

have to be on the PC because the results must be displayed on the same LCD where the

user inputs the handwriting.

Another major consideration for the real-time system is causality, i.e., for any

processing at time t, it can only use the inputs from before time t, not any from after time

t. In Section 6.2.2, the causality of algorithms will be discussed in detail.

The communication between the modules uses TCP/IP as its network protocol.

On the PC, network-related functionality was implemented using the standard Window

Winsock interface library. On the SGI Indy workstation, the standard UNIX socket

library was used.

6.2.1 Real-time Data Sampling Module

The real-time data sampling module on the GRiDTM PC samples the user's

handwriting and sends the x and y positions and PenUp/PenDown information to the



front-end module as the user writes. The sampling part of the module is very similar in

fUnctionality to the data collection program described in Section 3.2.1. The data

collection program was modified to convert to the real-time data sampling module.

Edit

Figure 6-2: Screen capture of the real-time data sampling module.

Several changes had to be implemented. To increase the overall speed of the

system, the sampled x and y positions and PenUp/PenDown information was sent to the

real-time front-end immediately as the user writes on the GRiDTM LCD. The text on the

top portion of the screen, for the writers to copy during data collection, was no longer

needed, so it was removed. Two new buttons were added to the interface to enable the

writer to write multiple sentences. One button, labeled "end," signals the system that the

current sentence is done. The real-time data sampling module sends an "end_sentence"

signal to the real-time front-end to indicate the current sentence is ending and a new

sentence is beginning. The other button is labeled "clear," clears the user's handwriting

from the program window, and an "endsentence" signal is sent out because clearing the

handwriting also means the current sentence is ending and a new sentence is starting.

Figure 6-2 shows the screen capture of this module.

Write (in cursivel the sentence or address below on these lines



6.2.2 Real-time Front-end

The real-time front-end runs on an SGI Indy workstation. It receives the sampled

x and y positions and PenUp/PenDown information from the real-time data sampling

module, and performs all the processing needed to convert the sampled data to discrete

observation symbols for the real-time decoder.

Three sub-modules are involved with the processing of the sampled data: the

real-time preprocessing sub-module, the feature-vectors computation sub-module, and the

observation-symbols calculation sub-module. Figure 6-3 shows the block diagram of the

real-time front-end.

x andv positions Real-time Feature-vectors Observation-symbols Observation
+ Pen Up/PenDown preprocessing computation calculation symbols

Figure 6-3: Block diagram of the real-time front-end.

The real-time preprocessing sub-module combined the data preparation step during

the data collection described in Section 3.2.2 and the preprocessing step in the front-end

described in Section 4.2.1.1. In brief, the sampled data was first passed through the

unwrappingfilter to convert handwriting on multiple lines to handwriting on a single line.

Next, the sampling distance filter was applied to eliminate the problem of mismatched

sampleing and displaying resolution. Then, the padding filter was used to fulfill the

minimum stroke length criterion. Both the unwrapping filter and the sampling distance

filter were causal, but the padding filter was not. However, the padding filter had a

maximum delay of 10 sample points which occurs at the beginning of a stroke. The

original padding filter could be adopted to process in real time by delaying the

computation on the current sample points by up to 10 samples. After applying the

real-time versions of the three filters, the handwriting was ready for the feature-vectors

calculation sub-module. Figure 6-4 showed the block diagram of the real-time

preprocessing sub-module.

Real-time Real-time Real-time preprocessed
x and ositions a unwrapping sampling padding - handwriting+ PenUp/PenDown filter distance filter filter data

Figure 6-4: Block diagram of the real-time preprocessing sub-module.



From the preprocessed handwriting data, the feature-vectors computation

sub-module computed six features: the writing angle, the delta writing angle, the delta x

position, the delta y position, the PenUp/PenDown bit, and the sgn(x-max(x)) bit. Since

the new features from the four feature experiments all require non-causal processing, they

were not adopted for the real-time system. The computation of these features was very

similar to the partial description of the front-end in Section 4.2.1.2. The calculation was

modified to compute from causal information only. The calculation of the

PenUplPenDown bit was causal originally. By delaying the feature vector computation of

the current data point by two samples to accommodate the computation of differences for

the other five features, it could also be calculated in real time.

From the feature vectors, the observation-symbols calculation sub-module

computed the discrete observation symbols. This was done similarly to the partial

description of the front-end in Section 4.2.1.3. With the VQ codebook already computed

by k-mean clustering during the training process, the feature vector was compared with

each prototype vector of the VQ codebook by a distance measure. The discrete

observation symbol corresponds to the prototype vector index of the shortest distance.

Since the process was inherently causal, no modification was necessary.

Over all three processing steps, the real-time front-end processing step could have

a maximum delay of 12 sample points. In other words, the preprocessing step guarantees

that at any given time t, all the samples corresponding to before the time t-12 would have

already been converted into discrete observation symbols. Since an average letter was

made of 30 sample points, a 12-sample delay did not hamper the performance of the

overall system.

6.2.3 Real-time Decoder

Since the forward-backward search (FBS) algorithm described in Section 4.2.3 is

very efficient in time, by changing its pruning threshold, the FBS algorithm can perform

cursive handwriting decoding in real time.

As the real-time decoder receives discrete observation symbols from the real-time

front-end, the real-time decoder performs the forward fast match and saves the



approximate forward scores. After the user signals the end of sentences by pressing the

"end" button on the GRiDTM PC, or after the real-time decoder receives the

"end_sentence" signal from the real-time front-end, the real-time decoder then performs

the backward Viterbi's beam search (VBS). The pruning threshold for the forward fast

match is tuned such that the real-time decoder "keeps up" with one's writing speed.

Similarly, the pruning threshold for the backward VBS is tuned such that the most likely

sentence of the VBS can be found within a couple of seconds after the writer finishes the

sentence.

6.2.4 Results Module

The results module "listens" to the real-time decoder and displays whatever the

real-time decoder sends to it on the GRiDTM PC. The best match is displayed as the user

inputs handwriting on the GRiDTM LCD and as the real-time decoder performs the forward

fast match search. The best match changes quickly as more handwriting is input on the

LCD. In addition, the most likely sentence is displayed as the backward VBS finishes the

backward decoding after the user signals the end of sentence.

6.3 Summary & Results

At the start of the real-time cursive handwriting recognition system, all four of the

modules first have to confirm that the socket communication connections function

properly and then each of the modules need to reset itself to be ready for a new sentence.

This can be done by the data sampling module which sends out an "end_sentence" signal.

As the user inputs handwriting on the GRiDTM LCD, the data sampling module

sends the sampled data to the real-time front-end. Next, the real-time front-end computes

the observation symbols for each sampled data points and sends the observation symbols

to the real-time decoder. Then, the real-time decoder performs the forward fast match on

the observation sequence as the real-time decoder receives them and sends the current best

match to the results module on the PC. Finally, the results module displays what it

receives from the decoder. This whole process continues until the "end' or the "clear"

button is pressed by the user to indicate the end of the current sentence. Figure 6-5 shows



a screen capture of the real-time data sampling module and the results module during a

real-time handwriting recognition demonstration.
Anzio Lite - pine.bbn.com

Elle Edit View Diagnose Communicate Iransfer Help
Price cut prices less thae expected an its most
powerful computer chips in a sign that ice . 5 I
in flex its

Edit

Write in cursive] the sentence or address below on these lines

Figure 6-5: Screen capture of the real-time data sampling module and the results
module during a real-time handwriting recognition demonstration. The writer
wrote "Intel cut prices less than expected on its most powerful computer chip in a sign
that it can flex its." On the real-time data sampling module. The current best match
is "Price cut prices less than expected on its most powerful computer chips in a sign
that ice. 5 0 inflex its" on the results module.

Once the "end' or the "clear" button is pressed, the "end_sentence" signal is sent

to the real-time front-end from the data sampling module. The real-time front-end

computes observation symbols for all the leftover samples, and sends them to the decoder.

At the same time, the real-time front-end resets itself to prepare for a new sentence. The

real-time decoder finishes the forward fast match as it receives the last portion of the

observation sequence, and immediately starts the backward Viterbi's beam search (VBS).

The real-time decoder then sends the result of the backward VBS, the most likely

sentence, to the results module. After the completion of the backward VBS, the real-time



decoder also resets itself to prepare for a new sentence. At last, the results module

displays the most likely sentence.



7. Summary & Future Directions

7.1 Summary

In this thesis I have presented a series of feature experiments aimed at showing

that the performance of the baseline system can be improved dramatically by augmenting

the six baseline features with new features, which would provide the HMM with

information about the handwriting which was not represented by the original features. A

new vertical height feature was used to characterize vertical height. A new space feature

was used to represent inter-word space. The hat stroke features were used to overcome

HMM's output independence assumption. The substroke features were implemented to

improve the characterization of global information. By training and testing on the BBN

on-line cursive handwriting data corpus, with the new features the system obtained a word

error rate of 9.1%, a 34% reduction in error from the baseline error rate of 13.8%. The

space feature and the substroke features each reduced the word error rate approximately

15%. The new features improved the HMM's modeling of handwriting, thus, also

improved the recognition performance of the overall system significantly.

The details of the HMM-based on-line cursive handwriting recognition system

were presented: from modeling of letters, words, and sentences with HMMs to the

training and decoding algorithms for HMMs; from the detailed description of the front-end

to the algorithms of the trainer and the decoder. Also, by modifying the front-end to

perform causal processing and constructing communication channels between a GRiDTM

PC and an SGI Indy workstation, a real-time, large vocabulary, write-independent, on-line

cursive handwriting recognition system was demonstrated.

7.2 Suggestions for Future Work

The results of the feature experiments showed that additional features,

representing more information such as inter-word space and substroke features, can

potentially improve the performance of the cursive on-line handwriting recognition system.



The implemented space feature and substroke features were by no means optimal. Further

investigations can possibly lead to better ways of representing the intended information.

In connection with substroke features, improvements can potentially be made.

First, instead of dividing strokes into substrokes by fitting straight lines to handwriting

data, arcs with constant curvature can be used. Also, after constructing the substrokes,

substroke pairs crossing each other are then represented by two set of values: one

representing itself, the other representing its crossing "partner."

From the results of the vertical height feature experiment, we were not able to

draw enough conclusive evidence to support that the y position related features would be

useful. However, since implementation of complicated normalization algorithms, e.g. slant

removal and baseline normalization, was avoided, we were not able to conclude the

ineffectiveness ofy position related features. To further evaluate the ineffectiveness of the

y position related features, normalization algorithms would have to be implemented first.

Although the handwriting recognition system can recognize words from a large

vocabulary, it is still impossible for it to recognize out-of-vocabulary words such as new

names and new abbreviations. However, it would not be that difficult to convert the

current system to be one with an open-vocabulary by adding an word-HMM model for

out-of-vocabulary words. Much like the method of representing all the sentences with a

finite set of words (see Section 2.3.1.3), all the words can be represented by a finite set of

characters by a character network where the transition probabilities are character-level

bigram probabilities.

Since the space feature and the substroke features both have improved the

recognition performance significantly, it is a natural extension to incorporate the two new

sets of features into the real-time demonstration system to improve its recognition

performance. Only the real-time front-end need to be modified. With some small,

additional delay within the real-time front-end, both the space feature and the substroke

features can be calculated with causal information only.

Feature, improve in hardware, common corpora

A large vocabulary, writer-independent, cursive on-line handwriting recognition

system with a word error rate under 10% was conceptualized and implemented together



with hidden Markov models and global information-bearing features. A similar system

was created to perform recognition in real time. Further research will undoubtedly yield

even greater gains in recognition performance than what has been achieved in this thesis.

Improvements in computer hardware and usage of common data corpora, such as

UNIPEN, in handwriting recognition will accelerate technological advances in this area.

The realization of high performance, real-time, open-vocabulary, writer-independent,

mixed style handwriting recognition systems will consequently be close to hand. These

further improvements will pave the way to a revolution in human-machine interaction.



Appendix A: List of 89 Letters of BBN On-line Cursive

Handwriting Data Corpus and the BYBLOS Symbols

Letter BYBLOS Letter BYBLOS Letter BYBLOSSymbol Symbol Symbol
& *a* A A a a
' *ap* B B b b
@ *at* C C c c

*bg* D D d d
, *c* E E e e

*co* F F f f
$ *d* G G g g
- *da* H H h h

*do* I I i i
= *e* J J j _

[ *lb* K K k k
S*lc* L L 1 1
( *lp* M M m m
# *p* N N n n
% *pe* 0 O o o
+ *p1* P P p
If *q* Q Q q q
? *qu* R R r r
] *rb* S S s s
} *rc* T T t t

*rp* U U u u
; *se* V V v v
/ *sl* W W w w
* *st* X X x x

Space Y Y y y
Backspace < Z Z z z

0 *zz* 5 *zi* OptionalSpace -
1 *zo* 6 *zs* -- --
2 *zt* 7 *ze* -- --

3 *zh* 8 *zg* -- --
4 *zf* 9 *zn-- --



Appendix B: A Sampling of the Vocabulary of the BBN

On-line Cursive Handwriting Data Corpus

Since the entire list consists of 25,595 words, only words starting with the capital letter A
is list below.

A
A's
AB
ABA
ABA's
ABB
ABBIE
ABC
ABC's
ABD
ABORTION
ABUSE
AC
ACCEPTANCES
ACCOUNT
ACCOUNTING
ACQUISITION
ACTUAL
ADB
ADRs
AEP
AFL
AFRICAN
AG
AG's
AGIP
AGREES
AH
AIDS
AIRLINE
AIRLINES
AK
ALCOHOL
ALII
ALLIANCES
ALLWASTE
ALLY
ALPA
AMERICAN
AMEX
AMR
AMT
AN
ANC

A-
A-*ap*-s--
A-B-
A-B-A-
A-B-A-*ap*-s-
A-B-B-
A-B-B-I-E-
A-B-C-
A-B-C-*ap*-s--
A-B-D-
A-B-O-R-T-I-O-N-
A-B-U-S-E-
A-C-
A-C-C-E-P-T-A-N-C-E-S-
A-C-C-O-U-N-T-
A-C-C-O-U-N-T-I-N-G-
A-C-Q-U-I-S-I-T-I-O-N-
A-C-T-U-A-L-
A-D-B-
A-D-R-s-
A-E-P-
A-F-L-
A-F-R-I-C-A-N-
A-G-
A-G-*ap*-s--
A-G-I-P-
A-G-R-E-E-S-_
A-H-
A-I-D-S-
A-I-R-L-I-N-E-
A-I-R-L-I-N-E-S-_
A-K-
A-L-C-O-H-O-L-_
A-L-I-I-
A-L-L-I-A-N-C-E-S-
A-L-L-W-A-S-T-E-_
A-L-L-Y-
A-L-P-A-
A-M-E-R-I-C-A-N-_
A-M-E-X-
A-M-R-
A-M-T-
A-N-
A-N-C-_



ANC's
AND
ANGRY
ANNOUNCED
ANNUITIES
APARTHEID
APPEARS
ARBITRAGE
ART
AS
ASA
ASCAP
ASEAN
ASLACTON
ASSET
ASSETS
ASSOCIATES
ASSOCIATION
AST
AT
ATS
ATT
ATT's
AUCTION
AUDITS
AUSTRALIAN
AUTO
AZT
Aaa
Aalseth
Aaron
Abalkin
Abbey
Abbie
Abbie's
Abbot
Abby
Aberdeen
Abitibi
Abortion
About
Above
Abraham
Abrams
Abramson
Abrupt
Absolutely
Absorbed
Abyss
Academic
Academically
Academy
Acadia
Acapulco

A-N-C-*ap*-s-_
A-N-D-_
A-N-G-R-Y-
A-N-N-O-U-N-C-E-D-
A-N-N-U-I-T-I-E-S-
A-P-A-R-T-H-E-I-D-
A-P-P-E-A-R-S-
A-R-B-I-T-R-A-G-E-
A-R-T-
A-S-
A-S-A-
A-S-C-A-P-
A-S-E-A-N-
A-S-L-A-C-T-O-N-
A-S-S-E-T-
A-S-S-E-T-S-
A-S-S-O-C-I-A-T-E-S-
A-S-S-O-C-I-A-T-I-O-N-
A-S-T-
A-T-
A-T-S-
A-T-T-
A-T-T-*ap*-s-
A-U-C-T-I-O-N-
A-U-D-I-T-S-
A-U-S-T-R-A-L-I-A-N-
A-U-T-O-
A-Z-T-
A-a-a-
A-a-l-s-e-t-h-<-
A-a-r-o-n-
A-b-a-l-k-i-n-<-
A-b-b-e-y-_
A-b-b-i-e-<-
A-b-b-i-e-*ap*-s-<-
A-b-b-o-t-<-
A-b-b-y-_
A-b-e-r-d-e-e-n-
A-b-i-t-i-b-i-<-<-<-<-
A-b-o-r-t-i-o-n-<-<-
A-b-o-u-t-<-
A-b-o-v-e-
A-b-r-a-h-a-m-
A-b-r-a-m-s-
A-b-r-a-m-s-o-n-
A-b-r-u-p-t-<-
A-b-s-o-l-u-t-e-1-y-<-
A-b-s-o-r-b-e-d-
A-b-y-s-s-
A-c-a-d-e-m-i-c-<-
A-c-a-d-e-m-i-c-a-l-l-y-<-
A-c-a-d-e-m-y-
A-c-a-d-i-a-<-
A-c-a-p-u-l-c-o-_



Acceptance
Accepted
Accessories
Acclaim
Accomplishing
Accor
Accor's
Accord
According
Accordingly
Account
Accounting
Accounts
Accrued
Accumulation
Achenbaum
Achenbaum's
Achievement
Ackerman
Acquired
Acquisition
Act
Acting
Action
Active
Activity
Actually
Ad
Adam
Adams
Adams's
Add
Added
Addison
Additionally
Addressing
Adds
Adia
Adjusted
Adjusters
Adler
Adley
Administration
Administration's
Administrator
Administrators
Admittedly
Adolph
Adopting
Adults
Advance
Advanced
Advancing
Advertisers

A-c-c-e-p-t-a-n-c-e-<-
A-c-c-e-p-t-e-d-<-_
A-c-c-e-s-s-o-r-i-e-s-<-
A-c-c-l-a-i-m-<-
A-c-c-o-m-p-l-i-s-h-i-n-g-<-<-
A-c-c-o-r-
A-c-c-o-r-*ap*-s-_
A-c-c-o-r-d-
A-c-c-o-r-d-i-n-g-<-
A-c-c-o-r-d-i-n-g-l-y-<-
A-c-c-o-u-n-t-<-
A-c-c-o-u-n-t-i-n-g-<-<-
A-c-c-o-u-n-t-s-<-
A-c-c-r-u-e-d-
A-c-c-u-m-u-l-a-t-i-o-n-<-<-
A-c-h-e-n-b-a-u-m-
A-c-h-e-n-b-a-u-m-*ap*-s-
A-c-h-i-e-v-e-m-e-n-t-<-<-
A-c-k-e-r-m-a-n-
A-c-q-u-i-r-e-d-<--
A-c-q-u-i-s-i-t-i-o-n-<-<-<-<-
A-c-t-<-
A-c-t-i-n-g-<-<-
A-c-t-i-o-n-<-<-
A-c-t-i-v-e-<-<-
A-c-t-i-v-i-t-y-<-<-<-<-_
A-c-t-u-a-l-l-y-<-_
A-d-
A-d-a-m-
A-d-a-m-s-
A-d-a-m-s-*ap*-s-
A-d-d-
A-d-d-e-d-
A-d-d-i-s-o-n-<-
A-d-d-i-t-i-o-n-a-l-l-y-<-<-<-
A-d-d-r-e-s-s-i-n-g-<-
A-d-d-s-
A-d-i-a-<-
A-d-j-u-s-t-e-d-<-<-_
A-d-j-u-s-t-e-r-s-<-<--
A-d-l-e-r-
A-d-l-e-y-_
A-d-m-i-n-i-s-t-r-a-t-i-o-n-<-<-<-<-<-
A-d-m-i-n-i-s-t-r-a-t-i-o-n-*ap*-s-<-<-<-
A-d-m-i-n-i-s-t-r-a-t-o-r-<-<-<-<-
A-d-m-i-n-i-s-t-r-a-t-o-r-s-<-<-<-<-
A-d-m-i-t-t-e-d-l-y-<-<-<-
A-d-o-l-p-h-_
A-d-o-p-t-i-n-g-<-<-
A-d-u-l-t-s-<-
A-d-v-a-n-c-e-
A-d-v-a-n-c-e-d-
A-d-v-a-n-c-i-n-g-<-
A-d-v-e-r-t-i-s-e-r-s-<-<-



Advertising
Advest
Advice
Adviser
Advisers
Advisor
Advisors
Advisory
Advocates
Aerojet
Aeronautical
Aeronautics
Aerospace
Aetna
Aetna's
Af
Affair
Affairs
Afghan
Afghanistan
Afghanistan's
Afif
Aflatoxin
Afnasjev
Africa
Africa's
African
After
Afterward
Aga
Again
Against
Age
Agencies
Agency
Agent
Agents
Agnelli
Agnellis
Agnellis'
Agnew
Ago
Agreement
Agricultural
Agriculture
Agro
Ahead
Ahmanson
Ahoy
Aichi
Aichi's
Aiken
Ailes
Aimed

A-d-v-e-r-t-i-s-i-n-g-<-<-<-_
A-d-v-e-s-t-<-
A-d-v-i-c-e-<-
A-d-v-i-s-e-r-<-
A-d-v-i-s-e-r-s-<-
A-d-v-i-s-o-r-<-
A-d-v-i-s-o-r-s-<-
A-d-v-i-s-o-r-y-<-
A-d-v-o-c-a-t-e-s-<-
A-e-r-o-j-e-t-<-<-
A-e-r-o-n-a-u-t-i-c-a-l-<-<-
A-e-r-o-n-a-u-t-i-c-s-<-<-
A-e-r-o-s-p-a-c-e-
A-e-t-n-a-<-
A-e-t-n-a-*ap*-s-<-
A-f-
A-f-f-a-i-r-<-
A-f-f-a-i-r-s-<-
A-f-g-h-a-n-
A-f-g-h-a-n-i-s-t-a-n-<-<--
A-f-g-h-a-n-i-s-t-a-n-*ap*-s-<-<-<-
A-f-i-f-<-
A-f-l-a-t-o-x-i-n-<-<-<-
A-f-n-a-s-j-e-v-<-
A-f-r-i-c-a-<-
A-f-r-i-c-a-*ap*-s-<--
A-f-r-i-c-a-n-<-
A-f-t-e-r-<-
A-f-t-e-r-w-a-r-d-<-
A-g-a-
A-g-a-i-n-<-
A-g-a-i-n-s-t-<-<-
A-g-e-_
A-g-e-n-c-i-e-s-<-
A-g-e-n-c-y-
A-g-e-n-t-<-
A-g-e-n-t-s-<-
A-g-n-e-l-l-i-<--
A-g-n-e-l-l-i-s-<-_
A-g-n-e-l-l-i-s-*ap*-<-
A-g-n-e-w--
A-g-o-
A-g-r-e-e-m-e-n-t-<-
A-g-r-i-c-u-l-t-u-r-a-l-<-<-
A-g-r-i-c-u-l-t-u-r-e-<-<-
A-g-r-o-
A-h-e-a-d-
A-h-m-a-n-s-o-n-
A-h-o-y-_
A-i-c-h-i-<-<-
A-i-c-h-i-*ap*-s-<-<-
A-i-k-e-n-<-
A-i-l-e-s-<-
A-i-m-e-d-<-



Air
Air's
Aircraft
Airline
Airlines
Airlines'
Airplanes
Airport
Airways
Ait
Aitken
Aiwa
Ajinomoto
Akerfeldt
Akio
Akron
Aktiebolaget
Akzo
Akzo's
Al
Al's
Ala
Alabama
Alagoas
Alamos
Alan
Alan's
Alar
Alaska
Alaska's
Alaskan
Albanese
Albanians
Albany
Alberg
Albert
Albert's
Alberta
Albion
Albuquerque
Alden
Alderson
Alert
Alex
Alexander
Alfred
Algeria
Algerian
Algiers
Algom
Ali
Alice
Alisarda
Alisky

A-i-r-<-
A-i-r-*ap*-s-<-
A-i-r-c-r-a-f-t-<-<-
A-i-r-l-i-n-e-<-<-
A-i-r-l-i-n-e-s-<-<-
A-i-r-l-i-n-e-s-*ap*-<-<-
A-i-r-p-l-a-n-e-s-<-
A-i-r-p-o-r-t-<-<-_
A-i-r-w-a-y-s-<--
A-i-t-<-<-
A-i-t-k-e-n-<-<-
A-i-w-a-<-
A-j-i-n-o-m-o-t-o-<-<-<-
A-k-e-r-f-e-l-d-t-<-
A-k-i-o-<-
A-k-r-o-n-
A-k-t-i-e-b-o-l-a-g-e-t-<-<-<-
A-k-z-o-
A-k-z-o-*ap*-s--
A-1-
A-l-*ap*-s-
A-I-a-
A-1-a-b-a-m-a-
A-l-a-g-o-a-s-_
A-l-a-m-o-s-
A-i-a-n-
A-1-a-n-*ap*-s-
A-l-a-r-
A-1-a-s-k-a-
A-1-a-s-k-a-*ap*-s-
A-1-a-s-k-a-n-
A-1-b-a-n-e-s-e-
A-1-b-a-n-i-a-n-s-<-
A-1-b-a-n-y-
A-l-b-e-r-g-_
A-l-b-e-r-t-<-
A-l-b-e-r-t-*ap*-s-<-
A-1-b-e-r-t-a-<-
A-l-b-i-o-n-<-
A-l-b-u-q-u-e-r-q-u-e-
A-l-d-e-n-
A-1-d-e-r-s-o-n-
A-l-e-r-t-<-
A-l-e-x-<-
A-l-e-x-a-n-d-e-r-<-
A-l-f-r-e-d-
A-l-g-e-r-i-a-<-_
A-l-g-e-r-i-a-n-<-_
A-l-g-i-e-r-s-<-
A-l-g-o-m-
A-l-i-<-
A-l-i-c-e-<-
A-I-i-s-a-r-d-a-<-
A-1-i-s-k-y-<-



Alito
All
Allan
Allegany
Alleghany
Allegheny
Allegran
Allen
Allen's
Allendale
Allergan
Alley
Alliance
Allianz
Allianz's
Allied
Allies
Alligood
Alltel
Almost
Aloha
Along
Alongside
Alphonsus
Alpine
Alps
Already
Also
Alson
Alstyne
Altair
Alternative
Alternatively
Althea
Although
Altman
Alto
Altogether
Alton
Aluminum
Aluminum's
Alurralde
Alvin
Always
Alyce
Alysia
Alzheimer's
Am
Amadou
Amalgamated
Amarillo
Amateur
Amaury
Amazing

A-l-i-t-o-<-<-
A-i-I-
A-l-1-a-n-
A-l-l-e-g-a-n-y--
A-l-1-e-g-h-a-n-y--
A-l-l-e-g-h-e-n-y-
A-l-l-e-g-r-a-n-
A-1-1-e-n-
A-l-1-e-n-*ap*-s-_
A-l-1-e-n-d-a-l-e-
A-1-1-e-r-g-a-n-_
A-l-l-e-y--
A-1-1-i-a-n-c-e-<-
A-1-1-i-a-n-z-<-
A-1-l-i-a-n-z-*ap*-s-<-_
A-l-l-i-e-d-<-
A-l-l-i-e-s-<-
A-l-l-i-g-o-o-d-<-_
A-l-l-t-e-l-<-
A-l-m-o-s-t-<-
A-1-o-h-a-
A-l-o-n-g-_
A-1-o-n-g-s-i-d-e-<-
A-l-p-h-o-n-s-u-s-_
A-1-p-i-n-e-<-
A-l-p-s-_
A-l-r-e-a-d-y--
A-1-s-o-
A-l-s-o-n-
A-l-s-t-y-n-e-<--
A-l-t-a-i-r-<-<-
A-l-t-e-r-n-a-t-i-v-e-<-<-<-
A-l-t-e-r-n-a-t-i-v-e-l-y-<-<-<-
A-l-t-h-e-a-<-
A-l-t-h-o-u-g-h-<-_
A-1-t-m-a-n-<-
A-l-t-o-<-
A-l-t-o-g-e-t-h-e-r-<-<-
A-1-t-o-n-<-
A-l-u-m-i-n-u-m-<-
A-l-u-m-i-n-u-m-*ap*-s-<-
A-1-u-r-r-a-l-d-e-
A-1-v-i-n-<-
A-1-w-a-y-s-_
A-l-y-c-e-_
A-1-y-s-i-a-<-_
A-l-z-h-e-i-m-e-r-*ap*-s-<-
A-m-
A-m-a-d-o-u-
A-m-a-l-g-a-m-a-t-e-d-<-_
A-m-a-r-i-l-l-o-<-
A-m-a-t-e-u-r-<-
A-m-a-u-r-y-_
A-m-a-z-i-n-g-<-



Amazon
Amazonia
Amazonian
Amdahl
Amendment
Amer
America
America's
American
American's
Americana
Americans
Amerinvest
Ames
Amex
Amfac
Amicable
Amid
Amin
Amityvilles
Ammonium
Amoco
Amoco's
Among
Amor
Amparano
Amschel
Amsterdam
Amtran
Amvest
Amy
An
Ana
Anac
Anadarko
Analog
Analyses
Analysis
Analyst
Analyst's
Analysts
Analytical
Anchor
Ancient
And
Andean
Andersen
Anderson
Anderson's
Andersson
Andes
Andover
Andrea
Andrew

A-m-a-z-o-n-
A-m-a-z-o-n-i-a-<-
A-m-a-z-o-n-i-a-n-<-
A-m-d-a-h-l-
A-m-e-n-d-m-e-n-t-<-
A-m-e-r-
A-m-e-r-i-c-a-<-
A-m-e-r-i-c-a-*ap*-s-<-_
A-m-e-r-i-c-a-n-<-
A-m-e-r-i-c-a-n-*ap*-s-<-
A-m-e-r-i-c-a-n-a-<-
A-m-e-r-i-c-a-n-s-<-
A-m-e-r-i-n-v-e-s-t-<-<-
A-m-e-s-
A-m-e-x-<-
A-m-f-a-c-
A-m-i-c-a-b-l-e-<-
A-m-i-d-<-
A-m-i-n-<-
A-m-i-t-y-v-i-l-l-e-s-<-<-<-
A-m-m-o-n-i-u-m-<-
A-m-o-c-o-
A-m-o-c-o-*ap*-s-_
A-m-o-n-g-_
A-m-o-r-
A-m-p-a-r-a-n-o-
A-m-s-c-h-e-l-
A-m-s-t-e-r-d-a-m-<-
A-m-t-r-a-n-<-
A-m-v-e-s-t-<-
A-m-y-
A-n-
A-n-a-
A-n-a-c-
A-n-a-d-a-r-k-o-
A-n-a-l-o-g--
A-n-a-l-y-s-e-s--
A-n-a-l-y-s-i-s-<-_
A-n-a-l-y-s-t-<-_
A-n-a-l-y-s-t-*ap*-s-<--
A-n-a-l-y-s-t-s-<-_
A-n-a-l-y-t-i-c-a-l-<-<-
A-n-c-h-o-r-
A-n-c-i-e-n-t-<-<-
A-n-d-
A-n-d-e-a-n-
A-n-d-e-r-s-e-n-
A-n-d-e-r-s-o-n-
A-n-d-e-r-s-o-n-*ap*-s-
A-n-d-e-r-s-s-o-n-
A-n-d-e-s-
A-n-d-o-v-e-r-
A-n-d-r-e-a-
A-n-d-r-e-w-



Andrews
Andy
Angeles
Angeles's
Angell
Angelo
Angels
Angier
Anglia
Anglian
Anglo
Angola
Anheuser
Animals
Anita
Ankara
Anku
Ann
Annalee
Annapolis
Anne
Annenberg
Anniston
Annual
Annualized
Annuities
Annuity
Another
Ansco
Answers
Antar
Antar's
Antarctica
Anthong
Anthony
Anthropology
Anti
Anticipated
Antilles
Antinori's
Antitrust
Antoine
Antolini
Anton
Antonio
Anxiety
Anxious
Any
Anyone
Anything
Anything's
Anyway
Aoun
Aoyama

A-n-d-r-e-w-s-
A-n-d-y--
A-n-g-e-l-e-s-_
A-n-g-e-l-e-s-*ap*-s-_
A-n-g-e-l-l-_
A-n-g-e-l-o-_
A-n-g-e-l-s-
A-n-g-i-e-r-<-_
A-n-g-l-i-a-<-_
A-n-g-l-i-a-n-<-
A-n-g-l-o-_
A-n-g-o-l-a-_
A-n-h-e-u-s-e-r-
A-n-i-m-a-l-s-<-
A-n-i-t-a-<-<-
A-n-k-a-r-a-
A-n-k-u-
A-n-n-
A-n-n-a-l-e-e-
A-n-n-a-p-o-l-i-s-<-_
A-n-n-e-
A-n-n-e-n-b-e-r-g-
A-n-n-i-s-t-o-n-<-<-
A-n-n-u-a-l-
A-n-n-u-a-l-i-z-e-d-<-
A-n-n-u-i-t-i-e-s-<-<-<-
A-n-n-u-i-t-y-<-<-_
A-n-o-t-h-e-r-<-
A-n-s-c-o-
A-n-s-w-e-r-s-
A-n-t-a-r-<-
A-n-t-a-r-*ap*-s-<-
A-n-t-a-r-c-t-i-c-a-<-<-<-
A-n-t-h-o-n-g-<-
A-n-t-h-o-n-y-<-_
A-n-t-h-r-o-p-o-l-o-g-y-<-
A-n-t-i-<-<-
A-n-t-i-c-i-p-a-t-e-d-<-<-<-<-
A-n-t-i-l-l-e-s-<-<-
A-n-t-i-n-o-r-i-*ap*-s-<-<-<-
A-n-t-i-t-r-u-s-t-<-<-<-<-
A-n-t-o-i-n-e-<-<-
A-n-t-o-l-i-n-i-<-<-<-
A-n-t-o-n-<-
A-n-t-o-n-i-o-<-<-
A-n-x-i-e-t-y-<-<-<-_
A-n-x-i-o-u-s-<-<-
A-n-y--
A-n-y-o-n-e-
A-n-y-t-h-i-n-g-<-<-
A-n-y-t-h-i-n-g-*ap*-s-<-<-
A-n-y-w-a-y-_
A-o-u-n-
A-o-y-a-m-a-



Apache
Apart
Apicella
Appalachian
Appalled
Apparently
Appeals
Appelbaum
Appell
Appellate
Applause
Apple
Applegate
Appleyard
Applications
Applied
Appropriations
April
Apt
Aptitude
Aquino
Aquitaine
Arab
Arabia
Arabian
Arabic
Arabs
Arafat
Araskog
Arbitrage
Arbitraging
Arbor
Arcata
Arch
Archibald
Archipelago
Archuleta
Arco
Arctic
Arden
Ardent
Ardent's
Are
Area
Area's
Areas
Aren't
Argentina
Argentine
Argentinian
ArgoSystems
Argonne
Argus
Ariail

A-p-a-c-h-e-_
A-p-a-r-t-<-
A-p-i-c-e-l-l-a-<-_
A-p-p-a-l-a-c-h-i-a-n-<-
A-p-p-a-l-l-e-d-_
A-p-p-a-r-e-n-t-l-y-<-
A-p-p-e-a-l-s-_
A-p-p-e-l-b-a-u-m-_
A-p-p-e-l-l-_
A-p-p-e-l-l-a-t-e-<-_
A-p-p-l-a-u-s-e-_
A-p-p-l-e-
A-p-p-l-e-g-a-t-e-<-
A-p-p-l-e-y-a-r-d-
A-p-p-l-i-c-a-t-i-o-n-s-<-<-<-
A-p-p-l-i-e-d-<-_
A-p-p-r-o-p-r-i-a-t-i-o-n-s-<-<-<-
A-p-r-i-l-<-
A-p-t-<-
A-p-t-i-t-u-d-e-<-<-<-
A-q-u-i-n-o-<-_
A-q-u-i-t-a-i-n-e-<-<-<-
A-r-a-b-
A-r-a-b-i-a-<-
A-r-a-b-i-a-n-<-
A-r-a-b-i-c-<-
A-r-a-b-s-
A-r-a-f-a-t-<-
A-r-a-s-k-o-g--
A-r-b-i-t-r-a-g-e-<-<-
A-r-b-i-t-r-a-g-i-n-g-<-<-<-
A-r-b-o-r-
A-r-c-a-t-a-<-
A-r-c-h-
A-r-c-h-i-b-a-l-d-<-
A-r-c-h-i-p-e-l-a-g-o-<-
A-r-c-h-u-l-e-t-a-<-
A-r-c-o-
A-r-c-t-i-c-<-<-
A-r-d-e-n-
A-r-d-e-n-t-<-
A-r-d-e-n-t-*ap*-s-<-_
A-r-e-
A-r-e-a-
A-r-e-a-*ap*-s-
A-r-e-a-s-
A-r-e-n-*ap*-t-<-_
A-r-g-e-n-t-i-n-a-<-<-_
A-r-g-e-n-t-i-n-e-<-<-_
A-r-g-e-n-t-i-n-i-a-n-<-<-<-
A-r-g-o-S-y-s-t-e-m-s-<-_
A-r-g-o-n-n-e-_
A-r-g-u-s-
A-r-i-a-i-l-<-<-



Arias
Arias's
Arighi
Ariz
Arizona
Ark
Arkansas
Arkla
Arkla's
Arkoma
Arlington
Arm
Armed
Armenia
Armenian
Armstrong
Armstrong's
Army
Army's
Arnold
Aronson
Around
Arraignments
Arrest
Arrested
Arrow
Arroyo
Arseneault
Art
Arthur
Article
Articles
Artist
Artist's
Artra
Arts
Arvind
As
Asada
Asahi
Ascii
Asea
Ash
Asher
Ashurst
Asia
Asia's
Asian
Asians
Aside
Asil
Aska
Asked
Aslacton

A-r-i-a-s-<-
A-r-i-a-s-*ap*-s-<-
A-r-i-g-h-i-<-<-_
A-r-i-z-<-
A-r-i-z-o-n-a-<-
A-r-k-
A-r-k-a-n-s-a-s-
A-r-k-l-a-
A-r-k-l-a-*ap*-s-
A-r-k-o-m-a-
A-r-l-i-n-g-t-o-n-<-<-
A-r-m-
A-r-m-e-d-
A-r-m-e-n-i-a-<-
A-r-m-e-n-i-a-n-<-
A-r-m-s-t-r-o-n-g-<-
A-r-m-s-t-r-o-n-g-*ap*-s-<-
A-r-m-y-
A-r-m-y-*ap*-s-
A-r-n-o-l-d-
A-r-o-n-s-o-n-
A-r-o-u-n-d-
A-r-r-a-i-g-n-m-e-n-t-s-<-<--
A-r-r-e-s-t-<-
A-r-r-e-s-t-e-d-<-
A-r-r-o-w-
A-r-r-o-y-o-
A-r-s-e-n-e-a-u-l-t-<-
A-r-t-<-
A-r-t-h-u-r-<-
A-r-t-i-c-l-e-<-<-
A-r-t-i-c-l-e-s-<-<-
A-r-t-i-s-t-<-<-<-
A-r-t-i-s-t-*ap*-s-<-<-<-
A-r-t-r-a-<-
A-r-t-s-<-
A-r-v-i-n-d-<-
A-s-
A-s-a-d-a-
A-s-a-h-i-<-
A-s-c-i-i-<-<-
A-s-e-a-
A-s-h-
A-s-h-e-r-
A-s-h-u-r-s-t-<-
A-s-i-a-<-
A-s-i-a-*ap*-s-<-
A-s-i-a-n-<-
A-s-i-a-n-s-<-
A-s-i-d-e-<-
A-s-i-l-<-
A-s-k-a-
A-s-k-e-d-
A-s-l-a-c-t-o-n-<-



Assembly
Assemblyman
Assessment
Asset
Assets
Assistant
Assoc
Associated
Associates
Association
Association's
Assume
Assuming
Assurance
Astec
Astoria
At
Ateliers
Athletics
Athletics'
Atkins
Atlanta
Atlanta's
Atlantic
Atsushi
Attendants
Attention
Attic
Attitudes
Attorney
Attorney's
Attorneys
Attwood
Atwood's
Auctions
Audit
Auditors
Audrey
Audubon
Aug
August
August's
Augusta
Augustines
Aurora
Austin
Australia
Australia's
Australian
Australians
Austria
Austrian
Author
Authorities

A-s-s-e-m-b-l-y-_
A-s-s-e-m-b-l-y-m-a-n-_
A-s-s-e-s-s-m-e-n-t-<-
A-s-s-e-t-<-
A-s-s-e-t-s-<-
A-s-s-i-s-t-a-n-t-<-<-<-
A-s-s-o-c-
A-s-s-o-c-i-a-t-e-d-<-<-
A-s-s-o-c-i-a-t-e-s-<-<-
A-s-s-o-c-i-a-t-i-o-n-<-<-<-
A-s-s-o-c-i-a-t-i-o-n-*ap*-s-<-<-<-
A-s-s-u-m-e-
A-s-s-u-m-i-n-g-<-
A-s-s-u-r-a-n-c-e-
A-s-t-e-c-<-
A-s-t-o-r-i-a-<-<-
A-t-<-
A-t-e-l-i-e-r-s-<-<-
A-t-h-l-e-t-i-c-s-<-<-<-
A-t-h-l-e-t-i-c-s-*ap*-<-<-<-
A-t-k-i-n-s-<-<-
A-t-l-a-n-t-a-<-<-
A-t-l-a-n-t-a-*ap*-s-<-<--
A-t-l-a-n-t-i-c-<-<-<-
A-t-s-u-s-h-i-<-<-
A-t-t-e-n-d-a-n-t-s-<-<-<-
A-t-t-e-n-t-i-o-n-<-<-<-<-
A-t-t-i-c-<-<-<-
A-t-t-i-t-u-d-e-s-<-<-<-<-
A-t-t-o-r-n-e-y-<-<-
A-t-t-o-r-n-e-y-*ap*-s-<-<-
A-t-t-o-r-n-e-y-s-<-<-
A-t-t-w-o-o-d-<-<-
A-t-w-o-o-d-*ap*-s-<-
A-u-c-t-i-o-n-s-<-<-
A-u-d-i-t-<-<-
A-u-d-i-t-o-r-s-<-<-
A-u-d-r-e-y--
A-u-d-u-b-o-n-
A-u-g-_
A-u-g-u-s-t-<-
A-u-g-u-s-t-*ap*-s-<-
A-u-g-u-s-t-a-<--
A-u-g-u-s-t-i-n-e-s-<-<-_
A-u-r-o-r-a-
A-u-s-t-i-n-<-<-
A-u-s-t-r-a-l-i-a-<-<-
A-u-s-t-r-a-l-i-a-*ap*-s-<-<-
A-u-s-t-r-a-l-i-a-n-<-<-
A-u-s-t-r-a-l-i-a-n-s-<-<-
A-u-s-t-r-i-a-<-<-
A-u-s-t-r-i-a-n-<-<-
A-u-t-h-o-r-<-
A-u-t-h-o-r-i-t-i-e-s-<-<-<-<-



Authority
Auto
Automated
Automatic
Automobile
Automotive
Autry
Ave
Avedisian
Avena
Avenue
Avenue's
Average
Average's
Avery
Avery's
Avi
Aviation
Aviv
Aviva
Aviva's
Avon
Avondale
Avrett
Aw
Ayer
Ayers
Azara's
Azem
Azerbaijan
Aziza
Azoff
Aztec
Azucena

A-u-t-h-o-r-i-t-y-<-<-<-
A-u-t-o-<-
A-u-t-o-m-a-t-e-d-<-<-
A-u-t-o-m-a-t-i-c-<-<-<-
A-u-t-o-m-o-b-i-l-e-<-<-
A-u-t-o-m-o-t-i-v-e-<-<-<-
A-u-t-r-y-<-
A-v-e-
A-v-e-d-i-s-i-a-n-<-<-
A-v-e-n-a-
A-v-e-n-u-e-
A-v-e-n-u-e-*ap*-s-
A-v-e-r-a-g-e--
A-v-e-r-a-g-e-*ap*-s-
A-v-e-r-y-_
A-v-e-r-y-*ap*-s-_
A-v-i-<-
A-v-i-a-t-i-o-n-<-<-<-
A-v-i-v-<-
A-v-i-v-a-<-
A-v-i-v-a-*ap*-s-<-_
A-v-o-n-
A-v-o-n-d-a-l-e-
A-v-r-e-t-t-<-<-
A-w-
A-y-e-r-
A-y-e-r-s-
A-z-a-r-a-*ap*-s-_
A-z-e-m-
A-z-e-r-b-a-i-j-a-n-<-<-
A-z-i-z-a-<-
A-z-o-f-f-
A-z-t-e-c-<-
A-z-u-c-e-n-a-



Appendix C: A Sampling of the Decoding Results for

the Substroke Feature Experiment

"REF" denotes the reference transcription, and "HYP" denotes the corresponding
hypothesized decoding result. The underline emphasizes the decoding errors.

aimr14
REF: Small wonder, since he's asking San Francisco taxpayers to sink up to $100

million into the new stadium.
HYP: Small wonder, since he's asking San Francisco's taxpayers to sink up to $10_

million into the new structure.

aimrll8
REF: Something like one-third of the nation's 60 largest cities are

new stadiums, ranging from Cleveland to San Antonio and St. Petersburg.
HYP: Something like one-third of the nation's 60 largest cities are

new stadiums, ranging from Cleveland to San Antonio and Set. Petersburg.

thinking about

thinking about

aimr123
REF: Voters generally agree when they are given a chance to decide if they want to

sink their own tax dollars into a new mega-stadium.
HYP: Voters generally agree when they are given a chance to decide if they want to

sink their own tax dollars into a new mega-strain.

aimr127
REF: But voters decided that if the stadium was such

build it himself, and rejected it 59% to 41%.
HYP: But voters decided that if the stadium was such

issued it himself, and rejected it 39% to 42%.

dsfr107
REF: First Federal named Mr. Ottoni president and

Mr. Clarkson and elected him as a director.
HYP: First Federal named Mr. Ottoni president and

Mr. Clark seem and elected him as a directors.

a good idea someone would

a good idea someone would

chief executive to succeed

chief executive to succeed

dsf 120
REF: "An ultimate target of 40,000 units annually has been set for a still-to-be-

named model," Toyota said.
HYP: "In ultimate target of 40,00_ units annually has been set for a still-to_be-

naked model," Toyota said.



dsfr 124
REF: Toyota also announced a number of major overseas purchases.
HYP: Toyota also announced a number of major overseas purchases.

dsfr130
REF: The trust has an option to convert its shares to a 71.5% equity stake in the

center by the year 2000.
HYP: The trust has an option to convert its shares to a 47.5% equity stake in the

center by the year 200_.

rgbrl04
REF: "When scientific progress moves into uncharted ground, there has to be a role

for society to make judgments about its applications," says Myron Genel, associate dean
of the Yale Medical School.

HYP: "When scientific progress over into uncharted ground, there has to be a role
for society to make judgments about its application," says Myron fuel, associate dean
of the Yale medical school.

rgbrl09
REF: Despite the flap over transplants, federal funding of research involving fetal

tissues will continue on a number of fronts.
HYP: Despite the flap over transports, federal funding of research involving fetal

tissues will continue on a number of fronts.

rgbrll5
REF: Yesterday's share turnover was well below the year's daily average of 133.8

million.
HYP: Yesterday's share turnover was well below the year " a daily average of 13_.8

million.

rgbrl20
REF: The bank stocks got a boost when Connecticut Bank & Trust and Bank of

New England said they no longer oppose pending legislation that would permit banks
from other regions to merge with Connecticut and Massachusetts banks.

HYP: The bank stocks got a court when Connecticut Bank & Trust and Bank of
New England said ray no longer oppose pending legislature that would permit banks
from other yen to merge with Connecticut and Massachusetts banks.

shsrl08
REF: The borrowing to raise these funds would be paid off as assets of sick thrifts

are sold.
HYP: The borrowing to raise these funds would be paid off as assets of sick thrifts

are sold.



shsrll2
REF: The RTC will have to sell or merge hundreds of insolvent thrifts over the next

three years.
HYP: The RTC will have to sell or merge hundreds of insolvent thrifts over the next

three years.

shsr118
REF: But the worst possibility would be raising no working capital, he said.
HYP: But the worst possibility would be raising no working capital, he said.

shsrl24
REF: Not a gripping question, unless you're the pastry chef of this city's Chez

Panisse restaurant and you've just lost your priceless personal dessert notebook.
HYP: But a gripping question, unless you in the pastry chef of this city's Chez

Panisse restaurant and going just last year priceless personal dessert notebook.

slbrI04
REF: This year's results included a gain of $70.2 million on the disposal of seafood

operations.
HYP: This year's results included a gain of $70.2 million on one disposal of one oggod

operations.

slbr110
REF: Its cereal division realized higher operating profit on volume increases, but

also spent more on promotion.
HYP: Its cereal division realized higher operating profit on volume increases, but

also spent menu on promotion.

slbr115
REF: The companies are followed by at least three analysts, and had a minimum

five-cent change in actual earnings per share.
HYP: The companies are followed by at least three analysts, and had a minimum

five-cent change in actual earnings per gram.

slbrl37
REF: First Chicago Corp. said it completed its $55.1 million cash-and-stock

acquisition of closely held Ravenswood Financial Corp., another Chicago bank holding
company.

HYP: First Chicago Corp. said it completed its $5_.6 million cash-and-stock
acquisition of closely held Ravenswood Financial Corp., another Chicago bank holding
company.



wcdrl04
REF: Conversely, strong consumer spending in the U.S. two years ago helped propel

the local economy at more than twice its current rate.
HYP: Conversely, strong consumer spending in the U.S. two years ago helped propel

the local economy at more than twice its current rate.

wcdr 1 7
REF: While Wall Street is retreating from computer-driven program trading, big

institutional investors are likely to continue these strategies at full blast, further roiling the
stock market, trading executives say.

HYP: While Wall Street is retreating from computer-driven program trading, big
institutional investors are likely to continue these strategies at full blast, further roiling the
stock market, trading executives say?

wcdrl21
REF: Trading executives privately say that huge stock-index funds, which dwarf

Wall Street firms in terms of the size of their program trades, will continue to launch big
programs through the stock market.

HYP: Trading executives privately say that huge stock-index funds, which dwarf
Wall Street firms in terms of the size of their program trades, will continue to launch big
programs through the stock market.

wcdrl25
REF: Consequently, abrupt swings in the stock market are not likely to disappear

anytime soon.
HYP: Consequently, abrupt swings in the stock market are not likely to disappear

anytime soon.
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