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ABSTRACT

In experiments with fusing plasmas, enhanced emission at the harmonics of

the ion cyclotron frequency of the fusion products has been observed. In this

thesis a model is developed that explains the main characteristics of the emission,

in particular the fact that the radiation peaks occur at frequencies corresponding

to harmonics of the a (or D) cyclotron frequency, Q, at the outer edge of the

plasma column. Our results indicate also a transition to a continuum spectrum at

high frequencies that is consistent with the experiments.

The modes corresponding to the discrete spectrum, are localized near the

plasma edge. The radial containment is in fact a fundamental characteristic of our

model, since only contained modes can generate sufficient growth of the mode to

justify the detected emission power levels. The instability evolves on a time scale

that is shorter than the slowing-down time of a-particles, and so the distribution



function for the interacting particles, which are trapped particles near the outer

edge of the plasma, can be described as strongly anisotropic in velocity space

and having energies close to their value at birth from the fusion reaction. The

contained mode is a solution to the ideal MHD equations, extended to include the

Hall term, so the frozen-in law is replaced by the more general Ohm's equation

E + i, x B = (1/en)! x B. We focus on quasi-flute modes with a high poloidal

number, that are generalizations, to the case of an inhomogeneous plasma, of the

magnetosonic-whistler modes. The wavevector has a small component parallel

to the magnetic field, k11. The sensitivity of the localization of the mode to kll

effects increases with frequency, and the interval over which modes can be excited

extends toward the center of the plasma column. This suggest a mechaninsm for

the transition to a continuum spectrum, since more a-particles can interact with

the mode. The growth rate can be evaluated using a full toroidal calculation for

the particle dymanics. The growth rate depends linearly on the a-particle density,

and can be of the order of the bounce frequency of the interacting a-particles.

Thesis Supervisor: Professor Bruno Coppi
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Chapter 0.

Introduction

Fusion reactions in plasmas produce a considerable population of high energy

particles that can interact with the background thermal plasmas both by collisions

and by collective modes. In 1991, two plasma discharges were produced by the JET

(Joint European Torus) machine in England in which deuterium (D) and tritium

(T) were the component nuclei. In fact this was the first time that a well confined

plasma made of these two elements could be investigated. It is hoped that the

reaction between deuterium and tritium will form the basis of a working fusion

reactor:

D + T -* 4 He[3.56MeV] + n[14.03MeV]

The a-particles [4He] produced by the above reaction give rise to many interesting

physical phenomena that have not yet been fully explored experimentally as well as

theoretically. One such phenomenon is the emission of radiation at the cyclotron

harmonics of the a-particles well above the thermal emission level, and thus called

anomalous ion cyclotron emission (ICE). The detected spectruml, 2 shows peaks at



the harmonics of Q, = q,B(R)/m, for the lower harmonics, while above a critical

harmonic number the spectrum becomes a continuum, that is, there is a super-

position of the peaks. We recall that the magnetic field in a toroidal confinement

device goes roughly as the inverse of the major radius of the torus so that the

magnetic field is considerably lower at the outer edge with respect to the inner

edge. The peaks of the cyclotron frequency are detected for values of Q" that cor-

respond to values of the magnetic field B at the outer edge of the plasma column.

This observation was quite unexpected as the bulk of the a-particle population is

produced at the center of the plasma column.

Subsequently other experiments have been performed that included deuterium

and tritium as fuel and that have detected anomalous ion cyclotron emission. These

experiments were carried out in the TFTR3 ,4 ,5 (Tokamak Fusion Test Reactor) ma-

chine at Princeton : a summary of the typical parameters for the D-T discharges in

TFTR and in JET, as well as the main experimental results involving ion cyclotron

emission, is given in appendix A.

The theory developed in this thesis explains the main features of these ob-

servations and indicates the possibility of extracting significant information about

the fusion product population distribution, both in velocity space and over the

plasma cross section. In addition, it is pointed out that a-particle transport may

be influenced through coupling with externally applied modes having frequencies

in the range considered, and thus this theory has relevance for the problem of ash

control and removal.

Although the motivation to investigate a theoretical model describing the

anomalous ion cyclotron emission came primarly from laboratory plasma exper-

imental results, this problem is by no means restricted only to the laboratory. In

fact wave fluctuations and the ion distribution function in the solar wind bow shock

have been detected 28, that can excite an analogous mechanism of instability as the

one examined in this thesis. Recently, a similar process has also been associated

to cyclotron instability at the supernova shock2 9



In this thesis we study the mechanism that is thought to lie behind the ob-

served anomalous cyclotron emission, and we explain the spectrum by consider-

ing a resonant interaction between fusion produced a-particles and a contained 6 ,7

compressional-whistler mode.

The first part of the thesis focuses on studying those modes the plasma can

support that can be destabilized by hot particles8, 9 , that is, which have frequencies

in a range that can resonate with the a-particle cyclotron frequency at the outer

edge of the plasma column, leading to a positive growth rate.

We find that for a realistic plasma configuration a broad class of modes that are

radially localized exist, due to the presence of magnetic field and density gradients.

By this we mean that we find a solution for the perturbed fields not travelling

radially, f(r)g(0, C, t), such that f(r) is a function of the minor radius of the torus,

and goes to zero at the center of the colunm and at r = a, where a is the minor

radius of the torus. The dispersion relation of these modes is very similar to that

of the magnetosonic-whistler mode and becomes exactly that in the limit of a

homogeneous plasma. We call this mode a "contained" mode and this solution can

be described as a toroidal shell centered about the value rmode that we call the

radius of localization. We find that rmode is close to the edge of the plasma; that

is, the mode is spatially localized near the periphery of the plasma column. This

feature is one of the strongholds of this analysis as this result can be correlated

to the fact that the observed emission spectrum is seen as coming from the outer

edge of the plasma.

The existence of these contained modes however is not enough to explain the

spectrum. A driving mechanism must be found to produce emission at w - M" .

There must be some source of "free energy"' that is released from the particles

to the modes leading to exponential growth of the mode amplitude, to explain the

detected power level well above the thermal emission. Velocity space anisotropy in

the a-particles distribution function is the likely source of instability.

Only those particles which intersect the region where the mode is localized

can resonate with the mode, and thus drive the emission. By studying the single



particle orbits we find that only trapped particles with large radial excursions can

reach the mode, and these particles intersect the mode layer on the outer edge of

the plasma, as explained in Chap. 4. Finally the growth rate - is calculated in the

framework of a linearized Vlasov-Maxwell theory.

The structure of this thesis is as follows: in Chapter 1 we identify for the

sake of illustration the relevant mode in the homogeneous limit, the magnetosonic-

whistler mode, and we look at the ions and electrons dynamics as well as at the

field polarization and dispersion relation.

In Chapter 2 we find the mode equation for the contained magnetosonic-

whistler mode, for the case of an inhomogeneous plasma. This equation is obtained

by solving the extended magnetohydrodynamics (MHD) equations, including the

Hall term in Ohm's law for the perturbed magnetic field. We focus on the case of

a cold plasma in the frequency range w . £~i, considering a mode that is propa-

gating mainly in the poloidal direction, perpendicular to the equilibrium magnetic

field. We consider an equilibrium magnetic field configuration that corresponds

to sheared field in a straight cylinder; this assumption corresponds to keeping the

lowest order term in the inverse aspect ratio in a toroidal configuration. For the

case of the high poloidal numbers that are of relevance to our problem, the first

order toroidal corrections can easily be incorporated into the solution, and do not

substantially alter the structure of the mode 6. At first, we solve the mode equation

neglecting propagation along the equilibrium magnetic field lines. This is justified

by the fact that for frequencies of the order of the first harmonics of the cyclotron

frequency the structure of the mode is not affected by parallel propagation as long

as kll <K k 1 . The solution of the mode is studied analytically and then a numerical

solution is obtained.

In Chapter 3 we show that if we look at higher frequencies, and thus at higher

poloidal numbers, even for the case k1l < k-±, propagation along the magnetic

field lines becomes important: in this case it is said that the whistler part of the

spectrum dominates, and a new class of localized solutions is identified.



In Chapter 4 we examine the single particle orbits for energetic a-particles in

a toroidal configuration, to identify the class of fusion products that can reach the

mode and thus have resonant interaction. We identify the region of parameters in

phase space that defines that class.

In Chapter 5 we model the resonant a-particle distribution function, for a

typical production rate. The model depends on the results of the analysis of Chap-

ter 4, and includes general principles that impose constraints on the distribution

function. Averaging of the distribution function over the periodic particle orbits is

included.

In Chapter 6 we study the dependence of the growth rate on the ratio between

the a-particles density and the electron density, na/ne, in the framework of the

linearized Maxwell-Vlasov equations.

In chapter seven we perform the calculation for the growth rate by using the

ratio n~/ne < 1 as an expansion parameter. We include in the calculation finite

Larmor radius effects as well as the drifts due to the curvature and the gradient of

the magnetic field, and we consider a gyrokinetic formulation.

Finally, in chapter eight we summarize our conclusions.



Chapter 1.

The Magnetosonic-Whistler Mode

We are interested in a mode that can interact with high energy fusion prod-

ucts giving rise to instability for frequencies that correspond to harmonics of the

energetic particles' cyclotron frequency. For this reason we look at a mode whose

frequency can be comparable to Q2i and which allows for radially confined solutions.

To this end, we examine the magnetosonic-whistler mode; it is well known that in

a configuration with inhomogeneous magnetic field, density and temperature, it is

possible to find radially localized solutions6 for the perturbed fields. At the high

frequencies under consideration, contained solutions exist for those modes which

have high poloidal mode numbers and which propagate mainly in the perpendicular

direction with respect to the equilibrium magnetic field,

The existence of contained modes is essential to justify the possibility of hav-

ing a significant interaction of fusion products with magnetosonic-whistler modes,

giving rise to a positive growth rate and subsequent emission. We note that if we

were to consider a travelling wave in the radial direction, after a time , a/ () the

wave would convect out of the plasma. This time scale however is short compared



to the inverse growth rate, so that the instability would not have time to grow. We

can see this by comparing y versus vA/a, taking characteristic plasma parameters

as reproduced in Table A-I: y/Qi - n,/ne - 10-3 while vA/(aRi) "- 6 x 10-2 so

that ^y << vA/a. As a consequence only a localized solution will allow the devel-

opment of the instability. Localization can also explain why emission is detected

as coming from the outer edge of the plasma column.

We look at the homogeneous case as an illustration of the mode solution which

we shall consider later. We refer to a collisionless, homogeneous, magnetized, cold

plasma.

Section 1-1. The Magnetosonic Mode.
We first give a brief derivation for the magnetosonic wave that allows for an

immediate visualization of the polarization and dispersion relation of the mode and

of the role of the perturbed current and velocities for the different species in the

plasma.

Let us consider a constant magnetic field in the z direction, Bo = Bo0 . We

look for a perturbation of the form:

Ell(t, y) = Ele- iwt+ik±y (1.1.1)

and we consider a range of frequencies such that Qe >> w > Qi, wpi >> Qi, and

Wpe ' -- e. We consider a two fluid model, with electrons and one ions species.

Each species satisfies the momentum equation:

-iWS 1 = - (A1 + -sl x A0) (1.1.2).

By neglecting the electron inertia we obtain:

Vex El= (1.1.3)
Bo

Elx
vely = Bo (1.1.4).B0



These equations can be solved self-consistently with the relevant Maxwell's equa-

tions for an electromagnetic wave, where we can neglect the displacement current

(w << kc).

V x E1 = iwB 1  (1.1.5)

x ,1 = ILoj (1.1.6)

Here 1 = E,nqv8il. Combining equations (1.1.5) and (1.1.6) we obtain:

( E) - V2V 1 = ij (1.1.7).

For a mode propagating in the y direction, the y component of Eq. (1.1.7) gives

Jly = 0 so that

Vily = ely - (1.1.8)

By substituting this into Eq. (1.1.2) we obtain

vil = 0 (1.1.9).

Another form for vily comes from the y component of Eq. (1.1.2), giving:

Vily = qEly(1.1.10)- iwmi

Thus the perturbed current, in the x direction, is carried only by the electrons.

This current generates a perturbed magnetic field that is parallel to the equilibrium

magnetic field. By equating Eq. (1.1.8) and (1.1.10) we have that the polarization

of the mode is

Ely = i Elx (1.1.11).



We thus see that for w > Oi, the projection of the perturbed electric field

along the same direction of propagation of the wave becomes important and as the

frequency grows becomes the largest component.

By taking the x component of Eq. (1.1.7) combined with Eq. (1.1.3), we

obtain:

-i I El, = - eno eEl (1.1.12)W Bo
that combined with Eq. (1.1.11) gives the dispersion relation:

W2 = ki (1.1.13)

where vA = B2/(minil0o).

We can summarize by saying that the magnetosonic wave is a wave propagating

in the perpendicular direction to the equilibrium magnetic field, and is elliptically

polarized with the largest component of the electric field along the direction of

propagation of the wave, for frequencies above the ion cyclotron frequency. The

perturbed current is zero in the direction of propagation of the wave and the

electrons' motion is dominated by the E x B drift. The perturbed magnetic field

has only one component, Bi11, along the equilibrium magnetic field.

By the same procedure used to obtain equation (1.1.13) we can find the dis-

persion relation for the case of two ion species', for example Deuterium (D) and

Tritium (T):

-2 2

w2 2 - = k21 (1.1.14)

Here f) = DH(aOD D + crT'T), DH = Bo/(oneqe) 2  DT

f2 = OD D + OrTQT, Q = ODQT + OT"D, &OD = nD/lne, T = nT/ne. A

graphical display of Eq. (1.1.14) is given in Fig [1.1].

We note that if we consider for completeness a multi species plasma in order to

include an impurity species, the main effect is to include a new cutoff and a new

resonance, well below the frequency of interest for us, and instead of VA we have ,



with I referring to the impurity species and ZI to its charge, vi2 = DH(aD~D +

aTQ2 T + ZIaOlQ-I), where ac = ni/ne. The relevant dispersion relation is given

by:

2 2 Q2 2 _ Q2
k w2  -~ = 1 (1.1.15)

k2 v W Q2 W2 - Q22I AI 3 4
where

vAI = DH(aLDD + ODTQT + ZaIjQj),

DH = Bo/(jeonqeq),

ai = ni/ne, i = D, T, I

S= oaD -± aTT,

Q = aDQT + TQ D,

ZI = average charge of impurities,

~1,2 = [Qs + ( - 4Q )1/2]/2,

QS = 0 +Q + ZIOaI(QD + QT - QI),

2, = _• 2 i + ZIaI••hD•T,

Q2 and 4Q are the solutions of the equation

W4 W2 hyO I Ofi + Zya (OD T
_DD + +QT+ Z1&1 1jQ Q2 Q2 n

+= =0
Q(a•oD + aTQT + Zila•I)

Figure [1.2] is a graphical display of Eq. (1.1.15) in which we have taken

realistic values of the relevant parameters taken from Table I and we have assumed

that the impurity species is partially ionized oxigen (ZI = 4.9). It is evident from

this that the new resonance and cutoff related to the presence of impurities are

well below the ion cyclotron frequency. The introduction of this new cutoff and

resonance should be considered in studying the corresponding contained mode for

the purpose of analyzing the spectrum for frequencies below Q, as the observed

emission shows some peaks in this range.

Section 1-2. The Magnetosonic-Whistler Mode



In the previous section we considered a mode propagating in the perpendicular

direction respect to the equilibrium magnetic field, that is assumed to be in the z

direction. Let us now consider a mode that is propagating at an arbitrary angle

respect to the z axis. We will later focus on the limit of interest for us, that is

kll/k« << 1. We look at a perturbation of the form

e- iWt +i  (1.2.1)

where k = k±jY + kilz.

We can find the dispersion relation for this mode by considering, as in the

previous section, Eq.s (1.1.2) and (1.1.7). The electron dynamics is still dominated

by the E x B drift, so that we can consider the electron velocity as given by Eq.s

(1.1.3) and (1.1.4). For the ions we consider instead:

iqi Elx + (ii/w)Ely (1.2.2)

il wmi 1 - J2/w2  (1.2.3)

Vily =- j L A / +-- ly (1.2.3)

vilt~ Elz (1.2.4)
wmi

We can now calculate the perturbed current and obtain two coupled equations

for El, and Ely. Since we are in the limit w << Wpe the El, term decouples, as it

is shown also in Fig. (1.3).

c 2k 2 2 2
= "k - - __--__ __ 2Ely 

i  2

El= = WPi El + i (pi Upe E x  (1.2.5)
W 2  WOi 2 ? W 2 - Qi O 1e

c2k2 W 2 2c2 k 2  jlx ______pi i pi ___ pe

wEx Pi E l x  -i pi Pe Ely (1.2.6)

We can solve for this equations and obtain:



c2 2 C2k2 2 2
( c2kp WP pi 2k 2 W i W 0 (1.2.7)

Here we have used quasi-neutrality to substitute w2/(wL) = -Wpe/(wl2e). We

can expand Eq.(1.2.7) and explicitly write the equation for w that is a fourth order

equation.

- 2 [k2V2 + k2V (1 + + (kiljA) 2(k2v ) = 0 (1.2.8)

We find two roots by solving Eq. (1.2.8) for w2 , and we use k2k-, k 2Ik2 since

k1 >> k1l. One root is given by w2 = k vA,2, and the other, that is the one of

interest, is

w2 = k_ (v + klDH) (1.2.9)

where DH = Bo/(~onreqe) = V2/Ai.

In the limit of kll = 0, Eq. (1.2.9) reproduces the usual dispersion relation for

magnetosonic waves, Eq. (1.1.13). If we consider frequencies such that w - £'i,

with £ an integer number, Eq. (1.2.9) is approximatly given by:

=2 +2 2 V 2V 2 12.

We thus see that in this range of frequencies even for k±/kll << 1 the whistler

correction can give a significant contribution.

To generalize Eq. (1.2.9) to the case of a two ion species plasma we have

to substitute VA with VA, as defined in Section [1.1], and w2 with the right hand

side of Eq. (1.1.14). Analogously we can include impurities as a third species. A

schematic representation of the magnetosonic-whistler mode is presented in Fig.

(1.3). As we said before El, can be neglected and we can obtain the same result

by using the extended MHD equations that include the Hall term in Ohm's law

instead of the two fluids approach. This will be more convenient when we study

the case of an inhomogenous plasma in Chapter 2.
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Chapter 2.

The Mode Structure.

A Contained-Interactive Mode.

In this chapter we derive the differential equations that govern the behavior of

the perturbed fields in an inhomogeneous plasma focusing on those solutions that

in the limit of a homogeneous plasma reduce to magnetosonic-whistler waves as

described in Chapter 1. In Section 2.1 we derive the differential for the contained

magnetosonic-whistler mode. In Section 2.2 we solve this equation in the limit of

a mode that does not propagate along the equilibrium magnetic field (kil = 0). We

examine this case for the sake of clarity and since it is the relevant solution for

frequencies that correspond to the lowest harmonics of the cyclotron frequencies.

In Chapter 3 we analyze how this solution is affected by propagation along the

equilibrium magnetic field.

Since the relevant frequencies are in the range w - £~i, where e is an integer,

we will look at modes rapidly varying along the poloidal direction. In addition,

w << •e. We consider an inhomogeneous, collisionless, cold plasma with one



main ion species and use the extended magnetohydrodynamics (MHD) equations,

that include the Hall term as the first relevant correction to the frozen-in law for

frequencies comparable to the ion cyclotron frequency. The cold plasma assumption

is justified by the fact that kpi << 1 for the modes of interest. The relevant

values of k1 are given by w - kivA i. By using this we can show that

k±pi - £Vthi/VA. If we consider Ti ý 10 keV, B L 1 T and ne - 1013 cm - 3 we

have vthi/VA N 3 x 10-2.

Section 2-1. The Mode Equation.

Let consider the following set of equations26:

0
n + . (nV) = 0 (2.1.1)

0-.
nmi V = JxB (2.1.2)at

E + VxB = -(Jx ) (2.1.3)
en

Vx E -- B (2.1.4)
Ot

V x = poJ (2.1.5)

B = 0 (2.1.6)

We recall that the term that appears on the right hand side of Ohm's law, Eq.

(2.1.3), is the so called Hall term. We look at an equilibrium situation where

Vo = 0, Eo = 0 and we consider a magnetic field configuration represented by

Bo = Bzo(r) z + Boo(r)eo (2.1.7)

It is convenient to introduce the following set of coordinates:



I0
er, BoxI~ol

We solve the linearized equations for a perturbation of the form

B 1 = Bl(r) exp(-iwt - imO + ikzz)

Without loss of generality, we consider w > 0. Defining the k-vector as k =

-(m/r)eo + kzez, the appropriate components for our set of coordinates are kll=

k-e'l and k± = k e.

Since the main component of B 1 is in the parallel direction, we solve for

the parallel component of the perturbed magnetic field, B 111i. It is customary to

introduce V1 = -iw(j. We obtain by linearizing Eq. (2.1.2) the following equation

relating 1 and B 1:

1
= Lopow 2 (o -B1) S -( " )Bo]

where Po = minio. The second equation for (1 and B 1 comes from taking the curl

of the linearized form of Eq. (2.1.4):

El - iwl x Bo =
1

en
(2.1.10)

which combined with Eq. (2.1.2) yields

B1 = -Bo(CV.- ) + (Bo -V)( wmi -- (~1 )Bo + i- (V x 1)
e

By introducing the configuration of the field given by Eq. (2.1.7) we can solve

for Bill; note that Eq. (2.1.1) is not used, because it is not necessary to solve for

1i.

Rewriting Eq. (2.1.10) and Eq. (2.1.12) by components, and defining r =

Boo/BCo we find:

(2.1.8)

(2.1.9)

(2.1.11)

- (Bo - )B1

(J x Bo + •o X 1



Bo

lr- oPoPo 2
dBrll

r}2- ikllBir + 2 B i ll

r(1 + q72)
+ BI±r(l + q2)

Bo

PoPow 2 i(kiB111 - kllBi±)

c111 = 0

Bir = k1lB o (ik1r + Uw) -lQj (2.1.15)

B 11 = ikIiBo (ý1
w

+ i W6r
OQ

Bo

(1 + q72)
ddr r" )7(dr rj\

= - ik±Bo (61± + i WS()Qj + 2772 Bo •r
(1 + 772 ) r

Bo d
r dr

wld 1 d
+ ri rd l±

ai r dr
Bo) (2.1.17)

In the limit of kll << k±, 7 << 1, Bill and a11 are the main components.

Since B1 is constrained by the condition by V -B = 0, we find it more conve-

nient to replace Eq. (2.1.17) with:

ld
" t B1 -- (rBir) + ikllBillr dr + ik±B1.j

We will now derive a mode equation for Bill starting from Eq. (2.1.18) by

solving for B 11 and Bi, in terms of Bill and dBlll/(dr) only. We obtain from Eqs.

(2.1.12) through (2.1.16) an equation for Bir:

iBirS = PrBill + Qr dr
dr

(2.1.12)

Bir

(1+ 7r2) (r dr+ d) (2.1.13)

(2.1.14)

+ 1
Qj

Bill

(2.1.16)

=0 (2.1.18)

(2.1.19)



k4 44 k
kl VA 4q k+llVA

W203 -i (1 + q2) wSli

2q 2 2 22 2

2•]2v d[ k VAi
+ 1 -2

r(1 + 7
2 )2 w2 dr w2

Qr -= w2 1 w2 1 W

W2
1----I

2

)1]
,22

g?

P = - ll kv
wr wi

2r7 k v2 k2 v 1

(1 + 2) r w2 w2

S kl v

(1 + 772) r 2

The equation for B 11 is given by:

B 1IS = PLBi11

Qrk(1 2 )v

+
r(l + 2 2)W2

vA d_
r(1 + ?2)W2 dr

v2k± kll [1 k •V3

2 2
r+v• (k1 - 7qk1)
rwQ, (1 + q2)

w2

-kllVA

d7)  1 k_±v

dr (1 + 12) w•i

2 3 2 2
+ r )VA +-

r2 (1 + ,72 )w 2
[. w2

_ 2v d77

r(1 + 72 )2W2 dr

k2 2v
1 VA2

where

kWv 2

(2.1.20)

(2.1.21)

- k 1
2 (

Q2ii
i )

w2
2i )

where

(2.1.22)

dBll[
dr

(2.1.23)

2

i2 )]

2
Q 

? I

P1

(2.1.24)

w2
22 )

(2.1.25)

S = (1

w 2



and where S is the same as before. To obtain the mode equation we use

Eqs. (2.1.19), (2.1.23) and (2.1.18) to find:

1 d
+ 1 -(rQr)

[ rQ dr(

+ d (rPr)
SrQr dr

(Pr - k.Q.L)
Qr

(Skll + Pa±k±)

Q,

1 dS
S dr

dBrll
dr

QS d•S] Bill = 0
QrS drI

We are interested in the limit where kll << kI and l << 1, so we explicitly

evaluate the various terms in the previous equation neglecting all the r corrections

and keeping only the leading order corrections in klll/k±.

1 d 
rrQr dr

1 d r(2
r (v2 + k D)dr) \AA 11 I H/ 1

(Pr - k±Q±)
Qr

1 dS
S dr

1 d

rQr dr

kr w2v
r w

kjw

v2 + k D -- k D2 f2

Skll + PLki 2
Qr k

&r I

U2

(v2 + kD - k•2 f)

2VA
(v2 + k D2 2 2 w2(vA k 1v D H• )

+o ( )
( Ik 2 S 1

d2B1ll
dr 2 (2.1.26)

(9 (o)o-I
r/

d (DH) + o( )
dr (r•

+ k(2 1
1(

+kc 2 D 2k,2,1 vk2U
11 HD) +0 rW)), 2



Pr dS 1k w k\ I

QrS dr k +i r -r2

We see that for frequencies w p. = pV2/DH we can neglect quantities

on the order of k 2D /(p2V2) = k d /p2 while keeping corrections on the order of112 HI2 A211

k DH/v . For k << kI , the mode equation for Bill reduces to:

)d [r (2 +k D dBl]
r +k D dr

w2  wk d B]
+ -k2 +  2 d-(DH) Bill

vA + k 2DH V2 + 2 D2 dr

2B H, 2 1| 1+ I 0 (klB*BlillDH Bill+pv 2 r2

We can thus write the final form for our equation as:

d [r (V2 + k 2I) dr2 J (2.1.27)

+ [rw2 + w (rkoDH) - k2r(v + k2 D ) Bill =0

where ke = -m/r. Here DH o Bo/n(r), so that the spatial derivative of DH is

proportional to the density gradient.

The Hall term is responsible for the appearance in this equation of the quantity

kID2 and the term which is linear in both DH and ke. The term linear in k0 is

related to inhomogeneity and is absent in the case of a homogenous plasma, as is

clear from Eq. (2.1.27).

Section 2-2. The Contained-Interactive Magne-
tosonic Mode

For the sake of simplicity we neglect at first the term k D2 and, using the

fact that DH = vA2 /Qi, the mode equation reduces to:
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d 2bl

dr 2

w2  w d 2rkev3 2
12 + 2 k
VA VAr dr Qi

1(1 drv )2 id 1 drv1 2b

4 rv2 dr 2dr rvA dr

(2.2.2)

Defining A as the typical scale of variation of bl, as given by the solution of

Eq. (2.2.2). In this equation, the first term scales with 1/A 2 and the last two terms

as 1/r 2 . Since we look for a localized solution, we can consider the limit where

1/A 2 >> 1/r 2 and neglect the last two terms. The existence of such a solution

will be verified a posteriori.

With these assumptions the equation for bl is:

d2 bl
dr 2 Veff(r, w)bl = 0 (2.2.3)

where

W 2  w d (rkovA 2
vA vr dr Qj

To find a localized solution, we Taylor expand this effective potential around

its minimum, that we call rmode. Eq. (2.2.3) thus becomes

d2 bl d2 Veff(rmode, w) (r - rmode)2 bl = O

dr 2 Ve(rmodedr 2 2 2 (2.2.4)

By doing this we approximate our equation with the Hermite equation. The solu-

tions will be localized around the surface r = rmode and have the form:

1 d2  [W2 w2 d rkBll (2.2.1)
rv v 2r dr dr2

Note that the effect of the Hall term still appears through the term linear in ke,

that breaks the symmetry in the ± poloidal direction. Subsequently we define

b = B 1ill and we obtain the following equation:



b (r) = bi( H r - rmode exp (r - rmode)2  (2.2.5)

where s is the positive integer index of the eigenfunction and the functions H, are

Hermite polynomials. We recall that as traditionally studied in quantum mechanics

the Hermite equation represent the solution to the harmonic oscillator and can be

satisfied only for discrete values of the energy. In our case instead this condition

defines the dispersion relation for the mode, that is, w(k) that will be dependent

on the positive integer index of the eigenfunction.

The solution of Eq. (2.2.4) is expressed in the form of Eq. (2.2.5) in terms of

two unknowns, the localization of the mode, rmode, and the width of the mode, A.

These unknowns, together with the dispersion relation, can be found by substitut-

ing bl (r) as given by Eq. (2.2.5) in Eq. (2.2.4), and by imposing the condition that

rmode is a minimum of the effective potential, Veff. Thus the equations determining

rmode, w, and A are given by:

dVeff(w=rmode) = 0 (2.2.6)
dr

Veff(W, rmode) = -(2s + 1)/A 2  (2.2.7)

d2Veff(W, rode)2eff(w, rmode) = 2/A 4  
(2.2.8)

dr 2

We solve for these simultaneous equations by expanding w in powers of 1/m since

we are interested in high poloidal numbers. We consider the orderings w = wo +

6ws + O(w/m 2 ), and rmode = ro + Sr + O(r/m 2), and we introduce the length scale

di = VA/Ii = C/Wpi; dio is this quantity evaluated at r = 0.

Since we will find that the solutions can be very different for positive or nega-

tive k1 , we write explicitly m = amlmm = ± ml. The lowest order frequency wo is

defined by the dispersion relation obtained by setting Veff(Wo, ro) = 0, which can

be rewritten as



-m vA E _ o_ 1/2
Wo - vA 1 - amd r (2.2.9)

r In ImlvA r=ro

Recall that we impose the condition that wo is positive. Combining Eq. (2.2.9)

together with Veff(w , ro) = 0, ro satisfies the equation:

n m r( ) [ 'i2±+rn'/n]22 + r - + amdi 1 [- = 0 (2.2.10)n n (rn'/n)7 r=ro

and the width of the mode is given by

1 m 2 ( r 2 1 d 2N\

A4  r4(3 2 N dr2 (2.2.11)

where N = n + n -W)• =rn

From these quantities we can evaluate the next higher order correction to the

frequency,

(2s + 1) oVeff(wo,ro) Ww, A 2  9 Oc - (2.2.12)

The solution is not greatly affected by Jr corrections since 6r << A.

This set of coupled equations can be easily solved and a summary of the solu-

tions is reproduced in Table 2-I, for typical parameters and density profiles. Before

examining these solutions however, we wish to study these equations comparing

them with the ideal MHD case, that is without the Hall term, to show how includ-

ing this term in Eq. (2.1.3) changes significantly the perturbed field solutions. To

do so we approximate these equations by expanding in the small parameter di/a

around the ideal MHD solution . The ideal MHD solution is independent of am

and is given by

WMHD - I
r r=rMHD

where rMHD is the solution of



rMHD = -2
n r=rMHD

It becomes apparent that for realistic values of di/a we need to keep second order

terms in the expansion. We can thus rewrite Eq. (2.2.9) and Eq. (2.2.10) for

WO/IWMHD and ro - rMHD as

ro - rMHD ro -r MHD 2 2it" I i

= 1 + - + 1+ ++
WMHD r r 4n 2(rn'/n)' r=rMHD

(2.2.13)

dc r (rn'/n)"
ro - rMHD = -ami + 2 + n'/(2.2.14)

r 2 (rn'/n)' r=rMHD

In equation (2.2.14), since di is a positive quantity, the sign of ro - rMHD will be

opposite to the sign of m, am. To be specific, this means that for positive m we

have ro < rMHD, indicating a shift towards the inside of the plasma. Let us define

L by 2 + (rn'/n)"I  = , so that Eq. (2.2.14) can be rewritten as2(rn'In)' rrMHD -- L I

ro - rMHD = -amdi 1 - cm d (2.2.15)

This equation can have two solutions, corresponding respectively to positive and

negative am. However we see that if di is above a critical value -- L, the second

order corrections are as important as the first order corrections. If am < 0, we

find that for sufficiently large values of di, there is no value of r for which the

effective potential has a minimum, so we do not have a contained solution. This

behavior is quite general, with some variations in the numerical value of dio crit, the

local maximum of dio taken as a function of ro, according to the particular density

profile considered. Typically, diocrit r~ L/4.

To illustrate this behavior, we consider density profiles having the form n =

no[1 - (r/a)2 ]v, where a is the minor radius of the plasma column. For these

profiles we find rMHD/a = 1/v/i +v and diocrit/a = ( ) 1+(v/2). In the

particular case of v = 1/2, which is consistent with the JET data2, rMHD/a -



V2/3 - 0.82 and diocrit/a ý 0.027. In Fig. (2-1), we plot the dependence of mode

localization on dio, showing the difference between the linear approximation and

the exact solution for the v = 1/2 case. The value of diocrit/a for this case is also

indicated. The experimental value of dio/a taken from JET parameters, as given

in Table A-I, is - 0.063.

With this value of dio there are no localized solutions for m < 0, which means

that confined solutions exist only for modes whose poloidal motion is in the same

direction as the ion gyromotion in a field aligned with the z-axis. Confined solutions

do occur for m > 0, such that the radial width of the mode varies inversely with

the square root of m whereas the radius of localization is independent of m. For

the parameters considered, the modes are localized close to the edge of the plasma

column and we find ro/a - 0.76, consistent with experimental results.

In Table 2-I, we summarize the values for wo, ro and A obtained by solv-

ing Equations (2.2.9), (2.2.10) and (2.2.11) for the JET and TFTR experimental

parameters. We notice that since dio/a for TFTR is < diocrit/a we have two

solutions for m > 0, m < 0.

Numerical solutions of Eq. (2.2.3) have been performed and they are shown in

Figures [2.2] to [2.5] for lowest radial eigenmodes in the cases m = 10, 40, -40, 100

using parameters from table A-I as above. In the graphs w has been normalized to

£i2, and the radius is normalized to a. We note that in the case of negative m the

solution is not localized, as expected from the previous analysis.



TABLE 2-I - Relevant parameters and mode solution for JET and TFTR

JET

E -: 0.3

dio/a - 0.063

v ý- 1/2

rMHD/a -- 0.82

L/a 21 0.13

diocrit/a ý- 0.027

TFTR

c 0.35

dio/a :- 0.028

rMHD/a -- 0.71

L/a c_ 0.16

dio crit/a - 0.034

MODE SOLUTIONS:

JET

m>0

ro/a :- 0.76

w/mQji 0.11

Im11/2A/a -- 0.48

6w/Di - 0.13

TFTR

m>0

ro/a - 0.67

w/mtfi - 0.059

Im11/ 2A/a -- 0.47

Jwl/fi _ 0.058

TFTR

m<0

ro/a -_ 0.77

w/msi 2: -0.052

1mJ1/ 2A/a 2_ 0.59

w/Qi c-- 0.047

m



C

Figure 2.1 The dependence of the mode localization ro/a on the parameter

dio/a = c/(wpia), showing the difference between the linear approximation and the

exact solution. The density profile is taken as n = no(1- (r/a)2 )1/ 2. On the y-axis

is dio/a, on the x-axis is ro/a.
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Figure 2.2 The radial dependence of the contained mode for m = 10. In

the figure the first five eigenmodes are plotted (s=1...5). The frequency w, is

normalized to Q2i and the radius is normalized to a.
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Figure 2.3 The radial dependence of the contained mode for m = 40.

In the figure the first five eigenmodes are plotted (s=1...5). The frequency w, is

normalized to 12 and the radius is normalized to a.
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Figure 2.4 The radial dependence of the contained mode for m = -40.

In the figure the first five eigenmodes are plotted (s=1...5). The frequency w, is

normalized to £i and the radius is normalized to a. We notice that in this case

the solution is not localized.
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Figure 2.5 The radial dependence of the contained mode for m = 100.

In the figure the first five eigenmodes are plotted (s=1...5). The frequency w, is

normalized to f2i and the radius is normalized to a.

C\2



Chapter 3.

The Whistler Contribution to the

Contained Mode

In this chapter we study Eq. (2.1.27) for the containde magnetosonic-whistler

mode. This equation can be analyzed by using the same technique described in the

previous chapter to study Eq. (2.2.1), and will thus admit solutions of the form of

Eq. (2.2.5) but with different values of rmode, A and a different dispersion relation.

Particularly we find that the fact that we can have different points of localization

of the mode can be related to the observed spectrum. To understand this we

recall that the observed frequencies are selected by resonant interaction with the

a-particles, as detailed in Chapters 6 and 7. Thus to explain the spectrum of

the instability, we can consider first a single resonance with a harmonic of the

cyclotron frequency, defined by w - f!i(R), where R is measured at the point of

interaction of the particle with the mode, and where e is an integer. Note that

while the mode characteristics have been calculated in the cylindrical limit, the

particle resonance terms incorporate toroidal effects, because of the local nature
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of the interaction and because of the importance of toroidal effects on particle

orbits. The region of interaction must be contained within the mode layer defined

by ro - A < r < r0 + A, and is expected to be localized around the outer edge

of the mode layer, where R _~ Ro + r and where the trapped energetic particles

are located. Due to the spread of values of Qi within the region of interaction

between energetic particles and the mode, the resonance condition determines the

mode frequency within a band of frequencies. In the limit considered in Chapter

2, where all of the modes were localized about the same radius ro, this broadening

of the frequency spectrum is proportional to the mode width A, restricting our

attention to a sufficiently small region of interaction at the outer edge (cos0 - 1),

so that R = Ro + r is a valid approximation. As the poloidal number m increases,

A decreases and the mode becomes more sharply localized, so that at first glance

we would expect a more peaked spectrum for the higher harmonics. On the other

hand, the experimental observations show the opposite trend. There are many

effects in addition to A that can be responsible for the width of the peaks, such as

the Doppler effect and the presence of frequency shifts due to the drift velocity and

variations in the poloidal angle. However we can show that a crucial role is played

by the fact that, as the harmonic number increases above some value (f > £trans),

the whistler part of the spectrum significantly affects the localization of the mode.

Section 3-1. The Localization of the Whistler
Mode

We define

m no q(r)

We recall that in the case where kll can be neglected, modes with different values of

m are localized around the same radius ro, defined by Eq. (2.2.10) (up to O(1/m)).

When the full mode equation is considered 7,9 we find an additional shift in the

mode localization, so that rmode o ro (even neglecting terms O(1/m)) for different

values of m and no. This shift in mode localization lifts the degeneracy in the
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interacting mode frequencies which resulted from the equivalence of the relevant

value of Qi(R) for different modes. For sufficient values of DH/(a22i), this will be

a major contribution to the transition to a continuum.

Defining the quantity bl = B1l / r(vA + kDH) and neglecting terms of order

(klll/k±)2(w/~i)2 the mode equation for bl becomes:

d2b + { 2  2 + wko d (DH) - k2 b = 0 (3.1.2)

where ke = m > 0 and with q(r) - rBzo(r)/(RoBeo(r)), and DH - B/ponee.

To identify the value of m (i.e. f) for which the whistler part of the spectrum

becomes relevant, we study analytically the simplified case where:

d2 bl (_ w 2 _ _dr v 2 + k - k b 0 (3.1.3)
A H

It is convenient to define

m2 1no 2 k22
G 2 (r) - dq- 1 -- q(r) = (3.1.4)

where di = c/wpi = DH/VA. The lowest order (in 1/m) the equations for Wmode

and rmode are:

Wmode = v 1 + G2 (rmode) (3.1.5)
rmode

rmode = -21- [ (3.1.6)n'  1 + 2G 2(r)

r=rmode

where S = rq'lq.

We examine Eq. (3.1.5) and Eq. (3.1.6) in two different regimes, where

i) 11 - n0q/m << 1, and ii) 11 - noq/ml r 1

m



Let us consider this two cases separately

i) Quasi-Flute Mode

In this case the mode is localized near the mode rational surface rs, defined

by q(rs) = m/no. Therefore we can approximate

G 2 (r - r,)

and

s Ts1+
1 - nq/m - r, - r

We regard the terms proportional to G2 as perturbations to the ideal MHD mode

solution

rMHD = -2
MHD dn/dr r=rMHD

and we define 6r, - rmode - rMHD; we find that for 11 - noq/ml << 1

6r, 1 m2di S noqm i  ( 1 nq3.1.7)
rMHD (1 + (2n/n')') R q2 (31r=r7)

rrMH
D

The quantity 6rw scales linearly with (1-noq/m) in this range, where q is evaluated

at rMHD. If we consider as an example the set of parameters for JET given in table

A-I, di/Ro = 0.021.

ii) Oscillatory Mode (along the field)

In this case, the mode is localized "far" from the mode rational surface r = rs.

Therefore, 1 + S/(1 - ' q) is a quantity of order unity, and the term

- q(r)

1 + 2G2(r)
r =rmode

from Eq. (3.1.6) is also a quantity of order unity which takes the asymptotic value

of 1/2 as no -4 ±oo. In this limit, rmode is given by rmode . -n/ln'r=rmode .



This value represents the localization of the mode as this limit is approached, and

is too close to rMHD to be of interest for calculation of the condition for overlap

between resonances. This behavior is reproduced in figure [3.1], which graphs

the dependence of rmode on no for fixed m, as determined by Eq. (3.1.2). The

extreme values for br, = rmode - rMHD occur as 11 - noq/ml -- 1, corresponding

to no = 0, 2m/q.

We can conclude that the relevant modes for our case are the quasi-flute modes

and for a given m we can define a maximum displacement as

SrMAx = rmode(n 0 = 0) - rmode(n0  = 2m/q)

so that we find

SrMAX 2 m2 D2 s
(3.1.8)

rMHD (1 + (2n/n')') Ro v q2 =
MHD

In the case where the full effective potential is considered, given by Eq. (3.1.2), the

analysis is similar except that rMHD is replaced by ro, and

rMAx  m 2 D2
MAX (3.1.9)
ro R v0 qV r=ro

This effect becomes significant as JrMAX > A, where A is the width of the mode.

Figures [3.1],[3.2], [3.4]-[3.6] show the values of rmode and w that satisfy Eq. (3.1.2)

for fixed values of m as no changes, considering the set of parameters that is

reproduced in Table A-I. Figure [3.3] shows the values of A for fixed values of m

as no changes, we only show the case m = 25 as in general A is almost unaffectes

by changes in no. In figures [3.1], [3.3], [3.5], we plot the position of the mode

localization rmode/a against the toroidal mode number no for a fixed value of the

poloidal number m, we examine the cases m = 25, m = 50, m = 100. As expected

from the previous analysis the localization for the oscillatory modes along the

magnetic field (no > m/q, no < 0) is not sensitive to changes in no. We see that as

the poloidal mode number increases SrMAx increases too: the mode shifts mainly

towards the interior of the plasma so that for example for m = 100 we have modes



localized around rmode/a = 0.6. We find that 6 rMAx > A corresponds to m > 50.

We recall that as this effect becomes important, the mode localization goes further

into the plasma and the mode particle interaction includes more of the ac particle

population.

For a fixed harmonic number e, the set of modes resonating with £ti will be

contained in a range rleft < r < rright. Thus the spectrum of this resonance will be

given approximately by t!i(Ro+Trright) < W < ei(RO+ rleft). Here, rleft is the solu-

tion to wmode(ml, n ° ) - w for some pair of mode numbers (mi, no) with the small-

est corresponding value of rmode, while rright is the solution to Wmode(m2, no) - W

with the largest corresponding value of rmode. A similar condition holds for the

next higher resonance, (f + 1) Qi(Ro + rright) < W < (f + 1)Qj(Ro + rleft), and thus

a condition for overlap between harmonics is

eQi(Ro + rleft) _ (i + 1)Qi(Ro + rright) (3.1.10)

From this condition we can define an upper limit for the value £trans at which

transition to a continuum must occur, and we find for the JET experiment that

£trans < 18. For the case t = 18, the corresponding m is given by m ý 110.

Including the mode width and other terms in the resonance condition, in particular

the possibility of having destabilizing interactions at 0 # 0, we will show that

overlap can occur for smaller values of £.
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Chapter 4.

A Simple Picture of the Relevant Alpha-

particles Orbits

Let us study the a-particles orbits in the case of azimuthal symmetry, that is

for a system that does not depend on the ( coordinate, as defined in appendix B.

For such a system we can identify the following constant of the motion, 8, p,

p(, defined by:

m
M = + ) =&ce

1 mv 2

-- -= const.
2B

pc = mRv( + qRAc = const.

As shown in appendix C, the adiabatic invariant I as defined above is a constant

of the motion only to O(A), and if we consider the average over the gyroangle



to O(A/q), but from the point of view of the single particle orbits, this level of

accuracy is enough. In this picture the spatial dependence is considered in the

guiding center frame, so that the perpendicular motion is dominated by the drifts.

The constancy of the above quantities completely determines the orbit of a

particle for a given set of initial conditions. We are interested in the projection

of the motion in the perpendicular direction to the equilibrium magnetic field, so

we can easily identify the function r(0) that gives the shape of the orbit. In the

case of energetic a-particles that are born mainly at the center of the plasma, the

trapped particles that reach the outer edge of the plasma column will not follow

the usual "banana orbit" limit (6r << r), as illustrated in figure [4.3] for the

case of 10 keV deuterons, but due to their high energy they will have large radial

excursions (potato orbits). This is illustrated in figure [4.4] for the case of 3.5 MeV

a-particles. We thus include a brief review of the typical orbits for the case of large

radial excursion, as it will give further insight into the final form of the distribution

function for the a-particles, before the onset of the instability.

Section 4-1. Potato Orbits

We consider a sheared toroidal field of the form

Bo r
B 1 + r/Ro cos 0e + Roq(r)

where we follow the notation of appendixB. We assume that vil = vC + (Bo/Bo)vo

can be approximately taken as v11 - vC. We expand in the small parameter C = a/R

and we keep toroidal corrections (i.e. O(E)) only in v11. By using these assumptions

we can perform an approximate analytical calculation that can give us an estimate

of the trapping condition and of the width of the orbit.

We fix the constants in such a way that RA (0, 0) = 0, and we consider as

a reference case q(r) 2_ (1 + 2.5(r/a)2), B0 = 2.8 T, a = 1.05 m, Ro = 3.15 m,

that models the JET case. The subscript "0" labels quantities evaluated at the

origin; we focus on orbits that pass through the origin ae most of the a-particles

are produced in the core of the plasma. For this reference case we obtain that



Boa2  (41.2
RAC Ba2 In 1 + 2.5 (4.1.1)5 a2

and for a particle passing through r = 0, 0 = 0, we have, by imposing the constancy

of p(,

( 2 2 2
vii 0  1 : 1 + 1 . oCcos = In 1 + 2.5- (4.1.2)

V1o Ro mc Ro 5 a

In Eq. (4.1.2) the minus sign is for circulating particles, while the plus sign is for

trapped particles after the turning point.

If the parallel velocity at the origin is negative (where the positive direction is

defined by the direction of the magnetic field Bo), there is no possibility of having

a solution with trapped particles, since the right hand side of the above equality is

always positive.

So only particles with viio can be trapped; this means that the local distribution

function for trapped particles at the outer edge of the plasma column (after the

turning point) will be such that the average value of the local parallel velocity will

be some negative quantity.

As for the circulating particles, there can be a solution for negative values of

viio, but this requires -7r/2 < 0 < 7r/2 so that the orbits of the particles with

negative parallel velocity at the origin will be confined at the outer half of the

plasma. With our choice of reference frame, the picture is the following:



B

ollows B
to lovest order

Particle born here .
with %, <0

goes "uphill" goes "downhill"

Starts in the same direction Feels (B , circulates and

as BI, feels B. goes back to the initial point,
-1)2 <0< 11<2

Figure 4.1 The orbits for energetic a'-particles born at

the origin: two cases are shown, V110 > 0 and V110 < 0

It is clear from this picture why only orbits with vil0 > 0 can be trapped. Of course

not all the particles with viio > 0 will be trapped, however we can easily identify

the trapping condition that will finally correspond to a limit on the pitch angle.

In figure [4.5] we show an example of a bifurcation orbit, i.e. the limiting case

between a trapped orbit and a circulating orbit with v110 > 0. The thick solid circle

represents the location of the mode as found in chapters 2 and 3 and the dotted

lines reproduce the width of the mode.

I



To find the condition on the pitch angle that corresponds to trapped particles,

we recall that trapping occurs when vjl = 0 at some point along the orbit. We

will refer to this point as turning point or tip of the orbit. The extreme case

is when the turning point is at 6 = 7r so that the orbit is almost circulating,

as in figure [4.5]. For a given set of initial conditions, vo0, vi10 , for a particle

born at the origin, this will happen at a maximum radius compatible with the

fact that the constancy of p( is preserved. We can thus identify the trapping

condition for vllo/vwo < vllo/v±o)limit < 1 where the limiting case corresponds

to vj (rMAX, = r) 0= , i.e. vIlo/vro = \IrMAx /R. Here rMA X indicates the

maximum radius where a turning point can lie. Since we expect vjlo/v±o << 1

and v o + Vo = vt2h, we can use vo0 2• Vtha. We can then plug this inside the

condition for pc being constant, and we obtain:

qBo a2  2r
vRo = mc In +2.5 a2  (4.1.3)

This equation can be approximated by using the above assumptions and gives

r MAX (Ro(2pa)2 1/ 3  (4.1.4)
A - a3  0.35 (4.1.4)

where the right hand side has been evaluated considering the parameters of Table

A-I, and

0 2p, R 0  0.34 (4.1.5)

instead of the usual assumption for deeply trapped particles, vjlo/v±o ý a/Ro =

0.54.

An example of two trapped orbits not too far from the limiting condition is repro-

duced in figure [4.6], where w = vilo/v, : we see how a small spread in the pitch

angle results in a significant spatial spread. Again the solid thick line represents

the localization of the mode as found in chapters 2 and 3.

A more exact calculation has been carried out nunerically in ref. [11,12] and

the results are shown in the figure [4.5] for the sample case previously considered.



On the x axis we have the x axis of the section of the plasma column (so that

for x = 0 we have r = Ro) and on the y axis we have the ratio vllo//V". The

lines reproduce the maximum radial excursion for particles born at r = 0, i.e. the

intersection of the orbits with the x axis. In the case of trapped particles there are

two lines that correspond respectively to the extreme on the x axis and the tip of

the potato orbit, that in figure [4.6] are labelled by O and 0. We see that the

numerical calculation agrees quite well with the analitycal approximation, since we

have trapped particles only for 0 < vll 0/v, < 0.34.

It is worth to notice how the situation changes if we consider particles that

are born further away from the center. Let us consider particles that are born at

rb : 0. To impose the conservation of pc we need:

r qBo a2  1 + 2.5r 2/a 2

RAC(r) - RA(rb) = Ir BRdr - Bmc In 1+ 2.5r2/a2 (4.1.6)b mc 5 1 + 2.3 541/.2

The orbits are defined by:

S v b r COS 9 - b COS b Bo a2  1+ 2.5r2/a2  (4.1.7)
v--b T 1 + V I - - In (4.1.7)

vib Ro mc 5Ro 1 + 2.5r /a2

It is clear from this form that we can have trapped solutions for both vIIb < 0 and

vi1b > 0. However if vIIb < 0 we can have a trapped solution only if the turning

points are such that r < rb, so that for example for Ob = 0 we have the following

picture.



0

Atup

article born here
rith v<O

Starts in the same direction

as BC, feels B8

Born at r, 0, 8 )d 0,

the drift up slows down the particle
so that it goes towards the inside
where B. is smaller, and 8 is larger

Figure 4.2 The orbits of two particles born at r = rb 0 0

with respectively V110 > 0 and V110 < 0.

A more precise and extended analysis has been carried numerically in ref.

[11,12] and the results are reproduced in the figures [4.8] to [4.12]. This shows

that the "banana orbit" with 8r << r and particles with parallel velocities in both

directions can exist only for rb > rcrit 12, since if rb < rcrit the drift is so strong

that we do not have vil = 0, for negative values of vlo0. Figures [4.8] to [4.12]

reproduce the maximum radial excursion plus, in the case of trapped orbits the

"potato tip" for particles passing through the point r = rmode at different values



of t9 . The quantity r = rmode is represented by the solid straight line, and on the y

axis is the ratio vll(r = rmode)/va. The striped region refers to particles that leave

the plasma.

As expected the local value of vll is within a narrow range -0.45 < vjll/V <

-0.2 and is negative. If we assume that most of the particles are born between

±30cm, we have to restrict the allowed ratio to -0.45 < vll/v, < -0.4. In the

next chapter we will see how the resulta presented here are consistent with the final

form of the distribution function of fusion products before slowing down occurs.

The numerical analysis shows also how the orbit period changes for different

classes of orbits: particularly in the standard bounce orbit calculation for banana

orbits, assuming Jr << r (i.e. neglecting radial excursion) and V9 0, we obtain

an estimate of the bounce time as:

qRo 2r (4.1.8)

while the circulating time is given by 7T - 27qRo/v,.

In our case since we have large radial excursions Eq. (4.1.8) does not hold, and

we see that the orbit period can change significantly. An approximate form for the

bounce time, for the case of JET and considering orbits that intersect r = rmode

at V = Vo9 , is given by

-a•oTb = 1506.3 - 345.7 ln(1.33 rad - Vo) (4.1.9)

where 9,crit = 1.33rad is the critical angle for trapping, that is for 0do = 9,,crit the

orbit period goes to infinity and we have a stationary orbit. For orbits that are

confined inside the plasma 0o can take the value 0 < 0o < r/3. Eq. (4.1.9) gives

a good approximation of the bounce time expecially for those particles that are

closer to V9 rit. From this equation we find that 1407.5 < Q1Tb < 1946.0 in the

range of o90 of interest. Particularly the value of Qorb at 00 = 0 is 1407.5; so we

can compare this value with the results12 for the particles intersecting the mode at

Vo = 0, and we see that it's a good average estimate since the normalized period



takes values 1300 < £,2 Tb < 1500. We can compare this values with 7b given by

Eq. (4.1.8): for a trapped particle at the edge with c = a/Ro = 0.3, q = 3.5, and

p, - 8 cm we obtain SQTrb - 1581.

We summarize our results by saying that if we look at a fixed radius r = ro

where ro is towards the edge, almost all the particles that are able to reach this

radius and have confined orbits, are born with positive parallel velocity and locally,

at the mode layer, have negative parallel velocity. This will not hold only for a

very small fraction of particles born at r > ro. Only a small fraction of circulating

particles will be able to reach the mode layer at r = ro. An analytical approximate

calculation gives an estimate for the limiting condition for trapping for particles

born at the origin as vllo/v±o - (2p/R o)1 /3 .
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Figure 4.3 A typical "banana orbit" for a 10 keV deuteron. The thick line

represents the localization of the mode, while the dotted line represent the width

of the mode. For this orbit vll/v,(r = rmode) = -0.4
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Figure 4.4 A typical "banana orbit" for a 3.5 MeV a-particle. The thick

line represents the localization of the mode, while the dotted line represent the

width of the mode. For this orbit vjll/v(r = rmode) = -0.4



Figure 4.5
the origin.

An example of a biforcation orbit for a particle passing trough



Figure 4.6 A small spread in pitch angle Sw, where w is defined as w =

(vllo/v±o), results in a spatial spread. We label by @ the intersection of the orbit

with the x axis, and by ( the turning point of the orbit. In this case w = 0.3,

Sw = 0.02

1
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Figure 4.7 We can see from this figure the interval of values in velocity

space that corresponds to trapped or circulating particles for particles born at the

origin. On the y axis we have vll0o/v The continuous line indicates the intersection

of the orbit with the x axis, that for trapped particle is labelled by ). The dotted

line indicates the projection of the tip of the orbit on the x-axis, labelled by ( in

Fig. 4.6
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Figure 4.8 A plot of the orbits extremes for particles passing trough r =

rmode, 29 = 0 is represented: on the y axis is vll(rmode)/v a . The continuous line is

the intersection of the orbit with the x axis, The dotted line, that identifies trapped

particle, represents the the projection of the tip of the orbit on the x-axis. The

striped region corresponds to particles that leave the plasma.
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Figure 4.9 A plot of the orbits extremes for particles passing trough r =

rmode, V = 11/4 is represented: on the y axis is vil(rmode)/vU. The continuous

line is the intersection of the orbit with the x axis, The dotted line, that identifies

trapped particle, represents the projection of the tip of the orbit on the x-axis.

The striped region corresponds to particles that leave the plasma.
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Figure 4.10 A plot of the orbits extremes for particles passing trough

r = rmode, 0 = H/2 is represented: on the y axis is vll(rmode)/va. The continuous

line is the intersection of the orbit with the x axis, The dotted line, that identifies

trapped particle, represents the projection of the tip of the orbit on the x-axis.

The striped region corresponds to particles that leave the plasma.
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Figure 4.11 A plot of the orbits extremes for particles passing trough

r = rmode, 29 = I- is represented: on the y axis is VII (rmode)/v a . The continuous

line is the intersection of the orbit with the x axis, The dotted line, that identifies

trapped particle, represents the projection of the tip of the orbit on the x-axis.

The striped region corresponds to particles that leave the plasma.
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Figure 4.12 A plot of the orbits extremes for particles passing trough

r = rmode, 7 9 = 311/4 is represented: on the y axis is vll(rmode)/va. The continuous

line is the intersection of the orbit with the x axis, The dotted line, that identifies

trapped particle, represents the projection of the tip of the orbit on the x-axis.

The striped region corresponds to particles that leave the plasma.
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Chapter 5.

The Alpha-particles Distribution Func-

tion

In the previous chapter we analyzed the single particle orbits for energetic a-

particles. From this analysis we saw that only trapped particles with large banana

orbits (that is barely trapped particles) will be able to reach the mode and that

particle born at the center of the plasma column will all have parallel velocity at

the mode layer in the same direction, namely v11 (rmode) < 0. The situation does not

change substantially if we consider particles that are produced by fusion reactions

not too far from the center, as it happens in typical plasma profiles. In Fig. 5.1 we

reproduce the source profile 13 using typical plasma parameters as listed in Table

A-I, and and we see that most particles are produced in a range of 30 cm. from

the center of the plasma column, so that we can restrict our analysis to this region.

From the single particle picture we see that if we consider particles passing through

the mode layer, but born at different points in the plasma, not too far from the

center, they will all have the magnitude of v1i whitin a narrow range. This can be



seen explicitly by looking at figure [4.6] where particles born on the x-axis whitin

30 cm. from the center (the place of birth can be taken as to be represented by the

place where the orbit crosses the x axis, that is by the x coordinate in the figure),

all have velocities at the mode and at 0 = 0 given by vll/va - 0.45 ± 0.02. As it is

clear from figure [4.7] the situation doesn't change significantly for 9 = 7r/4.

Thus we expect the local distribution function to be strongly anisotropic in

velocity space. Furthermore, since the instability evolves on a time scale that is

fast respect to the slowing down time, we expect the distribution function of the

a-particles to be proportional to 6(La - E) where La = 3.5 MeV. This quantity

will be multiplied by an anisotropic function that we find convenient to express as

a function of IL and Sa and that will be such that such that the average value of

vj1 (rmode) will be some negative quantity consistent with the single particle results.

Section 5-1. An Analytic Form for the Distribu-
tion Function

To evaluate the distribution function we adopt the following procedure: since

all the a-particles are produced by fusion, the source term for fusion products is

the main factor to consider in order to obtain the final form for the distribution

function before slowing down. Fusion particles are created at a rate determined by

the plasma density and temperature profiles, which are roughly constant in time.

For a given source, the distribution function F satisfies the equation

dF
=•S

dt

where F and S are normalized to the canonical phase space volume, and =

+- + "-V + a' -V, is the relevant convective derivative.

We define the orbit integral of the source to be

9 = - drS(£(r), i(r))Tb

where 7 is the "parametric time" according to which particles move along their

orbits. Averaging over 7 yields a function which is constant along orbits; therefore



S is a function only of the constants of the motion, C, A, PC, which are needed to

specify the orbits. This procedure replaces created particles with uniformly filled

orbits.

If we assume F = St, we find that F satisfies

dF
dt S.

If rb << t and o<< ̀  - V, a'- V,, then this estimate introduces only a small

correction to the equation dF/dt = S 14. To understand the meaning of this ap-

proximation, and for the purpose of illustration, we examine in detail in appendix

D a simpler case that allows an analytical treatment and vizualization. We con-

sider in appendix D the case of the distribution function of particles in a constant

magnetic field; so that the relevant periodic motion is the cyclotron motion, and

we average over the orbits. We see how in that case orbit average leads from the

distribution function of particles to the distribution function of giuding centers. In

our case instead the periodic motion is the bounce motion of the guiding center of

trapped particles and the difference between real space and guiding center space

is neglected to lowest order, and, as we said, averaging along the orbits leads to a

function of S, A, PC.

With these assumptions we take

F = f(p, P()6(S - /a) (5.1.1)

where t and PC are defined by

1
E = -mv 2

2B
Pc = R [mav + qA]

Here RAc = fJ RBe dr, the normalization ii has dimensions of number of particles

per unit volume, and f is dimensionless. We consider that 5 is roughly constant

over the mode growth time that is about the orbit time.



Because we are interested in the interaction of a-particles with high frequency

modes (w - te•) that require a gyrokinetic treatment, we shall incorporate cor-

rections to Eq. (5.1.1) of the order of A pa/LB as derived by L. Chen, S.T.

Tsai15 and X.S. Lee et al 16. In this formalism a distribution function of the form

of Eq. (5.1.1) is only the lowest order term in an expansion in the parameter A.

We notice that the guiding center coordinates perpendicular to the magnetic field

are also constants of the motion, if we consistently neglect corrections of the order

of A. Thus we consider an equivalent form for the function f as given by

f = f(A, 9, r) (5.1.2)

where 0 and r are the coordinates of the guiding centers. From here on, all spatial

coordinates will refer to the location of the guiding center unless otherwise indi-

cated. We can first numerically calculate f(/., PC), and use the fact that PC can be

rewritten as a function PC (, p, r, 0). Then, setting 9 = E,, we infer the form of

f = f(p, 0, r) that we consider at r = rmode.

Considering the source function of a-particles and their motion in some given

magnetic configuration, we can calculate the distribution at r = rmode. As found

in Chap. 4 only particles with vll < 0 at the point rmode, 0, drift inwards from the

mode layer towards the plasma core, allowing us to consider only that sign of vil.

An appropriate model for the distribution is given by the function

(pB/&a - Ao)2
f H(Ocr - 0,1) exp B / 2o 2  (5.1.3)

where H is a step function which vanishes for negative argument and is equal to 1

for positive argument. The magnetic field B is of the form

BoBN
1 + rmode COS o/R0

Using this model, ii will be of the order of the volume averaged a particles density.

A numerical evaluation of S 11,12, with parameters sampled from table A-I, is



consistent with the following values for the constants previously introduced: Ao =

0.8, a = 3 x 10- 2 , Ocr = 27r/5.

Notice that we do not include in these calculations first orbit losses to the

wall, and discard all particles whose orbits extend beyond the plasma edge. This

is the significance of the cutoff angle ~cr. The ratio AB(0)/Ea - Ao corresponds to

trapped particles whose orbits extend from the mode layer r = rmode well into the

plasma core. At r = rmode and for 0 > 9,c, pIB(0)/&1 = Ao characterizes orbits

which extend beyond the plasma edge.

The source term for fusion products, reproduced in figure [5.1] and valid for

the range of temperatures attained in existing experiments, is represented approx-

imately by13 S, oc ? F exp (-• e) 6(8 -) ), where T is in units of keV.

The considered profiles are given by

n = no(1 - r2/a2)1/ 2

1 - 6r 2 /a 2

T = To
1 + 8r2 /a2

q = (1 + 2.5r2 /a 2)

where q(r) is the magnetic field unwinding function and the values of the constants

are taken from table A-I. The form for the distribution function used in Eq. (5.1.3)

is sufficiently robust to model a wide variety of profiles, as long as the density and

temperature are peaked at the center of the plasma. The values of the numerical

constants used in this model are weakly dependent on the shape of the background

profiles.
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Figure 5.1 The production rate Sa in a typical D-T plasma discharge. On

the y axis is S~ in units of [cm-3t-'], and the x axis is r/a.



Chapter 6.

Quadratic Versus Linear Growth Rate

It has been shown 1 7 that a-particles can interact with magnetosonic modes,

giving rise to a positive growth rate. In the case of a homogeneous plasma, for waves

travelling mainly in the perpendicular direction, this growth rate is proportional to

the square root of n,e/n << 1, where n, is the a-particles density 17 We labelthe

growth rate with this dependence the "quadratic growth rate", Yquad. The purpose

of this chapter is to show how this dependence is typical of a "quasi-fluid" case,

i.e. a case where all the particles partecipate to the wave-particle interaction, since

they all resonate with the relevant harmonic. The interaction can produce damping

or growth of the wave: the presence of an instability will obviously depend on the

relative weight of the particles that give a positive contribution to the growth rate

respect to the particles that damp the mode. The form of the distribution function

plays a crucial role.

However if a significant Doppler shift is introduced, or toroidal effects 17 ,18 or

other effects that allow only a fraction of the particles to resonate, this instability

becomes a truly kinetic instability and the growth rate becomes linearly dependent



on the ratio n,/ne. We label this the "linear growth rate", ytin. In the next pages

an analysis of the cases where we have the linear or quadratic growth rate depending

on the value of the Doppler shift, will be presented: particularly we find that a

"significant" Doppler shift that corresponds to a linear growth rate will be given

by klllVlla > (a(nfl/ne)1 / 2. Here vila is the relevant velocity of the a particles in

the parallel direction.

The condition presented above is the analogous of what found by Mikhailovskii

in Ref.[17] studying the role of toroidal effects, in particular the variation of the

magnetic field with radius. In his work it is found that "with increasing toroidicity,

when (n,/ne)1/ 2 << a/Ro, the trapped a-particle instability becomes kinetic, i.e.,

it is due to resonant interaction between a wave and a-particles with corresponding

energy and pitch angle". In this chapter we wish to generalize this result by showing

that we can identify a generic condition such that we can say that we have a linear

growth rate, 1'lin n,/ne, when (nof/ne)1/ 2 < 6w/IQ,. Here Jw/I,, can be related

to toroidal effects, as the inhomogeneity of the magnetic field - a/Ro, or it can be

due to the presence of toroidal drifts, appearing as kIvD or to the Doppler shift in

the parallel direction. In the opposite limit (nf/ne) 1/ 2 > Sw/Qc, we have instead

the quadratic growth rate 7Yquad (na/lne)1/2.

Section 6-1. The Dispersion Relation with a-

particles
Let us consider a homogeneous plasma with one ion species plus another

species of energetic particles no such that n,/ne < 1. In Section 1.2, we cal-

culated the dispersion relation for magnetosonic-whistler waves for a perturbation

of the form:

E1 (t, y) = El e - i w t + i k l y + i k ll z

with k1l <K k1 . We recall that E1 _ = 0. For the purpose of this calculation we

don't need to keep the contribution of kIl to the real part of the dispersion relation,

so that the relevant mode to zeroth order in n,/ne, will be the one calculated in



section 1, with dispersion relation given by Eq. (1.1.13) and polarization given by

Eq. (1.1.11).

If we include a population of a-particles in the plasma we only need to modify

the current in Ampere's law so that Eq. (1.1.7) will have a term arising from

the a-particles, 65J = en f 6iFd 3 v. We can define a conductivity tensor for a-

particles so that 6J, = J -l - E1 , and we can define the polarization of the wave

as A = -i(ESy/Exx) and the unit vector along the perturbed field as '= E 1/11i.
We write the dispersion relation is obtained by solving Eq. (1.1.7) with a-

particles in terms of these quantities:

2 2 ++
1 2 (1 + A)kE* .6 o, - C•= 0 (6.1.1)k (1 k2c2 COW

The explicit form of 6ta is obtained by integration along the umperturbed orbits2 7,

and is given by

6e 44 SL O- Feoo(v-l, v11)d dU_ = -ifow W2=E-oo w - feR -I k j (6.1.2)

where

V± j,2  ivw J1 JJJ

Svvi e J e)

and k = k±v±/Ia, Je = Je((), 0 = w/98vi+kilOa. The operator Oa - 01v/vll -

vll /av± is equal to zero for an isotropic distibution function. In the following

treatment for semplicity we will neglect the contibution coming from this term,

since it turns out to be only a small correction.

We can now evaluate

2  i
(1 + A2)W 62 0 l *

k2 c2 coW

+W00 [C2 vA W1] V1  o V± (v, V1) d3v (6.1.3)

k2c2  w - e- - kllV uj av±e= - o



Eq. (1.3) can be rewritten in a more convenient form by using the equality

pw/,(kC) 2 = (n/n)(Qi/(k l A) 2 ) that gives for the dispersion relation the

form:

n. OQ +00 il 2 [A}e -] 1 9Fa 31- + + (AJd3v 0 (6.1.4)
k 2 2 ne kI 2 kV w -WeRw - klljvI v± OiI A  I A  e=-o0

For sake of simplicity and to enlighten the different role played by the parallel

and perpendicular direction let us consider the equilibrium distribution function as

the product of two functions, one dependent on vjj only, and the other dependent

on v1 only.

F0o = F11 (2v1) x F±L(v )

This allows us to rewrite the dispersion relation in the form:

e=-oo

x 1 v+oo F 4
xl dv11

-oo -c ea - kllf

It is convenient to define the quantities

a = 2 2 2oo
Sf-oo

2r dvj JF± [v - 2J

0
U"l

J1 00 dv F A iJ L - 2
0 ~~a seLI

and

nW 2  di+oo F1
ne W _Joo 0 -Iff - kllvll

In terms of these quantities Eq. (6.1.5) reads

1 2 21 - 2I+aI = 0W2

x

(6.1.5)

(6.1.6)



The quantity labelled at is typically of order unity and can be positive or negative,

depending on F±. We will see that in order to have an instability we will need

al > 0. This term represent the source of "free energy" for the instabilitylo, and is

going to be positive if OF±/Ov±I is greater then zero somewhere, and particularly

where the weight function [XJe - t/lJT]2 takes the highest values. As expected we

see immediately that for a maxwellian plasma in the perpendicular direction we

don't have any instability. The driving term for the instability is thus the release

of energy in the perpendicular direction. From now on we will just consider al as

some positive dimensionless quantity, and examine the role of I. Let us consider

three different forms for F11:

i) delta function,

ii) lorentzian,

iii) maxwellian.

Section 6-2. The Quadratic Growth Rate.

i) F11 (IIl) = [(vil +vo)+6(vll - o)]

For this distribution function the quantity I is:

I = n w - (6.2.1)w ne (w - i, - kllvo)(w - ffa + kllvo)
and the dispersion relation becomes:

1 - + +at = 0 (6.2.2)
w W ne ( -wAik - klvo)(w -ef + k1 1 vo)

Since the ratio n,/ne << 1 we can solve this equation by expanding in this

small parameter, and we obtain to lowest order, defining w = w, +i 7 with w, > > y,

w = Wr ~ kvA (6.2.3)



The maximum contribution from the term proportional to n,/ne comes from w .

S,+kvllVo or w - £,,,-k 1l0 , that is from the Doppler shifted cyclotron frequencies.

Let us consider first the case w , £ei2 a + k11v0, this resonance condition combined

with Eq. (6.2.3) selects the values for k1l and k1 that correspond to the maximum

growth rate. The next order expansion of Eq. (6.2.2) gives

k~_) 25w, + iq 2 no kllvo + ir
1 - 1 -2 + k = 0 (6.2.4)

W w J w ne (2k 11vo + i"Y)(iy)

To find y we equate the imaginary parts and we have:

Q2 2kv2 + w?
2y = (42 ao+ 2 (6.2.5)

w ne (4k •v 2 + w )

This is a fourth order equation for -y, that we solve by considering the two extreme

limits of interest:

i-1) kllvo >> -

y2 = Z n 2 (6.2.6)
4 n.

i-2) kllv0 << y

2 = 2n n  2 (6.2.7)

We see that in both cases the instability requires al > 0 and the growth rate

goes as the square root of n,/ne. It is clear, by letting vo - -v 0o, that the same

result holds for w - gQ,, - kilvo.

As expected with this kind of distribution function there is no "kinetic" in-

stability, since either all the particles contibute to the instability or none, that is

we always have a stronger, quadratic, instability. The different response for the

limit kll -+ 0 can be easily explained by looking at our choice for the distribution

function: F11(v11) = -[J(v 11 + vo) + 6(vi - vo)]. We see that if either w - Ie0 + k1lvo

or w --, Mc, - kll1v is considered, just one of the two beams interacts giving insta-

bility (i.e. half of the particles), but for k11vo < -Y < Wr the doppler shift is not



appreciable, so that all particle contribute to the instability resonating with £ro.

This accounts for the factor of 2.

Section 6-3.
Growth Rate

The Quadratic and the Linear

We consider both cases ii) and iii) together because the lorentzian distribution

function allows to perform the integration and evaluate I, but exhibits a similar

behavior to the case of the maxwellian in the parallel direction from the instability

point of view.
a 1

ii) FI(VII) = v2  a2

Let us first evaluate the quantity I,

S2no, c a dvji
- ne J-oo 7 (v2 + a2)(w - kl- lkj1)
2O nct 1
w ne w- •fQ + ilklil a

with dispersion relation

(6.3.1)

ki+2_ fce2 no (Wr - Roa) - i(wi + Ik lla)
Uw 2 w ne (w, -r )2 + (wU + Ikl ja)2

We solve Eq. (6.3.1)) espanding in the small parameter nal/ne

lowest order solution is given by Eq. (6.2.3) w = kVA and the

used to determine the imaginary part that satisfies

= 0 (6.3.1)

and as before the

next order can be

2 - a nu +_ (6.3.3)
wr w ne (7+ jkI l1a)

Eq. (6.3.3) is a quadratic y, y2 + ,yik lIa - a,(Q 2/2)(nfc/ne) = 0 and again we are

interested in the two extreme limits:

ii-1) if 7 >> Ikll ja, the growth rate is



1/2

7quadN n ! Q2 (6.3.4)(q ld 2 ne

ii-2) if -y << Jkllla, the growth rate is

,in 2 nk a (6.3.5)
2 ne kIllla

As we see in both sub-cases the instability requires that at > 0 and the growth rate

will be quadratic (case 1) or linear (case 2) depending on the value of k1l. Thus the

quadratic growth rate requires (oa/2)(n./ne)Q2 > (lk1lla) 2, while the linear one

requires (al/2)(nl/n/e)Q2 < (kllla) 2 .

To give a physical interpretation let us go back to the quantity I as defined

by Eq. (6.3.1) before performing the integration. If we neglect in the denominator

k11vj1 respect to wi we have that

1 1

can be factorized out of the integral so that

S-na2 1 .naQ2 1I = ~ -i (6.3.6)
ne W w - e0a ne Wr

We see that in this case, for al > 0, all the particles contribute to the instabil-

ity, and we obtain a stronger growth rate. Let us now consider the limit 7 << I kll Ia

and use the Plemejely operator:

1 ( Wr -l2a

w - fec - kllvlIl Ikll kll

so that

.na 2 2r a 1
I =- s-

ne wr Jk11I r a2 + -( a)/kI)2
.n. p2 1I - Z _a (6.3.7)
ne Wr Ikll a



This leads to the same growth rate as in Eq. (6.3.5), that is the linear growth rate.

Thus we see that for IkIlla > y not all the particles contribute to the instability,

but only those one with v11 -- (w - ef)/kl1l, giving a "kinetic" growth rate.

Finally we consider the case of a maxwellian in the parallel direction.

v
2

1 1-
iii) F 1 (vll) - - e Vt h

This case is very similar to the previous one, so we just write the final result.

iii-1) if 7 >> kllvth the growth rate is

7quad ( n 22 1/2 (6.3.8)
2 ne

iii-2) if << kllvth the growth rate is

'7'n ' (6.3.9)2 nte Ikll1 th

Here again the condition at > 0 is required for instability and the two differnt

responses depend on the condition

quadratic

n. > k2 v 2

aQ- < th (6.3.10)
ne a

linear

In our case, as detailed in the next chapter, for a realistic toroidal configuration

we find that we need to keep not only the Doppler shift in the parallel direction,

but also other toroidal corrections taht result in Jw/~S2 larger then (na/ne)1/ 2

We can thus conclude that we will have a growth rate that is linear in n,/ne.



Chapter 7.

The Growth Rate

In Chapter 2 and Chapter 3 we have studied the dispersion equation for the

contained modes, considering only the background plasma. We can see how this is

modified by the influence of fusion products through a perturbation of the disper-

sion relation in the quantity no, because n, << ni. In Chapter 6 we exhamined

the homogeneous case and we saw how the presence of n, gives rise to an addi-

tional current contribution J,,. We can thus extend the calculation carried out

in Chapter 6, including the contribution of the a-particle current, yielding a new

term in the dispersion equation proportional to na. In order to calculate the cor-

rections related to the presence of the fusion products, it is convenient to analyze

the problem in terms of the perturbed electric fields E l .

Section 7-1. The Perturbed Alpha-particles Dis-
tribution Function

Beginning with the original mode equation the dispersion relation can be writ-

ten as Do(w, m, n) = 0, where Do is related to the effective potential, defined in



Equation (2.2.4), by Do = -Veff(rmode)C 2/W 2 , correct to order 1/m. The perturbed

fields will have the form of Eq. (2.2.5)

E (r) E E, m. e -(2 e -iwt-im+i 0 11)

In terms of components, for the coordinate system defined in appendix B, E 11 =

Eir•r + Ele~o = Er,( r - iA^e) with A iEoe/E,. - w/1i. This is similar to the

result Eq. (1.1.11) found in Chapter 1 for the polarization of the magnetosonic-

whistler wave in a homogeneous plasma. The dispersion relation with a particles

can be written as

Do(w, k) + 6D,,(w, k) = 0 (7.1.2)

where

6D,(w,k) -= 2

WO < E1 >

Here the brackets indicate spatial averages and the conductivity tensor 56 is de-

fined by

6J - / 6F, d3' = 60. E, (7.1.3)

We recall that the mode solution given by Equation (7.1.1) is sharply localized

about r = rmode, and the average will later be replaced by the condition that

quantities are evaluated at r = rmode. This is justified by the fact that the scale

length for variations in 6b is larger than the mode width.

Corrections to E1 only appear in the equation for 6D, to second order in

terms of J,, and are not considered.

Solving perturbatively in terms of the imaginary part of the frequency, y,

yields

S= -e < , > (7.1.4)
Wfo aw I E, >

|



To obtain 65, we begin with a full gyrokinetic calculation of 6F, the per-

turbed alpha distribution due to the fields from the contained mode, for frequencies

above Q, 115,16. This level of detail is necessary due to the large radial excursions

of the particled along the orbits, as seen in Chapter 4, and the large Larmor radii

of the fusion-produced alpha particles. We model the magnetic field as

-_Bo B r ,
B = 1 + (r/Ro) cos 9 Roq e

and we consistently neglect effects related to /. We consider the limit of w very

close to a harmonic resonance with Q2, with harmonic number denoted as e, so

that only a single harmonic term contributes to each mode-particle interaction.

The gyrokinetic calculation applies to systems where the magnetic field varies on

a scale length considerably larger than the gyroradius of the particles. We expand

in the parameter A = pi/LB, and keep all terms in the interaction between the

mode and the fusion products to first order in A. For the sake of simplicity we

neglect corrections of order A/q, which means that we consider only the gradient

and curvature drifts due to the toroidal field, which have the combined form

1
Vd = (26 - pB) [e cos 0 + er sin 0]

For the following section, we introduce the notation that the vector X refers to

the guiding center coordinates, while the relevant coordinates in velocity space are

V = (E, , P), where E = mv2/2, i = mov2/2B, and W is the gyroangle. In the

following equations, all spatial coordinates refer to the guiding center location. For

functions, the subscript g will indicate that the function dependence is expressed

in terms of guiding center variables.

The unperturbed distribution function for the fusion products is approxi-

mately given by Fgo as obtained in Chapter 5 in Eq. (5.1.3). Fgo does not depend

on p but only on C, 1L, and the guiding center coordinates. However, because calcu-

lations of the mode-particle interaction are being carried out to first order in A, the



first order correction to F90 must also be included. As in Ref.s [15,16] this correc-

tion arises from the more precise form of Ms = m,ov /2B -m, v' /B +O(/A/q),

as examined in appendix C. Thus we take:

1 Fgo (7.15)Fga = Foo - (v± " Bd) (7.1.5)

By using the results from the Chapter 5 we can take Fo9 of the form Eq. (5.1.3).

The perturbed distribution function for the alpha particles under the effect of

the contained mode will be given by the gyrokinetic version of the Vlasov kinetic

equation 15,16 , a detailed derivation leading to Eq. (7.1.6) is performed in appendix

E.

(Lg)e (6Fga)e = - (Sg) (7.1.6)

where the gyroaverage of the Vlasov operator is given by:

(Lg,) = (vII II + vd) - Vx - i(w - fl,(Rg))

For simplicity, in the above formula we neglect the correction to the resonant

frequency, as shown in appendix E, of the form w, = (. - V~ W)o. This correction

is estimated in appendix F to be O((AQa)/q). The quantity (Sg)e is related to

the perturbed field operating on the unperturbed distribution function, acts as a

source term, and is defined by

(S9)e = m 1 + -v X 1) + •m c 86 B M- v_ 19V
+ 1 + - 1)x-- Vx]Fg )  (7.1.7)

The harmonic components, which by definition are independent of gyrophase,

are defined by the expansion

aFg, = exp(-iecp) (6Fga)t
e



where ýo is the gyrophase angle given by i± = v1 (cos W ea + sin O eb). The unit

vectors are chosen so that ea !- -, eb 2 er and they form an orthonormal system

with ell = B/B.

Since we assume that the spatial structure of the mode determines the layer

of the interaction, but that the nature of the interaction is determined mainly by

the velocity distribution of the alpha-particles within the interaction layer, we can

neglect the spatial derivatives of the unperturbed distribution function represented

by the last term in Eq. (7.1.7). Thus the relevant terms in Eq. (7.1.6) are

E 1 aFgo(Sg), = (Lgl9 ) Fgo - El -V- x (V x E1)] • BFd (7.1.8)

where the perturbed Vlasov operator Lgj is given by:

q l 1 ) i -. 1 9
L m= Ei - + ell - v VI el1'Vx - 1m 88a B By w ) 19 gBOi

We have set E =ll 0 in the above equation. We define the quantities At, that

is a function of the guiding center position, and At, that is convenient for field

functions, as

(A9g) = At(r, 9) exp(-im9 + in()

= At(r, 8) exp(-im0 + in( - i sin p)

where r, 0, C are guiding center coordinates. Note that the guiding center position

X is defined by X = + - .

By explicitly evaluating the components of (Sg9 ) we find that 6Fe has to satisfy

the following equation:

[ (9 -i (m - nq(r)) - i (w - keoVdO - f9aV) + Vdr Ft

_q iq
S Ptr(F9 0o)E•, + PFe•(F 90o)E j e (7.1.9)men me

92



where

Pee(Fgo) = J• () V2,Bm a + (1 l -j k vd B ] F90

Per (Fo) = iJ'(O) 2ipBma 0 (1 -+ 1 _ vde F90

with = k=v±/Qc,.

The operators Per and Pee also contain corrections of order A; these corrections

are proportional to (1/B)(a/lap), giving no contribution for an isotropic function.

This equation has an integral solution

6Fe = dO' (Per (Fgo)Elre + PeO(Fgo)Eile) (7.1.10)
m vii

x exp -i dO" qR (w - k±evde - £fga) + (m - nq)

where the terms within the integral are evaluated at the guiding center 0', r(O'),

which defines particles orbits through

r(0') = / qRvdr dO".

In terms of 6Fe, the slowly varying part of the current from Eq. (7.1.3) can

be expressed as

MJa,= JF- exp -ik± ~± ) d3
' (7.1.11)

where the exponential factor arises from the difference between the quantities k 1 -

and k± -X. For high mode numbers, it is appropriate to neglect poloidal coupling,

and look at the 0-average of the energy flow from the particles to the mode, given

by Ele -6Ja evaluated at r = rmode.



Section 7-2. The Local Growth Rate

We consider the case of y > Wb, which we shall verify a posteriori, and use the

"local approximation" which uses the form

= -(q/m) [Per(Fgo)E~ie + Pee(Fg0)Ee] (7.2.1)
w - kLevde - fQ, + (vll/qR) [m - nq(r)]

In the limit of 7 << (w - ef£f), the resonant particle contribution can be

written in the form

1 =-i7r(w - kLevdO - M + V(m - nq)
w - kievde - e + L (m - nq) qR

The conductivity tensor, defined by Eq. (7.1.3) as 6Ja = 6 ,. Ez, takes the

form

44 q2 _i r2ji2 2jL d95/ 2 eiwtim+inc 4 d5 dS 6(w - kllvll - k±vdO - effa)m5 J 2(E - pB)
(7.2.2)

x ((1-kilvil + k±1vde 1 ~ (• • JFeJ

-4iJetJi JJ 2 )

The exlicit calculation for the conductivity tensor and a more complete form

for it is carried out in appendix E. Through the delta function, each mode selects a

class of orbits such that a particle can resonance with the mode as it passes through

r = rmode. The growth rate -y obtained by plugging Eq. (7.2.2) into (7.1.4) only

has significant contributions from these resonant particles.

In terms of dimensionless variables the resonant condition is

w £
+ Kll/+// c -oB/s0 K11 C/ca tLB/Ca + Ki(6/Ea - ijB/20a) = 0 (7.2.3)

fo 1 + (r/Ro) cos 0



where K1I = -k 11 (2a0/ma)/2co, and K 1 = -(k±28c cos9)/(ma o20Ro), that is

defined so as to be a positive quantity.

The final form for the growth rate is:

TIC, 72 2
H7 (, pio 2

Qio neo 1 + A2 U2 wODo/dw

p((pB/S - 0.8 Wt I _1AB1Cer.82 S
x (0-03)2 e2(/ e 0B/) 0.8 + 1

a [l•e1 (B/EC-0.8) 2

+ , e 2 0.03N/ 2 (/E466 - -B/Se)
dpres 9 We _I( IAIEoC-0.8 ) 2+ E4 2 Ie0.03 A (7.2.4)

dS [P 2(&/So - pB/£a)

Where (wp /iiF)[wco9Do/1w]-1 O0(1) is a positive quantity, and

-2

w I- K1/2N/SE/o - piB/S - K-/21 ý- 2pB/E J  )  J

In the "local interaction" limit, the growth rate as given by Eq. (7.2.4) is a

function of the spatial coordinates; in our case, the localization of the mode allows

us to set r = ro, leaving a dependence on the resonant value of 0.

Since for the particles at birth the energy is fixed, for a given value of the

frequency w and the poloidal angle 0, Eq. (7.2.4) defines the acceptable values of

A = pres at r = rmode for which there will be instability. The range of possible

values for 0 allows solutions with positive growth rate to be found within a range

of frequencies; this justifies the width of the spectrum. We can have instability for

different values of frequency, each corresponding to a single resonance in velocity

space. Letting 0 vary, and thus the resonant value of IL, results in a frequency

spread that can be related to the width of the mode.

We find that there is a destabilizing interaction for those frequencies such that

re,,,B < 0.8 £E, i.e. the distribution function has positive slope for particles that



contribute to the instability. Notice that we can have more then one value of 0

resonating at different points with the same frequencies, thus for a single mode, the

0-dependence can be averaged to determine a global growth rate. In figure [7.1], the

global growth rate is plotted for modes in the discrete spectrum of contained modes

as derived in Chapters 2 and 3 , for kll/k± < 0.1. Assuming the emitted power

produced by each mode to be proportional to the growth rate, figure [7.1] allows

for a visualization of an observed spectrum. The peaks are located at multiples

of ,, (ro, 0 = 0), that is found at the outer edge of the plasma column, consistent

with experimental results. We see from the figure that not all of the first harmonics

are excited. However we wish to point out that this result depends on the model

distribution function that we have been using. In fact the growth rate appears to

be very sensitive to the form of the distribution function in velocity space, and

particularly for the function given by Eq. (5.1.3) on the values of the parameters a

and A0 . It is found that with smaller values of a the lower harmonics are excited,

while as a -+ oo, the mode, in the limit considered in this chapter, becomes stable.

If we examine the growth rate given by Eq. (7.2.4), taking the limit of a

uniform magnetic field and considering the electrostatic component of the mode

as the dominant one, we see that our calculation agrees with the well established

instability1 7 for the homogeneous magnetosonic-whistler wave. The condition for

the mode being dominated by the electrostatic component is that £ >> 1, as is

clear from Eq. (1.1.11); this condition is commonly used in analytic calculation

for ion cyclotron growth rate and does not alter substantially the nature of the

interaction.

In a recent calculation of this instability, for £ > > 1 that includes finite banana-

width effects 24 , it is found that there are two contributions to the conductivity

tensor, one of which is governed by finite Larmor radius effects, and another that

is purely related to trapped orbit effects. The first term persists in the homogeneous

limit, as shown in Chapter 6. However in ref. [24] the term which is related to FLR

contributions has form equivalent to the homogeneous result, except that it has the

opposite sign, reversing the role of finite Larmor radius effects in the instability.



Various models that try to explain ICE observations through a form of the

magnetosonic cyclotron instability 17 have been proposed. Among these, some' 9

consider a localized mode but without resolving the corrections coming from the

Hall term. Our work incorporates the effects of the Hall term and propagation

parallel to the magnetic field on the mode structure and the spectrum of excitation.

Other models2 0 - 24 consider a radially propagating mode and thus do not resolve

the issue of the excessively weak growth rate when compared to the relevant radial

convection rate. Localization also appears essential to justify why the observed

emission peaks occur at frequencies corresponding to the cyclotron frequency at

the outer edge of the plasma.
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Figure 7.1 The growth rate -y as afunction of w/f2a(rmode). Assuming that

the emitted power produced by each mode is proportional to the growth rate, this

figure allows for a visualizatioin of the observed spectrum.

98

m

------~--i

Pý

%b



Chapter 8.

Conclusions

In this thesis the interaction of fusion produced ions with the background

plasma through collective modes has been studied. We identified a class of modes

that can interact with energetic fusion products and be destabilized by them,

giving rise to enhanced emission at harmonics of the cyclotron frequency of the

particles. In the limit of a homogeneous plasma these modes are electomagnetic

perturbations of the type of magnetosonic-whistler waves with dispersion relation

2 = k2(v32 + k 2 D) where V2 = B 2 /(minipo), DH = Boc/(47rneqe), and kl and

kI are respectively the wave vector along the equilibrium magnetic field and in the

direction perpendicular to it.

These modes are studied in the limit of a cylindrical cold plasma that supports

radially confined solutions, and they have the following characteristics: they prop-

agate mainly in the poloidal direction (k± , ke); the mode solution is a sharply

localized toroidal shell centered about a value r = rmode near the periphery of the

plasma colunm, and the mode width becomes smaller for higher frequencies. The

range of frequency of interest w >2 Q, requires poloidal numbers m that are above



10. Even if the mode propagation is primarily perpendicular to the equilibrium

magnetic field we consider a small parallel component. We wish to point out that

due to the small growth rate we find it of particular importance that the mode is

contained so that there can be a substantial interaction betwee the particles and

the mode.

As the problem is analyzed in the framework of the MHD equations, we have

that the frequencies of interest are relatively high, thus we find that we need to

keep the Hall term in Ohm's law: this term adds new characteristics to the modes.

In fact the Hall term breaks the symmetry in the poloidal direction, since results

in a term that depends linearly in the wave number m. We find different solutions

for perturbed fields propagating along the poloidal direction or in the opposite

direction. Particularly we find that contained solutions exist only for waves which

propagate in the poloidal direction in the same direction as the ion cyclotron motion

( that is m > 0 with our convention). In addition we find that there is only one

mode localization for any poloidal mode number m and toroidal mode number no.

We find that for low multiples of 7i the mode localization is, with good ap-

proximation, independent of the mode numbers and thus of the frequency, but for

higher frequencies the localization of the mode exhibits an increasing sensitivity

on the mode numbers, that is in the direction of propagation of the mode along

the equilibrium magnetic field. In particular, for a fixed small value of kll /k±, we

find a new class of modes localized from the edge up to halfway into the plasma

column, that can be excited by the fusion products.

The resonance condition is w = £ff (R), where R is determined by the mode

localization and £ is the harmonic number. This suggests that the transition to a

continuum spectrum, as observed in JET 1,2 for frequencies above 7 Q,, is caused

by the change in location of the mode-particle interactions, in part dictated by the

change in localization of the mode.

The discrete spectrum for the low harmonics is consistent with our finding

that the localization of the mode is independent of the poloidal mode number, m,

so that at lower frequencies modes will interact with the a-particles in roughly the
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same region in space, and thus at a resonant cyclotron frequency determined by

the same value for the magnetic field. However, if the surface of localization of

resonant modes having the same harmonic number can vary, by an amount SR,

the resonant modes will involve a frequency range efl'SR = laSQ6R/R. Different

harmonics will overlap when i - R/6R. For the lower harmonics, this is too small

a range for there to be overlap between different harmonics.

For the higher harmonics, a significant contribution to SR comes from the de-

pendence of the mode localization on k1; the strength of this dependence increases

with mode frequency. Thus a sequence of modes localized at different radii inside

the plasma will be excited. The condition for overlap among harmonics due to this

mechanism alone is found to be i > >crit = (R/r)[n(r)q2/nos82]1/ 3 , where - = rq'/q

is the shear parameter and n(r)/no represents the density profile. For I > Lcrit the

interval over which modes can be excited extends toward the center of the plasma

column, so that more a-particles can interact with the mode. Thus the discrete

part of the spectrum yields information specifically about the trapped, energetic

particles with large orbits, while the continuum spectrum can give information

about the average density of energetic particles inside the plasma column.

The a-particles produced by fusion slow down due to elctron collisions. The

typical slowing down time is much larger than the typical time associated with

the interaction thus we model the a-particles distribution function before slowing

down occurs. Experimental evidence also support this hypotesis. By studying

the single particle orbits for energetic fusion products we find that only trapped

particles with large radial excursions in their orbits can reach the mode and thus

have resonant interaction. An analysis of the values of the parameters in velocity

space that correspond to orbits intersecting the mode, indicates that the relevant

particles are barely trapped particles.

The distribution function of these particles is strongly anisotropic in velocity

space, and is weighted towards the outer edge. This correlates with the experimen-

tal observation that the emission peaks are measured at multiples of the cyclotron

frequency corresponding to the magnetic field strength at the outer edge1 ,2 ,3
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We find that, for any realistic plasma configuration that includes variation

of the magnetic field or Doppler shifted frequencies due to the particles' motion,

the growth rate depends linearly on the ratio n,f/ne for all harmonics. This is in

contrast with the analogous growth rate for the case of a homogenous configuration

that scales as the square root of n,/ne. Peak growth rates are higher than the

bounce frequency, thus satisfying the condition for using the "local approximation."

This growth rate is sufficient to maintain instability even including the vari-

ous mechanisms for damping that affect the unperturbed mode, such as thermal

damping.

An understanding of this phenomenon suggests the possibility of influencing

a-particle transport through coupling with externally applied modes having fre-

quencies in the range we have considered. The a-particle distribution and perpen-

dicular energy may be manipulated through appropriately chosen injected waves.
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Appendix A.

A Brief Review of

Anomalous Ion Cyclotron Emission (ICE)

Observations in JET and TFTR

Enhanced ion cyclotron emission with peaks on the harmonics of the a-

particles cyclotron frequency was observed in D-T discharges both in the JET

(Joint European Torus) device",2 and in the TFTR (Tokamak Fusion Test Re-

actor) machine3,4,5. In this appendix we represent the typical parameters, taken

from two sample discharges, that characterize these two machine, we describe the

experimental observation of ICE, and we summarize the results of our theory when

applied to these two different experiments. We recall that in a plasma made of

deuterium and tritium, there will be a primary reaction that has the highest cross

section

D + T -+ 4He[3.56MeV] + n[14.03MeV]
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the following secondary reactions can also occur

D +D + 3 He + n + [3.27MeV]

D +D - T + H + [4.03MeV]

D + 3 He - 4He + H + [18.3MeV]

We reproduce in table I the typical parameters for the JET and TFTR experiments

as given in ref. [1,2] and ref. [3,4,5].

TABLE A-I - JET and TFTR Parameters

Plasma parameters

Plasma current

Toroidal Field

Central e- density

Central ion temperature

Major radius of the torus

Minor radius of the torus

JET

3.1 MA

2.8 T

2.5 x 1019 m- 3

18.8 keV

3.15 m

1.05 m

TFTR

2.7 MA

5.6 T

7 x 1019 m- 3

20 keV

2.6 m

0.9 m

104



Let us now examine the detected ICE spectrum of Jet.

PulseNo: 26148

40 Z=1 2 3 4 5 6 7 8
I I I I I I I I I I

- I I i 1111
-I *- I i I

3 20- 1=9 10
0 Figure 1. The ICE spectrum measured in a DT discharge,
w

with nT/ne = 7%, close to the time of the peak neutron emission

The spectrum reproduced in Fig. [1] presents the following characteristics: it

shows peaks at the harmonics of Q,, = qoB(R = 4.02m)/mo = 1.05 x 108s - 1

up to I = 7, where I indicates the harmonic number. The detected power is of

the order of pWatts, much larger (__ 102) then the correspondent power level by
thermal spontaneous emission. The spectrum becomes continuum and increases in

power for wi 8, therT/e 7%, clossome additional peaks for w < neutron emission

We can now examine the detected spectrum for TFTR, we consider two cases,

in Fig. [2] we reproduce the spectrum for a plasma where only the tritium is injected

as neutral beam, while the source of deuterium is the initial target plasma. In Fig.

[3] there is both deuterium and tritium neutral beam injection.
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Frequency (MHz)

Figure 2. ICE spectra during T beam injection.

D-T fusion product a particle harmonics arise shortly after

the start of the beams. Later only QT harmonics are present.

I

E

0

U

0v,o
o

Frequency (MHz)

Figure 3. ICE spectra during D and T beam injection.

Immediatly after beam injection starts, both QHe3 and £n are observed.

Later, both OD and Q2 T harmonics are evident.
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These figures show that in both cases the spectrum exhibits harmonics of Q,

evaluated near the vessel wall, and QHe3 coming from D-D reactions. In Fig. [2]

however the initial spectrum dies away after 100 ms, and the spectrum that arises

has peaks at the harmonics of QT evaluated at the plasma edge. In Fig. [3] less

then 200 ms later, the initial spectrum has been replaced by harmonics of both QD

and QT at the plasma edge. The detected spectrum at later times for harmonics

of tritium, Fig. [2], or deuterium and tritium, Fig. [3], suggest the idea that the

contained mode will be destabilized by beams.

In both experiments the emission is detected with values of the magnetic

field corresponding to the outer edge of the plasma, but in JET the spectrum

with peaks on the harmonics of a particles is detected during the whole time of

the discharge. The fact that in TFTR at different times during the discharge

two different spectra are detected reflects the characteristic of this experiment, in

particular the fact that it has smaller values of the current and thus a less efficient

mechanism of confinement of the a-particles with barely trapped orbits, that are

the ones responsible for the instability.
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Appendix B.

The Coordinate System

It is customary to define

B(
ell •eB 0 + ~Bo

Bo .ea = e - oe

eb = er

where r, (, 0, are defined by

x = (Ro + r cos 9) cos (

y = (Ro + r cos 0) sin

z = r sin 0
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therefore we have

e x ee = e-

er X ~e = -eC

moreover we define the following quantities, E = r/R, q(r) = Bcr/(BoRo), so that

BeIBC = E/q.
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Apendix C.

Mu as an Adiabatic Invariant

If there is periodic motion whose parameters are slowly varying, we can define

an adiabatic invariant as the action associated with the motion, I = f pdq/27r. In

our case, for cyclotron motion in a slowly changing magnetic field and approximat-

ing f = my,

I,= 1 mvhr±dcp/2r = (m/e)(1/47)l o (C - 1)

where g0 = E±/B = mv2/2B.

If the magnetic field is constant in time, then this is a real constant of the

motion, but only to lowest order in the expansion parameter p/LB. For a time-

varying magnetic field, go is slowly changing so long as I1» >> I(1/B)(aB/Ot)l

We can explicitly calculate dpLo/dt for go defined as above, in order to show

that it is not an exact constant of the motion, even for aB/8t - O. We obtain

dpo -o + -71 + (2 + 7. 1- (C- 2)
dt B ( +t B O f
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however, averaging over the gyrophase Wp denoted by '± = v (cos 'p e + sin ep e2)

yields ( =) - -_ o aB
dt B Oat

This suggests the existence of a quantity p which is always close in value to

po and which is the true adiabatic invariant: ip varies only on the time scale of the

magnetic field variations, and dp/dt is exponentially small in 1ýB I Also, note

that despite the fact that ( = =0 Lp is not equal to (p)

In most textbook derivations of the invariance of p, the average over gyro-

motion and the approximation that variations in space and time are neglected in

a single gyroorbit are taken implicitly, by considering the motion of the guiding

center. Coordinates of the guiding center are used even if not explicitly described

as such, or only referred to as the "average position" of the particle. For example,

in the case of OB/Ot = 0, the force (written as if acting on the guiding center) may

be expressed as F11 = -I•B/Os. Thus,

dvll _ B d 1 2 dB
m- = -p- = -(-mv) = - (C - 3)

dt Os dt 2 dt

and energy conservation yields

d d 1 2 dp0 = d(pB) + d( mvl) = B (C - 4)dt dt 2 dt
if the difference between p and po is neglected.

We see from Eq. (C-2) that the relevant expansion parameter is p/LB, and

we can calculate the first order correction pl to the adiabatic invariant by using

this equation perturbatively. The dominant term in the LHS arises from 2 0 fp/9op,

and thus the correction to p is determined up to a constant by integrating the

right hand side of this equation over ', yielding the rapidly varying term A1. Then

1i = /.1 - A1 can be determined from the constraint:

(v . V 1), = 0

yielding



1

B

42B x W• ) - (W x eII) + [(6 x ] (C - 5)
2VII vI

1 2B2 - B Vx eIl (C - 6)
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Appendix D.

The Distribution Function Obtained

Through an Orbit Average of the Source.

The Example of the Cyclotron Motion

Let us first summarize the case of interest for us: trapped particles in a mag-

netic configuration whose motion is dominated by curvature and gradient of the

magnetic field drift. Explicitly in this model the source will be dependent on the

initial position and velocity of the particles ( at t = to = tb, that is the time of birth

of the particle), rb, 8b, E, 1L. Herte the subscript b refers to quantities at birth and

let us recall the relevant definitions: = = v2 /2, L = v-I2B, pc = R[vll - q/mAC],

RAC = fo RBodr. In our case the source function depends only on rb, is multiplied

by 6(6 - 9a) since all particles are born with fixed energy, and is isotropic with

respect to p and Ob. However if we restrict our analysis to trapped particles, and

we study the local distribution function at some radius, we see that this introduces

an anisotropy in velocity space, as well as a 0 dependence. We notice also that,

as the particles move along the orbits, the distribution function for the specific



position of the particle will be time dependent and finally giving more information

that we need: by time averaging along the orbits, in the way explained below, we

can substitute single particles with uniformly filled orbits.

The orbits of the particles are completely determined by three constants of the

motion, for example p, C, and pc, so of the four quantities that we have above, one

is redundant if we are only interested at the orbit and not at the specific position

of the particle. To eliminate this constant we rewrite rb, Ob, I, 6 in terms of pc, E,

t, Ob and we notice that the time average is equivalent to an average over Ob and

gets rid of the explicit dependence on this quantity (since three constats determine

the orbit and the position of the particle on the orbit at any given time depends

on the fourth constant). For sake of clarity, we will describe this procedure for a

simple example.

We work out the details for a simple example by choosing a case where you

can easily obtain the equation of motion of the single particle. We consider a

periodic motion. In our case the motion is the motion of the guiding centers, and

the periodic orbit is the bounce orbit (banana or better "potato" orbit).In this

example the motion is the motion of the actual particle and the periodic orbit is

the gyromotion, so that we study the distribution function of a particle created at

some point and time in a constant magnetic field. In this case a particle born at

t = to with x = xo, y = yo, v1 = vIO, Ip = 0po with vx = v 1 cos P, vy = v± sin p

follows the orbits defined by:

vX = v± cos(po - 27) (D - 1)

vy = v± sin(po - fTr) (D - 2)

X = zo - sin(ýo - ar) + sin o (D - 3)

Y = Yo + cos(Wo -•7r) - cos o (D - 4)
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It is also convenient to define the guiding centers, that are

constants of the motion, so that

S= x + 1 sin p = xgo

V11
yg = y - 6cos = Ygo

The source function is given by

S = S(t,)J(Xb - Xo)J(Yb - yo)(VUlb - VlO)J((Pb - PO)

(D -5)

(D -6)

(D - 7)

Where the subscript 0 indicates the position in real space, or the position at birth

from which the particle is moving away and is a constant of the motion. We thus

have:

S =s(ts)6(x - xo + sin(p0 - a7) - sin p0)

6(y - Yo - cos(p0 - o-) + cos W0)

6(vi - vo)6(cp + OT - Wo) (D - 8)

If we time average over one period r we obtain:

S (x - xo + sin() - sin O)

6(y - yo - cos( W) + cos W0)

6(v± - v±o)

where 0 < p < 27r. We finally obtain f as:

(D - 9)

f = dt, (t'8)]6(x - xo + - sin(W) - sin 0)

S(y - - -o - cos(w) + cos o O)
6(v± - vlo)
= [ a S(tdt S(xg -xgo)6(yg - ygo)((v_ - vo0) (D - 10)
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To find the equation for f we have considered particles all born with some

initial value of W = oo, but if we want to consider a realistic case where particles

are produced at random values of po, we can further average over Wo to obtain

what is finally the distribution of all the different possible guiding centers with a

given v±o

This gives

= I dt8 2 (v± - v±o)6((x - X0 ) 2 + (y - yo) 2 - (Vl/Q) 2 ) (D - 11)2 -7 j 27r

on

on %

after averaging over T
we obtain the guiding center
distribution

(xo, o)
(X.
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We see that the information about where the particle was at any given time is

now lost, and being substituted by the orbit: all the particles are on the circle

x = xg0 + v±/2 sin p, y = ygo + v±/l2cos p for all 0 < V < 27r. Notice that all the

points in the orbit are equivalent, i.e. we assume that the particles uniformle fill

the orbit.

Four constants specify the position
of the particle at every instant

A change of variable
makes the orbit average
more convinient

ng over 0 o
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Appendix E.

A Detailed Calculation of the Conductiv-

ity Tensor with O(A) Corrections

The perturbed a-particles distribution function 6F, has to satisfy the lin-

earized Vlasov equation, where we assume that the perturbed fields are the fields

of the Contained Modes, as found in Chapter 2, and we are interested in frequencies

above Q,,.

The linearized equation is:

q v -1 -
l + +- B1 V,6Fa (E - 1)

ma c

where we consider the case of E0 = 0, and we model the equilibrium magnetic field

as

1 + (r/Ro) cos + Roqe0
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We want to expand this equation for small values of the quantity A = pa/LB,

where LB - (dlnB)- 1 - R, so it is more comvenient to perform a change of

coordinates and consider to the guiding center phase space that is defined by:

"x ell

with li = v2/2B, £ = v2 /2, and cp is defined by vi = v±(,acos p + b sin p), we

have set m, = 1 and the subscript parallel is the projection along the direction of

the magnetic field.

We use the following local orthogonal system, 6ll , ea, eb, where ea x ell -eb
and eb X ^11 = •a, as defined in appendix D. We will consider a . e'e, eb "•er.

The quantity Fa is the equilibrium distribution function and in the guiding

center space we use the label g, Fg,. We follow the formalism of Ref. [15], [16]. We

keep corrections of order A, but we neglect corrections of order A/q, as explicitly

evaluated in Appendix F. We consider

-, 1 Fgo
F, = Fgo(, L, Xi.) + 8 = F-go + F,1 (E - 2)

We recall here that ell" VxFgo = 0 since the system is independent of Y1l, and

~vl -V -Vd where Vd = /•l/ x [v2/2 V In B + vll • VeIll]. Since we consider

a low 3 plasma, we can used a simplified form for the drift velocity and consider

Vd = 1/( af2aR) (2vl +v) [0e cos 0 + ̂r sin 9]. The quantity / should also be expressed

as a function of the guiding center variables, but we find it more convenient to leave

it as a function of real space variables. We note that by definition (LvF,)g = LgFg,
where L, is the Vlasov operator in real space as in the left hand side of Eq. (E-l)

while Lg is the corresponding operator in guiding center space. Thus we can write

L, 1(Fvo + Fv 1) = Lg1Fgo + Lv1Fv 1 =

=LF + 1 OFgo 1 9L + ( ()Lg1 aFgo
BlgO B y 1 v lB I
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The spatial structure of the mode and the polarization are determined by the

"background" ions so that the perturbed electric field is of the form

Elll 0

Ele = Eie(r, O)e- iwt - imO+ino (

Eif = Er (r, O)e- iwt - ime+inoc

and we have that Ele/Eir = -iA where A ,, w/Qi.

In the guiding center coordinates Eq. (1) is

t + v II -'x + - (AB1 + AB2) - PF F, =J

=LgFgo + 1 g [ij]9 + )L( ) 9 gl 1 Fgo' (E - 3)B10v go B O J
where AB1 = Ox × V(/ll 0) x, AB2 = P(a/lP) + xop(/Ocp) and Vz =

-(zVxB + VlliVxll 1 ±)/B, BVXp = (V b) a + (( 2Vx '± x II). The

perturbed fields will be evaluated in the guiding center coordinates system, and

labelled as Eig, Big.

We can now evaluate all the different terms in the right hand side of Eq. (3),

for the case Elll = 0. First we consider Lg1 ,

Lgl = E v91 +Eg± 1 +
m S0- B 81 c B 0By

+ 1g +- v X e V x• (E - 4)

where we have used the fact that in our calculation L 9 1 acts only on Fgo and

OF9o0/dp = 0. We can further simplify this expression by using V, x 1 =

(iw/c)B1, so that



Sx B 1

C
=-i 10 v) El-

We can thus write:

Lgl =- q  ± (-T-

+ ----
e.

X .VX

Let us now evaluate the term (Lvl#)g, to do so we can use

VV[- i7. d] = -(1VVVd - (#v7d) V -

so that, again for Elll = 0,

[Ljvl]g= - [•E1 Vd -

v- - Eli

v2I/2 + v2

(x w

.p

w
( x (1xx E•-L)) -

v2/2 + v
(E - 6)

011

It is convenient to define

Eg = Egl e - i f t (k -d) , le-kL± a

where k± • -e^e, so that Eg1 = El exp(-i(k v±/Qa) sin ýo) and

Eg l = E9 1(X,, , p)e - iwt - im( • - i k1 , sin l+inoCg (E - 7)

In the previous expression (g = = and we look for a solution for 6Fg, of the same

form of Eq. (E-7). We can cosider a Fourier expansion respect to the ýp variable,

and define
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+oo
BFg, = (6Fga)e, e-ite'p

fl=-oo

(SFg),, = L 2 de1, p, 1 )e - iwt - imOg +inoCg - i  sin W

To obtain an equation for (6Fga),, we multiply Eq. (E-3) by eiet and integrate

over p, using the notation

(6Fga)e = (6F9gc) e-iwt-imo, +inoCg

that is

(F), = 1 j dFp6F(X, PI, , )e ~i sin+ie,

and

00

_F(X, A7 46) = (3Fga)I e-i sin W--i

e=-oo

In terms of these quantities, we can rewrite Eq. (E-3) as:

[-i + (vlil ) + ((AB1 + AB2))o + ifeia] (Fgjz) I e-iwt-img+ino('

+ 1 Lge,ei (vFga,), -iwt-imog+ino(g

= (LgFgo) + B (OF [L,,i3]g + (Lg 1 9 F1 (E - 8)

Here (Vil ll VX = j11 I -Vx, (7(AB1 + AB2))eo = xY"V' + (v,/(2<2a)~,1

,x 1)6, V., - iuw, = 7d ' x + O((AQc)/q), and w, = .' x P
v1 [^a( 11 . Vx b) - l(Vx x -11)/2]. In appendix F we evaluate explicitly the terms

O((AXQ)/q) that we are neglecting in the perturbed operator acting on the umper-

turbed function. We perform the calculation using the following assumptions: we

keep the cp dependence only in the exponent, that is we consider the difference



between gyrocenter coordinates and regular coordinates only in the fast poloidal

variation and the double barred quantities are taken as independent of p and we

use the well known equality25

e-2i _ -ipwj
P

By using this equality we can easily evaluate the three integrals

2 j72 7Re7-i-L  sin P+i~edp = Je (k v fa)

1 2 i +e- sin +i sin +i in dp = i Je (k viQ)

2JLo
27e9( k n -)

j1 2 k_ v i sin W+icpVi od = a ks_ i lvl
27 re 0, cos pdW = -- J f

Using these formulas, recalling that k1 = - , vi~ = v (cos pe + sin 'p), and

defining k1l - n/(Rq(r))(q(r) - m/no), we obtain

(LgFgo) = - q e-iwt-imOg+inoCg

{ go Et(ý) + E91ir Jt)) Ul + F90- 56) + -Bg0

E910 Jt(ý) + E9riJt() 8Fgo

+ Je() [--EgOb + Eg1ra] V- XF

J [(() !I x X ig) x- xFgo

+ 0v " (D x Big) (JJe()e O+ iJ(E)er VxFgo] (E - 9)

where ( = (k±v±/Qa). To evaluate the next term, we use explicitly dV ' ik.

As it turns out for this term, we actually only need to consider Ik r k•eo since

the corrections related to k1l are of higher order in a term that is already O(A).

Consistently we can neglect corrections proportional to 6/(or). We find:
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1 F90g [L • =
B Op )t

q vU OFgo
mB O8

w B By

vI/2 + v VdO (J + lJ) + IE91VdrV + Er) +d

x (Je- J)J - Eg rVdrJ']} (E - 10)

The last term that has to be evaluated is

S VdO t
+Elgr [ i J) VdrJJx

X 1 _ 19F o }1
x +B B Foo (E - 11)

We can now go back to Eq. (E-8), and note that if we consider resonance,

that is w - £Ma, the terms Lge,e, can be neglected as higher order contributions.

To proceed with the calculation we make the further assumption that we can use

the "local" approximation, and thus we neglect gradients acting on (6Fg),. Given

this we obtain:

(6F90)£ = (R.H.S.}w - kllvll - k±vd - £Ma

where ikjll - 11 Vx, and ik1  a Vx. We can now calculate 6Ja =

q n0 f d3 v f 6F, and perform the p integration, in order to find an expression

for the conductivity 6Jo = Jal El±. It is convenient to define 6E such that

o-. = lviLdvdvd,2•26(w - khl - k.v• - )6
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The variuos components of the tensor JE are

5jeo = ao Ji

6Ere = ae(-iJt)

5Err = a,(-iJl)

where

[ (a
ae -•Jv

vi2
v,2/2 + v•

e
~Je

kllllvl k±vdI
w w

x- J - Vdr x

( v/2+v 2( -L 11U(

We notice that 6Ere = (JEer)* only to lowest order in A.
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(Je + J') + Vd_

e) 1 _] FgB OILaJS
JJx

1 0Fgo
B Op (E - 12)

a, =iJiv± [i
[Vd
-

S ( - kll"ll9E w
k VdO) 1 9>

B Byi

1 9Foo
B O9

(E - 13)

|

(• -
2 1 1_ 8)
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Appendix F.

Example of an Explicit Calculation for an

O(A/q) Term

As a result of the considered choice of variables and gyrokinetic average, we

have that the equilibrium distribution function includes corrections proportional

to the quantity

W dW 2

vll has to be replaced by

2

Vll -- Vll + `--ell1 VX x ell

and we have a new resonant frequency

wW = (i3±L - -W = Ville[a(^l. Vxb) - ^11V x i11)/2]

The correction to the parallel velocity, as well as the quantity w, come from per-

forming the average on the local gyrophase and the local parallel unit vector.
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We can estimate the •7 VI 6ll v_ term in the / correction, as well as the

terms related to the i11 and w, corrections. All these terms are of same order, so

we just perform the calculation for one as an example and we look at - V, x x l.

We will show that these terms are corrections of order A/q so that we can neglect

them. Consistently we can neglect terms like v'j -Vvil E19 that are of the same

order.

The leading order term in the curvature drift velocity is:

1 1
II • V ell _e a • Vxc = -- cosr + -sin98e

R R

Let us evaluate and compare with this term the quantity

ell.- V x 6l1 = 6ll.- Vx x e^( + 6ll

B0
Bo(Vx0+

Be cos 0 Be 1 (..
Bo R Bor ll" x

Bo (Vxl xVBo
BeoV -
Bo)

In this expression the highest order term is Be/(Bor) that is O(1/qR) respect to

the curvature drift velocity corrections. It is clear from this that we are consistently

neglecting the curvature of the poloidal field.
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Appendix G

The Omega Star Contribution to the Per-

turbed Vlasov Operator

In performing the growth rate calculation we have neglected the terms propor-

tional to the spatial gradient of the equilibrium a-particles distribution function,

since our instability is mainly a velocity space instability and we concentrated our

efforts into evaluating the velocity dependence of the equilibrium a-particle distri-

bution function, loosing specific infomations about the spatial gradients. However

for sake of completeness we can evaluate the gyroaverage of the terms proportional

to the spatial gradients of the alpha particles, for the mode that we are considering.

We recall that in our case Ell, - 0, 611 Vx = 0, and the electric fields are radially

confined modes , with high poloidal numbers, so that k± _ -m/r. We find:

(E1 + -v3 x B1) x • VxF-, = -- e- iwt- ime,+ino4 x
c -o m



[( xx 1.)- (&i l . (~X ( x x ))l] e VxF,g

(xzx Ei-) [Jteo + iJr VxFga

"6 1 --

(G - 1)

If we assume that the highest order contribution is from V.

ell(-im/rE4r) we have that

K A'+ Cf x B) x
c Jo /

{-[JeEgi=
+[it

- xFg, e- iw t-imOe+ino(mQa

Si-v J,= xF
"EgI er* Vx xFgoe

E91r I eXFgo }
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