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Abstract

Speech production has long been viewed as a linear filtering process, as described
by Fant in the late 1950's [10]. The vocal tract, which acts as the filter, is the
primary focus of most speech work. This thesis develops a method for estimating
the source of speech, the glottal flow derivative. Models are proposed for the coarse
and fine structure of the glottal flow derivative, accounting for nonlinear source-
filter interaction, and techniques are developed for estimating the parameters of these
models. The importance of the source is demonstrated through speaker identification
experiments.

The glottal flow derivative waveform is estimated from the speech signal by inverse
filtering the speech with a vocal tract estimate obtained during the glottal closed
phase. The closed phase is determined through a sliding covariance analysis with a
very short time window and a one sample shift. This allows calculation of formant
motion within each pitch period predicted by Ananthapadmanabha and Fant to be
a result of nonlinear source-filter interaction during the glottal open phase [1]. By
identifying the timing of formant modulation from the formant tracks, the timing of
the closed phase can be determined. The glottal flow derivative is modeled using an
LF model to capture the coarse structure, while the fine structure is modeled through
energy measures and a parabolic fit to the frequency modulation of the first formant.

The model parameters are used in the Reynolds Gaussian Mixture Model Speaker
Identification system with excellent results for non-degraded speech. Each category
of source features is shown to contain speaker dependent information, while the com-
bination of source and filter parameters increases the overall accuracy for the system.
For a large dataset, the coarse structure parameters achieve 60% accuracy, the fine
structure parameters give 40% accuracy, and their combination yields 70% correct
identification. When combined with vocal tract features, the accuracy increases to
93%, slightly above the accuracy achieved with just vocal tract information. On
smaller datasets of telephone-degraded speech, accuracy increases up to 20% when
source features are added to traditional mel-cepstral measures.

Thesis Supervisor: Thomas F. Quatieri Jr.
Title: Senior Staff, MIT Lincoln Lab
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Chapter 1

Introduction

As the source for voiced speech, the volume velocity airflow through the glottis, called

the glottal flow, has a major impact on the characteristics of speech. The goal of this

thesis is to estimate the glottal flow from speech waveforms, model the important

features of the glottal flow, and use the model parameters for speaker identification.

We start this chapter with a basic mathematical framework for the linear model

of speech production. We then provide motivation for the importance of glottal flow

characteristics and discuss, in general terms, the features of the source that we wish to

model. This is followed by a description of previous analysis techniques and previous

applications of source information to speaker identification. We then discuss the

contributions of this thesis. Finally, we provide an outline for the remainder of the

thesis.

1.1 Background

We begin with a mathematical framework for the classical linear speech production

model.



1.1.1 Linear Source/Filter Production Model

Speech production is typically viewed as a linear filtering process which can be con-

sidered time invariant over short time intervals, such as 20ms. The vocal tract, with

impulse response h[n] is excited by a signal e[n], and the speech signal si[n] is the

output of the vocal tract filter h[n] filtered by the lip radiation r[n]:

s[n] = e[n] •*h[n]a r[n] (1.1)

S(z) = E(z)H(z)R(z), (1.2)

where equation 1.1 is the discrete time representation of linear filtering, and equation

1.2 is its z-transform domain representation. Radiation can be approximated as a first

difference operation for the frequencies of interest in speech, i.e., r[n] = 6[n]- 6[n- 1],

and is typically included in the excitation function, as we shall do throughout this

thesis, giving

s[n] = (e[n] - e[n - 1]) * h[n]

= E[n] * h[n], (1.3)

where ý[n] = e[n] * r[n]. In the z-domain we have

S(z) = (1 - z-')E(z)H(z)

= E(z)H(z). (1.4)

For voiced speech, the excitation signal e[n] is the volume velocity airflow through the

vocal folds. By including radiation in the excitation function, the source becomes the

derivative of the volume velocity. Henceforth, we drop the tilde notation and assume

e[n] to contain radiation.

It can be shown from acoustics that the vocal tract filter H(z) is an all-pole filter



for vowels when the nasal passage is closed off from the vocal tract:

1
H(z) =

z =1(1 - ciz - 1)
1

1 - C=1 aiz- i '

where the vocal tract is represented as having p poles. In general, the poles will

come in complex conjugate pairs since this is a real system. For an all-pole system,

equation 1.3 becomes:

s[n] = e[n] + ais[n - i]. (1.5)
i=1

1.1.2 Linear Prediction

In order to estimate the filter h[n] from the speech signal s[n], we set up a least-squares

minimization problem where we wish to minimize the error

P

e[n] = s[n] - E ais[n - i], (1.6)
i=1

where ai are the calculated estimates of ai. The total error is given by

E = e2[n], (1.7)
R

where the error is to be minimized for the region R. Solutions of this minimization

problem are called linear prediction, since the error e[n] is the difference between the

speech sample s[n] and the value 8[n] predicted by a linear combination of previous

values of the signal s[n]. There are many different techniques of linear prediction,

based on how e[n] is calculated over the region R.

If we assume that the speech signal is zero outside of an interval 0 < n < N - 1,

then the signal e[n] will be non-zero only during the interval 0 < n < N+p-1, which

gives us the region R. This choice will give large errors at the start of the interval,

since we are trying to predict non-zero speech samples from zero, as well as at the end,

where we are trying to predict zero samples from non-zero data. These assumptions



result in the autocorrelation method of linear prediction, since the solution to this

problem involves an autocorrelation matrix.

S= F, (1.8)

where the (i, j)th term of R is given by rij, where

N-1-ji-jj

ri,j = E s[n]s[n + ji - jj], (1.9)
n=O

where 1 < i, ji p. The two vectors are given by

a = [a,, a2 ,...,7ap]T ,and

r= [ro,1,r 0,2 ,•.• .,ro,p]T

The primary benefit of the autocorrelation method is that it is guaranteed to

produce a stable filter. The autocorrelation technique will calculate the correct filter

only if the analysis window is of infinite length, due to the large errors at the beginning

and end of the window. To help reduce the effects of using a finite data window, the

data is typically windowed with a non-rectangular window.

If e[n] is calculated over a finite region, with the appropriate speech samples before

the window used in the calculation of e[n], the solution to the minimization problem

is called the covariance method of linear prediction:

D = a , (1.10)

where the (i, j)th term of 4 is given by ,4j, where

N-1

,ij = E s[n - i]s[n - j] : 1 < i,j 5 p (1.11)
n=O



and the two vectors are given by

-= [ai,Ca2,...-,ap]T
, and

= [0 ,1,0 ,2,... ,0,P] .

This matrix problem can be solved efficiently used Cholesky decomposition because

the matrix D has the properties of a covariance matrix.

The benefit of the covariance method is that with its finite error window, a correct

solution will be achieved for any window length greater than p if no noise is present.

Also, since the boundaries are handled correctly, a rectangular window can be used

with no ill-effects. For a more detailed discussion of linear prediction, including

derivations for the solutions given, see [45] or [37].

From a spectral standpoint, linear prediction attempts to match the power spec-

trum of the signal s[n] to the predicted filter given by the ai's. In particular, the

error function e[n] is given in the frequency domain by:

P(w)
E(w)-= P (1.12)

where P(w) is the power spectrum of the signal s[n], and P(w) is the power spectrum

of the estimated filter [37]. If the excitation function has a non-uniform spectrum, the

c~a's calculated will be influenced to result in a spectrum H(z) that matches H(z)E(z).

1.1.3 Inverse Filtering

Re-arranging equation 1.5, we can estimate the excitation signal e[n] from the speech

signal s[n] and the estimated vocal tract response given by the ai's:

P
6[n] = s[n] - ais[n - i], (1.13)

i=1



or in the frequency domain,

Hi(z)
= E(z)H(z) (1.14)

H(z)

These equations describe a process called inverse filtering, in which the estimated

vocal tract response is removed from the speech to yield an estimate e[n] of the

source function.

1.1.4 Pre-emphasis

Speech signals are commonly pre-emphasized before linear prediction analysis is per-

formed. Pre-emphasis is the process of filtering the speech signal with a single zero

high pass filter:

sp[n] = s[n] - /fs[n - 1], (1.15)

where /p is the pre-emphasis coefficient. The value used for /p is typically around 0.9

to 0.95.

While it is difficult to find reasoning for using pre-emphasis in the literature, we

give two reasons here. As discussed above, the filter estimated by linear prediction

will match the power spectrum of the combined excitation and vocal tract. The

excitation has a spectral shape which has more energy at low frequencies than high

frequencies, as will be seen below. In order to approximately remove the large-scale

spectral contribution of the source, the speech signal is pre-emphasized. The resulting

spectrum is a closer representation of the vocal tract response, and thus the filter

calculated through linear prediction is a better match for the vocal tract response.

The other reasoning for pre-emphasis is an argument based on the spectral prop-

erties of the error function minimized. As can be seen in equation 1.12, the error is

the ratio of the two power spectrum, which results in uniform spectral matching in

a squared sense regardless of the energy at any particular frequency. Speech spectra

are typically viewed on a log or dB plot, however, which will show better matching



for high energy regions of the spectrum than for low energy regions. Since speech

tends to have a decrease in energy at high frequencies, the high-pass filter effect of

pre-emphasis will help achieve more uniform spectral matching in a log sense across

the entire spectrum.

1.2 Motivation for the Use of the Glottal Flow in

Speaker Identification

We now give arguments for the importance of the glottal flow for speaker identifica-

tion. During voicing, we consider the excitation function e[n] to be the glottal flow

derivative. In recent years, the importance of the glottal flow has been recognized

and studied, especially for naturalness in speech synthesis systems [32], and for pro-

viding correlates to various vocal registers and speaking manners (loud, angry, etc.)

[4, 5, 8, 26, 42]. In addition to these areas, there are many reasons that the glottal

flow should be speaker dependent.

Figure 1-1 shows a diagram of the vocal folds and related structures as viewed

from above. Videos of vocal fold vibration, such as [34], show large variations in the

movement of the vocal folds from one individual to another. Perhaps the most basic

of these is how completely the vocal folds close. For some individuals the vocal folds

close completely, in what is referred to as modal phonation. In modal phonation,

there is a period of time during which the vocal tract is completely separate from the

lungs. For other individuals, there might be a small region at the arytenoid cartilages

at the posterior end of the vocal folds that never closes completely, this is referred to

as a glottal or posterior chink. Less common are openings at the anterior end of the

vocal folds, at the center of the folds, or along their entire length [23]. Fixed glottal

openings result in more aspiration noise, and tend to result in a higher amplitude of

the fundamental as compared to the first harmonic, due to a slower glottal closure

[32]. Incomplete glottal closure also results in other features which can be measured,

such as the amount of source-filter interaction, which will be discussed below.
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Figure 1-1: The Vocal Folds, as seen from above. (a): Configuration during quiet
breathing. (b): Configuration for Vocal Fold Vibration [49]



The second most noticeable feature of vocal fold vibration is the manner in which

they close. For some individuals, the cords close in a zipper-like fashion, while for

others they close along the length of the vocal folds at approximately the same time.

The speed of glottal closure determines the spectral content of the glottal source,

since a rapidly closing glottis acts like an impulse and creates a source with a wide

bandwidth. The more slowly the vocal folds close, the less energy is present at higher

harmonics as compared to the fundamental, this is referred to as the spectral tilt of

the source.

Another difference in the glottal opening is the configuration of the area of the

opening. For some speakers, it may be approximately equal in width along the length

of the glottis, such as in the case of laryngealized or pressed phonation, in which the

arytenoid cartilages are pressed together. This results in both ends of the vocal folds

being held close together, creating an opening shaped like a football. For speakers

whose arytenoid cartilages are spread apart, a more triangle shaped opening will

occur. Van den Berg has proposed an empirical formula for relating the steady-state

pressure drop across glottis to the glottal flow:

AP = (kpU2 )/(2A 2 ) + 121 DIU/A3 , (1.16)

where AP is the pressure drop across the glottis, called the trans-glottal pressure, k is

an experimentally determined constant, p is the density of air, U is the glottal flow,

A is the glottal area, p is the coefficient of viscosity, D is the glottal depth, and 1

is the length of the glottal opening. The first term, which dominates the equation,

calculates the kinetic resistance of the flow, while the second term accounts for the

viscous coupling. The kinetic resistance is the energy required to accelerate air from

the large lung cavity through the narrow glottal opening and into the vocal tract.

The viscous coupling term arises due to interaction of the flow with the walls of the

glottis, and is dependent on not only the area of the glottal opening but also on the

ratio 1/A. Intuitively, a configuration that has a longer circumference for a given area

will have a larger pressure drop due to viscous coupling with the walls of the glottis.



Thus the glottal flow will depend on the configuration of the glottal area.

While the influence of the viscous term is difficult to account for mathematically

in a time-varying, nonuniform vocal tract, it seems evident that the configuration

of the glottal opening influences the glottal flow. A narrow opening will have more

viscous resistance, resulting in less flow with a maximum that is reached more quickly

and maintained for a longer period of time. Source-filter interaction will be increased,

since the viscous term is proportional to the trans-glottal pressure, while the kinetic

term is proportional the the square root of the trans-glottal pressure. Any variation

in pressure above the glottis will thus have a larger impact on the glottal flow.

Previous studies and video of vocal fold vibratory patterns give strong reason to

believe that the motion of the vocal folds has speaker dependent characteristics. The

glottal flow, which is closely related to the glottal opening, is modified in a predictable

manner from these variations in vocal fold motion. As the source for voiced speech,

an analysis system can be devised in which the glottal flow is estimated, and features

identified which are useful for speaker identification, as well as other applications,

such as more natural speech synthesis.

1.3 Properties of the Glottal Flow Derivative

This section describes the features of the glottal flow derivative waveform in general

terms.

1.3.1 Coarse Structure

Vowel production can be viewed as a simple linear filtering problem, where the system

is time invariant over short time periods. Under these assumptions, the glottal flow,

acts as the source (figure 1-2), while the vocal tract acts as the filter. The glottis

opens and closes pseudo-periodically at a rate between approximately 50 and 300

times per second. The period of time during which the glottis is open is referred to

as the open phase, and the period of time in which it is closed is referred to as the

closed phase. The open quotient is the ratio of the duration of the open phase to the



pitch period, and is generally between 30 and 70 percent. The closing of the glottis

is particularly important, as this determines the amount of high frequency energy

present in both the source and the speech, this period of time is called the return

phase for reasons that will become evident later.

Under steady-state non-interactive conditions, the glottal flow would be propor-

tional to the glottal area. The time-varying area of the glottis, and source-filter

interaction modify the flow in several ways. The first change is the skewing of the

glottal flow to the right with respect to the glottal area function. The air flowing

through the glottis increases the pressure in the vocal tract, which causes loading of

the glottal flow. This loading results in pulse skew to the right, as the loading slows

down the acceleration of air through the glottis. Since closing the glottis eliminates

loading, the glottal flow tends to end suddenly, as shown in figures 1-2a and 1-2b.

If we apply the radiation effect to the source rather than the output speech, the

rapid closure caused by pulse skew results in a large negative impulse-like response

at glottal closure, called the glottal pulse, as shown in figure 1-2. The glottal pulse is

the primary excitation for speech, and has a wide bandwidth due to its impulse-like

nature [7, 13]. From the glottal flow derivative, we can see the reasoning for the term

return phase. After the peak of the glottal pulse, it takes some finite amount of time

for the waveform to return to zero. Fant has shown that for one model of the return

phase, the effect is to filter the source with a first order lowpass filter [15]. The more

rapidly the glottis closes, the shorter the return phase. If a glottal chink or other DC

glottal flow is present, the return phase will be lengthened.

We consider the glottal flow derivative as currently described to be the coarse

structure of the source. The features of this source tend to have a smooth spectral

content, and are of fixed positioning in relation to the glottal pulse. The extent of

the features determines their timing in relation to the glottal pulse. For example, a

glottis that closes slowly will result in a longer return phase, but it is not possible

for the return phase to occur before the pulse. The fine structure of the source is

now discussed. Elements of the source described as fine structure often have a more

narrow spectral content, and their timing is not as clearly determined by the opening
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Figure 1-3: Ripple will be seen on the glottal flow derivative waveform due to source-
filter interaction, as shown in this schematic representation.

of the glottis.

1.3.2 Fine Structure

Two primary sources of fine structure are considered in this thesis, ripple caused

by source-filter interaction and aspiration noise. The pressure above the glottis, the

supra-glottal pressure, is time varying, due to the formants of the vocal tract. The

vocal tract will contain the decay of the previous glottal pulse when the glottis opens.

This superposition of the decay of the vocal tract response from one pitch period into

the next pitch period is the primary source for the energy that causes ripple. Figure

1-3 illustrates ripple on a glottal flow derivative waveform.

Since the airflow through the glottis is approximately proportional to the square

root of the pressure drop across the glottis (ignoring the smaller viscous term in

equation 1.16), the modulating supra-glottal pressure will interact with the flow in

a nonlinear manner to create ripple in the glottal flow. The traditional assumption

of a linearly separable source and filter must be discarded due to this interaction.

The system will be linear only when the glottis is closed, eliminating source-filter

interaction.

One clearly visible effect of the interaction that causes ripple is truncation of the

response in the speech, as shown in figure 1-4. With the glottal closure as the primary
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Figure 1-4: Vowel /a/ showing truncation of the fourth cycle of the first formant

excitation, the vocal tract decays for a period of time while the glottis is relatively

closed, and any interaction is minimal. Once the glottis opens, the opening acts like

a resistor to ground in an electrical circuit, allowing formant energy in the vocal tract

to be absorbed by the lungs. This often causes a sudden drop in vocal tract energy,

and a corresponding drop in speech output. If the analysis window used in linear

prediction includes this truncated region, the vocal tract response estimated will be

influenced by this sudden loss in energy. In particular, at a minimum we can expect

the estimated formant bandwidths to be larger than they otherwise would be.

The timing and amount of ripple is dependent on the configuration of the glottal

opening during both the open and closed phases. A narrow glottal opening will

maximize ripple for a given area, since viscous coupling with the walls results in

glottal flow that is more dependent on the trans-glottal pressure. If the glottis closes

completely, there will be no ripple during the closed phase, otherwise ripple will

always be present, though in varying magnitude. The manner of opening of the vocal

folds will determine when ripple begins. If the folds open uniformly along their entire

length, the viscous pressure drop will cause ripple before there is significant flow.

Folds that open in a zipper-like fashion will start with a smaller amount of ripple,

and will have significant flow almost immediately after the glottis begins to open.

Aspiration is similarly dependent on the glottal opening for its timing and mag-

nitude. If the source of aspiration noise is airflow over the vocal folds, a long, narrow

opening would tend to produce more aspiration noise than a triangle shaped opening,

due to a larger surface area of the vocal folds. If the source of the aspiration noise is

airflow hitting the epiglottis, the configuration of the glottis will not be as important,



but the aspiration will be filtered by a different system, since it occurs at a different

point in the vocal tract.

1.4 Related Work

We will now discuss previous attempts at estimating the glottal flow from speech and

previous uses of source information for speaker identification.

1.4.1 Previous Attempts at Estimating the Glottal Flow

By far the most common approach and least invasive approach to estimating the

glottal flow is through inverse filtering. We would like to use linear prediction to

estimate the vocal tract response, but the source and filter are not generally linearly

separable, as we have seen. There can be no source-filter interaction when the glottis

is closed, so estimation of the vocal tract must occur during the portion of each

pitch period when the glottis is closed. Determining when the glottis is closed is the

primary challenge in estimating the glottal flow using inverse filtering.

There are several common techniques to estimating the vocal tract response which

will be discussed here. They include manually setting the vocal tract parameters

rather than identifying the closed phase, using an electro-glottogram (EGG) to deter-

mine when the glottis is closed, and using automatic weighting procedures to discount

or completely discard speech samples when some measure indicates the glottis might

be open.

The system used at the Department of Speech Communication and Music Acous-

tics at the Royal Institute of Technology in Sweden requires the operator to specify

the formant frequencies and bandwidths for each frame [22]. To do this, the oper-

ator looks at the resulting glottal flow waveform, adjusting the formants until the

waveform has desired properties, such as minimal formant energy during the closed

phase. In [22], Gobl indicates that an operator driven technique is required due to the

sensitivity of the glottal flow derivative waveform to vocal tract parameter change.

On the other hand, a system based on an operator choosing parameters to achieve



desired output characteristics will skew the output towards the operator's precon-

ceived notions for the glottal flow. Also, techniques that require an operator are only

practical in research settings.

Strik and Boves [50] use an automatic system that uses EGG data to determine

the approximate timing of glottal closure. The do not attempt to find the glottal

opening, and do not seem to consider their glottal closure estimate reliable. Rather

than attempting to estimate the timing of these events, they take five fixed length

windows (33, 34, 35, 36, and 37 samples) and five offsets relative to glottal closure

(-2, -1, 0, 1, and 2), and perform linear prediction for each of the 25 combinations of

window length and window offset. They average their results from each of these 25

analyses to achieve a final result. This routine is limited in that the analysis length

is not adaptive, so it won't work well for high pitch speakers; and it is not rigorous,

since it uses averaging to get decent results instead of accurately determining when

the analysis should be performed.

Childers et al. have discussed two systems for estimating glottal flow [4, 6, 33].

One system uses EGG data to identify the glottal closed phase. Within this period,

all possible analysis windows are used to estimate potential vocal tract filters, the

vocal tract estimate with the minimum residue is considered the proper estimate.

The other system weights previous speech samples based on the error in previous

analysis windows. Regions with large error, such as the open phase, will be quickly

de-weighted, while regions with small error, such as the open phase, will be used for a

longer period of time. They indicate this works nearly as well as their EGG system.

Wong et al. developed a system that is similar to the one described in this thesis,

but with a less rigorous theoretical background [54]. They argue that since the source

is nonzero during the open phase, accurate vocal tract estimates can only be calculated

during the closed phase. They do not appear to recognize the importance of source-

filter interaction influencing the calculated vocal tract response during the open phase.

To determine when the glottis opens and closes, they perform a sliding covariance

analysis with a one sample shift. They use a function of the linear prediction error to

identify the opening and closing of the glottis. Since the primary excitation occurs



at glottal closure, glottal closure is relatively easy to find. They mention that their

technique has a much more difficult time identifying the glottal opening, likely due

to the slowly increasing glottal flow. Cummings and Clements use a similar system

in [8], but with the addition of some operator control over the particular analysis

window chosen.

One of the more interesting approaches is that taken by Fujisaki and Ljungqvist

in [19, 20]. Rather than estimating the vocal tract during the closed phase, they

estimate the source and filter simultaneously. The glottal flow model they used did

not take ripple into account, which will cause errors in estimation of the vocal tract.

Also, since glottal flow models are not truly accurate representations of the flow, the

vocal tract estimates will be further biased as the estimation routine attempts to

make the glottal flow estimate match the model used.

1.4.2 Previous Uses of Source Information for SID

Source information has previously been used in only a few speaker identification

systems [24, 41, 51]. One method is the use of the linear prediction residue. Any

errors in modeling the vocal tract will show up in the residue, such as the error from

attempting to model zeros in nasal sounds with an all-pole filter. The residue will

also have some representation of the source, including phase and pitch information.

The residue is thus useful for two primary reasons: errors in the linear prediction

analysis and information inherently separate from the vocal tract.

Thevenaz and Hugli [51], on the other hand, argue for the use of the linear predic-

tion residue for the simple reason that it is orthogonal to the predictor coefficients,

and thus all the information contained in the residue is not contained in the coef-

ficients. This mathematical argument has some non-intuitive results, such as that

modeling the residue will decrease its usefulness, since the model parameters are not

orthogonal to the predictor coefficients.

In a study designed to determine the importance of various features for speaker

identification, Necioglu, Clements, and Barnwell [41] use two source features, the

spectral tilt and a "glottal pulse prototype approximation." The spectral tilt they



calculate is simply the tilt of a time-averaged normalized power spectrum for voiced

frames. While this will contain the spectral tilt due to the source, it will also contain

the spectral tilt due to the vocal tract, as the all-pole configuration of the vocal tract

tends to have a spectral tilt regardless of the particular sound being spoken. The

glottal pulse prototype approximation (GPP) is calculated by inverse filtering speech

after the real poles and lowest frequency complex pole-pair are removed from a vocal

tract estimate calculated without pre-emphasis. By performing linear prediction on

non-pre-emphasized speech, they argue that the first complex pole-pair and any real

poles model the spectral shape of the source, while the remaining pole-pairs model

the vocal tract.

1.5 Thesis Contribution

This thesis contributes to speech science in three primary areas. First, it provides

a reliable method for automatically estimating the glottal flow derivative waveform

and estimating parameters for a model of the glottal flow derivative from a speech

signal alone. Secondly, it illustrates the importance of the glottal flow for speaker

identification. Finally, it helps to increase general understanding of the glottal flow,

both through the particular variations observed in this study as well as easing future

glottal flow studies through the techniques developed.

The techniques described in section 1.4.1 to estimate the glottal flow waveform

from speech generally have a limitation that makes them unsuitable for practical

applications. Some require an operator to set parameters on a frame by frame basis,

others require the use of an electro-glottogram (a device that is attached to the side of

the throat), while others don't work well enough or consistently enough for practical

use. We use formant motion as predicted by theory [1] to accurately determine the

glottal opening and the end of the return phase. This results in an automatically

determined analysis window during which the speech signal is minimally influenced

by the source and source-filter interaction. By estimating the vocal tract during this

window and inverse filtering, we calculate an accurate estimate of the glottal flow



derivative.

Vocal tract information is further removed from the glottal flow through separating

the fine and coarse structure of the source. Since ripple is due to interaction with

formant energy, it will contain vocal tract information. By separating out the ripple,

the coarse structure contains little vocal tract information, and the fine structure can

be modeled in such a way that only glottal information is kept (by measuring the

timing and magnitude of the fine structure, rather than its specific content). The

speaker ID results which are presented show that the parameters calculated from the

glottal flow derivative waveform are strongly speaker dependent.

A reliable, automatic approach to estimating and modeling the glottal flow deriva-

tive will help advance speech science by enabling the creation of large databases of

glottal flow derivative data to be analyzed by both automatic and manual means.

Simply observing some of the examples used in this thesis shows the wide variety of

source waveforms that occur in practice.

1.6 Thesis Organization

In this chapter, we have provided a background for the discussion of speech produc-

tion and analysis, a brief motivation for the study of this problem, a discussion of

related works, and mentioned some of the more important contributions made by this

thesis. In Chapter 2 we will discuss speech production in more detail, and develop

a model to capture the important features of the glottal flow derivative. Chapter 3

discusses the techniques used to calculate an estimate of the glottal flow derivative

waveform. Chapter 4 covers estimating the features of a model to capture the coarse

structure of the glottal flow, while chapter 5 develops estimation of the fine structure

of the glottal flow. Chapter 6 discusses the use of the model parameters for speaker

identification. Finally, chapter 7 gives our conclusions and ideas for future direction

in related research.



Chapter 2

The Glottal Flow Model

In section 1.3 we described the basic operation of the source for voiced speech. We

now study the source in a more detailed, theoretical framework. A model is proposed

for the purpose of extracting information from the glottal flow derivative waveform

to use in speaker ID.

2.1 Physical Model

2.1.1 Detailed Physiological Simulation

The framework for this thesis comes primarily from the work by Ananthapadmanabha

and Fant [1]. In order to better understand the glottal flow, a physiological model

of speech production was developed, assuming a given glottal area function. The

key feature of the physiological model is a nonlinear, time varying glottal impedance.

Arguments are given for discarding the viscosity term from the glottal impedance

equation 1.16, giving the steady-state equation

AP = (1.1p/2A2 )U2 , (2.1)

where AP is the pressure drop across the glottis, p is the density of air, A is the

glottal area, U is the volume velocity, and 1.1 is an empirical constant combining the

so-called entry drop and exit recovery coefficients, which are related to how much

I__~



energy is required to force the air into and out of the glottal opening.

An equivalent circuit with distributed parameters to simulate both the resonances

of the lungs and vocal tract formants is developed for use in conjunction with the

glottal impedance equation 2.1. The only time varying parameter in this system

is the glottal area. This system yields a set of equations which must be solved

simultaneously with a numerical iterative algorithm, yielding the true glottal flow,

assuming a constant vocal tract.

Calculating the flow using these equations yields several interesting results. First,

the glottal flow is primarily influenced by the first sub- and supra-glottal formants,

and the higher supra-glottal formants to a lesser extent. The influence of higher

sub-glottal formants is negligible. Secondly, pulse skew is seen as expected, with the

addition that lower first formant frequencies cause more pulse skew. Finally, ripple

is seen as a result of interaction with the varying supra-glottal pressure. This ripple

tends to build up over multiple pitch periods, due to superposition. The exact nature

of the ripple is dependent on the ratio of the pitch period to the period of the first

formant, as this ratio will determine the phase of the first formant during the next

glottal open phase.

2.1.2 Simplified Production Model

In light of the finding that only the first sub- and supra-glottal formants significantly

influenced the glottal flow, a pseudo-equivalent circuit was developed with a single

supra-glottal formant (figure 2-1). We will now analyze this circuit to develop a

relation between the parameters and the glottal flow. The pressure drop across the

glottis, described by equation 2.1, is rewritten here with more explicit labeling of

terms.

PtW =)(W

where Ptg(t) is the trans-glottal pressure, k is 1.1, Ag(t) is the glottal area, and Ug(t)

is the glottal flow. Using this equation with figure 2-1, the following expression is
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Figure 2-1: Equivalent circuit for a single formant load, from [29]

obtained:
dV V
dt R

1 JVdt = U(t) = Ag(t) P .
Vkp

Note that Ptg = Psg - V, so that

Us (t) = A,(t) k

2(t) (P - V)
= A,(t) kp

=2(t)Pg Agt) kp 1.(4.P89

Assuming the pressure drop across the glottis is nearly as large as the sub-glottal

pressure, i.e. V <K Ps,, we can use the Taylor series approximation

(1 v)

and equation 2.3 in equation 2.2, we obtain the following

Vdt = U,(t) = A,(t) pkp

Vdt + V A(t)12 ~
-2P8 ]
Vkp j =A(t) ,2P

kp'

(2.2)

(2.3)

dV
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V
+
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Figure 2-2: Norton equivalent circuit for single formant load showing time-varying
elements, from [29]

and by substituting

UsC(t) = A(t) 2PPt), a n d

kpa

go(t)t = A(t) -2
g0(t) = P) A kpPsg'

we obtain
dV V 1 1

C + - + - Vdt + -Vgo(t) = Us(t). (2.6)dt R L 2
Differentiating equation 2.6 yields

d2V 1 dV V 1
C 2 + -d+- - + -(Vgo + Vgo) = U,dt2 R dt L 2

simplifying, we obtain

c 1 d2  dV 1 1.
C+d+2V1 d 2+0(t) V = U8c(t). (2.7)

Equation 2.7 shows a correspondence between R and R,(t) = 2/go(t) as resistances

and L and Lg(t) = 2/go(t) as inductances. This leads to the Norton equivalent circuit

in figure 2-2. We can therefore see that the effect of glottal interaction is to modulate

the formant. To gain a better understanding of this formant modulation, Anantha-

padmanabha and Fant suggest making the assumption that the glottal impedance

is stationary so that a "pseudo-Laplace transform" of the transfer function from the

volume-velocity to the output speech pressure can be calculated,

A,(



V(s, t) s/CH(s,t) Use,,(s) - s2 + Bl(t)s + 12(t)'

where the time-varying formant frequency and bandwidth

Q,(t) = o 1 + Lo40 (t) and (2.9)

Bi(t) = Bo[1 + -Rgo(t)] (2.10)
2

are given in terms of the non-interactive frequency and bandwidth,

o = I- and
FTLC

1
Bo = R-C

RC

Figure 2-3 shows the effects of this formant modulation. The following assump-

tions were made: p = 1.275 * 10-g/cm2 , P,, = 8cm H20, no = 524 Hz, and

Bo = 35 Hz. The glottal area is given by a two part function,

() = Am[0.5 - 0.5 cos( )] 0 <t <To
Amax cos[l,•tTO To < t < To + Tc

where Amax is the maximum glottal opening, 20mm2 , To is the time from glottal

opening to maximum glottal area, 3ms, and Tc is the time from To to glottal closure,

also 3ms. This formant modulation occurs during the open phase, which is late in

the decay of the previous glottal pulse. As the bandwidth increases, the response will

decay much more rapidly, causing a truncation effect about halfway through each

pitch period. Along with this decay comes an increase in formant frequency. While

the formant frequency is shown mathematically to drop towards the very end of the

open phase, the increase in bandwidth has normally almost completely damped out

the signal by this point.

If we wish to use a linear time-invariant system to model the approximation to

the time varying glottal impedance given in equation 2.8, we must adjust either the



U.1

a 0.05

A

600

550
b

500

A4n

150

100
C

50

n

d o

-5:

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0o 4 6 8 10 12

0 2 4 6 8 10 12
msec from previous glottal closure

Figure 2-3: Source-filter interaction causes modulation of formant frequencies and
bandwidths when the glottis is open. Although these effects are nonlinear, they can
be approximated in a linear framework. This figure shows the function go(t), which is
proportional to the glottal area in (a), the formant frequency in Hz (b), the formant
bandwidth in Hz (c), and speech waveforms generated with a time-invariant formant
and with these formant modulations (d). Dashed : no formant modulation. Solid :
formant modulation as shown in panels (b) and (c).

^1



source or the filter to reintroduce this source-filter interaction. By holding the vocal

tract filter fixed and mapping all source-filter interaction to the source, the system

again becomes linear and time-invariant. Rewriting equation 2.8 in terms of a fixed

vocal tract H(s) and a time varying source, Ug(s, t), the output becomes

V(s, t) = H(s)Ug(s, t), (2.11)

where the time varying source Ug(s, t) includes the non-interactive flow Use(s) and

the modulation in equation 2.8:

s2 + Bos + 2

U,(s, t) = UV,(s) + B(t)s (2.12)S2 + Bi(t)s 1
while the vocal tract filter H(s) is just

1
H(s) = +Bos 2(2.13)

S2 + Bos + 0

Taking the inverse "pseudo-Laplace transform" of equation 2.12, we have

ug(t) = u8C(t) + f (t)e- 0.5tBl(t) cos(O2(t)t), (2.14)

where u,,(t) contains the coarse structure of the flow, and the scale factor f(t) is

determined by the partial fraction expansion of equation 2.12. Equations 2.8 and

2.14 show the duality of the time domain ripple and the formant modulation in the

frequency domain. It should be noted that while the glottal flow waveform is primarily

effected by the first formant, all of the formants are approximately equally effected

by this formant modulation [17]. The influence on the glottal flow due to higher

formants is less because they tend to be of lower amplitude, and with their higher

bandwidths, they have decayed even more by the time the glottis opens.



2.2 Feature Model

The feature model provides a parameterized version of the source, with parameters

designed for their significance for speaker ID. In order to simplify the problem of

representing the glottal flow derivative, we will break it up into two main parts, the

coarse and fine structure of the flow. The coarse structure includes the large-scale

portions of the flow, primarily the general shape. The fine structure includes the

ripple and aspiration.

2.2.1 Coarse Structure

The coarse structure is dominated by the motion and size of the glottis and pulse

skew due to loading of the source by the vocal tract. The features we want to capture

through the coarse structure include the open quotient, the speed of opening and

closing, and the relationship between the glottal pulse and the peak glottal flow.

The open quotient is known to vary from speaker to speaker, and has been shown

empirically to adjust the relative amplitudes of the first few harmonics [32]. Breathy

voices tend to have larger open quotients, while pressed voices have smaller open

quotients.

The relationship between the peak glottal flow and the amplitude of the glottal

pulse indicate the efficiency of a speaker. As mentioned previously, the glottal pulse

is the primary excitation for voiced speech. Thus it is the slope of the glottal flow at

closure, rather than the peak glottal flow, that primarily determines the loudness of

a speaker. Ripple can also play a role in efficiency, if the ripple is timed such that the

supra-glottal pressure is at a maximum at the same time as the glottal flow. In this

case, the ripple will tend to lessen the glottal flow, but not impact the rate of closure

[14].
To model the coarse structure, we will use the Liljencrants-Fant (LF) model for

the glottal flow derivative [14]. The LF model is described by the following equations:

E(t) = dU = Eoeat sin w9 t (2.15)dt



msec

Figure 2-4: LF Model for the glottal flow derivative waveform

for the period from glottal opening (To) to the pitch pulse (Te, time of excitation), at

which time the return phase starts:

E(t) -E
E(t) = -Eo[e-t-T) e-(Tc-T)] , (2.16)

which continues until time T,. See figure 2-4.

The model is considered a four parameter model. Three of the parameters describe

the open phase; they are E0, w9, and a, with one parameter describing the return

phase, Ta. In order to ensure continuity between the open and return phases at the

point Te, c is dependent on Ta. While the relationship between e and T. cannot be

expressed in closed form, E - 1/T, for small values of Te. Since these four waveshape

parameters do not include the time of glottal opening, excitation, nor closure, the

values of To, Te, and T, must be given. Generally, it is assumed that To coincides with

Tc from the previous pitch period, requiring only that the timing of Te in relation to

To be known. This assumption results in no period for which the glottis is completely

closed; however, a small Ta will result in flow derivative values essentially equal to

zero, due to the exponential decay during the return phase.

The parameter Ta is probably the most important parameter in terms of human

perception, as it controls the amount of spectral tilt present in the source. The return

phase of the LF model is equivalent to a first order low-pass filter [15] with a corner



frequency of

Fa = 1/(27rT,). (2.17)

This equation illustrates the manner in which the parameter Ta controls the spectral

tilt of the source, and thus the speech output. The parameter a determines how

rounded the open phase is, while the parameter w, determines how rounded the left

side of the pulse is. These parameters primarily influence the relationships between

the first few harmonics of the source spectrum.

Ease of use dictated several changes to the above described LF model. First,

the times To, Te, and T, are not given, and To does not have to occur at the same

time as the previous period's T,. In order to express the model in a closed form, the

assumption was made that E = 1/Ta. This requires that the value Eo be different for

the open and return phases, a simple closed form expression exists for this calculation.

Also, the time variable is normalized during the open phase by the time difference

between To and Te, which at time Te gives the equation

E(t) = Eoe" sin w ,

We thus have a seven parameter model to describe the glottal flow, with the four

standard LF model parameters, and three indicating the timing of the pulse.

2.2.2 Fine Structure

In terms of the fine structure, we are interested in the timing of fine structure and how

much is present. The two sources of fine structure used in this study are aspiration

and ripple.

Aspiration and ripple due to source-filter interaction are departures from the ideal

linear-system view of speech production, and can be roughly measured accordingly.

If ripple and aspiration noise occur during the closed phase due to a constant glottal

opening, the source will be nonzero during this region. Two ways in which aspiration

noise can be modeled are through its spectral content and the energy of the noise as a



function of time. Since the source estimate was derived through inverse filtering, using

a filter generated by linear prediction during the closed phase, any energy during the

closed phase should be approximately white, which precludes attempting to model

the spectral content of the noise. Due to the very short time period, typically on the

order of three to five milliseconds, measuring the evolution of the energy of aspiration

noise would be difficult, so we choose to simply calculate the energy during the closed

phase.

There may be ripple present during the closed phase as well. Since ripple during

the closed phase will result in small variations of the formant frequencies and band-

widths, we expect energy due to ripple to be in frequency bands around the formants.

Ripple can thus be modeled similarly to aspiration noise, by its spectral content and

the evolution of its energy. We want to estimate the ripple independent from the

formants of the vocal tract, so we do not want to model the spectral content of the

ripple. As for aspiration, estimating the time evolution of ripple would be difficult.

We thus model the aspiration and ripple during the closed phase together by the

amount of energy in the glottal flow derivative estimate during the closed phase.

The energy during the open phase that is not captured by the coarse model can be

assumed to be due to ripple or aspiration. These two energy measures are particularly

useful when compared. Complete glottal closure during the closed phase will result in

significantly less energy present in the source during the closed phase than the ripple

and aspiration energy present during the open phase. If the energy of the source

during the closed phase is more comparable to the energy during the open phase,

there is most likely a significant constant glottal opening.

Many speakers show no evidence of ripple during the closed phase, but the glottal

flow derivative waveforms for these speakers do have noise during the closed phase,

which we attribute to aspiration noise, possibly due to a very small opening which

results in aspiration noise without significant ripple. For speakers with such a constant

glottal opening, it is possible to estimate the aspiration noise separately from the

ripple. Figure 2-5 shows an example of a source with these characteristics. The

analysis window is chosen during the period when ripple is not present, as will be
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Figure 2-5: Often the glottal flow derivative exhibits a period containing a small
amount of noise immediately after the return phase, followed by a period that shows
ripple but no significant flow, followed by the standard glottal pulse and return phase.
(a): Estimated Glottal Flow Derivative (solid) and overlaid LF model (dashed). (b):
The error for the fitted LF model (see chapter 4), containing aspiration noise and
ripple due to source-filter interaction

discussed further in section 3.1. After the analysis window, there is a period which

seems to exhibit ripple, but as yet no significant glottal flow. After this period, we

see the onset of glottal flow, with a sharp glottal pulse and a gradual return phase.

In particular, the normalized energy is calculated during the following periods:

1. The closed period bounded by the times Tc from the previous pitch period and
To from this pitch period,

2. The open period bounded by the times To and Te,

3. The closed phase as defined by the identified analysis window,

4. The open phase bounded by the end of the analysis window and Te, and



5. The return phase starting at time Te and ending at time Te.

In addition to these energy measures, a direct measure of ripple is used. As

discussed at the end of section 2.1.2, ripple can be equivalently represented in the

time domain or as formant modulation in the frequency domain. The theory described

above predicts that bandwidth modulation will be proportional to the glottal area,

while frequency modulation will be proportional to the derivative of the glottal area.

While not agreeing with theory, observation of calculated formant motion led us to

model the modulation of the first formant frequency through the use of a parabola,

F(t) = (F1 + AF) + Bt + Ct2 . (2.18)

The average formant value, F1, represents vocal tract information, while the change

in the formant value is due to source characteristics. In order to model the source

separately from the vocal tract, we separate the average formant value (F1) from

constant term. The three remaining parameters, AF, B, and C, model source-filter

interaction and not filter characteristics.

2.3 Summary

This chapter laid out the theory describing the expected features of the glottal flow,

as well as formant modulation, which will be used to determine the timing of glottal

opening. The glottal flow will be skewed to the right due to loading of the source

by the vocal tract, and will exhibit ripple due to nonlinear source-filter interaction.

Aspiration noise is expected to be present during all times that the glottis is not

completely closed.

Section 2.2 described the model features of the source over a pitch period. The

general pulse shape is captured through a modified LF model, while aspiration noise

and ripple will be measured through several energy measures as well as a parabola fit

to the modulation of the first formant frequency.

In the next chapter we develop the procedures used to calculate the glottal flow



derivative waveform from speech.



Chapter 3

Calculation of the Glottal Flow

Derivative Waveform Estimate

The theory for the production of voiced speech suggests that an accurate vocal

tract estimate can be calculated during the glottal closed phase, when there is no

source/vocal tract interaction. This estimate can then be used to inverse filter the

speech signal during both the closed and open phases. Any source/vocal tract inter-

action is thus lumped into the glottal flow (or its derivative), the source for voiced

speech, since the vocal tract is considered fixed.

3.1 Determination of the Closed Phase

The first and most difficult task in an analysis based on inverse filtering from a

vocal tract estimate calculated during the closed phase is identification of the closed

phase. A rough approximation of the beginning of the closed phase can be determined

through inverse filtering the speech waveform. Since linear prediction matches the

spectrum of the signal analyzed, inverse filtering a signal S(z) with a filter S(z)

determined by linear prediction will result in an approximately white signal:

Is 1
-S(z) 1.



For periodic speech signals, inverse filtering will result in impulses that occur at

the point of primary excitation, the glottal pulse. The exact timing of these pitch

pulses can be identified by finding the largest sample approximately every To samples,

where To is the pitch period. This procedure is known as peak picking. The return

phase shows that complete glottal closure does not occur until a short time after the

glottal pulse, so additional processing is needed to find the onset of the closed phase.

Determination of glottal opening is much more difficult, since the glottal flow

develops slowly, and glottal opening does not cause a significant excitation of the

vocal tract. As discussed in section 2.1.2, formant modulation will occur when the

glottis is open. By tracking the formants during a pitch period, the time at which

the formants begin to move can be identified. This will be when the glottis begins to

open.

To identify the closed phase, a two step procedure is therefore used:

1. Identify glottal pulses through peak picking of an initial whitening of the speech.
This provides a frame for each pitch period in which to identify the closed phase.

2. Determine the closed phase as the period during which formant modulation
does not occur. This formant modulation occurs due to source-filter interaction
whenever the glottal opening is changing.

3.1.1 Initial Glottal Closure Estimate

In order to ease the analysis, pitch estimates and voicing probabilities are required

as input to the system, along with the speech. The pitch estimates and voicing

probabilities are generated with a sinusoidal-based pitch estimator [38], with one

estimate every 10ms and an analysis window of length 30ms. Most any pitch estimator

could be used in place of the sinusoidal pitch estimator. This pitch information is used

to perform a pitch synchronous linear prediction. The covariance method of linear

prediction is used, because it will generate a more accurate spectral match. No pre-

emphasis is used, as pre-emphasis would result in a less perfect spectral match. The

goal of this initial linear prediction is not an accurate model of the vocal tract, rather,

the goal is an inverse filtered waveform amenable to peak picking. One measure of
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Figure 3-1: Inverse filtering speech using a pitch synchronous window and no pre-
emphasis results in a waveform with sharp pulses occurring at the time of glottal
closure. These pulses can be easily identified using a peak picking algorithm. (a):
Speech waveform with a sequence of possible analysis windows. (b): Resulting inverse
filtered waveform.

the ease of identifying peaks is the peak-to-RMS energy ratio, an indication of the

height of the peak compared to the rest of the signal.

The size of the rectangular analysis window is two pitch periods, and the window

shift is one pitch period. The location of the glottal pulse within this window is not

controlled. Figure 3-1 shows two sequential analysis windows. This initial analysis is

used to inverse filter the waveform. The resulting source estimate tends to be very

impulse-like, easing identification of the glottal pulse.

The peaks of the inverse filtered waveform are identified as follows: The voicing

probabilities taken as input to the system are used to identify voiced regions in the

speech. Each voiced region will consist of one or more voiced phonemes, such as the

entire word "man." In order to identify all the glottal pulses, we will first identify

one pulse which we expect to identify with a good deal of accuracy. The remaining

glottal pulses will be identified in small regions around where the pitch estimates

predict they should occur.

For each voiced region, the largest peak is found; this is considered to be a glot-
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tal pulse. The pitch information provided as input to the system is used to give an

estimate of the location of the following glottal pulse. A small window around this

estimated location is searched for the largest peak, whose location is considered to

be the timing of the next glottal pulse. This is continued until the end of the voiced

region, and then repeated for the voiced region before the initially identified glot-

tal pulse location. The procedure is repeated for all remaining voiced region. The

procedure is illustrated in figure 3-2.

Overshoots and ringing after the impulse are sometimes a problem in the inverse

filtered waveform, which can cause incorrect identification of glottal closure. To help

correct errors caused by overshoots and ringing, other peaks of similar amplitude are

looked for before each identified glottal closure. The region searched is less than half

the pitch period and less than half the period of the estimated first formant. This

small search region ensures that the previous glottal pulse will not be accidentally

found, and eliminates problems that could occur if the first formant were inaccurately

estimated. These glottal closure estimates are only used to identify a beginning and

end for each pitch period, so no further refining is performed.

3.1.2 Sliding Covariance Analysis

The glottal closure estimates provide a frame for each pitch period, since each closed

phase must be entirely contained between two consecutive glottal closures. This frame

enables identification of the closed phase based on changes which happen each period.

The formant frequencies and bandwidths are expected to remain constant during the

closed phase but will shift during the open phase. For voices in which the glottis never

completely closes, such as breathy voices, a similar formant modulation will occur.

During the nominally closed phase, the glottal opening should remain approximately

constant, resulting in an effect on the formants of stable magnitude. Due to the

nonlinear nature of the source-filter interaction, the formants will vary even with a

constant glottal area as present during the closed phase of a breathy speaker. When

the glottis begins to open, the formants will move from the relatively stable values

they had during closed phase.
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To measure the formant frequencies and bandwidths during each pitch period, a

sliding covariance based linear prediction analysis with a one sample shift is used.

The size of the rectangular analysis window is constrained to be slightly larger than

the prediction order, while still being several times smaller than the pitch period. In

particular, the length of the analysis window is chosen for each frame to be

N, = N /4,

with upper and lower bounds of

p+ 3 < Nw < 2p,

where Nw is the size of the sliding covariance analysis window, Np is the length of the

pitch period as calculated by the time between the glottal pulses identified above, and

p is the order of the linear prediction analysis, 14 for this study. Window lengths less

than p + 3 cause occasional failure of the Cholesky decomposition, while using more

than 2p points will not make the estimate significantly more accurate but will decrease

the time resolution. The first analysis window begins immediately after the previous

glottal pulse, while the last analysis window ends the sample before the next glottal

pulse. There are thus a total of N - N, windows for each pitch period. This sliding

covariance analysis gives one vocal tract estimate per sample in the pitch period.

Formant tracking is performed in each pitch period on the formants calculated from

the vocal tract estimates'. This provides estimates of each formant during both the

'The first four formants are tracked by their frequency using a viterbi search. The search space is
the four lowest poles with bandwidth less than 500 Hz calculated by the sliding covariance analysis.
The cost function is the variance of the formant track including the proposed pole to be added to the
end of the track. Since a viterbi search can result in a single pole being assigned to multiple formant
tracks, after the viterbi search is completed the path with the minimum variance is considered to
be an actual formant track, and the poles used in that track are removed from the search space.
Three new formants are found from the reduced search space, and again the formant track with the
lowest variance is considered an actual formant track. This is repeated one more time to give a third
formant track, with the remaining poles assigned to the last formant track. While the track of the
first formant will generally have the least variance, this need not be the case, and the formant track
identified in the first pass will not necessarily be the formant track with the lowest frequency. Due
to this manner of searching, often the higher formant tracks will include poles that clearly do not
belong, but are included in the track because a pole must be included for each sample and no better
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Figure 3-3: The closed phase is identified by the region in which the first formant
frequency is stable. Panel (a) shows the formant frequency tracks over several pitch
periods of the speech in (b). Panel (b) also shows the first and last two analysis
windows for one frame. Each formant value is calculated from a small window of
speech samples. The closed phase is defined as every speech sample in the windows
used to calculate the formant values in the stable region. x : F1, o : F2, + : F3.
Formant values are shown at the end of the corresponding analysis window. Formant
values of 0 are displayed for regions in which no value was calculated.

closed and open phases, enabling identification of the time of glottal opening based

on formant modulation. See figure 3-3 for the resulting formant track for the speech

shown in figure 3-1.

While a mathematical framework for calculating the expected modulation of the

formant frequencies and bandwidths was developed in section 2.1.2, we have found a

large variety in the frequency and bandwidth changes that occur in the open phase.

Also, due to different fixed glottal openings from speaker to speaker, the amount of

pole was available at that stage in the formant tracking. This can be seen in figure 3-3.
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formant modulation that occurs during the closed phase will vary from speaker to

speaker. This varying amount of formant modulation during the closed phase makes

it difficult to set a threshold for an amount of formant modulation that indicates

glottal opening. Because of these two problems, we have chosen to take a statistical

approach to identifying the glottal opening. The approach taken is also a more

practical approach, in that we want to estimate the vocal tract when the formant

values are constant. The basic idea is to find a region during which the formant values

vary minimally, while outside this region the formant values change considerably.

A small region of sequential formant samples is determined in which the formant

modulation is minimal as defined by the sum of the absolute difference between

successive formant estimates:

no+4

minD = E IF(no) - F(no - 1)1 : 1 < no < N - N, - 5, (3.1)
i=no

where D is the sum of absolute differences to be minimized, no is the first sample of

this small region, which is varied to minimize D, F are the formant values calculated

for each sample in the pitch period, and N is the number of samples in the pitch

period. The size of the initial stable region is five formant samples, which ensures

meaningful statistics are available to extend the region.

Once an initial stable region is identified, the mean and standard deviation of the

formants within this small region are calculated, and the region is grown based on

the following criteria. If the next sample is less than two standard deviations from

the mean, it is included in the stable region and the mean and standard deviation are

recalculated before continuing on to test the next point. A slightly different algorithm

is used to extend the window to the left. The final mean and standard deviation from

extending the stable region to the right are kept constant, and the region is grown

to the left until a sample is more than two of these standard deviations from this

mean. The closed phase is considered to include every speech sample which was used

to calculate the stable formant values. Since each formant value is calculated from

N, speech samples, the total length of the closed phase will be n2 - n + N, samples,



where nl is time of the first formant in the stable region and n 2 is the time of the last

formant in the stable region.

There are two primary reasons for the different techniques used to identify the

glottal opening and closure. First, after the region has been extended to the right to

identify the glottal opening, the statistics have been estimated from sufficient data and

extending the window to the left will not improve those estimates. More importantly,

we have found that the glottal opening tends to result in sudden formant shifts, while

gradual formant shifts are found when extending the region to the left towards glottal

closure. This may be because the sub- and supra-glottal pressures are approximately

equal during the return phase, which combined with the minimal flow results in little

influence on the vocal tract estimate. If we attempted to update the statistics during

a gradual change in the formant estimate, the statistics would likely incorporate this

change, and glottal closure would not be identified. The flowcharts in figures 3-4 and

3-5 illustrate the techniques used to identify glottal opening and glottal closure.

Identifying a small initial stable region allows the algorithm to adapt to the vari-

ability of the formants for each frame. If there is more aspiration or ripple during the

closed phase, the initial standard deviation calculated from this window will reflect

the greater variability that will occur in the formant estimates due to the nonlin-

ear source-filter interaction. When the glottis begins opening from its maximally

closed position, the interaction will increase, and the standard deviation limits will

be exceeded, indicating the glottis has begun to open.

3.1.3 Measuring Formant Motion

In the above discussion the specific parameter used for the formant estimates was

not stated. According to the theory presented in section 2.1.2, all of the formants

will undergo modulation of both their frequencies and bandwidths. The first formant

shows these modulations clearer than other formants, in part because the energy of

the first formant is greater and estimates of it tend to be less effected by noise. In

general, both the formant frequencies and bandwidths tend to increase during the

open phase, while they remain relatively constant during the closed phase.
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Figure 3-4: Glottal opening is identified by growing a small region in which the
first formant frequency is stable until the next sample is greater than two standard
deviations from the mean of the formants in the region. The procedure is illustrated
in this flow chart. 57
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Figure 3-5: Glottal Closure is identified similarly to glottal opening, except that the
mean and standard deviation of the formant values within the region are not updated
as the region is grown. The procedure is illustrated in this flow chart.
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Experiments showed that the best measure to use in determining formant modu-

lation is the frequency of the first formant. As can be seen from figure 3-3, the first

formant is more stable than higher formants during the closed phase and exhibits

a more observable change at the start of the open phase. Also, the sliding covari-

ance and formant tracker tend to make more errors for higher formants; examples of

these errors can be seen in figure 3-3, such as the poles around 1000 Hz assigned to

F3 between samples 150 and 200, since no poles in near F3 were calculated by the

covariance analysis for these sample.

Tables 3.1 and 3.2 show a measure of signal to noise ratio (SNR) for various

statistics which could be used to identify the closed phase. The SNR is calculated as

the ratio of the average variance at the start of the open phase to the average variance

during the closed phase. For example, for the frequency of the first formant, for each

pitch period, we would have:

1 Tc-1
F• T- F,(t) (3.2)F T-Tt=To

1 T -1
S(FT(t)-)2 (3.3)

To - TC t=To

1 Tc+4
S 5 E (Fl(t) - F• )2, (3.4)

t=TC

where Fl(t) is the frequency track of the first formant, F1 is the average frequency

of the first formant during the closed phase, Tc is the time of glottal closing, To is the

time of glottal opening, aC is the variance of the closed phase, and a2 is the variance

of the open phase. The variance of a signal is the average AC energy per sample in

the signal, thus a ratio of variances is a signal to noise ratio in the standard sense.

The variance during the closed phase can be viewed as background noise-this is

the formant modulation that is measured when the glottis is maximally closed. The

variance in the open phase is the signal of interest-the variance in this signal is used

to identify the opening of the glottis. For all pitch periods across multiple speakers,



SNR Measure Males Females

F1 Freq 161 155
F1 BW 8.7 4.2

F2 Freq 8.3 5.7
F2 BW 1.2 0.9

Table 3.1: Average Signal to Noise Ratios for several potential measures used in
identifying the glottal opening. The closed phase was identified using the first formant
frequency.

SNR Measure Males Females
F1 Freq 25.1 13.7
F1 BW 6.3 2.4
F2 Freq 42.7 59.4
F2 BW 2.2 2.0

Table 3.2: Average Signal to Noise Ratios for several potential measures used in
identifying the glottal opening. The closed phase was identified using the second
formant frequency.

we have:
1 Ns V-Np(S) as2(S, P)

"S=l L.#P=I

SNR = S N(S(3.5)

Zs = Np(S)

where Ns is the number of speakers, Np() is the number of pitch periods for each

speaker, a2() is the open phase variance for each pitch period, and Ua() is the closed

phase variance for each pitch period.

The closed phase was determined for table 3.1 using the frequency of the first

formant as the measure of formant modulation, while for table 3.2 the frequency of

the second formant was used. The key feature to notice in this data is that the SNR

for the F1 frequency in the first table is higher than the SNR for the F2 frequency

in the second table. This indicates that the change in F1 frequency at the boundary

of the identified closed phase is more noticeable than the change in F2 frequency at

the boundary. Separately marked closed phase timings were not available, so a more

rigorous evaluation of the features was not possible.



3.1.4 High Pitch Speakers: Using Two Analysis Windows

For high pitch speakers, it is possible that the analysis technique will require too large

a region in attempting to determine a closed phase. The various windows used result

in the closed phase identified being at least 21 samples in length. In particular, the

minimum length of the sliding covariance window is 17 samples, while the minimum

size of the initial stable region is five sequential sliding covariance windows, which

will cover a total of 21 samples. At a 10khz sampling rate, this corresponds to a

minimum closed phase of 2.1 ms. A speaker with a fundamental frequency of 200 Hz

and a 70% open quotient will have a closed phase of only 1.5 ms:

1
0.3 = 1.5 ms.

200 Hz

Many female speakers will accordingly have closed phases which are less than 2.1

ms. To help solve this problem, we use a covariance analysis which is based on two

windows, one in each of a pair of pitch periods.

Assuming that the rate of change of the vocal tract is dependent on time and not

on the number of pitch periods, the vocal tract variation over two frames for a 200

Hz voice is approximately the same as one frame of a 100 Hz voice, since both last for

10 ms. By splitting the sliding covariance analysis window into two parts, each one

need be slightly larger than half the desired linear prediction order, which results in

a minimum identifiable closed phase size of 1.3 ms, five sequential windows each half

the size of the standard minimum window length of 17 samples. Since this technique

is more dependent on stability of both the vocal tract and the source across multiple

pitch periods, it is only used when the pitch period is small and a closed phase close

to the minimum duration is identified.

As shown in section 1.1.2, the covariance method of linear prediction is the solution

to the equation

4)a a-* , (3.6)



where the (i, j)th term of 4 is given by /ij, where

N-1

Qi,j = s[n - i]s[n - j] : 1 < i, j _ p (3.7)
n=O

and the two vectors are given by

a = [ai,a2,..., ap]T , and

=)•=,-,[0,1 2, ... ,0 T

Two windows of speech data can be used to calculate the matrix 4I and the vector b,

NI +NI 1 -1 N 2+N 1 2 -1

ij=, = E s[n - i]s[n - j] + E s[n - i]s[n - j] : 1 < i, j < p, (3.8)
n=-N1 n=N2

where N1 is the start of the first region, Ni, is the length of the first region, N2

is the start of the second region, and N12 is the length of the second region. The

only change required to convert the standard covariance linear prediction procedure

into a two window procedure is this change in the calculation of the matrix 4. The

properties of the matrix b still hold as long as the windows are non-overlapping,

allowing efficient solution by Cholesky decomposition.

3.2 From Closed Phase to Glottal Flow Derivative

Once the closed phase is determined, the vocal tract response is calculated, and then

used to inverse filter the speech signal to generate the glottal flow derivative waveform.

3.2.1 Vocal Tract Response

The vocal tract response is calculated from a rectangularly windowed region of the

speech signal bounded on the left by the glottal closure and on the right by the glottal

opening, as determined in the preceding section. The vocal tract is estimated using a

covariance based linear prediction, with an adaptive pre-emphasis. To determine the



pre-emphasis coefficient, a first-order autocorrelation linear prediction is performed

on the analysis window, including the preceding samples required to initialize the

covariance analysis. This filter is then used to pre-emphasize the data. We have

found this adaptive pre-emphasis to work better than a fixed pre-emphasis filter.

3.2.2 Inverse Filtering

There is some uncertainty as to what region to inverse filter with a particular vocal

tract response. This problem arises due to the fact that the vocal tract is estimated

during the closed phase but must be used to inverse filter both the closed and open

phases. At first, we used a given filter to whiten the closed phase and the following

open phase. This can create a problem, since the difference equation implementing

the inverse vocal tract filter is changed at the start of the analysis window, when there

is significant energy in the speech signal, and thus significant energy in the inverse

filter. This sudden change of filter artificially excites the formants, and sometimes

results in a large output shift.

The decay of a linear filter with zero input only contains components at pole

locations. For speech, we have

p

s[n] = e[n] + ais[n -i].
i=1

Considering e[n] to be zero (superposition allows us to add in the response to e[n]

later), we have

s[n] - Z ais[n - i] = 0.
i=1

Difference equations are easily solved through the z-transform, giving

S(z) - a (S(z)z-i +E s[-k]l-k = 0, (3.9)
i=1 k=1

where the inner sum is due to the initial conditions. Rearranging in the form required



for partial fraction expansion, we have

S(z) = 1 ais[-i]zP-i
z Co=0 aizp- i

P= ais[-i]zP - i

_. J(3.10)F1i(z - z)

where ao = 1, and zi are the complex pole locations. The partial fraction expansion

of equation 3.10 will generally be of the form

S(z) = Z , (3.11)
i=1 - i

where the Ci's are due to the initial conditions. A slightly different form of equation

3.11 will result under the unusual condition of repeated poles. The inverse f-transform

of equation 3.11 is of the form

s[n] = Cizu[n], (3.12)
i=1

where u[n] is the unit step function. Under the normal condition of complex pole

locations zi, poles will appear in complex conjugate pairs, with their responses com-

bining to form a decaying sine wave. Equation 3.12 shows that the only possible

output is a combination of decaying sine waves at the pole frequencies. Since the

only possible outputs are at the pole frequencies, if the filter is suddenly changed, the

energy in the filter must be redistributed to the new frequencies. Experiments have

confirmed that this redistribution can cause excitation of some of the formants, as

shown in figure 3-6.

In order to minimize the impact of changing filters, we change the filter at the

end of the analysis region, rather than the beginning. This means that a given vocal

tract response whitens the closed phase from which it was calculated, as well as the

preceding open phase. The filter change occurs later in the decay of the speech signal,

so the speech has less energy. Also, the beginning of the closed phase is sometimes

determined before the end of the return phase. By changing filters at the end of the
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Figure 3-6: This plot shows the pole frequencies of the impulse response to a two
pole system whose lower pole frequency changes at approximately sample 40. The
frequencies are generated by a sliding covariance analysis. The higher pole has a
larger bandwidth, causing the energy at that frequency to fall below the noise floor
at approximately sample 20. When the filter is changed, the higher pole is excited
due to the redistribution of energy that occurs when the characteristic modes of the
response change.

identified closed phase, the glottal flow derivative waveform will generally be closer

to zero, which results in a smaller jump in the output.

3.3 Examples

Figure 3-7 shows several examples of glottal flow derivatives. Two examples are shown

for each of four speakers. The small pulses superimposed on the glottal flow derivative

waveforms show the times of glottal closure and opening as identified through the

modulation for the first formant, while the large pulses represent the initial estimates

of the time of the glottal pulse. All the examples in the first column come from

the vowel in the word "had". The plots in the second column come from different

sounds. The first column demonstrates that glottal flow varies from one speaker to

another for a particular sound. The two examples for each speaker demonstrate some

of the speaker dependent characteristics of the flow, as well as the variety of flow for

each speaker. These eight speech segments will also be used in chapters 4 and 5 to

x

x
xx



demonstrate the algorithms discussed in those chapters.

The first speaker shows significant energy during the closed phase, and a sudden

increase and drop-off of the glottal flow derivative. The second speaker typically

exhibits very little energy during the closed phase. This speaker also tends to have a

very impulse-like glottal pulse, the first example is atypical in this feature. The third

speaker commonly exhibits a large amount of ripple during the open phase. The first

example for this speaker is taken from the onset of the vowel, and demonstrates that

superposition of the decay from previous pulses causes the ripple to build up over

several periods. The fourth speaker has a large open quotient, as can be seen from

the second example.

3.4 Summary

The estimation of the glottal flow derivative waveform is automatic and requires only

information which can be directly calculated from the speech signal. Two innovative

techniques are used: identifying the closed phase through formant motion calculated

by a sliding covariance analysis, and a two-window covariance analysis used for high

pitch speakers. By identifying statistically significant variations in the frequency of

the estimated first formant, we are able to identify when the glottis finishes closing

and when it begins opening. The formant motions are predicted by the theory of

interaction between the glottal flow and the vocal tract.

A high fundamental frequency poses a problem for this algorithm, as it does for

many speech algorithms. To help minimize the difficulty associated with high pitch

speakers, a covariance based linear prediction was developed which has two disjoint

windows. For a standard covariance analysis, the window size must be greater than

or equal to the order of the analysis. The two window technique allows the sum of

the length of the two windows to be greater than or equal to the analysis order. This

enables the identification of a smaller clbsed phase for high pitch speakers.
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Chapter 4

Estimating Coarse Structure

Chapter 3 developed the techniques used to calculate the glottal flow derivative wave-

form from the speech signal. Now that we have the source waveform, we can estimate

the parameters of a model describing the general shape of the waveform.

4.1 Formulation of the Estimation Problem

The coarse structure of the glottal flow derivative is captured using the LF model,

described by the equation

dUg
E(t) = = EoeQt sin wgt (4.1)

for the period from glottal opening (To) to the pitch pulse (Te, time of excitation), at

which time the return phase starts:

E(t) = -Eo [e(t-T) - eT-T.), (4.2)

which continues until time T,. Figure 4-1 shows an example of the LF model. Due

to the large dependence of Eo on ac as will be discussed below, the parameter Ee, the

value of the waveform at time Te, is estimated instead of E0. To calculate Eo from



msec

Figure 4-1: LF Model for the glottal flow derivative waveform. (Repeat of figure 2-4
for convenience)

Ee, the equation

Eo = Ee (4.3)
eaTe sin wgTe

is used.

The seven parameters to be estimated for each pitch period are described in table

4.1. A least squares minimization problem can be setup to fit the LF model to the

glottal flow derivative waveform:

To Te

E(z)= G2[i] + (G[n]- Eoe" sinwn)2 +

n=O n=To+l

Z_1(G[n] - F0 [e-(n-Te) - e-+ - )] 2

n=Te + l

N

E G2[n], (4.4)
n=Tc+l

where the point n = 0 occurs after the end of the previous return phase, n = N

occurs before the next open phase, I is a vector of the seven parameters, and G[n] is

the glottal flow derivative waveform at sample n. The error E is a nonlinear function

of the seven model parameters, so the problem must be solved iteratively using a

nonlinear least-squares algorithm.

The standard Gauss-Newton and Levenberg-Marquardt methods for solving non-

-1



To The time of glottal opening
a Determines the ratio of Ee to the height of the positive

portion of the glottal flow derivative
wg Determines the curvature of the left side of the glottal

pulse, also determines how much time elapses between
the zero crossing and Te

Te The time of the maximum negative value of the
waveform, called the glottal pulse

Ee The value of the waveform at time Te
Ta An exponential time constant which determines how

quickly the waveform returns to zero after time Te
T, The time of glottal closure

Description of the seven parameters of the LF model for the
waveform.

glottal flow

linear least-squares problems do not work well when the minimum error E is large

[30], which is often the case in fitting the LF model to the glottal flow derivative

waveform, since ripple, not modeled by the LF model, will show up in E. After

finding that the Levenberg-Marquardt routine in [43] does not work well for our par-

ticular problem, we switched to using a version of the NL2SOL algorithm for adaptive

nonlinear least-squares regression, Association for Computing Machinery (ACM) al-

gorithm 573 [30, 31]. The modified version we used has the addition of bounds to

enable parameters to be limited to physically reasonable values.

4.2 The NL2SOL Algorithm

The NL2SOL algorithm uses two models of the error function to iteratively reduce

the residue. The residue is defined as:

ri(Y) = mr(Y) - yi, (4.5)

where X is a vector of the parameters to be solved for, yi is the data to be fitted,

mi () is the value of the curve at point i using the parameters z, and ri(i) is the

Table 4.1:
derivative



fitting error, or residue, which is to be minimized in a least squares sense:

1 N1 (T-•
min f(Y) = S () = 2 R () R(), (4.6)

i=1

with

R(X)= [r,(Y), r2 .... rN(Y,

where f(Y) is the summed squared residue to be minimized. The specific value of j

that minimizes equation 4.6 is written as P. If f(F*) = 0, the fitted curve perfectly

matches the data, and the global minimum has been found. For the typical case, f (Y)

will be considered to be a local minimum when one of various convergence criteria

are reached.

In order to iteratively minimize f, we need to know how to change the parameter

vector X from its current value, which we will call Ak. The Taylor series expansion of

f(1) around the point k is given by

1 1
) T) + (- Xk) f() + )T2 - ) + .. ., (4.7)

where the gradient of f (g) is given by

Vf(() = J(y)T R(f), (4.8)

where the (i, l)th element of the Jacobian matrix J(Y) of the vector i(Y) is given by

rji V(n ) (4.9)a-1

In other words, the (i, l)th element of J is the partial derivative of the residue i(i)

at the point i with respect to the 1th element of the parameter vector '. The second

order gradient of f(9), called the Hessian, is given by the equation

n

V 2 f(j() = J()wTJ(g) + E ri(I)V2 ri(Y). (4.10)
i=1



The Taylor series approximation to f(Y) is a linear function of the powers of 1',

which can be minimized explicitly. Since the Taylor series is just an approximation

if a finite number of terms are used, the minimum of f(1) must be found iteratively:

1. Start with an initial guess for P, X5o.

2. Calculate the Taylor series expansion of f (Y) around the point k, where k is
the current iteration number.

3. Choose A+1 as the parameter vector which minimizes the Taylor series.

4. If the difference between A and i+1 is small, or the value of f(g) is small at
Xk+l, consider * to equal k+1. If not, return to step 2 to refine the estimate
of P.

Using just the first order term of the Taylor series makes the assumption that

f(9) can be adequately modeled by an affine function, giving the Newton method.

Including the second term makes the assumption that f(Y) can be modeled by a

quadratic. In general, the second partial derivatives of ri(1) will not be available, so

the second term must be approximated if we wish to use it. The Jacobian of f(Y) will

give a good approximation to the Hessian of f(Y) through the first term in equation

4.10. Just using the first term of the Hessian of f(i) gives the Gauss-Newton method.

The second term in the Hessian of f(Y) can be approximated by the first difference

of the Jacobian, giving

Sk+lA5k = J Rk+ - J k+1, (4.11)

where Sk+1 is the new approximation to the second term of the Hessian of f(Y) and

A£k =- Xk+1- -k. By rearranging equation 4.11 in a non-valid manner for the purposes

of understanding the value Sk+l, we have

JT JT
Sk+1 k+1 k Rk+1 (4.12)

Comparing equation 4.12 to the second term of equation 4.10, we see that the Hessian

of R is approximated through use of the change in the Jacobian from iteration k to



iteration k +1. As Azk approaches 0, this approximation approaches the actual value

in equation 4.10. An equation exists to calculate Sk+1 from Sk. So is initialized to

zero.

The NL2SOL algorithm uses two methods to minimize f(1), the standard Gauss-

Newton method and the Gauss-Newton method refined by using Sk to more accu-

rately approximate the Hessian of f(Y). It has been found that the Gauss-Newton

method predicts f(Xk+l) better than the Hessian method for small values of k. Ac-

cordingly, the authors of the NL2SOL algorithm have devised a technique for choosing

between the two methods. Also, they implement a "trust region" which indicates the

region around '5k in which they have confidence of the current model for f(g). If a

proposed step is outside the trust region, the step is changed to the closest point in

the trust region to the proposed step. The algorithm is considered adaptive because

the calculation of the trust region and the selection of which model to use for a given

step are based on the previous and current steps in the iteration.

4.3 Using the NL2SOL Algorithm

For our application of the NL2SOL algorithm to model the glottal flow derivative

waveform with the LF model, the parameter vector Y consists of the seven model

parameters, the vector R is the difference between the model and the waveform,

with one element of R for each sample between the previous glottal closure and the

subsequent glottal opening. The implementation of the algorithm takes as input

the vector R and the matrix J. Calculation of J requires evaluation of the partial

derivatives of the LF model equations. The 14 partial derivative equations (seven for

the open phase and seven for the return phase) were derived and are included in the

analysis software.

4.3.1 Difficulties with the NL2SOL Algorithm

We have encountered several difficulties in using this algorithm, some of which will be

described here. The most fundamental problem is that of identifying the times To, Te,



and Tc, due to discontinuities of the partial derivatives at these points. The partial

derivatives will be discontinuous at these points because of the piecewise nature of the

LF model. If the partial derivatives are discontinuous, f(Y) will not be adequately

modeled by the first two terms of the Taylor series expansion. The result of this

inadequate modeling is that the NL2SOL algorithm will have a harder time converging

to the correct solution, and will be more likely to find a local minimum that is not

the global minimum.

The problems caused by poor modeling of f(:) can be reduced by starting the

iteration with an accurate estimate of these parameters. The partial derivatives of

the parameter Te will have the largest discontinuity, due to the pulse-like shape of the

waveform at time Te. Luckily, the time Te is easily estimated by identifying the largest

negative sample during the pitch period. In general, we find that the parameter Te

is varied less than a sample from its initial estimate.

The partial derivatives will be zero before the time To and after the time Tc,

since the model function equals zero for these regions. This indicates to the NL2SOL

algorithm that no change in parameters will reduce the error in these regions. In order

that the algorithm be given the opportunity to adjust the parameters for these regions,

and possibly include them in the pulse shape, the initial values for the parameters To

and T, are each moved five samples further away from the center of the pulse than

they would normally be set.

The LF model is perhaps over-specified when described by the seven parameters,

which can cause problems in their estimation. For example, Eo and a can be traded

off for each other at high values of a. A large a will result in a very impulse-like

waveform. There is little difference between a waveform that is larger because it

is slightly more impulse-like and one that is larger everywhere, since most of the

energy is in the impulse already, as illustrated in figure 4-2. Similarly, Ta and Tc

can be confused, since small values of Ta make Tc difficult to estimate through a

least-squares algorithm, since the exponentially decaying tail of the return phase will

become very close to 0 (A similar effect can happen with large values of a and To).

To solve the confusion between Eo and a, we estimate Ee, the energy at time Te.
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Figure 4-2: The parameters a and E0 of the LF model for the glottal flow derivative
waveform can be traded off for large values of a as demonstrated in this figure. A
10% increase in a and a 50% decrease in E0 result in a squared error change of only
0.2% for this example. (a): Two superimposed LF waveforms, one with a = 7 and
Eo = 100, the other with a = 7.7 and E0 = 50. (b): Difference between the two
waveforms in (a).

This has two benefits, an accurate estimate is easy to obtain, since it is the largest

negative value of the data during the pitch period. Also, Ee is essentially unrelated

to a. To work around the problem of inaccurate estimates of To and T, depending

on values of a and Ta, we recalculate To and Tc from the model waveform after the

NL2SOL algorithm estimates the parameter values. These times are set at the time

at which the predicted model is less than one percent of E,.

In order to ensure that the NL2SOL algorithm estimates physically reasonable

parameter values, we set bounds on the parameters. For example, if the value Wg is

less than 7r, the model will have no negative samples, since the sine term will never

go below zero.

4.3.2 Discarding Data

Once the model has been estimated, parameter values that are too close to their

bounds, or too low a value for Ee will cause the data for that frame to be considered

I I I I
,,n 0.

I 1 1



unreliable and discarded before further analysis. This was found to be important for

improving speaker identification scores as will be further explained in chapter 6. The

particular bounds used were not chosen in a rigorous manner. Informal experiments

indicated that the initial bounds choose were reasonable in the context of speaker

identification.

4.3.3 Initialization

The curve fitting algorithm must be initialized with parameters close to the proper

values, else a local minimum that is not the global minimum may be identified. The

parameters Te and Ee are easily calculated, and are used to identify the location of

the waveform and its scale. The other five parameters are initialized with the value

calculated for the previous frame, with To decreased and Tc increased as described

above. For the first pitch period in an utterance, the parameters are initialized with

preset reasonable values.

4.4 Other Possible Approaches

There are two primary alternate approaches to determine the parameter values. One

alternative approach is to model the glottal flow derivative in the frequency domain

rather than the time domain. There are several problems associated with such an

approach. First, there is no closed form solution for the frequency response of the LF

model, so each set of trial parameters would require an FFT to convert from the time

domain representation of the model to the frequency domain representation, mak-

ing the problem computationally unfeasible. Another problem is that the observed

waveforms tend to have their high-frequency energy distributed throughout the pe-

riod, likely due to aspiration noise. Fitting in the frequency domain would result in

reduced temporal resolution, clumping the distributed high frequency energy into a

slightly sharper pulse, making the task of estimating aspiration more difficult.

Fant has described a more direct method of identifying the parameter Ta through

frequency domain characteristics [15]. The effect of Ta is to low-pass filter the pulse



with a first order filter with a corner frequency

Fa = 1/(27rTa). (4.13)

This can be used to estimate Ta through its effect on the initial energy in a formant.

Simple estimators like this one are not available for the other parameters.

4.5 Examples

Figure 4-3 shows the LF model of the coarse structure extracted from the same

examples shown in figure 3-7 of section 3.3. The plots are in sets of two, the top is

the estimated glottal flow derivative waveform, while the lower plot is the modeled

coarse structure of the estimated glottal flow derivative waveform. Each row shows

two examples for a particular speaker.

The first speaker generally exhibits a long return phase, and positive and negative

extremes of approximately the same amplitude. The closed phase is fairly short, this

is captured as a large open quotient. The second speaker shows a mush longer closed

phase and smaller open quotient, as well as a lower pitch, which we do not model.

The glottal pulse is of much larger amplitude than the positive portion of the glottal

flow derivative. This speaker seems to often have a very short return phase. The third

speaker has a pulse shape that is somewhat of an average of the first two speakers.

The open quotient is closer to 50%, and the glottal pulse seems to be slightly larger

than the positive portion of the waveform. The fourth speaker exhibits a much more

gradual flow. The return phase is sometimes quite long, while the positive portion

of the waveform develops slowly. These two factors lead to a short closed phase and

large open quotient.

4.6 Summary

A nonlinear least-squares algorithm is used to fit the LF model to the glottal flow

derivative waveform for each pitch period. Steps must be taken in order to ensure
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that the curve fitting is performed in a manner that yields meaningful results. Large

dependencies between several pairs of parameters required that some parameters be

changed, while other parameters are recalculated after the curve fitting is complete.

Once the coarse structure of the glottal flow derivative has been modeled, it can

be subtracted from the waveform, leaving the fine structure. Modeling of the fine

structure is discussed in the next chapter.



Chapter 5

Estimating Fine Structure

In the previous chapter we estimated the coarse structure of the glottal flow derivative

waveform. Subtracting the estimated coarse structure from the glottal flow derivative

waveform yields the fine structure. We look at two sources of fine structure, aspiration

noise and ripple due to source-filter interaction. This chapter discusses the techniques

used to model the fine structure of the source.

In general, we are interested in the magnitude and timing of fine structure. For

example, we are interested in when there is aspiration noise and how much aspiration

noise is present. In addition to magnitude and timing measures, the extent of formant

modulation can be modeled as separate information.

5.1 Modeling Ripple Through Formant Modula-

tion

As shown in section 2.1.2, the bandwidth and frequency modulation of the formants

due to source-filter interaction are related to the glottal area and the derivative of

the glottal area, respectively. We model only frequency modulation in this study.

Bandwidth modulation was not modeled due to time constraints.

The modulation of the first formant frequency is modeled using a parabola. Setting

up a least sum of squares minimization of the error between the parabola and the



data, we have

e[n] = (A + Bn + Cn2)-F[n] (5.1)
N

minE = -e 2[n], (5.2)
n=O

where n = 0 is the start of the region to be modeled, n = N is the end of the region,

A, B, and C are the parameters to be estimated, and Fi[n] is the frequency of the

first formant. The formant estimates from the sliding covariance analysis tend to

be noisy during the open phase. Because of this, we use a robust linear regression

algorithm called PROGRESS [48].

In order to increase the robustness of least squares regression, we replace the

summation by a median, giving a least median of squares (LMS) estimator,

min E = medgNoe2 [n], (5.3)

where med= 0N indicates the median value of the error samples from e2 [0] to e2 [N]. Half

of the samples of Fl[n] have an squared error less than E as calculated in equation

5.3. The solution minimizing E can be seen to be the curve that most closely matches

half of the data. One solution to this minimization problem, as presented in [48], is

to take all subsets of p different observations of Fl [n], where p is the dimension of

the model to be fit to the data, 3 in this case. For each subset, the curve that passes

through the three points is calculated as a trial solution, and the median given in

equation 5.3 is calculated. The trial solution with the minimum median is the LMS

estimate.

The LMS estimator can be shown to be very robust in the presence of outliers,

but requires a larger number of samples to accurately fit the model to the data than

traditional least squares regression. To increase the accuracy of the fit with a limited

amount of data, the PROGRESS algorithm performs a re-weighted least squares (RLS)



estimation, as given by

N
min E wn ((A + Bn + Cn 2) - F[n) 2 , (5.4)

n=o

where the wn are weights designed to lessen the influence of outlier points in the data.

The outlier points are determined by an estimate of the average error of the LMS fit.

In particular, the statistic

o& = C med (e2[n]), (5.5)

is used, where e[n] is the modeling error for each sample, and C1 is a constant related

to statistical modeling of the error. The value & is the standard deviation of the error

for the best half of the data. If we wish to discard outliers, the weights wn can be

chosen as { 1 if e[n]/ U1 < 2.50 if e[n]/&I( > 2.5

where the bound 2.5 is chosen somewhat arbitrarily. Alternatively, a smooth function

could be developed to lessen the impact of outliers on the fit.

Now that we have a method for robustly estimating the formant modulation,

we must determine over what region the formant modulation should be estimated.

The most obvious region to choose includes the samples after the closed phase and

before the glottal pulse. Occasionally a single noisy estimate of the first formant will

cause an early identification of glottal opening. To avoid modeling a region which

includes formant values which belong in the closed phase, the start of the open phase

is identified as the first of five sequential samples which are outside the two standard

deviation bound set for identifying glottal opening.

5.2 Time Domain Fine Structure

The primary information extracted from the time-domain fine structure is the mag-

nitude of the effects causing fine structure. The amount of fine structure present

indicates how much the volume velocity flow through the glottis is varying due to



ripple and the amount of aspiration noise as determined by the configuration of the

glottal opening. The five energy measures used in calculating time domain energy in

the source waveform were described in section 2.2.2. The five energy measures are

calculated as the energy of the fine structure during the appropriate period normal-

ized by the total energy in the estimated glottal flow derivative waveform for that

pitch period. The total energy is given by

Tc
Etot= = E G2 [n] (5.7)

n=Tc-I

where G[n] is the glottal flow derivative waveform, T,_ 1 is the end of the previous

return phase, and T, is the glottal closure of the current pitch period. As an example

of the energy measures, the energy of the fine structure during the open phase as

determined by the LF model parameters is calculated as

1 Te-1
Eo = E (G[n] - LF[n])2  (5.8)

n=To

where LF[n] is the model of the coarse structure. The energy of the fine structure

during the other four periods is similarly calculated.

5.3 Examples

We continue to use the same speech segments shown in figure 3-7 of section 3.3 to

demonstrate the fine structure in speech. This structure is much more difficult to

observe from the speech waveform than the coarse structure shown in figure 4-3.

Figure 5-1 shows the residue from which the energy measures of time domain ripple

are calculated. The residue figures are scaled to make the features more visible; the

numbers labeling the y-axes of the speech and fine structure can not be compared.

Some of the examples exhibit clear ripple, while others seem to just show noise. Some

of the examples do show a significant difference in energy between the closed and

open phases, which is indicative of a complete glottal closure, while those examples



that have similar energy during the closed and open phases are likely indicative of

incomplete glottal closure.

5.4 Summary

Modulation of the first formant frequency is estimated by fitting a parabola to the

covariance formant track. The fit is accomplished using a robust least squares al-

gorithm. We do not propose that a parabola is an accurate representation of the

formant modulation, but rather it is a simple model intended to show that formant

modulation is speaker dependent, as predicted by its dependence on the time evolu-

tion of the glottal area. The magnitude of the combined aspiration noise and ripple

are modeled by calculating the normalized energy during five regions of the pitch pe-

riod. The application of the model parameters to speaker identification is discussed

in the next chapter.
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Chapter 6

Speaker Identification Experiments

Previous chapters discussed estimation of the glottal flow derivative from speech and

modeling the coarse and fine structure of this source waveform. We now discuss the

application of the parameters of these models to speaker identification.

6.1 Background

We first begin with a discussion of the general topic of speaker identification. In

speaker identification, we wish to take a spoken utterance, extract features from

the utterance, and compare these feature values against speaker models that were

previously generated to determine the identity of the speaker. We use the Reynolds

Gaussian mixture model (GMM) speaker identification (SID) system in this thesis

[46, 47].

The Reynolds GMM system models the probability distribution of the feature

vector as a sum of weighted Gaussians. For our speech source features, we have

found that a mixture of 16 Gaussians gives the highest accuracy unless otherwise

noted. The feature vector has one element per parameter for each frame. A fixed

frame rate might be used, or each frame can correspond to a pitch period, as in

this thesis. The Gaussians are n dimensional, where n is the number of features in

the feature vector. The parameters of the mixture model are estimated using the

Expectation Maximization (EM) algorithm.



To identify the speaker of an utterance, the frame probabilities are multiplied

for each potential speaker, and the speaker model with the highest probability is

considered to indicate the correct speaker. In order to determine how well the system

works, we calculate the percentage of correctly identified speakers, which we call the

accuracy or score of the system for a particular set of features. The task of training

speaker models is called training, while the task of identifying the speakers of a number

of sentences is called testing.

6.2 Difficulties with the Reynolds GMM SID Sys-

tem

By using a mixture of Gaussians to model the feature vectors, we are making the

assumption that the feature vectors can be adequately modeled by Gaussian distri-

butions. This tends to be a good assumption for parameters that are directly cal-

culated from the waveform, such as mel-cepstral coefficients, but is often not a good

assumption to make for waveform models as in our glottal flow derivative model. Two

primary areas of difficulty have arisen, outliers and singularities.

A feature might repeatedly take on the same value, due to difficulties in modeling,

poor waveform estimation, or insufficient data. For example, the end of the return

phase can occur one sample after the time Te. It is not possible to estimate a value

for T, less than one sample after Te, despite the fact that this may occur, either due

to a very rapid glottal closure or poor modeling of the vocal tract. Another example

is large values of the exponential constant a. The parameter a is limited to a value

of 50 by the bounds given to the NL2SOL algorithm. Values larger than this are not

meaningful, as the pulse is already extremely impulse-like. Any frame for which the

estimated a is greater than or equal to 50 will return a value of 50 for a. The bounds

help in improving estimates of the other parameters and in ensuring convergence, but

can cause problems in training.

Outliers occur when an unusual feature vector is calculated. In general, outliers



occur due to poor estimation of the glottal flow derivative or unsuccessful modeling

by the NL2SOL or PROGRESS algorithms. Outlier feature vectors commonly occur

when the glottal flow derivative does not resemble an LF model, and when the timing

of the glottal pulse is not correctly identified, either due to incorrect pitch estimates

provided to the analysis system, or errors in the initial peak picking algorithm.

Singularities can cause problems in modeling because they will tend to "grab"

Gaussians, reducing the number of models available for modeling meaningful feature

values. The modeling routines of the Reynolds SID system identify and remove outlier

vectors, but this is not possible during testing. Any outliers that occur during testing

will have unpredictable results, but in general, a single outlier vector will cause a

sentence whose speaker would otherwise be identified correctly to indicate a different

speaker.

To reduce the problems of singularities and outlier vectors, a significant portion

of the feature vectors are discarded before training and testing. If any element of

a feature vector is equal to the bounds used in the NL2SOL algorithm, the vector

is discarded. Also, if the value for Ee is below a certain threshold, the frame is

discarded. This restriction is placed on the data because the estimation is often

poor when there is very little energy in the waveform. While discarding data might

generally be undesirable, we have found that it increases the accuracy of the speaker

identification system by approximately 15%. Only about one third of the actual

speech is used for training and testing, since no unvoiced frames are used, and some

of the voiced frames are discarded.

6.3 Using Source Features for SID

The parameters used for SID are not all the same as those used in estimating the

coarse model. For example, the parameter To, indicating the first sample of the open

phase, will grow continually larger as we move further into an utterance. This large

upward trend makes To essentially useless for SID. To avoid this problem, instead of

using the times To, Te, and To, we calculate the length of the return phase as Tc- Te



and two open quotient-type parameters, the first is

T - To
OQ =- e ,  (6.1)

Te - Te-1'

where Te-1 is the time of the glottal pulse for the previous pitch period. The second

parameter is actually a closed quotient as determined by the closed phase identified

using the sliding covariance analysis,

CQ = no-nc (6.2)
Te - Te-I'

where no is the time of glottal opening, and n, is the time of glottal closure, both for

the current pitch period. The waveshape parameters a, Wg, Ee, and T, are included

as calculated during modeling, giving a total of seven coarse structure parameters.

We now present speaker identification results for a number of different tests. Male

and female sets are handled separately, as the large differences in anatomy result in

cross-sex errors being very rare. For the first set of experiments, the data comes from

the TIMIT database, which contains 10 sentences of read speech for each speaker,

recorded in a quiet-room with a Sennheizer microphone. The recording methods

result in a high quality database. The male subset contains 112 speakers, while the

female subset contains 56 speakers. For each speaker, eight of the sentences are used

for training and two are used for two independent tests.

Tests were conducted with the following sets of features:

1. The seven LF model parameters,

2. The five energy parameters,

3. The seven LF and five energy parameters,

4. The three formant modulation parameters,

5. The 14 LPC derived cepstral coefficients, and

6. The 12 source parameters and 14 cepstral parameters.

The LPC cepstrum consists of the first 14 coefficients of the real cepstrum as



Features Male Female
Coarse: 7 LF 58.3% 68.2%
Fine: 5 energy 39.5% 41.8%
Source: 12 LF & energy 69.1% 73.6%
Fine: 3 FM 7.6% 16.4%
Filter: 14 LPC Cepstrum 91.0% 93.6%
Combined LF, energy, cep 93.7% 92.6%

Table 6.1: Speaker identification results for various combinations of the source pa-
rameters

calculated by the recursion

1 i-i
c, = -a - (i - k)aki-k (6.3)

k=1

where ci are the 14 cepstral coefficients, and co is not calculated [27]. The ak'S used

are the estimated vocal tract parameters calculated using the covariance method of

linear prediction over the closed phase. The recursion assumes a minimum-phase

filter given by the ak's. Any maximum-phase poles are flipped inside the unit circle

before the cepstral coefficients are calculated.

The results in table 6.1 clearly show that the three categories of source parameters

all contain significant speaker-dependent information. The source features contain

information not present in the 14 cepstral parameters which model the vocal tract,

as shown by the increase to 93.7% accuracy' for the combination of source and vocal

tract data for the male subset. Outliers caused the reduction in score when source

parameters are added to the vocal tract parameters for females. The 3 FM parameters

show some speaker dependence, as their scores of approximately 8% and 15% correct

are well above chance (less than 1% for both cases). Including the three formant

modulation parameters with the other data, however, lowered the scores significantly,

due to the large number of outliers in the formant modulation data.

1In comparing accuracy rates near 100%, it is generally more instructive to compare the relative
reduction in error rate. For the male subset, the error was reduced from 9% to 6.3%, a 30% reduction
in error.



Features Male Female

Modeled GFD 41.1% 51.8%
GFD 95.1% 95.5%

Table 6.2: Speaker identification results for mel-cepstral representations of the Glottal
Flow Derivative (GFD) waveform and the modeled GFD waveform.

As a secondary measure of information in the glottal flow derivative waveform,

we calculated the mel-cepstra of these waveforms and used these 23 coefficients as

the features for SID. Both the glottal flow derivative waveform and the modeled

waveform were processed in this manner. The results are shown in table 6.2. We

note that the 7 LF parameters shown in the first row of table 6.1 better represent the

modeled glottal flow derivative than the 23 cepstral parameters. The modeled glottal

flow derivative contains significantly less information than the glottal flow derivative,

because modeling significantly reduces the amount of vocal tract information present.

6.4 SID for Degraded Speech

The Reynolds SID system has been shown to be 100% accurate for a large number

of speakers using the high quality speech in the TIMIT database. The true value

of source information for SID is thus in improving recognition scores for degraded

speech. To test how well the source information works on degraded speech, we use

a subset of 20 male speakers and a subset of 20 female speakers from the NTIMIT

database[28]. The NTIMIT database is the TIMIT database transmitted through a

telephone handset and over long-distance phone lines. The 20 male and 20 female

speakers used are speakers that the Reynolds SID system performs poorly on. For

these tests, we use the mel-cepstral representation of the speech signal and the mel-

cepstral representation of the source waveform. Results are shown in table 6.3.

For the tests in which speech and source mel-cepstral data were combined, the

feature vectors were merged prior to training and testing. The mel-cepstral feature

vectors each contain 23 parameters. The best results were achieved by training on a



Features Male Female

Speech 40.0% 52.5%
GFD 25.0% 22.5%
modeled GFD 12.5% 27.5%
Speech & GFD 50.0% 50.0%
Speech & modeled GFD 45.0% 47.5%
Speech & GFD with 32 Gaussians 57.5% 52.5%
Speech & modeled GFD with 32 Gaussians 60.0% 55.0%

Table 6.3: Speaker identification results for mel-cepstral representations of the speech
signal, the Glottal Flow Derivative (GFD) waveform, the modeled GFD waveform,
and combinations of the speech and source mel-cepstral data. All of the data was
generated from the NTIMIT database.

23 element vector rather than the 46 element vector that would result by combining

the two vectors into one. Using this approach, each feature vector contains either

speech or source information. We believe that the training routines assigned some

of the 16 Gaussians to model the speech signal, while some were used to model the

source signal. A further increase in accuracy was achieved by increasing the number

of Gaussians to 32. Making this change provides sufficient Gaussians to model each

of the two sets of feature vectors.

The scores for the source information calculated from the NTIMIT database are

significantly worse than those calculated using the TIMIT database. In an attempt to

demonstrate the potential increase in accuracy that could be achieved by improving

the estimation of the source in degraded environments, we repeat the above procedure

using the NTIMIT speech waveforms and modeled glottal flow waveforms calculated

from TIMIT data. Using 32 Gaussians, we achieved scores of 60% for the males and

57.5% for the females. One possible explanation for the small increase in scores is

that the TIMIT and NTIMIT data differ enough that it is more difficult to model

the two streams in combination.



6.5 Summary

The speaker identification tests show that the models of the coarse and fine structure

of the glottal flow derivative contain significant speaker dependent information, and

that the algorithms used to estimate parameters of these models work in a robust

manner. Difficulties were encountered in modeling the parameters with a mixture

of Gaussians, which results in lower scores than if these problems were solved, and

restricts combinations of parameters with other data. Combining mel-cepstral rep-

resentations of the source and speech waveforms transmitted over telephone lines

demonstrates that the source information can be used to improve on current speaker

identification systems.



Chapter 7

Conclusions

7.1 Summary of Findings

The goal of this thesis was to develop automatic techniques for reliably estimating

and modeling the glottal flow derivative waveform from speech, and to determine the

importance of the glottal flow derivative for speaker identification. The volume veloc-

ity airflow through the glottis, called the glottal flow, is the source for voiced speech.

Incorporating the radiation effect into the source gives the glottal flow derivative

waveform. Previous studies have shown the importance of the glottal flow for im-

proving naturalness in speech synthesizers and for use as correlates to voice types

such as loud, angry, breathy, etc.

There is strong evidence to suggest that the glottal flow should be speaker de-

pendent. Videos of vocal fold vibration demonstrate a wide variety of vocal fold

vibration patterns for different speakers. Some folds open or close in a zipper-like

fashion, while others open or close along their entire length at the same time. For

some speakers the glottis never closes, while for others a long period of complete

closure is observed. The glottal flow derivative is determined by a nonlinear function

of the glottal area, so information about the vocal fold vibration for a speaker will

therefore be included in the glottal flow derivative. By modeling the coarse structure

of the glottal flow derivative waveform, we expect to capture some of this speaker

dependent information.

I·_



The glottal flow derivative will also contain vocal tract information, as seen

through the theory of source-filter interaction presented in chapter 2. In order to

determine the importance of the source for speaker identification, vocal tract in-

formation must be removed from the model parameters. Some of the source-filter

interaction will result in information that should be included with source informa-

tion. For example, the formant bandwidth and frequency modulation were shown to

be dependent on the glottal area and its derivative. Similarly, the amount of fine

structure during the closed phase as compared to the open phase will indicate how

completely a speaker closes his or her glottis.

The glottal flow derivative was estimated using an inverse filter estimated during

the closed phase. The timing of glottal closure and glottal opening were determined

by formant frequency modulation calculated using a sliding covariance analysis with

a one sample shift. A statistical technique was used to identify the glottal closure

and opening. The statistical technique eliminates dependence on a particular type of

frequency modulation, and allows the algorithm to adapt to the amount of formant

modulation during the closed phase, which is dependent on the degree of glottal

closure. A two-window covariance technique was developed to improve time resolution

for high pitch speakers.

The LF model for the glottal flow derivative was used to model the coarse struc-

ture of the glottal flow. As modified for use in this thesis, it is a seven parameter

model, with distinct closed, open, and return phases. The shape of the open phase

is determined by two parameters, while one is used to control an exponential return

phase. The parameters of this model were determined for each pitch period using the

NL2SOL algorithm for nonlinear least-squares regression.

The fine structure of the glottal flow was modeled through the frequency modu-

lation of the first formant and five energy measures. The energy measures estimate

the amount of aspiration noise and ripple during various periods. The relationship

between the energy of the fine structure during the open phase to the energy dur-

ing the closed phase will indicate how completely the glottis closes. The frequency

modulation of the first formant was modeled by a parabola using the PROGRESS



algorithm for robust least-squares regression. While a parabola is not a theoretically

meaningful measure of frequency modulation, we have used it to demonstrate that

the frequency modulation can be reasonably measured and is speaker dependent, as

predicted by its dependence on the derivative of the glottal area.

The speaker identification experiments show that the algorithms described in this

paper work reasonably, and that the source parameters estimated contain significant

speaker dependent information. To achieve high SID scores, the source must contain

speaker dependent information, the source must be modeled in a manner that captures

this information, and the estimation must determine the parameters of these models in

a consistent manner. If the algorithms were not consistent, the parameters calculated

would not contain statistically significant information. Without a separate source of

parameter values to compare against, the speaker identification experiments are a

good indication that the parameters are estimated in a meaningful manner.

All aspects of the source model have been shown to contain speaker dependent

information. The coarse structure parameters contain the most information, the time

domain energy measures of fine structure less information, and the frequency modula-

tion of the first formant contains the least amount of speaker dependent information,

though still resulting in speaker identification scores well above chance. Difficulties

in modeling the source parameters using a Gaussian Mixture Model likely reduced

the scores. Integrating the source parameters with more traditional measures also

proved difficult. By combining mel-cepstral representations of the speech waveform

and the glottal flow derivative waveform, we demonstrated that source features can

be used to improve the scores of current speaker identification systems in degraded

environments.

7.2 Suggestions for Future Work

The results of this thesis demonstrate that the source for voiced speech is important

in speaker identification. Many areas of this thesis require further study, to improve

upon the results achieved so far, to show more conclusively that the source and vocal



tract can be separated and that they contain independent information, and to extend

the analysis techniques to non-ideal environments.

Source Modeling

There are several ways in which the glottal flow derivative could be modeled more

completely. In terms of the fine structure, the aspiration and ripple components

could be separated, perhaps using a noise/harmonic model. Informal experiments

have shown this is a difficult separation to achieve, in part because the ripple has

a wide bandwidth due to the nonlinear manner in which it is created, and in part

because the specifics of superposition will cause the ripple to vary from pitch period

to pitch period. Also, the time evolution of aspiration noise and ripple could be

modeled. It has been shown [25] through perceptual evaluation of synthetic speech

that the timing of noise is important to its perceived integration with the speech as

aspiration noise, rather than as a separate noise source.

The formant modulation due to ripple could be modeled more theoretically than

with a simple parabola fit to the frequency modulation. This would include an im-

proved model for the formant frequency modulation and the addition of a model for

the formant bandwidth modulation. The ripple is determined by the supra-glottal

pressure variations, the glottal area, and the derivative of the glottal-area. How these

three physical features are best modeled through the time- and frequency-domain

representations of ripple needs to be better understood from both a theoretical and

empirical standpoint. It also remains to be seen whether higher formants would yield

additional information or if the ripple due to higher formants contains redundant

information (which could possibly be used to calculate a more robust estimate of the

ripple).

The temporal change of the glottal flow derivative waveform is not included in

our SID experiments. Changes in the glottal flow from period to period will indicate

when glottal stops are used, how sudden the onset of voicing is, and the inter-period

variability of the vocal fold vibration. Asymmetries in the vocal folds will result in a

less stable pattern of vibration [52], which would be captured through the temporal



change of the glottal flow derivative.

Parameter Estimation and Statistical Modeling

There are several improvements to be made in the modeling algorithms for both

estimating the glottal flow derivative parameters and using these parameters for SID.

A nonlinear least-squares algorithm that is designed to handle piecewise functions

should enable more accurate estimation of the times To, Te, and T', which should in

turn result in better estimates of the remaining parameters. Similarly, a statistical

model that is better suited to the waveform models used should result in higher SID

scores. Integration with traditional vocal tract measures is also a problem. The

source data is calculated on a pitch period basis, while mel-cepstra are traditionally

calculated using a fixed window size and shift. Even when the vocal tract information

is calculated on a pitch period basis, integration of source and filter information may

not increase scores, due to modeling problems, as demonstrated by the drop in female

ID rate from 93.6% to 92.7% when source information was added to LPC derived

cepstral coefficients.

It is difficult to demonstrate conclusively that we have achieved a nearly complete

separation of the source and filter in our estimation procedure. One indication of both

the importance of source information and the separation of vocal tract information is

that SID scores for lpc-cepstrum parameters calculated during the closed phase are

lower than for lpc-cepstrum parameters calculated during the open and closed phase.

The lower scores indicate that information that is being captured during the entire

pitch period is not present during the closed phase. We attribute this information to

the source, which is not being modeled by the vocal tract estimates calculated during

the closed phase.

The ripple present in the glottal flow derivative waveform will contain significant

formant information. For this reason, the ripple must be modeled in a way that

excludes vocal tract information. Pulse skew, due to loading of the flow by the

vocal tract, will also contain vocal tract information, although this has not been

mentioned previously. Fant states in [13] that a narrow pharynx will result in a
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higher characteristic impedance of the back end of the vocal tract, which will result

in more loading of the glottal flow than a wide pharynx. The amount of pulse skew

will therefore contain information about the diameter of the pharynx. Pulse skew will

also be determined by the speed of glottal closure, so a technique is needed to separate

these two causes of pulse skew, in order to identify the portion that is independent

of the vocal tract.

Estimation and Modeling of Degraded Speech

The problem of estimation and modeling in degraded environments, such as telephone

speech, has not been carefully studied. The current algorithms do not work well on the

NTIMIT database. Despite this difficulty, we have found that combining speech and

source information for the NTIMIT database can significantly increase SID scores.

We feel that the key difficulty in estimating the glottal flow derivative from degraded

speech is that the current algorithm is a time-domain algorithm, which requires phase

coherence. Simple phase compensation experiments gave promising results, but more

detailed study is needed. By estimating a linear filter to approximate the differ-

ence between the TIMIT and NTIMIT form of an utterance, and inverse filtering

the degraded speech with this filter, we were able to achieve glottal flow derivative

waveforms that looked more similar to the waveforms estimated from TIMIT speech.

A frequency domain approach to modeling the glottal flow may give a solution to the

problem of estimation for degraded speech. Another potential solution is to separately

estimate closed phases for different formants, and estimate each formant during the

time when it indicates the glottis is closed.

Multiple Pulses and Other Unusual Examples

The examples presented in this thesis were chosen to illustrate certain points, but

are still typical examples. We now present four examples of more unusual situations.

Figure 7-1 shows these four examples. The small pulses superimposed on the glottal

flow derivative waveforms show the times of glottal closure and opening as identified



through the modulation for the first formant, while the large pulses represent the

initial estimates of the time of the glottal pulse.

The first two examples show multiple points of excitation. The secondary exci-

tation is particularly easy to see in the speech signal for the second example, as the

second formant is clearly re-excited at the second pulse. We have found that such

multiple pulses occur primarily for speakers with very complete glottal closure. We

propose that these pulses result from the large energy in the vocal tract suddenly be-

ing dissipated through the glottis. As the glottis opens, the vocal tract filter changes,

and the formants are re-excited as demonstrated in figure 3-6 of section 3.2.2. This

reasoning for secondary pulses may in part explain the improved SID scores achieved

by measuring energy onset times in formant bands using the Teager operator as seen

in [44].
The third example shows a case of very large ripple. The fourth example illustrates

that the closed phase is occasionally identified incorrectly. The closed phase following

the more impulse-like pulse is seen to have the glottal opening estimate occur later

than it should. This results in some source information being included in the vocal

tract filter, and thus a more white glottal pulse after inverse filtering.
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Figure 7-1: Four examples of unusual glottal flow derivatives. In each case, the speech
waveform is shown above the glottal flow derivative waveform. Superimposed on the
glottal flow derivative waveform are small pulses indicating the timing of the glottal
opening, closure, and pulse. Panels (a) and (b) show evidence of multiple pulses,
likely due to the sudden onset of ripple. Panel (c) shows a case of a large amount
of ripple, while panel (d) shows an error in identification of the closed phase and the
resultant incorrect glottal flow derivative waveform.
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