
VISCOPLASTICITY AND DAMAGE MECHANICS MODELS FOR
RATE-DEPENDENT MATERIALS AND THEIR APPLICATION TO ICE

by

Dong Ho Choi

B.S., Civil Engineering, Hanyang University (1984)

M.S., Civil Engineering, Hanyang University (1987)

M.S., Civil Engineering, Georgia Institute of Technology (1987)

Submitted to the Department of Civil and Environmental Engineering

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Author

November 1996

@Massachusetts Institute of Technology 1996. All rights reserved.

epartment of Civil and Environmental Engineering
November 8, 1996

Certified by

Jerome J. Connor
Professor of Civil and Environmental Engineering

Thesis Supervisor

Accepted by
Pfessor Joseph M. Sussman

Chairman, Departmental Committee on Graduate Studies

JAN 2 9 1997

B r Al



VISCOPLASTICITY AND DAMAGE MECHANICS MODELS FOR
RATE-DEPENDENT MATERIALS AND THEIR APPLICATION TO ICE

by
Dong Ho Choi

Submitted to the Department of Civil and Environmental Engineering
on November 8, 1996, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computational Structural Mechanics

ABSTRACT
The objective of this work is to develop a physically-based constitutive model for rate-

dependent materials based on the underlying deformation mechanisms and microstructural
properties. The inelastic deformation of polycrystalline ice is highly non-linear and depends
on loading rate and temperature, as well as on the granular microstructure. These phe-
nomena are attributed to several processes such as intergranular processes, movement and
production of dislocations within grains, the creep anisotropy of ice single crystals, and
damage accumulation due to microcracking. In particular, the following is considered in this
thesis: the viscoplastic behavior of single crystal ice; the relaxation process of polycrystalline
ice; the viscoplastic and damage-enhanced viscoplastic behavior of polycrystalline ice.

In the first section, a constitutive creep model for single crystal ice based on experimental
results and on the multiplication process of mobile dislocations is developed. In this model,
the primary mechanism is considered to be the dislocation motion on the basal planes of
single crystal ice due to strong creep anisotropy. The preferred crystallographic orientation
and temperature of single crystal ice are incorporated in describing both the elastic and the
inelastic deformations.

The second section presents a model of anelastic response in polycrystalline ice under
cyclic loading. This model is developed on the basis of a linear relationship between anelas-
tic strain and stress, and the distribution of relaxation times which can be measured from
loss compliance. This study examines the influence of frequency and amplitude of cyclic
loading on low anelastic strains.

The third section develops a constitutive model of transient creep in orthotropic poly-
crystalline ice. The primary mechanisms controlling transient creep are considered to be the
motion and production of dislocations within grains and the creep anisotropy of constituent
crystals. In this model, the internal stresses, kinematic back stress and isotropic drag stress,
are introduced to describe various states of the microstructure of the material. Major fea-
tures of the model include the hardening and recovery processes in the evolution equations
of the internal stresses.

In the fourth section, a multiaxial damage-enhanced creep model for orthotropic poly-
crystalline ice is presented. This model has been developed in the framework of continuum
mechanics using the concept of internal state variables. The proposed evolution equations
of internal state variables describe the changing substructure due to the movement and the
generation of dislocations and the accumulation of damage due to microcracking. Material
and damage anisotropy are formulated to describe the importance of the directional nature
of material behavior. The model predictions are in good agreement with experimental data.
Thesis Supervisor: Dr. Jerome J. Connor
Title: Professor of Civil and Environmental Engineering
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Chapter 1

INTRODUCTION AND
OBJECTIVES

1.1 Introduction

The discovery of oil and gas in the Arctic has stimulated the design of large offshore struc-

tures. Accurate estimation of ice forces on these structures became necessary for safe and

economical design. In a typical ice-structure interaction problem, the strain rates in an

ice plate vary spatially and temporally by several orders of magnitude so that a realistic

analysis must consider both creep with damage and purely brittle elastic damage. In order

to develop rational theories for predicting ice loads at structural-scale and using ice as a

structural material, laboratory-scale testings under controlled conditions are essential not

only to identify the physical mechanisms of ice under various loading conditions but also to

develop constitutive theories for the deformation processes of ice.

In most engineering problems, ice exists at homologous temperatures exceeding 0.9. At

these high temperatures, the creep of ice cannot be completely suppressed even at relatively

high loading rates in the brittle deformation domain. Experimental studies on the creep

behavior of ice have been carried out since the 1950's. Glaciological considerations provided

much of the initial motivation for this research. The increasing military and economic

interests in the northern Arctic resulted in continuing experimental efforts to define the

creep and strength behavior of sea ice. The effects of stress, temperature, microstructure,

and chemical impurities on the inelastic deformation of ice have been extensively examined



both in the laboratory and in the field.

Even though substantial progress has been made in the past years with regard to physics

and mechanical properties of ice from experiments, the constitutive modeling of ice is a

difficult task due to highly rate-dependent phenomena, which include creep, microcracking,

and failure. Generally, the deformation and progressive failure of ice is governed by three

primary mechanisms: flow, distributed cracking, and localized cracking. In particular, ice

may display purely ductile, purely brittle, or combined behaviors, which depend greatly on

the temperature and loading conditions. For example, when ice is loaded under low strain

rates or low stresses, viscoplasticity theory for the primary mechanism associated with flow

is appropriate. However, when high strain rates or high stresses are applied to ice, it fails

due to the nucleation and propagation of microcracks. For this purely brittle behavior, frac-

ture mechanics is the primary mechanism associated with localized cracking which has to

be modeled to capture the failure strength. During ductile-to-brittle transition, where ice is

subjected to intermediate strain rates and stresses, damage mechanics associated with dis-

tributed cracking combined with viscoplasticity theory is appropriate. Such deformations are

accompanied by the formation and stable growth of microcracks under compressive loading.

There is a difference between tensile and compressive fracture: in tension a few microcracks

nucleate and propagate unstably causing failure while in compression many microcracks nu-

cleate and extend stably until they interact either causing final failure or enhancing creep

by increasing the number of microcracks.

Both the elastic and inelastic behaviors of ice are of great importance in a broad range

of ice mechanics problems. Many investigators have studied the inelastic deformation of ice.

Many constant stress tests or constant strain-rate tests and studies of deformation mecha-

nisms have characterized the ice behavior during the last several decades (e.g., Glen, 1955;

Brill and Camp, 1961; Barnes et al., 1971; Weertman, 1973; Goodman et al., 1981; Mellor

and Cole, 1982; Duval et al., 1983; Jacka, 1984). Most studies of creep in polycrystalline

ice have emphasized the stress dependence of steady-state creep rate under constant stress

test, which follow empirically the power-law creep. Recent work focuses largely on transient

creep of freshwater ice, since engineering applications invariably involve complex thermal

and mechanical histories.

Many constitutive models (e.g., Michael, 1978; Sinha, 1978; Ting and Shyam Sunder,



1985; Ashby and Duval, 1985; Shyam Sunder and Wu, 1989a,b) have been developed for

the viscoelastic and viscoplastic behaviors of ice. Michel (1978) suggested a model based on

easy slips on basal planes with grain boundary sliding to accommodate total deformation of

polycrystalline ice. Sinha (1978) proposed a phenomenological viscoelasticity model based on

the mechanism of grain boundary sliding responsible for transient creep. In Sinha's model,

an exponent in relaxation time is used to account for the distribution of relaxation time

implicitly. The approaches taken by Liiboutry and Duval (1985), Ashby and Duval (1985),

and Shyam Sunder and Wu (1989a,b) incorporate the deformation mechanisms in their

models. The central idea is the creep anisotropy, which exists in the hexagonal ice crystals.

Ashby and Duval (1985) developed a model based on two types of systems in which creep

occurs along the basal (easy) systems with loading, then relaxes as stress transfers from the

basal to the non-basal (hard) systems. This relaxation or redistribution of stress generates

directional elastic internal stress or back stress, which reverses creep upon unloading. Shyam

Sunder and Wu (1989a,b) developed a transient creep model using internal state variables,

which describe the changing microstructures. To describe better both primary creep and the

response to increments and decrements of the applied load, Meyssonnier and Goubert (1994)

suggested a model based on a decomposition of the viscoplastic strain into two components,

which account separately for the kinematic and the isotropic hardenings. However, these

models discussed above are proposed primarily to describe strain-hardening behavior in

transient creep, without consideration of effects of microcracks.

More recently, in order to incorporate the effect of microcracks, several approaches have

been taken to describe damage processes (Sinha, 1988; Choi and Karr, 1989; McKenna et

al., 1989; Schapery, 1991; Jordaan and MeKenna, 1991; Zhan et al., 1994). Generally, the

formation of microcracks will influence the mechanical behavior of material by reducing the

elastic constants, enhancing inelastic strain, and producing macrocrack. To quantify the

effect of elastic damage due to microcracks, Wu and Shyam Sunder (1992), Wu and Niu

(1995) performed a theoretical analysis of crack nucleation in isotropic polycrystalline ice

using the mechanism of elastic anisotropy of the constituent single crystals. Although most

of these models may be useful in particular loading conditions such as a constant strain rate

at a given temperature, none of them really represent the overall deformations of ice.



1.2 Problem Statement and Research Objectives

The objective of this thesis is to develop a physically-based constitutive model suitable for

computational simulations to explain and predict the macroscopic behavior of polycrystalline

ice. The development of a physically-based constitutive theory that strongly depends upon

fundamental knowledge of the underlying mechanisms, which governs physical and mechan-

ical behavior of ice under various loading histories, would ultimately improve the use of ice

as a structural material.

Figure 1-1 illustrates the mechanisms related to macroscopic phenomena at different

scales such as crystal-scale, laboratory-scale, and structural-scale. At crystal-scale, the mo-

tion and the multiplication process of mobile dislocations are responsible for the inelastic

deformation.

At laboratory-scale, many deformation mechanisms operate at microstructural scale to

induce flow and damage responses due to microcracking. These deformation mechanisms

highly depend on loading rate, temperature, and ice types (e.g., freshwater and sea ice).

Flow is attributed to the glide and the climb of dislocations, and to creep anisotropy due to

the hexagonal structure of ice. Damage due to microcracking is caused by several mechanisms

such as dislocation pile-up, grain boundary sliding, and elastic anisotropy. The local internal

stresses induced by these mechanisms nucleate many stable microcracks under compression.

In tension, a few microcracks lead to unstable cracks and the failure of the specimen. In

this study, the aim is to develop physically-based uniaxial and multiaxial models, which are

highly rate- and temperature-dependent, to describe the flow and damage,

At structural-scale, engineers are greatly interested in estimating ice forces against struc-

tures (e.g., offshore structures, ships, bridge piers, harbor structures, and submarines). Many

failure mechanisms (e.g., creeping, cracking, crushing, bending, buckling, thermal cracking),
which greatly influence the ice forces, depend on the loading velocity of ice plate, the aspect

ratio between the thickness of ice plate and the width of structures, and the shape of the

structures. The other application of ice mechanics is the use of ice as a structural material

(e.g., ice roads, parking lots, and airplane runways).

The effect of microcracks on the elastic properties has been studied by many people

since the early 1970's. In these studies, the elastic constants, such as modulus and Poison



ratio, are estimated in terms of a parameter, the so-called crack density. However, the

effect of microcracks on the creep properties is less known. The relative importance of the

effects of microcracks on the elastic and inelastic deformations may depend on the material

and operating conditions. For example, when concrete is loaded at room temperature after

curing for a month, microcracks will influence the elastic deformation more than the inelastic

deformation. However, studies have reported that the inelastic deformation in ice is highly

enhanced by microcracks, whereas microcracks almost do not affect the elastic deformation.

This study incorporates the effects of microcracks on the inelastic deformation for the

development of a damage-enhanced creep model. The model can describe strain softening

after a peak stress under constant strain-rate loading. Damage accumulation due to rate-

sensitive microcracking is considered to be the cause of tertiary creep and strain softening.

A constitutive transient creep model has been developed for freshwater polycrystalline

ice by Shyam Sunder and Wu (1989a,b). The generalization of this model and the evolution

equations associated with the activity of dislocations and microcracking are required to reflect

additional features in ice behavior under various loading histories and test temperatures.

With the objective of developing a constitutive model for the analysis of the ice-structure

interaction problem, the following tasks are identified: (i) the development of physically-

based constitutive equations in the framework of continuum mechanics using the concept

of internal state variables and (ii) the development of the evolution equations of internal

state variables that describe the changing substructure and accumulation of damage due to

microcracking.

1.3 Research Approach and Organization of Thesis

The principal objective of this thesis is to develop constitutive equations to describe in-

elastic deformation of highly rate-dependent solids, especially ice, based on the underlying

deformation mechanisms.

A physically-based constitutive theory is developed in the framework of continuum me-

chanics using the concept of internal state variables. This work includes the identification

of underlying physical mechanisms of deformation under various loading histories. The gen-



eral approach being followed to develop the proposed model consists of three steps: (a) the

mathematical formulation of a constitutive model based on internal state variables describ-

ing the evolution of the material substructures; (b) the development of robust methods for

determining material parameters and functions; and (c) the validation of the constitutive

model against available experimental data through numerical simulation.

In the constitutive model, we will consider freshwater polycrystalline ice, with mean

grain sizes between 1 and 10 mm of single-phase ice of hexagonal structure at temperature

between -10 and -50 0 C (above 0.80 TM), and strain rates between 10- 7 and 10 - 3 s- 1.

Within the ductile and the ductile-to-brittle regimes, deformation is governed by dislocation

movements and microcracking in grains and at grain boundaries. In particular, we compare

the developed model with the following experimental data: constant stress tests and constant

strain rate tests, and tensile-compressive cyclic loading tests.

This thesis is organized in the following way. In Chapter 2, background in ice mechanics

and current understanding of the mechanical properties of ice are discussed.

Chapter 3 describes a constitutive creep model for single ice crystal, which exhibits highly

rate- and temperature-dependent behavior and a strong dependence on the basal-plane ori-

entation. In this model, the inelastic deformation is attributed to the multiplication process

of mobile dislocations on the basal planes due to strong creep anisotropy. Material prop-

erties used in the model are the dislocation velocity and the changing dislocation density

based on experimental data. The proposed uniaxial creep model is extended to a biaxial

model by allowing inelastic deformation only along the basal planes. This chapter includes

parametric studies to understand better the dependence of macroscopic stress-strain curves

on microstructural parameters. The chapter also compares the model predictions with ex-

perimental data.

Chapter 4 discusses the relaxation process of polycrystalline ice under cyclic loading. In

polycrystalline ice, unlike in single ice crystal, the strong creep anisotropy and intergranular

processes generate an internal stress field, which activates dislocation sources. The internal

stresses and their distributions affect the mechanical properties of ice through the microstruc-

ture and its variation due to time-dependent relaxations. The study of its temperature-

dependent or frequency-dependent internal friction spectra proves the existence of the dis-

tributed relaxations. Since the internal friction is produced from anelastic strain due to



dislocation movements or grain boundary sliding under cyclic stress (Cole, 1995; Tatibouet

et al., 1986), the distribution of relaxation times from the internal friction measurements is

considered for the relatively low anelastic strain. This chapter describes a constitutive model

of anelastic creep model in polycrystalline ice under cyclic loading. This anelastic model is

developed on the basis of the linear relationship between anelastic strain and stress and

the distribution of relaxation times. Numerical results and experimental data of reversed

direct-stress are compared.

Chapter 5 develops a ductile constitutive model of polycrystalline ice using internal vari-

ables and their relations with the underlying physical mechanisms of deformation. The

constitutive theory is formulated based upon the dominant dislocation-based deformation

mechanism. The dislocations in the crystals provide obstacles for mobile dislocations, which

lead to work hardening. As the strain rate decreases during transient creep in constant stress

tests, or the flow stress increases in constant strain rate tests, polycrystalline solids exhibit

work hardening, which can be explained by an increase in the dislocation density with in-

creasing strain. The decrease of work hardening rate is attributed to recovery processes due

to the rearrangement and annihilation of dislocations during deformation. The transient

behavior results from competing work hardening and recovery processes due to production,

rearrangement and annihilation of dislocations. In the limit of steady-state deformation a

balance between strain hardening and recovery processes is reached. Major features of this

model include recovery functions in addition to internal back stress and isotropic stress,

which are introduced to simulate transient creep during loading. The model predictions are

then compared with experimental data (Jacka, 1984; Mellor and Cole, 1982).

Chapter 6 describes a multiaxial constitutive damage-enhanced creep model for or-

thotropic polycrystalline ice. This chapter evaluates highly rate- and temperature-dependent

mechanical behavior based on the movement and generation of dislocations and microcrack-

ing. Experimental results under constant stresses and constant strain rates show the occur-

rence of microcracking, which enhances the inelastic deformation. This study incorporates

the effects of microcracks on the inelastic deformation for the development of a damage-

enhanced creep model. The model can describe strain softening after a peak stress under

constant strain-rate loading. Damage accumulation due to rate-sensitive microcracking is

considered as a cause of tertiary creep and strain softening. This chapter formulates the

inelastic material anisotropy and the damage-enhanced material anisotropy to describe the



directional nature of material damage. The model predictions are compared with experi-

mental results.

Finally, Chapter 7 summarizes the findings. It discusses conclusions and suggests possible

future research.



References

[1] Ashby, M. F. and Duval, P. (1985). The creep polycrystalline ice. Cold Regions Science
and Technology, Vol. 11, No.3, pp. 285-300.

[2] Barnes, P., Tabor, D. and Walker, J.C.F. (1971). The friction and creep of polycrys-
talline ice. Proc. Royal soc. London, ser. A, 324, pp. 127-155.

[3] Brill, R. and Camp, P.R. (1961). Properties of ice. U.S. Army Snow, Ice and Permafrost
Research Establishment, Research Report 68, 48p.

[4] Choi, K. and Karr, D.G. (1989). A damage mechanics model for uniaxial creep and
cyclic loading of polycrystalline ice. Proc. 8th Int. Conf. Offshore Mech. and Arctic
Eng., ASME, Vol. 4, pp. 75-82.

[5] Cole, D.M. (1990). Reversed direct stress testing of ice: Initial experiment results and
analysis. Cold Regions Science and Technology, Vol. 18, No.3, pp. 303-321.

[6] Cole, D.M. (1995). A model for the anelastic straining of saline ice subjected to cyclic
loading. Philosophical Magazine, In press.

[7] Derradji-Aouat, A., Sinha, N. K. and Evgin, E. (1993). Experimental study of the
behavior of columnar grained ice subjected to cyclic loading. Proc. 12th Int. Conf.
Offshore Mech. and Arctic Eng., Vol. 1, pp. 21-28.

[8] Duval, P., Ashby, M.F. and Anderman, I. (1983). Rate-controlling processes in the creep
of polycrystalline ice. The Journal of Physical Chemistry, Vol. 87, No. 21, pp. 4066-4074.

[9] Glen, J.W. (1955). The creep of polycrystalline ice. Proc. Royal Soc. London, Ser. A,
288(1175), pp. 519-538.

[10] Goodman, D.J., Frost, H.J. and Ashby, M.F. (1981). The plasticity of polycrystalline
ice. Philosophical Magazine A, 43(3), pp. 665-695.

[11] Gottstein, G. and Argon, A.S. (1987). Dislocation theory of steady state deformation
and its approach in creep and dynamic tests. Acta Metallurgica, 35(6), pp. 1261-1271.

[12] Hobbs, P.V. (1974). Ice Physics. Clarendon Press, Oxford.

[13] Jacka, T.H. (1984). The time and strain required for development of minimum strain
rates. Cold Regions Science and Technology, Vol. 8, pp. 261-268.

[14] Jordaan, I.J. and McKenna, R.F. (1991). Processes of deformation and fracture of ice
in compression. Proc. IUTAM/IAHR Symp. on Ice-Structure Interaction, Jones, S.J.,
MeKenna, R.F., Tillotson, J. and Jordaan, I.J. (Ed.), Springer-Verlag, pp. 283-309.

[15] Llibouty, L. and Duval, P. (1985). Various isotropic and anisotropic ices found in glaciers
and polar ice caps and their corresponding rheologies. Annales Geophysicae, Vol. 3, pp.
207-224.



[16] McKenna, R.F., Meyssonnier, J. and Jordaan, I.J. (1989). Peak pressures from a damage
model for ice compression. Proc. 8th Int. Conf. Offshore Mech. and Arctic Eng., The
hague, The Netherlands, Vol. IV, pp. 67-73.

[17] Mellor, M. and Cole, D. (1981). Cyclic loading and fatigue in ice. Cold Regions Science
and Technology, Vol. 4, pp. 41-53.

[18] Mellor M. and Cole, D. (1982). Deformation and failure of ice under constant stress or
constant strain rate. Cold Regions Science and Technology, Vol. 5, pp. 201-219.

[19] Meyssonnier, J. and Goubert, A. (1994). Transient creep of polycrystalline ice under uni-
axial compression: an assessment of internal state variable models. Annals of Glaciology,
Vol. 19, pp. 55-62.

[20] Michel, B. (1978). The strength of polycrystalline ice. Canadian Journal of Civil Engi-
neering, Vol. 5, No. 3, pp. 285-300.

[21] Schapery, R.A. (1991). Models for the deformation behavior of viscoelastic media with
distributed damage and their applicability to ice. Proc. IUTAM/IAHR Symp. on Ice-
Structure Interaction, Jones, S.J., MeKenna, R.F., Tillotson, J. and Jordaan, I.J. (Ed.),
Springer-Verlag, pp. 191-230.

[22] Sinha, N.K. (1978). Rheology of columnar-grained ice. Experimental Mechanics, Vol.
18, No. 12, pp. 464-470.

[23] Sinha, N.K. (1988). Crack enhanced creep in polycrystalline material: strain rate sen-
sitive strength and deformation of ice. Journal of Mater. Sci., Vol. 23, pp. 4415-4428.

[24] Shyam Sunder, S. and Wu, M.S. (1989a). A differential flow model for polycrystalline
ice. Cold Regions Science and Technology, Vol. 16, No. 1, pp. 45-62.

[25] Shyam Sunder, S. and Wu, M.S. (1989b). A multiaxial differential model of flow in
orthotropic polycrystalline ice. Cold Regions Science and Technology, Vol. 16, No. 2,
pp. 223-235.

[26] Tatibouet, J., Perez, J. and Vassoille, R. (1987). Study of grain boundaries in ice by
internal friction measurement. Journal of Physique, Colloque C1, No 12, 48, C1-197 to
C1-203.

[27] Ting, S.-K. and Shyam Sunder, S. (1985). Constitutive modeling of sea ice with appli-
cations to indentation problems. MIT SCEOE Research Report No. 3.

[28] Weertman, J. (1973). Creep of Ice. Physics and Chemistry of Ice, Whalley, E., Jones,
S.J. and Gold, L.W. (Editors), pp. 320-337.

[29] Wu, M.S. and Niu, J. (1995). Micromechanical prediction of the compressive failure of
ice, Part I: Model development. Mechanics of Materials, Vol. 20, pp. 9-32.



[30] Wu, M.S. and Shyam Sunder, S. (1992). Elastic anisotropy and micro-damage processes
in polycrystalline ice, Part I: Theoretical formulation. International Journal of Fracture,
Vol. 55, pp. 223-243.

[31] Zhan, C., and Evgin, E. and Sinha, N.K. (1994). A three dimensional anisotropic con-
stitutive model for ductile behavior of columnar grained ice. Cold Regions Science and
Technology, Vol. 22, pp. 269-284.



PHYSICALLY-BASED CONSTITUTIVE MODELING OF ICE
I I

SCALE SCIENTIFIC APPROACH MECHANISMS PHENOMENA
I I

100 m
COMPUTATIONAL ALGORITHMS & MODEL Elastic Buckling

< I Ice Forces (Ice-Structure Interactions) : Creep Buckling
SScale-dependent

* Ice Deflections (Use of Ice as Structural Material) Creeping Scale-dependent
Creeping Failure Modes

S WIND

CURRENT

Kalial & .ircumierential

Cracking

Spalling Rate-dependent
Failure Modes

Crushing

C12

0

Cd

EC

vislocation rile-up i DamageI I
Grain Boundary Sliding

I I
I I

Elastic Anisotropy Failure
M I

1cm Columnar-grained ice Equiaxed granular ice
I I

Dislocations Glides &
Multiplication Flow

m 1 mm 1 Grain , II

mFlexural Failure

PHYSICALLY-BASED CONSTITUTIVE MODEL:

* Uniaxial & Multiaxial Flow and Damage Model Dislocations

e Rate, Temperature, Ice type dependent Model Glide & Climb Flow

I Fracture Model : Creep Anisotropy
Ien i Ur_ _h_-_

0

0i--



Chapter 2

BACKGROUND IN ICE
ENGINEERING

This chapter discusses issues and current understanding in ice engineering, the physical

deformations and fracture processes in polycrystalline ice at different scales. In addition, a

brief review of the mechanical properties of ice is given.

2.1 Introduction

For centuries, the ice cover challenged mariners attempting polar navigation. For a long time,

engineers have been challenged by the problems of constructing bridges across ice-covered

waters. To achieve a scientific understanding of ice interaction with man-made structures,

experimental programs on creep and fracture behavior of ice have been carried out since the

1950's. Broadly speaking, research in ice engineering may be classified into six major areas:

1. Ice loads on structures (e.g., offshore, ship, bridge and harbor structures);

2. Use of ice as a structural material (e.g., ice roads and bridges, ice barriers for protecting

offshore structures);

3. Ice penetration by structures (e.g., submarines, missiles, conical structures);

4. Ice adhesion on structures (e.g., highways, bridges, aircrafts, ships, offshore and hy-

draulic structures, and electrical/communications network);



5. Geophysics of ice movement (e.g., glacier flow, dynamics of icebergs and sea ice); and

6. Soil mechanics (e.g., frozen soil, permafrost engineering).

The following chapters are primarily focused on the first two areas, although the un-

derstanding and theories that have been developed are general and relevant to most of the

areas above. Significant progress has been made in sea ice mechanics in the last 30 years.

A significant number of problems remain unresolved in order to ensure sound engineering

and cost-effective solutions. Recently, the U.S. Navy Office of Naval Research has initiated

a research program, named the Sea Ice Mechanics Initiative, to bridge the different fracture

properties at various scales and to develop physically-based constitutive and fracture mod-

els for the corresponding deformations and fracture processes (Proceedings SIM and AMW,

1995). In the following sections, a brief overview of engineering practices in estimating ice

loads and the current understanding of physical processes at different scales is described

briefly.

2.2 Ice Loads on Offshore Structures

For the purposes of calculation of design loads for offshore structures, it is convenient to

divide ice-loading scenarios in two broad categories: static and dynamic. The loading state

is static if ice exists in stationary contact with a structure and then experiences an increasing

load applied to it by natural driving forces such as current and wind. The loading state is

dynamic if an ice feature is not initially in contact with a structure, but arrives and strikes it

with appreciable velocity. In addition, ice loads is also significantly affected by the shape of

the structure and the resulting failure modes. For instance, ice will fail in bending on conical

structures, in crushing on narrow vertical structures, and sometimes in mixed mode failures

against wide structures. The ability to predict ice loads requires that these failure modes be

understood and predicted as a function of both ice feature geometry (size and thickness),

ice type and structure shape and stiffness. The load magnitudes are also a function of

ice strength and size of failure zones, as well as other factors such as friction and clearing

processes. The ice strength is greatly affected by ice temperature, salinity and loading rate.

Inertia effects may be important in dynamic loading. The maximum size or thickness of

these ice features is an important factor in designing structures.



A classical ice force problem is that of ice sheets interacting with a vertically-faced inden-

ter. Figure 2-1 shows these interactions for both cylindrical structures and conical structures

when they are surrounded by a variety of ice features including continuous ice sheet, ice ridges

contained in ice floes, discrete ice floes, ice rubble features, icebergs and extreme features

such as ice inlands.

The use of lower ice loads is important in lowering the costs of offshore platforms for

oil and gas development in ice covered regions. The structures must be designed for two

levels of loading. The total integrated force on the structure, the global force, governs the

overall structural geometry and foundation design, while the actual distribution of force on

segments of the structure, the local pressure, dictates the design of local framing and wall

thickness. Experimental data on local pressures, on the other hand, vary by a factor of up

to 100 for a given indentation area of contact.

Figure 2-2 shows a pressure-area curve which plots the local peak pressure P/Dh as a

function of contact area, i.e., the product of structural diameter D and ice thickness h , shows

a strong scale effect. The data set covers a wide variety of ice types (freshwater S2 ice, first-

year and multi-year sea ice) and a wide variety of test conditions (laboratory experiments,
in situ jacking tests, measurements on various structures, and full-scale interactions with

islands). All data are raw and have not been corrected for temperature or salinity. Local

pressures at failure measured under small-scale laboratory conditions are more than 100

times larger than those measured during full-scale interaction. The general trend in this

Figure is that the average stress required to fail a large area of ice is much lower than that

required to fail a small volume of ice.

Laboratory-scale ice specimens exhibit the local pressures that can exceed 6 MPa whereas

the pressures measured from structural-scale interactions can be as small as 1 MPa. Ice-

structure interactions (first-year sea ice) at structural-scales indicate that average ice failure

pressures are generally less than 1 MPa, an order of magnitude lower than that predicted

by laboratory-scale compressive strength tests. In order to increase the understanding of

ice-structure interaction phenomenon and to better predict ice forces, additional research on

the fundamental properties of laboratory-scale ice is required.

At this point, there is no rational model based on a physical mechanism that explains this

phenomenon. Therefore, predictions of ice forces are mostly based on empirical relationships



and simplified analytical procedures. These issues and current practices are addressed in

details (e.g., Sanderson, 1988; Blanchet, 1990; Croasdale, 1988). Currently, two standards for

the design of offshore platforms in ice are used. These are the American Petroleum Institute

Recommended Practice (API RP2N) "Planning, Designing and Constructing Fixed Offshore

Structures and Pipelines for Arctic Conditions" and the Canadian Standards Association

Standard (CAN/CSA-471-92) "General Requirements, Design Criteria, the Environment,

and Loads".

2.3 Multiple-scale Processes

2.3.1 Structural-scale Processes

Figure 2-3 shows schematically failure mode map of ice as a function of two parameters;

indentation rate, defined as the ratio of ice sheet velocity to the indenter diameter, and

aspect ratio, defined as the ratio of indenter diameter to ice sheet thickness. The limiting

ice loads and the associated modes of failure of the ice sheet during indentation depend

principally on the values of these two parameters. In particular, failure occurs as a result

of buckling, creeping, cracking, spalling, and crushing. A schematic of the individual failure

modes (mechanisms) is given in Fig. 2-4.

As shown in Fig. 2-3, creep is the dominant mode of failure when ice movements are slow,

while purely brittle behavior dominates failure when ice movement is fast. Cracking may be

either localized or distributed. Localized cracks are typically long but few in number; they

are responsible for large-scale fractures in the form of radial, circumferential, and spalled

cracks. Distributed cracks are, on the other hand, typically short but extremely large in

number; they are responsible for small-scale fractures, also so-called damage, in the form of

crushed or pulverized ice.

Ice loads generally reach a maximum at indentation rates which defines the transition

from ductile to brittle behavior. As the failure map indicates, the ductile-to-brittle transition

is characterized by the simultaneous occurrence of multiple failure modes. Due to difficulties

in analyzing multiple failure modes simultaneously, the separate analysis of the ductile and



purely brittle indentation problems has been undertaken in the literature.

2.3.2 Laboratory-scale Processes

Ice formed from sea-water, or sea ice, is the material of prime interest in the design of

offshore structures. However, one of the remarkable properties of ice is that it effectively

rejects almost all impurities as it crystallizes. Consequently the solid ice phase in sea ice

is very pure, although pockets of salt-water are interspersed in the matrix of pure ice. If

we allow for the presence of such brine pockets, studies generally find that the mechanical

behaviors of sea ice and freshwater polycrystalline ice are very similar. Thus a primary

focus on the mechanical behavior of freshwater polycrystalline ice is acceptable. With the

understanding of pure ice, we can model sea ice by accounting for brine pockets.

Ice forms from liquid water and preserves some of the geometric features of the water

molecules. The geometric configuration of single crystal ice is presented in Fig. 2-5. The

arrangement of molecules in individual crystals (or grains) of terrestrial ice is hexagonal

in structure. The plane parallel to the layer structure is known as the basal plane. The

direction perpendicular to the basal plane is known as the c-axis of the crystal. The elastic

and creep properties of single crystal ice are different in different directions, i.e., they display

anisotropic material behavior.

In nature, ice forms in a variety of ways that depend on growth processes and thermal

and mechanical histories. A classification system for freshwater river and lake ice on the basis

of its genesis, structure and texture was given by Michel and Ramseier (1971). Because this

thesis considers granular and columnar-grained (T-type, S-type) polycrystalline ice, a brief

identification of these two types of ice is given.

Granular ice (snow ice or consolidated slush ice) is a conglomerate of randomly-oriented

grains, also known as equiaxed or randomly-oriented polycrystalline ice (Fig. 2-6(a)). Colum-

nar grained ice, on the other hand, is an arrangement of ice crystals whose c-axes preferen-

tially lie in a plane. In columnar-grained S-1 ice (Fig. 2-6(b)), the c-axes of the crystals are in

the vertical plane (perpendicular to the water surface); in columnar-grained S-2 ice (Fig. 2-

6(c)), the c-axes of the crystals are randomly oriented in the horizontal plane (plane parallel

to the water surface); in columnar-grained S-3 ice (Fig. 2-6(d)), the preferred orientation of



c-axes of the crystals are in the horizontal plane (parallel to the water surface).

The macroscopic fabric of an ice sheet made up of randomly-oriented granular crystals is

isotropic even though the individual crystals are anisotropic. On the other hand, an ice sheet

made up of columnar crystals may be anisotropic. This polycrystal anisotropy, also called

fabric anisotropy, is a layered transversely isotropic material, where the material behavior

in the plane of the ice sheet is isotropic but is different from that perpendicular to the ice

sheet. The elastic and creep behaviors of polycrystalline ice depend on the microstructure

of the ice.

Figure 2-7 illustrates the behavior of single crystal ice and polycrystalline ice. Since poly-

crystalline ice is made up of single ice crystals, its behavior is affected by the properties of

individual crystals. However, significantly different responses between single ice crystals and

polycrystalline ice are reported (Weertman, 1973; Hobbs, 1974; Duval et al., 1983). These

differences may be due to such processes as intergranular processes (i.e., sliding and interlock-

ing), the distribution of crystallographic orientation of individual single crystals, alterations

of dislocation densities within crystals, and damage accumulation due to microcracking.

Among the important distinctions between single ice crystal and polycrystalline ice be-

haviors are that single ice crystal oriented for slip on the basal planes exhibits an increasing

strain rate during primary creep, whereas polycrystalline ice exhibits a decreasing strain

rate. The creep of the basal plane proceeds at a much faster rate than that of polycrystalline

ice. In the stress-strain curves under various strain rates, in single crystals oriented for slip

on the basal planes, the stress rises to an upper yield point with increasing strain, and de-

creases to a constant lower yield point, and then gives no evidence of strain hardening, while

in polycrystalline ice both strain hardening and strain softening phenomena are observed.

In single ice crystals without microcracks, the deformation of atomic bonds and the

multiplication process of mobile dislocations are responsible for the elastic and inelastic

deformations, respectively. Under different loading cases, the yield-drop of stress-strain

curves under constant strain rates and the accelerating responses under static loading are

observed.

The deformation of polycrystalline ice is much more complicated than that of single

ice crystals. Atomic bond deformation induces the elastic deformation. The corresponding



stress-strain curve is a straight line. The motion and generation of dislocations are generally

responsible for ductile responses such as strain hardening. This plastic behavior has been

studied in metals by many mechanicians.

At least five independent slip systems are necessary for accommodating large plastic

deformation without microcracks. Most of FCC and BCC metals have them. However, fewer

than five independent slip systems in ice induce non-uniform strain when the ice specimen

is loaded. As a result, microcracking occurs. The mechanisms for microcracking depend

mainly on the loading rate, temperature, and ice type. Because of a variety of ice features

and ice conditions encountered as well as highly rate- and temperature-dependent properties

of ice, analytical constitutive modeling of ice is more complex.

During a constant stress test (the so-called creep test), polycrystalline ice undergoes time-

dependent deformation. An immediate elastic strain is followed by a stage of decreasing rate

of strain, called transient or primary creep. This, in turn, is followed by stages of relatively

constant strain-rate called secondary creep and an increasing strain-rate called tertiary creep,

and then final failure.

Under a constant rate of deformation or constant strain-rate test, polycrystalline ice

displays a varying stress as it is deformed. When stress is plotted versus strain, the behav-

ior shows a strong dependence on the applied strain rate and is highly rate-sensitive. At

lower strain rates where the behavior is ductile, the stress monotonically increases up to a

maximum or steady-state value with increasing strain and the material is said to display

strain-hardening behavior. At very high strain-rates where the behavior is brittle, the stress

increases almost linearly with strain up to the point of failure as is the case for linear elastic

materials. However at intermediate strain rates corresponding to the ductile-to-brittle tran-

sition, the stress first increases to a maximum and then decreases with increasing strain; the

material displays negligible strain-hardening behavior followed by strain-softening behavior.

The deformation mode map (Fig. 2-8) plots the applied stress against the minimum

strain-rate from tests both in compression and in tension. The behavior of polycrystalline

ice in compression and in tension are similar at very low strain rates but become different as

strain rate is increased. At the intermediate and high strain rates, compressive failure occurs

due to distributed cracking or damage, while in tension the failure is governed by unstable

crack propagation. In the purely brittle region, the compressive strength is greater than



the tensile strength by a factor greater than three. The importance of the ductile-to-brittle

transition in predicting design loads stems from the fact that the failure stress in compression

reaches its maximum value in this region.

In reality, loads are imposed simultaneously in more than one direction. The resulting

multiaxial state of stress significantly influences material behavior. Jones (1982) reported

the effects of triaxial loading on the behavior of polycrystalline ice, when a cylindrical ice

sample is subjected simultaneously to an axial compressive load and a lateral confining

pressure which is proportional to the axial stress (Fig. 2-9). At low strain-rates where the

behavior is ductile, and the strength is small, the responses are insensitive to variations in

the confining pressure. At higher strain rates where brittle behavior is initiated, the strength

increases substantially with confining pressure up to a certain value since the formation of

distributed microcracks is suppressed.

Theoretical models which seek to capture the laboratory-scale deformation and failure

behavior of materials are known as constitutive models. In the simplest form, such models

are empirical and rely on mathematical expressions to fit the experimental data. On the

other hand, phenomenological models are based on the mathematical formalisms of solid

mechanics that ensure consistency with well-established physical laws such as those of ther-

modynamics. These types of models, particularly those founded on classical plasticity theory,

have been successfully used in many engineering applications. Recently-proposed microme-

chanical models are established based on the direct incorporation of microstructure, such

as inclusions, microcracks, shapes and sizes of constituents. The approach taken in this

thesis is to formulate physically-based but phenomenological models, which depend on the

fundamental knowledge of the underlying mechanisms governing mechanical behavior in the

microstructure.
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Figure 2-1: Principal types of Arctic structures: (a) upward-breaking conical structure; (b)
conical structure surrounded by grounded rubber pile; (c) conical structure with accreted ice
rubble; (d) downward-breaking conical structure, floating but moored; (e) conical structure
with ice jammed against it; (f) vertical-walled structure; (g) caisson-retained island with
grounded rubber pile; (h) grounded spray-ice island (Sanderson, 1988).
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Figure 2-2: A pressure-area curve for ice. Peak indentation pressure P/Dh is plotted against
gross contact area Dh. The average stress required to fail a large area of ice is much lower
than that required to fail a small area of ice. These data are raw and have not been in any
way corrected for temperature or salinity. (Sanderson, 1988).
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Figure 2-4: Schematic of principal failure mechanisms: (a) creep; (b) radial cracking; (c)
buckling; (d) circumferential cracking; (e) spalling; and (f) crushing (Sanderson, 1988).
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Figure 2-5: (a) Local frame of single crystal ice; (b) Reference global frame (xl-x2-x3) and
local frame (xl'-x2'-x3').
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Figure 2-6: Schematic of polycrystalline ice types: (a) equiaxed-granular ice; (b) columnar-
grained S-1 ice; (c) columnar-grained S-2 ice; and (d) columnar-grained S-3 ice.
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Figure 2-9: Multiaxial tests. (a) Geometry: under most test conditions, both axial stress and
confining pressure is compressive. (b) Plots of stress difference, axial stress minus confining
pressure, at various axial strain rates as a function of confining pressure. Microcraking occurs
in the shaded zone, but outside it, creep behavior is independent of confining pressure (data
of Jones (1982); figures from Jordaan (1986) and Sanderson (1988)).
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Chapter 3

A CONSTITUTIVE CREEP
MODEL FOR SINGLE CRYSTAL
ICE

Abstract

A constitutive creep model for single crystal ice has been formulated based on the experi-

mental results and the mechanism of the multiplication process of mobile dislocations. In

this model, the primary mechanism is considered to be the dislocation motion on the basal

planes of single crystal ice due to strong creep anisotropy. The preferred crystallographic ori-

entation and temperature of single crystal ice are incorporated in describing both the elastic

and the inelastic deformations in the creep model. Material properties used in the model

are the dislocation velocity and the changing dislocation density of single crystal ice based

on experimental data. The proposed uniaxial creep model is extended to a biaxial model by

allowing inelastic deformation only along the basal planes. Parametric studies are performed

to better understand the dependence of macroscopic stress-strain curves on microstructural

parameters. The results show strong influence of the loading rate and stress level. Compari-

son of the model predictions with experimental data shows excellent agreement over a range

of strain rates.



3.1 Introduction

The inelastic deformation of polycrystalline ice is highly non-linear and depends on the load-

ing rate and temperature, as well as on the granular microstructure. Since polycrystalline

ice is made up of individual single ice crystals, the behavior is affected by the properties of

individual crystals. However, differences in response between single crystal ice and polycrys-

talline ice are reported (Weertman, 1973; Hobbs, 1974; Duval et al., 1983). These differences

may be due to certain processes such as intergranular effects (e.g., sliding and interlocking

of grain boundaries), the distribution of crystallographic orientation of individual single

crystals, alterations of dislocation densities within grains, and damage accumulation due to

microcracking. In order to establish better understanding of the behavior of polycrystalline

ice, this paper studies the effect of dislocation densities within crystals on the macroscopic

stress-strain response for single crystal ice.

Many papers concerned with the mechanical properties of single crystals of pure and

sea ice have been published (e.g., Steinemann, 1954; Griggs and Coles, 1954; Readey and

Kingery, 1964; Higashi et al., 1964; Higashi, 1968; Jones and Glen, 1969; Doyon and Michel,

1991; Brown and Kawamura, 1991; Hu et al., 1996). These studies show experimental

results of the inelastic behavior for various levels of constant strain rate, constant stress, and

temperature. Typical stress-strain curves of single crystal ice oriented for basal glide and

subjected to constant strain rates are shown in Figure 3-1; the stress rises to an upper yield

point with increasing strain and then decreases to a constant lower yield point.

The occurrence of upper and lower yield points is exhibited by materials such as LiF,

Ge and Si. An explanation for this phenomenon was first provided by Johnston (1962), and

discussed later in the review article by Alexander and Haasen (1968). The underlying mech-

anism is designated as the multiplication process of mobile dislocations, and is attributed

to two factors: (i) an increase in the mobile dislocation density with deformation and (ii)

the dependence of the average dislocation velocity on stress. Based on observations of the

yield behavior of single crystal ice oriented for basal glide and subjected to a constant strain

rate, a mathematical description for the multiplication process has been attempted by Hi-

gashi (1968), Jones and Glen (1969), and Michel (1978). However, their models describe the

behavior of single crystal ice only for particular loading conditions such as a constant strain

rate at a given temperature.



In the present study, we develop a more comprehensive formulation for the inelastic

deformation of single crystal ice under various loading conditions and temperatures. Material

properties used in the proposed model are measurable microstructural parameters such as

the dislocation velocity and the changing dislocation density of single crystal ice. This

model accounts for rate- and temperature-dependence and for the dependence on basal plane

orientation relative to the applied loading direction. The extension of the uniaxial model to

a biaxial model is achieved by considering the hexagonal anisotropy of ice crystal structure.

The model developed in this study can be used to analyze the complex deformation of

polycrystalline ice, e.g., finite element simulation of non-homogeneous, inelastic deformation

in polycrystalline ice modeled as a collection of individual single crystals with different basal

plane orientations.

The organization of this paper is as follows. In Section 3-2, the formulation of a consti-

tutive creep model for uniaxial behavior of single crystal ice is described based on the exper-

imental observations and modified multiplication process of mobile dislocations. The model

is also extended to the biaxial case. Section 3-3 contains the results of parametric studies

performed to establish a better understanding of the dependence of macroscopic stress-strain

curves on microstructural parameters. In addition, predicted stress-strain curves based on

a particular set of parameter values are compared with available experimental data. Lastly,

conclusions are discussed in Section 3-4.

3.2 Constitutive Model of Single Crystal Ice

We consider a columnar-grained ice for which the c-axis orientation of the individual single

crystals is randomly distributed in the plane normal to the axis of the column. Michel and

Ramseier (1971) classified this ice as S2 ice. Figure 3-2 illustrates the structure of S2 ice for

the case where the column axis coincides with the x3 direction. The c-axis lies in the xl-x2

plane, and the ice is considered to be isotropic in this plane. As previously discussed, the

mechanical properties of polycrystalline ice are affected by the constituent single crystals.

These constituent single crystals exhibit high rate- and temperature-dependence and strong

dependence of basal plane orientation to the applied loading. In this section, a mathemat-

ical formulation of the inelastic deformation of single crystal ice is presented based on the



experimental observations and modified multiplication theory of mobile dislocations. The

proposed uniaxial creep model is further extended to the biaxial case.

The multiplication process of mobile dislocations in a single crystal ice involves the fol-

lowing stages. In the initial unloaded state, the density of mobile dislocations is low. When

a constant strain rate is imposed, in the initial loading stage where the change of dislocation

density is small, the stress rises linearly at small strains. As strain increases, the inelastic

strain becomes dominant, resulting from more dislocations created. As a result, their average

velocity decreases. The stress, which is related to the dislocation velocity and is required to

maintain a constant strain rate, decreases after the yield point where the dislocation multi-

plication is most intense. When a sufficient number of mobile dislocations are present, the

decreasing stress due to increasing dislocation density is balanced by work hardening, and

the stress remains essentially constant as the strain is increased further.

For a single crystal ice without microcracks, inelastic deformation is primarily due to

the motion of dislocations through the crystal. The direct observation of dislocation motion

on the basal and non-basal planes, such as the prismatic and pyramidal planes, is made

by the etch pit method (Muguruma and Higashi, 1963; Sinha, 1978; Wei and Dempsey,

1994), by X-ray diffraction topographs (Fukuda and Higashi, 1973), and synchrotron X-ray

topography (Ahmad and Whitworth, 1988; Shearwood and Whitworth, 1991). Experimental

observations of dislocations (Higashi, 1968; Fukuda and Higashi, 1973) show that single

crystal ice deforms primarily by easy glide in the basal planes, even though the motion of

dislocations is observed also on the non-basal planes. This behavior is known as strong creep

anisotropy and is explained by the fact that the shear resistance to slip on the non-basal

planes is almost 60 times higher than that on the basal plane (Duval et al., 1983).

The stress-strain curves for single crystal ice oriented for basal glide show the large yield

drop without visible microcracks, and the amount of the drop increases with increasing strain

rate and with decreasing temperature. To simulate this phenomenon, we focus our attention

on the dislocation motion on the basal plane.



3.2.1 Uniaxial Model

Consider single crystal ice with the preferred c-axis orientation for dislocation motion as

shown in Fig. 3-3. The shear stress 7 on the basal plane due to the applied stress a can

be written in terms of a function of X, the angle between the applied stress and the c-axis

orientation,

7 = uS (3.1)

where the Schmid's orientation factor, S, is defined as S = sin X cos X. The kinetic law of

dislocation glide is expressed with Orowan's equation (Orowan, 1940)

AC = bpv (3.2)

where 1C is the inelastic shear strain rate, b is the magnitude of Burgers vector, p is the

average density of mobile dislocations, and v is the average velocity of dislocations.

It has been suggested by Johnston and Gilman (1959) and Johnston (1962) that the

dislocation velocity in LiF is a function of stress and temperature. In a study of plastic

deformation of Si and Ge single crystals, Patel and Chaudhuri (1966) measured the stress

and temperature dependence of dislocation velocity. Fukuda and Higashi (1973) measured

with X-ray diffraction topographs the velocity of individual dislocations in single crystal ice

subjected to various stresses. The velocities of both the basal and non-basal dislocations have

been found to depend on stress and temperature (Ahmad and Whitworth, 1988; Shearwood

and Whitworth, 1991). These experimental studies suggest that the dislocation velocity

on the basal plane is described by a combination of the Arrhenius exponential function for

temperature and a power law for stress:

U= vo exp ( (3.3)

where vo is a pre-exponential constant with dimensions of velocity, Q is the activation energy,

R is the universal gas constant, T is the absolute temperature in degrees Kelvin, n1 is the

stress exponent, ao is the reference flow stress, and Teff is the effective shear stress defined

as the difference between the shear stress 7 and the internal back stress •-. It is noted that

the internal back stress on the basal planes opposing glide due to lattice friction is negligible,

since the flow stress for slip on the basal planes of an ice crystals is very low and dislocations



on the basal planes can move at shear stresses lower than 0.01 MPa (Duval et al., 1991; Wei

and Dempsey, 1994).

It is difficult to determine directly the relationship between p and yc from experiments.

Dislocation multiplication occurs if the stress on a dislocation along a glide plane exceeds

the Orowan stress given by various scholars (e.g., Ashby, 1969):

2pb-o = t (3.4)

where p is the shear modulus and A is an internal length-scale. As Johnston and Gilman

(1959) observed that dislocation multiplication rate increases with the mean dislocation

velocity, the rate of production of dislocations is expressed by, among others, Gittus (1975);

Amodeo and Ghoniem (1990):

p= V (3.5)

Substituting Eq. (3.5) into Eq. (3.2) results in a linear dependence of p on - c. The linear

relationship between the dislocation density and the inelastic strain has been considered in

LiF single crystals (Johnston, 1962) and in ice single crystals (Highasi, 1968; Jones and

Glen, 1969; Michel, 1978). For constant stress tests on Ge, Berner and Alexander (1967)

showed that the dislocation density increases with inelastic strain and applied stress. No

direct measurement on ice single crystals has been published yet concerning the dependence

of the dislocation density on inelastic strain and applied stress. In this study, the following

relation based on the multiplication process of mobile dislocations is assumed for the average

dislocation density

P{o ± -YC) m } ( (3.6)

where Po is the initial dislocation density, a is the rate of dislocation multiplication that may

be highly dependent on temperature, m is the inelastic strain exponent, and n2 is the stress

exponent.

Substitution of Eqs (3.3) and (3.6) into Eq. (3.2) results in

S= H {po + a(-y)m} () (3.7)



where n = (nl + n2) is the stress exponent and H is defined as

H = bvo exp ( . (3.8)

Using Eqs (3.1) and (3.7), the transformation of the inelastic shear strain rate on the basal

plane to the global axis parallel to the loading direction leads to

Kc-ýS = H Po + (.m S"- (3.9)

If the elastic deformation of the ice crystal is included, the uniaxial elastic strain rate may

be written as

-e = (3.10)
E

where Young's modulus E is equal to 1/Sg,2 2 , and Sg is the elastic compliance matrix of

single crystal ice referred to the global frame (see Appendix A). Combining the elastic and

inelastic strain rates, the total strain rate is written as

01 +c )c S n+l O" g n
= e + c = + H Po + . (3.11)

The expression for the time rate of change of stress, 6, is obtained from Eq. (3.11), and has

the form

S= E[- H {o C mj )S"n (g ]. (3.12)

3.2.2 Biaxial Model

The multi-axial macroscopic deformation of polycrystalline solids can be presented in terms

of glide rates on all active slip systems, as has been established by many authors (e.g., Kocks,

1970; Hutchinson, 1970; Nemat-Nasser and Hori, 1987; deBotton and Ponte Castafieda,

1995). The plastic deformation of polycrystalline ice involves an interaction between slip

systems such as basal and non-basal deformations; the rate of plastic deformation is con-

trolled by non-basal systems (Duval et al., 1983; Wei and Dempsey, 1994; Liu et al., 1993).

Therefore, all slip systems need to be considered in order to describe polycrystalline ice

behavior. The aim of this paper, however, is to describe the deformation of single crystal

ice oriented for basal glide that deforms primarily by the glide in the basal planes. Even if



the non-basal deformation is included in a biaxial model, the contribution from non-basal

deformation would be minimal due to strong creep anisotropy which causes easy glide on

the basal plane.

We consider single crystal ice with the preferred orientation of basal planes under biaxial

stresses located in the global frame (xl-x2). The angle between a c-axis and the global

xl-direction is denoted by 0 as shown in Fig. 3-4. The following contracted Voigt notation is

used instead of tensor notation, and the vector form of the strain and stress components is

written respectively as E = [ Ell E22 C12 ]T and oa = [ Ol a 22 0 12 ]T, where superscript

T denotes the transpose operation.

The total strain rate vector is given by

ý= ýe± + c (3.13)

where ~e and ic are the elastic and inelastic strain rate vectors of single crystal ice, respec-

tively. The elastic strain rate vector is written as

e = Sg (3.14)

where S9 is the compliance matrix of single crystal ice (see Appendix A) and & is the stress

rate vector in the global frame.

The stress transformation law expressed in matrix notation has the form

a' = T (3.15)

where cr' is the stress vector in the local frame (xl'-x2'), and T is a 2-dimensional transfor-

mation matrix,

C2  S2  2cs
T = s2 C2 -2cs (3.16)

--C CS C2 - 82



and c = cos 0 and s = sin 0. Substituting Eq. (3.16) into Eq. (3.15) results in

Ull all + 2 a22 + 2Cs a12
s 2  U2 2 + 2cs •12

222 all + 2 a22 - 12cs (3.17)

al2 -cs all + CS 922 + (c2 - S2) a12

Since dislocation movement is allowed only along the basal planes in this model, the basal

shear stress component a 12 is solely responsible for the inelastic strain. Using Eq. (3.3), the

dislocation velocity on the basal plane can be written as

v = vo exp ( Q 012 (3.18)

where la12| denotes the absolute value of a12. Also, using Eq. (3.6), the average density of

mobile dislocations is given by

n2

P = {Po + a 7'1h } 12  (3.19)

where -7 is the inelastic shear strain in the basal plane. We use the absolute values for

7y and al2 in Eq. (3.19) in order to eliminate the influence of the direction of the slip on

the generation of mobile dislocation density. The basal shear strain rate 7'c due to a'2 is

obtained by combining Eqs (3.2), (3.18) and (3.19)

I n

12 = 22 = H Po + c ' 1 2 sn 2 ) (3.20)

The sense of the strain rate is determined by the sign of a12. The other components of

inelastic strain rate vector due to a12 are zero (ý1 c=i2 = 0).

The inelastic strain rate vector in the global directions (xl-x2) is determined with the

following transformation law

e= T(-0) i'c. (3.21)



Expanding Eq. (3.21) leads to

2 = 2cs '12 . (3.22)

i 2 (C2 - S2) '

Noting Eqs (3.17) and (3.20), one can write Eq. (3.22) as

c -cs Po + a m 0

SPo + 12 2) (3.23)

where
S= -CS U11 + CS 22 + (C2 _ 2) 12 (3.24)

To verify Eq. (3.23), two special loading conditions are considered. Firstly, when single

crystal ice with arbitrary angle 0 is subjected to a compressive stressss 22 only, the inelastic

strain rate component in the x2-direction is obtained from Eq. (3a23) as

° =-H p :+ 21 Io + r22 In (3.25)
which is the same as Eq. (3.9). The minus sign denotes the compressive state. Secondly,
when single crystal ice with 0 = 900 (c = 0, s = 1) is subjected to a shear stress Ul2 only,
the inelastic shear strain rate component is obtained as

SY12 2 =H{P+o 2 12 n (3.26)

and the normal strain components are zero (il = 2e2 = 0).



3.3 Model Predictions

3.3.1 Model Parameters

The parameters used in the proposed model may be estimated from experimental measure-

ments (Fukuda and Higashi, 1973; Jones and Glen, 1969). The measured activation energy

for easy glide on the basal plane lies between about 39 and 68 kJ/lmol depending on tem-

perature (Readey and Kingery, 1964; Jones and Glen, 1969) and impurities (Nakamura and

Jones, 1973). The fact that the activation energy for creep in ice is similar to those for dielec-

tric relaxation and self-diffusion in ice suggests that the velocity of dislocations is controlled

by the diffusive motion of hydrogen atoms and the movement of Bjerrum defects (Hobbs,

1974). In this study, 63 k J/mol (=0.65 eV) is used for the activation energy. The value of

the universal gas constant R is equal to 8.314 J mol-lK - 1. The magnitude of Burgers vector

was calculated by Hondoh and Higashi (1983) in the course of considering grain boundary

dislocations in bicrystals of ice. Here, we use b = 0.6a, where a is the lattice parameter of

ice. At -10 0 C, a = 4.52 x 10-10 m so that b = 2.71 x 10-10 m.

In Glen's power law relationship between the applied stress and the minimum strain rate,

the value of the stress exponent varies with both stress and temperature, ranging from 1.3

to 4.0 for single crystal ice (Jones and Glen, 1969; Nakamura and Jones, 1973; Hobbs, 1974;

Nakamura, 1978) and from 2.5 to 4.2 for polycrystalline ice (see e.g., Kamb, 1961; Weertman,

1973). Duval et al. (1983) collected data for basal glide in single crystals of ice at -10oC,

and showed that the stress exponent n is close to 2.

The responses of single crystal ice, as in polycrystalline ice, show considerable scatter

even under the same loading conditions, such as the same temperature and loading rate.

This scatter increases if ice specimens are made by different researchers. The authors believe

that the scatter comes from different microstructure and impurity contents, which highly

depend on experimental procedures. Parametric studies on the stress exponent n, the initial

dislocation density po, the rate of dislocation multiplication a, and the inelastic strain ex-

ponent m, Young's modulus E, the c-axis orientation 0, and temperature T are performed

in the following section to establish the influence of these parameters on the macroscopic

stress-strain curves, since some of these parameters vary with ice and are difficult to de-



termine accurately by experiments. This simulation is performed at T = -100C. Unless

otherwise noted, the chosen values for the parameters are: b = 2.71 x 10-10 m; vo = 2.17

x 107 m s-1; Q = 63 kJ/mol; E = 8500 MPa; o- = 1 MPa; 0 = 450; n = 2; m = 2/3;

Po = 3.2 x 1010 m- 2; a = 4.1 x 1012 m - 2

The stress-time history corresponding to a specified applied strain rate is generated by

numerically integrating Eq. (3.12) using the fourth-order Runge-Kutta algorithm for the first

four time steps and the Adams-Moulton algorithm for the remaining time steps.

3.3.2 Parametric Studies

Effect of the stress exponent, n

The calculated stress-strain curves are shown in Fig 3-5 for the values of the stress ex-

ponent n = 1.5, 2.0, 2.5, and 3.0 for an applied strain rate of 5 x 10- 4 s - 1. The fact that

the stress-strain curves for the basal glide in single crystal ice showed the large yield drop

was explained by the theory for a no work-hardening material, which has small value of the

exponent n of stress dependence of the strain rate. The amount of yield drop associated

with the dislocation multiplication varies significantly with the stress exponent. The results

show that the smaller the stress exponent, the larger the yield drop.

Effect of the initial dislocation density, Po

The single crystal ice has the initial mobile dislocations on the basal planes. Even though

observations are made using various methods (etch pits, X-ray diffraction topographs and

synchronton X-ray topography), it is difficult to determine accurately the initial dislocation

density. The estimated initial dislocation densities were 107 m - 2 in LiF (Johnston, 1962),
5.0 x 109 m - 2 (Jones and Glen, 1969) and 9.5 x 1010 m - 2 (Doyon and Michel, 1991) in

their single crystals of ice. To see the effect of the initial dislocation density, the stress-strain

curves under an applied strain rate of 5 x 10- 4 s - 1 are shown in Fig. 3-6 for various initial

dislocation density from Po = 5 x 108 to Po = 5 x 1011 m - 2 . The results show that a smaller

value of the initial dislocation density results in higher yield stress and larger yield drop.



Effect of the rate of dislocation multiplication, a

The density of mobile dislocations on the basal planes increases as the inelastic strain

increases. Johnston (1962) determined a = 1013 m- 2 from experimental results on LiF.

However, direct measurement of the change of dislocation density is not made in single crys-

tal ice. To see the effect of the rate of dislocation multiplication, the calculated stress-strain

curves under an applied strain rate of 5 x 10- 4 s- 1 are shown in Fig. 3-7 for the values of

a = 1 x 1012, 5 x 1012, 1 x 1013, and 5 x 1013 m - 2 . As the rate of dislocation multiplication

is smaller, the transition from the upper yield point to a plateau is slower.

Effect of the inelastic strain exponent, m

The calculated stress-strain curves are shown in Fig. 3-8 for the values of m =1.0, 3/4,

2/3, and 1/2 for an applied strain rate of 5 x 10- 4 s- 1. This value governs the shape of

the change of the dislocation density with increasing inelastic strain. The figure shows that

the plateau after the upper yield occurs at the smaller strains with smaller values of the

exponent m.

Effect of Young's modulus, E

The effects of Young's modulus are shown in Fig. 3-9. The Young's modulus is varied

from E = 9500 MPa to 3500 MPa for an applied strain rate of 5 x 10- 4 s- 1. This simu-

lation shows that Young's modulus has affected the initial slope of the stress-strain curves,

but has little effect on the overall stress-strain curves.

Effect of the c-axis orientation, 8

The calculated stress-strain curves are shown in Fig. 3-10 for the values of 0 = 300, 350,

400, 450 for an applied strain rate of 5 x 10- 4 s - 1. This calculated results show that as

the c-axis orientation is close to 450, the lower stress is obtained. It is noteworthy that the

responses are equal for 0 = 300 and 600, 9 = 350 and 550, and 0 = 400 and 500.

Effect of temperature, T

Figure 3-11 shows the effects of temperature. The ice temperature varies from T = -50C



to -200C for an applied strain rate of 5 x 10- 4 s- 1. Both the upper and lower yield stresses

increase with decreasing temperature.

3.3.3 Model Comparison with Experimental Data

Weertman (1973) presented the results of Ramseier (1972) in the form of compressive stress-

strain curves of single crystal ice at -10 0C and various strain rates. The specimen axis

makes an angle of 450 with the c-axis of the crystal. Figure 3-12 compares the responses of

the current model with the experiments of single crystal ice (Ramseier, 1972). For the best

fit, the following parameter set is chosen:

b = 2.71 x 10-10 m; vo= 2.17 x 107 m s-; Q = 63 kJ/mol;

E =4500 MPa; ao = 1 MPa; = 450;

n=2; m= 2/3; p,= 3.2 x 1010 m - 2; = 4.1 x 1012 m- 2 .

Considering the existence of scatter in natural materials like ice, the comparison between

the model prediction and the data shows very good agreement for the range of the applied

strain rates. It is noted, however, that 4500 MPa is used for the apparent Young's modulus

instead of the dynamic Young's modulus (close to 8500 MPa), to fit better the initial slope

of the stress-strain curves of data.

Higashi et al. (1964) reported experimental results on the stress-strain relations of single

ice crystals. One of the characteristic features of the curves is that the slope of the initial

linear portion is a function of strain rate as well as temperature. This is quite unique since

the stress-strain curves of LiF and Ge also show the same large yield drop, and indicate

little dependence of the initial slopes of these curves on the applied strain rate. In poly-

crystalline ice, the rate-dependence of the apparent Young's modulus has been attributed to

relative movement between grains in the grain boundary region (Gold, 1977). Traetteberg

et al. (1975) showed that the time-dependent elastic modulus and the initial response of ice

could be described by the time-dependence of the relaxation time and by anelastic theory

(Nowick and Berry, 1972). This phenomenon in single crystal ice may be attributed to an

anelastic relaxation process, possibly involving some thermally activated rearrangement of

dislocations.



The dependence of the initial slope on strain rate suggests that anelastic relaxation may

be considered, in addition to plastic deformation due to dislocation multiplication. Anelastic

relaxation has been discussed by Schoeck (1956) and Eshelby (1961) for viscoelastic materials,

and by Weertman (1963), Higashi et al. (1964), and Hu et al. (1996) for ice crystals. No

constitutive theory exists yet to describe both anelastic relaxation and plastic deformation.

In this study, the anelastic relaxation is taken into account by using an apparent Young's

modulus. This choice affects the initial slope of the stress-strain curve but has little effect

on the overall stress-strain curve.

Figure 3-13 shows the corresponding calculated dislocation densities for various strain

rates with n2 = 1 in Eq. (3.6). This result shows that the multiplication process of mobile

dislocations is enhanced with increasing strain rate. The trends and calculated values of the

dislocation densities are reasonable when compared with the data.

In Fig. 3-14, the strain response under constant stresses of 1 MPa and 0.455 MPa at

-100C is plotted against the data of Griggs and Coles (1954). Good correspondence is

achieved between the model prediction and the data. The corresponding calculated disloca-

tion densities for constant stresses are shown in Fig. 3-15. This result shows that the change

of dislocation densities significantly depends on the stress levels. In constant stress tests on

Ge, Berner and Alexander (1967) have shown that the dislocation density reached for any

given strain depends greatly on the applied stress: the larger the applied stress, the higher

the dislocation multiplication.

3.4 Conclusions

A constitutive creep model for single crystal ice has been formulated based on experimental

results and the mechanism of the multiplication process of mobile dislocations. The model

predictions are in good agreement with available experimental data of single crystal ice,
which is highly sensitive to changes in strain rate, stress, and temperature.

Based on the assumption that the dislocation motion on the basal plane is the dominant

mechanism for single crystal ice due to strong creep anisotropy, this work studies the effect of
dislocation densities within crystals on the macroscopic response. Material properties used



in the proposed model were the dislocation velocity and the changing dislocation density of

single crystal ice based on experimental data. The model incorporates crystallographic basal

orientation of single crystal ice and temperature. The uniaxial creep model was extended to

biaxial loading. Parametric studies were performed to establish better understanding of the

dependence of macroscopic stress-strain curves on microstructural parameters. The model

results show strong dependence on the loading rate and stress level. The predicted stress-

strain curve for the applied strain rate shows an upper and lower yielding. The strain-time

response under constant applied stress exhibits softening behavior.

The constitutive relations developed in this study provide an essential starting point

for analyzing the complex deformation of polycrystalline ice. In this case, other aspects,

such as interactions of slip systems, intergranular effects and damage accumulation due to

microcracking, need to be incorporated in order to obtain a robust numerical capability.



Appendix A

Elastic Constants of Single Crystal Ice

Gammon et al. (1983) have determined the dynamic elastic constants of single crystal

ice at T = -16 0 C using the method of Brillouin spectroscopy. The complete six-by-six

compliance matrix of single crystal ice in the local frame is

0.8441 -0.2316 -0.2316

1.0318 -0.4287 0

1.0318

2.9210

sym. 3.3179

3.3179

10- 1 GPa- 1 (Al)

where the local frame x2'-x3' is the plane of transverse isotropy; the c-axis lies along the xl'

direction (0 = 0O). It is noted that there are five independent constants due to the hexagonal

crystal structure of ice.

The above elastic constants are mildly temperature-dependent. The following empirical

relationship for the compliance matrix at temperature T was proposed by Gammon et al.

(1983)

S'(T)= S (To) -(A2)9 9 1 - 6T
where 6 = 1.418 x 10- 3 0C- 1 , and S'(To) is the known compliance matrix at a specific

temperature (To = -160C), and all temperatures are measured in OC. It is noted that

between 000C and -200C the variation in dynamic constants of single crystal ice is practically

negligible.

Under plane strain conditions (E33 = 0) with xl-x2 being the plane of interest, the

complete six-by-six compliance matrix reduces to three-by-three matrix as (see Savin, 1961)

S =, = , - , (A3)

where i, j = 1, 2, 6 and the subscript f emphasize that the components of the complete

9



six-by-six matrix should be used. The plane strain compliance matrix using Eq. (A3) is

given as

,(o = 00) =
0.7921

-0.3278

0

-0.3278

0.8537

0

(A4)

0

0 10- 1 GPa- 1.

3.3179

Under plane stress conditions (a33 = 0) with xl-x2 being the plane of interest, the

complete six-by-six compliance matrix reduces to three-by-three matrix as

0.8441

-0.2316

0

-0.2316

1.0318

0

(A5)

0

0 10- 1 GPa- 1.

3.3179

The compliance matrix S, of single crystal ice in the global reference frame (xl-x2) is

written as

S = T T S' T9- 9 (A6)

where S' denotes the compliance matrix of single crystal ice in a local frame (xl'-x2') and

the 2-dimensional transformation matrix T is given in Eq. (3.16). Finally, the compliance

matrices for plane strain and plane stress (e.g., the c-axis orientation of 0 = 450) are given

respectively as

S,(O = 450) =

S, (o = 450) =

1.0770

-0.5819

0

1.1826

-0.4763

0

-0.5819

1.0770

0

-0.4763

1.1826

0

(A7)
2.3014
0 10- 1 GPa- 1

2.3014

10-1 GPa- 1 (A8)

0
0

2.3391

The variation of the dynamic Young's modulus, S12, with orientation of c-axis is shown in

Fig. 3-16. Results are plotted for both plane strain and plane stress.

S•( = 00) =

and
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Figure 3-1: Typical stress-strain curves of single crystal ice oriented for basal glide under
various levels of constant strain rate.
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Figure 3-2: An S2 polycrystalline ice.
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Chapter 4

RELAXATION PROCESS IN
POLYCRYSTALLINE ICE UNDER
CYCLIC LOADING

Abstract

During ice-structure interaction in the ductile-to-brittle transition, ice is subjected to a non-

monotonic vibratory loading, as parts of the ice sheet fail over time. In order to simulate

this vibratory loading, it is necessary to understand the behavior of ice when it is subjected

to loading and unloading cycles. Experimental data on the cyclic behavior of ice has been

reported under reversed direct-stress conditions, but no constitutive theory exists as yet to

describe this phenomenon based on the underlying microstructural mechanism.

This chapter describes a model of anelastic response in polycrystalline ice under cyclic

loading. The model is developed here on the basis of the linear relationship between anelastic

strain and stress, and the distribution of relaxation times which can be measured from loss

compliance. The model predictions are compared with cyclic experimental data (Cole, 1990)

that span a range of stress amplitudes (0.6 - 1.4 MPa) and frequencies (1 - 10-3 Hz) at

-10OC. The resulting model is capable of describing the anelastic response of polycrystalline

ice under cyclic loading.



4.1 Introduction

The study of the cyclic behavior of ice is of interest for several reasons: natural ice suffers

cyclic loading through wave or tidal action, and when ice is used for structural purposes the

loading may be repetitive (Nixon and Smith, 1987). When ice is subjected to cyclic loading,

designers may need to take into account the fatigue behavior of natural ice which happens

during sea ice breakup or the flexure of a floating ice plate.

Experimental data on the cyclic behavior of ice have been published under cyclic loading

in uniaxial compression and reversed direct-stress (Mellor and Cole, 1981; Nixon and Smith,

1984,1987; Cole, 1990, 1995; Derradji-Aouat et al., 1993). No constitutive equation, however,

exists to describe cyclic behavior based on the underlying microstructural mechanisms. Cole

(1995) measured energy loss which occurs during cyclic loading as a result of two distinct

relaxation processes: (i) the glide of basal dislocations and (ii) grain boundary sliding. In

the test range of frequencies (1 - 10- 3 Hz) and temperatures (-10 - -50 0 C), Cole (1995)

found that the dislocation-based mechanism dominates over grain boundary relaxation. The

relaxation associated with grain boundary sliding, however, explains the anelasticity observed

at higher frequencies and lower temperatures.

The purpose of this chapter is to propose a model for the anelastic response of poly-

crystalline ice based on a dislocation-based mechanism that is dominant in a range of stress

amplitudes (0.6 - 1.4 MPa) and frequencies (1 - 10- 3 Hz) at -10 0 C. This study examines

the influence of frequency and amplitude of cyclic loading on low anelastic strains (less than

10-3).

The organization of the chapter is as follows. Section 4-2 supplies background information

on the behavior of ice under constant stress, with a discussion of cyclic loading. In Section 4-

3, a mathematical formulation for the modelling of anelastic response of polycrystalline ice is

presented. In particular, the frequency-dependent anelastic relaxation that produces energy

loss is taken into account by a distribution of relaxation times. Section 4-4 contains model

parameters and corresponding model predictions. These predictions are compared with the

available experimental data (Cole, 1990). Lastly, conclusions are drawn in Section 4-5.



4.2 Background

Ice mostly exists above 0.8 TM, where TM is the melting temperature. The mechanical

behavior of crystalline solids at such high temperatures is controlled by thermally activated

rate processes. Thus, the behavior of ice is very sensitive to rate and temperature variations.

Freshwater polycrystalline ice consists of single crystals. Typical grain sizes are between

1 and 10 mm. For inelastic deformation without microcracks, polycrystalline ice needs to

satisfy certain conditions such as strain compatibility in the grain boundaries. It is also

known that polycrystalline ice is affected greatly by the microstructure (e.g., grain size and

structure of grains). At low loading rates, mechanisms responsible for inelastic strain are

mainly dislocation movement in transgranular matrix and the grain boundary sliding process,

which is the relative motion between adjacent grains.

Many constant stress and constant strain-rate tests, and studies of deformation mecha-

nisms, have characterized the behavior of ice over the last several decades (e.g., Glen, 1955;

Barnes et al., 1971; Weertman, 1973; Goodman et al., 1981; Duval et al., 1983). Most studies

of ice have emphasized the stress dependence of the steady-state creep rate under constant

stress, which follows empirically the power-law creep.

In the past two decades, many constitutive equations have been developed to model duc-

tile behavior of ice (e.g., Sinha, 1978; Michel, 1978; LeGac and Duval, 1980; Ashby and

Duval, 1985; Shyam Sunder and Wu, 1989a,b). Many of these constitutive equations have

been formulated for transient creep under uniaxial constant stress and constant strain rate.

The first tests and studies on the deformation behavior and fatigue failure of ice under cyclic

loading were conducted by Mellor and Cole (1981). These investigators performed compres-

sive stress-controlled cyclic loading tests on granular freshwater polycrystalline ice. Later,

Cole (1990) presented experimental results of reversed direct-stress on granular freshwater

polycrystalline ice to examine the effects of frequency, temperature, and stress-amplitude on

internal friction and hysteresis loops.



4.2.1 Anelasticity

Ice exhibits a significant amount of anelastic strain during loading and time-dependent recov-

erable strain during unloading (Duval, 1976,1978; Cole, 1991). Processes such as dislocation

movement on basal planes or grain boundary sliding give rise to anelastic strain that produces

relaxation processes observed during cyclic loading.

The glide motion of dislocations is controlled by proton rearrangement, which is an unique

characteristic of ice (Goodman et al., 1981). The origin of the anelasticity in ice is a stress-

induced reorientation of the hydrogen atoms about the oxygen atoms. Dislocations move

forward under applied stress and glide back toward their original positions upon removal of

the stress.

Sinha (1979) postulates that the contribution of anelastic strain to total strain is a linear

stress dependence based on the process of grain boundary sliding. According to Duval et

al. (1991), the strain from grain boundary sliding underestimates the relatively high levels

of anelastic strain observed in ice. Since grain boundary sliding alone cannot account for

the large anelastic strain in ice, dislocation movement within grains has large effects under

monotonic constant stress loading (Duval et al., 1991; Cole, 1991).

As the stress level and temperature increases or frequency decreases, Cole (1991) observed

that anelastic strain becomes a nonlinear function of stress. However, at relatively low

anelastic strain observed under cyclic loading, the bow-out motion of pinned dislocations on

the basal planes produces anelastic strain approximately proportional to stress. Generally,

as strain or stress levels increase, the dislocation breakaway process and an increase in

dislocation density result in nonlinear stress dependence of anelastic strain.

It is noted that anelastic strain is often ignored in metal plasticity because anelastic

strain at low temperatures is small compared to total strain. However, in ice, during the

cyclic deformation where strain amplitudes are small, the anelastic contribution is too large

to neglect. The changes observed in the strain amplitude during cyclic loading could be due

to the changes in anelastic response rather than in plastic response.

According to Cole (1995), the substructure developed during cyclic loading differs con-

siderably from that developed under monotonic constant stress loading. The total strain



during cyclic loading is relatively small, less than 10- 3 , compared to that, on the order of

10-2, at the minimum strain rate under constant stress tests. Cole (1995) observed in his ice

specimens that the density of dislocations contributing to anelastic strain remains constant

during cyclic loading.

Under cyclic loading, polycrystalline ice, which has a limited number of slip systems and

very low stacking fault energy, does not exhibit the characteristics of fatigue behavior that

are shown by ductile materials which have more slip systems or a high stacking fault energy.

Thus, polycrystalline ice exhibits less susceptibility to fatigue damage due to the difficulty

of cross-slip (Cole, 1991).

4.2.2 Internal Friction

When the material is subjected to alternate tension and compression, the strain lags behind

the applied stress. A hysteresis loop during alternate cyclic stress gives rise to energy loss.

The area of the hysteresis loop is the amount of energy that is dissipated. The study of energy

loss during cyclic loading gives insight to the underlying micromechanical mechanisms. There

are a number of ways in which to examine the loss mechanisms, including the calculation of

internal friction, storage and loss compliance and changes in the elastic modulus.

There are many processes that can cause internal friction, corresponding to a phase lag

between the applied stress and the resulting strain. The origin of internal friction effects

varies greatly from material to material. The study of internal friction or loss compliance in

ice (Cole, 1995) helps us to understand the following effects: the movement of dislocations on

the basal planes and the relative motion of grains at grain boundaries. Internal friction can

be closely associated with relaxation effects through the variation of the elastic moduli. Each

process has a characteristic time of relaxation, and this corresponds to a peak on the curve

relating internal friction with frequency of loading. Since the relaxation times vary with

temperature, it is possible to vary the temperature while the frequency remains constant.

The internal friction in polycrystalline ice is studied from the view of anelastic strain

associated with dislocation movement within grains (Tatibouet et al., 1986; Cole, 1995) or

grain boundary sliding (Tatibouet et al., 1987). The dislocation velocity can also be predicted

from internal friction measurements (Fukuda et al., 1987). In the study of internal friction



on single crystals of ice at high temperature, Tatibouet et al., (1986) explains the frequency

dependence of cyclic stress by the distribution in the restoring forces, which is induced by

the line tension of dislocations pinned between quasi-immobile segments of the dislocation

network.

4.3 Formulation of Constitutive Model

4.3.1 Constitutive Equations

Since polycrystalline ice is a rate-dependent material, the total strain rate i is given by

S= ie + (4.1)

where 'e and ec are the elastic and anelastic strain rates, respectively. The elastic strain rate

is written as

e = - (4.2)
E

where a is the applied stress and E is Young's modulus. The anelastic strain rate due to

dislocation movement is expressed by Orowan's equation (Orowan, 1940)

iC = Obpv (4.3)

where € is a geometrical factor taking into account the orientation of the slip systems, b is

the magnitude of Burgers vector, p is the average density of mobile dislocations, and v is

the average velocity of dislocations.

The dislocation element moves a distance x when the applied force ba exceeds the po-

tential resistance OAF/Ox. The driving force, the difference between the applied force and

potential resistance, is balanced by the inertia force mi and the drag force 1i. Therefore, the

most general equation of motion of a unit length of dislocation is mathematically described

as (Kocks et al., 1975)
d2x dx &AF

m + rl - ba = 0 (4.4)
dwhere m is the dislocation mass per unit length and the temperature-dependent drag coef-

where m is the dislocation mass per unit length and the temperature-dependent drag coef-



ficient 77 is given by

S= 0 exp R (4.5)

where ro is a constant, Q is the activation energy, R is the universal gas constant, and T is

the absolute temperature in degrees Kelvin.

For our range of interest, the inertia force can be ignored. In this case, Eq. (4.4) reduces

to

77. = ba - (4.6)

Note that i is the average velocity of dislocations. For a small displacement, one assumes

that the potential resistance is proportional to dislocation movement:

OAF F= Kx 
(4.7)

Ox

where K is an average internal resisting stress to the motion of dislocation. Therefore, in

Eq. (4.6), we postulate that the velocity of dislocation at small strains is linearly dependent

on the applied stress.

As Cole (1995) observed in his experiments for saline ice under cyclic loading, the den-

sity of dislocations contributing to anelastic strain remains constant. Therefore, Eq. (4.3)

becomes

EC = Obpx . (4.8)

Using Eq. (4.8), substitution of Eqs (4.6) and (4.7) into Eq. (4.3) results in

ic = - 1E  (4.9)

where A1E and B are defined as
K

A1E = (4.10)Ob2p
B -= (4.11)

bb2p

According to Eq. (4.1), the total strain rate is written as

= c r (a - A1 EC)
= = ie + & = + . (4.12)E B



The variable B is considered to correspond to a mean spacing of barriers of the same

strength throughout the specimen. However, in reality a distribution of barrier spacings and

strengths is expected.

The solutions of Eq. (4.12) for applied constant stress ao and sinusoidal stress ago sin wt

are given by

S= 1- + 1 - exp for a = ao (4.13)
E AE 7/

6 = aoJ 2(w) exp + ao { Ji(w) sin wt - J2(w) Cos wt} for a = oo sinwt (4.14)

where 7 is relaxation time defined as

B
7 K (4.15)AIE K

and the storage compliance J1 (w) and the loss compliance J2 (w) are written as

1 1 1
J1 () = - 1 (4.16)

E AjE 1+ (wT)2

1 WT
J2 (w) = E 1 + ( (4.17)AjE 1 + (WT)2

The first term in Eq. (4.14) determines the transient behavior and the second describes the

steady-state response. Equation (4.17) describes a relaxation peak with central frequency

determined by the relaxation time T. Therefore, when the time dependent drag coefficient

77 is known from independent tests, K can be estimated from the central frequency of the

relaxation peak. Such data of the compliance versus frequency was measured by Cole and

Durell (1995).

To simulate the behavior of polycrystalline ice under the compressive cyclic stress !ao(1-

coswt) tested by Mellor and Cole (1981), the solution of Eq. (4.12) is

= 2-JR+ Ji (w) exp(- + {JR - J1 (w) cos wt - J2(w) sin wt} (4.18)

where
1 (1 + A 1)

JR = A (4.19)E A,



4.3.2 Distribution of Relaxation Times

The motion of dislocations is described by using the averaged internal stress and temperature-

dependent drag coefficient, which have a considerable statistical variation in their magnitudes

related to the variation in basal plane orientations. Experiments show that a dislocation

internal friction peak is much broader than that of a single activated process (Weertman,

1973; Cole, 1995). Constitutive equations based on dislocation-based mechanisms need to

taken into account the distribution of these physical properties.

Cole (1994) concludes from his experiments that the strength of dislocation relaxation

depends on the microstructure, basal plane orientation and frequency. As studied by Cole

and Durell (1995), loss compliance versus frequency shows a broad distribution, which serves

as proof for the distribution of relaxation times. The distributed relaxation in a given state

could also be studied by measuring temperature-dependent or frequency-dependent internal

friction spectra.

The relaxation processes can be considered through the distribution of activation energy

or frequency factor or both (Nowick and Berry, 1972; Kocks et al., 1975; Argon, 1985). The

distribution in frequency factor is a special manifestation of the presence of considerable

activation entropies, as is well known in thermally-activated processes governing crystal

plasticity by dislocation glide (Kocks et al., 1975)

In the present study, the distribution of relaxation times takes into account the relaxation

process. In order to describe adequately the frequency dependence of the anelastic strain,

Eqs (4.16) and (4.17) are modified by using distribution function 1(ln T/Tmn) as

1 1 +F (ln T/T,) 1
Jd(w) = + A1 1-(WT)2 d(ln7/Tm) (4.20)E A 1E -oo 1 + (wT)

1 + 00 W7
Jv (w) = L (ln 7/T) W d(ln 7/Tm) (4.21)

AE -oo 1+ (wr)2

where the distribution function needs to satisfy the condition

S (ln r/Tm) d(ln T/Tm) = 1 (4.22)
-OO



and the log-normal distribution is expressed by

1 z
T exp -p (4.23)

after a change of variable, z = In T/Tm. In Eq. (4.23), In T, is a center of relaxation times

and p is a distribution parameter for broadness. Figure 4-1 shows the storage and loss

compliances for no distribution and log-normal distribution for a particular 3.

Finally, the anelastic responses are obtained from Eqs (4.14) and (4.18) with Jd'(w) and

J2d(w) instead of Jl(w) and J2(w).

4.4 Model Predictions

4.4.1 Model Parameters

The dynamic elastic constants of single crystal ice is determined at T = -160C using the

method of Brillouin spectroscopy by Gammon et al. (1983). The theoretical effective elastic

constants of polycrystalline ice can be computed by using various homogenization methods

(see Appendix B in Chapter 5). For freshwater polycrystalline ice the value of Young's

modulus is approximately 9.3 GPa.

The measured activation energy for easy glide on the basal plane lies between about 39

kJ/mol (=0.4 eV) and 68 kJ/mol (=0.7 eV) depending on temperature (Jones and Glen,

1969) and impurities (Nakamura and Jones, 1973). The fact that the activation energy

for creep in ice is similar to those for dielectric relaxation and self-diffusion in ice suggests

that the velocity of dislocations is controlled by diffusive motion of hydrogen atoms and the

movement of Bjerrum defects (Hobbs, 1974). In the present study, 53 kJ/mol (=0.55 eV) is

used for the activation energy. The magnitude of Burgers vector was calculated by Hondoh

and Higashi (1983). In the present study, we use b = 0.6a, where a is the lattice parameter

of ice. At -10C, a = 4.52 x 10- 10 m so that b = 2.71 x 10-10 m.

The model parameters related to distributed relaxation are obtained as follows. When the

time dependent drag coefficient r is known, K, the center of distribution, and 3, the broad-



ness of the distribution, are estimated from Cole and Durell's (1995) plot of loss compliance

versus frequency. The following values of the parameters are obtained:

E=9.3GPa; 0=1/3; b=2.71x10- 10 m; p=1.5x109 m- 2 ; K=10- MPa;

77,= 7.05 x 10- 16 MPa sec; Q = 53 kJ mol-1 ; P = 1.40.

4.4.2 Model Predictions

Figure 4-2 compares stress-strain responses of polycrystalline ice subjected to 0.1 Hz sinu-

soidal stress at -100C. Figures 4-3 and 4-4 compare stress-strain responses of polycrystalline

ice under various cyclic stress levels (0.6 - 1.2 MPa) and frequencies (0.01, 0.1, 1 Hz) at

-10C. Considering scatter and data extraction inaccuracies (e.g., Young's modulus and

microstructural properties such as dislocation density and grain size), the comparison be-

tween the model prediction and the data shows good agreement. It is interesting to note

that anelastic strain occurs even at 1 Hz. Figure 4-5 compares stress-strain responses of

polycrystalline ice under various cyclic frequencies (10- 3, 10-2, 10- 1, 1 Hz) and 1 MPa

stress at -10oC. The comparisons show good agreement over the range of frequencies. As

noted by Cole (1995), variations in the initial dislocation density would strongly influence

the anelastic behavior observed at low strains. The variations of initial dislocation density

and grain size are not considered in the model.

4.5 Conclusions

A constitutive model for polycrystalline ice subjected to cyclic loading applicable for rela-

tively low anelastic strain, less than 10- 3 , has been developed. The model predictions are

compared with experimental data obtained by Cole (1990). From the various stress levels

and frequencies considered, a comparison shows that this model adequately describes the

frequency dependence at low strains. The model is based on intracrystalline processes in-

volving dislocations. The motion of dislocations can be described by using the averaged

internal stress and temperature-dependent dislocation drag. In polycrystalline ice, however,
the distribution of these dislocation properties exists within grains due to a variation in



basal plane orientation. At relatively small anelastic strains, the effect of these distributions

is taken into account by the distribution of relaxation times. The proposed model uses log-

normal distribution of relaxation times for the measured loss compliance. Evidence for this

distribution is provided from the data of Cole and Durell (1995).

The limited experimental data for polycrystalline ice under cyclic loading has restricted

attempts to develop unified constitutive equations to describe the behavior of ice under

cyclic loading and constant stress loading. In order to develop a comprehensive constitu-

tive model based on a microstructural mechanism, more experimental work focused on the

microstructure is required. Finally, a physically-based model can be developed if the phys-

ical mechanisms underlying the deformation process are adequately accounted for in the

functional form of the constitutive equations.
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Figure 4-1: Dynamic compliance as a function of frequency at T = -10C: (a) the storage
compliance, J1 (w); (b) the loss compliance, J2 (w).
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Figure 4-2: Stress-strain responses of polycrystalline ice (with a mean grain size of 5.1 mm)
subjected to 0.1 Hz sinusoidal stress at -10°C; experimental data of Cole (1990) and model
predictions. Plots are translated along the strain axis for clarity.
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Figure 4-3: Stress-strain responses of polycrystalline ice (with a mean grain size of 1.5 mm)
under various cyclic stress levels and frequencies at -10IC; experimental data of Cole (1990)
and model predictions. Plots are translated along the strain axis for clarity.
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Figure 4-4: Stress-strain responses of polycrystalline ice (with a mean grain size of 5.0 mm)
under various cyclic stress levels and frequencies at -10 0C; experimental data of Cole (1990)
and model predictions. Plots are translated along the strain axis for clarity.
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Figure 4-5: Stress-strain responses of polycrystalline ice (with a mean grain size of 2.5 mm)
under various cyclic frequencies and 1 MPa stress at -100 C; experimental data of Cole
(1990) and model predictions. Plots are translated along the strain axis for clarity.
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Chapter 5

A MULTIAXIAL CREEP MODEL,
PART I: TRANSIENT CREEP

Abstract

This chapter describes a constitutive model of transient creep in orthotropic polycrystalline

ice. In this study, the primary mechanisms controlling the macroscopic behavior are con-

sidered to be the motion and production of dislocations within grains and an interaction

between basal and non-basal slip systems within constituent single crystals. Average equiv-

alent stresses for single crystal ice and polycrystalline ice are defined. In particular, the

equivalent stress for polycrystalline ice is obtained by averaging equivalent stresses for all

single crystals in a representative volume. A specific form of dissipation potential, which

incorporates internal stresses, is proposed for inelastic flow. The internal stresses, kine-

matic back stress and isotropic drag stress, describe various states of the microstructure in

the material. Major features of the model include the hardening and recovery processes

within evolution equations of the internal stresses. The proposed model satisfies the non-

dimensional requirements of Ashby and Duval (1985) for strain, strain rate and time, and

predicts the experimentally observed relationship between them with a fixed set of material

parameters.
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5.1 Introduction

In most engineering problems, polycrystalline ice exists at homologous temperatures exceed-

ing 0.9TM. At these high temperatures, the creep of polycrystalline ice cannot be completely

suppressed even at relatively high loading rates. Many constant stress or constant strain-rate

tests and studies of deformation mechanisms have characterized polycrystalline ice behav-

ior during the last several decades (e.g., Glen, 1955; Barnes et al., 1971; Weertman, 1973;

Goodman et al., 1981; Mellor and Cole, 1982; Duval et al., 1983; Jacka, 1984). Most of these

studies have emphasized the stress dependence of the steady-state creep rate under constant

stress following the empirical power-law creep.

Both the elastic and inelastic behavior of polycrystalline ice are of great importance

in a broad range of ice engineering problems. Several investigators have studied the tran-

sient creep of ice, since engineering applications invariably involve complex thermal and

mechanical histories. Michel (1978) suggests a model based on easy slip on the basal plane

and accompanying grain boundary sliding to accommodate total deformation. Sinha (1978,

1979) describes a phenomenological viscoelasticity model based on the mechanism of grain

boundary sliding responsible for transient creep. In Sinha's model, the exponent in relaxation

time is used to account implicitly for the distribution of relaxation time. Schapery (1991)

has extended a non-linear viscoelastic model for composite materials to polycrystalline ice.

His approach uses a stress function, instead of stress, in the integral representation of strain.

Constitutive models for polycrystalline ice based on internal state variables have been

developed for monotonic constant stress loading (Le Gac and Duval 1980; Ashby and Duval,

1985; Shyam Sunder and Wu, 1989a, 1990; Meyssonnier and Goubert, 1994). These internal

state variables are used to describe phenomenologically various states of intracrystalline

processes associated with dislocation activities. Internal state variables have been used in

constitutive models for metallic materials (Miller, 1976; Hart, 1976; Chaboche, 1977; Anand,

1982), for rock materials (Aubertin et al., 1991), and for polymers (Boyce et al., 1988). Ashby

and Duval (1985) develop a model based on two types of systems in which creep occurs in

the basal (easy) systems on loading, then relaxes as stress transfers from the basal to the

non-basal (hard) systems. This relaxation or redistribution of stress generates directional

internal stress or back stress, which allows for the recovery of a fraction of transient creep

upon unloading. Shyam Sunder and Wu (1989b) have proposed a multiaxial model for
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transient creep based on the theory of internal state variables, which describe the change

of microstructure of the material during deformation. In their model, the inelastic strain

rate is decomposed into transient and viscous strain rates. To describe better both transient

creep and the response to increments and decrements of applied load, Meyssonnier and

Goubert (1994) have proposed a model based on a decomposition of viscoplastic strain into

two components, which account separately for the kinematic and isotropic hardenings.

The present study presents a multiaxial model of transient creep in orthotropic polycrys-

talline ice. The most significant aspect of the proposed model is the formulation of kinematic

equations which are firmly based on physical processes that reflect salient microstructural

aspects. In this study, the primary mechanism is considered to be the motion and production

of dislocations and the creep anisotropy of single crystal ice. Major features of the model

include the hardening and recovery processes within evolution functions of kinematic back

stress and of isotropic drag stress. The evolution equations of these internal stresses satisfy

the non-dimensional requirements of Ashby and Duval (1985) for transient creep.

This chapter is organized as follows. In Section 5-2, a brief discussion for the behavior

of polycrystalline ice is presented. In addition, Section 5-2 also presents the flow equation

of inelastic deformation for polycrystalline ice and the physical interpretation of internal

stresses and their corresponding evolution equations, which describe various states of the

microstructure of the material. Section 5-3 develops mathematical formulations for tran-

sient creep of anisotropic and isotropic polycrystalline ice based on the creep anisotropy of

single crystal ice. Also in Section 5-3, average equivalent stresses for single crystal ice and

polycrystalline ice are defined. In particular, the equivalent stress for polycrystalline ice is

obtained by averaging equivalent stresses for all single crystals in a representative volume.

A specific form of dissipation potential, which incorporates internal stresses, is proposed for

inelastic flow. A particular form for evolution equations of internal stresses, kinematic back

stress and isotropic drag stress, is proposed. A summary of model equations is given in

Tables 5.1 and 5.2. In Section 5-4, the dimensionless variables for strain, strain rate, time,

back stress and isotropic drag stress are used to express the dimensionless creep strain rate

and the dimensionless evolution equations of the internal stresses. The dimensionless model

shows a unique relationship between dimensionless variables and is independent of applied

stress and temperature. Section 5-5 contains model parameters, normalization of available

data under constant stress and the predictions of the model.
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5.2 Background

5.2.1 Behavior of Polycrystalline Ice

The mechanical behavior of crystalline solids at high temperatures is controlled by thermally-

activated rate processes. Thus, the behavior of polycrystalline ice is very sensitive to rate and

temperature variations. Generally, the time-dependent inelastic deformation, so-called creep,

is divided into three regimes under constant stress tests. The first regime, called transient

or primary creep, shows the decrease in strain rate. The second regime, called steady-state

or secondary creep, shows a constant strain rate. The third regime, called tertiary creep,

shows an increase in strain rate. In polycrystalline ice, the region of increasing strain rate

in a constant stress test arises at higher stress levels due to microcracking-induced damage

and at lower stress levels due to the recrystallization process (Duval et al., 1983; Jacka and

Budd, 1991).

The effects of microcracks on the creep have been incorporated phenomenologically in

constitutive models (e.g., Sinha, 1988; Choi and Karr, 1989; Zhan et al., 1994). A more

comprehensive study of these effects is presented in Chapter 6. Dynamic recrystallization

is known to occur in polycrystalline ice after a critical strain, which can be approximately

1 % strain under low stress. This recrystallization can induce the development of a preferred

c-axis orientation, and then accelerate the strain rate or decrease the flow strength (Duval

et al., 1983). This phenomenon has not been fully understood physically, and therefore is

not discussed in this thesis.

The strain rates from the diffusional creep mechanism are much smaller than those ob-

served from a range of tests related to engineering applications. This observation suggests

that the deformation of polycrystalline ice without microcracks is controlled by several pro-

cesses, such as the motion and production of dislocations on slip planes within grains, and

grain boundary sliding. The resistance to shear on the basal plane is at least 60 times less

than that on the non-basal planes, such as prismatic and pyramidal planes, at -100C (Duval

et al., 1983). This great difference in resistance is known as creep anisotropy, which plays a

major role in controlling the macroscopic behavior of polycrystalline ice.

Wei and Dempsey (1994) have discussed the plasticity of ice in terms of intersections

107



between the basal and non-basal dislocations. While the basal deformation of single crystals

of ice may be described in terms of dislocation glide along basal planes, the rate of plastic

deformation of polycrystalline ice is controlled by the climb process and the motion of the

jogged non-basal dislocations. Liu et al. (1993) have studied the interaction of dislocations

with grain boundaries in polycrystalline ice using X-ray topography. In their study, the areas

near grain boundaries always deform before the grain interiors owing to stress concentrations.

The grain boundary sliding is achieved by the rotation of grains and further enhanced when

the adjoining crystals undergo slip, and lattice dislocations impinge on grain boundaries.

However, since grain boundary sliding alone cannot account for large strains, the slip or

climb of dislocations within grains has large effects on inelastic strain.

In this study of transient creep, the primary mechanisms are considered to be the motion

and production of dislocations and the creep anisotropy of single crystal ice. The constitutive

model consists of two types of kinetics: flow equation, which describes flow at a given

structure or state of material; and evolution equations, which describe the rate of the change

of microstructure under the influence of strain rate and temperature.

5.2.2 Flow Equation

The rate controlling mechanisms of inelastic deformation for freshwater polycrystalline ice

are described by the motion (glide and/or climb) and production of dislocations within grains

and on grain boundaries (Kocks et al., 1975). Hence, the inelastic strain rate is described

by Orowan's equation (Orowan, 1940)

e = Cbpmv (5.1)

where € is a geometric factor taking into account the orientation of the slip systems, b is the

magnitude of Burgers vector, and Pm and v are the average density and the average velocity

of mobile dislocations, respectively.

For the rate process of the thermally-activated motion of dislocations, the dislocation

velocity is given as

v = *Vio exp R (5.2)RT
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where vo is a frequency factor, Q* () is the apparent activation energy which is a function

of effective stress &, R is the universal gas constant, and T is the absolute temperature in

degrees Kelvin. It is noted that the dislocation velocity increases when the temperature is

increased. In statistical mechanics, the net dislocation velocity from the forward and reverse

activations over an energy barrier is given by

v = Vfo exp - vro exp ( ) (5.3)RT RT

where vfi and vro are constants in the forward and reverse activations, respectively. The

apparent activation energies in the forward and reverse activations, Q} and Q*, are considered

linearly dependent on effective stress as follows

Q} = Q&f - Vf (5.4)

Qr = Qr - Vra (5.5)

where Vf and Vr are activation volumes for the forward and reverse activations, respectively.

Substituting Eqs (5.4) and (5.5) into Eq. (5.3), the net dislocation velocity is given by

vi=f Rexp ( -Q Vf) ro v exp- (Q T + . (5.6)

With the assumptions of symmetrical energy barriers for the forward and reverse activations,

and a single flow mechanism:

V = V =V; v; = p, o = v 0 /2; Qf = Qr = Q (5.7)

where Q is the activation energy of the rate-controlling dislocation mechanism, Eq. (5.6)

reduces to

v =_ exp (exp (12)- exp V .} (5.8)2 RT RT RT
Hence

S= voexp QT)sinh V  . (5.9)

At low stresses, Eq. (5.9) reduces further to

v = vo exp R) RT (510)
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From experiments (Fukuda and Higashi, 1973; Shearwood and Whitworth, 1991), the average

dislocation velocity v at a given temperature is expressed by

v = C exp(R (5.11)

where C is a constant. It is noted that Eq. (5.11) is equivalent to Eq. (5.10) at constant

temperature.

Introduction of impurities in pure ice (e.g., HF-doped, NaCl-doped, HCL-doped ice)

increases dislocation velocity in the crystals (Riley et al., 1978; Shearwood and Whitworth,

1991). HF-doped ice deforms much more easily than pure ice. However, at present a direct

effect of doping on the velocity of dislocations is not understood.

The mobile dislocation density Pm depends on stress to the second power at minimum

strain rate (Weertman, 1983):

Pm= )2 (5.12)

Substitution of Eqs (5.1) and (5.11) into (5.12) results in the minimum strain rate

mnin = Aexp -_ &n (5.13)

where A is a temperature-independent constant and n is the stress exponent. This power-

law creep at minimum strain rate is known as Norton's law, first recognized by Glen (1955),

and widely accepted in the ice literature (e.g., Weertman, 1973; Goodman et al., 1981). For

creep controlled by dislocation motion, where the inelastic strain rate is proportional to the

product of the dislocation density and dislocation velocity, Weertman (1973) describes the

third power stress dependence on the minimum strain rate in his microcreep model.
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5.2.3 Evolution Equations

5.2.3.1 Internal Stress

The inelastic flow of polycrystalline ice at high temperatures is not related to the applied

stress, but rather to the mean effective stress

& = f (a, U') (5.14)

where a is the applied stress and ai are the internal stresses. The origin of the concept of an

internal stress is based on the observation of a discrepancy between the stress dependence

of measured dislocation velocity and the stress dependence of the inelastic strain rate. The

existence of the internal stress is verified physically by experimental methods, such as stress-

and strain rate-dip tests during constant stress loading and constant strain rate loading,

respectively (Duval et al., 1983). The results of these studies suggest that the evolution of

the internal stress can be related to the evolution of complex dislocation substructures.

Due to hexagonal crystal structure, the creep anisotropy of single crystal ice is enormous.

The strain rate of polycrystalline ice under compressive uniaxial stress is about 1000 times

less than that of single crystal ice oriented for easy glide on the basal plane (Glen, 1955; Duval

et al., 1983). The great difference in the strain rates of single crystal ice and polycrystalline

ice can be accounted for by the fact that easy slip on the basal plane and difficult climb

of dislocation on non-basal planes create internal stresses and thus the resolved shear stress

on the basal plane of any grain in polycrystalline ice is less than the applied stress. This

internal stress gives directional or kinematic hardening, as it opposes further deformation.

In addition to kinematic hardening, polycrystalline ice shows isotropic hardening. As

described by Duval et al. (1983), short-range interactions between dislocations on parallel

planes (Taylor hardening) or on intersecting planes (Forest hardening), or between moving

dislocations and arrays of dislocations during cell walls induce non-directional or isotropic

hardening. In the following, the mathematical relation between internal stress and disloca-

tion density describes the evolution equation for isotropic drag stress.
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5.2.3.2 Evolution Equations

The physical process that governs the strain rate- and temperature-dependence of inelastic

deformation occurs as a result of the movement and production of the thermally-activated

dislocations. The dislocations in the crystals provide obstacles for mobile dislocations. As

the flow stress increases during the constant strain rate test or the strain rate decreases in

transient creep during the constant stress test, polycrystalline solids exhibit work hardening,

which can be explained by an increase of the dislocation density with increasing inelastic

strain. The decrease of work hardening rate is attributed to recovery processes due to

the rearrangement and annihilation of dislocations during deformation. Work hardening

and recovery processes caused by cross slip, climb, and subboundary annihilation due to

migration can describe the evolution of the dislocation density (Gottstein and Argon, 1987).

While the deformation behavior at low temperatures is explained with recovery by cross slip,

the steady state at high temperatures is based on recovery by dislocation climb.

The evolution of the average dislocation density p is described by the storage p+ of mobile

dislocations and the reduction p- of dislocations by various recovery mechanisms:

dp dp+  dp-
d-- - dc (5.15)dEc dec dEc

The storage rate of dislocation is given as

dp+  1d =- 1 (5.16)
dEc bL

where the storage length L is usually taken proportional to a constant Ci times the average

dislocation spacing I (Argon and Bhattacharya, 1987),

Cl
L = C1 1 = (5.17)

Thus, the storage rate of dislocation becomes

dp+ ' Fpd-= - (5.18)
dcc C1b

which is an athermal buildup of dislocation density. The reduction of the dislocation density

by the recovery process, such as cross slip of dislocations, is expressed as (Kocks, 1976; Argon
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and Bhattacharya, 1987)
= -Dp (5.19)

dcc

where D, is a temperature-dependent constant related to a probability of cross slip:

D = Dso exp (5.20)

where D,,o is a constant. Combining Eqs (5.18) and (5.19), the evolution of the average

dislocation density becomes
dp Ddp =- Dp . (5.21)

dEc C1b

For the relation between internal stress and dislocation density, the internal stress corre-

sponding to dislocation glide and climb is considered proportional to the square root of the

corresponding dislocation density (e.g., Kocks et al., 1975):

ui = apbf (5.22)

where oa is a constant and ti denotes the shear modulus. At constant temperature and

constant strain rate, the hardening rate dai/dcc is derived from Eqs (5.21) and (5.22) as

dai a D,
d - C - --Cai (5.23)

It is noted that a linear dependence of hardening rate on internal stress appears in the

presence of only glide-induced dynamic recovery. The evolution of internal stress with respect

to time can be expressed by
dai = p- -•S c (5.24)
dt 2C- 2

where the dot denotes time derivative.

At high temperatures, the activation energy for steady-state creep is usually found to be

constant and equal to the activation energy for self diffusion (Takeuchi and Argon, 1976). The

dominant role of diffusion processes in deformation at high temperatures strongly supports

the theory that the recovery process is dominated by climb. The reduction of the dislocation

density by the lattice-diffusional recovery process due to the climb of edge dislocations is
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written as (Gottstein and Argon, 1987)

D -
dp- = - -p2dt (5.25)

C2

where C2 is a constant, D, is given by

D = Deo exp (- (5.26)

and D,, is a constant. Combining Eqs (5.21), (5.22), and (5.25), the evolution equation of

internal stress, which considers both dynamic and static recoveries in the deformation at

high temperatures, can be written as

d ( •a - • Dc a3  (5.27)
dt 2C• 2 - 2C2 (apb)2

If one considers only static recovery, Eq. (5.27) can be written as

dui a D, aord = PE D. - (5.28)
dt 2C1 2C2 (apqb)2

In general, the evolution of internal stress is simplified to

ri = h c - r (5.29)

where the hardening rate, which includes the dynamic recovery term, is

dau a D8
h = 2Cp - aSi (5.30)dec 2C, 2

and the rate of static recovery is

r = c 3  (5.31)
2C2 (amb) 2

When transient creep is a result of competing work hardening and recovery processes, a

balance between these two processes is reached at steady-state condition. These processes are

described in terms of da/dcc versus a for the constant strain rate test and dic/dcc versus ic for

the constant stress test. In the study of dynamic behavior of dislocations in polycrystalline

ice, Fukuda and Higashi (1973) have observed annihilation of dislocations with two opposite
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signs from a dipole or intersections.

In the modeling of transient creep, a logarithmic creep law has been observed in many

ductile metals at low temperatures where recovery effects are negligible. At high temper-

atures, where recovery effects become observable, the transient creep rate is proportional

to t - 2/3 , leading to transient creep being proportional to t1/3 . Mott (1955) and Argon and

Bhattacharya (1987) described this transient creep, which is known as Andrede's creep, as

closely associated with rapid recovery or climb of dislocations in the work-hardening of met-

als. The transient strain rate, following Andrede's creep law, has also been observed in

polycrystalline ice (Glen, 1955; Duval, 1976).

5.3 Development of a Constitutive Model

A physically-based constitutive model can be achieved if the physical mechanisms underlying

the deformation process are adequately reflected in the functional form of the constitutive

equations. The evolution of the microstructure of polycrystalline ice during transient creep

and a detailed characterization of its relationship to macroscopic deformation are not fully

understood. Nevertheless, a model is proposed to provide satisfactory descriptions of tran-

sient creep based on the underlying mechanisms.

In the following constitutive model, we will consider freshwater polycrystalline ice, with

grain sizes between 1 mm and 10 mm, at temperatures between -500C and -100C (above

0.80 TM), and at strain rates between 10- 7 and 10- 5 s - 1. Within this ductile regime,

deformation is governed by several mechanisms, such as: the movement and production of

dislocations, mostly within grains, grain boundary sliding, and the creep anisotropy of single

crystal ice.

5.3.1 Material Anisotropy

The deformation of polycrystalline ice is highly non-linear and depends on loading rate and

temperature, as well as on the granular microstructure. Since polycrystalline ice is made

up of single ice crystals, its behavior is affected by the properties of individual crystals.
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This Section describes a mathematical representation of the effect of the crystallographic

orientation of single crystals on the elastic and inelastic responses of polycrystalline ice.

Following the contracted Voigt notation, vector notation is used instead of tensor nota-

tion. The total strain rate vector e is decomposed as follows

i = e + + i (5.32)

where ie and iC are the elastic and inelastic strain rate "vectors" (in the sense of the con-

tracted Voigt notation), respectively. The elastic strain rate vector is written as

e = S 6- (5.33)

where o is the applied stress vector and S is the elastic compliance matrix of polycrystalline

ice (see Appendix B of Chapter 5). The vector form of the strain and stress components

are written as = [ =e1 E 22 E33 c23 c13 C12 ]T and a = [ all 22 033 "23 "13 "12 ]T

where superscript T denotes the transpose operation.

5.3.1.1 Single Crystal Ice

Due to hexagonal crystal structure, the creep anisotropy of single crystal ice is enormous

(Glen and Perutz, 1954; Steinman, 1954; Higashi, 1968; Duval et al., 1983). Shear resistance

on the basal plane is almost 60 times lower than that on the non-basal planes, such as

prismatic and pyramidal planes. Therefore, crystals can more easily deform by dislocation

glide on the basal planes than on the non-basal planes. The tests done by Higashi (1968)

showed that at -19 0 C and a strain rate of 3 x 10-6 s - 1 , the peak uniaxial stress for non-basal

slip in single crystal ice was between 10 and 20 times higher than the peak stress for basal

slip. Slip in the basal plane, however, has been found not to be dependent on any direction

(Glen and Perutz, 1954; Kamb, 1961; Hobbs, 1974). A direction perpendicular to the basal

plane is known as the c-axis of the crystal. Single crystal ice, therefore, can be considered a

transversely isotropic material.

Consider xl', x2', and x3' to be the local frame axes of a single crystal with its c-axis

parallel to the xl' axis, as shown in Figure 5-1. The equivalent stress &e for a general
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anisotropic material is defined as

2 3 c 2 C2  , 2 c3  , '2 '2 '2"l
S= i ~• ( '11  22)  (O22 - 33)33 1 1 ) 2(c4C23 + C5 1 32 + C6 1 2 )

3C1-CC3 4 3 13 12

(5.34)

where 'a;, '22, a33, a23, 13, and a12 are stresses in the local frame; cl, c2, C3, c4, c5, and

c6 are material constants; and the xl'-axis is chosen to be the reference direction so that

b& = au with states of stress [ a 1  0 0 0 0 0 ]T.

For a transversely isotropic single crystal ice with its c-axis parallel to the xl' axis,

Eq. (5.34) is reduced to

&2_ 3 c '  '2 + 2 , 2 U 11)
2  2(c4 2 C6 13'2 '12

e C- {(9 '1 - U22 )2  (' - ' -- 3 + c - 1 23 13 C6U 12 )2c, 3 3 3 1
(5.35)

where the local frame x2'-x3' is the plane of transverse isotropy. The equivalent stress has

to be invariant when the coordinate system rotates around the c-axis. The same equivalent

stress for states of stress [ 0 a -a 0 0 0 ]T and [ 0 0 0 a 0 0 ]T results in the

following relationship:

cl + 2c2 = 3C4 . (5.36)

Therefore, among the four material constants, cl, c2, C4, c6, only three of them are indepen-

dent.

The transformation law between the stresses in the local (xl'-x2'-x3') and global (xl-x2-

x3) frames has the following form:

o' = T(0, W) a (5.37)

where a' and a are stress "vectors" (in the sense of the contracted Voigt notation) in

the local and global coordinate systems, respectively; the three-dimensional transformation

matrix T(0, ý) is given by Eq. (5.A5) in Section 5.7 Appendix A.
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5.3.1.2 Columnar-grained S2 Polycrystalline Ice

We consider columnar-grained polycrystalline ice for which the c-axis orientation of the single

crystals is randomly distributed in the plane normal to the axis of the column. Michel and

Ramseier (1971) classified this ice as S2 ice. Figure 5-2 illustrates the structure of S2 ice

for the case where the column axis coincides with the x3 direction. The c-axis lies in the

xl-x2 plane (i.e., o = 0), and the ice is considered isotropic in this plane. S2 ice, therefore,

is transversely isotropic.

The equivalent stress for single crystal ice in terms of stresses in the global frame (xl-x2-

x3) is obtained by the following stress transformation. The relationship between the stresses

in the two frames is given by

o' = T(0) a (5.38)

where the three-dimensional transformation matrix T(O) is

c2  S2 0 0 0 2cs

s2 C2 0 0 0 -2cs

0 0 10 0 0

0 0 0 c -s 0

0 0 0 s c 0

-cs cs 0 0 0 C2 - S2

(5.39)

where c = cos 0 and s = sin 0, and 0 denotes the angle between the c-axis and the global

xl-axis (see Fig. 5-2). This transformation applies for the case when x3' coincides with x3.

By substituting the stress components of Eq. (5.38) into Eq. (5.35), the equivalent stress

for single crystal ice in the global reference frame is obtained as

ce 2c 3 (c2 ll + s2 U 2 2 + 2cs l2 -82 a11 -C C 2 2 + 2cs l 2

+- 2 ( 1 1 C+ 22 - 2cs 12 - 33 2  (33- C2 - S2 2 2 - 2cs 12  (5.40)

+2C 4 (C 0"23 - S "13) 2 + 2c 6 (s "23 + C "l3)2 + 2C6 (-cs 0 11 + CS 22 + (C2 
- 82) "12)2}

The effect of the crystallographic orientation of individual grains on the inelastic response
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in polycrystalline ice have been studied (Lile, 1978; Azuma, 1995). Considering that a

polycrystalline aggregate is replaced by an equivalent homogeneous body and assuming that

the stress field in each individual grain is assumed to be uniform and equal to the macroscopic

stress in polycrystalline ice (Voigt, 1889; Sachs, 1928), the equivalent stress of an anisotropic

polycrystalline aggregate can be obtained by weighting the equivalent stress at each crystal

orientation by the relative frequency of that orientation. This averaging procedure over the

representative volume V yields

q2 = J &2(0) 0(0) dO dV (5.41)

where 0(0) is the probability density function of the c-axis orientation for the polycrystalline

aggregates. The c-axes in S2 ice are uniformly distributed for all 0, (0 < 0 < 7r) and the

probability density function of the c-axis becomes

1
0(0) = - (5.42)

The equivalent stress for columnar-grained S2 polycrystalline ice can be obtained by an

averaging of the equivalent stresses for all single crystals in a representative volume:

21 2 (0) dO . (5.43)

The substitution of Eq. (40) into Eq. (5.43) and simplifying the result yields

oe,2 -= ("11 - 0 22 
2  (22 - ) 33 - 33 - 1 1

2 + 2(a 40,2 + a4 -23 + a6 U-22

(5.44)

where the global plane (xl-x2) is the plane of transverse isotropy; with P chosen to be

(al + a2) so that arq = all when the stress components are described by the vector or =

[ 0a 0 0 0 0 0 ]T, i.e., the xl-axis is chosen to be a reference direction. Material

constants are given in terms of the material constants of a single crystal:

3cl - C2 + 6c 6al =

8
C1 + C2a2 = a3  - 22
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C4 + C6a4 = a5  2
2

5cl + c2 + 6c6

(5.45)

The equivalent stress has to be invariant when the coordinate system rotates around

the x3-axis. Since this invariance gives the same equivalent stress for states of stresses

[ -a 0 0 0 0 ]T and [ 0 0 0 0 0 a ]T, the following relationship can be ob-

tained:

2al + a2 = 3a 6 . (5.46)

Therefore, among the four parameters, al, a2, a4, and a6 , only three of them are independent.

This result is also verified by substituting Eq. (5.45) into Eq. (5.46).

Equation (5.44) may be expressed in compact form:

2 3
eq = •T G " (5.47)

where the stress-transformation matrix G is given by

(a + a2)

-41
0

0

0

- i
(al + a2)

3-

0

0

0

a4 a2a
0

0

0

0

0

0

2a 4

0

0

0

0

0

0

2a4

0

0

0

0

0

0

2a6

(5.48)

5.3.1.3 Equiaxed-granular Polycrystalline Ice

Figure 5-3 shows equiaxed-granular polycrystalline ice in which the c-axis orientation of the

constituent single crystals is randomly distributed in the three-dimensional (xl-x2-x3) space.

This granular polycrystalline ice, therefore, is considered to be an isotropic material.

The transformation law between the stresses in the local and global frames is given by

a' = T(, cp) (a (5.49)
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where o-' and a are stress vectors in the local and global coordinate systems, respectively;

the three-dimensional transformation matrix, T(0, W), is given by Eq. (5.A5) in Section 5.7

Appendix A. The equivalent stress of single crystal ice in the global reference frame is

obtained by substituting the stress components in Eq. (5.49) into Eq. (5.35).

Assuming, as done in columnar-grained S2 ice, that all grains undergo the same uniform

stress and a polycrystalline aggregate is replaced by an equivalent representative body, the

equivalent stress of an isotropic polycrystalline aggregate can be obtained by weighting the

equivalent stress at each crystal orientation by the relative frequency of that orientation over

the representative volume V:

o •Uo = I / ^(0, W) E(0, o) cos(p) dp dO dV (5.50)2Oeq --" f f -7r/2

where 0(0, V) is the probability density function of the c-axis orientation for the polycrys-

talline aggregate. The c-axes in equiaxed-granular polycrystalline ice are uniformly dis-

tributed for all 0 (0 < 0 < 7) and all y (-7r/2 < o :5 7r/2), thus the probability density

function of the c-axis becomes
1

E(0, ) =( (5.51)27r
The substitution of Eq. (5.51) into Eq. (5.50) results in

eq = 2 J1 (0, V) cos(Vp)d dO. (5.52)

The substitution of the equivalent stress of single crystal ice in the global reference frame

into Eq. (5.52) and simplifying the result yields an averaged equivalent stress for equiaxed-

granular polycrystalline ice:

2 3a = ( -( 22) 22 - 33  U1) 2 + 2a(u2 3 + 2 + a 2 ) (5.53)ae = all - a22)2 + (a22 - a33)2 + (a33 - all3 2 +

where 0 is chosen to be 2a and the material constant a is given by

5a, + 4a 2 + 6a 6
a 15 (5.54)
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Equation (5.53) may be expressed in matrix notation as

2 3T
aq = 23  G o (5.55)

where the stress-transformation matrix G for an isotropic polycrystalline ice is

g - -1 0 0 0

12 1 000

1 2 0 0 0

0 0 0 200

0 0 0 020

0 0 0 002

(5.56)

5.3.2 Inelastic Flow

This section develops a mathematical formulation for highly rate-dependent columnar-grained

and equiaxed-granular polycrystalline ice based on the underlying mechanisms for their in-

elastic behavior. The constitutive equation is written as a function of two internal state

variables, X and B, as well as external variables, such as stress and temperature. The strain

rate during transient creep at constant stress and temperature results both from the evo-

lution of back stress X as the kinematic hardening variable and the evolution of isotropic

stress B as the isotropic hardening variable.

The model development assumes that the inelastic deformation is incompressible, with

the same behavior in compression and tension. The following formulation assumes the major

influence to be only the second invariant of the deviatoric stress tensor.

5.3.2.1 Inelastic strain rate

To derive the relationship between the inelastic strain rate iC and the stress a, the reduced

equivalent stress for columnar-grained S2 polycrystalline ice may be expressed in matrix

notation as
32,eq • T G Ud (5.57)
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where the reduced stress is defined as

S= - X (5.58)

and the internal variable X represents the back stress.

In the rate-dependent context, there is no yield/failure function and an inelastic dissipa-

tion function serves in deriving constitutive relations. If inelastic flow in polycrystalline ice

without microcracks is taken to follow Glen's power law, a scalar-valued dissipation potential

(D(ao, X, B, T) of the Norton-Hoff type can be defined as

4) = _B (d,e) n (5.59)
n+1 B

where n is the stress exponent, usually taken as 3 in the experimental literature, the internal

variable B represents the isotropic drag stress, and eo is a temperature-dependent reference

strain rate. The effect of temperature on the reference strain rate is represented by an

Arrhenius relationship:

o = AO exp RT (5.60)

where Ao is a temperature-independent constant, Q is the activation energy, R is the universal

gas constant, and T is temperature in degrees Kelvin.

Normality between c' and a requires

ie a(5.61)
aO9 d

The inelastic strain rate is determined by substituting Eq. (5.59) into Eq. (5.61):

Ac = o eG (5.62)
00 B Ud,eq

It is worth noting that for the special case of isotropic polycrystalline ice (i.e., al to a6

equal to 1) with no kinematic hardening, the inelastic strain rate is obtained from Eq. (5.62)

as

.--o3 (5.63)
o 2 B Oreq
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where the equivalent stress is reduced to the classical von Mises equivalent stress

Ueq= a)1 (5.64)

and a deviatoric stress o' is defined as

0 = 0 - amI. (5.65)

where am is the hydrostatic stress and I is the identity matrix.

Using the hypothesis of energy equivalence, the relationship between the equivalent stress

defined in Eq. (5.57) and an equivalent strain rate measure can be established. The rate of

dissipation of energy per unit volume, o%, is given by:

(Do d= CrCo . (5.66)

Application of the hypothesis then yields:

• • c = od,eq eq (5.67)

where , is the equivalent inelastic strain rate. Substituting Eq. (5.62) into Eq. (5.67) and

using Eq. (5.57) result in

i= E0 (Jd 7 ) n (5.68)

Given Eqs (5.57) and (5.68), the explicit expression for the equivalent inelastic strain rate

can be expressed in matrix form as (Shyam Sunder and Wu, 1989b)

. 2 ic H er (5.69)
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where the strain-rate transformation matrix H is given by

-3ala2 0 0 0

a
2

-3al 0 0 0

S0 0 0

0 0 0 0 0
200

0 0 0 0 0

0 0 0 0 0o o o o oo o o o o 1

(5.70)

where a* = 2ala2 +a2. Eq. (5.69) reduces to the equivalent strain rate for isotropic materials

if the material parameters al to as are equal to 1.

In this section, material or texture anisotropy effects during transient flow are modeled

orthotropically by defining equivalent values for the thermodynamic force tensors in a manner

analogous to the Hill-criterion of plastic yield (Hill, 1950). The three parameters which are

used to describe columnar-grained S2 polycrystalline ice can be estimated from the material

constants of single crystal ice.

The proposed model has some similar features with the transient creep model developed

by Shyam Sunder and Wu (1989b). These models differ, however, in that the proposed

model has an inelastic strain rate whereas Shyam Sunder and Wu's model have two inelastic

strain rates in their formulation. In addition, evolution equations of internal stresses in the

proposed model are different from those of Shyam Sunder and Wu's model. In the following

section, evolution equations for the internal stresses are formulated using strain hardening

and recovery processes.

5.3.2.2 Evolution equations of internal stresses

In the previous section, the kinetic equation described the dependence of the inelastic strain

rate on applied stress, temperature, and internal stresses. In particular, the macroscopic

inelastic strain rate in the incremental form was a function of applied stress, isotropic drag

stress was related to isotropic hardening, and internal back stress was related to kinematic

hardening. The change in microstructure is described by the evolution equations of these
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internal stresses.

The internal state variable used for isotropic hardening is some measure of the current flow

stress or level of work hardening used to account for the changes in size of the flow surface

in the classical theory of plasticity. The internal state variable for kinematic hardening

describes the back stress responsible for the anelastic response. If flow surfaces were defined

as surfaces of constant flow rate analogous to yield surfaces, the back stress would be the

location of the center of a set of surfaces.

Kinematic back stress, X

Kinematic hardening is attributed to the directional internal stress caused by the creep

anisotropy of single crystal ice, the great difference in resistance to creep between the basal

plane and non-basal planes. When ice is unloaded, this internal stress is responsible for large

recoverable strain. At small strains, however, the reversible motion of dislocations results

in anelastic strain. The anelastic strain depends on the specific motion of the dislocation

structure, such as the dislocation bowing-out by pinning at dislocation networks and the

dislocation pile-up at strong barriers such as grain boundaries (Cole, 1991). Grain boundary

sliding may also affect a significant part of the recoverable transient creep.

It is very important to include back stress in the constitutive model for time-dependent

recoverable strain upon unloading and for cyclic behavior. This back stress influences the

shapes and stabilizations of cyclic hysteresis loops. For monotonic increasing deformation,
the back stress increases from zero, and saturates when the creep strain rate reaches its stead-

state value. The increase of the back stress results in kinematic hardening. The Bauschinger

effect can be attributed to the interaction of dislocations resulting in the internal back stress

field.

The following evolution equation of kinematic back stress X is proposed

X = hiE (ic - riXn) (5.71)

where E is the isotropic Young's modulus, hi is the kinematic hardening constant, and rl is

the recovery constant.
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Isotropic drag stress, B

Since isotropic hardening is a result of the way dislocations interact and trap each other,
and thus depends on the statistics of their distributions and motion, the processes con-

tributing to isotropic hardening are dipole formation, Forest hardening, the formation of

kink bands of cell boundaries, and combinations of these (Ashby and Duval, 1985). The

dislocation density in ice increases in transient creep during constant stress loading; thus

the change of deformation resistance represents the isotropic hardening effect of the average

dislocation density.

In the case of polycrystalline ice, most of the structural changes of interest during tran-

sient creep occur for strains whose magnitude is typically less than 1 %. From the assumption

that isotropic hardening is related to dislocation interactions due to the change of the dislo-

cation density, the isotropic variable describes the characteristics of the resistance to inelastic

flow.

The following evolution equation of isotropic drag stress B is proposed

h2E
B = (Ba,,t - B) lieQ (5.72)

Ud,eq

where h2 is the isotropic hardening constant and Bat is the saturated value of B.

5.3.2.3 Summary of model equations

A summary of the multiaxial creep model for transversely isotropic polycrystalline ice is

presented in Table 5.1. A summary of the isotropic one-dimensional model is shown in Table

5.2. The governing equations of the model are summarized here for isotropic polycrystalline

ice under uniaxial stress a.

While the initial value of X is zero for an annealed material prior to loading, the initial

value of B, i.e. Bo, may represent the annealed state of the material or some level of initial

hardening introduced by pre-straining. The internal stresses X and B evolve with strain and

time. Steady-state is reached when the inelastic strain rate becomes the minimum strain

rate and the evolution rates of internal stresses decay to zero.
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By defining the steady-state values of X and B as:

Xsat = k1a (5.73)

Bsat = k2Bo , (5.74)

the minimum strain rate can be derived by substituting Eqs (5.73) and (5.74) into Eq. (5.88):

,= ~in = (k )- n (5.75)

where kI and k2 are dimensionless constants. The minimum strain rate is also defined when

both X = 0 and B = 0 from Eqs (5.89) and (5.90), respectively, i.e.

mn = r1X'at (5.76)

B = Bat . (5.77)

The recovery constant rl is obtained by equating Eqs (5.75) to (5.76):

r o = cki)o , (5.78)
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Table 5.1: Summary of the multiaxial creep model

* Total strain rate

* Elastic strain rate

i = ie + i

Ee = S 6

* Inelastic strain rate

iC = o 3 deq )

where ,o = Ao exp ad = 0 - X;
3

Ud,eq = p ; P = al +a 2 (5.82)

0 0 0

a

0 2a4  0 0

0 0 2a 4  0

0 0 0 2a 6

* Kinematic back stress

X = hiE (~e- rlX") where rl = o (1 - kl n

(kjk2B )

* Isotropic drag stress

(Bsat - B) VI q where Bsat = k2Bo
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(5.80)

GOd

Ud,eq
(5.81)

(al + a2 )

(a + a2)

0

0

0

(5.83)

(5.84)

Sh 2 E
d, = e

Od,eq
(5.85)



Table 5.2: Summary of the isotropic one-dimensional creep model

e Total strain rate

(5.86)

* Elastic strain rate

e E (5.87)

* Inelastic strain rate

gio (orX ) n
where = Ao exp (-T) (5.88)

* Kinematic back stress

X= hiE (c - riXn) where r, = io(1 - kl n (5.89)

* Isotropic drag stress

(5.90)

5.4 Model Formulation with Dimensionless Variables

For a special case of constant stress loading, Ashby and Duval (1985) have suggested that

unique relationships exist between certain dimensionless variables for polycrystalline ice, up

to the point where the minimum strain rate occurs. Such relationships are predicted by the

proposed model as shown below.

For creep of polycrystalline ice at constant applied stress, Ashby and Duval (1985) have

considered the following dimensionless variables for strain, strain rate and time:

(5.91)
EE
o"=
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S= _(5.92)
Emin

tE= (5.93)
a

The internal stresses in the proposed model are normalized in the following form:

X
-= - (5.94)
(T

i B (5.95)
Bo

Initial values for dimensionless variables X and B are 0 and 1, respectively. The steady-

state values of X and B are defined in Eqs (5.73) and (5.74), and hence their dimensionless

steady-state values are kl and k2, respectively.

By substituting Eqs (5.91)-(5.95) in Eqs (5.88)-(5.90), the following dimensionless strain

(creep) rate and evolution equations of the internal variables are obtained:

S1 - k (5.96)

X = hi ( (5.97)k
B= h2 k2 ( )c . (5.98)

As shown in Eqs (5.96)-(5.98), the model predicts an unique relationship between dimension-

less variables and is independent of applied stress level and temperature. The dimensionless

model predictions with normalized creep data are given in Section 5.5.2.
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5.5 Model Predictions and Experimental Validation

5.5.1 Model Parameters

Elastic Parameters

The elastic constants of polycrystalline ice are given in Appendix B of Chapter 5. The

dynamic elastic constants of single crystal ice were determined at T = -16oC using the

method of Brillouin spectroscopy, by Gammon et al. (1983). The theoretical effective elastic

constants of polycrystalline ice can be computed by using various homogenization methods,

such as the Ruess and Voigt assumptions (Sinha, 1989; Nanthikesan and Shyam Sunder,

1994), the self-consistent method (Wang and Schapery, 1995), and a computational model

(Elvin, 1996).

Creep Parameters

The values of material parameters n, Q, A, Bo, kI, k2, rl, hi and h2 for polycrystalline

ice may be determined from isothermal constant stress tests in the following procedure.

The minimum strain (creep) rate for polycrystalline ice at high temperatures is given as

a function of stress a and temperature T:

•en = A exp- Oan  (5.99)

where A is a temperature-independent constant, Q is the apparent creep activation energy,

R is the universal gas constant equal to 8.314 J mol-1K - 1, T is the temperature in degrees

Kelvin, and n is the stress exponent, usually taken as 3 (Glen, 1955; Weertman, 1973).

The determination of the creep parameters n, A and Q for columnar-grained freshwater ice,

sea ice and equiaxed-granular freshwater ice have been extensively investigated in the ice

literature (Gold, 1973; Homer and Glen, 1978; Hooke, 1981; Sinha, 1978; Duval et al., 1983;

Weertman, 1983; Sanderson, 1984).

The apparent activation energy can be obtained from Eq. (5.99), when the minimum
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creep rate is known at two different temperatures T1 and T2 for a given stress a, as follows:

Q= T1 T2 in (min (5.100)
TI - T2  kcmin2

where icmin, and 'min2 are minimum strain rates at temperature T1 and T2, respectively.

Three values of A are determined from three sources for different ice type; the data of

Sinha (1978) on columnar-grained S2 freshwater ice, the data compiled by Duval et al. (1983)

for isotropic freshwater ice and the data compiled by Sanderson (1984) for columnar-grained

freshwater ice and sea ice.

Under a constant stress test, the initial value of B, i.e. Bo, can be estimated from

experimental measurement of the initial creep rate by equating the initial creep rate of the

model:

ein (exp.) = eo (5.101)

where the initial value of R is zero, the constant Ao may be set to unity without loss of

generality.

For a given n, A and Bo, the values of kI and k2, used in the steady-state values of X and

B, may be estimated as follows. The usual way to determine internal stress at a given stress

and temperature is to conduct a constant stress test at some base stress, and then impose

a stress reduction. The strain response is characterized by an instantaneous elastic strain

recovery followed by an incubation period of creep rate and a transient period during which

the creep rate decreases. The creep rate achieved just after the stress reduction is the creep

rate associated with the new stress, but with the old microstructure. The stress measured

at the zero creep rate may be interpolated as the internal back stress at the original base

stress and temperature.

The zero creep rate just after a stress reduction Au during steady-state flow under a base

stress a gives the relationship that the reduced stress equals the saturated back stress at the

original base stress:

a - Aa = Rst = kla (5.102)

from which the value of kI may be estimated. The value of k2 is estimated by equating the
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two minimum creep rates, Eqs (5.75) and (5.99):

Ao (1 kl)n = A. (5.103)

The recovery constant rl is given in Eq. (5.78) as:

S= (1 - k i k 2B o  (5.104)

The parameters hi and h2 govern the rate and amount of kinematic and isotropic harden-

ing, respectively. The values of these parameters are estimated from experimental creep data

by an iterative curve-fitting procedure. For highly textured ice associated with a relatively

small component of creep strain the value of h, is very small. It follows that steady-state

will be achieved in a short period of time. On the other hand, for an untextured isotropic

polycrystalline ice associated with a relatively large component of creep strain, the value of

hi is small and it takes much longer to achieve steady-state (Shyam Sunder and Wu, 1990).

The model parameters cl, c2 , and c6 are used to represent the creep anisotropy of ice single

crystals. Without loss of any generality, c2 can be taken as 1. Thus only two parameters

need to be determined from constant stress tests on single crystal ice.

5.5.2 Model Predictions with Normalized Creep Data

Comparison of model predictions with the creep data of Jacka

Ashby and Duval (1985) proposed that under constant applied stress dimensionless vari-

ables for strain, strain rate and time that can be used to develop master curves for creep

data, which are independent of the loading parameters, such as applied stress level and

temperature.

Jacka (1984) has published results of uniaxial compression tests on isotropic (equiaxed-

granular) polycrystalline ice with a mean grain size of 1.7 ± 0.2 mm. The samples were

tested under constant stresses ranging from 0.1 to 1.5 MPa at the following specific tem-

peratures: -5.0, -10.6, -17.7 and -32.5oC. Figures 5-4, 5-5 and 5-6 show plots for Jacka's
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data (taken from Ashby and Duval, 1985) corresponding to c versus t, ý versus t and ý versus

E, respectively. The predictions of the model are indicated by solid lines with the chosen

parameters:

n = 3; kl=0.1; k2=3.2; hi=1/70; h2=1/30.

Also shown are the model predictions of Sinha's equation (1978) (modified by Ashby and

Duval, 1985) with values of n=3, A=70, C"=1.6 x 10-2 and of Le Gac and Duval's equation

(1980) with values of n=3, h=100 MPa, h'=600 MPa, k=0.71, k'=0.28, hB/ak3=6.14 x 105.

The predictions of Shyam Sunder and Wu (1989a, 1990) are shown in the same figures using

their model parameters, n=3, A=0.0142, Bo=0.286 and H=0.02. Both Shyam Sunder and

Wu (1989a, 1990) and the proposed model satisfy the non-dimensional requirements and

capture the trend of the normalized creep data of Jacka (1984). These models, however,

differ in several ways: while the total inelastic rate in Shyam Sunder and Wu's model is the

sum of two components, a transient component and a steady-state component, there is only

one component, inelastic strain rate, in the proposed model; while evolution equations in

Shyam Sunder and Wu's model have constant dynamic recovery terms, those of the proposed

model have varying dynamic and static recovery terms, which more closely correspond to

the underlying mechanisms.

Comparison of model predictions with the creep data of Mellor and Cole

Using the non-dimensional variables introduced by Ashby and Duval (1985), the constant

stress creep data of Mellor and Cole (1982) with a range of stresses (0.8 - 3.8 MPa), and

temperature at -5 0C are non-dimensionalized. Figures 5-7, 5-8 and 5-9 show plots for the

data of Mellor and Cole (1982) corresponding to E versus t, E versus t and i versus i. The

predictions of the model are plotted with solid lines with the following parameters:

n = 3; k1=0.25; k2=1.5; hi=1/70; h2=1/15.

The normalized data shows considerable scatter in tertiary creep as well as in transient

creep. Compared to 0.1 to 1.5 MPa in the experiments of Jacka (1984), higher stress levels in

the experiments of Mellor and Cole (1982) caused microcracks in the ice specimens and these

microcracks enhance the creep rate during the transient creep. As a result, the minimum

strain rate occurs in the range t=1.0 to 1.5 in Mellor and Cole's ice, while in Jacka's ice

t=1.5 to 2.0.
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Mellor and Cole (1982) and Lawrence and Cole (1982) have reported that microcracks

start to form at a certain strain. As mentioned by Ashby and Duval (1985), the non-

dimensional variables are applicable only up to the stage where the minimum strain rate

occurs and internal microcracks are not present. The loss of experimental accuracy at small

strains, as mentioned by Mellor and Cole (1982), makes it difficult for us to determine the

required model parameters.

Even though the model predictions capture the trend of the normalized data up to the

transient creep, a more comprehensive creep model, which incorporates the effects of micro-

cracking, needs to be developed. It is also worth noting that the experimental data obtained

from a number of ice crystals and polycrystalline ice tested at the same strain rate and

temperature are scattered. This is believed to be due to the differences in the initial dis-

location density and the non-uniform crystallographic orientations of single crystals in the

polycrystalline aggregate. The scatter of available experimental data on polycrystalline ice

has made it difficult to develop the constitutive model.

Summary of model parameters

A summary of model parameters is given in Table 5.3.

Table 5.3: Summary of model parameters

Parameters Jacka (1984) Mellor and Cole (1982)
(Granular Ice) (Granular Ice)

E (MPa) 9000 9000
n 3 3.43
Q (kJ mol-1) 67 67
A (MPa-3s- 1)  3.40 x 106 2.23 x 106
Ao (s- 1) 1 1
Bo (MPa) 1.87 x 10- 3 7.92 x 10- 3

kl 0.1 0.27
k2 3.2 1.30
hi 1/70 1/70
h2 1/30 1/10
rl (MPa-3s- 1) 1.68 x 10- 4 1.73 x 10- 5
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5.6 Conclusions

A multiaxial constitutive model of transient creep for orthotropic polycrystalline ice has been

developed based on the internal stresses. Since polycrystalline ice is made up of individual

single ice crystals, the behavior is affected by the properties of individual crystals. In this

study of transient creep, the following processes are considered: the creep anisotropy of single

crystal ice, the distribution of crystallographic orientation of individual single crystals and

alterations of dislocation densities within grains. The state of microstructure is described by

back stress and drag stress. While back stress is introduced for time-dependent recoverable

strain due to the creep anisotropy, the drag stress is developed from deformation resistance,

accounting for the average dislocation density for non-homogeneous dislocation structures.

By using internal stresses and their evolution equations, transient creep of polycrystalline

ice has been modeled successfully.

The material anisotropy of polycrystalline ice are formulated by applying the averaging

methods to the elastic and inelastic properties of constituent single ice crystals. In partic-

ular, effective elastic constants of polycrystalline ice are computed by the Ruess and Voigt

averaging assumptions. The equivalent stress for polycrystalline ice is obtained by weighting

the equivalent stress at each crystal orientation by the relative frequency of that orientation,

based on Voigt (or Sachs) averaging assumption.

Even though the proposed model can describe the viscoplastic responses related to the

hardening behavior, results show that the proposed model has difficulty in describing the

stress-strain curves of polycrystalline ice, when many microcracks are present. The present

analysis suggests that an improvement can be realized by taking into account the damage

caused by microcracking. However, the constitutive equations developed in this chapter

provide the essential basis for developing an orthotropic damage-enhanced creep model which

will be capable of describing the following behaviors of polycrystalline ice: highly rate- and

temperature-dependent primary and tertiary creep.

In Chapter 6, a physically-based, damage-enhanced creep model will be developed. The

effects of microcracking will be incorporated in the transient creep model. Particular empha-

sis will be placed on the influence of microcracking on creep. Extensive numerical simulations

will be carried out to provide a comparison with experimental data.
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Notations

A
Ao
a

ai
B
B3
Bo
Bsat
C

C
Ci
E
G
H
h
hi, h2
kl, k2
I
n
Q
Q
R
r

rl
S
S,
S' ,ij

T
T
t
i
V
X, X

Xsat
xl, x2, x3
xl', x2', x3'

temperature-independent constant in the minimum strain rate (MPa-ns-1 )
constant in the reference strain rate (s- 1)
material creep constant of isotropic polycrystalline ice
material creep constants of polycrystalline ice
isotropic drag stress (MPa)
dimensionless isotropic drag stress
initial value of B (MPa)
steady-state value of B (MPa)
undamaged elastic stiffness matrix of polycrystalline ice (MPa)
undamaged elastic stiffness matrix of single crystal ice (MPa)
undamaged elastic stiffness components of single crystal ice (MPa)
cos 0
material creep constants of single crystal ice
isotropic Young's modulus (MPa)
stress-transformation tensor
kinematic transformation tensor
hardening function of internal stress
hardening constants of internal stresses X and B
dimensionless constants used in X,.t and B,,t
identity matrix
stress exponent in power law
activation energy (kJmol- 1)
orthonormal rotational matrix
universal gas constant (Jmol-1K - 1)

recovery function of internal stress
recovery constant in kinematic hardening variable X (MPa-ns- 1)

undamaged elastic compliance matrix of polycrystalline ice (MPa- 1)
undamaged elastic compliance matrix of single crystal ice (MPa- 1)
undamaged elastic compliance components of single crystal ice (MPa- 1)

sin 0
temperature in degrees Kelvin (K)
transformation matrix
time (s)
dimensionless time
activation volume
kinematic back stress and tensor (vector) (MPa)
dimensionless kinematic back stress
steady-state value of X (MPa)
reference global axes
local axes
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a constant
0 material constant
C, total strain and total strain rate (s - 1)
fe ee elastic strain and elastic strain rate (s- 1)
ec, ýc inelastic strain and inelastic strain rate (s- 1)
,o temperature-dependent reference strain rate (s-1)

6, i total strain and total strain rate tensor (vector) (s- 1)
Ce Ee elastic strain and elastic strain rate tensor (vector) (s- 1)
Ec, i inelastic strain and inelastic strain rate tensor (vector) (s- 1)

P shear modulus (MPa)
v average velocity of mobile dislocations

p average density of dislocations
Pm average density of mobile dislocations
a stress (MPa)

ad,eq reduced equivalent stress scalar for polycrystalline ice (MPa)
re equivalent stress scalar for single crystal ice (MPa)

aeq equivalent stress scalar for polycrystalline ice (MPa)
& effective stress (MPa)
ai internal stress (MPa)

aij stresses in the global frame (MPa)
aij stresses in the local frame (MPa)

am hydrostatic stress (MPa)
a stress tensor (vector) (MPa)
Oed reduced stress tensor (vector) defined as a - X (MPa)

geometrical constant
(Io dissipation potential for undamaged polycrystalline ice
0 probability density function of c-axis orientation
, cp c-axis orientation of single crystal ice in the global frame
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5.7 Appendix A

Coordinate Transformation

Let (xl,x2,x3) be the reference rectangular Cartesian coordinate system (reference global

frame) and (x1',x2',x3') be the local rectangular Cartesian coordinate system (local frame),

where xl' corresponds to the c-axis of single crystal ice (see Fig. 5-1). To relate the global set

of axes (xl,x2,x3) with the local set of axes (x1',x2',x3'), two rotation are necessary: first,

(xl,x2,x3) is rotated by the angle 0 about the x3 axis: then, the new system is rotated by

the angle p about the x2 axis. The rotation of a third angle is not necessary, because there

is no preferential slip direction along the basal plane.

Considering the direction cosines

global axes (xl,x2,x3), is defined as

dij, angles between the local axes (xl',x2',x3') and the

then, the stress components in the local frame is determined in terms of stresses in the global

frame by the relationship

(5.A1)

To represent the relationship in matrix form, the orthonormal rotation matrix is defined as

cos 0 cos cp

-sin 0 cos so

sin yo

sin 0

cos 0

0

-cos 0 sin so
sin 0 sin co

cos V 1* (5.A2)

the relationship between the stresses in the two frames are given by

[o-'] = Q(9, W) [-] QT(O, (o) (5.A3)

where [a'] and [u] are stress tensors respectively in the local and global coordinate systems,

and superscript T denotes the transpose operation. By the matrix manipulation, Eq. (5.A3)
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axes xl x2 x3

xl1 11 12 13

x2' mi m2 m3

x3' ni n 2 n3

Q(,O) =

aij = dik djl aU.



can be written as

where the most general three-dimensional transformation matrix,

components in the local frame to the reference frame, is given by

T(9, cý), which transfers

21213

2m 2m 3

2n 2n 3

m 2n 3 + m 3n2

12n3 + 13n2

12m 3 + 13m 2

211/3

2mlm 3

2nln 3

mln 3 + m 3nl

11n3 + 13nl

11m 3 + 13ml

21112

2mlm2

2nl n2

min 2 + m 2nl

Iin 2 + 12nl

11m 2 + 12ml1

5.8 Appendix B

Elastic Constants of Single Ice Crystal

Gammon et al. (1983) have determined the dynamic elastic constants of single crystal

ice at T = -16'C using the method of Brillouin spectroscopy. The complete six-by-six

compliance and stiffness matrices of single crystal ice in the local frame are

0.8441 -0.2316

1.0318

sym.

a' = T(0, ýp) a (5.A4)

T(O, cý) =

122

2

m 2n2

12n2

12m2

12

m 1

n 21

11mI1

12
m3

2
3

m 3n3

13n3

13m3

.(5.A5)

9

-0.2316

-0.4287

1.0318

0

0

0

2.9210

0

0

0

0

3.3179

0

0

0

0

0

3.3179

10-1 GPa- 1 (5.B1)
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15.010 5.765 5.765 0 0 0

13.929 7.082 0 0 0

13.929 0 0 0

3.424 0 0

sym. 3.014 0

3.014

GPa (5.B2)

where the local frame x2'-x3' is the plane of transverse isotropy; the c-axis lies in the xl'

direction (0 = 0o). It is noted that there are five independent constants due to the hexagonal

crystal structure of ice.

The above elastic constants are mildly temperature-dependent. The following empirical

relationship for the compliance and stiffness matrices at temperature T is obtained (Gammon

et al., 1983)

S' (T) = S' (To) 1 - T (T) = C (T) - T (5.B3)9 9 1 - 6V =1-)6To

where 6 = 1.418 x 10- 3 oC - 1, and S' (To) and C' (To) are the known compliance and stiffness

matrices at a specific temperature (To = -16oC), and all temperatures are measured in oC.

It is noted that between 000C and -20"C the variation in dynamic elastic constants of single

crystal ice is practically negligible. Wu (1990) used these elastic properties in his theoretical

analysis of the microcracking in polycrystalline ice.

The elastic stress-strain relations for single crystal ice are defined as

iE = S9 #, 6 = Cg ie (5.B4)

where 6 is the stress rate "vector" (in the sense of the contracted Voigt notation), ie is

the elastic strain rate vector, and S9 and C9 are respectively the compliance and stiffness

matrices of single crystal ice in the global reference frame. If the global reference frame is

not coincide with the local frame for the hexagonal ice crystal, then S, and C9 are given by

S, = TTS' T, C9 = T-1C' T -T (5.B5)

where S' and C' are the compliance and stiffness matrices of single crystal ice in the lo-

cal frame, the three-dimensional transformation matrix, T, based on the direction cosines
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between the global reference frame and the local frame is given by

c2

82

0

0

0

-cs

0

0

0

-s

C

0

2cs

-2cs

0

0

0

c2 _ 8
2

(5.B6)

where c = cos 0 and s = sin 0, in which 0 denotes the angle between a c-axis and global

xl-axis (see Fig. 3). This transformation applies for the case where x3' coincides with x3,
i.e., there is a rotation of axes in the xl-x2 plane.

Plane strain/Plane stress

Under plane strain conditions (E33 = 0) with xl-x2 being the plane of interest, the

complete six-by-six compliance matrix reduces to a three-by-three matrix given by (see Savin,

1961)

( s',33 )
(5.B7)

where i, j = 1, 2, 6 and the subscript f emphasize that the components of the complete

six-by-six matrix should be used. The plane strain compliance matrix using Eq. (5.B7) is

calculated to be

0.7921

S',(0 = 00) = -0.3278

0

-0.3278 0

0.8537 0

0 3.3179

10-1GPa-1

and the plane strain stiffness matrix is

15.010

C'(0 = 00) = 5.765
0

5.765

13.929

0

(5.B9)
01
0 GPa.

3.014

Under plane stress conditions (oa3 = 0) with xl-x2 being the plane of interest, the
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complete six-by-six stiffness matrix reduces to a three-by-three matrix given by

C' C, = ,i - Cg,33 (5.B10)
( C),3 3

where i, j = 1, 2, 6 and the subscript f emphasize that the components of the complete

six-by-six matrix should be used. The plane stress stiffness matrix using Eq. (5.B10) is

12.624 2.834 0
C'(0 = 00) = 2.834 10.328 0 GPa (5.B11)

0 0 3.014

and the plane stress compliance matrix is

0.8441 -0.2316 0

S'(9 = 00) = -0.2316 1.0318 0 10- 1 GPa- 1. (5.B12)

0 0 3.3179

If the global reference frame is not coincide with the local frame for the hexagonal ice

crystal, then Eq. (5.B5) is applied with the two-dimensional transformation matrix given by

c2 8s2 2cs

T= s2  C2  -2cs (5.B13)
-Cs Cs C2 - 8

2

Effective Elastic Constants of Columnar-grained S2 Polycrystalline Ice

For S2 ice, the c-axis orientation are uniformly distributed between 0 and ir radians in

the xl-x2 plane. Define 0 to be the angle between the c-axis and the global xl-direction

(Fig. 5-2). The effective compliance and stiffness can be computed by the Ruess and Voigt

assumptions, which involve averaging over all orientation in the plane

1 1 r
S =- Sg(0) dO (Ruess), C = - Cg(0) dO (Voigt) (5.B14)

where S,(0) and Cg(0) denote the compliance and stiffness of ice single crystals with orienta-

tion 0 in the global frame and are determined by Eq. (5.B5). The corresponding inverses of
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Eq. (5.B14) give the effective elastic stiffness and compliance based on the Ruess and Voigt

assumptions.

Substituting Eq. (5.B5) into Eq. (5.B14) yields the following effective compliance for S2

ice using the Ruess assumptions

Sil

S33

S12

S13

S44

S66

1
= S22 =

-= S9,22

= S21 =

= S31 = S23 =

2 = ,44

2 (S11 - S12)

( 3 3 Sg,22 + 2 Sg,12 + Sg,66)

+ g,22 + 6 S,12 - S9,66)
1

S32 =

+ Sg,66)

(5.B15)

(Sg,12 + 8,23)

and the effective stiffness for S2 ice using the Voigt assumptions can be similarly obtained

1
= C22=

= C9,22

= C21 = (g,11

= C31 = C23

C- 55 2 ,44

1
S(C11 - C12) -2

3 C,11 + 3 Cg,22 + 2 Cg,12 + 4 C9,66)

+ ,22 + 6 C,12 - 4 C9,66)

032 Cg,12 + Cg,23)

+ 9,66)

It is noted that in both the compliance and stiffness, five independent constants exist, the

remaining terms are zero.

The complete six-by-six compliance and stiffness matrices of the columnar-grained S2 ice
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C33

012

C13

C44

C66
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at -16 0 C are

1.0603 -0.3540 -0.3302 0 0 0

1.0603 -0.3302 0 0 0

1.0318

sym.

0 0 0

3.1195 0 0

3.1195 0

2.8236

13.800 6.434 6.424 0 0 0

13.800 6.424 0 0 0

13.929 0 0 0

3.219 0 0

sym. 3.219 0

4.623

10- 1 GPa- 1

GPa

where the plane of transverse isotropy is the xl-x2 plane.

Plane strain/Plane stress

Under plane strain conditions (E33 = 0) with xl-x2 being the plane of interest, the

complete six-by-six compliance matrix reduces to a three-by-three matrix given by

sj= (sij Si3 S33
S33S33

(5.B19)

where i, j = 1, 2, 6 and the subscript f emphasize that the components of the complete

six-by-six matrix should be used. The plane strain compliance matrix using Eq. (5.B19) is

0.9546

S = -0.4597

0

-0.4597 0

0.9546 0 10-' GPa- 1

0 2.8236
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and the plane strain stiffness matrix is

13.800

C = 6.434

0

6.434 0

13.800 0

0 4.623

GPa . (5.B21)

Under plane stress conditions (a33 - 0) with xl-x2 being the plane of interest, the

complete six-by-six stiffness matrix reduces to a three-by-three matrix given by

C= (C
- 3 CSC 33C33

(5.B22)

where i, j = 1, 2, 6 and the subscript f emphasize that the components of the complete

six-by-six matrix should be used. The plane stress stiffness matrix using Eq. (5.B22) is

10.837

C = 3.471

0

3.471 0

10.837 0

0 4.623

and the plane stress compliance matrix is

-0.3540 0

1.0603 0

0 2.8236

10- 1 GPa- .

Effective Elastic Constants of Equiaxed-granular Polycrystalline Ice

The six-by-six elastic compliance matrix of equiaxed-granular

ice at -16 0 C is (Gammon et al. (1983))

1.0716 -0.3486 -0.3486 0 0 0

1.0716 -0.3486 0 0 0

1.0716

sym.

0 0 0

2.8401 0 0

2.8401 0

2.8401

(isotropic) polycrystalline

10- 1 GPa- 1. (5.B25)

147

GPa (5.B23)

1.0603

-0.3540

0

(5.B24)
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The elastic compliance matrices under plane strain and plane stress conditions are com-

puted to be

0.9582 -0

-0.4620

0

.4620 0

9582 0

0 2.8401

10- 1 GPa- 1 (5.B26)

-0.3486 0

1.0716 0

0 2.8401

10-1 GPa- '.
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SI
and

S=

1.0716

-0.3486

0

(5.B27)
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Figure 5-1: (a) Local frame of single crystal ice; (b) Reference global frame (xl-x2-x3) and
local frame (xl'-x2'-x3').
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Figure 5-2: Columnar-grained S2 polycrystalline ice containing single crystals with random
in-plane c-axes.
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Figure 5-3: Equiaxed-granular polycrystalline ice containing single crystals with random
c-axes.
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Figure 5-4: Dimensionless strain rate plotted against dimensionless time, from the data of
Jacka (1984) (reproduced from Ashby and Duval, 1985). Predictions of (i) the proposed
model, (ii) Shyam Sunder and Wu (1990), (iii) Le Gac and Duval (1980), and (iv) Sinha
(1978) as modified by Ashby and Duval (1985) are plotted.
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Figure 5-5: Dimensionless strain plotted against dimensionless time, from the data of Jacka
(1984) (reproduced from Ashby and Duval, 1985). Predictions of (i) the proposed model,
(ii) Shyam Sunder and Wu (1990), (iii) Le Gac and Duval (1980), and (iv) Sinha (1978) as
modified by Ashby and Duval (1985) are plotted.
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Chapter 6

A MULTIAXIAL CREEP MODEL,
PART II: DAMAGE-ENHANCED
CREEP

Abstract

A multiaxial constitutive damage-enhanced creep model for orthotropic polycrystalline ice is

presented within the framework of the thermodynamic theory of irreversible processes. This

Chapter formulates material anisotropy and damage anisotropy to describe the importance

of the directional nature of material behavior. Many deformation mechanisms operate at the

microstructural scale to induce flow and damage due to microcracking, and depend highly

on loading rate, temperature and crystalline structure. Flow is attributed to the motion and

production of dislocations and an interaction between the basal and non-basal systems of a

constituent single crystal ice. The local internal stresses cause many stable microcracks un-

der far field compression. Several mechanisms are involved in microcracking. These include

dislocation pile-up, grain boundary sliding and elastic anisotropy; the dominant mechanism

depends on loading conditions. Experimental results under various loadings show the oc-

currence of microcracking, which enhances the inelastic deformation of polycrystalline ice

during the damage process. A multiaxial dissipation potential for the inelastic deformation

is proposed for kinematic hardening, isotropic hardening and damage due to microcracks.

Finally, comparison of the model with available experimental data shows good agreement

and demonstrates the effectiveness of the model.
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6.1 Introduction

Polycrystalline ice exists in nature at very high homologous temperatures (> 0.9 TM). Con-

sequently, the mechanical behavior of ice is highly non-linear and depends on loading rate

and temperature, as well as on the granular microstructure. Typical compressive stress-

strain curves of polycrystalline ice subjected to constant strain rates at -100C are shown in

Figure 6-1. At slow loading rates (strain rate < 10-6 s-1), the deformation of ice depends

mainly on the motion and production of dislocations, and their interactions with obsta-

cles such as dislocations themselves and grain boundaries. As a result, ice exhibits ductile

and viscoplastic behavior. At fast loading rates (strain rate > 10- 3 s-1), the dislocation

movements is retarded and hence the inelastic strain is reduced. As a result, behavior of

ice becomes brittle; the stress increases in an almost linear fashion with strain, up to the

point of failure, as is the case for linear elastic materials. However, at intermediate loading

rates, damage accumulation due to microcracks combined with dislocation activity has a

significant influence on the deformation of ice. Moreover, at a loading rate corresponding

to the ductile-to-brittle transition, the stress increases to a maximum and then decreases

with increasing strain, resulting in strain-softening behavior. This behavioral transition is

an important phenomenon in engineering applications involving ice loads on structures and

the bearing capacity of ice.

In general, the ductile-to-brittle transition involves multiple modes of deformation, in-

cluding elastic and creep deformations, damage due to distributed microcracking and the

extension of localized macrocracks. The development of rational constitutive equations re-

quires characterizing many of these complex deformation processes. The strategy used here

to develop constitutive equations is to identify the dominant energy-dissipating mechanisms.

In this study, energy is dissipated by the motion and production of dislocations and by the

formation and growth of microcracks both inside and along grains.

This paper presents a multiaxial model for damage-enhanced creep for orthotropic poly-

crystalline ice. Problems in applied ice mechanics involve multiaxial states of stress and

various loading rates. The most significant aspect of the proposed model in this paper is the

formulation of kinetic equations which are based on actual physical processes. This physi-

cal understanding offers a model combining simultaneously-occurring processes that reflect

salient micromechanical aspects. The derivation of the constitutive equations utilizes inter-
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nal state variables and formulates their evolution equations; these internal state variables

represent an average description of microstructural changes.

This chapter is organized as follows. In Section 6-2, a brief discussion is offered on

the deformation mechanisms of ice and other materials. Section 6-3 develops mathematical

formulations for a constitutive theory regarding anisotropic and isotropic polycrystalline ice

based on the underlying mechanisms and material anisotropy of single crystal ice for inelastic

behavior. In Section 6-3, average effective stress, inelastic dissipation potential and damage

process are discussed. In particular, the average effective stress for polycrystalline ice is

obtained by averaging the effective stresses for all single crystals in a representative volume.

The inelastic strain rate is obtained based on the existence of the dissipation potential. In

addition, in order to incorporate the effect of microcracks, a specific form of dissipation

potential for inelastic flow is proposed to account for the enhancement of creep due to

progressive damage, but before the initiation of macrocracking. Damage accumulation is

accounted for by microcrack evolution. The equation for microcrack formation is proposed

here for the first time as a result of a careful study of this phenomenon. A summary of

model equations is given in Tables 6.1 and 6.2. Section 6-4 contains the model's parameters

and predictions. Section 6-5 reports in summary form the findings and conclusions of this

study.

6.2 Background

As described above, a variety of distinctly different mechanisms exists as a result of the

deformation process of the microstructure of polycrystalline ice. Some of these mechanisms

are intergranular effects (e.g., sliding and interlocking of grain boundaries), the distribution of

the crystallographic orientation of single crystals, alterations of dislocation densities within

grains and damage accumulation due to the formation and growth of microcracks. The

relative significance of a particular mechanism varies with the levels of stress and with strain

rate, temperature and crystalline structure (e.g., grain size, impurity). Intergranular effects,
dislocation pile-up and the different creep resistance on slip systems induce internal stress,

which causes microcracks and hardening behavior. Generally, the formation of microcracks

will influence the mechanical behavior of materials mainly by reducing elastic constants,
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enhancing the inelastic strain and producing localized macrocracks.

Microcracks have been found in many brittle materials, including both natural materials

such as rock and ice and man-made materials such as concrete and ceramic. Both the tensile

and compressive failures of these materials are generally controlled by the formation and

propagation of microcracks. In particular, under tension, the first few microcracks lead to

unstable crack growth and tensile failure. Under compression, the progressive formation of

microcracks leads to widely distributed microcracking and damage accumulation. As the

applied stress increases, microcracks lengthen, interact and coalesce into macrocracks, which

lead to the final failure of the material.

Since a fracture mechanics approach for every single microcrack and for its influence

on the deformation of material is difficult to implement in a model, a continuum damage

mechanics approach is often applied with a macroscopic averaging procedure. Using various

methods, such as self-consistent method, a differential scheme and pseudo-traction method,

the effect of microcracks on the elastic properties of brittle materials, such as Young's mod-

ulus and Poisson's ratio, has been studied extensively by many researchers (e.g., Budiansky

and O'Connell, 1976; Horii and Nemat-Nasser, 1983; Krajcinovic, 1989; Nemat-Nasser and

Hori, 1993; Kachanov, 1994). Many of these methods have assumed that all microcracks are

open or active, and they estimate elastic properties in terms of a parameter (the so-called

crack density) by applying volume averaging or some other homogenization method. Horii

and Nemat-Nasser (1983) have incorporated the effect of friction on crack faces and the

crack closure criterion. Wu and Niu (1995) studied the interaction between microcracks and

external boundary of the ice specimen in his numerical analysis.

In the study of metals, continuum damage mechanics approaches have been developed

in order to describe the effect of microcracks on inelastic behavior, with an effective stress

concept first introduced by Kachanov (1958) and Rabotnov (1969), and further developed

by Leckie and Hayhurst (1974), Lemaitre and Chaboche (1978) and Murakami and Ohno

(1981). Most of these studies focus on damage accumulation that cause ductile failure mech-

anism of void formation (nucleation), growth and coalescence. Void nucleation occurs due

to brittle cracking or interfacial decohesion at grain boundaries. Damage models based on

metallurgical studies are developed primarily for the increase of initial porosity at grain

boundaries (e.g., Ashby and Raj, 1975; Dyson and McLean, 1977; Cocks and Ashby, 1982;
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Argon, 1982). Based on a Gurson-type model (Gurson, 1977), numerous studies have char-

acterized plastic flow in progressively-cavitating porous materials and developed constitutive

models for plastic flow localization and fracture due to void coalescence (e.g., Needleman

and Rice, 1978; Chu and Needleman, 1980; Pan et al., 1983; Needleman and Tvergaard,

1984; among many others).

Turning to the study of ice, many constitutive equations have been developed in the past

two decades to model complex non-linear behavior (e.g., Sinha, 1978; Michel, 1978; LeGac

and Duval, 1980; Ting and Shyam Sunder, 1985; Ashby and Duval, 1985; Szyszkowski and

Glockner, 1985; Sinha, 1988; Choi and Karr, 1989; Jordaan and McKenna, 1988; Shyam

Sunder and Wu, 1989a,b; Schapery, 1991; Zhan et al., 1994). In many of these models, little

attention is paid to the micromechanisms which really dictate the behavior of polycrystalline

ice.

Michel (1978) suggests a model based on easy slips on the basal plane and the corre-

sponding grain boundary sliding accommodation. Sinha (1978) describes a phenomenolog-

ical viscoelastic model based on the mechanism of grain boundary sliding, which he claims

is responsible for transient creep. In Sinha's model, the exponent in relaxation time is used

to account implicitly for the distribution of relaxation time. Constitutive models based on

internal state variables are developed for inelastic deformation at the microstructural level

by LeGac and Duval (1980), Ashby and Duval (1985), and Sunder and Wu(1989a,b). How-

ever, these models are proposed primarily to describe strain-hardening behavior in transient

creep, without consideration of the effect of microcracks. In order to incorporate the effect

of microcracks, a phenomenological approach based on continuum damage mechanics has

been applied by Sj6lind (1987), Sinha (1988), Jordaan and McKenna (1988), Choi and Karr

(1989) and Zhan et al. (1994).

To quantify the effect of elastic damage due to microcracks, Wu and Shyam Sunder

(1992) and Wu and Niu (1995) performed a theoretical analysis of crack nucleation in poly-

crystalline ice due to elastic anisotropy of the constituent single crystals. Wu and Shyam

Sunder (1992) assumed a pseudo coupling exists between the underlying creep mechanism

and distributed microcracking. Their approach, a simple addition of the creep strain to the

elastic strain accounting for microcracking, has failed to show the strain-softening behav-

ior of ice undergoing the damage process. Although elastic constants due to microcracks
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are reduced, the effect of microcracks on elastic deformation is insignificant (Sinha, 1988).

However, experimental data show the significant effect of damage due to microcracking on

the enhancement of creep (Stone et al., 1989; Meyssonnier and Duval, 1989; Jordaan et al.,

1990; Xiao et al., 1991).

6.3 Formulation of Constitutive Model

Following the contracted Voigt notation, vector notation is used instead of tensor notation.

Polycrystalline ice is a rate-dependent material, the total strain rate vector i is decomposed

as follows

E = i + ic (6.1)

where "e and ic are the elastic and inelastic strain rate vectors, respectively. The elastic

strain rate vector is written as

e = S & (6.2)

where o is the applied stress and S is the elastic compliance matrix of polycrystalline ice (see

Appendix B of Chapter 5). The vector form of the strain and stress components are written

respectively as E = [ 11 22 633 623 613 612 ]T anda =[ all a 22  33 a23 a 13 a 12 ]T,

where superscript T denotes the transpose operation.

The inelastic mechanical properties of single crystal ice and polycrystalline ice have been

reviewed by Weertman (1973), Hobbs (1974), and Duval et al. (1983). In the following

sections, a mathematical formulation for highly rate-dependent anisotropic polycrystalline

ice based on the underlying mechanisms is presented for its inelastic behavior.

6.3.1 Inelastic Flow

We consider two forms of freshwater polycrystalline ice. First, we study a columnar-grained

polycrystalline ice for which the c-axis orientation of the single crystals is randomly dis-

tributed in the xl-x2 plane normal to the x3 axis of the column, as shown in Fig. 6-2. This

ice is transversely isotropic ice. The second type of ice is an equiaxed-granular polycrystalline

ice in which the c-axis orientation of the constituent single crystals is randomly distributed
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in all three directions (xl-x2-x3), as shown in Fig. 6-3. This ice is isotropic ice.

To derive the relationship between the inelastic strain-rate iC and the stress 0, the

averaged equivalent stress which is generalized for pressure-insensitive transversely isotropic

materials with the same behavior in compression and tension is used. In this formulation,

isotropic and kinematic hardening are incorporated by the internal variables, X and B.

The reduced equivalent stress may be expressed as

ed,eq =- G 0 d (6.3)

where the reduced stress vector is defined in terms of a back stress vector X:

(6.4)ad = ( - X

The stress-transformation matrix G is given by

(al a2)
3-

0

0

0

-3
(al + a2)

0

0

a_-
0

0

0

0

0

0

2a4

0

0

0

0

0

0

2a4

0

0

0

0

0

0

2a6

(6.5)

for columnar-grained polycrystalline ice and

2
3

-a
0

0

0

1-a
2

0

0

0

1-3
1-3

2a
0

0

0

(6.6)

for equiaxed-granular polycrystalline ice.

In the rate-dependent context, there is no yield/failure surface and an inelastic dissipa-
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tion function serves in deriving constitutive relations. If inelastic flow in polycrystalline ice

without microcracks is taken to follow Glen's power law, a scalar-valued dissipation potential

of the Norton-Hoff type can be defined and expressed as

0o = - B (d,eq n(67)
n + 1 B

where n is the stress exponent, usually taken as 3 in the experimental literature, the internal

variable B represents the isotropic drag stress, and io is a temperature-dependent reference

strain rate. The effect of temperature on the reference strain rate is represented well by an

Arrhenius relationship

o = A exp ( ) (6.8)

where Ao is a temperature-independent constant, Q is the activation energy, R is the universal

gas constant, and T is the absolute temperature in degrees Kelvin.

The inelastic strain rate is determined as

C 1Io .3 (Oeq) n GOd
d = CO B d, (6.9)

It is worth noting that for pressure-insensitive isotropic materials with the same behavior

in compression and tension and no kinematic hardening, the inelastic strain rate are obtained

from Eq. (6.9) as

EC = 2 B3 ) 's (6.10)

where the equivalent stress is defined as

(3 1/2

aeq = (2 •< a (6.11)

and o' is the deviatoric stress.

6.3.2 Damage-enhanced Inelastic Flow

In metals, microcracks have some influence on inelastic strain rate, but this influence is

generally weaker than the influence of microcracks on the elastic properties of the material
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(Murakami and Ohno, 1981). Unlike the case of metals, however, the effect of microcracks

in polycrystalline ice on inelastic creep can be too large to ignore. This influence is taken

into account in the ensuing discussion of the formulation of a dissipation potential function.

6.3.2.1 Effect of Microcracks on Creep

Under constant stress loading, the shape of transient creep curve is the result of changes

in the dislocation density, while tertiary creep may be the result of the growth of internal

damage (e.g., microcracking and recrystallization). As constant stress increases, the internal

damage becomes more dominant than the evolution of dislocation density; both transient and

tertiary creep are enhanced significantly by microcracking. In this range, primary concern

lies with damage growth due to microcracking and its effect on creep rate. The transition

between the primary and tertiary part of creep is an external manifestation of the dominance

of a particular microstructural change (e.g., the relative contribution of dislocation activities

and microcracking).

With increasing microcrack activity, the inelastic strain rate increases. Weertman (1969)

derived the effect of cracks on viscous creep rate, considering a crack as an array of dislo-

cations for polycrystalline materials. The creep rate for non-intersecting, dilute cracks was

written as

ic = c•(1 + 2r Na2) (6.12)

where c" is the creep rate of the undamaged ice, N is the number of cracks per unit area, a is

the crack half-length and n is the stress exponent for power-law creep. However, the effects

of microcracks appear to be more pronounced than the linear enhancement, as expressed in

Eq. (6.12), and underestimate for materials with high crack density (Stone et al., 1989; Kalifa

et al., 1989). For columnar-grained polycrystalline ice, Sinha (1988) applied Weertman's

equation to consider the effect of the dilute crack enhancement on the viscous strain rate

in his non-linear viscoelastic creep model. Jordaan and MeKenna (1991) modified the crack

enhancement factor in their model to include the crack interaction by using an exponential

function. As mentioned by Duval et al. (1991), a detailed analysis is necessary to determine

how microcracking really affects creep rate.

Meyssonnier and Duval (1989) studied the influence of damage on the creep rate of
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granular ice. The main results of this study were that damage notably enhances the creep

rate and the stress exponent remains the same (n = 3). From constant stress tests on both

intact and predamaged ice, Xiao et al. (1991) showed clear evidence of the influence of

microcracks and damage on creep properties. Damage due to the formation and growth of

microcracks leads to a small reduction in elastic stiffness. As shown from experiments of

Xiao et al. (1991), elastic properties is little changed due to microcracks. Wu and Shyam

Sunder (1992) also showed a small dependence of microcracks on the overall stress-strain

curve in their numerical simulations of a micromechanical damage model by applying the

mechanism of elastic anisotropy in polycrystalline ice. In this study, therefore, the effect of

microcracks on elastic properties is not taken into consideration.

6.3.2.2 Formulation of Damage-enhanced Inelastic Flow

In the following formulation, the kinematic and isotropic hardening as well as the damage due

to microcracks are taken into account. In order to incorporate damage due to microcracks

into inelastic flow, the following form of dissipation potential for damage-enhanced inelastic

flow is considered:

(o =B deq)n F (n, D, Y) (6.13)
n+1 B

where Do is the dissipation potential for inelastic flow without microcracks, n is the stress

exponent, the scalar function F is described below, D is a measure of damage, and Y is a

measure of stress states. The reduced equivalent stress Ud,e is expressed as

3
a2, adT G ad (6.14)d,eq = 

T

where the reduced stress ad and the stress-transformation matrix G are defined by Eqs (6.4)

and (6.5), respectively.

Rodin and Parks (1988) suggested a similar form of dissipation potential for inelastic flow

in which hardening effects due to dislocations are ignored. The description of the material

includes the construction of a scalar function F(n, D, Y) of three dimensionless variables:

the first variable describes the matrix response, the second is the averaged characteristic

of the microstructure, and the last identifies a measure of stress state. For the dissipation
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potential to be convex, F must satisfy the condition (Rodin and Parks, 1988)

FF" n F'2 > 0 (6.15)
n+l

where a prime denotes partial derivative of F with respect to Y. The later symbol is defined

in Eq. (6.16). A variety of forms for F have been proposed for isotropic porous metals

experiencing void growth (e.g., Haghi and Anand, 1992) and for isotropic material with

cavitating grain-boundary facets (Hutchinson, 1983; Argon et al., 1985; Rodin and Parks,

1988).

Previously published experimental results (Sinha, 1988; Nixon and Wasif, 1992) in ice

indicate that microcracks occur mainly in the direction of the maximum principal compres-

sive stress. Considering material damage due to a population of aligned microcracks, it can

be argued (Hutchinson, 1983; Rodin and Parks, 1988) that under proportional load histories

the material preserve isotropy. We consider microcracks by specifying a scalar microcrack

density (D = w). The damage anisotropy, however, can be implicitly taken into account by

the introduction of the maximum principal stress al into the dissipation potential with the

following relation:

Y= (6.16)
Ud,eq

For the enhancement of creep due to microcracks in polycrystalline ice, the following

function F is considered, according to Rodin and Parks (1988):

F = (1 + a(n, w) Y2)(n+l)/2 . (6.17)

The function a(n, w) reflects material behavior and is independent of stresses at a point.

The following forms, which satisfy convexity of the potential Eq. (6.15), are given as

a(n,w) = 27rn1/2w (6.18)

for slit microcracks in columnar-grained S2 ice and

a(n, w) = 8 (w (6.19)

for penny-shaped microcracks in equiaxed-granular ice. The theoretical basis for these forms
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is discussed for slit microcracks by Weertman (1969) and He and Hutchinson (1981), and for

penny-shaped microcracks by He and Hutchinson (1981) and Rodin and Parks (1988).

The inelastic strain rate is obtained by

ic = (6.20)

For the given dissipation potential in Eq. (6.13), the inelastic strain rate is determined as

C = d,,eq 1 a(n, w)Y (6.21)
B P aLd,eq J

For the case of isotropic polycrystalline ice under uniaxial stress a, Eq. (6.21) reduces to

i = io -X)n (1 + a(n,w))(n +l )/ 2  (6.22)

And for the case of isotropic polycrystalline ice where there is no damage (i.e., F(n, w =

0, Y) = 1), Eq (6.21) reduces further to the well-known relation

0= 3 i (!eq n (6.23)
2 B eq

It is worth noting that a wide variety of specific microstructural damage process for

different materials can be described by similar mathematical expressions of the material

damage.

6.3.2.3 Microcrack Density

We characterize the microcracks only by specification of their density w defined as (Budiansky

and O'Connell, 1976)

w = A~ (6.24)

where N is the number of microcracks per unit volume, A is the area of the microcrack, P

is the perimeter, and the angle brackets denote an average. Experimental results indicate

that the size of microcracks are of the order of the grain size (Cole, 1986; Sinha, 1988).
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Columnar-grained S2 Ice

Consider columnar-grained S2 polycrystalline ice containing a population of aligned slit

cracks of width 2c and length 1, with a constant aspect ratio 1/2c > 1, under compressive

loading. Noting that A is 2cl and P is approximately 21, Eq. (6.24) results in

w= -N c21. (6.25)

Assuming the average microcrack size, 2c, to be equal to the length of the average grain

facet and assuming the cross-sectional geometry of the grain to be hexagonal, it can be

calculated by equating the area of a circle of the average grain diameter d with the area of

the hexagon:

c e 0.275d. (6.26)

Substituting Eq. (6.26) into Eq. (6.25) results in

10.3 9 ). (6.27)

Equiaxed-granular Ice

We now consider equiaxed-granular ice and a population of aligned penny-shaped cracks

of diameter 2c under compressive loading. Noting that A is 7rc 2 and P is 21rc, Eq. (6.24)

results in

w = N (c). (6.28)

Assuming the volume geometry of the grain to be dodecahedron, and assuming the

average diameter of microcracks, 2c, to be equal to the diameter of a circle inclosed by the

pentagon surface of a dodecahedron, it can be shown that

c r0.354d (6.29)

where d is the average grain diameter, having the same volume (4/3)7r(d/2)3 as that of the
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dodecahedron. Substituting Eq. (6.29) into Eq. (6.28) results in

N
N= d 3 (6.30)-22.54) (6.30)

6.3.2.4 Microcrack Evolution

Microcrack activity in ice has been monitored both visually and acoustically. Visual ex-

amination of microcrack formation during uniaxial compression has been performed in both

columnar-grained freshwater ice (Sinha, 1988; Nixon and Wasif, 1992) and equiaxed-granular

freshwater ice (Hallam et al., 1987; Kalifa et al., 1989). These experimental results show

that the majority of microcracks are oriented parallel to the maximum principal loading axis

(Gold, 1972; Sinha, 1982,1988).

Gold (1960) first monitored acoustic emissions for microcracking in columnar-grained

freshwater ice under constant compressive stresses at -100C. Gold's results showed that

the rate of microcrack formation is dependent on duration time and on the magnitude

of applied stress. Later, extensive studies on acoustic emissions were conducted in both

columnar-grained freshwater ice (Gold, 1972; Sinha, 1982) and equiaxed-granular freshwater

ice (Zaretsky et al., 1979; Cole, 1986) under a range of temperatures, stress levels and

grain sizes. These studies showed that when the applied stress is greater than the critical

stress, microcracks form. Plotting the strain dependence of microcracking density shows that

microcrack density increases with applied stress. According to the results of these acoustic

emissions for constant strain rate loading, the rate of microcracking is highest when the

stress reaches its peak, and then diminishes significantly. These results demonstrate that

microcracking is highly rate-sensitive and depends strongly on grain size.

In order to describe the microcracking dependence on stress and time, the following

equation for the number of microcracks is proposed as a result of a study of the literature:

NN[ 1 - exp-( ) 2 ( c) m) ] when a Tacowhen a (6.31)
S0 when a < a,

where No is a reference constant, ac is the critical stress for microcrack nucleation defined

in Eq. (6.33), and ao is the reference stress, defining the sharpness of the transition.
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6.3.2.5 Microcrack Nucleation

Microcrack nucleation is a fundamental phenomenon in the failure process of polycrystalline

ice, since it occurs in both the ductile and brittle domains of deformation.

Stress concentrations at grain boundaries lead to the nucleation of microcracks. Various

mechanisms, such as the grain boundary sliding mechanism (Sinha, 1984), the dislocation

pile-up mechanism (Gold, 1972; Schulson, 1979; Cole, 1986), and elastic anisotropy mecha-

nism (Cole, 1988), have been reported to predict microcrack nucleation and its dependence

on parameters such as grain size and strain rate. It is generally believed that the elastic

anisotropy is dominant in the brittle domain (i.e., strain rate > 10- 3 s-1), while the other

mechanisms are dominant in the ductile domain (i.e., strain rate < 10- 3 s-l1). However,

Gupta et al. (1993) and Elvin and Shyam Sunder (1995) report that the mismatch in elastic

moduli between neighboring grains in polycrystalline ice, under plane strain condition, is not

high enough to form precursor cracks. Instead, they conclude that grain boundary sliding is

the cause of microcracking in the brittle domain.

Grain boundary sliding driven by shear stresses along the inclined grain boundaries in-

creases the wedging effect and tends to increase stress concentration at the triple grain junc-

tion (Elvin and Shyam Sunder, 1995). After the stress intensity factor exceeds the threshold

value, a microcrack nucleates and grows unstably until it gets arrested at the neighboring

triple point.

The critical stress required for crack nucleation is generally a function of temperature T,

grain size d, fracture toughness KIc and friction coefficient p (Ketcham and Hobbs, 1969;

Ashby and Hallam, 1986; Hallam, 1986; Schulson, 1990):

ac = UC (T, d, KIc, ) . (6.32)

The experiments of Gold (1960, 1972), Cole (1986), and Schulson (1990) suggest a form for

microcrack nucleation as:

( Q Klc d -1 /2  (3
aTc = acl + O'c2 exp -/ (6.33)

RT (1 - p)

where aci, Uc2, Kwc, I, are material constants depending on the type of ice (equiaxed-granular
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or columnar-grained). For a range of grain sizes (d = 1 - 8 mm) and temperatures (T =

-2 , -400C), the measured microcrack nucleation stress lies between 0.5 and 1.5 MPa.

6.3.3 Summary of Damage-enhanced Creep Model

A summary of the multiaxial damage-enhanced creep model is given in Table 6.1. Also

a summary of an isotropic one-dimensional model is given in Table 6.2. The governing

equations of the model are summarized here for isotropic polycrystalline ice under uniaxial

stress a.
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Table 6.1: Summary of the multiaxial damage-enhanced creep model

* Total strain rate

* Elastic strain rate

* Damage-enhanced inelastic strain rate

/ ni-)C ( deq n

B

where ~o = Ao exp

(1 + a(n, w)Y2)(n-l)/2 3 Gd,
/ Ud,eq

RT)
Y=

Ud,eq
S= d-X; 2d,eq

+ a(n, w)Y 190,

= O G

(6.36)

Ud; = al+a2

(6.37)

* Kinematic back stress

X = hiE( (c _ rXn) where ri, * o (k· kIBo)

* Isotropic drag stress

B = h2E (Bsat - B) |cq| where Bsat - k2Bo
ad,eq

* Creep enhancement factor and microcrack density

a(n, w) = 27rn1/2w;

a(n, w) = 8

N
10.39 d 2l)

( nn + 3
; W= 22.54d22.54 9

for columnar-grained S2 ice

for equiaxed-granular ice

* Number of microcracks per unit volume

- exp -(( ()2(qm) ] when a > a,

when a < a,
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e = S & (6.35)

(6.38)

(6.39)

(6.40)

(6.41)

No [1
(6.42)
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Table 6.2: Summary of the isotropic one-dimensional damage-enhanced creep model

* Total strain rate

(6.43)

* Elastic strain rate

iE
E

(6.44)

* Damage-enhanced inelastic strain rate

ic = o B-X (1 + a(n, w)) (n+1 )/ 2
where eo = Ao exp

* Kinematic back stress

* Isotropic drag stress

X = hiE (ýc - riXn) where r1 = io 1 k2B
(ki k2Bo)

h2EB = (Bsat - B) I1CI where Beat = k2B,

* Creep enhancement factor and microcrack density

ac(n, w) = 2rn1 /2w ;

/ ni\
a(n,w) = 8 (n+3)

= 10.39

22.54

for columnar-grained S2 ice

(d 3) for equiaxed-granular ice

* Number of microcracks per unit volume

- exp ( U2 ((c)m) when a > ac

when a< a,
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6.4 Model Parameters and Predictions

6.4.1 Parameters

Elastic Parameters

The elastic constants of polycrystalline ice are given in Appendix B of Chapter 5. The

dynamic elastic constants of single crystal ice were determined at T = -160 C using the

method of Brillouin spectroscopy, by Gammon et al. (1983). The theoretical effective elastic

constants of polycrystalline ice can be computed by using various homogenization methods,

such as the Ruess and Voigt assumptions (Sinha, 1989; Nanthikesan and Shyam Sunder,
1994), the self-consistent method (Wang and Schapery, 1995), and using a computational

model (Elvin, 1996).

Creep Parameters

The values of material parameters n, A, Q, Bo, k1 , k2 , hi, h2 and rl for any given material

may be determined from isothermal constant stress tests. The procedures for determining

creep parameters are described in Section 5.5.1 of Chapter 5.

The model parameters cl, c2, and c6 are used to represent the creep anisotropy of ice single

crystals. Without loss of any generality, c2 can be taken as 1. Thus only two parameters

need to be determined from constant stress tests on single crystal ice.

Damage Parameters

The damage parameters N,o, uc, a, and m may be estimated from experimental measure-

ments. However, due to a lack of data for ice, the parameters are determined by fitting the

model response to data.

In Table 6.3, a summary of the damage-enhanced model parameters is given for the

different ice examined by Jordaan and MeKenna (1991), Mellor and Cole (1982).
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Table 6.3: Summary of model parameters

Parameters Jordaan and MeKenna (1991) Mellor and Cole (1982)
E (MPa) 9000 9000
n 3 3.43
Q (kJ mo-1) 67 67
A (MPa-3s- 1) 3.57 x 106 2.23 x 106
Ao (s- 1) 1 1
Bo (MPa) 1.73 x 10- 3  7.92 x 10- '
kl 0.15 0.27
k2 3.2 1.30
hi 1/10 1/70
h2 1/1.5 1/10
ri (MPa-'s- ') 5.21 x 10- 5  1.73 x 10- 5

No (m- 3 ) 2500 400
ac (MPa) 0.5 0.5
ao (MPa) 1.0 3.0
m 2.0 2.0

6.4.2 Model Comparisons

Jordaan and McKenna (1991) measured the stress strain curve of granular polycrystalline

ice in compression at -10 0 C under an applied strain rate of 10- 4 s - 1. The strain softening

response due to microcracks without strain hardening is observed at this high strain rate.

Figure 6-4 compares the prediction of the model with the data of Jordaan and McKenna

(1991). The model prediction is in excellent agreement with the data, when the parameters

in Table 6.3 are used.

Figure 6-5 shows the comparison of the model predictions and experimental data of Mellor

and Cole (1982) under applied strain rate tests. The model predictions using the parameters

in Table 6.3. show quite good agreement with the data. The stress-strain curves exhibit

strain hardening as well as strain softening behavior. It is worth noting that the model

response slightly overpredicts the data at the strain rate of 5.30 x 10- 7 s - 1. This might be

due to recrystallization at very low loading rates, which is not modeled.
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6.5 Conclusions

A comprehensive damage-enhanced creep model for orthotropic polycrystalline ice is formu-

lated within the framework of thermodynamics theory of irreversible process. In this model,

highly rate- and temperature-dependent mechanical behavior is described by the changing

microstructures due to the movement and production of dislocations and microcracking.

The proposed damage-enhanced model can simulate the distributed damage process due

to microcracking under compressive loading. Constitutive equations are proposed to help

bridge the physical processes within the material and the macroscopic behavior observed

in experiments. The evolution functions of internal stresses are formulated with hardening

and recovery functions due to the production and annihilation of dislocations, respectively.

The damage effects due to microcracking are taken into account mainly for the enhancement

of creep properties. The information obtained from experiments for the cracking activities

during the deformation are used in this damage-enhanced creep formulation. The response

of the model captures the experimentally measured stress-strain and strain-time curves.

As mentioned by Duval et al. (1991), a detailed analysis is necessary to determine how

microcracking really affects the creep rate. Much work remains to be done to develop fully

anisotropic damage evolution equation which account for microcrack growth, coalescence,

and brittle fracture at high strain rates. The proposed orthotropic model, however, is use-

ful for simulation of creep deflection of ice sheets under static loading and slow fracturing

processes in ice-structure indentation.
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Notations

A temperature-independent constant in the minimum strain rate (MPa-'s- 1)

Ao temperature-independent constant in the reference strain rate (s- 1)
a material creep constant of isotropic polycrystalline ice
ai material creep constants of polycrystalline ice
B isotropic hardening variable scalar (MPa)
Bsat saturated value of isotropic hardening variable B (MPa)
C undamaged elastic stiffness matrix of polycrystalline ice (MPa)
C, undamaged elastic stiffness matrix of single crystal ice (MPa)
C9,ij undamaged elastic stiffness components of single crystal ice (MPa)
c microcrack size

ci material creep constants of single crystal ice
d grain size
D measure of damage
E isotropic Young's modulus (MPa)
F damage enhancement function to dissipation function
G stress-transformation tensor
H kinematic transformation tensor
hi , h2  hardening constants of internal stresses X and B
Kjc fracture toughness
kl, k2  dimensionless constants used in Xsat and Bat
1 microcrack length along the column axis of columnar-grained S2 ice
m strain rate exponent in N
N Number of microcracks
No reference constant
n stress exponent in power law

Q activation energy (kJmol-1)
R universal gas constant (Jmol-1K - 1)

r average microcrack radius
rl recovery constant in kinematic hardening variable X
S undamaged elastic compliance matrix of polycrystalline ice (MPa- 1)
S damaged elastic compliance matrix of single crystal ice (MPa- 1)
S,  undamaged elastic compliance matrix of single crystal ice (MPa- 1)

S'9,ij undamaged elastic compliance components of single crystal ice (MPa- 1)

T temperature in degrees Kelvin (K)
T transformation matrix
w crack density
X, X kinematic back stress and tensor (vector) (MPa)
Xsat saturated value of kinematic back stress X (MPa)
Y measure of stress triaxility
xl, x2, x3 reference global axes
xl', x2', x3' local axes
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Ia constant
/3 material constant
E, i total strain and total strain rate (s- 1)
Ee, je elastic strain and elastic strain rate (s- 1)
Ec, ec inelastic strain and inelastic strain rate (s- 1)
io temperature-dependent reference strain rate (s- 1)
e, i total strain and total strain rate tensor (vector) (s- 1)
Ee, 7 e elastic strain and elastic strain rate tensor (vector) (s- 1)
EC, ic inelastic strain and inelastic strain rate tensor (vector) (s - 1)
p shear modulus (MPa)
v average velocity of mobile dislocations
a stress (MPa)
al maximum principal tensile stress (MPa)

aC microcrack nucleation stress (MPa)
ad,eq reduced equivalent stress scalar for polycrystalline ice (MPa)
&e equivalent stress scalar for single crystal ice (MPa)
aeq equivalent stress scalar for polycrystalline ice (MPa)
Er effective stress (MPa)
ai internal stress (MPa)
aij stresses in the global frame (MPa)

a stresses in the local frame (MPa)
ao reference stress to microcrack nucleation stress (MPa)
a stress tensor (vector) (MPa)
ad reduced stress tensor (vector) defined as a - X (MPa)

geometrical constant
D dissipation potential for damaged polycrystalline ice
(o dissipation potential for undamaged polycrystalline ice
O probability density function of c-axis orientation
0, ýp c-axis orientation of single crystal ice in the global frame

185



References

[1] Argon, A.S. (1982). Mechanisms and mechanics of fracture in creeping alloys. Recent
Advances in Creep and Fracture of Engineering Materials and Structures, B. Wilshire
and D.R.J. Owen (Ed.), pp. 1-52.

[2] Argon, A.S., Lau, C.W., Ozmat, B., and Parks, D.M. (1985). Creep crack growth in
ductile alloys. Fundamentals of Deformation and Fracture, K.J. Miller et al. (Ed.),
Cambridge University Press, Cambridge, p. 189.

[3] Ashby, M.F. and Duval, P. (1985). The creep polycrystalline ice. Cold Regions Science
and Technology, Vol. 11, No.3, pp. 285-300.

[4] Ashby, M.F. and Hallam, S.D. (1986). The failure of brittle solids containing small
cracks under compressive stress states. Acta Metallurgica, Vol. 34, pp. 497-510.

[5] Ashby, M.F. and Raj, R. (1975). Creep rupture. The Mechanics and Physics of Fracture,
The Metals Society, London, pp. 148-158.

[6] Budiansky, B. and O'Connell, R.J. (1976). Elastic moduli of a cracked solid. Interna-
tional Journal of Solids and Structures, Vol. 12, pp. 81-97.

[7] Choi, K. and Karr, D.G. (1989). A damage mechanics model for uniaxial creep and
cyclic loading of polycrystalline ice. Proc. 8th Int. Conf. Offshore Mech. and Arctic
Eng., ASME, Vol. 4, pp. 75-82.

[8] Chu, C.C. and Needleman, A. (1980). Void nucleation effects in biaxially stretched
sheets. J. Eng. Materials Technology, Vol. 102, pp. 249-256.

[9] Cocks, A.C.F. and Ashby, M.F. (1982). On creep fracture by void growth. Prog. Mat.
Sci., Vol. 27, pp. 189-244.

[10] Cole, D.M. (1986). Effect of grain size on the internal fracturing of polycrystalline ice.
U.S. Army Corps of Eng., Cold Reg. Res. Eng. Lab., Report 86-5.

[11] Cole, D.M. (1988). Crack nucleation in polycrystalline ice. Cold Regions Science and
Technology, Vol. 15, pp. 79-87.

[12] Duval, P., Ashby, M.F. and Anderman, I. (1983). Rate-controlling processes in the creep
of polycrystalline ice. The Journal of Physical Chemistry, Vol. 87, No. 21, pp. 4066-4074.

[13] Duval, P., Kalifa, P. and Meyssonnier, J. (1991). Creep constitutive equations for poly-
crystalline ice and effect of microcracking. Proc. IUTAM/IAHR Symp. on Ice-Structure
Interaction, Jones, S.J., MeKenna, R.F., Tillotson, J. and Jordaan, I.J. (Ed.), Springer-
Verlag, pp. 55-67.

[14] Dyson, B.F. and McLean, D. (1977). Creep of Nimonic 80A in torsion and tension.
Metal Sci., Vol. 11, pp. 37-45.

186



[15] Elvin, A.A. (1996). Number of grains required to homogenize elastic properties of poly-
crystalline ice. Mechanics of Materials, Vol. 22, pp. 51-64.

[16] Elvin, A.A. and Shyam Sunder, S. (1995).Microcracking due to grain boundary sliding
in S2 ice under uniaxial compression. Ice Mechanics, ASME, AMD, Vol. 207, pp. 21-32.

[17] Gammon, P.H., Kiefte, H., Clouter, M.J. and Denner, W.W. (1983). Elastic constants
of artificial and natural ice samples by Brillouin spectroscopy. Journal of Glaciology,
Vol. 29, pp. 433-459.

[18] Gold, L.W. (1960). The cracking activity in ice during creep. Canadian J. Phys., Vol.
38, No. 9, pp. 1137-1148.

[19] Gold, L.W. (1972). The process of failure of columnar-grained ice. Philosophical Maga-
zine A, Vol. 26, No. 2, pp. 311-328.

[20] Gold, L.W. (1973). Activation energy for creep of columnar-grained ice. In: Physics and
chemistry of ice, Eds. E. Whalley, S.J. Jones and L.W. Gold, Ottawa, Royal Society of
Canada, pp. 362-364.

[21] Gupta, V., Picu, R.C., and Frost, H.J. (1993). Crack nucleation mechanism in saline
ice. Ice Mechanics, ASME, AMD, Vol. 163, pp. 199-216.

[22] Gurson, A.L. (1977). Continuum theory of ductile rupture by void nucleation and
growth: Part I - Yield criteria and flow rules for porous ductile media. Trans. ASME J.
Eng. Mater. Technol., Vol. 99, pp. 2-15.

[23] Haghi, M. and Anand, L. (1992). A constitutive model for isotropic, porous, elastic-
viscoplastic metals. Mechanics of Materials, Vol. 13, pp. 37-53.

[24] Hallam, S.D. (1986). The role of fracture in limiting ice forces. Proceedings of the IAHR
Ice Symposium, Iowa City, Iowa, pp. 287-319.

[25] Hallam, S.D., Duval. P. and Ashby, M.F. (1987). A study of cracks in polycrystalline
ice under uniaxial compression. Journal de Physique, Vol. 48, pp. C1-303- C1-311.

[26] He, M.Y. and Hutchinson, J.W. (1981). The penny-shaped crack and the plane strain
crack in an infinite body of power law material. J. Appl. Mech., Vol. 48, pp. 830-840.

[27] Hobbs, P.V. (1974). Ice Physics. Clarendon Press, Oxford.

[28] Horii, H. and Nemat-Nasser, S. (1983). Overall moduli of solids with microcracks: loads-
induced anisotropy. Journal of the Mechanics and Physics of Solids, Vol. 31, pp. 155-171.

[29] Hutchinson, J.W. (1983). Constitutive behavior and crack tip fields for materials under-
going creep-constrained grain boundary cavitation. Acta metall., Vol. 31, pp. 1079-1088.

[30] Jordaan, I.J. and McKenna, R.F. (1988). Modelling of progressive damage in ice. Pro-
ceedings IAHR Symposium on Ice, Sapporo, Vol. 2, pp. 585-624.

187



[31] Jordaan, I.J. and McKenna, R.F. (1991). Processes of deformation and fracture of ice
in compression. Proc. IUTAM/IAHR Symp. on Ice-Structure Interaction, Jones, S.J.,
MeKenna, R.F., Tillotson, J. and Jordaan, I.J. (Ed.), Springer-Verlag, pp. 283-309.

[32] Jordaan, I.J., Stone, B.M., McKenna, R.F. and Fuglem, M. K. (1990). Effect of mi-
crocracking on the deformation of ice, Proceedings of the 43rd Canadian Geotechnical
Conference, Quebec, Vol. 1, pp. 387-393.

[33] Kachanov, L.M. (1958). Time of the fracture process under creep conditions. Izv. Akad.
Nauk SSR O. T.N., Tekh. Nauk, Vol. 8, pp. 26-31.

[34] Kachanov, M. (1994). Elastic solids with many cracks and related problems. Advances
in Applied Mechanics, Vol. 30, pp. 259-445.

[35] Kalifa, P., Duval, P. and Richard, M. (1989). Crack nucleation in polycrystalline ice
under compressive stress states. Proc. 8th Int. Conf. on Offshore Mechanics and Arctic
Engineering, The Hague, The Netherlands, Vol. 4, pp. 13-21.

[36] Ketcham, W.M and Hobbs, P.V. (1969). An experimental determination of the surface
energies of ice. Philosophical Magazine A, Vol. 19, pp. 1161-1173.

[37] Krajcinovic, D. (1989). Damage mechanics. Mechanics of Materials, Vol. 8, pp. 117-197.

[38] Le Gac, H. and Duval, P. (1980). Constitutive relations for the nonelastic deformation of
polycrystalline ice. Proceedings of the IUTAM Symposium on the Physics and Mechanics
of Ice, Edited by P. Tryde, Springer, pp. 51-59.

[39] Leckie, F.A. and Hayhurst, D.R. (1974). Creep rupture of structures. Proc. R. Soc.
Lond. A, Vol. 340, pp. 323-347.

[40] Lemaitre, J. and Chaboche, J.L. (1978). Aspect Phenomenologique de la Rupture par
Endommagement. Journal de Micanique Appliquee, Vol. 2, pp. 317-365.

[41] Mellor M. and Cole, D. (1982). Deformation and failure of ice under constant stress or
constant strain rate. Cold Regions Science and Technology, Vol. 5, pp. 201-219.

[42] Meyssonnier, J. and Duval, P. (1989). Creep behavior of damaged ice under uniaxial
compression: a preliminary study. Proceedings of the 10th Int. Conf. on Port and Ocean
Eng. under Arctic Conditions, Lula, Sweden, Vol. 1, pp. 225-234.

[43] Michel, B. (1978). The strength of polycrystalline ice. Canadian Journal of Civil Engi-
neering, Vol. 5, No. 3, pp. 285-300.

[44] Michel, B. and R.O. Ramseier (1971). Classification of river and lake ice. Can. Geotech.
J., Vol. 8, pp. 36-45.

[45] Murakami, S. and Ohno, N. (1981). A continuum theory of creep and creep damage.
Creep in Structures, A.R.S. Ponter and D.R. Hayhurst (Ed.), pp. 422-444, Springer,
Berlin.

188



[46] Nanthikesan, S. and Shyam Sunder, S. (1994). Anisotropic elasticity of polycrystalline
ice Ih. Cold Reg. sci. Technol., Vol. 22, pp. 149-169.

[47] Needleman, A. and Rice, J.R. (1978). Limits to ductility set by plastic flow localization.
Mechanics of Sheet Metal Forming, D.P. Koistinen et al. (Ed.), Plenum Publishing, pp.
237-267.

[48] Needleman, A. and Tvergaard, V. (1984). An analysis of ductile rupture in notched
bars. J. Mech. Phys. Solids, Vol. 32, pp. 461-490.

[49] Nemat-Nasser, S. and Hori, M. (1993). Micromechanics: Overall Properties of Hetero-
geneous Materials, North-Holland, New York.

[50] Nixon, W.A. and Wasif, M.A. (1992). Development of cracks in S2 freshwater ice under
constant strain rate loading. IAHR 92 Proceedings of the 11th International Symposium
on ice, Vol. 2, pp. 1167-1175.

[51] Pan, J., Saje, M., and Needleman, A. (1983). Localization of deformation in rate sensi-
tive porous plastic solids. Int. J. Fracture, Vol. 21, pp. 261-278.

[52] Rabotnov, Y.N. (1969). Creep problems in structural members. North-Holland, Amster-
dam.

[53] Rodin, G.J. and Parks, D.M. (1988). A self-consistent analysis of a creeping matrix with
aligned cracks. J. Mech. Phys. Solids, Vol. 36, pp. 237-249.

[54] Schapery, R.A. (1991). Models for the deformation behavior of viscoelastic media with
distributed damage and their applicability to ice. Proc. IUTAM/IAHR Symp. on Ice-
Structure Interaction, Jones, S.J., MeKenna, R.F., Tillotson, J. and Jordaan, I.J. (Ed.),
Springer-Verlag, pp. 191-230.

[55] Schulson, E.M. (1979). An analysis of the brittle to ductile transition in polycrystalline
ice under tension. Cold Regions Science and Technology, Vol. 1, pp. 87-91.

[56] Schulson, E.M. (1990). The brittle compressive fracture of ice. Acta metall., Vol. 38, pp.
1963-1976.

[57] Shyam Sunder, S. and Wu, M.S. (1989a). A differential flow model for polycrystalline
ice. Cold Regions Science and Technology, Vol. 16, No. 1, pp. 45-62.

[58] Shyam Sunder, S. and Wu, M.S. (1989b). A multiaxial differential model of flow in
orthotropic polycrystalline ice. Cold Regions Science and Technology, Vol. 16, No. 2,
pp. 223-235.

[59] Sinha, N.K. (1978). Rheology of columnar-grained ice. Experimental Mechanics, Vol.
18, No. 12, pp. 464-470.

[60] Sinha, N.K. (1982). Acoustic emission and microcracking in ice. Proceedings of the 1982
Joint Conference on Experimental Mechanics, Hawaii, May 23-28, 1982, Part II, pp.
767-772.

189



[61] Sinha, N.K. (1984). Intercrystalline cracking, grain-boundary sliding, and delayed elas-
ticity at high temperatures. Journal of Materials science, Vol. 19, pp. 359-376.

[62] Sinha, N.K. (1988). Crack enhanced creep in polycrystalline material strain rate sensi-
tive strength and deformation of ice. Journal of Material Science, Vol. 23, pp. 4415-4428.

[63] Sinha, N.K. (1989). Elasticity of natural types of polycrystalline ice, Cold Reg. Sci.
Technol., Vol. 17, pp. 127-135.

[64] Sjdlind, S-G. (1987). A constitutive model for ice as a damaging visco-elastic material.
Cold Regions Science and Technology, Vol. 14, pp. 247-262.

[65] Stone, B.M., Jordaan, I.J., Jones, S.J. and McKenna, R.F. (1989). Damage of isotropic
polycrystalline ice under moderate confining pressures. Proceedings of the 10th Int. Conf.
on Port and Ocean Eng. under Arctic Conditions, Lula, Sweden, Vol. 1, pp. 408-419.

[66] Szyszkowski, W. and Glockner, P.G. (1985). Modeling the time-dependent behaviour of
ice. Cold Regions Science and Technology, Vol. 11, pp. 3-21.

[67] Ting, S.-K. and Shyam Sunder, S. (1985). Constitutive modeling of sea ice with appli-
cations to indentation problems. CSEOE Res. Rep. 3, Dept. Civil Eng., Massachusetts
Inst. Technol., 255 pp.

[68] Wang, L. and Schapery, R.A. (1995). Prediction of elastic and viscoelastic properties of
anisotropic columnar ice. Ice Mechanics, ASME, AMD, Vol. 207, pp. 33-47.

[69] Weertman, J. (1969). Effects of cracks on creep rate. Transactions Quarterly, Transac-
tions of the ASM, Vol. 62, No. 2, pp. 502-511.

[70] Weertman, J. (1973). Creep of Ice. Physics and Chemistry of Ice, Whalley, E., Jones,
S.J. and Gold, L.W. (Editors), pp. 320-337.

[71] Wu, M.S. and Niu, J. (1995). Micromechanical prediction of the compressive failure of
ice, Part I: Model development. Mechanics of Materials, Vol. 20, pp. 9-32.

[72] Wu, M.S. and Shyam Sunder, S. (1992). Elastic anisotropy and micro-damage processes
in polycrystalline ice, Part I: Theoretical formulation. Int. J. Fracture, Vol. 55, pp.
223-243.

[73] Xiao, J., Jordaan, I.J., McKenna, R.F. and Frederking, R.M.W. (1991). Finite element
modeling of spherical indentation tests on ice. The 11th Int. Conf. on Port and Ocean
Eng. under Arctic Conditions, September 24-28, St. John's, Canada, Vol. 1, pp. 471-485.

[74] Zaretsky, Y.K., Chumiehev, B.D., and Solomatin, V.I. (1979). Ice behavior under load.
Engineering Geology, Vol. 13, pp. 299-309.

[75] Zhan, C., Evgin, E. and Sinha, N.K. (1994). A three dimensional anisotropic consti-
tutive model for ductile behavior of columnar grained ice. Cold Regions Science and
Technology, Vol. 22, pp. 269-284.

190



.d -'
IU

9

8

07

6
5

C)co 4
3
2

1

n
6.00 0.01 0.02 0.03

Strain, e

Figure 6-1: Typical stress-strain curves of polycrystalline ice under various levels of constant
strain rate.
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Figure 6-2: S2 polycrystalline ice containing crystals with random in-plane c-axes.
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Figure 6-3: Equiaxed-granular polycrystalline ice containing crystals with random c-axes.
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Figure 6-4: Stress-strain curve under constant strain-rate: the model prediction is compared
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pared with the data of Mellor and Cole (1982).
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Chapter 7

CONCLUSIONS AND FUTURE
RESEARCH

7.1 Summary of Present Work

This chapter summarizes the results of this thesis and proposes possible future research.

The objective of this study has been to develop physically-based constitutive creep models

for highly rate-dependent polycrystalline solids, such as polycrystalline ice. The constitutive

models are based on physical mechanisms and microstructural properties.

Since polycrystalline ice is made up of a collection of individual crystals, its behavior is

affected by the properties of the individual crystals. It is reported, however, that there are

significant differences between the properties of single crystals and those of polycrystalline

ice (Duval et al., 1983; Weertman, 1973). These differences may be due to such processes as

intergranular effects (e.g., sliding and interlocking along grain boundaries), the distribution

of the crystallographic orientation of single crystals, alterations of dislocation densities within

grains, interactions of dislocations between slip systems, and damage accumulation due to

microcracking.

In particular, the following models have been developed: (1) a constitutive creep model

for single crystal ice; (2) relaxation process of polycrystalline ice under cyclic loading; (3) the

viscoplastic behavior of polycrystalline ice; and (4) damage-enhanced viscoplastic behavior

of polycrystalline ice. The salient results of each of these topics are summarized below.
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A Creep Model for Single Crystal Ice

A constitutive creep model for single crystal ice has been formulated based on experi-

mental results and the mechanism of the multiplication process of mobile dislocations. The

model responses are in good agreement with available experimental data of single crystal ice,

which is highly sensitive to changes in strain rate, stress, and temperature. Based on the

assumption that the dislocation motion on the basal plane is the dominant mechanism for

single crystal ice due to strong creep anisotropy, this chapter studied the effect of disloca-

tion densities within crystals on the macroscopic response. Material properties used in the

proposed model were the dislocation velocity and the changing dislocation density of sin-

gle crystal ice based on experimental data. The model incorporates crystallographic basal

orientation of single crystal ice. The uniaxial creep model was extended to biaxial loading.

Parametric studies were performed to understand better the dependence of microstructural

parameters on the macroscopic stress-strain curves. The model results are highly dependent

on the loading rate, temperature, and orientation of the basal plane relative to the direction

of the applied loading. Predicted stress-strain curve for the applied strain rate shows an up-

per and lower yielding. The strain-time response for the applied stress shows an accelerating

strain.

Relaxation Process in Polycrystalline Ice

A constitutive model for polycrystalline ice subjected to cyclic loading applicable for rel-

atively low anelastic strains, less than 10- 3, has been developed. The model is developed on

the basis of the linear relationship between anelastic strain and stress, and the distribution

of relaxation times which can be measured from internal friction. The relaxation process has

a physical origin from internal stresses associated with intracrystalline processes of disloca-

tions, and their distribution in grains due to the variation in basal plane orientation. The

model predictions are then compared with cyclic experimental data that span a range of

stress amplitudes (0.6 - 1.4 MPa), and frequencies (1 - 10- 3 Hz) at -100C. The proposed

model is capable of describing the transient creep deformation behavior of polycrystalline

ice under cyclic loading conditions. This study explains time-dependent elastic modulus of

polycrystalline ice.
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Viscoplastic Behavior

The proposed multiaxial, viscoplastic model for orthotropic polycrystalline ice is devel-

oped based on a physical process that governs rate- and temperature-dependent inelastic

deformation as a result of the movement and production of the thermally-activated dislo-

cations and an interactions of dislocations between the basal and non-basal systems of a

constituent single crystal ice. The mathematical formulation is based on the theory of in-

ternal state variables. Two internal state variables, kinematic back stress and isotropic drag

stress, are used to describe the various states of the microstructure. These internal stresses

are responsible for strain hardening and transient creep. A specific form of dissipation po-

tential, which incorporates internal stresses, is proposed for inelastic flow. Major features of

the model include the hardening and recovery processes within the evolution equations of the

internal stresses. The evolution function of isotropic drag stress is formulated with hardening

and recovery functions due to the production and annihilation of dislocations. The evolu-

tion function of kinematic back stress is proposed based on an interaction of the basal and

non-basal systems of single crystal ice. The proposed model satisfies the non-dimensional

requirement of Ashby and Duval (1985) for strain, strain rate and time, and predicts the ex-

perimentally observed relationship between them with fixed material parameters. By using

internal state variables and their evolution equations, transient creep of polycrystalline ice

has been modeled successfully.

Damage-enhanced Viscoplastic Behavior

A multiaxial, damage-enhanced creep model for orthotropic polycrystalline ice is formu-

lated within the framework of thermodynamics theory of irreversible process. In this model,

highly rate- and temperature-dependent mechanical behavior is described by the changing

microstructures such as the movement and production of dislocations and microcracking.

The constitutive equations are proposed to help bridge the physical processes within the

material and the macroscopic behavior observed experimentally. The damage effects due to

microcracking are taken into account mainly for the enhancement of creep properties. The

information obtained from experiments for the cracking activities during deformation are

used in the present damage-enhanced creep formulation. A multiaxial dissipation potential

for the inelastic deformation is proposed for kinematic hardening, isotropic hardening and

damage due to microcracks. Finally, comparison of the model with available experimental

data shows good agreement and demonstrates the effectiveness of the model.
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7.2 Future Work

In this thesis, physically-based constitutive models for highly rate-dependent materials have

been proposed. The models describe the viscoplastic and damage behavior of polycrystalline

ice. Several improvements can be made in the following. First, the relaxation of internal

stresses caused by microcracking needs to be better understood and modeled. Secondly,

the anisotropy caused by anisotropic micro damage orientations need to be better described.

Thirdly, the specific growth and coalescence mechanisms must be defined in order to describe

the failure process.

All polycrystalline ice is made up of a collection of individual ice crystals, its behavior is

affected by the properties of these individual crystals. It is reported, however, that there are

significant differences between the properties of single crystals and those of polycrystalline

ice (Duval et al., 1983; Weertman, 1973). These differences may be due to such processes as

intergranular effects (e.g., sliding and interlocking along grain boundaries), the distribution

of the crystallographic orientation of single crystals, alterations of dislocation densities within

grains, an interaction of dislocations between slip systems, and damage accumulation due to

microcracking.

In following studies, the aim should be to capture the behavior of polycrystalline ag-

gregates based on multiple processes operating at microstructural scale. In particular, the

following is suggested.

Behavior of Polycrystalline Ice: Finite Element Simulation

The aim of this study should be to capture the viscoplastic behavior of polycrystalline

ice based on microstructural variables, such as elastic and creep properties of the individual

crystals. Low strain rate should be modeled where little microcracking activity is observed.

In Chapter 3, a constitutive creep model for single crystal ice is proposed based on the

assumption that the dislocation motion on the basal plane is the dominant mechanism of

single crystal ice due to strong creep anisotropy. The model describes the effect of dislocation

densities within crystals on the macroscopic responses. The elastic response of polycrystalline

ice based on elastic properties of single crystals is simulated numerically in Elvin (1996). In

the future, the proposed creep model can be utilized in a numerical approach similar to Elvin

(1996).
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First, finite element simulation for non-homogeneous, viscoplastic deformation in poly-

crystalline ice modeled as a collection of single crystals can be performed based on elastic

and creep properties of the individual single crystals with different orientations of the basal

planes.

Secondly, a more advanced model would account for internal stresses build up at lo-

cal sites such as grain boundaries due to intergranular effects. As a result, simulations of

microcracks can be performed. The effect of distributed microcracks on the viscoplastic

behavior of polycrystalline ice can be studied by numerically-generated polycrystalline sam-

ples and a unit cell model as presented in Elvin and Shyam Sunder (1996). This study will

not only investigate quantitatively the enhancement of creep due to microcracks but might

also be used to improve the form of damage-enhanced creep equations presented in Chapter6.

Confinement Effect on Compressive Strength

For ductile yielding of ice at low strain rate, confining pressure has little effect on shear

strength, and thus the same behavior in compression and tension is observed as for incom-

pressible materials. Ice undergoes creep and the stress-strain response is independent of the

hydrostatic stress. Thus a ductile yield surface is approximated by von-Mises criterion. As

strain rates increase and internal microcracks develop, the tendency of a material to frac-

ture under confinement is suppressed. Confinement has the apparent effect of increasing

the ductility of brittle solids. Since the growth of cavities and microcracks is very sensitive

to hydrostatic stress, damage is equally sensitive to the shear energy and the volumetric

deformation energy. Consequently, the strength of ice is expected to increase with increasing

hydrostatic stress, which can be predicted by the Mohr-Coulomb criterion or the Drucker-

Prager criterion. In other words, ice exhibit brittle behavior at low hydrostatic pressure and

more ductile behavior at high hydrostatic pressure. Based on experiments of the confined

compressive strength under moderately to high strain rates (Jones (1982), Jones and Chew

(1983) for isotropic polycrystalline ice; Timco and Frederking (1984) for granular/columnar

sea ice; and Hdiuser (1981) for for saline ice), the shear strength increases with increasing

confining pressure up to a certain limit, but then starts to decrease with further increase in

pressure.

Several yield functions have been developed to describe different tensile and compressive

strengths by incorporating hydrostatic pressure (Reinicke and Ralston, 1977; Reinicke and
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Remer, 1978; Nadreau and Michel, 1986). Previously published experimental results indicate

that microcracks occur mainly in the direction of the maximum principal compressive stress.

Anisotropic damage due to preferred microcrack orientations should be investigated by con-

sidering the relative importance of the maximum principal stress, the hydrostatic stress, and

effective stress.

Numerical Modeling and Simulation of Ice-Structure Interaction

Despite the vast literature available on the subject of ice mechanics and ice-structure

interaction, extensive and realistic quantitative calculations of ice loads have not been re-

ported. Instead, analyses frequently present purely analytic theories, and thus no direct

methods for estimating the ice loads on structures are provided, and the calculations are not

compared with real data (Sanderson, 1989). The fact that ice plates is undergo so many

complex deformation processes, which greatly depend on loading rates, temperatures, ice

thickness and the shape and dimension of the structures, may be the reason why no direct

correlation between studies and predictions exists.

The failure of polycrystalline ice specimens and ice-structure interaction can be simu-

lated by defining a realistic fracture criterion and the nucleation, growth, and coalescence

of individual microcracks. This simulation would involve the physical understanding of the

fracture processes.

A physically-based constitutive creep theory has been formulated and compared to the

behavior of laboratory-scale ice in this thesis. A computational algorithm should be devel-

oped for simulating the complex material behavior in a finite element framework. Finally the

physically-based and computationally-elegant constitutive creep model, when it is combined

with microstructural fracture mechanics, might be used to solve the ice-structure interaction

problems such as sub-surface penetration and in-plane indentation of a floating ice plate.
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