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Abstract

The motivation of the research was to improve the mechanical integrity of a
characteristically brittle, addition silicone resin, while retaining its high heat resistant
properties by the incorporation of phase one (I ) rubbers such as vinyl terminated PDMS
(DPn=9) and silane terminated rubber (DPn=4) in its matrix. The modification is being
undertaken to develop materials for high temperature composite applications such as those
used in high performance aircraft.
The effects of the resin modification by the addition of 0-15% rubber were evaluated by
flexural and fracture toughness testing of samples cured with a trifunctional or tetra-
functional cross-linker and post-cured under 2000 C /4 hour or 260 0C/ 8 hour conditions.
Other evaluations carried out included Scanning Electron Microscopy (SEM) of fracture
surfaces; Dynamic Mechanical Analysis (DMA) and Nuclear Magnetic Resonance (NMR) of
selected samples.
The analyses indicated that the 2600C /8 hour post-cure increased the stiffness and fracture
toughness of the resin compared to the 2000 C /4 hour post-cure, and was the better post-
cure condition. The trifunctional cross-linker was able to effect a less brittle matrix than the
tetrafunctional cross-linker - evident by higher fracture toughness and fracture energy
values.
Solid state 2 9 Si NMR of the resin with the trifunctional cross-linker showed that the full
cure was not achieved, possibly because of the dominance of a side reaction: the hydrolysis
of the silane groups on the cross-linker which favors the presence of oxygen and water at
elevated temperatures. It was found, despite the incomplete extent of resin reaction, the
silane terminated rubber additive was better able to increase the fracture toughness and
fracture energies on the resin matrix, than the vinyl terminated PDMS. The condition
under which the favorable mechanical trends were achieved was a 160 0C/16 hour cure with
the trifunctional cross-linker, accompanied by a post-cure at 2600 C for 8 hours

Thesis Supervisor: Frederick J. McGarry
Title: Professor of Civil Engineering and Polymer Engineering
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Chapter 1

Introduction

1.1 Silicones and silicone resins

Organosilicon chemistry developed with the conversion of inorganic compounds such as

silicon tetrachloride and trichlorosilane to organometallic substances with the general

formula RSiX3. These organometallic compounds could, in turn, be hydrolyzed to linear

and cyclic siloxanes. It was initially thought that the hydrolysis to create these siloxanes

produced double bonded (Si=O) compounds dubbed silicoketones or silicones. It was

discovered later via structural analysis that these siloxanes and polysiloxanes possessed Si-O

- not - Si=O bonds [1]. However the name "'silicones" remained to define all monomeric

and polymeric organic siloxanes, the general structure of silicones is shown in Figure 1.1.

R

I--

The general structural formula of siliconesFigure 1.1:



Siloxanes and polysiloxanes are composed of an inorganic siloxane (Si-O) backbone and side

groups such as methyl or phenyl groups attached to the silicon. There is relatively free

rotation about the siloxane bond due to its length of 1.64 angstroms - larger than the carbon-

carbon bond of 1.53 angstroms [2,3,]. This length permits free rotation about the siloxane

bond due to the reduced hindrance within the molecule. The energy of rotation about the

siloxane bond is -~0 kJ/mol compared to polyethylene carbon-carbon bond rotation energy of

-14kJ/mol [3]. This easy rotation explains the very low glass transition temperatures (Tg)

and low melt temperatures (Tm) : e.g. PDMS has a Tg of -1250C and a Tm of -400C. To

further promote the rotational and torsional flexibility, the oxygen atom in the siloxane

group possesses no side groups unlike its silicon counterpart; and the Si-O-Si bond of 1430 is

also larger than a tetrahedral bond of 1100 [2]. The high flexibility of the Si-O bond causes

the high permeability of siloxanes which is a reason for its use in soft contact lenses,

membranous filters and sealants. What is more, the side groups can be changed in order to

vary selective permeation of polysiloxane films to small molecules [2,3].

The low intermolecular interaction between side groups such as methyls and phenyls on

polysiloxane chains, coupled with its high chain flexibility, causes chains to rearrange so the

non-polar methyl or phenyl groups are at the surface or interface. This screens the ionic

siloxane backbone resulting in the siloxane chain achieving its lowest energy configuration.

It produces the low surface energy and surface tension which are exploited in surfactants

and waterproofing materials [2,3]. The low surface energies and flexibility explain the ability

of a polysiloxane surface to regenerate its former characteristics, by rotation and

rearrangement of the chain, when it is damaged [2]. This property, in addition to its

physiological inertness, makes silicones useful in prosthetic devices, implants and other

biomedical products [2,4]. The silicon and the oxygen groups on the siloxane backbone

demonstrate a very large differentiation in size which gives the chains unique packing

characteristics and create unusual compressibility properties [3].



The high oxidation state of the oxygen in siloxane and polysiloxanes causes the partial ionic

nature of siloxanes preventing the reduction of the siloxane bonds until very high

temperatures (>2000C in air and >500oC in vacuum) [4]. The high dipolar character protects

the side groups from chemical attack at temperatures in the 200 0 C range. It is for this

reason that siloxanes are notable for high thermal and oxidative stability. This property has

been exploited in such applications as heat transfer agents and high performance elastomers

[2,3]. However, pure siloxane polymers are rarely used without modification for

technological applications; typically, they are modified by fillers, pigments,

copolymerization and curing agents to convert them to useful products, including rubbers

and resins [5].

The formation of silicone resins entails the crosslinking of polysiloxanes by the hydrolysis

of tri or tetrafunctional chlorosilanes, alkoxysilanes and other reagents in an organic

solvent medium. The result is low molecular weight, cross-linked chains with reactive

groups still present e.g. silanol or vinyl groups. The condensation reaction with the silanol

groups or the addition reaction with the vinyl groups convert these low molecular weight

resins to high molecular weight, highly cross-linked, rigid resins[1,3].

Cross-linking can take place in four ways [6]:

* Peroxide-induced free radical reactions.

* Condensation reactions.

* Hydridosilane/silanol reactions.

* Hydrosilylation addition reactions.

Of the four modes of cross-linking, hydrosilylation is the route by which the resin used in

this study - Dow Corning X1-2672TM - is cross-linked from low molecular weight silicones to



a rigid resin. The hydrosilylation is an addition reaction between a silane group and an

unsaturated carbon bond. It is enhanced by the presence of a platinum catalyst. The

hydrosilylation system is cited by Thomas [6] as one of the most technologically popular

reactions because of its simplicity: it releases no byproducts and it requires very minute

quantities of catalyst to proceed.

Typically, the hydrosilylation reaction has been used to produce unfilled thin films for the

paper and plastics markets, pressure sensitive adhesives and water-based coatings [6]. As far

as siloxane polymers are concerned, the hydrosilylation reaction has been investigated for

cross-linking PDMS rubbers in the presence of other polymers such as urethanes to form

Interpenetrating Polymer Networks (IPNs) [1]. This is because of their low miscibility and

unique cross-linking chemistry. Also, most siloxane polymers have inherently low crack

resistance and thus need a reinforcing polymer.

The hydrosilylation reaction can be achieved in various ways, but the most popular is the

one between a hydridosilane group and a silicon vinyl group [6] shown in Figure 1.2.

ýSi-H + ýSiCH--CH: SiCH, CH, Siý

Figure 1.2: The hydrosilylation reaction.

The platinum catalyst used either can be a homogenous or a heterogeneous one. In this

investigation homogeneous, hexachloroplatinic acid dissolved in isopropanol formulated

by Speier [7], was used. The mechanism for the interaction between this catalyst and the



reactants, hypothesized by Chalk and Harrod [8]; and Benkeser and Kang [9], involves the

reaction between the platinum and the vinyl group followed by a reaction of the

platinum/vinyl intermediate with the silane group to form a complex. The complex then

reacts with another vinyl group forming the hydrosilylation cross-link and recycling the

catalyst for further reaction.

For a cross-linked network to be formed, the hydrosilylation must take place between

reactants, one of which must be multi-functional. The silicone resin used in this study has

vinyl groups and the reactant needed to form the resin matrix must be a multi-functional

silane molecule. The hydrosilylation cross-linking reaction can produce a variety of

matrices depending on the position of the silane groups and the number of the silane

functionalities. These reactions are an attractive alternative to peroxide-induced free radical

cross-linking because no volatile by-products are formed [2] .

The formation of the three dimensional cross-linked network is achieved by reacting the

vinyl group of the silicone with a tri or tetrafunctional silane molecule i.e. a silane cross-

linker. The silicone resin used in this study - Dow Corning X1-2672TM - undergoes this

hydrosilylation reaction.

However, the hydrosilylation system is vulnerable to side reactions under certain

conditions. Upon prolonged heating in air and moisture (e.g. curing in an air oven)

oxidation and hydrolysis of the silane groups can take place [6]. This becomes even more

significant if the silane groups are present in excess. It was shown by Quan [10] that the

presence of the excess silane groups could react with air and moisture to produce silanols or

silsesquioxane cross-links shown in Figure 1.3. These reactions cause changes in the resin

network which include lower stiffness due to lower cross-link density and different types of

cross-links than those produced by the primary reaction.



2 •Si-H + 0, - 22 = SiOH

--- i-H + HO -~ =SiOH + H20

SiOH + ý-Si-H --- -- SiOSi + H 2

S--iOH + --- SiOH- - -  SiOS~== + H20

Figure 1.3: The side reactions of hydrosilylation cross-linking.

Silicone resins have had relatively little use in composites, despite their uses in other

applications. Instead, they have mainly been used to modify other resins, such as

urethanes, epoxies and acrylates; as copolymers with polyimides to improve moisture

resistance; as a reactant with caprolactam to improve the low temperature properties of the

polyimide product; and as comonomers in the formation of siloxane block copolymers [3].

The reason for the small use in composites is their brittleness. The resins are stable at high

temperatures and can withstand temperature extremes without loss of integrity. It is

because of this that they would be desirable for composites in applications such as engine

casings for high performance aircraft [11]. To reduce the brittleness while maintaining the

heat stability, the resins are being modified with rubber, which makes them tougher.

Current efforts are focused on incorporating the rubber directly into the resin network via

addition or condensation reactions. These are called Phase I rubbers and when properly

incorporated into the network, they induce localized plastic flow, if cracks develop and

propagate in the resin [11]. Thus the network is more impact and crack resistant, while

retaining its high temperature stability, good stiffness and strength.



When phase I modification is achieved, then larger, discrete Phase II rubber particles will be

formed in the resin network. These will further toughen the resin, increasing its fracture

toughness and fracture energy by a number of mechanisms [12].

Fracture Toughness (KC) , defined as the critical stress intensity factor, measures a material's

resistance to crack initiation. KC is related to the stress (a) and the critical length (a), at

which a crack will begin to propagate in an unstable manner, by Equation (1):

Kc = a (7 x a)/2
(1)

The work required to fracture the material is the Fracture Energy (Gc). GC measures the

resistance of a material to crack propagation and is related to KC by equation (2) below:

Gc =  K /E (2)

E is the modulus of the material.

Fracture Toughness can be measured in three modes:

* Mode I - fracture by crack opening

* Mode II - fracture by shear

* Mode III - fracture by tearing

Mode I Fracture Toughness (KIc) and Fracture Energy (GIC) are the parameters that were

measured and discussed in this investigation.



Polymers exhibit fracture mechanisms which are different from metals and ceramics due to

the absence of crystallographic planes, dislocations and grain boundaries. Polymers,

composed of long molecular chains, exhibit mechanisms that involve the rupture of the

covalent bonds between the atoms and the breakage of Van der Waals bonds between the

molecules. In cross-linked, glassy polymer Van Der Waals bond breakage is minimal.

These materials yield and fail by breakage of the covalent bonds. For all glassy polymers, the

Van Der Waals bonds can play a significant role in deformation and yield processes while

ultimate fracture involves covalent bond breakage [13].

Yielding in polymers can take place by three mechanisms:

* Crazing

* Shear Banding

* Shear Yielding

Crazing is a localized, inhomogeneous deformation that results from the application of a

tensile stress. This causes the polymer molecules to orient parallel to the tensile direction.

With higher deformation, microvoids develop between the oriented chains with fibrils of

polymer connecting the opposite surfaces of the voids. Stresses are concentrated in the

fibrils and cause the growth of the craze. As a result, ultimate fracture follows the rupture

of the fibrils [13-14].

Shear Banding is another mode of local deformation which is characterized by chain

orientation under a shear stress. Unlike crazing however, microvoids do not form; instead

bands of oriented polymer develop at an angle to the tensile axis [13-15].

Craze and shear band structures are shown in Figure 1.4 (a) and (b) respectively. These two

phenomena occur in glassy amorphous thermoplastics such as polystyrene and

polymethylmethacrylate.
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Figure 1.4: (a) Structure of a craze and (b) structure of shear bands formed in
thermoplastic polymers.

Shear Yielding shown in Figure 1.5 is global deformation which results in the orientation of

polymer chains throughout the specimen due to the imposition of a critical shear stress.

Typically, shear yielding is favored over crazing and shear banding when the crystallinity of

a polymer increases [13].

Shear Yielding in a Polymer.Figure 1.5:



According to Bradley et al, for thermoset resins there is little evidence that crazing and

shear banding occur. The cross-links prevent the formation of crazes and shear bands so the

molecules are unable to orient. However, some deformation can take place by shear

yielding. This is characterized as 'diffuse' because only small deformation zones can be

formed. Fracture in thermoset resins occurs as a result of covalent bond breakage; the

magnitude of the stress required increases as the cross-link density increases [17,18].

Rubber modified thermoset resins are toughened by three possible mechanisms [12,19,20]:

crack bridging of rubber particles, impeding the advance and opening of a crack; increased

deformation of the rubber particle and its surrounding matrix; and by cavitation of the

rubber particle causing more localized shear yielding in the matrix.

Matrix shear yielding is cited as the most effective energy dissipating mechanism [12] and it

is desired that this will take place when the silicone resin is modified. It should be evident

from the presence of localized deformation zones, and cavitated rubber particles in the

matrix a change from brittle to ductile fracture.

Figure 1.6 (a), (b) and (c) show crack bridging; deformation of rubber particles in the matrix

and particle cavitation, along with localized shear yielding.
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Figure 1.6: (a) crack bridging (b) rubber particle deformation (c) rubber particle cavitation
and localized shear yielding.
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1.2 Modification of Dow Coming X1-2672TM resin

The silicone resin Dow Coming X1-2672TM has the following structural formula shown in

Figure 1.7.

( PhSiO3 2)0.75( 2ViSiO1/2) 0.25

Ph = Phenvi group
Me = Methyl group
Vi = Vinvi group

Figure 1.7: The structural formula of Dow Corning X1-2672TM.

X1-2672TM is a clear, colorless fluid which has the consistency of a syrup. It possesses vinyl

functionality and for this reason it is necessary for its cross-linker to have silane

functionalities to produce the three dimensional network via hydrosilylation. The cross-

linkers used in this study were tri-functional and a tetra-functional. The tri-functional

cross-linker is phenyltris(dimethylsiloxy)silane, shown in Figure 1.8.

PhSi(OSiMe2 )3
Ph = Phenvi group
Me = Methvyl group
Vi = Vinyl group

The structural formula for phenyltris(dimethylsiloxy)silane.Figure 1.8:



The tetra-functional cross-linker used was tetrakis(dimethylsiloxy)silane, shown in Figure

1.9.

Si(OSiMe 2H)4

Me = Methyl group

Figure 1.9: The structural formula of tetrakis(dimethylsiloxy)silane.

Two short chain oligomers were investigated for incorporation into the X1-2672TM matrix as

Phase I rubbers. The first rubber was a vinyl terminated PDMS with an average degree of

polymerization (DPn) of 9. The general formula is shown in Figure 1.10.

Me Me
I I

Me
I

CI-L-- CI+-SiO -iO)-S i---CH =CH,

Me Me Me

Me = Methyl group

Figure 1.10: The general formula of vinyl terminated PDMS with a DPn of 9.

The second Phase I rubber used in this investigation was 1,1,3,3,5,5,7,7

octamethyltetrasiloxane - a silane terminated rubber - with an average degree of

polymerization of 4. The formula is shown in Figure 1.11.



Me Me Me Me

--Si---OSi----OSi-OSi-H

Me Me Me Me

Me = Methyl group

Figure 1.11: The formula of 1,1,3,3,5,5,7,7, octamethyltetrasiloxane with a DPn of 4.

The vinyl terminated PDMS was incorporated into the matrix via reaction with the cross-

linkers because it possesses vinyl functionalities and, as a result, cannot react directly with

the resin. The silane terminated rubber was incorporated into the network by reaction with

the vinyl groups on the X1-2672 TM resin. The silane terminated rubber cannot react directly

with the cross-linkers and stoichiometrically, the resin will require less cross-linker as more

silane terminated rubber is added due to the same functionality possessed by both rubber

and cross-linker.



Chapter

Experimental

2.1 Sample Preparation.

The process of casting preparation is shown in Figure 2.1 below.

!u,ým

-

Take 68g of 75%
resin solution

'acu
pun

Add cross-linker
and/or rubber and stir

cure in air oven at 160
or 1400 C for 16 hrs and
post-cure at 200 or 260°C
for 8 hours.

Pour into a 5" by 5" teflon-edged,
aluminum mold & degas
0 room temperature
for -20-30 minutes

Process of making X1-2672TM resin castings

transparent
cross-linked
casting

Figure 2.1:



For the preparation of the neat resin casting, 68 grams of a 75% solution of Dow Corning

X1-2672TM in toluene was mixed with 11.62 grams of the trifunctional cross-linker

phenyltris(dimethylsiloxy)silane purchased from United Chemical Technologies (-95%

pure). The two reactants were stirred in a beaker and then degassed under vacuum at 500C

for approximately 1.5 hours in order to remove the toluene. The mixture was then cooled

to room temperature, following which 1.5 mL of a 4.0 x 10-3 molar stock solution of

hexachloroplatinic acid (Aldrich Chemical Company) in isopropanol (spectrophotometric

grade, Mallinckredt Chemical Incorporated) was added as the catalyst. The mixture was

stirred and poured in a mold made of an aluminum base and teflon edges approximately 5"

x 5"x 1/2" in dimension and degassed again under vacuum at room temperature. The

casting was then cured at 160 0C for 16 hours and post-cured at 200 or 2600C for 4 or 8 hours

respectively. The resulting castings were transparent with a thickness of about 0.3".

The quantities of cross-linker required varied with the amount of rubber added. The first

rubber used, vinyl terminated PDMS, was purchased from Gelest (-95% pure) and the

second rubber 1,1,3,3,5,5,7,7 octamethyltetrasiloxane (-95% pure) was purchased from

Untied Chemical Technologies. The purity of both rubbers was determined from 29Si NMR

analysis. The formulations for the rubber addition are shown in Appendices A-1 & A-2:

Resin castings also were made with the tetrafunctional cross-linker

tetrakis(dimethylsiloxy)silane (-95% pure) purchased from United Chemical Technologies.

The mixing and degassing procedure was the same as that for the trifunctional cross-linker,

however, because of the higher cross-link functionality, the cure schedule had to

incorporate a slow ramp to a lower cure temperature of 1400 C to avoid the extensive

cracking of the castings. The formulations for making these castings with the two rubber

additives are shown in Appendices A-3 & A-4 and the ramp schedule used to make the

casting with the tetrafunctional cross-linker is shown in Figure A-5.



The following castings were made with the rubber percentages being calculated by weight of

the neat resin:

* X1-2672TM with 0,3,6 and 9% vinyl terminated PDMS, cured with the trifunctional cross-

linker at 1600C for 16 hours and post-cured at 2000C for 4 hours.

* X1-2672TM with 0,3,6 and 9% silane terminated rubber cured with the trifunctional cross-

linker at 1600C for 16 hours and post-cured at 2000 C for 4 hours.

* X1-2672TM with 0,3,6,9,12 and 15% vinyl terminated PDMS, cured with the trifunctional

cross-linker at 160 0C for 16 hours and post-cured at 2600C for 8 hours.

* X1-2672TM with 0,3,6,9,12 and 15% silane terminated rubber, cured with the trifunctional

cross-linker at 160 0 C for 16 hours and post-cured at 2600C for 8 hours.

* X1-2672TM with 0,3,6 and 9% vinyl terminated PDMS, cured with the tetrafunctional

cross-linker at 1400 C for 16 hours and post-cured at 2600 C for 8 hours.

* X1-2672TM with 0,3,6 and 9% silane terminated rubber, cured with the tetrafunctional

cross- linker at 1400 C for 16 hours and post-cured at 2600 C for 8 hours.



2.2 Mechanical Testing.

2.2.1 Three-point Bend Testing

All samples were tested in flexure in accordance with ASTM standard D790 on an Instron.

The test samples were 2.0 inches in length, 0.5 inch wide and 0.125 inch thick. The samples

were cut from the castings, polished and then left for 24 hours at room temperature before

being tested on supports with a span of 1.5 inches at a cross-head rate of 0.04 inch/minute.

The following parameters were measured:

* Flexural Modulus (E)

* Flexural Stress or Strength at Yield (a)

* Yield Strain (E)

* Toughness or Energy derived from the integral of the load-displacement curve

2.2.2 Fracture Toughness Testing

All samples were tested in bending for fracture toughness properties. The samples were

tested in accordance with ASTM standard D5045. The samples had a single edge notch of

0.01 inch and were pre-cracked with a razor blade to eliminate the energy required to initiate

the crack. The sample dimensions were 2 inches in length, 0.375 inch in width and 0.125

inch thick. The samples were cut from the castings, polished and conditioned for 24 hours

at room temperature, before being tested at a cross-head rate of 0.04 inch/minute between

supports with a span of 1.5 inches. The following parameters were measured:

* Mode I Fracture Toughness KIC

* Mode I Fracture Energy GIC



2.3 Scanning Electron Microscopy (SEM)

Following fracture toughness testing, the fractured samples were examined with SEM. This

was done to establish the mode of fracture. All samples underwent microscopy, but only

the following are shown in Chapter 3:

* X1-2672TM neat cured with the trifunctional cross-linker at 1600 C for 16 hours and post-

cured at 260oC for 8 hours.

* X1-2672TM with 6% vinyl terminated PDMS cured with the trifunctional cross-linker at

1600 C for 16 hours and post-cured at 2600C for 8 hours.

* X1-2672TM with 6% silane terminated rubber cured with the trifunctional cross-linker at

1600C for 16 hours and post-cured at 2600C for 8 hours.

* X1-2672TM neat cured with the tetrafunctional cross-linker at 1400 C for 16 hours and

post-cured at 2600 C for 8 hours.

* X1-2672TM with 6% vinyl terminated PDMS cured with the tetrafunctional cross-linker

at 140 0 C for 16 hours and post-cured at 260 0C for 8 hours.

* X1-2672TM with 6% silane terminated rubber cured with the tetrafunctional cross-linker

at 1400 C for 16 hours and post-cured at 2600C for 8 hours.

2.4 Nuclear Magnetic Resonance (NMR)

2 9Si solid state NMR was carried out at Dow Coming Corporation on the following samples

in order to establish the amount of reactive groups present after cure:

* X1-2672TM neat cured with trifunctional cross-linker at 1600 C for 16 hours and post-

cured at 2600 C for 8 hours.

* X1-2672TM with 9% vinyl terminated PDMS cured with the trifunctional cross-linker at

1600 C for 16 hours and post-cured at a temperature of 2600C for 8 hours.

* X1-2672 TM with 9% silane terminated rubber cured with the trifunctional cross-linker at

1600 C for 16 hours and post-cured at a temperature of 260oC for 8 hours.



2.5 Dynamic Mechanical Analysis (DMA).

The following samples were analyzed for their viscoelastic response under an oscillatory

tensile load[21] using a Seiko DMS200 Dynamic Mechanical Spectrometer. Each sample

placed in the instrument had average dimensions of 4 mm width, 0.7 mm thickness and a

gauge length of 15 mm. An oscillatory tensile stress was applied at a frequency of 5 Hertz

and an amplitude of 30 micron while undergoing a temperature ramp from -1500C to

+3000C at a rate of 20 C per minute. The following samples underwent DMA:

* X1-2672TM neat cured with the trifunctional cross-linker at 1600 C for 16 hours and post-

cured at 2600 C for 8 hours.

* X1-2672TM with 6 and 12% vinyl terminated PDMS, cured with the trifunctional cross-

linker at 160 0C for 16 hours and post-cured at 260 0C for 8 hours.

* X1-2672TM with 6 and 12% silane terminated PDMS, cured with the trifunctional cross-

linker at 1600 C for 16 hours and post-cured at 2600C for 8 hours.



Chapter 3

Results

3.1 Mechanical Testing

3.1.1 Effect of post-cure temperature and time for X1-2672TM castings with vinyl and

silane terminated rubbers.

For the castings that were post-cured at 2000 C for 4 hours, all the solutions from which they

were made were clear up to 9% rubber content. All the castings were transparent and

colorless after undergoing the first cure step at 1600C. After the post-cure at 200oC/4 hours

the castings were still transparent but slightly yellow, indicating some degradation of the

resin. The castings were flexible when tested by hand. Since these resins felt as if they had

not been fully post-cured, the post-cure temperature and time were increased to 2600C and 8

hours. The castings that were made with the increased post-cure temperature and time

were made from solutions which were clear and colorless up to 15% rubber content. After

the post-cure, the castings were still transparent but they were a darker yellow than those

post-cured at 200oC/4 hours and they were harder to bend by hand.

Three point bend testing and fracture toughness tests were used to measure the effect of

post-cure temperature and time on X1-2672TM castings. Figures 3.1-3.12 show the

mechanical properties and the variation of average values with rubber content of X1-2672TM

with 0,3,6, and 9% vinyl terminated PDMS post-cured at 200oC for 4 hours and those

samples post-cured at 2600 C for 8 hours. The values for an unpost-cured casting are also



included as the control and these values show that both post-cures produced a higher extent

of cure. The values for the unpost-cured sample are shown only in the graphs with the

samples containing vinyl terminated PDMS but these values can be compared with all post-

cured samples tested. Figures 3.13-3.24 show the comparison of mechanical properties and

the variation of average values with rubber content for X1-2672TM with 0,3,6, and 9% silane

terminated rubber. All samples were cured with the trifunctional cross-linker. The flexural

testing and fracture toughness data are presented in Appendices B-1 to B-12.
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Figure 3.1: The flexural modulus of X1-2672TM castings with vinyl terminated PDMS
(DPn=9), post-cured at 200oC/4 hours and 260 0 C/8 hours. All samples were cured with the
trifunctional cross-linker.
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Figure 3.2: Variation of the average tlexural modulus with rubber content for X1-2672TM
castings with vinyl terminated PDMS (DPn=9), post-cured at 200 0C/4 hours and 260 0C/8
hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.3: The flexural strength of X1-2672TM castings with vinyl terminated PDMS
(DPn=9), post-cured at 200oC/4 hours and 2600C/8 hours. All samples were cured with the
trifunctional cross-linker.

A vinyl/pstcrd 200

A vinyl/pstcrd 260

o rubber content

Figure 3.4: Variation of the average flexural strength with rubber content for X1-2672TM
castings with vinyl terminated PDMS (DPn=9), post-cured at 2000C /4 hours and 2600C /8
hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.5: The yield strain of X1-2672TM castings with vinyl terminated PDMS (DPn=9),
post-cured at 200 0C/4 hours and 260 0C/8 hours. All samples were cured with the
trifunctional cross-linker.
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Figure 3.6: Variation of the average yield strain with rubber content for X1-2672TM

castings with vinyl terminated PDMS (DPn=9), post-cured at 2000C /4 hours and 2600C/8
hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.7: Toughness (load-displacement integral) of X1-2672TM castings with vinyl
terminated PDMS (DPn=9), post-cured at 200 0C/4 hours and 260 0 C/8 hours. All samples
were cured with the trifunctional cross-linker.
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Figure 3.8: Variation of the average toughness (load-displacement integral) with rubber
content for X1-2672TM castings with vinyl terminated PDMS (DPn=9), post-cured at 200 0C/4
hours and 260 0C/8 hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.9: The fracture toughness (KIc) of X1-2672TM castings with vinyl terminated
PDMS (DPn=9), post-cured at 2000C/4 hours and 2600 C/8 hours. All samples were cured
with the trifunctional cross-linker.
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Figure 3.10: Variation of the average fracture toughness (KIc) with rubber content for X1-
2672TM castings with vinyl terminated PDMS (DPn=9), post-cured at 200 0C/4 hours and
260 0C/8 hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.11: The fracture energy (GIC) of X1-2672TM castings with vinyl terminated PDMS
(DPn=9), post-cured at 200oC/4 hours and 260 0C/8 hours. All samples were cured with the
trifunctional cross-linker.
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Figure 3.12: Variation of the average fracture energy (GIC) with rubber content for X1-
2672TM castings with vinyl terminated PDMS (DPn=9), post-cured at 200 0 C/4 hours and
260 0C/8 hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.13: The flexural modulus of X1-2672TM castings with silane terminated rubber
(DPn=4), post-cured at 200 0C/4 hours and 260oC/8 hours. All samples were cured with the
trifunctional cross-linker.
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Figure 3.14: Variation of the average flexural modulus with rubber content for X1-2672 TM

castings with silane terminated rubber (DPn=4), post-cured at 200 0C/4 hours and 2600C/8
hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.15: The flexural strength of X1-2672TM castings with silane terminated rubber
(DPn=4), post-cured at 200 0C/4 hours and 260oC/8 hours. All samples were cured with the
trifunctional cross-linker.
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Figure 3.16: Variation of the average flexural strength with rubber content for X1-2672TM

castings with silane terminated rubber (DPn=4), post-cured at 200 0C/4 hours and 260 0C/8
hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.17: The yield strain of X1-2672TM castings with silane terminated rubber (DPn=4),
post-cured at 200 0 C/4 hours and 260 0 C/8 hours. All samples were cured with the
trifunctional cross-linker.
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Figure 3.18: Variation of the average yield strain with rubber content for X1-2672TM
castings with silane terminated rubber (DPn=4), post-cured at 200 0C/4 hours and 260 0C/8
hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.19: The toughness (load-displacement integral) of X1-2672TM castings with silane
terminated rubber (DPn=4), post-cured at 200oC/4 hours and 260 0 C/8 hours. All samples
were cured with the trifunctional cross-linker.
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Figure 3.20: Variation of the average toughness (load-displacement integral) with rubber
content for X1-2672TM castings with silane terminated rubber (DPn=4), post-cured at 200 0C/4
hours and 260 0C/8 hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.21: The fracture toughness (KIc) of X1-2672TM castings with silane terminated
rubber (DPn=4), post-cured at 200 0C/4 hours and 260OC/8 hours. All samples were cured
with the trifunctional cross-linker.
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Figure 3.22: Variation of the average fracture toughness (KIC) with rubber content for X1-
2672TM castings with silane terminated rubber (DPn=4), post-cured at 2000C/4 hours and
260oC/8 hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.23: The fracture energy (GIC) of X1-2672TM castings with silane terminated rubber
(DPn=4), post-cured at 200 0C/4 hours and 260 0C/8 hours. All samples were cured with the
trifunctional cross-linker.
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Figure 3.24: Variation of the average fracture energy (GIc) with rubber content for X1-
2672TM castings with silane terminated rubber (DPn=4), post-cured at 2000 C/4 hours and
260 0C/8 hours. All samples were cured with the trifunctional cross-linker.
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3.1.2 Effect of rubber content on the flexural and fracture properties X1-2672TM with

vinyl and silane terminated rubber.

Three-point bend and fracture toughness testing of X1-2672TM with 0,3,6,9, 12 and 15% vinyl

terminated PDMS and 0,3,6,9, 12 and 15% silane terminated rubber, cured at 1600 C for 16

hours and post-cured at 2600 C for 8 hours with the trifunctional cross-linker, are shown in

Figures 3.25-3.48. The flexural and fracture toughness testing data are available in

Appendices B-1 to B-12.
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Figure 3.25: The flexural modulus of X1-2672TM castings with 0-15% vinyl terminated
PDMS (DPn=9), post-cured at 260oC/8 hours. All samples were cured with the trifunctional
cross-linker.
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Figure 3.26: Variation of the average flexural modulus with rubber content for X1-2672TM
castings with 0-15% vinyl terminated PDMS (DPn=9), post-cured at 260 0C/8 hours. All
samples were cured with the trifunctional cross-linker.
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Figure 3.27: The flexural strength of X1-2672TM castings with 0-15% vinyl terminated
PDMS (DPn=9), post-cured at 260oC/8 hours. All samples were cured with the trifunctional
cross-linker.
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Variation of the average flexural strength with rubber content for X1-2672TM
0-15% vinyl terminated PDMS (DPn=9), post-cured at 260oC/8 hours. All
cured with the trifunctional cross-linker.
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Figure 3.29: The yield strain of X1-2672TM castings with 0-15% vinyl terminated PDMS
(DPn=9), post-cured at 260 0C/8 hours. All samples were cured with the trifunctional cross-
linker.
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Variation of the average yield strain with rubber content for X1-2672TM
0-15% vinyl terminated PDMS (DPn=9), post-cured at 260 0C/8 hours. All
cured with the trifunctional cross-linker.
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Figure 3.31: The toughness (load-displacement integral) of X1-2672TM castings with 0-15%
vinyl terminated PDMS (DPn=9), post-cured at 260oC/8 hours. All samples were cured with
the trifunctional cross-linker.
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Figure 3.32: Variation of the average toughness (load-displacement integral) with rubber
content for X1-2672TM castings with 0-15% vinyl terminated PDMS (DPn=9), post-cured at
260 0 C/8 hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.33: The fracture toughness (KIC) of X1-2672TM castings with 0-15% vinyl
terminated PDMS (DPn=9), post-cured at 260oC/8 hours. All samples were cured with the
trifunctional cross-linker.
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Figure 3.34: Variation of the average fracture toughness (KIc) with rubber content for X1-
2672TM castings with 0-15% vinyl terminated PDMS (DPn=9), post-cured at 260 0C/8 hours.
All samples were cured with the trifunctional cross-linker.
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Figure 3.35: The fracture energy (GIc) of X1-2672TM castings with 0-15% vinyl terminated
PDMS (DPn=9), post-cured at 260oC/8 hours. All samples were cured with the trifunctional
cross-linker.
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Figure 3.36: Variation of the average fracture energy (GIC) with rubber content for X1-
2672TM castings with 0-15% vinyl terminated PDMS (DPn=9), post-cured at 260 0C/8 hours.
All samples were cured with the trifunctional cross-linker.
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Figure 3.37: The flexural modulus of X1-2672TM castings with 0-15% silane terminated
rubber (DPn=4), post-cured at 260 0C/8 hours. All samples were cured with the trifunctional
cross-linker.
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Figure 3.38: Variation of the average flexural modulus with rubber content for X1-2672TM
castings with 0-15% silane terminated rubber (DPn=4), post-cured at 260 0C/8 hours. All
samples were cured with the trifunctional cross-linker.
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Figure 3.39: The flexural strength of X1-2672TM castings with 0-15% silane terminated
rubber (DPn=4), post-cured at 260oC/8 hours. All samples were cured with the trifunctional
cross-linker.
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Figure 3.40: Variation of the average strength with rubber content for X1-2672TM castings
with 0-15% silane terminated rubber (DPn=4), post-cured at 260 0C/8 hours. All samples
were cured with the trifunctional cross-linker.
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Figure 3.41: The yield strain of X1-2672TM castings with 0-15% silane terminated rubber
(DPn=4), post-cured at 260 0C/8 hours. All samples were cured with the trifunctional cross-
linker.
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Figure 3.42: Variation of the average yield strain with rubber content for X1-2672TM
castings with 0-15% silane terminated rubber (DPn=4), post-cured at 260 0 C/8 hours. All
samples were cured with the trifunctional cross-linker.
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Figure 3.43: The toughness (load-displacement integral) of X1-2672TM castings with 0-15%
silane terminated rubber (DPn=4), post-cured at 260 0C/8 hours. All samples were cured
with the trifunctional cross-linker.
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Figure 3.44: Variation of the average toughness (load-displacement integral) with rubber
content for X1-2672TM castings with 0-15% silane terminated rubber (DPn=4), post-cured at
260 0C/8 hours. All samples were cured with the trifunctional cross-linker.
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Figure 3.45: The fracture toughness (KIc) of X1-2672TM castings with 0-15% silane
terminated rubber (DPn=4), post-cured at 260 0C/8 hours. All samples were cured with the
trifunctional cross-linker.
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Figure 3.46: Variation of the average fracture toughness (KIC) with rubber content for X1-
2672TM castings with 0-15% silane terminated rubber (DPn=4), post-cured at 260 0 C/8 hours.
All samples were cured with the trifunctional cross-linker.
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Figure 3.47: The fracture energy (GIc) of X1-2672TM castings with 0-15% silane terminated

rubber (DPn=4), post-cured at 260oC/8 hours. All samples were cured with the trifunctional
cross-linker.
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Figure 3.48: Variation of the average fracture energy (GIC) with rubber content for X1-
2672TM castings with 0-15% silane terminated rubber (DPn=4), post-cured at 2600C/8 hours.
All samples were cured with the trifunctional cross-linker.



3.1.3 Effect of cross-linker functionality on the flexural and fracture toughness properties

of X1-2672TM with vinyl and silane terminated rubber.

The results of three-point bend tests of X1-2672TM with 0,3,6 and 9% vinyl terminated PDMS

and 0,3,6 and 9% silane terminated rubber, cured at 160 0 C for 16 hours with the

trifunctional cross-linker and cured at 140oC for 16 hours with the tetrafunctional cross-

linker; both post-cured at 2600 C for 8 hours are shown in Figures 3.49-3.72. The flexural and

fracture toughness testing data are found in Appendices B-i to B-12.
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Figure 3.49: The flexural modulus of X1-2672TM castings with 0-9% vinyl terminated
PDMS (DPn=9), cured with tri and tetrafunctional cross-linkers. and post-cured at 260oC/8
hours.
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Figure 3.50: Variation of the average flexural modulus with rubber content for X1-2672TM
castings with 0-9% vinyl terminated PDMS (DPn=9), cured with tri and tetrafunctional
cross-linkers and post-cured at 260 0C/8 hours.
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Figure 3.51: The flexural strength of X1-2672TM castings with 0-9% vinyl terminated PDMS
(DPn=9), cured with tri and tetrafunctional cross-linkers and post-cured at 260 0 C/8 hours.
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Figure 3.52: Variation of the average flexural strength with rubber content for X1-2672TM
castings with 0-9% vinyl terminated PDMS (DPn=9), cured with tri and tetrafunctional
cross-linkers and post-cured at 260 0C/8 hours.
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Figure 3.53: The yield strain of X1-2672TM castings with 0-9% vinyl terminated PDMS
(DPn=9), cured with tri and tetrafunctional cross-linkers and post-cured at 260oC/8 hours.
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Figure 3.54: Variation of the average yield strain with rubber content for X1-2672TM
castings with 0-9% vinyl terminated PDMS (DPn=9), cured with tri and tetrafunctional
cross-linkers and post-cured at 260 0 C/8 hours.
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Figure 3.55 The toughness (load-displacement integral) of X1-2672TM castings with 0-9%
vinyl terminated PDMS (DPn=9), cured with tri and tetrafunctional cross-linkers and post-
cured at 260 0C/8 hours.
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Figure 3.56: Variation of the average toughness (load-displacement integral) with rubber
content for X1-2672TM castings with 0-9% vinyl terminated PDMS (DPn=9), cured with tri
and tetrafunctional cross-linkers and post-cured at 260 0C/8 hours..
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Figure 3.57: The fracture toughness (KIC) of X1-2672TM castings with 0-9% vinyl
terminated PDMS (DPn=9), cured with tri and tetrafunctional cross-linkers and post-cured
at 260 0C/8 hours.
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Figure 3.58: Variation of the average fracture toughness (Kic) with rubber content for X1-
2672TM castings with 0-9% vinyl terminated PDMS (DPn=9), cured with tri and
tetrafunctional cross-linkers and post-cured at 260 0C/8 hours.
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Figure 3.59: The fracture energy (GIc) of X1-2672TM castings with 0-9% vinyl terminated
PDMS (DPn=9), cured with tri and tetrafunctional cross-linkers and post-cured at 260oC/8
hours.
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Figure 3.60: Variation of the average fracture energy (GIC) with rubber content for X1-
2672TM castings with 0-9% vinyl terminated PDMS (DPn=9), cured with tri and
tetrafunctional cross-linkers post-cured at 260oC/8 hours.
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Figure 3.61: The flexural modulus of X1-2672TM castings with 0-9% silane terminated
rubber (DPn=4), cured with tri and tetrafunctional cross-linkers and post-cured at 260oC/8
hours.
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Figure 3.62: Variation of the average flexural modulus with rubber content for X1-2672TM
castings with 0-9% silane terminated rubber (DPn=4), cured with tri and tetrafunctional
cross-linkers and post-cured at 260oC/8 hours.
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Figure 3.63: The flexural strength of X1-2672TM castings with 0-9% silane terminated
rubber (DPn=4), cured with tri and tetrafunctional cross-linkers and post-cured 260 0C/8
hours.
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Figure 3.64: Variation of the average strength with rubber content for X1-2672TM castings
with 0-9% silane terminated rubber (DPn=4), cured with tri and tetrafunctional cross-linkers
and post-cured at 260 0C/8 hours.
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Figure 3.65: The yield strain of X1-2672TM castings with 0-9% silane terminated rubber
(DPn=4), cured with tri and tetrafunctional cross-linkers and post-cured at 260 0C/8 hours.
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Figure 3.66: Variation of the average yield strain with rubber content for X1-2672TM
castings with 0-9% silane terminated rubber (DPn=4), cured with tri and tetrafunctional
cross-linkers and post-cured at 260 0 C/8 hours.
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Figure 3.67: The toughness (load-displacement
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cured at 260 0C/8 hours.
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Figure 3.68: Variation of the average toughness (load-displacement integral) with rubber
content for X1-2672 TM castings with 0-9% silane terminated rubber (DPn=4), cured with tri
and tetrafunctional cross-linkers and post-cured at 260 0C/8 hours.
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Figure 3.69: The fracture toughnes
terminated rubber (DPn=4), cured wit
at 260 0C/8 hours.
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Figure 3.70: Variation of the average fracture toughness (KIc) with rubber content for X1-
2672TM castings with 0-9% silane terminated rubber (DPn=4), cured with tri and

tetrafunctional cross-linkers and post-cured at 260 0C/8 hours.
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Figure 3.71: The fracture energy (GIC) of X1-2672TM castings with 0-9% silane terminated
rubber (DPn=4), cured with tri and tetrafunctional cross-linkers and post-cured at 260oC/8
hno1irs
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Figure 3.72: Variation of the average fracture energy (GIc) with rubber content for X1-
2672TM castings with 0-9% silane terminated rubber (DPn=4), cured with tri and
tetrafunctional cross-linkers and post-cured at 260 0C/8 hours.
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3.2 Scanning Electron Microscopy (SEM).

Figures 3.73 -3.75 show SEM micrographs of the fracture surfaces of X1-2672TM with 0 and

6% vinyl and silane terminated rubber cured with the trifunctional cross-linker and Figures

3.76-3.78 show 0 and 6% vinyl and silane terminated rubbers cured with the tetrafunctional

cross-linker. All samples were cured at 1600 C or 1400 C for 16 hours and post-cured at 2600C

for 8 hours.



Figure 3.73: SEM micrographs at -1.3 kX magnification of X1-2672TM neat resin cured at

1600 C for 16 hours with the trifunctional cross-linker and post-cured at 260oC/8 hours.
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Figure 3.74: SEM micrographs at -1.3 kX magnification of X1-2672TM resin with 6% vinyl
terminated PDMS (DPn=9), cured at 160 0 C for 16 hours with the trifunctional cross-linker
and post-cured at 260oC/8 hours.
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Figure 3.75: SEM micrographs at -1.3 kX magnification of X1-2672TM resin with 6% silane

terminated rubber (DPn=4), cured at 160 0C for 16 hours with the trifunctional cross-linker

and post-cured at 260oC/8 hours.
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Figure 3.76: SEM micrographs at 1.3 kX magnification of X1-2672TM neat resin cured at

1400 C for 16 hours with the tetrafunctional cross-linker and post-cured at 260oC/8 hours.



Figure 3.77: SEM micrographs at 1.3 kX magnification of X1-2672TM resin with 6% vinyl
terminated PDMS (DPn=9), cured at 1400C for 16 hours with the tetrafunctional cross-linker
and post-cured at 260oC/8 hours.
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Figure 3.78: SEM micrographs at -1.3 kX magnification of X1-2672TM resin with 6% silane
terminated rubber (DPn=4), cured at 140oC for 16 hours with the tetrafunctional cross-linker
and post-cured at 260 0C/8 hours.
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3.3 Nuclear Magnetic Resonance (NMR)

Figure 3.79 - 3.81 shows 29 Si solid state NMR scan of X1-2672TM neat resin, X1-2672T" with

9% vinyl terminated PDMS and X1-2672T" with 9% silane terminated rubber respectively.
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Figure 3.79: 29 Si solid state NMR scan of X1-2672TM neat resin cured with the trifunctional
cross-linker and post-cured at 260 0C/8 hours.
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Figure 3.80: 2 9 Si solid state NMR scan of X1-2672TM resin with 9% vinyl terminated PDMS
(DPn=9), cured with the trifunctional cross-linker and post-cured at 260 0C/8 hours.
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Figure 3.81: 2 9 Si solid state NMR scan of X1-2672TM resin with 9% silane terminated
PDMS (DPn=4), cured with the trifunctional cross-linker and post-cured at 260 0C/8 hours.
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3.4 Dynamic Mechanical Analysis (DMA)

Each of Figures 3.82-3.83 show one DMA scan of the tan delta variations with temperature

for the following samples:

* X1-2672TM with 0,6 and 12% vinyl terminated PDMS (DPn=9), cured at 160 0C for 16

hours and post-cured at 260 0C for 8 hours with the trifunctional cross-linker.

* X1-2672TM with 0,6 and 12% silane terminated rubber (DPn=4), cured at 1600 C for 16

hours and post-cured at 2600 C for 6 hours with the trifunctional cross-linker.

The accompanying scans of the storage (E') and loss (E") moduli are shown in Appendices

C-1 to C-4.
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Chapter 4

Discussion

4.1 Mechanical Testing

4.1.1 Effect of Post-cure temperature and time on the mechanical properties of X1-2672TM

containing vinyl and silane terminated rubbers.

The increase in the post-cure temperature and time from 200 0C/4 hours to 260 0C/8 hours

resulted in an increase in the average flexural modulus and flexural strength for X1-2672TM

resin with 0,3,6, and 9% vinyl terminated PDMS. This indicated that the initial post-cure

conditions did not sufficiently cure the resin network. As a result, the castings cured at

260 0 C for 8 hours were stiffer - illustrated by higher moduli- and could also withstand

higher stresses before breakage, evident by the increase in average yield strength values.

The increase in stiffness as a result of the higher post-cure temperature and time was

accompanied by lower strains before yield shown in Figures 3.5 and 3.6. However it must be

noted that the average decrease in the strain with the change in the post-cure conditions

was not more than 1.5% and therefore not significant.

There was more of a decreasing trend in the toughness (energy to break), shown in Figures

3.7 and 3.8, when the post-cure temperature was increased to 260 0 C /8 hours, because these

stiffer castings underwent less deformation and required less energy to break than those

samples post-cured at 2000 C for 4 hours.



The fracture toughness values shown in Figures 3.9 and 3.10, did not change significantly

between the 200 0C/4 hour and 260 0C/8 hour post-cure conditions. For the castings post-

cured at 200 0 C/4 hours the average fracture toughness values were 0.321,0.333, 0.328 and

0.300 MPa-ml/2 for X1-2672TM with 0,3,6 and 9% vinyl terminated PDMS; and 0.296, 0.320,

0.325 and 0.368 MPa-ml/ 2 for the 0,3,6, and 9% vinyl rubber-containing castings post-cured

at 260oC/8 hours.

The fracture energy comparison and average trends shown in Figures 3.11 and 3.12 was an

amplification of the fracture toughness trend due to the squared relationship between the

fracture energy and fracture toughness. The average fracture energy demonstrated upward

trends from 100 to 143 N/m for the 2000C /4 hour post-cure and from 82 to 183 N/m for the

260 0C /8 hour post-cure between 0% and 9% vinyl terminated rubber content. The upward

trend of the fracture energy displayed by both sets of samples was not due to a significant

increase in the fracture toughness with increasing rubber content. It was caused by the

decrease in the modulus with increasing vinyl rubber content.

The silane samples post-cured at 200oC/ 4 hours and those post-cured at 260oC/ 8 hours

both demonstrated a decrease in the modulus with increasing rubber content. Figures 3.13

and 3.14 also show no significant variation in the modulus between the two different post-

cure conditions which indicates that the higher post-cure temperature and longer times did

not have much effect.

The yield stresses in Figures 3.15 and 3.16 show slight decreases with increasing rubber

content for the samples with silane terminated rubber post-cured under both conditions but

there is little difference between the two curves.



The average yield strains for the samples under both post-cure conditions increase with

increasing rubber content. This is shown in Figures 3.17 and 3.18. The difference between

the two curves is approximately 1%, which is not great.

The toughness data shown in Figures 3.19 and 3.20 are quite similar. In general there is an

increase in the energy to break with increasing rubber content but the effect of post-cure

temperature is small.

Figures 3.21 and 3.22, the samples post-cured at 2000 C /4 hours display an increase in the

fracture toughness from 0.321 to 0.44 MPa-ml/2 with increasing rubber content. The

samples post-cured at 2600 C /8 hours also show an increase in the fracture toughness and

the average values are slightly higher. The average varied from 0.296 to 0.482 MPa-ml /2

which is approximately a 25% increase. While the difference in the values for the two post-

cure conditions is not large, the silane terminated rubber toughened the resin much more

than the vinyl terminated rubber.

The increasing fracture toughness of the samples coupled with the moderate decrease in the

stiffness with increasing rubber content resulted in significant increases in the fracture

energy for the 200 0C/4 hour and the 260 0 C/8 hour samples: the fracture energy values are

shown in Figures 3.23 and 3.24. The average for the 2000 C /4 hour samples varied from

99.6 to 234 N/m for 0 to 9% silane terminated rubber. The values for the 260 0 C/8 hour

samples were higher generally, going from 82.3 N/m for the neat resin to 281.4 N/m for the

sample containing 9% silane terminated rubber. This is an increase in the crack

propagation resistance of approximately 3.5 times the neat resin average when 9% silane

terminated rubber is reacted into the resin. The sample containing 9% silane terminated

rubber post-cured at 200 0 C/4 hours displayed an increase of approximately 2 times the neat

resin value.



The trends demonstrated by the samples containing both types of rubber under both post-

cure conditions show the silane terminated rubber is more effective in toughening the resin

matrix than the vinyl terminated. The change in the post-cure conditions did not result in

significant changes for most of the mechanical properties particularly in those samples

containing the vinyl terminated rubber. For the silane terminated rubber it was clear that

the increase in the post-cure temperature and time resulted in higher values of fracture

toughness and energy. It is for this reason that the post-cure temperature and time of 2600 C

and 8 hours were used for the following experiments in which the effect of rubber content

between 0 and 15% for both rubber additives was evaluated. The results of the flexural and

fracture toughness testing of these samples are shown in Figures 3.25-3.48.



4.1.2 Effect of rubber content on the mechanical properties of X1-2672TM resin

containing 0-15% vinyl and silane terminated rubbers, post-cured at 2600C for 8

hours.

Figures 3.25 and 3.26 show the variation of the flexural modulus with vinyl terminated

rubber content. The stiffness of the castings decreased with increasing rubber content. The

average stiffness varied from 156.4 ksi for the neat resin sample to 79.6 ksi for the sample

containing 15% vinyl terminated rubber. This is a 50% reduction in the modulus.

As seen in Figures 3.27 and 3.28, the yield strength also decreased by about 40% with

increasing rubber content, from 3645 psi for the neat resin to 2191 psi for the samples

containing 15% rubber.

The yield strains, shown in Figures 3.29 and 3.30, increased with rubber content as the

rubber produced a more deformable casting. The strains varied from 3.4% for the neat resin

to 5% for the resin casting containing 15% rubber.

For the toughness values shown in Figures 3.31 and 3.32 there is so much scatter that a

trend is not evident. The average values for the toughness were 8.28, 11.04, 10.6, 12.6, 15.6

and 15.4 lb-in/in3 for the samples containing 0,3,6,9,12, and 15% vinyl terminated PDMS.

The fracture toughness values are shown in Figures 3.33 and 3.34. There is a moderately

increasing trend with increasing rubber content.

Figures 3.35 and 3.36, the fracture energy show more of an increase, reflecting the decrease

in modulus. It seems that the vinyl terminated rubber did not toughen the resin very

much.



Figures 3.37 and 3.38 show the variation of the modulus with silane rubber content.

Similar to the vinyl terminated PDMS, the silane terminated rubber showed a 50% decrease

in the modulus, but their values were higher then the vinyl terminated ones.

Figures 3.39 and 3.40, a 20% decrease in the yield stress is seen. In comparison to the

samples containing the vinyl terminated PDMS, the silane samples had higher yield stress

values and a smaller decrease as the rubber content increased.

Figures 3.41 and 3.42 show the yield strain variation with silane rubber content. It increases

substantially, more so than with the vinyl terminated rubber, despite the higher DPn in the

latter. This suggests the silane rubber was better able to penetrate the resin network than

the vinyl terminated PDMS.

The variation of the toughness with rubber content is shown in Figures 3.43 and 3.44. For

the silane samples there was an increase in the toughness with increasing rubber content.

In Figures 3.45 and 3.46, the silane samples show an increase in the average fracture

toughness. The average values rise from 0.296 to 0.502 MPa-ml/ 2 . The numbers indicate

that the silane rubber toughens about twice as effectively as the vinyl.

The fracture energy is shown in Figures 3.47 and 3.48. In comparison to the vinyl

terminated samples, the silane terminated rubber produced much higher fracture energy

values. The higher values indicate the silane rubber is better able to affect the network than

the vinyl terminated rubber. Possibly this is because the silane rubber can react directly with

the vinyl groups on the resin. The vinyl terminated rubber only can react with the silane



groups on the cross-linker which may decrease the likelihood of penetrating the resin

network.

4.1.3 Effect of cross-linker functionality on the mechanical properties of X1-2672TM resin

containing vinyl and silane terminated rubbers, post-cured at 2600C for 8 hours.

Figures 3.49 to 3.60 show the comparison between X1-2672TM samples containing 0-9% vinyl

terminated PDMS cured with tri and tetra-functional cross-linkers. Figures 3.49 and 3.50

show the variation of the modulus. The modulus increases when the functionality is

increased from 3 to 4, however as the rubber content increases the values for the two cross-

linkers converge.

The yield stress values are shown in Figures 3.51 and 3.52. The average yield strength

values for the samples cured with the tetrafunctional cross-linker displayed a larger

decrease than the samples cured with the tri-functional cross-linker, but generally the

difference is small.

The yield strain values are shown in Figures 3.53 and 3.54. They decreased with the increase

in the cross-linker functionality. For those samples cured with the trifunctional cross-

linker, the yield strains increased from 3.4 to 4.7% between the neat resin and the samples

containing 6% vinyl terminated PDMS, followed by a decrease to 4% strain for the 9%

sample. The samples that were cured with the tetrafunctional cross-linker displayed lower

yield strains, on average, due to the increase in the cross-link density of the resin network,

but there was little variation with increasing rubber content. The average yield strains for

the samples cured with the tetrafunctional cross-linker were 3.1,3.1,2.5 and 3.5% elongation

for the neat resin, 3, 6, and 9% vinyl terminated rubber. It was expected that the strains



should have increased with increasing rubber content and the reason for not doing so is

unclear.

The energy to break values are shown in Figures 3.55 and 3.56. Again, it is not understood

why the peak exists in one curve and the decrease is present in the other. Possibly internal

defects were present in the samples but this is simply conjecture.

Figures 3.57 and 3.58 show the comparison of the fracture toughness. The samples cured

with the trifunctional cross-linker, are somewhat higher than the tetrafunctional ones and

both increase with increasing rubber content. The data are consistent with expectations.

The fracture energy values are shown in Figures 3.59 and 3.60. Both sets of samples show

an increase with increased rubber content. The values for the samples with the

tetrafunctional cross-linker are lower than with the trifunctional one. The increase shows

an improved ability to resist crack propagation but the values are still low compared to

epoxy resins, which typically are in the range of 400 N/m.

Figures 3.61 and 3.62 show the flexural moduli for X1-2672TM containing silane terminated

rubber, cured with trifunctional and tetrafunctional cross-linkers. It is seen that the values

are lower for the samples cured with the trifunctional cross-linker, which is consistent with

a higher cross-link density in the tetra-functional system. Also the modulus values for the

silane rubber are higher the for the vinyl one.

The yield stress is presented in Figures 3.63 and 3.64. It decreases with rubber content and

there is not much effect of the cross-linker. These samples had higher yield stresses than

the samples containing the vinyl terminated PDMS.



The yield strain values in Figures 3.65 and 3.66 show higher increases rubber content for the

samples cured with the trifunctional cross-linker. This is consistent with the more highly

cross-linked structure to be expected with the tetrafunctional material.

The work to break values in Figures 3.67 and 3.68 are quite interesting. The trifunctional

cross-linker produces a more open structure, more responsive to rubber flexibilization. In

contrast, the other system is remarkably unresponsive to rubber additions; apparently it is

too closed to benefit from them.

The fracture toughness values, shown in Figures 3.69 and 3.70 contradict this. Both samples

increase with rubber content and the trifunctional cross-linker has the higher average

values. Perhaps this parameter is a more sensitive indicator of network density than many

of the others. Such would be inferred from Figures 3.71 and 3.72 where the crack resistance

increases strongly with rubber content, and in a consistent manner.

The results for the samples with vinyl and silane terminated rubber cured with both cross-

linker types showed that, although samples cured with the tetrafunctional cross-linker were

stiffer, the trifunctionsl cross-linker was better able to produce a network which is stiff but

not as brittle. The stiffness for the samples containing vinyl terminated PDMS increased by

3-15% with an increase in the cross-linker functionality from 3 to 4; while in the samples

with the silane terminated rubber, the moduli increased 12-15% by increasing the cross-

linker functionality from 3 to 4. In summary, the tetrafunctional cross-linker produced a

lower resistance to crack initiation and propagation which could not be compensated with

rubber modification up to 9% content.



4.2 Scanning Electron Microscopy (SEM)

Following the mechanical testing, all the samples underwent Scanning Electron Microscopy

(SEM) to evaluate the differences in the fracture surfaces between the X1-2672TM neat resin

and the rubber modified samples. Figures 3.73-3.75 show micrographs of 0 and 6% rubber

modified samples cured with the trifunctional cross-linker at 1600C for 16 hours and post-

cured at 2600C for 8 hours.

The neat resin sample showed parallel cracks on the fracture surface, some of which

bifurcated in the notch direction. In comparison, the sample with 6% vinyl terminated

PDMS shown in Figure 3.74 and with 6% silane terminated rubber shown in Figure 3.75,

there are no significant differences between them.

It was expected that with rubber modification, there would be changes in the failure

mechanism, observable by SEM. Examples of such changes include the development of

localized regions of plastic flow (plastic zone development), or presence of voids due to

possible rubber cavitation. However, there was no evidence of plasticity of the matrix. With

the addition of either rubber type in the resin matrix, the mode of failure was still brittle.

Figures 3.76-3.78 show the neat resin and 6% rubber modified samples cured with the

tetrafunctional cross-linker. From the mechanical testing results it was shown that these

matrices were more brittle than those cured with the trifunctional one. It was observed

from Figure 3.76 that the neat resin cured with tetrafunctional cross-linker fractured in a

brittle manner. The cracks are also oriented parallel to each other and show bifurcation in

the notch direction.



The fracture surface of this sample looked no different from the neat resin one cured with

the trifunctional cross-linker. For those samples modified with 6% vinyl and silane

terminated rubbers in Figures 3.77 and 3.78 respectively, there was no change in the fracture

mode. The fracture was still brittle and the surfaces appeared similar to those cured with

the trifunctional cross-linker.

From the mechanical testing results, it was indicated that the rubbers - particularly the

silane terminated rubbers - produced changes in the fracture toughness and fracture energy

values. However these changes did not change the failure mode from a brittle to ductile.

There may have been other changes in the mechanism of interaction between the rubber

and the crack tip, however it appears that a tool higher in resolution than SEM may be

necessary to make such observations.



4.3 Nuclear Magnetic Resonance (NMR)

2 9 Si solid state NMR was carried out on X1-2672TM neat, X1-2672TM with 9% vinyl

terminated PDMS and X1-2672TM with 9% silane terminated rubber to quantify the

reactivity of the resin with the cross-linker and rubbers. Figure 3.79 shows that unreacted

vinyl groups (ViMe2Si) are in the resin network at a chemical shift of 10 ppm. Unreacted

vinyl groups were also detected in the samples modified with 9% vinyl and 9% silane

terminated rubbers. This is shown in Figures 3.80 and 3.81 respectively.

These scans indicate that the resin was not fully reacted with the cross-linker nor was it

fully reacted with the rubbers. This may be the reason that the samples modified with the

vinyl terminated PDMS showed little variation of the fracture toughness with rubber

content.

The silane rubber modified samples show an increase of fracture toughness with increasing

rubber content despite the significant quantity of unreacted vinyl groups on the resin. This

suggests that the silane rubber reacted with some of the vinyl groups in the resin, more so

than the vinyl terminated PDMS. This is shown by the presence of a SiCH2CH2 peak ( the

hydrosilylation bond) at a chemical shift of --8 ppm in Figure 3.80.

It was not certain why there were large quantities of unreacted vinyl groups. Possible

reasons include side reactions in the system, such as the hydrolysis of the silane groups on

the cross-linker by water introduced in the system by the platinum catalyst solution. The

platinum catalyst in isopropanol is very hygroscopic and even though degassing was carried

out on the system after addition of the platinum catalyst, the amount of solvent removed

was not necessarily complete.



Hydrolysis of the silane groups on the cross-linker is also favored at elevated temperature

in the presence of oxygen which is the condition of cure in an air oven. The hydrolysis of

the cross-linker would result in the formation of silanol which in turn can react with itself

further to form Si-O-Si bonds. This may be the peak designated "D" on the NMR scan ("D"

refers to O-Si-O groups ) at a chemical shift of -25 ppm in Figures 3.80 and 3.81. It is

uncertain why the "D" peak was not present in the neat resin scan.
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44 Dynamic Mechanical Analysis (DMA)

DMA was another tool used to observe the effect of rubber modification. Figure 3.82 shows

the variation of tan delta with temperature at a rate of 20 C /min and a frequency of 5 Hz for

X1-2672TM with 0,6 and 12% vinyl terminated PDMS. These runs show that the neat resin

has two characteristic transitions: an alpha (a) transition at about +630C and a beta (3)

transition at approximately -500C. The high temperature peak has a width at half

maximum over a 110 degree range and the low temperature peak has a width at half

-maximum over a 100 degree range. Both peaks are associated with the phenyl T
Ph

transition.
0 -Si-O

It was observed that the addition of 6% vinyl terminated PDMS caused a slight narrowing

of the a tan delta peak and a decrease in the level of the peak to 0.1. A broadening of the 0

tan delta peak at a level of 0.06 is also shown. Adding 12% vinyl rubber caused further

narrowing of the a tan delta peak to a width at half-maximum over a temperature range of

75 degrees and a more broad P peak over a range of 150 degrees.

In general, the narrowing of tan delta peaks indicates an increase of phase separation, so the

narrowing of the a resin peak was possibly due to segregation of unreacted resin instead of

well linked, dispersed chains. The increased broadening of the 0 peak over lower

temperatures with increasing vinyl rubber content was probably due to the increased

quantity of PDMS which has a glass transition at -1250 C.

The increased rubber content should typically produce increased flexibility of the resin

network shown by increased height of the tan delta peak. This trend was not present and

this was probably involved the extent of reaction between the vinyl groups in the
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resin, and the cross-linker and rubber. Due to this unreactivity, no conclusions can be

derived from the tan delta peaks until reproducible DMA runs of each sample are obtained.

Figure 3.83 show the variation of tan delta with temperature at a rate of 20 C /minute and a

frequency of 5 Hz for X1-2672TM with 0,6 and 12% silane terminated rubber cured with

trifunctional cross-linker. The incorporation of 6% silane terminated rubber caused the

narrowing of the a peak; and the formation of a small low temperature peak at about -116oC

- in addition to the -500C resin 0 peak. There was also another high temperature peak at

+2500C.

The addition of 12% silane terminated rubber resulted in three well defined peaks: a more

narrow a resin peak, the 0 resin peak at about -500 C and a prominent high temperature

peak at about 1800C. The narrowing of the a peak was possibly due to the increased

formation of phase separated domains from the reaction of the silane terminated rubber

with some of the resin. The development of the very high temperature peak was probably

due to a glass transition of the Si-C bond, formed from the reaction between the silane

rubber and the vinyl groups.

In general, it was observed that the silane terminated rubber caused greater changes in the

transitions than the vinyl terminated rubber.

4.5 Discussion of Experimental Error

For the processing of the castings the source experimental error was not being able to

accurately quantify the initial and final amount of solvents in each casting. The solvents

were toluene from the resin solution, and isopropanol and water from the hygroscopic

hexachloroplatinic acid solution. The amount of solvent removed varied between 3 -10
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grams for each casting processed. This variation could have caused differences in the extent

of cure particularly since there was the possibility of side reactions dominating the

hydrosilylation cure .

Most of the analyses was the mechanical testing in which 6 samples were to be tested from

each casting. However due to difficulty of machining the samples, the number of samples

for some castings fell short of this number. It was also recommended that after machining,

the edges of the mechanical testing samples should be polished - especially for the fracture

toughness evaluations which are sensitive to the presence of laws. However at the very

beginning, samples were not polished - this was quickly rectified but the results of

unpolished samples were still used.

For the DMA, reproducible scans have to be carried out to determine the extent of

experimental error for this apparatus.

To the best of our knowledge, the other errors from the other measurements (e.g.

dimensional measurements and oven temperature control during cure) were negligible.
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Chapter 5

Conclusions and Recommendations

A number of deductions can be made about how to improve the integrity of rubber

modified X1-2672TM resin.

The mechanical testing data indicated that the silane terminated rubber had more of an

effect on the resin than the vinyl terminated. This was evident in the increases in the

fracture toughness and fracture energies. The vinyl terminated PDMS caused little

variation of the fracture toughness, but did cause a greater decrease in the stiffness with

increasing rubber content than the silane rubber.

The differences in mechanical properties between the two rubbers could be due to a number

of factors including a difference in reaction with the resin matrix i.e. chemical functionality,

and a difference in the degrees of polymerization.

The NMR scans also show that the resin was not fully reacting with the trifunctional cross-

linker and the rubbers. The diminished reaction between the resin and rubber may explain

the absence of effects on the matrix by the vinyl terminated PDMS. However the silane

terminated rubber additive, despite the presence of unreacted resin, appears to react with

the resin to a greater extent than the vinyl terminated one.
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The DMA data suggest the vinyl terminated PDMS may have had little effect on the matrix,

despite the narrowing of the tan delta peaks with increasing rubber content. There was no

separate rubber peak; only the broadening of the low temperature resin peak. The data also

show that the silane terminated rubber had a greater effect on the resin by the development

of a prominent high temperature loss peak.

Neither rubber changed the mechanism of fracture from brittle to ductile; the brittle

character of the resin persisted.

Recommendations to improve the effects of the rubber modification include:

* the promotion of the reactivity of the resin by increasing the concentrations of cross-

linker and/or platinum catalyst.

* establishing if the platinum catalyst may be the source of side reactions to the

hydrosilylation cure due to its hygroscopic nature.

* curing the castings under nitrogen instead of air to reduce the side reactions of the cross-

linker.

* evaluating the effect of chemical functionality and degrees of polymerization of the

rubber additive.

* continuing to use DMA to analyze the effects of rubbers on the resin.

* using other tools to elucidate the morphology and fracture surfaces of the castings.
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X1-2672 (75% soln in toluene)

Hexachloro latinic Acid
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Figure A-1: Formulations for X1-2672TM castings with the trifunctional cross-linker and
vinyl terminated PDMS (DPn=9).
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X1-2672 (75% soln in toluene) 68 grams I
I I

11.62 g

10.43g

9.25 g

8.04 g

6.87 g

5.68 g

Figure A-2: Formulations for X1-2672TM castings with the trifunctional cross-linker and
1,1,3,3,5,5,7,7 octamethyltetrasiloxane (DPn=4).
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Figure A-3: Formulations for X1-2672TM castings with the tetrafunctional cross-linker and
vinyl terminated PDMS (DPn=9).
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X1-2672 (75% soln in 68 grams

toluerte)

Hexachloro latinic Acid 1.51 ml
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Figure A-4: Formulations for X1-2672TM castings with the tetrafunctional cross-linker and
1,1,3,3,5,5,7,7 octamethyltetrasiloxane (DPn=4).
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1.5

1.0

1.0

1.0

1.0

16 hour cure

room temp. - 100

100-110

110 - 120

120-135

135-140

140

Figure A-5: The temperature ramp used to achieve minimal cracking for X1-2672TM
castings cured with the tetrafunctional cross-linker.
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Xl-2612 neat/ unpost<Ul'ed Yield StreIa <psi) YIeld stnin(in/in) Modulus (ksi) Toughness (inIb/in3
3905 0.0592 1'2.4 17.12
3814 0.0699 109 19.87
3283 0.0485 127.4 11.55
3363 0.0Sf9 122.8 13.73
3S&S 0.0539 132.4 13.93
3190 0.0S94 115.2 14.37_ .. ,

Xl-2612 neat/postcured 200 Yield Stress (psi) Yield strain(in/in) Modulus (ksi) Toughness (inlb/in3
4407 O.osen 154.9 15.36
3559 0.005 137 11.44
3930 0.0461 152.5 12.76
3981 0.0483 153.7 13.56
4116 0.0511 160.9 15.31
3855 0.0522 139.5 14.26

••ltl!&l1.~.&~111
Xl·2612/30/0 vinyl/postcured 200 Yield Stress (psi) Yield stain(in/in) Modulus (ksi) Toughness (inlb/in3

3246 0.001 123.2 10.81
3427 0.0519 121.1 12.61
3827 0.063 127.6 17.63
3106 0.0525 101.4 11.22
3554 0.061 113 15.53

i 3937 0.0734 117.8 21.34

1r.lfll~111.llrl(111111;1;llI111!111'\[;_.1••I~111'lil.
Xl.2612/6% vinyl/postcured 200 Yield Stress (psi) ,Yield strain(in/in) Modulus (ksi) Toughness (inlb/in3

2952 0.0476 112.4 9.993
2920 0.05351 99.44 11.07
2954 0.05121 105.6 12.53
3293 0.05651 116.61 13.49
31501 0.05261 110 11.73
3025 0.05241 113.41 11.31

T .l

.IJ'lll111\iiiili1;llt["lt[lr;il111ill!I{lllillt'1.~.'J~"1Ili~i!ilii.
Xl·2612/90/0 vinyl/postcured 200 Yield Stress (psi) Yield strain(in/in) IModulus (ksi) Toughness (inlb/in3

2632 0.05171 95.87 9.712
25111 0.05151 89.76 9.13
26331 0.0539 94.561 10.19

Figure B-1: Data from the flexural testing of XI-2672™ with vinyl terminated PDMS
(DPn=9) cured with the trifunctional cross-linker at 160oC/16 hours and post-eured at

200oC/4 hours.
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X1-2672 neat/postcured 260 Yield Stress (psi) Yield strain(in/in) Modulus (lcsi) Toughness (inlb/in3
3610 0.(82 110.1 7.,
3725 0.0322 167.2 7.975
3494 0.0331 136.7 7.525
3691 0.0382 151.5 9.76'

X1-2672/30/0 vinyl/postcured 260 Yield Stress (psi) Yield strain(in/in) Modulus (lcsi) Toughness (inlb/in3
3687 0.0352 161 8.923
3526 0.008 142.8 10.55
407S 0.0487 144.6 14.1
3427 0.0445 120.7 10.57

Xl-2672/60/0 vinyl/postcured 260 Yield Stress (psi) Yield strain(in/in) Modulus (lcsi) Toughness (inlb/in3
3334 0.0467 115.1 10.89
3142 0.0414 121.9 8.99
3455 0.0503 131.1 12.68
3226 0.0492 114.3 11.29
3265 0.0476 122.8 11.165

X1-2672/9% vinyl/postcured 260 Yield Stress (psi) Yield strain(in/in) Modulus (lcsi) Toughness (inlb/in3

2749 0.0491 104.3 9.669
1997 0.028 89.3 3.638
3012 0.0457 119.5 9.892
2642 0.0366 116.5 6.711

Figure B-2: Data from the flexural testing of Xl-2672™ with vinyl terminated PDMS
(DPn=9) cured with the trifunctional cross-linker at 160oC/16 hours and post-cured at 2600 C
/8 hours.
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2672nt/tra/ d260 Yd. Stra() Yld. Strn(in/In) YVs Mod(s) Tghns(inlb/in3)
4199 0.m5s 180 9306
3816 0.0282 191.1 7.198
3964 0.035 168.9 8.818
3722 0.029 1773 7.157

2672/3%Vi/tetra Yld. StWr(in/ln) _Ynp Mod() Tghns(inlb/in3)
4094 0.0456 146.9 12.83

3259 0.0294 155.9 6.37
2913 0.0234 160.8 4318

2901 0.0239 141.7 4268

Figure B-3: Data from the flexural testing of X1-2672TM with vinyl terminated PDMS
(DPn=9) cured with the tetrafunctional cross-linker at 1400C/16 hours and post-cured at
260oC/8 hours.
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2672/6%Vi/tetra Yld. YSd) Yld. Strn(in/in) Yns Mod(ks) Tghns(inlb/in3)
2763 0.0265 140.7 4.765
2771 0.0282 1292 5.044
1791 0.0168 117.1 1.794
3058 0.0299 143.2 6.103
2679 0.0242 143.6 4.079

2672/9%Vi/tetra Yld. Strsssi) Yld. Strn(in/in) Yngs Mod. (ksi) Tghns(inlb/in3)
114100 0.0345 114.1 6.214

107300 0.03311 1073 5.579
109600 0.03021 109.6 4.685
115100 0.03481 115.1 6.381
109200 0.03911 109.2 7.37

111200 0.041 111.2 7.857

• #!:...!!..•:.::`.::....:.`:.iii•::`:• :`:•••..::: i•.!..:.-:.:-.•,• ~ii.:. • • :•• ....-:",.·•<.i °•::: •!-:..:.':::-.-:i•!i :•:i~Ei~ i i!:::•~i.'



I2672ntIpstcTOLLU I uLL3U .

3%vi/pstrd200 uu _o _ ._

0.335 139 0.792
0318 125 0.713
0.33 135 0.77

0.348 150 0.856
n.•l4 147 0.838

6%vi/pstcrd20 U.MS w1o.000
0.317 133 0.759
0.325 139 0.796

Sample K1C(MPa.m.5) G1C(N/m) G1C(lb/in)

9%vi/pstcrd200 0.3 228 13
0.272 115 0.658
0.306 146 0.832
0.262 107 0.61
0.294 134 0.768

Figure B-4: Data from the fracture toughness testing of X1-2672TM with vinyl terminated
PDMS (DPn=9) cured with the trifunctional cross-linker at 2600C/16 hours and post-cured
at 200 0 C / 4 hours.
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Sample KIC GIC(N/m) GI1COb/in)
2672nt/napnsteure 0361 151 0.85

I I waial 1191 0.6771



13%vi/pstcrd260 1 0.2891 851 0.4 4A
I 0321 10431 0.593
I 03151 101.21 0.576
I n'ad 121-71 0-6921

6%vi/pstcrd260 0329 129.5 0.737
0.342 140.2 0.798
0315 118.8 0.676

0312 116.9 0.665

0.3281 128.7 0.732
i: .. -... ..... .. ......- ..-.- .... .. .. .

9%vi/pstcrd260 0.38 195 1.11
0.354 169.5 0.964
0.364 1793 1.02

0374 188.7_1.07.·;;,.;.·:.s ~·:-----------.~

Figure B-5: Data from the fracture toughness testing of X1-2672TM with vinyl terminated
PDMS (DPn=9) cured with the trifunctional cross-linker at 160 0 C/16 hours and post-cured

at 2600C / 8 hours.

117

Sample K1C(MPa.m.5) G1C(N/m) G1C(b/in)
2672nt/pstcrd260 0.261 632 036

0.256 60.6 0.345
0.314 91.4 0.52

0312 90.1 0.513

i a i i ----i
i i i I ----I



ISampe IK1C(MPaIm) G1C(N/m) IGlCdb/in)
2672nt/tetra 0.265 56.8 0324

i 0.2661 57.11 0326
I 0A77I MA" 0-4951

I I U.2151 44.51 U.LZ4l

6% Vi/tetra 0.281 84.9 0.485
0.305 100.2 0.572
0.282 85.4 0.488
0.259 72 0.411
0.417 187 1.07
n 921 fR 7 A

v7o Vi/ etra 0.285 105.7 U.0U
0.282 104.1 0.595
0373 182 1.04
0.329 141.1 0.806
0.356 165.2 0.943
0326 138.7 0.792

fZZZaV *1 :~;·;;·tz:. ... ..... v

Figure B-6: Data from the fracture toughness testing of X1-2672TM with vinyl terminated
PDMS (DPn=9) cured with the tetrafunctional cross-linker at 140oC/16 hours and post-cured
at 2600 C / 8 hours.
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X1-2672/3% silae/postcred 200 Yield Stress (psi) Yield strain (in/in) Yng'sMod(ksi) Tghns(inlb/in3)
4173 0.0535 155.9 16.31
4072 0.0497 148.9 14.58
•'•7 _ fm1 1 IR RrR

Figure B-7: Data from the flexural testing of X1-2672TM with silane terminated rubber
(DPn=4) cured with the trifunctional cross-linker at 160oC/16 hours and post-cured at
200oC/4 hours.
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X1-2672 naMt/poacurd 200 YIeld Str ( Yd strain (n/in) Yng'sMod(ksi) Thns(nb/n3)
4407 0.050 154.9 15.36
3559 00455 137 11.
3930 0.0461 152.5 12.76
3981 00483 153.7 13.56
4116 0.0511 160.9 1531
3855 0.0522 139.5 14.26

X1-2672/6% smilam/postcured 200 Yield Stnes (psi) Yield strain (In/in) Yng'sMod(ksi) Tghns(inlb/in3)
3518 0.04 149.2 9.879
3327 0.0295 158.9 6.537
3424 0.0382 149.9 9216
3320 0.0378 132.4 8.483

==========:..... ... .• .::::...<.•.•. • :::: ..•:.:::::: . .....:. : ..:.....

X1-2672/9% silane/potcured 200 Yield Stress (psi) Yield strain (in/in) Yng'sMod(ksi) Tghns(inlb/in3)
3401 0.0462 132.81 11.37
3904 0.0842 118.3 25.84
3812 0.0898 116.1 27.32
3329 0.0516 120.5 12.34
3322 00621 1132 15.38
3207 0.0471 121 10.9

........... .. : ...................



Figure B-8: Data from the flexural testing of X1-2672TM with silane terminated rubber

(DPn=4) cured with the trifunctional cross-linker at 160oC/16 hours and post-cured at

260 0C/8 hours.
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X1-2672 rnret/era~tntl Yield Stres (i) Yield strhn (in/in) Ynpg Mod(k) Tgms(nlb/ln3)
4199 0.0s25 10 9.30
3816 04261 191.1 7.198

3976 0M.os 16&.9 &.818

3722 0om9 1773 7.15

X1-2672/3%lne/tetrunc Yield Streeldld strain (in/in) Y sPMod(kal) TgIms(inlb/in3)
3159 0.0821 143.4 6837
3979 o0.004 1575 10.82
3300 0.168 169.9 5.782
3473 0.081 165.2 7.257

3243 0.0174 159. 5.829

Figure B-9: Data from the flexural testing of X1-2672TM with silane terminated rubber
(DPn=4) cured with the tetrafunctional cross-linker at 140oC/16 hours and post-cured at
2600 C / 8 hours .

121

X1-2672/6%elane/tetrafunctni Yield Strss (psi) Yield strain (In/in) Yns Mod(ksi)  Tgns(inlb/in3)
3017 0.193 142.2 5.913
3608 0.051 157.4 8564
3014 0.195 146.9 5.918
3040 0.0294 152.8 5.888
2938 0.0279 1502 5.447

X1-2672/9%lane/tetrafunctnlYeldStres Yield Stress si) Yield strain (in/in) Yngs Mod(ksi) Tgns(inlb/in3)
3103 0.0827 153.1 6.884
3277 0.0432 129.9 9.875
2997 0.0987 126.7 7.93
2795 0.0809 134.9 5.907
3220 0.0408 131.8 9.081

.. "..'......• •: :.:' ' ......... ·iii
_01_ W_



Sample K1C(MPa-m^1/2) G1C(N/m) GI1C(b/in)
X1-2672 neat/ pstcrd200 0.302 88.65 0.506

0314 95.61 0.546
0.3251 102.05 0.583
I nAn 111 Q n A4Q

S0.3861 137.131 0.783
1 0371 126.491 0.722

0.395 143.28s 0.8181

6%silane/pstcrd200 0.412 166.75 0.952
0.383 144.36 0.824

0.445 194.88 1.113

0.412 167.09 0.954
0.481 227.41 1.299

0.383 144.28 0.824
.: .....

9%silane/pstcrd200 0.438 230.91 1.319
0.401 194.33 1.110
0.469 265.14 1.514
0.452 245.81 1.404

rr~rr~rr=!rrrrr"~'ft +fr~''

Figure B-10: Data from the fracture toughness testing of X1-2672TM with silane terminated

rubber (DPn=4) cured with the trifunctional cross-linker at 160oC/16 hours and post-cured

at 2000C / 4 hours.
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I 03941 145.10I U.8281

6%silane/pstcrd260 0.449 275.73 1.575
0.406 225.64 1.289
0.404 224.02 1.279

0.473 270.78 1.546

0.526 334.29 1.909
0.446 241.02 1.376
0.478 276.77 1.581

Figure B-11: Data from the fracture toughness testing of X1-2672TM with silane terminated
rubber (DPn=4) cured with the trifunctional cross-linker at 160oC/16 hours and post-cured
at 260 0C/8 hours.
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Sample K1C(MPa-mA^/2) G1C(N/m) G1C(b/in)
Xl-2672 neat pstcrd260 0.261 63.20 0.361

0.256 60.61 0.346
0.314 91.36 0.522
0312 90.05 0.514

I All A1 )4.1 I7 1 tti



ISample IKIC(MPeamA1/2) IG1C(N/m) jG1C(lb/in)
X1-2672neat/tetrafunctnl 0.265 56.80 0.324

S0661 57.101 0.3261
11 03271 86.601 0.4951

6%silane/tetrafunctn 0.357 123.00 0.702
0.341 112.51 0.643
0313 94.52 0.540
0.421 171.28 0.978
0.300 87.16 0.498
0321 99.62 0.569

Y9oSflane/tetrafunctnl 0375
0.410
0.443
0.386
0.348

150.75
180.18
210.02
160.09
129.80

U.861
1.029
1.199
0.914
0.741

Figure B-12: Data from the fracture toughness testing of X1-2672TM with silane terminated
rubber (DPn=4) cured with the tetrafunctional cross-linker at 140oC/16 hours and post-cured
at 260oC/8 hours.
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0.309 87.08 0.497
0.286 74.63 0.426
0.251 57.40 0328
0.220 44.28 0.253

i i i i i
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Stora modu E X1-2672 with 12% vinyl trminated PDMS cured with triunctional crosa-linker.

6.00E+09

5.50E+09

5.00E+09

4.50E+09

4.00E+09

3.50E+09

3.00E+09

2.50E+09

2.00E+09

1.50E+09

1.0

500E+08 t

-150 -100 -50 0 50 100 150 200 250 300

temperature (C)

Storage modulus E' of X1-2672 with 6% vinyl terminated PDMS cured with trifunchonal cross-linker.

6 00E+09

5 50E+09

5 00E+09 -

4 50E+09

4 00E+09

3 50E+09

300E+09

2 50E+09

2.00E+09

1 50E+09

+09

5 00E+08

---- --- eOO E.O0-- ....................................

-150 -100 -50 0 50 100 15

temperature (-C)

- run #1 I

0 200 250 300

Storage modulus E' of X1-2672 neat resin cured with trifunctional cross-linker.

600E+09

5 50E+09

5 00E*09

4 50E+09

4 00E+09

--- run #1

-150 -100 -50 0 50 100 150 200 250 300

temperature (°C)

Figure C-1: Storage modulus variation with temperature, at a rate of 20 C/min and a
frequency of 5 Hz, for X1-2672TM resin with 0,6, and 12% vinyl terminated PDMS (DPn=9),
cured with the trifunctional cross-linker at 1600C/16 hours and post-cured at 2600C/8 hours
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SIrg Medalr V' ofX1-2672 with 12% dslan termdnated rubber ared with trifuctional cmasslinker.

.00Et+U0

5.50E+09

5.OOE+09

4.50E+09

4.00E+09

3.50E+09

3.00E+09

2.50E+09

2.00E+09

1. 09

1.00E+09

5.00E+08

Mnln9-0 ,

S run n 1

-150 -100 -50 0 SO 100 150 200 250 300

temperature ('C)
Storaemp modulus ' of X1-2672 with 6% silane terminated rubber cured with trifunctional cros-linker.

6.00E+09 T

5.50E+09 f

5.00E+09 C

4.50E+09 4
4.00E+09 i

3.50E+09
I ..̂

run C#

-150 -100 -50 0 50 100 150 200 250 300

temperature (C)

Storage modulus E' of XI-2672 neat resin cured with trifunctional cross-linker.

6 00E+09

5.50E+09

5.002E09

4.50E+09

$- 4.00E+09

3.50E+09

3.002E+09 run 1

2.50E+09

.00E+09

1.5 9

1.00E+09

5.00E+08

-150 -100 -50 0 50 100 150 200 250 300
temperature (-C)

Figure C-2: Storage modulus variation with temperature, at a rate of 20 C/min and a
frequency of 5 Hz, for X1-2672TM resin with 0,6, and 12% silane terminated rubber (DPn=4),
cured with the trifunctional cross-linker at 160 0C/16 hours and post-cured at 260 0C/8 hours
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oss modulus E of X1.2672 with 12% vinyl terminated PDMS cured with trifunctional aow-linker.

-150 -100 -50 0 50 100 150 200 250 300

temperature (*C)

Loss modulus E" of X1-2672 with 6% vinyl terminated PDMS cured with trifunctional cross-linker.

3 50E+08 -

3.00E+08

2 50E+08 -

2 00E+08

1.50E+08 -

1.00E+08

5. +07

I •OO----8 EeE8-) ....... -'--- ----- --- ·-- - -

-150 -100 -50 0 50 100 150 200 250 300
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Losa Modulus E" of X1-2672 resin cured with trifunctional cross-linker.
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S I rt ý 
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Figure C-3: Loss modulus variation with temperature, at a rate of 20 C/min and a
frequency of 5 Hz, for X1-2672TM resin with 0,6, and 12% vinyl terminated PDMS (DPn=9),

cured with the trifunctional cross-linker at 1600C/16 hours and post-cured at 2600C/8
hours.

128

•f



Los mo•dulus of X1-2672 with 12% silum tenidnaed rubber cured with triuctional crom4sinker.

3.00E+08
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-150 -100 -50 0 50 100

temperature (C)

150 200 250 300

Loss Modulus E" of X1-2672 with 6% silane terminated rubber cured with trifunctional cross-linker.
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Lose Modulus E" of X1-2672 resin cured with trifunctional cross-linker.
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Figure C-4: Loss modulus variation with temperature, at a rate of 20 C/min and a
frequency of 5 Hz, for X1-2672TM resin with 0,6, and 12% silane terminated rubber (DPn=4),
cured with the trifunctional cross-linker at 1600C/16 hours and post-cured at 2600C/8
hours.
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