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Abstract

Information storage systems enable computational activities to preserve valuable informa-
tion that can be shared by multiple users and for multiple purposes. Automatic indexing
and garbage collection are useful features of storage systems because they can make in-
formation sharing more convenient and effective. Automatic indexing enables users and
programmers to locate and access shared information without substantial prior agreement
about information structure and index design, as is typically necessary in traditional file
systems and databases. Automatic garbage collection enables users and programmers to
share information without requiring complete agreement on ownership and deallocation
protocols for the shared objects.

My thesis demonstrates, via two working systems, that update logs can be used
to provide automatic garbage collection and indexing services in information storage
systems. The garbage collection system uses log-based replicating garbage collection,
a new algorithm that enables concurrent compacting garbage collection of persistent
storage. In this garbage collector design, an update log is used to record client operations
that require subsequent action by the collector. The update log decouples the operations
of application programs from the operations of the garbage collector. The indexing
file system uses an update log to decouple indexing operations from file modification
operations. Both the indexing system and the garbage collection system use update logs
in novel ways to implement convergent consistency properties that promote convenient
and efficient sharing of information.

Thesis Supervisor: David K. Gifford
Title: Professor of Computer Science
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Chapter 1

My Thesis

Update logs can be used to provide automatic indexing and garbage collection services

in information storage systems.

1.1 Useful Services for Information Sharing

Information storage systems enable computational activities to preserve valuable infor-
mation to be shared by multiple users and for multiple applications. Many computational
activities depend on storage systems to preserve valuable information that is both a work
product and a subsequent work input. Traditional information storage systems have pro-
vided this service primarily by supporting the reliable storage of raw data files. The choice
of raw data files as the interface between the storage system and its clients provides a
degree of security because the integrity of the data is independent of its structure. Nev-
ertheless, by providing more information about the structure of data, clients can enable
storage systems to provide better performance or additional services.

Computer systems are now supporting a great variety of human activity, and there is
consequently an explosion of information resources available in existing storage systems.
One of the greatest potential benefits of increased use of computer systems is that they

can enable people to more easily communicate, investigate new ideas, and rapidly acquire



new knowledge. However, when the information stored in these systems cannot be located
and shared conveniently, much of this potential is lost. Storage services that provide more
effective and convenient ways to share information are therefore valuable.

[ believe that in the future it will be necessary and practical to implement storage
systems with interfaces that provide more convenient ways to share information than
current storage systems provide. In the course of my research in this direction, I imple-
mented the Semantic File System and the Log-Based Replicating Garbage Collector. The
Semantic File System is a file storage system that provides content-based indexing of files
in a portable and extensible way. I built the Semantic File System because I expected
that the integration of extensible indexing and content-based access primitives into the
storage interface would help users of the file system locate and share data more easily.
The Log-Based Replicating Garbage Collector is part of a heap-based storage system that
provides transaction and concurrent garbage collection services. I built the Replicating
Garbage Collector because I believe that the use of automatic garbage collection in a
programming environment makes it easier for programmers to design applications that
share data. I expected its interactive performance to be superior to that of other garbage
collectors and that this advantage would be important in actively used storage systems

of the future.

1.2 Semantic File Systems

Semantic File Systems were developed as an approach to information storage that would
permit users to share information more effectively. A primary design goal of the first
semantic file system was to provide a transition path from existing file systems, while
presenting a more effective storage abstraction than traditional tree structured file sys-
tems. A semantic file system is an information storage system that provides flexible
associative access to the system’s contents by automatically extracting attributes from

files with file-type-specific transducers. Associative access is provided by a conservative



extension to existing tree-structured file system protocols, and by protocols that are de-
signed specifically for content-based access. Automatic indexing is performed when files
or directories are created or updated.

The automatic indexing of files and directories is called “semantic” because user
programmable transducers use information about the semantics of updated file system
objects to extract the properties for indexing. Through the use of specialized transducers,
a semantic file system “understands” the documents, programs, object code, mail, images,
name service databases, bibliographies, and other files contained by the system. For
example, the transducer for a C program could extract the names of the procedures that
the program exports or imports, procedure types, and the files included by the program.
A semantic file system can be extended easily by users through the addition of specialized
transducers.

Associative access is designed to make it easier for users to share information by
helping them discover and locate programs, documents, and other relevant objects. For
example, files can be located based upon transducer-generated attributes such as author,
exported or imported procedures, words contained, type, and title.

A semantic file system provides both a user interface and an application programming
interface to its associative access facilities. User interfaces based upon browsers [26, 73]
have proven to be effective for query-based access to information, and browsers could
also be provided by semantic file system implementations. Application programming
interfaces that permit remote access include specialized protocols for information retrieval
[46], and remote procedure call based interfaces [21].

It is also possible to export the facilities of a semantic file system without introducing
any new interfaces. This can be accomplished by extending the naming semantics of
files and directories to support associative access. A benefit of this approach is that
all existing applications, including user interfaces, immediately inherit the benefits of
associative access.

A semantic file system integrates associative access into a tree structured file system



through the concept of a virtual directory. Virtual directory names are interpreted as
queries and thus provide flexible associative access to files and directories in a manner
compatible with existing software.

Semantic file systems may be useful to both individuals and groups. Individuals can
use the query facility of a semantic file system to locate files and to provide alternative
views of data. Groups of users should find semantic file systems an effective way to learn
about shared files and to keep themselves up to date about the status of group projects.
As workgroups increasingly use file servers as shared library resources, automatic indexing
technology for file systems will become even more useful.

Because semantic file systems are compatible with existing tree structured file systems,
implementations of semantic file systems can be fully compatible with existing network
file system protocols such as NFS [62, 70] and AFS [28]. NFS compatibility permits
existing client machines to use the indexing and associative access features of a semantic
file system without modification. Files stored in a semantic file system via NFS will be
indexed automatically and query result sets will appear as virtual directories in the NFS
name space.

I built a semantic file system and ran some experiments to explore its practicality and
its usefulness. These experiments suggest that semantic file systems can be used to find
information more quickly than is possible using ordinary file systems. Experience with the
implementation demonstrates that the practicality of the system depends substantially
on the use of an update log, which enables incremental indexing of modified file system

objects and decouples the execution of transducers from the actual file system update

operations.

1.3 Log-Based Replicating Garbage Collection

Operating systems, persistent programming environments, and object repositories must

store dynamically-allocated persistent data structures. Unfortunately, using explicit deal-
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location to manage these data structures can easily cause catastrophic system failures
due to the effects of dangling pointers and storage leaks. These problems can discourage
users and programmers from sharing dynamically allocated data structures.

Permanent data storage management should meet the much higher safety standard
achieved by tracing garbage collection. Modern garbage collectors are very efficient and
can often be competitive with explicit deallocation [78]. However, existing garbage col-
lectors are not practical for use in systems applications. Existing implementations either
stop the client while garbage collecting or do not maintain a heap image that survives
system failure.

I have developed a new algorithm, Log-Based Replicating Garbage Collection, and
used it in the design and implementation of a concurrent compacting garbage collector
for a persistent heap. Clients read and write the heap while the collector concurrently
replicates objects to create a new stable heap. Clients are free to modify objects that
have already been copied because the modifications are recorded in an update log. The
log is used by the collector to ensure that the new stable heap contains all pertinent data
before it is used to replace the old stable heap. The update log is processed concurrently,
reducing garbage collection interruptions imposed on the clients to brief synchronization
pauses.

There are several important advantages that derive from using log-based replicating

garbage collection in a transactional heap system:
e The garbage collector is simple and easy to implement.

» Transaction processing and garbage collection operations are decoupled so that

collector activity need not affect transaction throughput or commit latencies.

¢ A single log is shared by the transaction manager and the garbage collector.

In practice, the log-based replicating collection provides clients more responsive access
to the heap than does a stop-and-copy collector. Concurrent replicating collection elim-

inates lengthy interruptions caused by garbage collection. The implementation supports
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transactions, recovers from system failures, and provides good performance.

1.4 Using Update Logs

[n building the Semantic File System and the Replicating Garbage Collector, I found that
using an update log simplified the design of both systems. Both the indexing system and
the garbage collection system use update logs in novel ways to implement convergent
consistency properties that promote convenient and efficient sharing of information. As I
report in Chapter 2, the use of an update log in the Semantic File System makes possible
the implementation of incremental indexing, although obtaining an accurate update log
for the file system is difficult with the existing NFS protocol.

In the case of the replicating garbage collector, the use of an update log simplified
the design and implementation of the system. The update log allows the collector to use
a novel invariant in which the client program uses only From-space. This simplification
is probably largely responsible for the ease with which Scott Nettles and I were able to
build a concurrent garbage collector for a persistent heap, whereas previous attempts
using alternative designs were quite complex and not completely implemented.

Both the Semantic File System and the Replicating Garbage Collector use logs to
ensure that the system converges to a consistent state. These systems do not provide
absolute consistency. The semantic file system, as implemented, responds to queries
without waiting for deferred indexing operations to complete. I believe that this is a
desirable property of the system because the expense of providing absolute consistency
would make the associative access features useless. In the garbage collector, absolute
immediate consistency would require objects to be garbage collected as soon as they
become unreachable from the root. Again, this is not necessary for the garbage collection

system to be useful; it is sufficient to ensure that the system is converging towards having

unreachable objects collected.
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1.5 Contributions of This Work

The work described here provides a concrete demonstration that there are practical ways
to support information sharing in storage interfaces. I have demonstrated, via two work-
ing systems, that update logs can be used to provide automatic garbage collection and
indexing services in information stofage systems. Automatic indexing and garbage col-
lection are useful features of storage systems because they can make information sharing
more convenient and effective. Automatic indexing enables users and programmers to
locate and access shared information without substantial prior agreement about infor-
mation structure and index design, as is typically necessary in traditional file systems
and databases. Automatic garbage collection enables users and programmers to share
information without agreement on ownership protocols for the shared objects.

The implementation of these services are novel. No previous work on indexing file
systems provided the combination of compatibility with existing network protocols and
extensibility by user-programmable transducers. Also, no previous work generated an
update log by monitoring file system traffic and used that update log in order to im-
plement automatic indexing. No previous garbage collector implementation provided
concurrent compacting garbage collection of a persistent heap. In addition, replicating
garbage collection is the only technique to use a complete update log and a design in

which all client operations use the from-space heap.

1.6 Who Did What

Essentially all the work reported in this thesis was performed jointly to a substantial
degree. Replicating Garbage Collection was first conceived by me and Scott Nettles in
the summer of 1990 at Digital’s Systems Research Center. The Semantic File System
project was first conceived by Dave Gifford and Mark Sheldon, who were exploring ideas
for providing intelligent information discovery facilities in traditional storage systems in

mid-1990. As in any group project, it is nearly impossible to assign credit for particular
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ideas. I will try to identify some contributions to the best of my recollection.

Replicating garbage collection, although extensively debated by Scott Nettles and
myself during the summer of 1990, was little more than a wild idea, a design memo, and
some plans for how to try the method within Standard ML of New Jersey. Scott Nettles
returned to CMU, and I to MIT, with the best intentions to work on other topics for
Ph.D. research.

However, Scott later suggested the idea to David Pierce and Nicholas Haines, who
began work on modifying SML/NJ to use an incremental but non-concurrent variant of
replicating garbage collection. At some point, Scott completed that first implementation,
and together we wrote a short paper [41].

At a meeting in France in September 1992, I identified a flaw in the design relating
to interactions with generational collection and we agreed to reimplement the garbage
collector and improve its performance. I helped rewrite portions of the implementation,
but I believe Scott handled all aspects of benchmarks and performance testing at CMU.
We met in Cambridge at MIT for shoulder-to-shoulder writing sessions and remote-
control benchmarking. These efforts in late 1992 produced a much stronger presentation
of incremental replicating garbage collection [40].

Scott and I discussed the possibility of applying replicating garbage collection to
object caches, persistent storage, Scheme48, and how, in general, replicating gc would
take over the world of automatic storage management. Scott suggested that by using
portions of his Venari transaction system, we could extend replicating gc into a persistent
heap very easily. Together, we designed the stable replicating garbage collector. While
Scott implemented a simplified transaction manager, I ported our existing replicating gc
implementation to SunOS and Irix, restructured it to add concurrency, and tested it on
an SGI multiprocessor. Dave Gifford joined Scott and me in writing a paper describing
the persistent heap design and implementation [49], and I’ve used most of that paper to
report on replicating garbage collection in Chapter 3 of this dissertation.

In the course of that effort, I produced simple arguments for the correctness of our

14



implementation with respect to concurrency, heap integrity, and fault tolerance. Scott
and I each reimplemented the log-processing module at least once, and made essentially
all implementation decisions jointly. We conceived a large number of additional opti-
mizations, one of which we reported together [39], and many of which Scott subsequently
explored in his Ph.D. dissertation [38]. Later, Scott modified the concurrent garbage
collector’s convergence strategy to improve pause time performance, and we collaborated
on a paper explaining some implementation details of the concurrent collector [52].

In the case of the Semantic File System, 1 built the first prototype of the Semantic
File System in early 1991 using a previously existing user-level NFS server and other
hodge podge software, in an attempt to rapidly implement a search interface defined by
Dave Gifford and Mark Sheldon. Later, Pierre Jouvelot and Mark Sheldon formalized the
virtual directory specifications. At the same time, I redefined the transducer interfaces
and reimplemented portions of the indexing and server systems to obtain performance
that was tolerable for daily use in our research group.

Dave, Mark, Pierre and I co-authored a paper describing SFS [22], and I've used
that paper with only minor changes to report on SFS in Chapter 2 of this dissertation.
Subsequent to that effort, I made some improvements to the implementation, which
was being used by Mark Sheldon, Ron Weiss, Andrzej Duda, Dave Gifford, and myself to
operate a search distribution server [66]. Mark Sheldon continued to investigate ideas that
he originated in the SFS project by exploring search distribution systems and developing

an architecture for network-based information discovery [65].

1.7 Previous Work

Associative access to on-line information was pioneered in early bibliographic retrieval
systems where it was found to be of great value in locating information in large databases
[61]. The utility of associative access motivated its subsequent application to file and doc-

ument management. The previous research includes work on personal computer indexing
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systems, information retrieval systems, distributed file systems, new naming models for

file systems, and wide-area naming systems:

e Personal computer indexing systems such as On Location [72], Magellan [13], and
the Digital Librarian (45, 44] provide window-based file system browsers that permit
word-based associative access to file system contents. Magellan and the Digital
Librarian permit searches based upon boolean combinations of words, while On
Location is limited to conjunctions of words. All three systems rank matching files
using a relevance score. These systems all create indexes to reduce search time.
On Location automatically indexes files in the background, while Magellan and the
Digital Librarian require users to explicitly create indexes. Both On Location and
the Digital Librarian permit users to add appropriate keyword generation programs
[11, 45] to index new types of files. However, Magellan, On Location, and the Digital

Librarian are limited to a list of words for file description.

e Information retrieval systems such as Basis [26], Verity [73], and Boss DMS [36]
extend the semantics of personal computer indexing systems by adding field specific
queries. Fields that can be que}ied include document category, author, type, title,
identifier, status, date, and text contents. Many of these document relationships
and attributes can be stored in relational database systéms that provide a general
query language and support application program access. The WAIS system permits
information at remote sites to be queried, but relies upon the user to choose an
appropriate remote host from a directory of services [27, 68]. Distributed informa-
tion retrieval systems [21, 15] perform query routing based upon database content

labels to ensure that all relevant hosts are contacted in response to a query.
/

 Distributed file systems [71, 28] provide remote access to files with tree structured
names. These systems have enabled file sharing among groups of people and over
wide geographic areas. Existing UNIX tools such as grep and find [23] are often

used to perform associative searches in distributed file systems.
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e New naming models for file systems include the Portable Common Tool Envi-
ronment (PCTE) [20], the Property List DIRectory system (PLDIR) [37], Virtual
Systems [43] and Sun’s Network Software Environment (NSE) [69]. PCTE provides
an entity-relationship database that models the attributes of objects including files.
PCTE has been implemented as a compatible extension to UNIX. However, PCTE
users must use specialized tools to query the PCTE database, and thus do not re-
ceive the benefits of associative access via a file system interface. The Property List
DIRectory system implements a file system model designed around file properties
and offers a Unix front-end user interface. Similarly, Virtual Systems permit users
to hand-craft customized views of services, files, and directories. However, neither
system provides automatic attribute extraction (although [37] alludes to it as a
possible extension) or attribute-based access to their contents. NSE is a network
transparent software development tool that allows different views of a file system
hierarchy called environments to be defined. Unlike virtual directories, these views

must be explicitly created before being accessed.

e Wide-area naming systems such as X.500 [10], Profile [56], and the Networked
Resource Discovery Project [64] provide attribute-based access to a wide variety of
objects, but they are not integrated into a file system nor do they provide automatic

attribute-based access to the contents of a file system.

1.7.1 File System Extensions

Previous research supports the view that overloading file system semantics can improve
system uniformity and utility when compared with the alternative of creating a new

interface that is incompatible with existing applications. Examples of this approach

include:

e Devices in UNIX appear as special files [59] in the /dev directory, enabling them

to be used as ordinary files from UNIX applications.
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UNIX System III named pipes [60, p. 159f] appear as special files, enabling pro-

grams to rendezvous using file system operations.

File systems appear as special directories in Automount daemon directories [7, 54,
55], enabling the binding of a name to a file system to be computed at the time of

reference.

Processes appear as special directories in Killian’s process file system [29], enabling

process observation and control via file operations.

Services appear as special directories in Plan 9 [57], enabling service access in a

distributed system through file system operations in the service’s name space.

Arbitrary semantics can be associated with files and directories using Watchdogs
[6], Pseudo Devices [75], and Filters [43], enabling file system extensions such as
terminal drivers, network protocols, X servers, file access control, file compression,
mail notification, user specific directory views, heterogeneous file access, and service

access.

The ATTIC system [8] uses a modified NFS server to provide transparent access

to automatically compressed files.

1.7.2 Garbage Collection

The basic literature on uniprocessor garbage collection techniques is surveyed by Wil-

son [76]. Discussions of persistent heaps and language support for transactions appear in

work on Persistent Algol [4] and Argus [34]. Earlier descriptions of replicating garbage

collection appear in work by O’Toole and Nettles [52, 49, 40, 41], and an instance of the

basic technique is also described by Huelsbergen and Larus [25].

There is one earlier working implementation of a concurrent collector for a persistent

heap. Almes [1] designed and implemented a mark-and-sweep collector for use in the

Hydra OS for C.mmp. The collector is based on Dijkstra’s concurrent mark-and-sweep
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algorithm [18]. There are two key differences between this work and our own. First,
it cannot relocate objects and therefore offers no opportunities for heap compaction or
clustering of objects for fast access. Second, although it works in the context of persistent
data, it is not designed for use in a system with transaction semantics. Because of
the rather unusual environment in which it operated, we cannot make any performance
comparison between it and our work.

There is recent work ongoing in the EOS system [24]. The EOS design proposes to
combine a marking process and a compaction process. An implementation of EOS is
underway but details are not available at this time.

Brian Oki designed the Hybrid Log storage organization for Argus [35]. Oki [47] de-
scribed two possible housekeeping (compaction) methods for the Hybrid Log, one based
on a copying collection of the old log to produce a new log, the other based on a copying
collection of the stable state. 1 believe that Oki’s intended “snapshot” method is essen-
tially a so-called fuzzy dump technique, and therefore also very similar to the log-based
replicating garbage collection algorithm. I believe Oki’s design may require additional
synchronization with the active client application, because the actions of the housekeeping
process depend on the locking state of the individual objects. However, this dependence
is probably an artifact of the presence of two-phase commit operations and the explicit
treatment of mutex objects, both complications that are not present in my replicating
collector design. Another difference with Oki’s work is that his storage organization re-
lies on unique object identifiers. It seems clear that this design decision, which may be
necessary in any distributed object storage design, pervasively affects other aspects of
garbage collector and transaction manager design. Although it would be interesting to
compare the hybrid log housekeeping system with replicating garbage collection in spite
of these differences, I believe the snapshot-based concurrent housekeeping algorithm was
not implemented [48].

There is a long history of incremental and concurrent copying collectors dating back

to Baker [5]. These collectors require the client to access the to-space version of an object
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during collections and sometimes force objects to be copied so that the client may access
them. The technique of Ellis, Li, and Appel [3] enforces this restriction by using virtual
memory protection traps to detect certain client accesses and perform required collector
work. In contrast, our technique does not constrain the order in which objects are copied
nor does it require any special operating system support. I believe that the ability to
freely choose the traversal order may be especially important in systems that need to
optimize disk access costs.

There are two earlier designs of concurrent copying garbage collectors for persistent
heaps, both based on the Ellis, Li, and Appel algorithm. Detlefs [17] described how
to apply this algorithm in the transactional environment of Avalon/C++ [16], while
Kolodner [31] worked in the context of Argus. In Detlefs’s design, the programmer
must explicitly manage object persistence at the time of allocation; Kolodner supports
orthogonal persistence.

Neither of these designs was completely implemented, probably because of the com-

plexity of using the to-space invariant in a transactional setting (see Section 3.4.7).
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Chapter 2

A Semantic File System

A semantic file system is an information storage system that provides flexible associative
access to the system’s contents by automatically extracting attributes from files with file-
type-specific transducers. Associative access is provided by a conservative extension to
existing tree-structured file system protocols, and by protocols that are designed specifi-
cally for content-based access. Automatic indexing is performed when files or directories
are created or updated.

The automatic indexing of files and directories is called “semantic” because user-
programmable transducers use information about the semantics of updated file system
objects to extract the properties for indexing. Through the use of specialized transducers,
a semantic file system “understands” the documents, programs, object code, mail, images,
name service databases, bibliographies, and other files contained by the system. For
example, the transducer for a C program could extract the names of the procedures that
the program exports or imports, procedure types, and the files included by the program.
A semantic file system can be extended easily by users through the addition of specialized
transducers.

A semantic file system integrates associative access into a tree structured file system
through the concept of a wvirtual directory. Virtual directory names are interpreted as

queries and thus provide flexible associative access to files and directories in a manner
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compatible with existing software.
For example, in the following session with a semantic file system the user first locates
within a library all of the files that export the procedure lookup.fault, and then further

restricts this set of files to those that have the extension c:

% cd /sfs/exports:/lookup_fault

h 1s -F

virtdir_query.c@ virtdir_query.o@
%h cd ext:/c

h 1s -F

virtdir_query.c@

[/

Because semantic file systems are compatible with existing tree structured file systems,
implementations of semantic file systems can be fully compatible with existing network
file system protocols such as NFS [62, 70] and AFS [28]. NFS compatibility permits
existing client machines to use the indexing and associative access features of a semantic
file system without modification.

This chapter describes the interface and semantics chosen for an experimental seman-
tic file system implementation, discusses the design and implementation, and presents

experimental results concerning the operation of the system.

2.1 File System Interface

Semantic file systems can implement a wide variety of semantics. In this section I present
the semantics that has been implemented.

Files stored in a semantic file system are interpreted by file-type-specific transducers
to produce a set of descriptive attributes that enable later retrieval of the files. An
attribute is a field-value pair, where a field describes a property of a file (such as its
author, or the words in its text), and a value is a string or an integer. A given file can

have many attributes that have the same field name. For example, a text file would have
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as many text: attributes as it has unique words. By convention, field names end with
a colon.

A user extensible transducer table is used to determine the transducer that should
be used to interpret a given file type. One way of implementing a transducer table is
to permit users to store subtree specific transducers in the subtree’s parent directory,
and to look for an appropriate transducer at indexing time by searching up the directory
hierarchy.

To generalize the unit of associative access beyond whole files and accommodate files
(such as mail files) that contain multiple objects, I will refer to the unit of associative
access as an entity. An entity can consist of an entire file, an object within a file, or a
directory. Directories are assigned attributes by directory transducers.

A transducer is a filter that takes a file as input and outputs the file’s entities and
their corresponding attributes. A simple transducer could treat an input file as a single
entity and use the file’s unique words as attributes. A complex transducer might perform
type reconstruction on an input file, identify each procedure as an independent entity,
and use attributes to record their reconstructed types. Figure 2-1 shows examples of an
object file transducer, a mail file transducer, and a TgX file transducer.

The semantics of a semantic file system can be readily extended because users can
write new transducers. Transducers are free to use new field names to describe special
attributes. For example, a CAD file transducer could introduce a drawing: field to
describe a drawing identifier.

The associative access interface to a semantic file system is based upon queries that
describe desired attributes of entities. A query is a description of desired attributes that
permits a high degree of selectivity in locating entities of interest. The result of a query
is a set of files and /or directories that contain the entities described. Queries are boolean
combinations of attributes, where each attribute describes the desired value of a field.
It is also possible to ask for all of the values of a given field in a query result set. The

values of a field can be useful when narrowing a query to eliminate entities that are not
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author: smith

Object exports: init_xdr_rcv
Transducer exports: move_xdr_rep
imports: malloc

Cmove_xdr.o —

from: smith

: l Mail to: jones
C mail.txt ) Transducer subjefpt: meeting
text: fine

author: smith
Document section: introduction

C prop.tex ) Transducer text: beginning

text: distributed

Figure 2-1: Sample Transducer Output

of interest.

A semantic file system is query consistent when it guarantees query results that cor-
respond to its current contents. If updates cease to the contents of a semantic file system
it will eventually be query consistent. This property is known as convergent consistency.
The rate at which a given implementation converges is administratively determined by
balancing the user benefits of fast convergence against the higher processing cost of in-
dexing rapidly changing entities multiple times. It is of course possible to guarantee that
a semantic file system is always query consistent with appropriate use of atomic actions.

In the remainder of this section I will describe how conjunctive queries are mapped
into tree-structured path names. This is only one of the possible interfaces to the query
capabilities of a semantic file system. It is also possible to map disjunction and negation
into tree-structured names, but they have not been implemented in this prototype.

Queries are performed in a semantic file system through the use of virtual directories
to describe a desired view of file system contents. A virtual directory is computed on

demand by a semantic file system. From the point of view of a client program, a virtual
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directory is indistinguishable from an ordinary directory, except that it is not writeable.
However, unlike ordinary directories, virtual directories do not have to be explicitly
created to be accessed.

The query facilities of a semantic file system appear as virtual directories at each
level of the directory tree. A field virtual directoryis named by a field and has one entry
for each possible value of its corresponding field. Thus in /sfs, the virtual directory
/sfs/owner: corresponds to the owner: field. The field virtual directory /sfs/owner:
would have one entry for each owner that has written a file in /sfs. For example:

h ls -F /sfs/owner:

jones/ root/ smith/
h

The entries in a field virtual directory are value virtual directories. A value virtual
directory has one entry for each entity described by a field-value pair. Thus the value
virtual directory /sfs/owner:/smith contains entries for files in /sfs that are owned by
Smith. Each entry is a symbolic link to the file. For example:

% 1ls -F /sfs/owner:/smith

bio.txte@ paper.texQ prop.tex@
%

When an entity is smaller than an entire file, a view of the file can be presented by
extending file naming semantics to include view specifications.
To permit the conjunction of attributes in a query, value virtual directories contain

field virtual directories. For example:

% ls -F /sfs/owner:/smith/text:/resume
bio.txt@

[/

A pleasant property of virtual directories is their synergistic interaction with existing
file system facilities. For example, when a symbolic link names a virtual directory the link

describes a computed view of a file system. It is also possible to use file save programs,
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such as tar, on virtual directories to save a computed subset of a file system. It would
able be possible to generalize virtual directories to present views of file systems with
respect to a certain time in the past.

A semantic file system can be overlaid on top of an ordinary file system, allowing
all file system operations to go through the SFS server. The overlaid approach has the
advantage that it provides the power of a semantic file system to a user at all times
without the need to refer to a distinguished directory for query processing. It also allows
the server to do indexing in response to file system mutation operations. Alternatively,
a semantic file system may create virtual directories that contain links to the files in the
underlying file system. This means that subsequent client operations bypass the semantic
file system server.

When an overlaid approach is used, field virtual directories must be invisible to pre-
serve the proper operation of tree traversal applications. A directory is invisible when
it is not returned by directory enumeration requests, but can be accessed via explicit
lookup. If field virtual directories were visible, the set of trees under /sfs in the above
example would be infinite. Unfortunately making directories invisible causes the UNIX
command pwd to fail when the current path includes an invisible directory, because the
pwd command searches upward towards the root directory to reconstruct the name of the
current directory.

The distinguished field: virtual directory makes field virtual directories visible.
This permits users to enumerate possible search fields. The field: directory is itself

invisible. For example:

% 1s -F /sfs/field:

author:/ exports:/  owner:/ text:/
category:/ ext:/ priority:/ title:/
date:/ imports:/ subject:/ type:/
dir:/ name:/

% 1ls -F /sfs/field:/text:/semantic/owner:/jones
mail.txtQ paper.tex@ prop.texQ

h
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The syntax of semantic file system path names is:

<sfs-path> = /<pn> | <pn>
<pn> ::= <name> | <attribute>
| <field-name> | <name>/<pn>
| <attribute>/<pn>
<attribute> = field: | <field-name>/<value>
<field-name> ::= <string>:
<value> ::= <string>
<name> ::= <string>

The semantics of semantic file system path names is:

e The initial universe of entities is defined by the path name prefix before the first

virtual directory name.

e The contents of a field virtual directory is a set of value virtual directories, one for

each value that the field describes in the universe.

e The contents of a value virtual directory is a set of entries, one for each entity
in the universe that has the attribute described by the name of the value virtual
directory and its parent field virtual directory. The contents of a value virtual
directory defines the universe of entities for its subdirectories. In the absence of
name conflicts, the name of an entry in a value virtual directory is its original entry

name. Entry name conflicts are resolved by assigning nonce names to entries.

e The contents of a field: virtual directory is the set of fields in use.

I have chosen this attribute-based query semantics for virtual directories, but there are

many other possibilities. For example:

e The virtual directory syntax can be extended to support a richer query language.

Disjunctive queries, textual patterns, and other text-based search operators could

be added to the query engine.
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e Users could assign attributes to file system entities in addition to the attributes

that are automatically assigned by transducers.

e Transducers could be created for audio and video files. This could permit access

by time, frame number, or content.

e The entities indexed by a semantic file system could include a wide variety of object
types, including [/O devices and file servers. Wide-area naming systems such as

X.500 [10] could be presented in terms of virtual directories.

2.2 An NFS Implementation

I have built a semantic file system that implements the NFS [62, 71] protocol as its
external interface. To use the search facilities of the semantic file system, an Internet
client can simply mount the file system at a desired point and begin using virtual directory
names. My NFS server computes the contents of virtual directories as necessary in
response to NFS lookup and readdir requests.

A block diagram of my implementation is shown in Figure 2-2. The dashed lines in

the figure describe process boundaries. The major processes are:

o The client process is responsible for generating file system requests using normal

NF'S style path names.

o The file server process is responsible for creating virtual directories in response to
path name based queries. The SFS Server module implements a user level NFS
server and is responsible for implementing the NFS interface to the system. The
SFS Server uses directory faults to request computation of needed entries by the
Virtual Directory module. A faulting mechanism is used because the SFS Server
caches virtual directory results, and will only fault when needed information is

requested the first time or is no longer cached. The Virtual Directory module
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in turn calls the Query Processing module to actually compute the contents of a

virtual directory.

The file server process records file system modification events in an update log.

The update log is filtered to eliminate duplicate file modification events.

o The indexing process is responsible for keeping the index of file system contents
up-to-date. The Index Master module examines the modification log generated by
the file server process every two minutes. The indexing process responds to a file
system modification event by choosing an appropriate transducer for the modified
object. An appropriate transducer is selected by determination of the type of the
object (e.g. C source file, object file, directory). If no special transducer is found
a default transducer is used. The output of the transducer is fed to the Indexer
module that inserts the computed attributes into the index. Indexing and retrieval
are based upon Peter Weinberger’s BTree package [74] and an adapted version of

the refer [33] software to maintain the mappings between attributes and objects.

e The mount daemon is contacted to determine the root file handle of the underlying
UNIX file system. The file server process exports its NFS service using the same

root, file handle on a distinct port number.

o The kernel implements a standard file system that is used to store the shared
index. The file server process could be integrated into the kernel by a VFS based
implementation [30] of an semantic file system. I implemented the prototype system

using a user level NFS server to simplify development.

Instead of computing all of the virtual directories that are present in a path name, the
implementation only computes a virtual directory if it is enumerated by a client readdir
request or a lookup is performed on one of its entries. This optimization allows the SFS
Server to postpone query processing in the hope that further attribute specifications will

reduce the amount of work necessary for computation of the result set. This optimization

is implemented as follows:



e The SFS Server responds to a lookup request on a virtual directory with a lookup not_found
fault to the Virtual Directory module. The Virtual Directory module checks to
make sure that the virtual directory name is syntactically well formed according
to the grammar in Section 3. If the name is well formed, the directory fault is
immediately satisfied by calling the create_dir procedure in the SFS Server. This
procedure creates a placeholder directory that is used to satisfy the client’s original

lookup request.

o The SF'S Server responds to a readdir request on a virtual directory or a Lookup on
one of its entries with a £ill_directory fault to the Virtual Directory module. The
Virtual Directory module collects all of the attribute specifications in the virtual
directory path name and passes them to the Query Processing module. The Query
Processing module uses simple heuristics to reorder the processing of attributes to
optimize query performance. The matching entries are then materialized in the
placeholder directory by the Virtual Directory module that calls the create_link

procedure in the SFS Server for each matching file or directory.

The transducers that are presently supported by the prototype semantic file system

implementation include:

e A transducer that describes New York Times articles with type:, priority:,

date:, category:, subject:, title:, author:, and text: attributes.

* A transducer that describes object files with exports: and imports: attributes

for procedures and global variables.

e A transducer that describes C, Pascal, and Scheme source files with exports: and

imports: attributes for procedures.

e A transducer that describes mail files with from:, to:, subject:, and text: at-

tributes.



e A transducer that describes text files with text: attributes. The text file trans-

ducer is the default transducer for ASCII files.

In addition to the specialized attributes listed above, all files and directories are
further described by owner, group, dir, name, and ext attributes.

At present, only publicly readable files are indexed, because indexing protected files
would expose the contents of private files through the query system. Enhancements to the
prototype implementation that could be explored further include: 1) support for multi-
host queries using query routing, 2) an enhanced query language, 3) better support for
file deletion and renaming, and 4) integration of views for entities smaller than files. The
present implementation deals with deletions by keeping a table of deleted entities and
removing them from the results of query processing. Entities are permanently removed
from the database when a full reindexing of the system is performed. I have considered
performing file and directory renames without reindexing the underlying files, but this
is not possible in the current design because the user-programmable transducers are

permitted to alter their behavior depending on the name of the file being indexed.

2.3 Experience and Performance

[ ran some preliminary experiments using the semantic file system implementation to
explore whether semantic file systems present a more effective storage abstraction than
do traditional tree structured file systems for information sharing and command level
programming. All of the experimental data I report are from my research group’s file
server using a semantic file system. The server is a Microvax-3 running UNIX version
4.3bsd. The server indexes all of its.public]y readable files and directories.

To compact the indexes the prototype system reconstructs a full index of the file
system contents every week. On 23 July 1991, full indexing of our user file system

processed 68 MBytes in 7,771 files (Table 2.3).! Indexing the resulting 1 million attributes

""The 162 MBytes in publicly readable files that were not processed were in files for which transducers
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Total file system size 326 MBytes

Amount publicly readable 230 MBytes
Amount with known transducer 68 MBytes
Number of distinct attributes 173,075

Number of attributes indexed 1,042,832

LType Number of Files | KBytes ]
Object 871 8,503
Source 2,755 | 17,991
Text 1,871 | 20,638
Other 2,274 | 21,187

| Total | 7,771 | 68,319 |

Table 2.1: User File System Statistics for 23 July 1991

took 1 hour and 36 minutes (Table 2.2). This works out to an indexing rate of 712
KBytes/minute.

File system mutation operations trigger incremental indexing. In update tests simu-
lating typical user editing and compiling, incremental indexing is normally completed in
less than 5 minutes. In these tests, only 2 megabytes of modified file data were reindexed.
Incremental indexing is slower than full indexing in the prototype system because the
incremental indexer does not make good use of real memory for caching. The full indexer
uses 10 megabytes of real memory for caching; the incremental indexer uses less than 1
megabyte.

The indexing operations of the prototype are I/O bound. The CPU is 60% idle
during indexing. Measurements show that transducers generate approximately 30 disk
transfers per second, thereby saturating the disk. Indexing the resulting attributes also
saturates the disk. Although the transducers and the indexer use different disk drives,
the transducer-indexer pipeline does not allow I/O operations to proceed in parallel on

the two disks. Thus, the indexing throughput could be roughly doubled by improving

have not yet been written: executable files, PostScript files, DVI files, tar files, image data, etc.
%in parallel with Transduce
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| Part of index | Size in KBytes |

Index Tables 6,621
Index Trees 3,398
i Total | 10,019 l
| Phase | Time (hh:mm) |
Directory Enumeration 0:07
Determine File Types 0:01
Transduce Directory 0:01
Transduce Object 0:08
Transduce Source 0:23
Transduce Text 0:23
Transduce Other 0:24
Build Index Tables? 1:22
Build Index Trees 0:06
[ Total L 1:361

Table 2.2: User FS Indexing Statistics on 23 July 1991

the pipeline’s structure.

I expect this indexing strategy to scale to larger file systems because indexing is limited
by the update rate to a file system rather than its total storage capacity. Incremental
processing of updates will require additional read bandwidth approximately equal to the
write traffic that actually occurs. Past studies of Unix file system activity [53] indicate
that update rates are low, and that most new data is deleted or overwritten quickly;
thus, delaying slightly the processing of updates might reduce the additional bandwidth
required by indexing.

To determine the increased latency of overlaid NI'S operations introduced by inter-
posing my SFS server between the client and the native file system, I used the nhfsstone
benchmark [32] at low loads. The delays observed from an unmodified client machine
were smaller than the variation in latencies of the native NFS operations. Preliminary
measurements show that lookup operations are delayed by 2 ms on average, and opera-

tions that generate update notifications incur a larger delay.
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Some anecdotal evidence supports the claim that a semantic file system is more ef-

fective than traditional file systems for information sharing:

e The typical response time for the first 1s command on a virtual directory is approx-
imately 2 seconds. This response time reflects a substantial time savings over linear
search through the entire file system with existing tools. In addition, subsequent

1s commands respond immediately with cached results.

[ also tested how the number of attributes in a virtual directory name altered the
observed performance of the 1s command on a virtual directory. Attributes were
added one at a time to arrive at the final path name:

/sfs/text:/virtual/
text:/directory/
text:/semantic/
ext:/tex/
owner:/gifford

The two properties of a quefy that affect its response time are the number of
attributes in the query and the number of objects in the result set. The effect of an
increase in either of these factors is additional disk accesses. Figure 2-3 illustrates
the interplay of these factors. Each point on the response time graph is the average
of three experiments. In a separate experiment I measured an average response

time of 5.4 seconds when the result set grew to 545 entities.

» My research group began to use the semantic file system as soon as it was operable
for a variety of everyday tasks. Group members found the virtual directory interface
to be easy to use. (We were immediately able to use the GNU Emacs directory
editor DIRED [67] to submit queries and browse the results. No code modification
was required.) Several group members reexamined their file protections in view of

the ease with which other users could locate interesting files in the system.

* Users outside the research group have successfully used the query interface to locate

information, including newspaper articles, in the file system.
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Figure 2-3: Plot of Number of Attributes vs. Response Time and Number of Results

o Users outside our research group have failed to find files for which no transducer

had yet been installed.

The following anecdotal evidence supports the claim that a semantic file system is

more effective than traditional file systems for command level programming:

e The UNIX shell pathname expansion facilities integrate well with virtual directories.
For example, it is possible to query the file system for all dvi files owned by a

particular user, and to print those whose names begin with a certain sequence of

characters.
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e Symbolic links have proven to be an effective way to describe file system views.
The result of using such a symbolic link as a directory is a dynamically computed

set, of files.
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Chapter 3

Log-Based Replicating
Garbage Collection

The use of dynamic storage allocation has increased as programs have become larger and
more complex. Greater use of object oriented and functional programming techniques
further exacerbates this trend. These trends also make automatic management of dy-
namic storage or garbage collection increasingly necessary. Garbage collection simplifies
the programmers task and increases the robustness and safety of programs that use it.

The traditional objections to garbage collection are primarily performance related. It
has often been considered too expensive for use in practical applications. Recent studies
by Zorn [78] of applications that make heavy use of dynamic storage suggest that in fact
explicit storage management may be as costly as garbage collection. However, many
garbage collectors interrupt the execution of the client application, causing pauses that
are unacceptable to users and system designers.

Concurrent garbage collection addresses the problem of pause times by allowing the
collector and the client application to execute in parallel or in an interleaved manner
on a uniprocessor. This chapter presents the design and implementation of a log-based
replicating garbage collection system that provides concurrent and compacting collection

of a persistent heap. The first section introduces the basic idea of replicating garbage
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collection and compares it to the major alternative technique. Later sections describe
the extension of replicating garbage collection to a persistent heap interface, its design,
and a prototype implementation. The final two sections examine the performance of the

prototype implementation and discuss a few possible extensions.

3.1 Replicating Garbage Collection

Concurrent garbage collectors permit the client to execute while the garbage collection
is in progress. The operations of the client and the collector may be interleaved in
any order, yet the effects of the garbage collector must not be observable by the client.
In many previous concurrent garbage collection designs based on read-barrier methods
the interactions between the client and the collector involved complex and expensive
synchronization requirements. Replicating garbage collection requires that the collector
replicate live objects without modifying the original objects. Interactions with the client

are minimized, making this design attractive for use in a concurrent collector.
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3.1.1 The Read-Barrier Method

The standard technique used by copying garbage collectors to copy an object destroys
the original object by overwriting it with a forwarding pointer. Therefore, concurrent
collectors using this technique must ensure that the client uses only the relocated copy
of an object. I call this requirement the to-space invariant. Enforcing this to-space
invariant typically requires a “read-barrier”, as shown in figure 3-1. The implementation
of read-barriers has consequently been the focus of much effort in incremental garbage

collection work.

3.1.2 The Client Uses From-Space

The primary way in which replicating collection differs from the standard approach is
that the copying of objects is performed non-destructively. Conceptually, whenever the
collector replicates an object it stores a relocation record in a relocation map, as shown
in Figure 3-2. In general the client may access the original object or the relocated objects
and is oblivious to the existence or contents of the relocation map. In the implementation
presented here the client accesses only the original object. I call this the from-space

mvariant.

3.1.3 Mutations are Logged

After the collector has replicated an object, the original object may be modified by the
client. In this case, the same modification must also be made to the replica before the
client can safely use the replica. Therefore, our algorithm requires the client to record
all mutations in a “mutation log”, as shown in Figure 3-2. The collector uses the log
to ensure that all replicas are in a consistent state when the collection terminates. The
collector does this by reading the log entries and applying the mutations to the replicas.

The cost of logging and of processing the log varies depending on the application and

the logging technique. Mutation logging works best when mutations are infrequent or
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can be recorded without client cooperation. Mutation logging is also attractive whenever
a log is already required for other reasons, such as in generational collectors, distributed

applications, and transactional storage systems [42, 49].

3.1.4 The Collector Invariant

The invariant maintained by the collector is that the client can only access from-space
objects and that all to-space replicas are up-to-date with respect to their original from-

space objects unless a corresponding mutation is described in the mutation log.

3.1.5 The Completion Condition

While the collector executes, it endeavors to replicate all the objects that are accessible
to the client. The collector creates replicas of the objects pointed to by the client’s roots.
The collector also scans replicas in to-space to find pointers to from-space objects and
replace them with pointers to corresponding replicas in to-space.

The collector has completed a collection when the mutation log is empty, the client
roots have been scanned, and all of the objects in to-space have been scanned. When
these conditions have been met, the invariant ensures that all objects reachable from
the roots have been replicated in to-space and are up-to-date. The replicas contain only

to-space pointers because to-space has been scanned. When the collector has established
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this completion condition, it halts the client, atomically verifies the completion condition,
updates the client’s roots to point at the corresponding to-space replicas, discards the

from-space, and renames to-space as from-space.

3.1.6 Client Interactions

Although the garbage collector executes concurrently with the client, the from-space
invariant ensures that there is no low-level interaction between the collector and client.
The client executes machine instructions that read and write the objects that reside
in from-space. The collector reads the objects in from-space and writes the objects in
to-space. Conceptually, the relocation map shown in Figure 3-2 is used only by the
collector.

The collector does interact with the client via the mutation log and the client’s roots.
The collector must occasionally obtain an up-to-date copy of the client’s roots in order
to continue building the to-space replica. Also, the collector reads the mutation log,
which is being written by the client. These interactions may be asynchronous and do not
require the client to be halted.

However, when the collector has established the completion condition, it must halt the
client in order to atomically verify the completion condition and update the client’s roots.
After the roots have been updated, the client can resume execution. The duration of this
pause in the client’s execution depends on the synchronization delay due to interacting
with the client thread and also on the size of the root set. In a generational collector the

root set may include the set of cross-generational pointers that point from older objects

to newer objects.

3.1.7 Optimization Opportunities

The from-space invariant used by this algorithm is very weak, in the sense that the

collector never needs to work on any particular task in order to allow the application to
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execute. The collector only needs to replicate all the live data soon enough to terminate
and reuse the memory in from-space before the application runs out of memory.

In the algorithm of Appel, Ellis, and Li[3], the application may frequently be blocked
waiting for the collector to copy the objects that it must use. I believe that the flex-
ibility of this invariant offers potentially important optimization opportunities to any
replicating-style implementation. For example, the collector can copy objects in essen-
tially any desired order.

This freedom in copying order could be used to increase locality of reference or to
change the representation of objects stored in a cache[50]. Another way that copying
order freedom can be exploited is by concentrating early replication work on objects
reachable from particular roots. Particular roots may be more likely to change than
others, so copying them later could reduce the amount of latent garbage copied by the
collector.

Also, if no mutable objects have been replicated then the collector need not apply
mutations to replicas. The collector could choose to concentrate early replication effort
on only immutable objects, and thereby delay the need to process the log until the
last possible moment. The actual copying of an object can be delayed until the object
is scanned using an optimization suggested by Ellis[19]. The collector could replicate
mutable objects into a segregated portion of the to-space, and delay copying and scanning
mutable objects as long as possible. Mutation log entries created before the first mutable

object was actually copied could be discarded.

3.2 A Transactional Heap Interface

The persistent heap interface provides basic heap operations, transaction operations, and
two distinguished roots. The complete interface is shown in Figure 3-3. The basic heap

operations are read, write and allocate. The transaction operations are commit and

abort.
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Figure 3-3: The Transactional Heap Interface

The transitory and persistent roots are distinguished and available to the clients. No
deallocation operation is exposed to the clients. Instead, objects that the clients can
access by dereferencing pointers starting from either root are considered live and will
be preserved by the system. A garbage collector will identify unreachable objects and
recycle their storage.

The heap interface provides orthogonal persistence [4]: objects that are reachable via
the persistent root are guaranteed to survive system failures. In Figure 3-3, the stability
of the persistent root and the stable heap to which it points are indicated by their gray
background. In contrast, objects reachable only via the transitory root are not available
after a failure; the transitory root is reset when the system recovers from a failure. Clients
can use the transitory root to maintain access to temporary objects without requiring
that the system ensure the persistence of those objects.

This interface also includes the ability for multiple clients to perform transactions on

the heap by using the commit and abort operations. The transaction manager is respon-
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sible for tracking modifications to objects and implementing the transaction semantics
implied by commit and abort. Support for multiple clients, multithreaded clients, and
nested transactions can be provided by appropriate choice of the transaction manager.
The exact transaction semantics supported by the transaction manager are not my
primary concern here. In considering the design of the system, I will assume that the
complexities of multiple clients and multiple transactions are completely hidden from the
rest of the system by the transaction manager. I describe the system as if it contains
only a single client that performs a linear sequence of top-level transactions. Every
modification to an object is part of a transaction and each transaction can be either
committed or aborted. The heap must be restored to the most recently committed state

if a system failure occurs.

3.3 Garbage Collection Design

The heap design shows that the transactional heap interface can be implemented effi-
ciently. The interface specifies a high standard of programming safety and data stability.
Programming safety is provided by using garbage collection and orthogonal persistence.
Data stability is ensured through the use of transactions and stable storage. Good perfor-
mance comes from caching stable data in volatile memory and from the use of concurrent
replicating collection. Using an extra processor to perform concurrent replicating collec-
tion improves throughput and provides the client with low-latency access to the heap.

I will present the design of the storage manager as a series of three refinements to

a basic design. Each refinement improves either the functionality or the performance of

the basic design:

* Basic Design: Replicating Collection of Stable Heaps. The basic design uses a
replicating collector on stable spaces. Clients operate on stable from-space, and the
collector concurrently copies from-space into stable to-space. In this design each

write is individually committed and the client must access stable storage for every
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read and write operation.

o Refinement 1: Transactions Group Updates. The first refinement adds transactions
to the basic design. Transactions allow the client to perform a group of modifica-
tions atomically. The log required to support transactions also serves as the log

used by replicating garbage collection.

o Refinement 2: Volatile Images Improve Performance. The second refinement adds
volatile main-memory images of from-space and to-space to improve the perfor-
mance of the client and the collector. Committed from-space operations must be
recovered upon failure. Thus it is necessary for the transaction manager to ensure

that all committed operations are recorded in stable from-space.

o Refinement 3: Transitory Heaps for Temporary Data. The third and final refine-
ment adds a transitory heap. All objects are initially allocated in the transitory
heap, and are automatically promoted to the persistent heap when they are made

reachable from the persistent root. The transitory heap is garbage collected with

respect to the transitory root and is not recovered after a failure.
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3.3.1 Replicating Collection of Stable Heaps

As shown in Figure 3-4, using stable storage and replicating collection for the persistent
heap provides an interface that lacks only transaction support. In this design each write
operation is individually committed and becomes permanent as soon as it is performed.
Good performance can be achieved by using battery-protected random access memory to
implement high speed stable storage. While the élient operates on the heap, a replicating
garbage collector concurrently builds a compact replica of it.

Replicating garbage collection [40] is a new technique for building incremental and
concurrent garbage collectors. The key idea of replicating garbage collection is to copy
objects non-destructively. As in any copying garbage collection algorithm, the collector
copies the reachable objects from the from-space to the to-space. However, most copying
collectors destroy the original object when it is copied because the contents of the object
are overwritten by relocation information containing its new address.

In contrast, a replicating collector avoids destroying the contents of the original object.
This can be accomplished by storing the relocation information about the object in a
reserved portion of the object or elsewhere. The effects of replication are unobservable
by the client, so it continues to operate on the original objects in from-space. This
differs from other concurrent compacting collection algorithms, which require the client
to operate on objects in to-space [5, 3].

Because the client and the collector execute concurrently, the replicas become incon-
sistent when the client modifies the original objects. To solve this problem, the client
records all write operations in a redo log, shown in Figure 3-4. The collector processes the
log to ensure that all replicas are consistent. When to-space contains an exact replica of
the entire object graph, the collector flips, updating the client’s roots to refer to the repli-
cas and exchanging the roles of to-space and from-space. While the collector performs
the flip action, the client and transaction manager are halted.

After a failure the client can be immediately restarted on stable from-space with-

out any recovery processing. The stable nature of from-space guarantees it will survive
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Figure 3-5: A Transactional Heap

failures. After a crash all that is necessary is to locate the stable from-space in mem-
ory. Because from-space and to-space exchange roles when the garbage collector flips,
the garbage collector must store a from-space identifier to indicate which of the two
stable spaces is the current from-space. The flip occurs when this identifier is updated
atomically.

The garbage collector can be resumed after a failure if sufficient state is recorded
in stable storage. If the collector is to be recoverable, the redo log and the relocation
information containing the new address of each replicated object must be in stable stor-
age. These items will collectively be called the garbage collector state. Alternatively the
garbage collector state can be kept in volatile storage and the garbage collector can be

restarted with an empty to-space upon failure. If failures are infrequent this option will

result in better performance.

3.3.2 Transactions Group Updates

Figure 3-5 shows how transactions can be added to the basic design. In this model, each
modification is part of a transaction and transactions can be independently committed or

aborted. All modifications are applied directly to from-space and an undo log describing
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uncommitted modifications is maintained. If a transaction aborts, all of its modifications
are undone by using the undo log. If a transaction commits, then its modifications
are atomically removed from the undo log. An important advantage of using replicating
collection in a transactional setting is that the undo log necessary to support transactions
and the redo log used by the collector can use a shared data structure.

After a failure the client can be resumed on stable from-space once the undo log is
applied. Undoing the modifications in the undo log ensures that all uncommitted updates
are erased before the client resumes execution. The undo log must be stored in stable
storage so that it will survive failures and be available for recovery processing after a
failure. After recovery the garbage collector can be resumed if the garbage collector state

has been preserved in stable storage.

3.3.3 Volatile Images Improve Performance

When slow stable storage media are used, forcing all operations to access stable storage
will not provide acceptable performance. Figure 3-6 shows how this problem can be
addressed by caching images of the stable heaps in volatile memory. In this design the
client reads, writes, and allocates in a volatile image of from-space. The garbage collector
reads the volatile from-space image and writes the volatile to-space image.

When a transaction commits, its updates to volatile from-space must be made stable.
Upon commit the transaction manager uses the redo log to identify portions of the volatile
from-space image that have been updated and it propgates these modifications to stable
from-space. The transaction manager also writes any newly allocated objects to stable
from-space. Applying these updates to stable from-space must be performed atomically
in order to ensure that the stable from-space is in a consistent state after a failure.

The garbage collector directly writes the volatile to-space image and a background
process copies the volatile to-space image onto the slow stable storage media. Thus a slow
stable storage medium can be used for to-space without slowing the garbage collector. A

flip may occur when all live objects in volatile from-space have been copied, the redo log
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is empty, and volatile to-space has been completely copied to stable to-space. The flip
causes both stable and volatile from-space to be replaced by their to-space counterparts.

However, the stable to-space may contain uncommitted data because it is an exact
copy of volatile to-space, which is a replica of volatile from-space. To prevent this un-
committed data from being used after a crash, the undo log is also written to stable

storage as part of the stable to-space. This allows any uncommitted transaction to be

rolled back during recovery.

After a failure the client can use the volatile from-space image once it is recovered
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Figure 3-7: Using a Transitory Heap

from stable from-space and the undo log is applied. After recovery the garbage collector
can be resumed if its state has been preserved in stable storage. Otherwise it is restarted

with an empty volatile to-space.

3.3.4 Transitory Heaps for Temporary Data

Figure 3-7 shows how a transitory heap may be added to the previous design. The
persistent heap, shown in gray, represents the volatile and stable versions of from-space

and to-space from the previous design. This figure emphasizes that the role of the
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transitory heap is to store objects that are not reachable from the persistent root. The
transitory heap has its own root and is stored in volatile memory. All objects are initially
allocated in the transitory heap.

Upon commit the transaction manager uses the log to detect objects in the transitory
heap that have become persistent. The log is used to locate modified objects in the
persistent heap that contain pointers to objects in the transitory heap. These objects
are newly persistent because they have become reachable via the persistent root.

The modified objects are used as the roots of a stop-and-copy collection that promotes
the newly persistent objects into the persistent heap. The promoted objects must be
written to stable storage along with any persistent objects modified by the transaction.

It is also possible for persistent objects to become transitory. This happens when
objects in the persistent heap are reachable from the transitory root but have become
unreachable from the persistent root. Such objects are live but not persistent. When
these objects are discovered they may be moved back into the transitory heap or left in
the persistent heap. Leaving these objects in the persistent heap simplifies the imple-
mentation. After a failure these objects will be unreachable and will be reclaimed by the
next collection.

After a failure the client is restarted on the persistent heap using the algorithm
outlined in the previous section. During recovery the transitory heap is initialized to be

empty.

3.4 A Prototype Implementation

The prototype implementation provides concurrent compacting garbage collection for
Standard ML of New Jersey. A persistent heap and a transaction manager were added
to the runtime system to support persistence. I re-implemented the garbage collector as
a concurrent thread using replicating collection. The purpose of the prototype imple-

mentation was to test the feasibility of this design.



Standard ML of New Jersey (SML/NJ) is an implementation of a type-safe program-
ming language that includes an optimizing compiler, a runtime system, and a generational
garbage collector [2]. The SML/NJ source code is freely available and is easy to modify
for experimental purposes.

I chose to test the replicating garbage collection algorithm in the SML/NJ envi-
ronment primarily for reasons of convenience. Previous work on persistence by Scott
Nettles {42] and my work with Scott Nettles on replicating garbage collection [40, 41, 51]
provided several of the components needed for the prototype.

The SML/NJ runtime system is similar to most language implementations with copy-
ing garbage collection. The results should therefore apply to languages such as Modula-3,
Java, Lisp, Scheme, Smalltalk, Telescript, and, if suitably modified to enable copying
garbage collection, C++.

Implementation Overview

An implementation of the basic design and its three refinements requires a replicating col-
lector, an undo/redo log, stable storage, and a transaction manager. Here is a summary

of how each of these components is implemented:

e The replicating garbage collector is implemented as described in Nettles and O’Toole [40],

except that it runs as a separate thread of control so that it provides concurrent
collection as reported by O’Toole and Nettles [52]. The collector thread occasion-
ally interrupts the client to obtain more up-to-date roots and log entries. It also

stops the client in order to perform a flip.

® The undo/redo log is written by the client. The SML/NJ compiler was modified to
emit instructions in the client code that generate appropriate log entries for every
write operation. The original SML/NJ implementation included a simpler log to
support generational garbage collection. The log was expanded to include undo

information about every write operation in order to support transaction operations
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and replicating collection.

e The stable heaps are maintained on disk and their volatile images are maintained
in main memory. Recoverable Virtual Memory is used to manage the stable heaps
on disk. RVM allows the transaction manager and the garbage collector to apply
changes atomically to the stable heap by writing the changes into a stable log.

After a failure, the RVM log is used to recover the stable heap.

o The transaction manager in the current implementation performs transaction com-
mit by reading the log, moving objects from the transitory heap to the volatile heap
image, and logging the resulting changes to the stable heap via RVM. The transi-
tory heap is merely the simple generational heap present in the original SML/NJ

implementation.

The next few sections discuss some choices faced when implementing the prototype. I
then describe the structure of the persistent heap and review the threads of control used
in the implementation. Finally, I present the step by step procedures used to implement

the commit, collection, flip and recovery operations.

3.4.1 The Transitory Heap

The transitory heap contains only temporary objects that will be discarded when a
failure occurs. It consists of the two generational heaps present in the original SML/NJ
implementation. The details of the these transitory heaps are mostly irrelevant to the
persistent heap implementation.

However, when constructing the prototype I faced several implementation choices that
involved the transitory heap. There are several situations in which pointers that cross
between the transitory and the persistent heap may have to be adjusted when objects
are moved.

For example, when newly persistent objects are promoted into the persistent heap,

any other temporary objects that contain pointers to them must be updated. Similar
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adjustments may be required to either the transitory or the persistent heap when the
other heap is being flipped by the garbage collector.
In these situations, the implementation could use any one of at least four different

solutions:

1. Scan the heap that contains the pointers requiring adjustment.
2. Garbage collect the heap that contains the pointers requiring adjustment.

3. Somehow track the locations of the pointers that require adjustment so that they

can be updated more quickly.

4. Use replication to move the objects, but refrain from updating any pointers to the

objects until some later opportunity such as a flip.

In this implementation, pointers from the persistent heap to the transitory heap are
always the result of uncommitted write operations. They can be easily located via the
transaction log. Therefore, I use the third solution to update these pointers when the
transitory heap is garbage collected. To deal with pointers in the other direction, I
implemented both of the first two methods: doing a scan and doing a garbage collec-
tion. Commit processing can be expensive in this implementation when there is a large

transitory heap.

3.4.2 Stable Storage

My design assumes the ability to make multiple updates to the stable heap atomically.
The implementation performs atomic updates using the Recoverable Virtual Memory
system described by Satyanarayanan, et al. [63] RVM provides simple non-nested trans-
actions on byte arrays and uses a disk-based log for efficiency. The implementation does

not exploit the rollback features of RVM at all; RVM provides only disk logging and

recovery services.



RVM establishes a one-to-one correspondence between a file and a portion of virtual
memory. Separate files are used to store stable from-space and stable to-space. These
files also contain starting and ending addresses of the spaces and the sequence number
that serves as the stable from-space identifier.

RVM defines a simple interface that allows changes to the volatile heap to be atomi-
cally propagated to the stable heap. During commit the transaction manager begins an
RVM transaction, informs RVM of the location of each modification to the volatile heap
as well as of any newly persistent data, and then ends the transaction. RVM guarantees
that this set of operations will be atomic.

When a flip occurs the from-space identifier must be updated to indicate which of
the stable spaces is the stable from-space. This update does not need to be made stable
until the next client transaction commit after the flip. When the client first commits a
transaction, that transaction will be applied to the new stable from-space. The collector
writes the from-space identifier via RVM, but using a “no-flush” transaction that does not
require a synchronous disk write. Thus, although the client is paused while the garbage
collector finalizes the flip and updates the roots, no synchronous disk write occurs during

this interruption.

3.4.3 Writing Stable To-space

Volatile to-space is written to stable to-space by an asynchronous process. No writes
that synchronize with the client are required. Volatile to-space can be written directly
to the file containing stable to-space or indirectly via RVM.

During the garbage collection, large contiguous regions of new data are created in
volatile to-space. These regions can be written directly to disk efficiently. Logging them
through RVM is less efficient because RVM first writes them into its log and then later
writes them again to the data file.

However, the garbage collector also performs small random updates on volatile to-

space when it uses the redo log to update inconsistent to-space replicas. RVM is ideal for



applying these changes to stable to-space, because its use of logging converts the small
random writes into a single efficient log write. Writing these changes to disk without
using a log is of course more expensive.

I tried writing stable to-space using several different methods. It turned out that using
RVM for all of the writes put so much data into the RVM log that the client transaction
flow was substantially impeded. However, when I wrote stable to-space directly, it was
difficult to schedule the flip to avoid blocking while waiting for the last few disk writes
to complete.

Now the implementation uses a mixed strategy in which the large contiguous writes

are done directly to the file containing stable to-space and the small random writes are

done using RVM.

3.4.4 The Persistent Heap

The persistent heap is maintained both in virtual memory and on stable storage through
the cooperation of the transaction manager, the garbage collector and RVM. Figure 3-8
shows the primary data structures used by the runtime system to maintain and garbage

collect the persistent heap:

¢ undo/redo log — This log is maintained by the client and is used by both the
transaction manager and the collector. When the stable heap flips, the log is written

to stable storage to enable rollback of uncommitted transactions.

e volatile from-space — The client accesses all persistent data through volatile
from-space. When a transaction commits, all newly persistent objects are copied

from the transitory heap into volatile from-space.

e volatile to-space — The garbage collector copies the live objects in volatile from-

space to volatile to-space.

e stable from-space — The stable representation of from-space is stored on disk.

Upon commit the newly persistent objects and the new values of any modified
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Figure 3-8: The Persistent Heap

locations in volatile from-space are written to stable from-space by the transaction

manager using RVM.

e stable to-space — The stable representation of to-space is stored on disk. It is a

copy of volatile to-space and must be written to disk before a flip.

e the RVM log — The stable log is maintained by RVM on disk. The RVM log
contains records that describe modifications to stable from-space and stable to-

space. RVM updates this log atomically and uses it to recover the contents of the
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stable spaces after a failure.

3.4.5 Threads of Control

The prototype contains three threads of control:

e The Client thread executes the application program and periodically commits
transactions by acting as the Transaction Manager. The Client thread is responsible
for writing the undo/redo log. The Client thread also traps into the runtime system

when it must synchronize with the garbage collector and perform a flip.

e The Collector thread performs replicating garbage collection, copying reachable
objects from the volatile from-space into the volatile to-space. When the Collector
thread has constructed a complete replica of the volatile from-space, it signals the

Client thread that a flip should take place.

o The Copy thread writes the contents of volatile to-space onto the stable to-space,
either directly to the disk or via the RVM log manager. 1t performs I/0O operations

on behalf of the garbage collector so that the Collector thread need not block on
I/0.
3.4.6 Operations on the Persistent Heap

Now I present the steps needed to perform the key operations of the design.

Transaction Commit

When the Client thread commits a transaction, it acts as the Transaction Manager and

performs the following operations:

l. Scan the undo/redo log to locate references that created pointers from the volatile

from-space to transitory data. These references are used to identify the roots of

the newly persistent data.



2. Promote all newly persistent objects into volatile from-space, using a standard stop-
and-copy garbage collection algorithm. This collection uses the locations identified

in step 1 as roots.

3. Atomically update the stable from-space by logging and committing an RVM trans-

action containing all modifications and additions to volatile from-space.

4. Update all of the transitory heap data to point to the newly promoted objects in
volatile from-space. This is done either by scanning the transitory heap for pointers

to promoted objects or by garbage collecting the transitory heap.

Persistent Garbage Collection

When a commit adds enough new data to the volatile from-space to exceed a predeter-
mined threshold, a garbage collection of the persistent heap is initiated. At this point the
Collector thread performs the following steps asynchronously with respect to the Client

thread:

1. Copy all objects in volatile from-space that are reachable from the persistent root

into volatile to-space. This preserves the persistent data.

2. Copy all objects in volatile from-space that are reachable from the transitory heap

into volatile to-space. This preserves the objects that are live and have become

transitory.

3. Scan the undo/redo log, and update replicas of modified objects in the volatile

to-space.

The undo/redo log is reset to empty after its entries have been processed by both
the transaction manager and the garbage collector. The transaction manager and the
garbage collector maintain separate pointers into the shared log to keep track of what

prefix of the log they have already processed.

60



When a collection is in progress the Copy thread asynchronously copies the volatile
to-space image into stable to-space. The Copy thread occasionally synchronizes with
the Collector thread to obtain information about what portions of volatile to-space have

been modified.

Persistent GC Flip

A flip is attempted after the Collector thread has successfully replicated volatile from-
space in volatile to-space and the Copy thread has copied it into stable to-space. Then
the Collector thread stops the Client thread and performs any remaining collection work
required by recent client operations. Finally, the Collector thread performs the following

steps before resuming the client:

1. Update the client’s roots to point to volatile to-space.

2. Update all pointers in the transitory heap that point to volatile from-space to point

to volatile to-space.

3. Write the stable from-space identifier via RVM to indicate that stable to-space is

now stable from-space.

The stable replicating collector must ensure that the undo/redo log is preserved in
stable storage at the time of a flip. In the prototype, this is accomplished very simply
because the transaction manager stores the log in the volatile from-space in the form of
a linked list of log records. Therefore, it is preserved in volatile to-space by the Collector
thread and written to stable storage by the Copy thread.

The flip has occurred in volatile memory when these steps are complete. The Collector
thread does not write the stable from-space identifier synchronously. Instead, it uses a

no-flush transaction that will update the from-space identifier before any subsequent

client transactions.
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Crash Recovery

When a crash occurs and the system restarts the following steps are performed for re-

covery:

1. RVM applies pending committed log records from its stable log to bring the stable

from-space and stable to-space files to their most recently committed state.

2. The garbage collector examines the stable from-space identifier stored in the stable

heaps to determine which heap is the stable from-space.

3. The transaction manager uses the undo log stored in stable from-space to roll back
the uncommitted operations of any partially complete transactions. These changes

are made atomically using RVM.

The Client thread can now be restarted using the recovered volatile from-space and
an empty transitory heap. The collector begins with an empty volatile to-space. It is
not necessary for RVM to recover the contents of stable to-space in this implementation,

but RVM does not provide a way to eliminate recovery processing for stable to-space.

3.4.7 Comparison with Read-Barrier Method

In to-space techniques, the flip takes place at the beginning of the collection. Starting at
the flip, the client uses objects that are in to-space and so client operations are reflected
in the transaction log using to-space values. The log also contains from-space pointers
due to transaction activity that occurred prior to the flip. Therefore, the recovery process
must be able to reconstruct the relétionship between from-space and to-space objects.
This relationship depends on the exact sequence of copy operations performed by the
garbage collector. In practice, this means that essentially the entire garbage collection
process must be recoverable.

There are two primary disadvantages to making the collection recoverable: complexity

and cost. Added complexity arises because each step of the collection must be recoverable,
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thereby greatly increasing the interaction of the collection algorithm with the logging and
recovery algorithms. Both Kolodner and Detlefs explain how each step of the collection
algorithin is logged and recovered. These arguments are quite detailed and complicated.
Added cost arises because each step of the collection adds to the logging burden of the
system. Detlefs’s design attempts to minimize the amount of log traffic but at the cost
of introducing some synchronous writes. Kolodner requires no synchronous writes but
has greater log traffic.

The replicating gc design avoids these problems because there is never any need for
the recovery process to deal with to-space values, although the implementation I describe
here does incur some recovery processing costs for to-space because RVM provides no
convenient way to bypass these recovery operations. The client only uses from-space
objects and only the flip need be coordinated with the transaction manager. A repli-
cating collector can be made recoverable at the cost of added log traffic, but for many

applications this may not be necessary.

3.5 Performance

I designed and ran a series of experiments to test whether the replicating collector im-

plementation:

e significantly reduces the duration of collector pauses in comparison with the stop-

and-copy collector.

e increases transaction throughput by reducing storage management overhead.

The experiments compare the implementation described in the previous section to the
same collector operating in a stop-and-copy manner on the persistent heap. I did not
compare this implementation directly to other concurrent collector implementations be-
cause they do not support garbage collection of stable heaps.

The experimental results demonstrate that replicating collection interferes with the

client less than stop-and-copy collection. For the replicating collector, the longest pauses
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are a few hundred milliseconds, the same general magnitude as commits. For heap sizes
in the megabyte range, the pause times achieved by the new technique are a factor
of ten shorter than stop-and-copy collection. For larger heaps, such as those found in
a production object database, the difference would be even greater. Improvements in
transaction throughput were achieved because concurrent garbage collection resulted in
an overlapping of garbage-collection-related I/O with client computation.

[ also measured the commit performance of the system. Commit performance depends
mostly on the choice of persistence model, the transaction profile, and the performance
of the underlying log manager. I measured this aspect of the system to better understand
the prototype’s limitations, and found that the commit performance can be quite good

for small transactions.

3.5.1 Benchmarks

I used three benchmarks to test the system. Each was chosen to measure and stress
different aspects of the system. Two of the benchmarks performed a significant number
of garbage collections, while the third was used to measure transaction throughput. Al-
though I did not measure recovery performance, I did crash and recover each benchmark

to verify that it was recoverable.

e The Compiler benchmark is Standard ML of New Jersey compiling a portion of
the SML/NJ implementation. I modified the compiler to store all of its data in the
persistent heap and to commit its state every time a module (file) was compiled,
modeling the behavior of a persistent programming environment. This 100,000 line

program is compute-intensive and contains long-running transactions.

o The TP-OOI-V benchmark is a variant of the OO1 Engineering Database bench-
mark described by Cattell [9]. The benchmark models an engineering application
using a database of parts, performing traversals of the database, adding parts,

etc. I implemented this algorithm in order to have a representative object-oriented
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database application. However, the OOl benchmark, as specified, does not re-
quire garbage collection, so [ added deletion operations to make it a more realistic

application for this system.

e The TPC-B benchmark performs a large number of bank teller operations that
perform transfers among various bank accounts. This benchmark is a slightly non-

standard implementation in Standard ML of the TPC-B benchmark from Gray [14].

3.5.2 Experimental Setup

All benchmarks were executed on a Silicon Graphics 4D /340 equipped with 256 megabytes
of physical memory. The clock resolution on this system is 1 millisecond. The machine
contains four MIPS R3000 processors clocked at 33 megahertz. Each processor has a
64 kilobyte instruction cache, a 64 kilobyte primary data cache, and a 256 kilobyte sec-
ondary data cache. The secondary data caches are kept consistent via a shared memory
bus-watching protocol and there is-a five-word deep store buffer between the primary
and the secondary caches. With this configuration, the collector can copy between 1
and 2 megabytes per second. (Note that the cache performance of a garbage-collected
programming language has been analyzed by Reinhold [58].)

All benchmarks were executed using a transactional process model. Each time the
application requests a commit, its entire process state is committed to the persistent heap,
including processor register contents. I ran the benchmarks using this model because it
generally minimizes the size of the transitory heaps and maximizes the workload on the

stable heap. The transactional process model itself is implemented in SML using the

persistence facilities described here.

3.5.3 Pause Times

The most important property of the concurrent replicating collector is that the pause

times it imposes on the client are short and bounded. Very large stable heaps imply
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Figure 3-9: 001 Collector Pause Times

very large stop-and-copy garbage collection pauses. In the sections that follow, I present
measurements showing that the stable replicating collector pause times are largely in-
dependent of heap size. I also compare the pause times caused by the concurrent and

stop-and-copy collectors and to those due to transaction commit operations.

Heap Size Dependence

[ ran the OO1 Engineering Database benchmark in Standard ML with various amounts of
live data in the heap. This test roughly shows the dependence of collector pause duration
on heap size. Figure 3-9 shows the maximum pause times caused by collection of the
persistent heap plotted with respect to heap size. The plot also includes the minimum

pause times for the stop-and-copy collector. The minimum pause times for the concurrent

collector are too small to measure.

Even for the modest heap sizes used here, the pauses created by the stop-and-copy

66



collector are unacceptably long. As expected, pause times increase with increasing heap
size. In contrast, the maximum pause created by the concurrent collector is approx-
imately 1 second and is brief enough not to cause a major disruption. Although not
shown in this figure, typical concurrent collector pauses for this benchmark were less
than 300 milliseconds. These results show that pause times are independent of heap size
for the concurrent collector.

[ investigated the cause of the longer pauses and believe that they are preventable.
Examining the worst pauses in an earlier implementation convinced me that stable to-
space should be written using a combination of direct disk writes and RVM. That change
produced a five fold reduction in the maximum pause times and eliminated almost all
pauses in the 100 to 1000 millisecond range. Further tuning should be able to reduce

maximum pause times to 100 milliseconds or below.

Pause Time Distributions

To explore how the frequency and duration of collection pauses compared to commit
pauses, [ ran the Compiler benchmark using both the concurrent collector and the stop-
and-copy collector and measured pauses caused by persistent garbage collector activity
and transaction commit operations. The performance of transaction commit processing
has not been the focus of my implementation efforts, and the design choices in this area
have been made more for simplicity and ease of implementation than for performance,
because the primary goal was to explore the feasibility of replicating garbage collection.

Figures 3-10, 3-11, and 3-12 show the pauses from concurrent collector activity, stop-
and-copy collections, and transaction commit, respectively. Note that the scale of Fig-
ure 3-10 is smaller than in the other figures because the pauses caused by the concurrent
collector are very brief. The commit pauses shown here were produced using the con-
current collector, and are essentially the same as those produced when using the stop-

and-copy collector. Stop-and-copy and commit pauses have been grouped into histogram

bins 300 milliseconds wide.
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Figure 3-10: Concurrent Collector Pause Distribution

As shown in Figure 3-10, the pauses due to the concurrent collector are mostly very
short. The long tail is comprised entirely of pauses during which the collector completed
a flip. Even the longest pause is short compared to most commit pauses. The total time
spent by the client waiting for the collector was 1760 milliseconds. This time is less than
the shortest stop-and-copy pause.

In contrast, the pauses shown in Figure 3-11 show that all of the stop-and-copy pauses
are long enough to be disruptive. Many applications would be unable to use this collector
due to the long interruptions. The total time spent in collection was 35 seconds, almost

twenty times the time spent waiting for the concurrent collector.
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Figure 3-11: Stop-and-Copy Pause Distribution (Note scale)

3.5.4 Transaction Throughput

The throughput of the system is interesting to examine, and two immediate questions
come to mind: First, how good is the performance for small simple transactions? Second,

does concurrent replicating collection provide increased throughput?

Commit Performance

In order to test the fastest path for transaction commit, I executed the TPC-B program
using a 12 megabyte database containing bank account records for 1 branch covering
100,000 customers. During this test, the implementation ran 80 transactions per second.
The limiting factor was the synchronous disk write required by each transaction. Note
that this database size is smaller than the TPC-B guidelines require for a system claiming

80 transactions per second. [ believe that the other requirements of the benchmark
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Figure 3-12: Commit Pause Distribution (Note scale)

standard have been met. A similar RVM benchmark [63] also executed approximately
80 transactions per second on the séme machine.

When the TPC-B benchmark is completing 80 transactions per second, each transac-
tion requires 12.5 milliseconds of processing. | made more detailed timing measurements
to see what was happening during those 12.5 milliseconds. Measurements of the trans-
action manager and independent measurements of write calls show that the synchronous
write accounts for about 8 milliseconds or 65% of the total time. Other processing by
RVM during the end transaction accounts for another 10%. A surprise was that an ad-
ditional 10% was due to an instruction cache flush operation required because in general
the collector may copy executable machine code (much of which is stored within the
SML/NJ heap). Traversing the undo/redo log and logging the entries to RVM accounts
for an additional 5%. No single factor accounts for the remaining 10% of the time. The

time spent executing the benchmark code, which was too small to measure accurately,
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Figure 3-13: OO1 Elapsed Time per Transaction

was less than 0.5% of the total per-transaction time.

Heap Size Dependence

The OO1 benchmark was used to study the transaction throughput of the system in the
presence of garbage collection. Remember that this version of OO1 performs twice as
many updates to persistent data because each transaction includes one hundred dele-
tions and one hundred insertions. This change to the benchmark causes it to require
garbage collection, yet maintain a constant amount of live data in the heap. I mea-
sured the elapsed time to perform the standard engineering modification described by
the benchmark.

The total heap size was controlled by adding various amounts of live data. Figure 3-
13 shows the elapsed time to perfofm each transaction as a function of heap size. The

use of concurrent collection is clearly advantageous. The elapsed time for the concurrent
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collector is constant with heap size. As expected, the stop-and-copy collector causes the

elapsed time to increase linearly with heap size.

3.5.5 Improving Stable Storage Access

In most transaction systems the critical performance issue is access to stable storage. In
this section I discuss a variety of performance issues and enhancements. Most of these

issues are closely tied to the use of RVM for stable storage.

Transaction Reordering

[ ran the compiler benchmark using configurations in which all writes of stable to-space
either only used the disk directly or only used RVM. Using only the disk made it hard
to synchronize with the client to achieve the flip. The key difficulty was scheduling the
flip when no disk write was in progress. This problem occasionally caused very long
pauses, and increased the number of pauses in the few hundred millisecond range. In the
configuration that used only RVM, the extra log traffic from the garbage collector thread
introduced substantial additional commit delays.

In the concurrent replicating algorithm, the write traffic from the garbage collector
need not slow down the commit traffic from the client because the writes are to different
spaces. The transactions that the collector performs on to-space can be reordered with
the client transactions on from-space without affecting correctness. A suitable change to

RVM would allow the GC transactions to move through the log independently of other

transactions.

Change Record Batching

For large transactions, such as those in the compiler benchmark, I examined the de-
tailed components of both commit and collection closely. A significant fraction of the

time is spent processing the log, primarily in logging the modifications through RVM.
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This observation motivates several possible enhancements that should improve commit
performance and/or reduce total overhead.

Many of the modifications on the log are to the same location. Recognizing these
duplicate log entries and eliminating them would reduce the logging cost substantially.
A more efficient interface to transfer the log information to RVM would also be advanta-
geous. Currently, the transaction manager calls RVM once per change record in the log,
and RVM validates each such call independently. An interface that allowed a group of
change records to be processed together would allow RVM to reduce its overhead without

compromising safety.

Write-Ahead Logging

RVM delays capturing the value of a redo record until its transaction commits. Given the
current logging methods, it would be acceptable to capture the value when the change
record is first logged. Then RVM could use write-ahead logging aggressively.

The transaction manager could also take advantage of write-ahead logging by pro-
moting newly persistent objects eagerly. Currently no promotions are done until commit.
Earlier promotion would allow the cost to be absorbed in existing collection work and

would be especially beneficial for long running transactions like those in the compiler.

Log Editing

When the RVM log fills with transaction records it must be emptied. RVM does this by
applying the log records to the data files and truncating the log. However, if the garbage
collector has flipped the stable from-space and the stable to-space, then many log records
are obsolete, because they contain changes to the heap that has been reclaimed by the
collector. It would be much more efficient to inform the stable log manager (RVM) that
these log records can be removed from the log entirely.

[n the current implementation, this optimization would also be very useful whenever

the Copy thread bypasses RVM and writes directly to stable to-space. Currently the
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Copy thread must force an RVM log truncation before issuing these writes in order to
ensure that RVM is not holding any old log records that apply to stable to-space. It
would be much more efficient to discard these log records instead.

Garbage collectors sometimes benefit from similar features in data caches and virtnal
menory systems [12]. When the garbage collector reclaims a semi-space it is better that
cache lines and virtual memory pages that contain reclaimed data be reset to a zero-fill-
on-demand status because there is no need for the underlying memory system to preserve
their old contents.

Recently the designers of RVM have begun the implementation of an incremental log
truncation mechanism [63]. This new feature will subtly change the semantics of RVM.
Currently the only changes to virtual memory that RVM applies to stable storage are the
changes that the client explicitly logs via the RVM interface. The replicating collector
takes advantage of this property when it overwrites portions of volatile from-space with
relocation information containing the new address for each replicated object. Because the
collector does not notify RVM of these changes, the original contents of these locations
will be restored after a failure. The proposed incremental truncation technique will use
pages of the virtual memory to update the disk file instead of using the log entries.
Given the collector design, this new RVM behavior would result in an unacceptable loss

of committed data.

3.5.6 Recovery Performance

Although I have not measured recovery performance, it is apparent that the cost of recov-
ery is almost entirely attributable to RVM. There are two phases of recovery processing
in the implementation. First, the RVM log manager must recover the last committed
physical heap image. Second, the transaction manager must undo any uncommitted
modifications that are present in the persistent heap. The cost of processing the undo
log is small relative to the cost of RVM recovery. RVM recovery must perform disk

operations to reconstruct the committed contents of the stable heap from its stable log,
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3.6 Extensions and Applications

It should be possible to support multiple client threads by using the Venari transaction
model [77] developed by Scott Nettles. It will also be worthwhile to examine the re-
maining sources of delay in the pauses due to the concurrent collector, but this effort is
subject to rapidly diminishing returns as the remaining pause time becomes comparable
to the duration of other unpredictable operating system interruptions. There are several
simple optimizations that could compress the update logs substantially. Also. a lesson
learned from the performance measurements is that there are several desirable features
that are candidates for addition to the RVM log manager.

The current implementation does not support the restart of a partially completed
garbage collection, but the changes required are minimal. Because the client uses only
from-space, the recovered state of to-space is of little importance. The state of the
replicating garbage collector can be recovered as long as its volatile data structures are
periodically checkpointed to stable storage. As I mentioned in Section 3.4.7, the recov-
erability of incomplete collections may not be worthwhile for some applications.

The replicating garbage collection design should be applicable in small interpretive-
language environments such as those proposed for so-called mobile code or agent-based
computing paradigms. Recently proposed examples include Telescript and Java, lan-
guages that may be used primarily to implement interactive applications using relatively
small garbage collected heaps. Replicating garbage collection may also prove to be valu-
able for very large persistent heaps that are accessed using swizzled internal and external
representations, via a cache, or in a distributed programming environment containing
multiple volatile heaps. There are two primary advantages of replicating collection in
these configurations: The client and the garbage collector need not be as tightly coupled
as in other garbage collection algorithms and therefore system features that depend on

knowledge of object modifications and object locations are easier to build.
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Chapter 4

Closing Thoughts

I’'ve demonstrated, by building two working systems, that update logs can be used to pro-
vide automatic garbage collection and indexing services in information storage systems.
Automatic indexing and garbage collection are useful features of storage systems be-
cause they make sharing information much easier. Automatic indexing enables users and
programmers to locate shared information without substantial prior agreement about in-
formation structure. Automatic garbage collection enables programs to share information
without detailed agreements about object ownership. In the next few sections, I present

some additional conclusions and contributions that follow from the work presented here.

4.1 Automatic Indexing Services

The semantic file system prototype shows that associative access can be added to an
existing file storage system by using file type specific transducers. The indexing opera-
tions can be performed incrementalfy and efficiently by using an update log that records
modifications to file system objects. This work also shows that the associative access fea-
tures can be integrated into the file system using virtual directories that are computed

on demand. Other contributions of the semantic file system work include the following:
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e Virtual directories integrate associative access into existing tree structured file sys-

tems in a manner that is compatible with existing applications.

e Virtual directories permit unmodified remote hosts to access the facilities of a

semantic file system with existing network file system protocols.

e Transducers can be programmed by users to perform arbitrary interpretation of file
and directory contents in order to produce a desired set of field-value pairs for later
retrieval. The use of fields allows transducers to describe many aspects of a file, and
thus permits subsequent sophisticated associative access to computed properties.
In addition, transducers can identify entities within files as independent objects for
retrieval. For example, individual mail messages within a mail file can be treated

as independent entities.

The implementation of real-time incremental indexing required the SFS process to
intercept existing file system traffic and generate an update log that would direct trans-
ducing and indexing effort at modified file system objects. It is natural to conclude that
effective indexing efforts for other storage architectures, such as the distributed storage

of the World Wide Web, will depend on the availability of accurate update logs.

4.2 Replicating Garbage Collection

I have implemented a log-based concurrent compacting garbage collector for a trans-
actional persistent heap. The design is based on replicating collection, a new garbage
collection method. The collector uses a log that is shared with the transaction manager.
The prototype implementation demonstrates that client activity can continue during the
garbage collection of stable data. These innovations were made possible by the develop-
ment of the replicating garbage collection algorithm.

Experimental measurements of the system show that concurrent replicating collection

offers garbage collection pauses that are much shorter than those caused by stop-and-copy
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collection. The interrupts suffered by the client are small in comparison to transaction
commit latencies and are independent of stable heap size. Transaction performance
provided by the prototype is good. The use of garbage collection in the transaction
commit processing added little overhead; commit performance remains dominated by
the underlying log manager. This design offers garbage collection performance that will

be useful to real-time operating systems applications that require safe persistent storage.

4.3 Future Storage Systems

[ demonstrated in this dissertation that update logs can be used to provide automatic
indexing and garbage collection services in information storage systems. This thesis is
subsidiary to my more general thesis that there are practical ways to support information
sharing in programming systems. I believe that by providing update logs as an ubiquitous
feature of storage systems, systems designers can enable the construction of services
that promote information sharing and enable many unanticipated uses of the stored
information.

File systems are increasingly being used to store information in loosely standardized
formats that support inter-object pointers. However, the paradigm in ascendance as
the time of this writing is the World Wide Web, due to its success in enabling users to
conveniently share information at low cost. As file system and web storage standards
such as OLE 2.0 and HTML continue to evolve, it seems likely that these systems will
provide better ways for people to use distributed file systems to store large open networks
of interconnected objects.

A persistent world-wide object store will present many complex design and imple-
mentation challenges, and the storage semantics that will be found most useful to pro-
grammers may be impossible to predict. There are now many active efforts underway
to provide automatic indexing in the context of the World Wide Web, and based on the

experience of this thesis, I would argue that the long-term success of these efforts will
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depend on the adoption of storage interfaces that provide access to update logs. It seems
more difficult to predict whether these same update logs will be used to support garbage
collection as we know it today, but I believe update logs will prove to be invaluable in
supporting automatic storage management services. I expect that future information
sharing services will also benefit from the simplicity and flexibility that update logs have

provided in my garbage collection and automatic indexing and designs.
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