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Abstract

This thesis presents the design, simulation and testing on real data of a signal process-
ing system for use in a highly reverberant shallow water environment. The system applies
a combination of homomorphic deconvolution and Wiener filter to recover the transmitted
signal and increase the resolution of the channel impulse response. Based on the high res-
olution channel response, the target distribution is presented using a B-scan map with tar-
get localization based on multi-aspect arrival processing. Excess path length due to
multipath is estimated and is beneficial in removing the spurious detections caused by the
multipath. Since the system assimilates the advantages of both complex cepstrum and
Wiener filter, it is independent of the transmitted signal and the transfer function, and
robust to ambient noise. Therefore, it is capable of coping with more realistic propagation
conditions where, in general, the various signal arrivals have a complex mixed-phase
structure. The efficiency of the method is demonstrated by both simulated and real rever-
beration data in shallow water.
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Chapter 1

Introduction

For many economic and military reasons, there are abundant interests in shallow water

characteristics. However, because of the highly variable sea condition and the complex

propagation structure such as surface reflection, bottom reflection or refraction, and vol-

ume refraction, it is extremely difficult in shallow water to remove the effects of multi-

paths and obtain useful information from experimental data in order to develop practical

systems for target detection and communication.

The aim of this thesis is to provide a powerful method, which uses a combination of

complex cepstrum and Wiener filter[1] to improve the resolution of channel response esti-

mation. This method is used to remove the effects of multipath and find the true underwa-

ter targets.

In this thesis, the received signal is modeled as the convolution of a transmitted signal

with the channel response plus additive white noise. In real life, the channel response, the

additive noise, and even the transmitted signal, are not minimum phase signals, which is

the assumption for conventional application of a Wiener filter[2-4]. Thus, it is necessary to

use homomorphic deconvolution[5] to factorize the received signal into minimum and

maximum phase components through which we can determine the parameters of the

causal and anticausal Wiener filters with the deconvolved wavelet. Then the channel

response with high resolution can be obtained by using the received signal as the input of

the constructed Wiener filter (Figure 2.2). The 'B-scan map' and 'target localization' are

used to get the target spatial distribution based on the sharpened channel response, which

gives an intuition of the potential targets. The 'excess path length due to multipath' can



also be successfully obtained from the channel response while it seems impossible to get

from the original signal. This result is encouraging because the multipath structure can be

considered as a space filter to the received data in finding the true echo from an object.

Besides, theoretically, the shape of 'the excess path' curves is determined by the ocean

environmental parameters. It implies that if these curves can be achieved from the experi-

mental data, we might be able to invert the key parameters and then obtain some useful

information about the ocean environment.

In chapter 2, the complex cepstrum, the Wiener filter and their combination are dis-

cussed theoretically. The simulation results and their analysis are presented in Chapter 3.

Results with experimental data from Draper Lab are shown in Chapter 4. The 'B-scan

map', 'the target localization', the 'excess path length due to multipath' and their explana-

tion are also detailed in that chapter.



Chapter 2

Deconvolution of Medium Response

2.1 Introduction
This section is devoted to the deconvolution method of signal processing, which

extracts information from the received signal on travel time delays, propagation and back-

scattering characteristics to improve the resolution of medium impulse response. Due to

the multiple reflections and refractions of the water column, the received signal is gener-

ally mix-phased. Therefore, the conventional linear Wiener filtering, which assumes the

minimum phase property, is useless. In order to solve this problem, two steps are taken.

First, a homomorphic filter (complex cepstrum) is applied to separate the minimum phase

part and maximum phase part, and deconvolve the wavelet for both parts. Then, the

medium impulse response is deconvolved by means of Wiener filter with the deconvolved

wavelet as the transmitted signal.

2.2 Homomorphic system
The problem of filtering signals, which have been combined by convolution, is very

common in underwater signal processing. It would be advantageous to change convolu-

tion to addition by applying the appropriate filtering. This leads to a new class of systems

called homomorphic systems which obey the generalized principle of superposition.

Let '0' be a rule to combine inputs with each other (e.g., addition, multiplication,

convolution, etc.) and let ';' be a rule to combine inputs with a scalar. Similarly, let 'o'

denotes a rule to combine outputs and let '9' denote a rule to combine a scalar with an

output. Then, the 'homomorphic system' satisfies the following two equations[6],

H {x, (t) 0x 2(t) } = H {x, (t) }oH {x 2(t) } , (2.1)



H{c;x, (t)} = c H{x (t)} , (2.2)

which can be represented by algebraically linear (homomorphic) mappings between input

and output signal spaces. Clearly, linear systems are a special case for which '0' and 'o'

are addition, and ';' and ' * ' are multiplication. Any homomorphic system can be decom-

posed as a cascade of three homomorphic systems, as indicated in Fig. 2.1.

O r----------------------------- ------ 10o

I I
L . - - - - - - - - - - - - - - - - - - - -

H

Figure 2.1: Canonical representation of homomorphic systems

Where H means homomorphics system, '0' is a rule to combine inputs and 'o' is a rule to

combine outputs.

System D has the following properties:

D { X (t) X2 (t) } = D { (t) } + D {x 2 (t) =1 (t) + x2 (t) , (2.3)

D{c;x1 (t)} = c D {x(t)} = cx 1 (t). (2.4)

The effect of the system D is to transform the signals x, (t) and x2 (t) according to the rule

' ' into a conventional linear combination of corresponding signals D {x, (t) } and

D {x 2 (t) } . The system L is a linear system:

L {,(t) +x2 (t) } = L {x (t) } +L{x 2 (t)} = (t) + 2 (t) , (2.5)

L {c, (t)} = cL {x(t)} = c 1 (t) . (2.6)

System D- 1 is the inverse of system D, it transforms from addition to the rule 'o':



D-1 { (t) + 2 (t)} = D- {I (t)} oD- {l
2 (t)} = yl(t) o 2 (t),-1 -1 YIW Y (2.7)

D-1 {c^(t)} cD- {91 (t)} = ceyl(t). (2.8)

The use of a system of the form of Figure 2.1 to remove or alter one of the

components of a convolution is called homomorphic deconvolution. To understand how

this class of homomorphic systems might be useful for deconvolution, consider a signal

that is the convolution of two components, i.e.,

x (t) = x1(t) x2 (t) , (2.9)

where ' ®' is the convolution operator x (t) = fxj (r) x2 (t - r) dr. For example, x2 (t) might

be the impulse response of a stable linear time-invariant system, the effects of which we

are interested in, i.e., we would like to recover x2 (t) from x (t) . According to Eq. 2.3

X(t) = Wa (t) + 2 (t) . (2.10)

Now, if we can find a choice for the linear system L in Figure 2.1 such that its output is

X (t) = A2(t), (2.11)

then the corresponding output of the overall system in Figure 2.1 will be

y(t) = x2 (t) . (2.12)

In other words, if the linear system removes x, (t) completely from the additive combina-

tion of Eq. 2.10, then x, (t) is removed from the convolutional combination of Eq. 2.9. In

the next section, system D is chosen as the complex cepstrum.



2.3 Complex Cepstrum

Definition and Realization of Complex Cepstrum
The complex cepstrum[7], x (t) , is defined as the inverse Fourier transform of the

complex logarithm of the Fourier transform of a signal,

2(t) = F [X(o)] = FO [log (X(w))] , (2.13)

where F' [X(o)] = - oX(o) e'i(do.

It is know that convolution in the time domain maps into multiplication in the

frequency domain:

y(t) = x(t) ®h(t), (2.14)

Y(o) = X(o)H(o) . (2.15)

When the logarithm is taken,

log [Y(wo)] = log [X (o)H(co)] = log [X (o)] + log [H() ] , (2.16)

i.e., k (o) = X(co) + (wco .

Taking the inverse Fourier transform, we get

k(t) = n(t) + h (t), (2.17)

since the inverse Fourier transform is a linear operation.

It can be seen from above that the complex logarithm plays a key role in the definition

of the complex cepstrum. In order that k (o) be analytic and have the property that if

X () = X, (w) X 2 (0), then (co) = k, (co) + 2 (0) , (c) must be defined as

X (w) = log X(o) I +jarg [X (o)] , (2.18)

where arg [X(co)] = ARG [X(o)] + 2rN(o) , -t <ARG [X(m)] < •i, and N(o) takes on the

appropriate integer values to "unwrap" the principle value of the phase resulting in a con-

tinuous curve.



With x (t) real, arg [x (o) ] can always be specified so that it is an odd periodic function

of co. With arg [X(o)] an odd function of co and loglX(co)I an even function of co, the

complex cepstrum I (t) is guaranteed to be real.

The complex logarithm can also be defined from its derivative[8]. If one assumes a

single valued differentiable complex logarithm (principle value) and the analyticity of

x (o) , one can derive the follows:

d (co) d 1 dX(o) (2.19)S= 1- [loglX (w)l +j arg (X (o))] =  (2.19)do dc X (o) do
And since

X (o) = XR(w) +jX,(w), (2.20)

we obtain

("'(CD) d XR (O) XI' (c) - XI (o) XR'() (2.21)

() =- [arg(X(o))] = X(o) +X(2.21)(o)
de X2R (C) + X1(W)

arg[X(c) ] = X, (0) dO. (2.22)

Note that the condition arg [X (o)] ,= = 0 is implicit in Eq. 2.22, thereby ensuring

that arg [x (c) ] is an odd function of o. Eq. 2.21 can be computed very fast using the FFT

according to

XR' (o) +jX,'(co) = -jFFT[nx(n) ]. (2.23)

This algorithm works well as long as the spectrum does not have any zeros close to the

unit circle, otherwise, the derivative given by the previous relationship and computed by

FFT has singularities and presents big spikes. To improve the algorithm, an idea has been

suggested by Bhanu[9]. It consists of fitting a curve to the phase derivatives before per-

forming the numerical integration. Suppose the cubic spline S (co) which has continuous

first and second derivatives is fitted to the phase derivative. The phase is then given by



argX(co) = roS(o))dc, (

or, according to [10]

arg [X(coi+ 1)/ci] = argX(woi) + Acot]argX(oi+i1) + argX (coi)

12Ao A d2 S (oi+ 0 d1-dS (i)'

2d d
where s () = d argX (w) . This can also be computed by FFT as

do) (c

d
2

argX (o)
d20

S 4 IX(co) [XR(o)X" (O) -XI(Co)XR"(co)]
X () 14

-2XR (cO) X, () [(XR,' (o)) 2 (XI' ()) 2

+ 2XR' (c0)XJ' (O) [X2 (C) -XR (O)] } ,

and

XR"(0o) +jX,"(W) = -FFT[n2x(n)] .

Properties of the complex cepstrum

(2.26)

(2.27)

The complex cepstrum has some properties which are useful for the design of filters

and transmitted signals[6]. Some of these properties are summarized below.

1. The complex cepstrum of a convolution of two or more signals is the sum of indi-

vidual complex cepstrum.

2. The complex cepstrum I (n) of a minimum phase sequence x (n) is zero for

n < 0,and the complex cepstrum of a maximum phase sequence is zero for n 0. (See

Appendix A).

3. The complex cepstrum of a pulse whose spectrum is smooth tends to be concen-

trated around low qufrency values.

(2.25)

(2.24)



4. The complex cepstrum of a periodic impulse train is a periodic impulse train with

the same period.

Sensitivity of the complex cepstrum to noise
Since the complex cepstrum is a non-linear system, addition in the time domain does

not map to a convenient function in the cepstral domain. Therefore, additive noise makes

the phase unwrapping a difficult task. In real life, the signal can usually be expressed as:

S(t) = y (t) + n (t) , (2.28)

where y (t) is the convolution of two or more signals and n (t) is the additive noise. In the

frequency domain this equation becomes

logS((m) = log(Y(co) +N(o)) = log Y(o) 1 +y--o)- , (2.29)

i.e.,

logIS(mo)1 = lN(m) =loglY(o)l +log 1+ (o)) (2.30)

argS(co) = arg(Y(co) +N()) = argY(co) 1 + yarg(1+ . (2.31)

Even when the signal-to-noise ratio is greater than 1, it is still difficult to say that

argY(co) is greater than arg 1 + ), although log I Y () )l dominates in logIS (m) I . In that

case, Eq. 2.31 can be approximated as

SIN (m) I sin (D o (c) - cy (o))
logS(o)) = cs(Co) = c,(o) + atan 1 N(C, (2.32)

1+ N cos (4.(o) -(Dy(mo))

where DN(co) and cy(c) are respectively the phase of noise and the signal. With

|N()l << 1, Eq. 2.32 becomes os(co) .( (co) .

Eq.2.31 shows that the phase of the received signal s (t) will become unpredictable

(random) because of the additive noise. However, if the ambient noise is standard white



noise, it works as a DC component in the spectral domain that maps only to the point t=O

of cepstrum domain. The part of the noise spectrum which is not overlapped by the signal

spectrum can be removed by band-pass filtering in order to avoid the situation of a low

signal-to-noise ratio.

The use of band-pass mapping before the homomorphic deconvolution leads to the

notion of band-pass mapping systems which will be discusses in section 2.5.



2.4 Wiener filter
The goal of this section is to provide a method to deconvolve the medium impulse

response, which contains much information about the underwater targets. Since the

homomorphic deconvolution was not the best for estimating the medium response with

the presence of additive noise, a digital Wiener (Optimal) filter will be used. It belongs to

the class of linear time-invariant filters with a criterion of minimization of the least square

error[ll].

As expressed before, the received signal has the following form:

s (k) = r(k) w(k) + n (k) = y(k) +n(k) , (2.33)

where w (k) and r (k) are, respectively, the wavelet and the medium impulse response

deconvolved by the complex cepstrum. In the absence of noise, the effects of the medium

response r (k) are deconvolved through dividing Y(z) by W(z) , i.e.,

R (z) = Y (z) (2.34)
W(z)

where Y(z), W(z) , and R (z) are the z-transforms of y (k), w (k) , and r (k) respectively.

Now, it is necessary to find the optimal filter h (k) or H (z) , which, when applied to the

measured signal s (k) or S (z) , produces a medium response P (k) or A (z) that is as close as

possible to the real medium response. In other words, the true medium response can be

estimated by

R (z) = S (z) H (z) . (2.35)

In order to make A (z) be close to R (z) , it is required that they be close in the least

square sense, i.e.,

1 j(k) - r (k)2 = (z) - R (z) 2d
k = - , (2.36)



is minimized.

Substituting Eq. 2.33--2.35 into Eq. 2.36 and because the signal and the noise are

uncorrelated, their cross product, when integrated over z, gives zero. Eq. 2.36 will be a

minimum if and only if the integrand is minimized with respect to H (z) at every value of

z. Differentiating with respect to H (z) , and setting the result equal to zero gives

H(z) [Y(z)12 + IN(z) 2] IY(Z)12 (2.37)
W(z)

This is the formula for Wiener filter (optimal) H (z) .

To determine the Wiener filter from Eq. 2.37 we need some other ways of separately

estimating Y12 and INI2 . There is no way to do this from the measured signal s alone with-

out some other information, assumption or guess. Eq. 2.37 tells us that H looks like the

quotient of the model of signal power to the model of signal plus noise power weighted by

wavelet. Notice that H will be close to 1/w where the noise is negligible, and close to

zero where the noise is dominant. That is how it does its job! The intermediate depen-

dence given by Eq. 2.37 just turns out to be the optimal way of going in between these two

extremes.

Computational Realization of Wiener Filter
Let c,, be the autocorrelation of sequence y (k) (zero mean), then the spectral density

1y, (z) (Iz = 1 ) of this sequence is

ryy(z) = C,,(m) z-m = Iy (k)y(k+m) z- m = Y* ()Y(z) = IY(z)l 2 .  (2.38)
S= - m= -=k = --

Similarly,

rn (z) = IN(z) 2, rww (z) = IW(z)12. (2.39)

Suppose both the medium response r (k) and noise n (k) are uncorrelated sequences,



E[r(k)r(k+m)] = Xr(k)r(k+m) = 0, withm•*0,
k = -a

Trrr(z) = r(k)r(k+m)z-m = r(k)r(k) = Rrr(O),
m = -oak = -O- k = -*

r,,, (z) = Err (Z) rFi (z) = Rrr (0) (z), Inn (z) = Rnn (0) .

Substituting Eq. 2.38-2.39, and Eq. 2.41-2.42 into Eq. 2.37 yields

H() [ R (0)
H (z) rww (Z ) + Rrr (0) - W* (Z) .

(2.41)

(2.42)

(2.43)

Coming back into the time domain, for the minimum phase condition, Eq. 2.43 assumes

the form

p-I

Xh(k)
k=O

Cww (m - k) - k) = w (-m), (me [0, p - 1]). (2.44)

For maximum phase condition, Eq. 2.43 assumes:

Cww (k - m) + Rr (0) 8(k-m) =
I ~km)Rrr(0) w (-m), (me [-p + 1, 0]) ,

where c, c,,, C,,rr are respectively the autocorrelation of sequences w (k), n (k), r (k) .

In vector space, Eq. 2.44 and Eq. 2.45 can be written as:

(Rw + Rrr (0) I H = W,

(2.45)

(2.46)

i.e.,

then,

(2.40)

-p+ 1

Sh(k)
k=O

where

Rnn (0) (+ Rrr (0) 8 (mjRrr(O)



h (0) w (0) C,, (0) C (-1) CW (- + 1)

H = , W = R = 
( 0 )  (2.47)

(p- 1)- w(-p+1) Cww(p-1) 0 0 CW,(O )

Now it is necessary to estimate R,, through w (k) (the wavelet deconvolved by the

complex cepstrum) and Rnn/Rrr through the following steps (see Appendix A).

(1) Compute the eigenvalues ai of the correlation matrix Rss, i.e., R,, = R. + R,, (0) I.

(2) Compute the eigenvalues ai of the correlation matrix RW,.

(3) Estimate the rank Q of the correlation matrix R,, by finding q=Q at which the

function f(q) arrives its minimum:

f(q) = (P-q)ln1 YI - In (i,) + q (P + 0.5 - q/2). (2.48)

i =q+1 i=q+1

(4) Estimate Rn, (0) by taking the average of the P-Q smallest eigenvalues a, (the

eigenvalues are arranged in decreasing order):

P

Rnn(0) = (PQ) . (2.49)

i=Q+l

(5) Estimate the eigenvalues x, of R, from Xi = i -Ran (0).

(6) Estimate Rrr (0) by means of Rrr (0) = Q •1.
i=1

(7) Compute Rnn (0) /Rrr (0) .



2.5 Combination of homomorphic deconvolution and Wiener Filtering
Although the Wiener filter is well defined for a minimum or maximum phase input

sequence, it is rather unstable for a mixed phase sequence. Since the received signal and

wavelet are mixed phase in real life, an idea is to factorize the received signal and wavelet

into their minimum and maximum phase components. Then in order to improve the

deconvolution method, we can apply a zero-lag causal Wiener and anti-causal Wiener fil-

ter to the minimum and maximum phase component, respectively.

Definition and implementation of the band-pass mapping system
In general the signals are band-pass filtered before being sampled in order to increase

the signal-to-noise ratio. The complex cepstrum cannot be applied directly to the band-

pass signal, since the logarithm is not defined in the frequency domain where the signal

vanishes. Before applying any cepstrum analysis, it is necessary to transform the band-

pass signal into a full band signal. Such a system is called a band-pass mapping system[7].

The band-pass signal satisfies

X(co) # 0, , 1 | Iol o2 otherwise X(o) = 0, (2.50)

where o, and 02 are the cut off frequencies. Let k (o) denote the signal after band-pass

mapping system, then

x(o) = (wo), |Col•&_n, (2.51)
(0-co1

where &o (o) = (0,21, I (0 (02.
02 - 1

Tribolet[8] has verified that the band-pass mapping is an invertible homomorphic

operation. Let x(n) be N samples sequence and X(k) the corresponding DFT sequence.

The center frequency corresponds to the frequency sample N (i.e., normalized frequency

0.5); the cut-off frequencies correspond to - Ni and + N1 . The operation of band-passmapping can be decomposed into the following steps.

mapping can be decomposed into the following steps.



1. Shift the band-pass spectrum to 0.

2. Compute the 2N1 + 1 IDFT of the sequence X(k) for N-N 1 <k < N+ N1 .

3. Zero-pad the new time series to get a time sequence of N samples.

The inverse band-pass mapping operation can be broken down into the following

phases.

1. Cut the N samples of the deconvolved sequence at the first 2N, + 1 samples.

2. Compute the DFT of 2N1 + 1 sequence.

3. Shift the spectrum to the N -N, frequency sample; set the spectrum value X (k) at 0

for <k< 1N-NI-1 and +N+N1+<k< N.

4. Compute the N IDFT.

Normalization of the signal before applying the cepstrum
When the time series i(n) (after band-pass mapping) does not fulfill the requirements

that its DC component (polarity) is positive and its mean phase derivative is equal to zero,

the input sequence I (n) must be normalized before applying complex cepstrum[6]. The

first part of normalization consists of multiplying k(o) by e(-j 'r) (r is the mean phase

derivative of i (n) . The second part of the normalization consists of multiplying i (w) by

the polarity. It seems that the linear phase and the polarity is lost after normalization.

However, the cepstrum, in this thesis, is applied only to separate the minimum phase part

and maximum phase part, which are used to construct the Wiener filter (Figure 2.2), the

lost information can be recovered from the convolution of Wiener filter and the received

signal. Actually, what Wiener filter does is the removal of noise.

Factorization of the mixed phase signal
The received signal s (t) = w (t) r (t) + n (t) , in the z-domain, is of the form



S(z) = W(z)R(z) +N(z). (2.52)

Suppose that the s (z) is a rational transfer function, and W(z) can be factorized as fol-

lows:

W(z) = Wmnp (Z) Wmaxp (Z) , (2.53)

where Wmin, (z) and Wmaxp (z) are respectively the minimum and maximum pulse compo-

nents of W(z) . Similarly, R (z) can be factorized as follows

R (z) = Rminp (z) Rmaxp (z) . (2.54)

Therefore, S (z) can be rewritten in the form of:

S(z) = [Wminp(Z)RRp(Z) [ Wmaxp (Z) Rmaxp(Z) +N(z)

= Sminp (z) Smaxp (z) , (2.55)

where Sminp (z) = Wminp (z) Rminp (z) + N 1 (z) , and Smax (z) = Wmaxp (z) Rmaxp (z) +N 2 (z)

In the cepstrum domain, the previous Eq. 2.55 becomes

S (t) = Amip (t) + Smaxp (t) . (2.56)

Then by applying the complex cepstrum, we are able to factorized A (t) and i' (t) into

their minimum and maximum phase condition because minium phase signal is zero for the

negative qufrency and maximum phase signals equal zero for the positive qufrency.

Procedure for deconvolving the wavelet and the medium impulse
response

To deconvolve the wavelet and estimate the medium impulse response, the following

steps are involved.

1. Band-pass mapping of received signal s (t) to get ý (t) , then normalize 9 (t) .

2. Apply the complex cepstrum to the signal i (t) .

3. Filter the complex cepstrum by means of two rectangular windows. The first win-



dow is defined for the positive qufrencies in order to extract the cepstrum Sminp (t) , the sec-

ond window is defined for the negative qufrencies in order to extract 3maxp (t).

4. Low-pass filter Sminp (t) to get min,,, (t) and high-pass filter &max, (t) to get Amaxp (t).

5. Design hminp (t) with mi•,, (t) and minp (t) , and design hmaxp (t) with smaxp (t) and

i'maxp (t)

6. The medium impulse response i (t) is estimated as follows:

(2.57)?(t) = i(t) ®h(t) = i(t) [hmaxp,(t) ®hminp(t)]

7. Inverse band-pass mapping of · (t) to get r (t) .

The box diagram of this procedure is shown in Figure 2.2,

{ deconvolved channel response }

Figure 2.2: Deconvolution procedure

where system B is the band-pass mapping, and B-1 is the inverse of system B, and * is the

convolution operator.



Chapter 3

Theoretical simulation results

3.1 One-way simulation results
The scenario depicted in Figure 3.1 relates to active sonar propagation. The transmit-

ted signal is windowed CW pulses and the reverberated signal is received on a horizontal

towed array. The results prove the feasibility of the methods detailed in chapter 2.

botto\meflected arrival\/

Figure 3.1: Configuration of the active sonar one way transmission

Transmitted signal
The transmitted signal is a Hanning-windowed CW pulse. The pulse length is taken as

a parameter of the simulation. The sampled CW pulse is modeled as

x(t) = sin [21rfo(n - 1)] [1 -cs(2 2(n 1)), (3.1)

where L is the pulse length in samples and fo is the normalized frequency of the CW sig-

nal (i.e., fo = f/f,, fc is the center frequency and f, is the sample frequency). The CW

pulse is represented in Fig. 3.3(a), where L is 64 and fo equals 0.25.

Medium impulse response
Usually, the reverberation model has one direct path and many multipaths which are



the combination of the surface reflection and bottom reflection or refraction. In this sec-

tion, we do not model the transfer function of the surface, nor the bottom transfer function.

The channel impulse is given by:

r (n) = A 16 (n - kl) -A 28 (n - k2) + A3 8 (n - k3) -A 48 (n - k4) + .... (3.2)

Additive noise
The noise is characterized by its spectrum and the signal-to-noise ratio, and is defined

as the response of a linear filter to an input white Gaussian noise (random normal

sequence). Since the band-pass mapping system is used before complex cepstrum, the sig-

nal-to-noise ratio before and after the band-pass mapping are both important to analyze

the simulation and experimental results. The signal-to-noise ratio is calculated in full band

as follows:

5NR = 10log 'INVf)|2' (3.3)

fBNW1

BSNR = 9, (3.4)

where N (f) and Y () , are respectively the spectrum of the noise n (t) and the received sig-

nal without noise y (t) , while V(f) and i (f) are the corresponding spectrum after band-

pass mapping. B is the frequency bandwidth. 'SNR' and 'BSNR' are called the signal-to-

noise ratio before and after band-pass mapping, respectively.

Description of the processing
An observation time of 256 time samples is used and the simulated channel response

is combined with three impulses corresponded to A1 = 0.9,A 2 = -0.9 4,A 3 = 0.96,Ai> 3 = 0

and ki = 80, k2 = 110, k3 = 170 in Eq. 3.2. The received signal is band-pass filtered in with



a rectangular window defined by the lowest normalized frequency fmin = 0.222 and

fmax = 0.277. The band-pass mapping and the complex cepstrum was applied to get the

recovered signal. The medium impulse response is deconvolved by Wiener filter.

Results and their interpretation
Figure 3.2--Figure 3.11 are the results of one-way simulation with different signal-to-

noise ratios and different realization of random noise. The transmitted signal and the chan-

nel response in these figures are the same. It can be seen that the method is robust for sig-

nal-to-noise ratio down to lower than -lldb for some realization of random noise.

However, sometimes, even when the signal-to-noise ratio is not low, the result is not as

good as it for other realizations. In order to analyze this phenomenon, two different real-

ization of random noise are used and are drawn in Figure 3.12. Figure 3.2--Figure 3.8 are

of random noise[a] with signal-to-noise ratio from 3.98dB to -11.655dB, which demon-

strates that the method detailed in Chapter 2 is successful in recovering the transmitted

signal and the channel response. Figure 3.9--Figure 3.11 are of random noise[b]. Figure

3.2, Figure 3.5, Figure 3.6, and Figure 3.9 show us the deconvolved channel response and

minimum-phase wavelet under different received signals. Figure 3.4 and Figure 3.11 give

us some intuition about the complex cepstrum of noise, transmitted signal and channel

response, which tell us that the lower part of the complex cepstrum is mainly from noise

and transmitted signal. Figure 3.3, Figure 3.7, Figure 3.8, and Figure 3.10 depict the

recovered transmitted signal and the correlation function of the recovered signal and the

CW pulse, which indicate that the recovered transmitted signal can be rescaled by correla-

tion with the transmitted pulse. It can be seen from all these figures that the band-pass

mapping is very helpful in increasing the signal-to-noise ratio, which is required for

applying the complex cepstrum. The difference between SNR and BSNR of these figures is

up to 7.6dB. The deconvolved wavelet in Figure 3.2(b), Figure 3.5(b), Figure 3.6(b), and



Figure 3.9(b) is the wavelet after band-pass mapping. When the signal-to-noise ratio

decreases to -11.65dB, there seems not so much information in Figure 3.6(b), the channel

response of Figure 3.6(c) and the main frequency of transmitted signal of Figure 3.8(b)

can still be resolved, though the shape of transmitted signal cannot be well recovered as

shown in Figure 3.8(a). This is because the general shape of the transform of Gaussian

white noise is a constant function with many local variations and results in a DC compo-

nent of the spectrum[12]. Therefore, the white noise maps to the point t=O of cepstrum

domain. So, the low qufrency part of complex cepstrum, especially the point t=O, is more

sensitive to the white noise. The Wiener filter, with the deconvolved wavelet as input, can

successfully separate the three multipaths shown in Figure 3.2(c), Figure 3.5(c), and Fig-

ure 3.6(c). In Figure 3.9(c), the result of Wiener filter is not 'optimal' and the absolute

amplitude information of channel response is lost as a consequence of the fact that the real

ambient noise is not white enough. Thus, a 'white noise' parameter is needed to add to the

zero-lag element of the autocorrelation matrix in order to stabilize the computation of the

inverse[13]. The ill-conditioned problem arises because the order of the received signal is

smaller than the order of the linear system (channel response), so that the estimation of

R (0) /Rrr (0) is not reasonable as shown in Appendix A. Figure 3.12 says that there is lit-

tle difference of standard deviation(STD) value between two realizations of random noise,

and the larger the STD, the wider the noise cepstrum. It can be concluded that the white-

ness might effect the Wiener filter resolution. Moreover, Figure 3.9 shows that the linear

phase seems sensitive to the realization of random noise so that the time delay in the chan-

nel response cannot be deconvolved properly, though the relative positions of the multi-

paths are still correct after the Wiener filter.
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Figure 3.2: Deconvolution of medium response
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(c) Cross correlation between a & b
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(b) Recovered signal
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Figure 3.3: Comparison of transmitted signal and recovered signal [correspond to
received signal of Figure 3.2(a), snr=3.908dB, bsnr= 11.54dB]
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Figure 3.4: Complex cepstrum of noise, CW signal, and simulated channel response [cor-
respond to received signal of Figure 3.2(a), snr=3.908dB,bsnr=-11.54dB]
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(a) received signal, snr: -8.133dB, bsnr: -0.5034dB
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Figure 3.5: Deconvolution of medium response
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(a) received signal, snr: -11.65dB, bsnr: -4.025dB

(b) deconvolved wavelet
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Figure 3.6: Deconvolution of medium response
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(c) Cross correlation between a & b
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(b) Recovered signal

150

(d) Cross correlation between a & b

m"0

Q- -50

p-100

__1 fl•.

time samples
o0 0 50 100 150

Figure 3.7: Comparison of transmitted signal and recovered signal [correspond to
received signal of Fig 3.5(a),snr=-8.133dB, bsnr=0.5034dB]
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Figure 3.8: Comparison of transmitted signal and recovered signal [correspond to
received signal of Fig 3.6(a),snr=-11.65dB, bsnr=-4.025dB]
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(a) received signal, snr: 3.027dB, bsnr: 13.39dB
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Figure 3.9: Deconvolution of medium response
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Figure 3.10: Comparison of transmitted signal and recovered signal [correspond to
received signal of Fig 3.9(a),snr=3.027dB,bsnr=-13.39dB]
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Figure 3.11: Complex cepstrum of noise, CW signal, and simulated channel response
[correspond to received signal of Fig 3.9(a),snr=3.027dB,bsnr=13.39dB]
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Noise a
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Figure 3.12: Comparison of two realizations of random noise
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3.2 1\vo-way simulation results

The scenario depicted in Figure 3.13 is a typical two-way reverberation in shallow

water. The channel is characterized with the following parameters:

D : Channel depth (35m).

Ds: Depth of source and receiver (range from 3 to 32m).

Dt: Depth of target (ranges from 3 to 32m).

L: Range from source to target (200m).

Sea Surface

Dssource* ---------------
+

receiver

o
target

Sea Bottom

Figure 3.13: Configuration of two way transmission

Dt

Description of the signals, impulse response and noise.

The signal used here is a 10kHz gated sine wave of pulse length 0.33ms with a 3 kHz

bandwidth shown in Figure 3.15(a), Figure 3.18(a), and Figure 3.21(a). Since the range

from source to target is only 200m, it is reasonable to assume the iso-velocity profile and

use ray tracing mode to calculate the two-way channel response shown in Figure 3.14,

Figure 3.17, and Figure 3.20. Zero mean random Gaussian noise is added to the convolved

signal at different levels of variance. The received signal is the one after the matched fil-

ter[14], which cuts out all the noise that is not in the bandwidth of the original signal and

43



much of the noise in the signal's frequency band that is not correlated with the signal.

Description of the processing
An observation time of 2048 time-samples (about 41ms) has been used and the pulse

length is equal to 16 time-samples (about 0.33ms).The received signal is first matched fil-

tered and then band-passed filtered with a rectangular window defined by the bandwidth

of the transmitted signal. After that, we apply the band-pass mapping and the complex

cepstrum to get the deconvolved wavelet. The channel response is deconvolved by Wiener

filter shown in Figure 2.2.

Results and their interpretation
Figure 3.14--Figure 3.21 are the results of two-way simulation with different signal-

to-noise ratios and different realization of random noise. The transmitted signal and the

simulated channel response in these figures are the same. Figure 3.14--Figure 3.18 use the

same realization of random noise (i.e., noise[a] of Figure 3.22) with signal-to-noise ratio

from 2.787 dB to 0.1055dB. Figure 3.19--Figure 3.21 use another realization of random

noise [b] of Figure 3.22. Figure 3.14, Figure 3.17, and Figure 3.19 show us the decon-

volved channel response and minimum-phase wavelet under different received signal. The

complex cepstrum of noise, transmitted signal, and channel response are shown in Figure

3.16 and Figure 3.21. The recovered signal and its cross correlation function with trans-

mitted pulse is depicted in Figure 3.15, Figure 3.18, and Figure 3.20. These figures show

that the center frequency of transmitted signal is rather well deconvolved down to a SNR

of about 0 dB, and it seems relatively insensitive to additive noise. When the SNR is

higher and the noise is quite 'white', the shape of the transmitted signal can also be decon-

volved as presented in Figure 3.15. By comparing Figure 3.14 and Figure 3.16 with Figure

3.19 and Figure 3.21, we can see that the deconvolution of channel response is sensitive to



the 'whiteness' of noise. Same as in Figure 3.12, Figure 3.22 says that the larger the STD,

the wider the complex cepstrum. The cepstrum of noise in Figure 3.21 is wider than the

one in Figure 3.16, therefore, the resolution of channel response in Figure 3.19 is lower

than that in Figure 3.14. However, both these figures demonstrate that the Wiener filter

does well in increasing the resolution of the channel response estimation. Theoretically,

the resolution of the processing depends on the bandwidth of the original signal. In simu-

lation, the bandwidth of transmitted signal is 3kHz, so the resolution is 0.33(ms) which

can be seen in Figure 3.14. Since the channel response of two way propagation is more

complex than that of one way propagation, the complex cepstrum of channel response

contributes not only the 'high time' of cepstrum but also the 'low time' of cepstrum. Thus

the channel response cannot be deconvolved down to SNR of -11.65dB as with one way

simulation. In Figure 3.17, when SNR equals 0.1055dB, we still can get the correct time

delay of the signal to be send out and return along the shortest path. In addition, the trans-

mitted signal is minium phased, so, in Figure 3.16 and Figure 3.21, the cepstrum of trans-

mitted signal only occupies the positive part, which is consistent with Chapter 2.

The simulation results of one-way and two-way propagation show that the obvious

advantage here is that the recovery method is independent of the original signal and the

transfer function. Once some spectrum or cepstrum distribution characteristics of the

transmitted signal or channel response is known, both of them can be deconvolved. There-

fore, the deconvolution method detailed in Chapter 2 is robust to changes in the original

signal or the transfer function due to the variations in the propagation channel. The pro-

cessing is, however, sensitive to the whiteness of the additive Gaussian noise. As long as

SNR is greater than 3dB after matched filtering, then recovering of the channel impulse

response is possible, based on the simulation results shown here.



Received signal, snr: 2.787dB, bsnr: 8.609dB
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(c) Cross correlation between a & b
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Figure 3.15: Comparison of transmitted signal and recovered signal [correspond to
received signal of Figure 3.14]
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Chapter 4

Results with experimental data

4.1 Recovery of medium response

Experimental condition
The field data discussed here came from an acoustic reverberation experiment con-

ducted by Draper Laboratory. The aim of the experiment was to estimate the multipath

structure and to detect targets near the shallow water bottom. The experiment scenario is

depicted in Fig. 4.1.

side view

sea surface

source \
receiver \

N Z\ target

sea bottom

Figure 4.1: Configuration of backscattering experiment

The source and the receiver were co-located with the source approximately 2 feet

below the receiver array. The source was at a depth of approximately 22 feet, while the

bottom depth was approximately 40 feet. The source array is omni-direction and the

receiver array has a vertical beamwidth of about 20 degrees while the horizontal beam-

width is 11.25 degrees steering from 202.5 degrees to 337.5 degrees. The azimuthal angle

of the receiver array in the horizontal is bearing-oriented, with forwarded being 0 degree,



starboard beam 90 degrees, aft 180 degrees, and port beam 270 degrees. The receive array

is designed to be populated with hydrophones only on the port side, hence the range of

beam centers from 202.5 to 337.5 degrees all refer to the port side as well. The sound

velocity profile at a nearby mooring is depicted in Figure 4.2, where the star and cross rep-

resent the source and the receiver, respectively.
Sound velocity Profile

4s35 1440 1445 1450 1455 1460
velocity (m/s)

1465 1470

Figure 4.2: Sound velocity profile

Signal characteristics
An FM chirp was used for the experiment with a center frequency of 8.5 kHz and a

bandwidth of either 5 kHz or 7kHz, and a duration of 5, 10, 20, or 40 msec, depending on

the ping as shown in Table 4.. 1.

Ping number Duration bandwidth (Hz)

526,531,536 5msec 5000

527,532,537 10msec 5000

528,533,538 20msec 5000

529,534,539 40msec 5000

530,535,540 40msec 7000

Table 4.1: Duration and bandwidth of Ping signal

The barge moved due north following a line. The ping number corresponds to the dif-

n ·

II



ferent points on the line. The x-y positions in meters of the array for pings 526 to 540 are

shown in Table 4.2.

526 [2346.3m, 1725.3m] 531 [2352.1m, 1735.9m] 536 [2347.1m, 1749.4m]

527 [2347.7m, 1727.9m] 532 [2351.7m, 1738.8m] 537 [2346.3m, 1754.0m]

528 [2349.0m, 1730.3m] 533 [2350.5m, 1741.3m] 538 [2345.9m, 1758.3m]

529 [2350.5m, 1732.9m] 534 [2349.3m, 1743.7m] 539 [2345.2m, 1761.4m]

530 [2351.7m, 1734.2m] 535 [2347.8m, 1745.9m] 540 [2344.7m, 1764.2m]

Table 4.2: Position of different ping

Description of the processing
Beam time series data is roughly 325m, which corresponds to 11265 range bins. All

the receiver signals have been matched filtered and are processed with the same steps

detailed in Figure 2.2. Due to the computer memory limitation, the received signal first

passes the moving window, which also depresses the noise outside it, and thus improves

the signal-to-noise ratio. The wavelet is deconvolved by the complex cepstrum (after

band-pass mapping). The channel response is resolved by Wiener filtering.

Results
The received time series, the deconvolved channel responses and their spectrums for

ping number 526, 527, 528, 529, and 530 are depicted in Figures 4.3, 4.5, 4,7, 4.9, 4.11.

The deconvolved wavelet, the resolved transmitted signal and its spectrum of different

moving window are show in Figure 4.4, 4.6, 4.8, 4.10, 4.12. Comparing (a)'s and (b)'s of

Figures 4.3, 4.5, 4,7, 4.9, 4.11, we can see that the Wiener filter really gives us a sharpened

channel response. Since the bandwidth of the transmitted signal is 5000 Hz and 7000 Hz

for different pings (seen Table 4.1), the theoretical resolution is, respectively, about 0.144

m and 0.1029 m, if we assume a sound velocity is 1440 m/s. The difference of recovered

signal spectrum at different moving window is mainly caused by the SNR of that window



which has been discussed in chapter 3.

All of these figures show that the method detailed in Figure 2.2 is helpful in increasing

the resolution of channel response, which is the key basis to detect the targets, because the

channel response can be thought of as the convolution of target information with channel

information. In the next section, we will discuss how to sharpen the image and remove

spurious detections caused by multipaths.
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Figure 4.9: Received signal and deconvolved channel response
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4.2 Target detection
In section 4.1, we have already gotten the sharpened channel response at different

directions of different ping numbers, which correspond to the navigation points. Base on

that, we can use information of both amplitude and phase to find the target distribution

free of multipaths. Following are three aspects of target detection.

B-scan map
With all the amplitude information, B-scan maps give some intuition of target distri-

bution in range scale. Let the ping position be the centre of a circle, the same range bin of

13 direction beams must be on the same radius of a circle, so, the maximum value of one

range bin between 13 direction beams of one ping must contain some information of the

target if there exists targets near that range bin. Therefore, the first step is to get the 'max-

imum value beam' from 13 direction beams of one ping, then put all the 'maximum value

beams' together to get Figure 4.12. Both figures of Figure 4.12 are drawn with data inte-

grated from the processed experimental data because of computer memory limitation. One

point of the top figure is integrated with 16 points which equal 0.42m, and one point of the

bottom figure is integrated with 44 points which equal 1.155m. There is not much differ-

ence between these two figures. That is to say, the error caused by integration is in the

range of experimental error. Figure 4.13 also tell us that the power of the received signal

decreases as the bandwidth of the emitted signal increases. In order to cut off the interfer-

ence of power of 'maximum value beam', the technique of AGC (automatic gain control')

is used to get Figure 4.14 so that many points with low SNR (dark color) in Figure 4.13

can be seen in Figure 4.14. Both Figure 4.13 and Figure 4.14 are generally called B-scan

maps, which condenses all the data into one figure. It can be seen from these figures that

the candidate targets are identified at range of around 120m, 175m, and 230m for ping

#77.
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Target Localization
Target localization presents the real geometric distribution of targets using amplitude

and azimuthal angle information. As the barge moves on, the spurious targets caused by

multipaths will change their positions in a coordinate with respect to a fixed point on the

land while the real targets' positions remain unchanged. With this idea, we smooth the

deconvolved channel response to obtain the waveform, then set a threshold level to filter

the targets, and finally locate their positions according to time delays, positions of pings,

and angles of beams, in a coordinate with respect to a fixed point. Since, the resolution of

the channel response achieved by Wiener filter is increased, we will be able to detect the

weak target near strong objects if we lower the threshold. From Figure 4.15-4.16, the

direction distribution of targets can be seen obviously: most of the strong targets are along

the aft direction of barge while the weak targets are along the forward direction of barge.

This phenomenon may be caused by the steep sloping bottom. The relationship between

the signal power and bandwidth can also be observed in these 'target maps'. Those points

which overlap each other can be thought as the 'most likely targets', which are also shown

in the bright color area of the B-scan picture (around 120-150m).
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Excess path lengths due to multipath

ai

I / sea bottom

Figure 4.17: Multipath and direct path

The excess path length, also called apparent additional range, is the difference

between multipath and direct path. From Figure 4.17, we can see that the 'excess path

length' will decrease as the distance between the target and the source increases. Suppose

the target is at an infinite distance, then the 'excess path length' equal zero, which means

there is no range difference between the direct path and the multipath. So, if we can find

this kind of structure of multipath from the experimental data, we can decide which kind

of multipath (reflective or refractive) is dominant under shallow water in this experimental

area and find the target position by comparing with the theoretical result. Figure 4.18-4.19

show that the similar 'excess path length due to multipath' relation is obvious from the

channel response after applying the Wiener filter while it is difficult to see this relation

from the original received signal. Since the experimental range is short, the theoretical

result with iso-velocity profile shown in Figure 4.2 can be use as the result of real sound

velocity profile. In order to get the 'excess path length' from real data, we first apply the

rectangular window to the deconvolved channel response. The window length should be

greater than the longest 'excess path length' chosen from Figure 4.20 according to the dif-
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ferent range points. Then autocorrelate the time series inside the window. Finally, the time

delay between the peaks of time series after autocorrelation corresponds to the 'excess

path length' near that range. The experimental result of one beam data was depicted in

Figure 4.21 in which the light color depicts the peak and the dark color represents valley.

Comparing Figure 4.20 with Figure 4.21, we conclude that the multipath structure named

'excess path length due to multipath' can be obtained from the deconvolved channel

response which confirms that the method detailed in Figure 2.2 improves the resolution.
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202.5

Received Signal
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Excess Path Lengths Due to Multipath
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Figure 4.20: Excess path length from theoretical calculation
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Figure 4.21: Excess path length from experimental data after Wiener filter
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Chapter 5

Conclusions

In this thesis, the synthetic data of both one way and two way propagation has been

analyzed to successfully recover the sonar signal and the channel response from the

received signal, which is corrupted with both ambient and reverberant noise (chapter 3).

Substantial improvement in increasing the resolution of channel response is demonstrated

with Draper's field data. This makes possible the implementation of the 'target localiza-

tion' and the 'excess path length' which is used as a filter to the data to analyze the effect

of multipath. The method of B-scan maps is used to give some intuition of the targets dis-

tribution in the range scale.

The complex cepstrum used to deconvolve the wavelet does not require a minimum or

maximum phase characteristic for the signals, and therefore is very useful in propagation

and reverberation application, for which the signals are mostly mixed phase. Meanwhile,

the complex cepstrum in this thesis is also used to separate the minimum phase and the

maximum phase component to construct the causal and anticausal Wiener filter. Although

the complex cepstrum requires a relatively high signal-to-noise ratio due to its phase being

sensitive to the noise, it casts few effects in channel response recovery because we only

use its property to transform the convolution in time to addition in the cepstrum domain.

All the phase information is recovered by convolution of received signal with the con-

structed Wiener filter.

The combination of homomorphic deconvolution and Wiener filtering proves to be

quite robust to the noise in that it capitalizes on the individual advantages of both the tech-

niques. The homomorphic deconvolution handles the mixed phase characteristics of the



signal while the Wiener filter provides high resolution of the medium response. The

method detailed in Figure 2.2 is successfully used for SNR down to -11.64 dB of one way

propagation, and 0.2 dB of two way propagation. Some results using this promising mixed

technique are demonstrated with experimental data through the 'B-scan map', the 'target

localization', and the 'excess path length due to multipath'.

The 'target localization' and the 'B-scan' map are helpful for understanding the targets

spatial distribution, which reflects the geological characteristics of the ocean environment.

Thus, the intuition about how to extend the usable range of a sonar in shallow water can be

obtained. The structure of 'excess path length' gained from the experimental data is bene-

ficial for a better understanding of multipath, especially in shallow water. Therefore, it

might be used as a filter to remove the spurious detections caused by multipath.

Work in the immediate future will focus on our more detailed testing of using the

'excess path length due to multipath' to find the true echo from an object to be observed

free of multipath. Although the Wiener filter is quite successful in increasing the resolu-

tion of the channel response, it is not optimal for the uncorrelated noise and uncorrelated

channel response, which limit its applications. An interesting extension of this work

would be to find a filter which is effective in non-white environment.



Appendix A

Estimation of Rnn(O)/Rrr(O)

A.1 Likelihood function
Let matrix s = (s, S2, ..., sM) be a series of independent, zero-mean, Gaussian random

vector, wheresk is a series of random variables of order p, i.e.,

s [0]

Sk 1 ,ke 1,2,...,M,
s [p]

and R,, = Rnn + R = Rnn (0) I+ R .

The probability density function of S is given by

p(S/Rnn (0), R) = (2n) (-MP) /2 R• -M2exp T- SRS
k=1

Define the likelihood function as

-2
0(S) = MInp (S/Rnn (0), Ryy) -pln2%

M

- In IR+ SRSk = nlRnn (O) I+R + tr (Rnn (O)+Ryy)-ls i
k= 1

M

where kR= SkSk
k=1

Assume R,, can be expanded into its eigenvalues and eigenvectors decomposition
Q Q

Ry = jiXuiur , then Rnn can be written as R,, = Rn (0) uOuT, and the inverse of
i=1 i=l

R., (0)1 + R,, is given by

-1 1 (-
(R, (0) + R) = R,,,n (0) Rn (0) + Tiugu ]

where Q is the rank of R .

Therefore,

tr[ (Ran (0)I + Ryy) -as] = Rnn (0) tr( iR (0) Rn (0 +u R,
i= 1



and

Q

R,, (0) I+ RyI = [Rnn (0) ]P-Q (Rnn (O) + Xi)
i= 1

Thus, the likelihood function c (S/R,, (0), h,, u,) can be rewritten as

F 1
( = (P - Q) lnR,, (0) + In (Rnn (0) + X1 ) + Rnn(O) tr (Rss) - u ssu

i=1 i=1

Till now we can estimate three variables Rnn (0), Xi, u, step by step through minimizing

cD with respect to only one variable and with other variables fixed.

A.2 Estimation of up ,1 , Rnn (0)

We first need to find estimation of u,, which minimizes D with hX, Rnn (0) fixed. The

minimization here is equivalent to maximizing the quantity n(0) + ussi. Since
i= 1

ur k,,u is maximum if u is the eigenvector of ,, corresponding to the largest eigenvalue,

the sum of Q quadratic forms reaches maximum if u, takes on ai (i E [1, Q] ), which are the

eigenvalues of ks arranged in decreasing order.

A P k• Rnn (0)Noting that tr (,s) = o0, and R, 1(0) (0) Thus the minimum of
i=l

function c is given by

0 = (P - Q) InRn (0) + In (Rnn (0) +t Ri+ tr (RS) -+) Rni=1 i=i(0) (O) +XiJ
SP Q

= (P- Q)lnRn(0) + (R () + + Rnn (0) Rnn(O ) + i
i=1 i=Q+I i=1

Second, we minimize e, with respect to X1 . Recall that the function is minimum for

the gradient equal to zero and the hessian positive. The gradient equals zero when

1 O == 0, 15 i<Q
Rnn (0) + Xi (Rnn (0) + %i) 2

which gives



fi = o,-Rn (0).

The minimum of the function c assumes the form

Q
(D = (P- Q) InRnn (0) + In (ai)

i1i=

P

+ R• 0) + Q.
i=fQ+1

Third, the function c is minimum with respect to Rnn (0) for

P
P-Q 1 G 0,

Rn (0) (Ra (0)) 2 , =+ O

so, the estimation of Rnn,, (0) is given by

P
1

Rnn (0) = P ,,
and the function Q+

and the function c can be rewritten as

c (Q) = (P - Q) In P
Q+1 tG-

i=Q+1

In (ao) +P+ In (a,) .
i=l

A.3 Akaike criterion and estimation of Q, Rnn (0) /Rrr (0)
The Akaike estimate of the order of a model[15] is the minimum of the function

numlf(q) = D (q) +num
num2'

where numl is the number of free parameters, num2 is the number of observations, and

4 (q) is the likelihood function of the model of order q. In our case, with the constant term

being removed, the function f(q) takes the following form

P-q
i=q+l i=q+l

So, the estimation of Q is q with which the function reaches its minimum.

Because of the equality of Eq. 2.42, the eigenvalue 7, and a, are linked together by



the relation

ki = Rrr (0) OC

with a, as the eigenvalues of the correlation matrix Rww. So, we estimate Rrr (0) by means

of

rr (0) i=1 Q2

Finally, the estimation of Rnn (0) /Rrr (0) is given by

P

Rnn,, (0)
Rrr (O)

i= 1+

i=1
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