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Abstract

Adaptive control refers to the control of systems that have poorly known parameters
but a well modeled structure. The adaptive control of linear, time-invariant systems
is well understood. However, for systems with multiple inputs and multiple outputs
the adaptive controller is of high order and complex making the approach inapplicable
in a number of practical problems.

In this thesis a new approach to adaptive control of multivariable plants is pro-
posed. The proposed controller is of lower order and contains fewer on-line adjustable
parameters than other adaptive control methods. For designing the multivariable
adaptive controller, the order of the plant is not required to be known. The minimum
row relative degrees of the plant transfer function matrix are assumed not to exceed
two. A stability proof based on positive realness of the underlying system dynamics is
given. Since in practice unmodeled dynamics may be present, a robustified adaptive
control algorithm is presented. A proof is given that shows that loop signals remain
bounded when unmodeled dynamics are excited.

The control approach is well suited to the control of distributed systems which
have a high modal density and use multiple inputs and outputs. Two applications
are discussed, flexible structures and combustion. In the flexible structure applica-
tion it is shown that tracking can be achieved in the presence of on-line introduced
parametric uncertainties. Using an adaptive version of the internal model principle,
attenuation of external disturbances of unknown frequency is accomplished as well.
In the combustion application it is shown that unstable pressure modes can be sta-
bilized in the presence of parametric uncertainties in the model and changes in the
operating point.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Assistant Professor
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Nomenclature

Rxm2 (s)

A(A)

A(A)

Ai(A)

K

E

ri = ri[G(s)]

X|12

IAIF

I11f = Ilf11C

Open left half complex plane

Set of mi x m 2 matrices whose elements are rational functions of s

Spectrum of a square matrix A

A(A) \ {0}

ith eigenvalue of a square matrix A

High frequency gain matrix of G(s) E lmxm(s)

If E is non-singlar then E = K E Rmxm

Minimal relative degree in the ith row of G(s) E RmXm(s)

Observability index

Euclidean norm of x e IRn

Frobenius norm of a matrix A E IRn xm

Infinity norm of f : IR -4 R n





Chapter 1

Introduction

1.1 Motivation

Adaptive control refers to the automatic control of partially known systems. When

controlling a physical process, the control design engineer rarely knows the process

characteristics exactly. The characteristics of the process can change with time due

to a variety of factors and there may also be unforeseen changes in the environment

in which the system operates. Conventional control design methods may not be able

to achieve satisfactory performance in the entire range over which the characteristics

of the process may vary. Adaptive control methods are developed to accommodate

this uncertainty in the plant and environment explicitly.

A significant part of the field of adaptive control addresses dynamic systems that

have parametric uncertainties. These uncertainties are due to for example errors in

the model parameters, on-line changes in the plant parameters or changes in the op-

erating conditions. The adaptive control of linear, single-input single-output (SISO),

time-invariant (LTI) systems with unknown plant parameters but known structure is

currently well understood [24, 47]. Several extensions to adaptive control theory have

been attempted to include time-variations, unmodeled dynamics and nonlinearities in

the plant. These extensions are known as robust adaptive control. The development

of adaptive control emphasized initially SISO systems and it was only later that a

theory for multi-input multi-output (MIMO) systems was developed.



Adaptive control of multivariable, square, LTI plants usually requires that the

following assumptions are satisfied [47, 59]:

(I) An upperbound on the observability index v of the plant is known.

(II) The right Hermite normal form of the plant is known.

(III) The transmission zeros of the plant lie in P-.

(IV) An adaptation gain matrix F can be found such that KpF = (KpF)T > 0, where

K, is the high frequency gain matrix of the plant.

These conditions are similar to the assumptions made in the SISO case. The assump-

tions for the MIMO case are more restrictive however, and it was recognized early on

that the main issues in multivariable adaptive control are the reduction of the prior

knowledge of the system while keeping good convergence and stability properties, and

the reduction of the number of parameters to be estimated [18, 19]. For certain appli-

cations, assumptions (II) and (IV) imply significant prior information regarding the

plant structure and its parameters, and considerable research effort has been spent in

trying to relax these assumptions (see for example [15, 45, 62]). On the other hand,

for high order plants, assumption (I) implies that the requisite adaptive controller will

be of high order, and complex. For example, the number of adjustable parameters

for a Model Reference Adaptive Control (MRAC) scheme is at least 2nm where n is

the order of the plant and m is the number of inputs and outputs. The order of the

adaptive controller is at least 2(n - m). Also, the complexity of MRAC control algo-

rithms increases if plants are considered whose Hermite normal form contains terms

of order higher than one. In applications such as the control of distributed systems,

assumption (I) may never be satisfied since the true system is infinite-dimensional.

Even if based on bandwidth considerations an estimate of the observability index is

used, this estimate can be high so that the complexity of the requisite controller be-

comes too large making it infeasible to implement. Furthermore, using this estimate,

stability of the adaptive controller can not be guaranteed beforehand. As in the SISO

case, modifications for robustness of MIMO adaptive control algorithms have been



developed as well [59]. However, the additional complexity introduced in the modified

adaptation algorithm compounds the feasibility problem considerably.

1.2 Contribution of Thesis

The main contribution of this thesis is that it provides an alternate approach to the

design of adaptive controllers for multivariable systems. The controller developed

is of lower order and has fewer on-line adjustable parameters than other multivari-

able adaptive control methods making the approach practically viable. Compared to

other multivariable adaptive control schemes, the method provides more insight into

the adaptive control design. Selected parameters can be tuned on-line resulting in

better transient performance. The theory underlying the adaptive control design is

presented. Conditions for which the underlying passivity properties hold are derived

rigorously. This derivation is based on the properties multivariable root-loci, and the

analysis of the associated input-output properties.

Another contribution of this thesis is the stability-robustness of the adaptive con-

trol algorithm. A modification of the adaptive laws such that bounded signals are

obtained in case unmodeled dynamics are excited is given. The modifications are

such that they are practically feasible, also for the multivariable case. A rigorous

robust-stability proof is given.

A third contribution is the application of the proposed low order adaptive con-

troller to distributed systems. Two examples are given. The first example is the

control of a flexible structure. Tracking can be accomplished in the presence of signif-

icant on-line introduced parametric uncertainties. Also, attenuation of band limited,

uncertain external disturbances can be accomplished. The second example is the

control of a combustion process. In the presence of parametric modeling errors and

over a wide range of operating points, open loop unstable pressure modes can be

stabilized.



1.3 Previous Work

The development of low order adaptive controllers for SISO plants was considered

in [13, 26, 43]. The nature of these controllers is such that they can not be put

in a broader framework that addresses the design of low order adaptive controllers.

Furthermore, robustness characteristics of these controllers are extremely difficult, if

not impossible, to establish. Multivariable extensions of these controllers have been

reported in [7, 31]. However, these multivariable controllers are restricted to plants

with no unmodeled dynamics, for which the Hermite normal form is diagonal with

order one transfer functions on the diagonal, or require prior knowledge of the range

in which the plant parameter values lie. The latter requirement implies significant

prior information regarding the plant to be controlled. The class of plants that will

be considered in this thesis is significantly larger than that in [7, 31], and the adaptive

control algorithm requires less prior information.

1.4 Synopsis of Thesis

In Chapter 2 mathematical preliminaries are given that summarize the stability con-

cepts used throughout the thesis, and some preliminary derivations are given whose

result will be used in Chapter 3. In Chapter 3 the fixed controller underlying the

adaptive controller is discussed. In Chapter 4 the low order adaptive controller is

presented, and its stability proof is given. In Chapter 4 a modification for robust-

ness of the adaptive algorithm is presented as well. In Chapter 5 the applicability of

the control method to vibration systems is investigated, and simulation results are

presented. Conclusions are given in Chapter 6.



Chapter 2

Mathematical Preliminaries

2.1 Introduction

In this chapter the mathematical tools used in the following chapters are presented.

The literature on the analysis and design of adaptive systems is extensive, see for

example [24, 47]. It is not the objective of this Chapter to review this literature, but

rather to present known results that are most relevant to the work presented in this

thesis. These results are presented in section 2.2. In section 2.3 a new parameteri-

zation of a linear time-invariant dynamic system is presented. This parameterization

is crucial in determining the assumptions for which the adaptive control algorithm

presented in Chapter 4 will be stable.

2.2 Definitions and Results

The adaptive control theory presented in this thesis is based primarily on Lyapunov

stability theory and the concept of positive dynamic systems. For a discussion of

Lyapunov theory, see for example [47, 57, 60]. Here we will focus on positive dy-

namic systems. A positive dynamic system is an extension to dynamic systems of the

concept of positivity. Positivity is a necessary and sufficient condition for a mathe-

matical object to be factorizable as a product. The theory of positive systems can

be used to establish links between the time and frequency domains. In what follows,



first frequency domain definitions of positive dynamic systems will be given, then a

well known result that relates the frequency domain conditions to the time domain

description of a dynamic system will be presented.

Definition 1 [49] H(s) E Jmxm(s) is Positive Real (PR) if

1. The elements of H(s) are analytic in Re[s] > 0,

2. H*(s) = HT(s*),

3. H(s) + H*(s) Ž> 0 in Re[s] > 0,

where * denotes the complex conjugate transpose. *

The first condition requires the input-output relation described by H(s) to be stable.

The second condition says that H(s) must be physically realizable. For example,

condition 2 requires that the coefficients of s on the diagonal of H(s) are real. The

second condition implies that H(s) + H*(s) is Hermitian 1. In what follows we will

assume that this realizability condition is always satisfied. The third condition refers

to the positivity of H(s). Historically, Definition 1 is motivated by electrical networks

consisting of only resistors, capacitors and inductances. H(s) is then the admittance

or impedance matrix of an electrical N-port. It can be shown that the energy output of

H(s) is never larger than the energy input. The following definition of strict positive

realness is stronger than the concept of positive realness.

Definition 2 [48] A rational matrix H(s) is Strictly Positive Real (SPR) if H(s - e)

is PR for some E > 0. *

For an electrical network, this stronger notion of positivity is obtained when each

capacitor is replaced by a parallel connection of a capacitor and a (large) resistor,

and when each inductance is replaced by a series combination of an inductance with

a (small) resistance. It can be shown that the energy output of H(s) is always strictly

1A(s) E Rmxm(s) is Hermitian if A(s) = A*(s). A Hermitian matrix is square and its diagonal
values are real. The eigenvalues of a Hermitian matrix are always real. If x is a complex valued
vector, then x*Ax is real.



less than the energy input to H(s). Definition 2 is sometimes refered to as a strong

definition of SPRness [38].

Definition 2 requires evaluation of H(s) over the closed right half plane, and is

therefore not practical for analysis purposes. This motivates the following result.

Lemma 1 [58, 63] H(s) E Rmxm(s) is SPR if

1. the elements of H(s) are analytic in Re[s] > 0,

2. there exists a scalar 6 > 0 such that H(jw) + H*(jw) > SI Vw E IR.

I[t is worth noting that these conditions are sufficient only. For both necessary and

sufficient conditions for SPR multivariable systems see [58].

Next the frequency domain positivity properties of H(s) are related to the time

domain description of H(s). Let the minimal state-space representation of H(s) E

R.mxm(s) be given by

x = Ax+Bu

y = Cx+ Du

where A E IRnTn, BE R x m , C E R mXn and DE cRmxm.

Lemma 2 (Lefschetz-Kalman-Yakubovich Lemma) [35, 58, 63] H(s) is SPR,

and the elements of H(s) are analytic in Re[s] > -p iff there exist matrices P =

PT > 0, L, K and a scalar v > 0 such that

ATP + PA = -LLT - 2pP

BTP + KTLT = C

KTK = D+DT.

The importance of this Lemma is not only that it provides the choice of the Lyapunov

function, V(x(t)) = x(t)Tpx(t), but it also relates the input matrix B to the output

matrix C. This fact is essential to the adaptive control design presented in Chapter

4. This ends the discussion on positivity of linear dynamic systems. In the remain-

ing part of this section definitions and results are given that pertain specifically to

adaptive control theory.



In SISO adaptive control system design the relative degree plays a crucial role.

In generalizing the notion of relative degree of a SISO transfer function to the multi-

variable case, the right Hermite normal form is used [47]. By performing elementary

column operations, a non-singular 2 matrix G(s) GE mxm(s) can be transformed into

a canonical lower triangular structure called the right Hermite normal form. This

operation is equivalent to multiplying G(s) from the right by an unimodular 3 matrix

U(s) such that

G(s)U(s) = H(s).

The matrix H(s) is lower triangular and is of the form

1
(s+a)r1

H(s)= h2 (s) (s+a)r2

hmi,(s) hm2(s) ... . (s+a)rm-

where h2i(s) = j(±) is proper, 6ij(s) depends on the parameters of G(s).

Closely associated with the relative degree of a SISO transfer function g(s) is the

notion of the high frequency gain defined as

k = lim srg(s), k E IR,

where r denotes the relative degree of g(s). The multivariable generalization of the

high frequency gain is the high frequency gain matrix defined as

K = lim H-l(s)G(s), K E ]Rm xm
S-+00

In general, the high frequency gain matrix depends in a complex fashion on the

parameters of G(s). The following Lemma gives a condition which simplifies the

expression for the high frequency gain matrix considerably. Let E E IRmxm where

2 G(s) non-singular means that det(G(s)) is not identically zero for all s.
3 A matrix U(s) E Rjmxm(s) is unimodular if it is non-singular and its determinant does not

depend on s.



the ith row Ei of E = E[G(s)] is determined as Ei = lim,,, s"iGi(s) where Gi(s) is

the ith row in G(s).

Lemma 3 [47] If E is non-singular then K = E and H(s) is diagonal.

Hence, if E is non-singular then the high-frequency gain matrix K depends only on

the minimum relative degrees in the rows of G(s) and the associated scalar high

frequency gains.

2.3 Parameterization of Closed Loop Dynamics

The dynamics underlying the adaptive systems that are considered in this thesis are

described by

x = Ax+Bu

y = Cx,

where A IRnx , B E Rnxm and C E Rm x ", or y(s) = G(s)u(s) where

G(s) = C(sI - A)- 1 B. (2.1)

We will assume that the control inputs are independent, i.e. rank(B) = m. Similarly,

we assume that the measurements are independent, rank(C) = m.

Using static output feedback of the form u = -0ey + r where 0 E JR, E e JRm x m

and r : R + -,- Rm is a reference signal, the closed loop dynamics is given by

± = (A- BOEC)x + Br
(2.2)

y = Cx,

or y(s) = Wm(s)Kr(s) where K denotes the high frequency gain matrix of G(s), and

Wm(s) = C(sI - A + BOEC)-iBK- '. (2.3)

The transfer function matrix given in Eq. (2.3) appears as one of the subsystems in

the overall adaptive control system discussed in this thesis. In this section an alternate



parameterization of Win(s) in Eq. (2.3) is given. The parameterization that follows

is tied in a large measure to the spectral decomposition of BOOC. In [32, 33, 39] the

decomposition of BOOC is used to analyze the root-locus of MIMO systems, similar

to the root-locus analysis for SISO systems due to W. R. Evans. The contribution of

the parameterization derived below is that it not only considers the closed loop pole

locations, but also the input-output relation of the closed loop system. The specific

properties of the closed loop input-output map are derived in Chapter 3.

The parameterization will be derived under the assumption that r4[G(s)] = 1 or 2

(i = 1, 2,..., m) and E[G(s)] is non-singular. This implies that the zero eigenvalues

of CBO appear in diagonal form for a suitably chosen O. It then follows that if

CBO is rank deficient by d degrees then CBO has d zero eigenvalues. The spectral

decomposition of BOC is then given by the following Theorem.

Theorem 1 Let rank(CBO) = (m - d). The spectral decomposition of BOOC is

then given by

O Jl V1

BOC = [U1 U2 M1 ] 012 V2 (2.4)
0(en-m-d)x(n-m-d) _N1_

J1 E IR(m- d)x(m - d) is a Jordan block with the nonzero eigenvalues of BOC. The

Jordan block J2 E R2dx2d contains the zero eigenvalues of BOC in Jordan form and

is described by

01
J2 = diag(J1  J2  ... jd) where JP= 0 ] i=1,...,d.

The columns of U1, VT E lRnx(m-d) are the right and left eigenvectors associated with

J1 . U2, V2T IRnx 2d are associated with J2 and are given by

U2 = [Uo uI u0 uI ... U u] (2.5)

V2 = [V 0 V IV0 ... 1 vo]oT.1 1 2 2 d d



The true eigenvectors associated with J2 are

M2 = [u u ...

N 2 = [v v ...

and the pseudo eigenvectors associated with J2 are

U = [U1 ...U
V = [Vl v2 ... v

The true and pseudo eigenvectors are related by

BOCU

VBOC

= M2

= N2.

The columns of M 1, N T CE ]Rx(n- m - d) are the right and left

with the (n - mn - d) zero eigenvalues in diagonal form.

null vectors associated

*

:Proof: It is easy to show that X(CBE) = X(BOC). Since rank(CBO) = (m-d),

we have that Ai(CBE) = Ai(BEC) for Ai # 0 and i = 1,..., (m - d). Hence, BOC

has (m - d) independent right and left eigenvectors associated with these nonzero

eigenvalues which are described by U1 and V1 . Also, if U1, V1, B and C denote the

range space of respectively U1 , V1T , B and CT it follows that

U, c B, V1 c C.

Because CBO is rank deficient by d degrees, BOC must have a (n-m+d) dimensional

nullspace. The kernel M C IRx(n-m+d) and left nullspace N E IR (n-m+d)xn of BOC

satisfy

BOCM = 0, NBOC = 0.

The range spaces of M and NT we will denote by M and Kf, respectively. We have

that U1l n = 0 and V1 N fl= 0, but B nM M 0 and C N A/ 0. Hence BE M

and C E Kn do not span I nRn completely. In fact, B and M, and C and K have a

UTvO]d ,

dU]
i]•.

(2.6)

(2.7)

(2.8)

(2.9)



d-dimensional intersection as will be shown next. Since CBO is rank deficient by d

degrees there exists a kernel M E JRfmxd of CB8 so that CBOM = 0. Because BO

has full rank this implies that there exists a kernel M2 E IR n xd of C such that

M2 = BOM. (2.10)

The range space of M2 we will denote by M 2 . Since CM2 = 0, M 2 C M. Eq. (2.10)

implies that M 2 C B, hence M 2 = BnM. It then follows that M can be partitioned

into a d-dimensional subspace M 2 and a (n - m - d) dimensional subspace M 1 where

M 1 n B = 0. If the columns of M1 span M 1, we may order M such that

M=[M2 M1 ]. (2.11)

Using similar arguments N can be partitioned into

N = (2.12)

such that lN', the subspace spanned by the columns of N[', lies outside C, while N'2,

defined by the columns of N2T, lies in C. The decomposition into M1 and N1 in Eq.

(2.4) follows from Eqs. (2.9)-(2.12). Furthermore, since BOC has (m - d) nonzero

eigenvalues and the rank of BOC is m, the spectral decomposition of BOC has a

Jordan block J2 E IR2dx2d with zero eigenvalues and rank(J2) = d. The corresponding

right and left eigenvectors are denoted by U2 and V2T. The structure of J2 can be

specified further by considering the nullspaces M2 and N2 . Since M2 = BOM, there

are d vectors which lie in the range space of B and in the kernel of BOC. Hence, there

exists a U e IR]xd such that Eq. (2.8) is satisfied. Similar for V E IRdxn . It follows

that the 2d x 2d Jordan block J2 can be divided into d 2 x 2 Jordan blocks. Since M2

is the kernel of C, the columns of M2 are the true right eigenvectors. Similarly, the

true left eigenvectors are the columns of N2T. With the eigenvectors associated with

J2 defined as in Eq. (2.5), the particular structure of J2 implies that M2 and N2 are

given by Eq. (2.6) and U and V are given by Eq. (2.7). O



Before presenting the new parameterization of Wm(s), the following Lemmas are

needed. In these Lemmas the high frequency gain matrix and the transmission zeros

of G(s) are expressed in terms of the left nullspaces of B, Mi (i = 1, 2), the right

nullspaces of C, Ni (i = 1, 2), and the left nullspace of CB, N().

Lemma 4 If G(s) in Eq. (2.1) is such that ri[G(s)] = 1 or 2 and E[G(s)] is non-

singular, then

E[G(s)] = K = CB +NPCAB

= CB + CUN2AB

CU CU] ldxd 0 Vi B

L N2AU1  N2AM2  VBJ

where N P = N(1)T(N(1)N(1)T) - I N(1).

Proof: (i) E[G(s)] = CB + NPCAB

Using Newton's Binomial Theorem, we have

lim G(s) = lim C(sI - A)- 1 B = lim C (+ + A2 + ... ) B, (2.13)
s--00o s--+00oo s--o o 8 8

2

so that E[G(s)] = CB + X where X is a constant matrix with zero rows there where

CB has nonzero rows. Since E[G(s)] is non-singular the zero eigenvalues of CB

appear in diagonal form only. Let CB be rank deficient by d degrees, the spectral

decomposition of CB is then given by

CB = [ U() M()] A1(m-d)x(m-d) [ (1)
Odx d B = N M

where A, is the Jordan block with nonzero eigenvalues of CB. We can rearrange the

inputs and outputs so that we have

CB = (CB)( m - d)m] and CAB = (CAB m-d)xm. (2.14)
OdxSincem (CAB)dxm

Since rank(CB), = m - d, it is not hard to see that N(1) = [Odx(m-d) N(21)] where



N,(1) R R d xd is non-singular. Hence

N P O0(m-d)x(m-d)

Idxd

so that

CB + NPCAB =

Also, using Eqs. (2.13) and (2.14), we have that

E[G(s)] = limr
S-4 0

(CB)1 + ±1(CAB),

(CAB)2

(ii) E[G(s)] = CB + CUN2AB

Since N(1)CB = 0 and C has full rank we have that N(1)C = N2 . Furthermore, since

VBOC = N 2 and VBOCU = I, we also have N 2U = Idxd and N(1)CU = I. Let N(1 )

be such that

CU = N()T (N(1)N(1)T)- 1,

then

E[G(s)] CB + NPCAB

CB + N(1)T(N(1)N(1 T ) - I N(1)CAB

CB + CUN2AB.

Idxd
(iii) E[G(s)] = [CU1 C UU] N2AUI

Define the permutation matrices T, E

V2
T V2

0 V1 B
N2 AM2  VB]

iRp2dx2 d and Tu IR2dx2d such that

U2Tu - [U M2 ].

It is not hard to show that

0

T, T =
Idxd

Idxd

0

(CB) 1
(CAB)2_

(CB)1
(CAB)2

(2.15)



The orthogonality of the eigenvectors in the decomposition, Theorem 1, implies that

I = U1V1 + U2V2 + MIN1 = U1V1 + U2Tu (TvTu)-1TV 2 + MIN1

= UI V + UN 2 + M2V + M N.
(2.16)

By expanding E[G(s)] we have that

E[G(s)] = CUVIB + CUN2A(UIV + M2 V)B

= C(I - UN 2 + M2 V + MN 1 )B + CUN2A(I - UN 2 + MN 1)B

= CB + CUN2 AB.

It follows from Lemma 4 that if E[G(s)] is non-singular then N 2AM 2 is invertible.

The transmission zeros of the system can then be expressed using the decomposition

as well, which is done in Lemma 5.

Lemma 5 Let the transmission zeros of G(s) be defined as A(Az). If G(s) in Eq.

(2.1) is such that ri[G(s)] = 1 or 2 and E[G(s)] is non-singular, then

1. Az = NIAM 1 when rank(CB) = m.

" A 1" ~Tt " A T * A f \-1" A -1

----Proof: Let z be a multivariable zero. By definition rank(S(z)) < (n + m) where

Proof: Let z be a multivariable zero. By definition rank(S(z)) < (n + m) where

Z. L=IiII IHAV~I~Ih UIV~tIVI 1 wnen rarLK((JtlI <K ir - Ii.

zI - Az
S(z) = C

N

(BTB)-1BT

0

0
0

IdxdJ

CT(CCT)-1

0

Both L E IR(n+m)x(n+m) and R E IR (n+m)x(n +m ) have full rank. The matrix LS(z)R

Define

B]
0

0

.dx
M

R=
0



loses rank iff
-N 2 AM 2 -N 2 AM 1

IN(zI - A)M)I = = 0.
-NIAM 2 zI- N1 AM1

If CB has full rank it follows immediately that Ai(Az) = Ai(NIAM 1 ) define the

multivariable zeros. If CB is rank deficient the multivariable zeros are the eigenvalues

of Az = NIAM1 - NIAM 2(N 2AM 2)- 1N 2AM 1 using Schur's formula [23]. 1O

The spectral decomposition given in Theorem 1, together with the alternative

expressions for the high frequency gain matrix of G(s) in Lemma 4 and the trans-

mission zeros of G(s) in Lemma 5, can be used in similarity transforms that lead

to a new parameterization of the closed loop transfer function matrix Wm(s). This

parameterization is given in Theorem 2.

Theorem 2 Let Wm(s) be given by Eq. (2.3), if G(s) in Eq. (2.1) is such that

ri[G(s)] = 1 or 2 and E[G(s)] is non-singular then an alternate parameterization of

Wm(s) is given by

Win(s) = sI- CUIV1AUI(CU1 )- + OK - ViAMi(sI- Az)-1NAUI]1 (2.17)

when rank(CB) = m, and by

Wm(s) [CUA 2s 2 + (CU1 A1 + D + R1 )s + OK + R2+ (2.18)

(R3 + R 4s)(sI - A-)- 1 (R5 + R 6s)]-

when rank(CB) • (m - 1).

Proof: The minimal state-space representation of y(s) = Wm(s)Kr(s) is given

by Eq. (2.2). We need 0J1 and O J2 in Eq. (2.4) to appear explicitly in the state

equations. This can be accomplished if we pre- and postmultiply Eq. (2.2) with

the left- and right eigenvectors and make use of the fact that the eigenvectors are

orthogonal,

V2 [U1 U2  M1]=Inxn

N1



Hence, transform the closed loop dynamics by substituting x = Tv in Eq. (2.2) where

T=[U1  U2 M1 ] and T-l= V2 .

Nl

The similarity transform of Eq. (2.2) is then given by

i = T-1(A - OBEC)Tv + T- 1Br

y = CTv

or using Theorem 1, Eq. (2.4),

(2.19)

(2.20)

VIAU1 - OJi

V2AU1

N 1AU1

V1AU2  V1AM 1 i vVi [VB

V2AU 2 - 0J 2 V2AMI v2 + V2B r
NIAU2 N 1AM 1 v3 0

y = [CU1 CU 2

Starting from Eq. (2.21), we will present the two cases rank(CB) = m and

rank(CB) < (m - 1).

Case (i) rank(CB) = m

Since CB, and therefore CBE, has full rank, the assumption that the zero eigenvalues

of CBO appear in diagonal form is trivially satisfied. Eq. (2.21) can then be reduced

to

V13
i)3

This can be transfc

S VAUu -9Ji VjAM, vi ViB

y = [CUi 0] V[:
rmed further by choosing v = T here

rmed further by choosing v = T,,w where

S[1 (CUi)-1 0
v3 0 I

iv2

03.I [ (2.21)

w]
and w =

W2



This results in

w[l

y

CUIV1AU1(CUI)-1 - CBO ViAMi] wK] + [~] CBr

N1AU1 Az W2 -

= [I 0]
W2

With y(s) = Wm(s)CBr(s), Wn(s) is given by Eq. (2.17).

Case (ii) rank(CB) < (m - 1)

If CB hence CBO is rank deficient by d degrees, a subsequent manipulation of Eq.

(2.21) rearranges the 2d x 2d Jordan block J2 into a d x d identity matrix and into

a d x d zero matrix. This rearrangement is accomplished by using the permutation

matrices T, and T., defined in Eq. (2.15), in the transformation matrices defined as

F, = diag(I(m-d)x(m-d), T I(n-m-d)x(n-m-d)),

F. = diag(I(m-d)x(m-d), T, I(n-m-d)x(n-m-d))-

Let v = Fuu in Eq. (2.20) and premultiply the system equation with F,. The system

in Eq. (2.20) becomes

0 0 Ui

I 0 Ut2

0 0 I 3

0 I U4

I. AU 1 - 0J1 V AU

VAU1  VAU - OI

N2AU1  N2AU

N AU1  NI AU
Ul

u 2
y=[CUi CU 0 0]

U3

U4

V1 AM 2

VAM 2

N2 AM 2

NIAM 2

VIAM1 ul

VAM1  u2

N2AMI u3

N1AM,1 u4

VIB

VB
+ r (2.22)

0

0

Next, we introduce a transformation u = G,p which results in a matrix Az represent-

-- -



ing the transmission zeros on the lower diagonal of the system matrix. G, is given

by
I(m-d) x (m-d) 0 0

0 Idxd 0

0 0 (N 2AM 2)- 1

0 0 0

If we substitute u = Grp in Eq. (2.22), we obtain

0

0

-(N 2AM 2)-1N 2AM 1

I(n-m-d)x(n-m-d)

0 0 0
0 (N2AM 2)- 1 -(N 2AM 2)- 1

I 0 0

0 0 I
VAM 2 (N2AM 2 )- 1  V1AM 1 -

VAM 2(N 2AM 2) - 1 VAM 1 -

I

N1AM 2 (N2AM 2)-1

y == [CUv CU 0 0]

pi1 VIAU 1 - OJ1

N2AM, P2 VAU1

PJ3 N 2AU1

IJ4  L N1AU1

V1AM 2(N2AM 2)-N 2AM 1  Pi

VAM 2(N2AM 2)-1 N2AM1  P2

0 P3

Az . P4

Pi

P2

P3

LP4.

V1AU

VAU - 0I

N2AU

N1AU

V1B

VB
+ r

0

L 0

(2.23)

(2.24)

'To obtain the high frequency gain

matrix, we perform two additional

with G, where

I(m-d) x (m-d)

N2AU1
G,

0

0

in the input matrix and an identity in the output

transformations. First, we premultiply Eq. (2.23)

0

N2AM2

0

0

0

0

0dxd

0

0

0

0

I(n-m-d)x(n-m-da)



We then obtain

I 0 0 0

N2AU 0 I -N 2AM

0 I 0 0

0 0 0 I

V1AM 2 (N2AM2)- 1

Q3

Pli V~IAU 1 - 0J1

p2 Q1

p03 N2AU1

p94 N1AU1

AMi - V AM 2 (N 2AM 2)

Q4
0A

AzNIAM 2(N2AM2)-

V1AU

Q2

N2AU

NIAU
1N2AMJ Pl

P2

P3

P4
V, B

N2AUIV 1B + N2AM 2VB
+

0

0

Q1

Q2
Q3

Q4

Next, we define

[CU1 CU]- =
wA2h

where A, E R ( m- d)) x m , A2 C IR d x m, BI

N 2AUI (VIAU1 - OJ) + N 2AM 2VAUi

N 2AU1 VaAU + N 2AM 2(VAU - 0I)

N 2AUI VAM 2 (N2AM 2)- 1 N2AM 2VAM 2(N2AM 2)- 1

N 2AUI (VIAMI - VIAM 2(N2AM 2) -N 2AM ) +

N 2AM 2 (VAM1 - VAM 2(N 2AM 2)-1N 2AM1 ).

V1B 1 - 1

and V = [B 1 B2]

E IRmx(m - d) and B 2 E IRmxd, and substitute

(2.25)

where



p = Tw in Eq. (2.25) and Eq. (2.24) where

A1  0

A 2  0
TZ =

0 Idxd

o 0

Eqs. (2.25) and (2.24) become

CUI A1 + CUN2Ab

A2

0

0

0

0

I(n-m-d)x(n-m-d)

A1 CU -CUN 2

0 0
0 I

Wl

and w = w2

AW3 ]

Zb2

vb3

Q5 Q6 Q

N2AU1A1 + N2AUA 2  I 0
N1IAU 1A 1 +NIAUA 2 NIAM 2 (N2AM 2 )- 1 A
CUIVlB + CUN2AU V B + CUN2AM 2VB

0 !r

01

y=[I 0 01 W2

7 Wl

w2

z.l .@3.II

where

Q5 = CUI(V1AUI - J1 )A 1 + CUIVIAUA2+

CU{N2AUf (VI 1 AU, - OJI) + N2AM 2VAUI}AI+

CU{N 2AU1IVAU + N2AM 2(VAU - OI)}A 2

Q6 = CUI V1 , AM 2 (N2AM 2 )1  + CUN 2AUIV1 AM 2 (N2AM 2 )-±+

CUN2AM 2VAM 2 (N2AM 2)- 1

Q7 = (CU1 + CUN2AU1 )(VIAM 1 - VIAM 2 (N2AM 2)- 1N2AM 1)+

CUN2AM 2 (VAMI - VAM 2 (N2AM 2)-1 N2AM).

r



We note that the first term in the input matrix can be written as

CUI VIB + CUN2AUIV 1B + CUN2AM 2VB = CB + CUN2AB = K

from Lemma 4 and Eq. (2.16). If we differentiate wl twice and eliminate w2 and zb2,

then the input r appears in a second order differential equation in w1 given by

CUA27i1 + (CU1 A1 + D + R1 )?bl + [0KO + R 2]wl + R 3w3 + R 4ib3

73 - Azw 3 - RW 1 - R-bl

= Kr

y = W1,
(2.26)

where

VIAM
D = -K[B 1 B 2 ] VAM

R 1 = CU[N2AU-N 2AU 1

R2= K[B 1 B2 ] R A22 A2_

2 (N2AM 2)-1 A2
2 N2AM2) - 1

N2AU ] A
A2

V AM 2(N2AM 2)-1N 2AUI - VIAU1

VAM 2 (N2AM 2)-1N 2AU1 - VAU1

V1AM 2 (N2AM 2)-1N 2AU - V AU

VAM 2 (N2AM 2)- 1N 2AU - VAU

R3 = K B2AM - VIAM 2 (N2AM 2)-1 N2AM 1

VAMI - VAM 2(N2AM2)-1N2AM1
R 4 = -CUN 2AM 2

I
(2.27)

R5 = (NIAU1 - NAM2 (N2AM 2)- 1N2AUI)A 1 +

(N1AU - NIAM 2 (N2AM 2)-I1N2AU)A 2

R6 = N1AM 2 (N2AM 2 )- 1A 2-

If the input-output representation of Eq. (2.26) is y(s) = Wm(s)Kr(s), then Wm(s)

is given by Eq. (2.18). O
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Remarks:

1. A geometric interpretation of Lemma 4 is that Np projects the column space

of CAB onto the left nullspace of CB. N (1) T is the orthogonal complement of

U(1) , the column space of CB, in tR" . Since E[G(s)] is non-singular, CB and

NPCAB span IRmxm .

2. It is known that the non-singularity of E implies that G(s) can be decoupled

by state feedback [47]. Using Lemmas 4 and 5 another interpretation of the

singularity of E[G(s)], ri[G(s)] = 1 or 2, can be given. If E[G(s)] is non-

singular, a total of n - m - d transmission zeros exist. The excess of poles over

zeros is m + d. Lemmas 4 and 5 imply that if E becomes nonsingular, then

some of the n - m - d finite transmission zeros move to infinity. How many of

the n - m - d finite zeros move to infinity depends on the particular structure

of the system considered. Hence, the non-singularity of E refers to a loss in the

nominal number of transmission zeros.





Chapter 3

Low Order Controller Structures

3.1 Introduction

In this Chapter the linear, non-adaptive controller structure that would be used if

all plant parameters were known is discussed. The MIMO LTI plants that will be

considered are described by

ip = Ax+ Bpu + Ldd (3.1)
(3.1)

YP = Cp xp,

where xp : R' --+ IR is the state vector, u : R + -+ Rm is the control input,

d : IR+ -+ R is a bounded input disturbance and y : IR+ -+ R m is the measured

output. We will assume throughout the thesis that the control inputs and output

measurements are not redundant, i.e. rank(Bp) = m < n and rank(Cp) = m < n.

The input-output representation of Eq. (3.1) is given by y, = G(s)u + Gd(s)d, where

Gp(s) = Cp(sI- Ap)->Bp (3.2)

Gd(s) = Cp(sI- Ap)- 1 Lp. (3.3)

The high frequency gain matrix of Gp(s) will be denoted by Kp ]Rmxm .

The organization of the Chapter is as follows. In section 3.2 the feedback con-



Figure 3-1: Controller Structure

troller structure for SISO systems is described, and extensions of the basic controller

structure are discussed. In section 3.3 the controller structure for the MIMO case is

presented. A feedforward control strategy as to accomplish output tracking is dis-

cussed in section 3.4. The contributions of this Chapter are summarized in section

3.5.

3.2 Singlevariable Systems

The control objective of the controllers developed in this thesis is to stabilize

the plant, and for the plant output to track a reference trajectory. The fixed, non-

adaptive controller structure underlying the adaptive controller that will be used

to accomplish this is shown in Fig. 3-1. In Fig. 3-1, G,(s) denotes the plant to

be controlled, Ge(s) and Gf(s) are compensators to be designed. The basic idea

behind the controller is to design a low-order compensator Ge(s) such that Win(s) =

(1 + 0oG,(s)Ge(s)) -G,(s)Gs (s) is asymptotically stable and has desirable properties.

The feedforward compensator Gf(s) is then designed such that the desired tracking

objective is realized.

A plethora of techniques is available to design Ge(s) and Gf(s) as to realize the

control objective. However, only a limited number of parameterizations of Ge(s)

and Gf (s) will lead to a stable analytical solution that assures the boundedness

and convergence of the adaptive controllers presented in Chapter 4. As will become

clear in Chapter 4, to be able to design a stable adaptive controller positivity of the

underlying dynamics is needed. In this thesis, this positivity is achieved by requiring



that a compensator Ge(s) can be found such that Win(s) is strictly positive real. The

strict positive realness of W,i(s) is obtained by choosing Ge(s) appropriately and by

exploiting the relative degree of Gp(s). For example, if Gp(s) is minimum phase, the

relative degree of Gp(s) is 1 and the high frequency gain kp of Gp(s) is positive, then it

is sufficient to choose Ge(s) = 1. It follows from standard root-locus arguments that

7 1m(s) = (1 + 0 oGp(s))-1Gp(s) is SPR for sufficiently large 0,. Clearly, if the relative

degree of Gp(s) is greater than 1, positive realness can not be established using a

causal Ge(s). However, with the adaptive control method discussed in Chapter 4 it

is possible to recover an input-output map of the form Win(s) = Wm(s)(s + a) where

a G IR+ is a design parameter to be chosen. Hence, relative degree two plants can

also be considered.

In the following two sections we will discuss how Ge(s) can be chosen when the

relative degree of Gp(s) is either one or two and the zeros of Gp(s) lie in (-. The

design of Gf(s) is addressed in section 3.4 for both the SISO and MIMO case.

3.2.1 Compensator Design

The basic structure of Ge(s) that will be used is a phase lead compensator of the form

s + ao

s + bo

where 0 < ao < bo. Lead compensation increases the bandwidth, improving the

speed of response. Furthermore, from standard root-locus arguments it follows that

for any given a > 0, the parameters ao, bo and 0o can be chosen such that Wm(s) is

asymptotically stable, and Wm (s) = W, (s)(s + a) is SPR. A formal proof of this can

be found in [6].

A phase lead compensator is the lowest order compensator needed to stabilize

a relative degree two, minimum phase plant, independent of the order of the plant

G (s). Furthermore, the phase lead compensator can be used to obtain a SPR input-

output map Wm(s). The disadvantage of using such a low order compensator may

be that as to obtain the SPR input-output map, the required loop gain 0, may be



too high making the system susceptible to actuator saturation, unmodeled dynamics

and sensor noise. To lower the gain it might therefore be desirable to employ a more

sophisticated, minimum phase, compensator of the form

s + (s) aq 1s
- 1 +... + als + aoGe(s) = sq + bq_-1sl - 1 + ... + bis + bo

For example, Ge(s) can be chosen to obtain a desirable pole-zero interleaving of

G,(s)G,(s). The choice of the order q of the compensator depends on the the richness

of the dynamics of Gp(s) in the bandwidth over which tracking is desired.

3.2.2 Disturbance Rejection

In the discussion of the control design we have so far neglected the presence of external,

not measurable disturbances d as shown in Fig. 3-1. In case it is desired that exact

tracking is accomplished in the presence of exogenous, low frequency, disturbances,

the internal model principle may be applied. The idea of the internal model principle

is to supply closed loop zeros which cancel the poles of the disturbance [20]. For

this reason, the only disturbances that can be rejected exactly are constants and

sinusoids. The internal model principle implies that the poles of the compensator

Ge(s) must contain the frequencies of the disturbance. For example, rejection of a

constant disturbance requires the compensator to contain a pure integrator, so that

the compensator is of the form

S + ao s + co
s +bo s

where co > 0. Similarly, a sinusoidal disturbance of frequency Wd can be rejected by

using a compensator of the form

S + ao s2 + CI S + Co

s + bo s 2 + W2

where cl and co are chosen so that s2 + C S + C, is Hurwitz. In case the disturbance is

not limited to a countable number of frequencies, but still band limited, this approach

--· ·.-. irunm~~~·aL1r*r^rmx*ll~~".- .~'yllrr--~-- --~~"~r~;.-L·l--*r~W*);



may still be used to improve the tracking performance. Exact disturbance rejection

will not be accomplished, however.

3.3 Multivariable Systems

The design of non model-based compensators for multivariable systems is generally

much harder than for singlevariable systems because of the cross-coupling between

the input and output channels, and the multitude of controller parameters that can be

chosen. The discussion in this section is therefore limited to provide sufficient control

structures to stabilize the plant described by Eq. (3.1) , and achieve positive input-

output relations that are needed in the adaptive control design discussed in Chapter

4. In contrast to the single-variable case, the conditions under which a positive input-

output map exists had to be derived formally. The results are stated compactly in

Lemmas 6 and 7. Variations on these lemmas for the special case that Kp > 0 are

given in Corollaries 1 and 2.

The following Lemma gives the conditions under which static output feedback of

the form

u = -Oo"oyp + v (3.4)

where 0o, IR, )o E IRm xm and v : R + -- IRm is a reference signal, can be used to

stabilize Gp(s) and achieve a SPR input-output map.

Lemma 6 If the transmission zeros of Gp(s) in Eq. (3.2) lie inU- and rank(CB,) =

rn then there exist 0* E 1R+ and EO E IRmX m such that

W,,(s) = Cp(sI - Ap + OoB,BoCp)-Bp(CpB) - ' (3.5)

is SPR for 00 = 0*, o0 = *. *

Proof: The control input given in Eq. (3.4) applied to the the plant described



by Eq. (3.1) results in the closed loop dynamics given by

1xp = (Ap -OoBpOoCp)xp + Bpv

YP = CpXp.
(3.6)

Since rank(CB,) = m, Theorem 2 provides an alternate description of the system

in Eq. (3.6):

- OoCBOo2wl CpU UVI AUI (CpU)-

L)2  N N1ApU1

YP = [I 0[] wi
We will describe Eq. (3.7) with2

We will describe Eq. (3.7) with

VAPM1]
Az [ +] C+pBpP

(3.7)

ti = Fw + GCpBpv (3.8)
= Hw.

According to Lemma 2, with D = 0, Lemma 6 is proved if we find a matrix P =

pT > 0 and a matrix Q = QT > 0 such that {F, G, H} in Eq. (3.8) satisfy

FTP + PF =

PG

-Q (3.9)

(3.10)=HT.

Since the transmission zeros of G,(s) lie in (-, Az E ]R(np- m)x(np-m) is exponentially

stable. Hence, there exists a (np - m) x (np - m) matrix Pz = PT > 0 and a

(n, - m) x (np - m) matrix Qz = QT > 0 which satisfy the Lyapunov equation

ATZ + PzAz = -Qz. (

If we choose

P= Imxm
0

0P
Pz

(

3.11)

3.12)



we will show that Eq. (3.10) is satisfied and that we can find a Q in Eq. (3.9) such

that Q = QT > 0 for a large enough gain 0o. First, if we substitute Eq. (3.12) in Eq.

(3.10) we get

The equality given by Eq. (3.10) is therefore trivially satisfied. Next, we substitute

Eq. (3.12) in Eq. (3.9) and find that

[ oQo - C,A,UI(CU - 1- (C,A,U(C,U1))T (NAU1)TPz - VIAM1

A-(VApMI)T - PzN1ApUI Qz

where Qo = (CpBp O)T + CpBpOo. It is easy to see that Q = QT. What remains

to be shown is that Q is positive definite as well. Hence consider xTQx, where

[xT xT] ,  IR - + R m and x2 : R + -  pIR - m . Then

xTQx = oxTQexI - xT[CpApU1 (CpU 1 )- 1 + (CpApU1(CpU1)-l)T]x 1

-2xT[(N 1 A U1 )T Pz + V1ApM 1]x2 + xT x 2.

If xl - 0 then xTQx > 0 since Qz > 0 . If xl 0 0 then we can always find a 0o large

enough such that xTQx > 0 provided

Qo = (CpB,4eo)T + CpBpOo > 0. (3.13)

If we choose Oo = E= = (C,B,)-1 , then Eq. (3.13) is indeed satisfied. It follows that

Q will be positive definite, and symmetric, for 0o = 0* where 0O is a large enough

scalar, which proves Lemma 6. 0

If the high frequency gain matrix K, = CB, is positive definite Lemma 6 can be

simplified. This simplification will be useful for the robust adaptive control algorithm

presented in Chapter 4.

Corollary 1 If the transmission zeros of G,(s) in Eq. (3.2) lie in (- and C,B, > 0



then there exist 0* E R'+ and e* e cR m X' such that

Wm(s) = C,(sI - Ap + oBpOoC)-lB,

is SPR for 0o = 0", o0 = 6E.

Proof: The proof follows along the same lines as the proof of Lemma 6. OE

If rank(C,B,) < m then a dynamic output feedback will have to be used. Mo-

tivated by the singlevariable phase lead compensator, the multivariable compensator

is chosen as

(3.14)

cl = -Awl + Iu

where wl :IR+ - IRm, and e = -oOoy,p

loop dynamics is given by

Y=

+ v. Combining Eqs. (3.1) and (3.14), the

Ax + Be

Cx,
(3.15)

where

A A, B, 1 1
0 e1 - A

and C=[Cp 0],

(3.16)

so that n = np + m. The following Theorem states the conditions under which

input-output map is obtained.

a SPR

Lemma 7 Let {A, B, C} be defined as in Eq. (3.16), and let Gp(s) be given by Eq.

(3.2). If the transmission zeros of Gp(s) lie in U-, Gp(s) satisfies ri[Gp(s)] = 1 or 2

(i = 1, 2,..., m) and E[Gp(s)] is nonsingular, then for any A > 0 there exist 09 E IR,

0* E ]RmXm and 0T E ]Rm x m such that

Win(s) = [ (s + a)I] C(sI - A + OoBeoC)-'BK,-'

is SPR for 0o = 0*, 0 * = eo and e 1 = e0.

aE R + (3.17)

Proof: Before actually proving the Lemma, relations between properties of BOoC

B = Bp
-I
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and BpOoCp are needed. The following relations can be established.

Relation between the Jordan Blocks in the Decompositions:

Let the rank deficiency of CB be denoted by d. Since CB = C,B,, the rank deficiency

of CpB is d as well. Hence, Theorem 1 implies that J1 E IR(m - d)x(m-d) and J2 E

IR2dx2d are identical for both decompositions:

BJ U

BOoC,VUp = M2,

BoC = [U UU2 M1] ~i

BOoCU = M2,

VB,EoC, = N2,

VBEOC = N2.

Relation between Eigenvectors:

Using the orthogonality of the eigenvectors and Eqs.

of BpOoCp and BOoC can be related as

tlir

J11
Up 1

BP UpJ

(3.18) - (3.21), the eigenvectors

V1 = [Viy Odxm]

V = [V Odxm ]
(3.22)

N2 = [N2 Odxm]

N1 = KN 0]
- T( Bp) -BPT I

where Uc E ]Rmx(m-d) and satisfies BpU = UI'.

Relation between High Frequency Gains:

where

(3.18)

and

(3.19)

where

(3.20)

(3.21)

V2

0(n-m-d)x(n-m-d)- .N

OV2n-d)x(n-d) 1

0(n-d)x(n-d). .N1-



From Eq. (3.22) and Lemma 4, we have that the high frequency gain matrix of the

cascaded dynamics is the same as the high frequency gain matrix of the plant since

K, = CB + CUN2AB = CpBp + CpUpNJAB,.

With the above relations we can establish the Strict Positive Real result for Wi (s)

by showing that W,(s)- 1 is SPR. We will use Lemma 1 to show that W,(s) -> is SPR.

1. Since the transmission zeros of the plant lie in Q-', A > 0 and a > 0, W,-;(s) is

analytic in the closed right half plane.

2. We will consider two cases, Kp = CB and Kp = CB + NPCAB:

Case (i) K, = CB

From Theorem 2 we have that Eq. (3.17) can be represented by

W,(s) = [(s +a)I] [sI - CU VIAUI(CU1)-+

oK,pOo - VIAMi(sI - Az)-'NiAU1]-

Define

W1(s) = [(s + a)I] [sI + OoK,pO] -

W2 (s) = - [(s + a)I] [CU1 VAUI(CU1) - 1 + VIAMi(sI- Az)-INIAU ] - 1

so that W,-;(s) = W-'(s) + W2-1(s). We have that

w7-'(jw) + Wl'(jw)* = ( 2 + a2)- 1 [aeo(KOo + (KOo)T) + 2w21].

From (a) we have that Az < 0, hence (jwl - A,) - ' exists Vw E (-oo, oo) so that

w'(jw) = -(w 2 + a2)-[(a-jw)I]

[CU1 V1AUI (CU 1)- 1 + ViAMi(jwl - Az)-'N AU 1] - 1

~·*nrUU·ruL*r~ll)YUrU\UliU·*·611*II*sUj



Let EO be bounded, then for O1 = eO we have that 36 = 6(6 1) > 0 such that

6 6
- 2 I < W2 (jw) + W21(jw) * 2 + w2

Let

0o = (2a)- 1 (6 + c), E > 0,

then, for 0o = 0* and 0, = EO, we have that

14~ (jw) + W;l(jw)* > a +2U2

Note that CB8O = I has no zero eigenvalues so that use of Theorem 2 is justified.

Case (ii) Kp = CB + NPCAB

From Theorem 2 we have that Eq. (3.17) can now be written as

Wm(s) [(s + a)I] [CUA2s2 + (CUA1 + D + RI)s + OoKpo + R2+

(R3 + R 4 s)(sI - A,)-(R 5 + R 6s)]- 1

Define

Wi(s)

W2(s)

W3(S)

= [(s + a)I] [CUA2s2 + (CU1 A 1 + D)s + 0•oKpo] -

= [(s + a)I [R2 R3(sI - Az)-'R5+

sR 3 (SI - A)-lR 6 + sR 4 (sI - A)-R5]

= ((s + a)I] -2 [R(sI- A)-R

so that W,-l(s) = W--(s ) + W2-'(s) + W3 1 (s). Since A, < 0, (jwl - Az) -1 exists

Vw E (-oo, 00). Also 362 = 52 (e1 ) > 0 for any bounded 6 1, and 363 > 0 such that

Wý7'(jW) + Wýl(jw)*
62

< 2I
a2 + W2

63w2
32  2 (CUA2 + (CUA2 )T)

a 2 + W2 .

62
S I<

a 2 W2

> min a2 I > 0.



W I(jw) + Wgl(jw)* a +
+ (CUA 2)T)

00* = (2a) -1 (62 +•),

O* = Ka-3+

I0 = a+63 + 1

E*= -- K-1 CpUPNfAM PVPBp- {BPV1 + B 2 VP }ApM2P VPBp.

where c > 0. For E1 = 0*E) we find that, using Eq. (2.27),

D) = -K,{B 1V1 + B 2V}AM 2(N 2AM 2)- 1A 2

-K,{BPV{ + B± V }ApM2(NApM,2)-'AP - K,8OIoCUP(N2AM2)- AP

= OICPUUAP = O4CUA 2.

With 00 = 00, 6o = O we have

WA(jw) + Wl1(jw)*

W,.i(jw) + Wmij(jw)*

- a) (CUA2 + (CUA2)T) CU1 A1 + (CU1 A 1)T)] .

1
a2 + w2 [(2aO0 - 62)I + 2 ((0; - a - 63)

(CUA2 + (CUA2)T) +

E + 2W2
> a2 +

a2± w2

CU1AI + (CU1 A 1)T)]

> min , 2 I > 0.

Since the zero eigenvalues of CBK,-1 appear in diagonal form, use of Eq.

Theorem 2, is justified.

(2.18),

The following result will be of use in the design of the robust adaptive controller

in Chapter 4.

Let

a22. [2ao*I + w((
a2- 1o. 0

Hence



Corollary 2 Let {A, B, C} be defined as in Eq. (3.16) and let G,(s) be given by

Eq. (3.2). If the transmission zeros of Gp(s) lie in (F-, Gp(s) satisfies ri[Gp(s)] = 1

or 2 (i = 1,2,.. ., m) and E[Gp(s)] > 0 then for any A > 0 there exist 08 E IR,

8-) E R mX m and O* E IRm xm such that

Wm,(s) = [(s + a)I] C(sI - A + OoBoC)-1B, a E IR+

is SPR for 00 = 00, o, = 9* and 91 = O= .

Proof: The proof follows along the same lines as the proof of Lemma 7. LO

Remarks:

1. Similar to the discussion in section 3.2.1, more elaborate compensation schemes

may be used. For example, if A E ]R2mx 2m and E1 E ]Rmx 2m in Eq. (3.14), more

degrees of freedom are available to shape Wi(s) which may result in a lower

overall gain 9o for which strict positive realness is achieved. For the SISO case,

this was accomplished by placing compensator poles and zeros such that the

loop transfer function G,(s)Gp(s) has interleaving poles and zeros, for example.

However, for the MIMO case it is not clear how A and 61 should be chosen.

2. The comments made in section 3.2.2 regarding disturbance rejection can be ex-

tended to the multivariable case by augmenting each input channel with the

poles of the disturbance. It is important to note that to achieve this rejec-

tion robustly it is necessary and sufficient that the pole of the disturbance is

duplicated on each channel [16].

3.4 Structure for Feedforward Control

In this section the structure of Gf(s) in Fig. 3-1 is discussed. Our goal is to find a

feedforward controller for an asymptotically stable, minimum phase plant described

by

.i(t) = Ax(t) + Bv(t) (3.23)

y (t) = Cx(t)



where A E R • x , B E IRjxm and C C IRmX. The control objective is for yp(t) to

track ym(t) specified by the dynamics

= Amxm(t)

= Cmxm(t)
xm(O) = Xmo

(3.24)

where Am E IRP•x and Cm E IRmx p. The following Theorem gives the control input

that will achieve the desired control objective.

Theorem 3 Let Opm E 1R1 xp and Om E IRm xp . If the eigenvalues of Am do not

coincide with the transmission zeros of the system in Eq. (3.23) then the control law

given by

v(t) = emxm(t) (3.25)

where Om is the solution to

AOEm - OEmAm + BEOr

COpm

= 0

= Cm,
(3.26)

results in y,(t) tracking ym(t) asymptotically.

In proving the Theorem, the following Lemmas will be helpful.

Lemma 8 Let A C IRnXn , B c IRm x m and C c IRnXm' be given. Then

eA(t-r)CeBrdT= OeBt - eAtO,

where EO IRnxm is the solution of the generalized Lyapunov equation

AO - OB + C = 0. (3.27)

Proof: The proof follows by premultiplying Eq. (3.27) by eA(t-7) and postmulti-

plying with eB7, and integration by parts.

ym (t)



Lemma 9 Let A E R n ", B E JRm xm with C E lRnx m be given. If Ai(A)Ak(B) = 1

(i = 1,...,n, k = 1,..., m) then the solution X of the discrete time Lyapunov

equation

AXB+C =X

exists for any C, and is unique.

Proof: See [29]. O]

Proof of Theorem 3: Since Eqs. (3.23) and (3.24) describe LTI systems, we

have

x(t) = eAtx(O) + f eA(t-')Bv(T)dT

xm(t) = eAmtXmo.

Using Eq. (3.25) and applying Lemma 8 we find

x(t) = eAtx(O) + t eA(t-') BOmAmr modT

= e Atx(O) + (epmeAm•• e Atepm))

= eAt((0) - epmzmo) + + OpmeAmt xo,

where Opm is given by Eq. (3.26). It follows that tracking is achieved exponentially

since

ei(t) = y(t) - ym (t)
= Cx(t) - CmXm(t)

= CeAt(x(O) - opmxmo) (3.28)

using Eq. (3.26).

Next we will show that solutions Opm and em to Eq. (3.26) do indeed exist. For

this purpose we first need some results regarding the transmission zeros of the plant.



Define
sI - A -B

S(s) =[

where s is a complex variable. Since the plant has no transmission zeros at the origin,

it follows that Q = -S(O) -1 exists. Let Q be partitioned as

Qnmxn mnxm

21 22

If z is a transmission zero, then

0 = det (S(z))

= det (S(0) -1) det (S(z))
= det (S(O)-1) det (z diag(In, Om) + S(O))

= det (z Q diag(In, Om) - In+m)

= det (z Q11 - In).

Hence, the transmission zeros of the plant in Eq. (3.23) are given by the inverse of the

nonzero eigenvalues of Q11. To solve Eq. (3.26), we rewrite the equations in matrix

form as

-S(O) O = [ Cm]

or

Opm = ,110pmAm + i12Cm (3.29)

Om = Q21EpmAm + t22C,.

Since the eigenvalues of Am do not coincide with the transmission zeros of the plant we

have that Ai(Qll)Ak(Am) ' 1. From Lemma 9 it follows that in Eq. (3.29) a unique

Opm can be found, and hence a Om which results in yp(t) tracking ym(t) exponentially,

exists. El

Remarks:
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1. If the plant outputs are to follow a class of desired trajecories, as in Eq. (3.24),

the problem is refered to as a servo problem [1, 16]. The result stated in Theorem

3 is valid without any conditions on Am, except that the eigenvalues of Am

should not coincide with the transmission zeros of the (closed loop) plant. Am

can be asymptotically stable, marginally stable or unstable and in all of these

cases tracking can be achieved asymptotically. In other words, ym(t) can be a

linear combination of constants, sinusoids, polynomials, exponentials, and any

filtered versions thereof, which encompasses a large class of continuous functions

of time.

2. When the outputs of the plant are to follow the response of another plant (or

model), the problem is refered to as a model-following problem [1]. This is

the problem solved in Model Reference Adaptive Control (MRAC) [47]. In

MRAC the underlying fixed controller structure is chosen such that, when all

parameters are known, the plant with the controller matches a reference model

over all frequencies. That approach allows the plant output to track the output

of the reference model for arbitrary (piecewise continuous) reference inputs.

The scheme proposed here can be augmented to accomplish model-following by

generating xm as

m = AmXm + Bmr

Ym = CmXm

and by selecting the feedforward input as

V = maXm + Err.

Om and Or are the solution to

AEpm - Opm +B[Om Or] = 0
OmXp Omxm

c[om r] = cm.



In this case, over a bandwidth determined by Am, the tracking error as described

by Eq. (3.28) is small if {Am, Bm, C,} contains the same zeros as {A, B, C},

and if the number of states of Am is equal to the number of states of A.

3. This feedforward control scheme was proposed in [50] although a less rigorous

proof was given there.

3.5 Summary

In this Chapter the fixed controller structure underlying the adaptive controller has

been discussed. Several results dealing with the existence of positive multi-input

multi-output maps have been presented. The results are valid for arbitrary linear

plants satisfying two conditions: the plant has to be minimum phase and the matrix

E[Gp(s)], ri[Gp(s)] = 1 or 2 has to be non-singular. Using the controller structures

discussed in this Chapter, three control objectives can be achieved: regulation, track-

ing of the plant output and attenuation of band limited disturbances.



Chapter 4

The Low Order Adaptive

Controller

4.1 Introduction

In this Chapter the low order adaptive controller will be presented. The MIMO LTI

plant that will be considered is described by

,p = Apx + Bpu
3.(1)

YP = Cpxp.

where x : IR+ -+ R", u : R + -+ R m and y, : R + --+ Rm .

representation of Eq. (3.1) is given by yp = Gp(s)u, where

The input-output

Gp(s) = C (sI - Ap)-1Bp. (3.2)

The control objective is for yp(t) to follow a reference trajectory as discussed in section

3.4. The reference trajectory is given by

Xim = Amxm
(3.24)

Ym = Cmxm



where m : IR -+ IR and Ym : IR+ - IRm. Am E IRpxp is a stable matrix 1 and

Cm E IRm xp

This Chapter is organized as follows. In section 4.2 the assumptions on the plant

are given, and the low order adaptive control algorithm is presented. Then, in section

4.3, a modified adaptive algorithm that guarantees boundedness in the presence of

unmodeled dynamics is presented. The contributions of this Chapter are summarized

in section 4.4.

4.2 The Adaptive Control Algorithm

The adaptive controller will be developed under the following assumptions regarding

the plant given in Eq. (3.1):

(Al) (i) ri[Gp(s)] = 1 or 2 (i = 1, 2,..., m) and, (ii) E[Gp(s)] is nonsingular.

(A2) The transmission zeros of Gp(s) lie in U-.

(A3) An adaptation gain matrix F can be found such that KpF = (Kp,)T > 0.

Also, we will assume that the reference trajectory is chosen such that:

(Ml) The eigenvalues of Am do not coincide with the zeros of the plant.

Below the adaptive control algorithm that can will achieve the described con-

trol objective is described. This adaptive controller is based on the fixed feedback

controller presented in Lemma 7. Define (Fig. 4-1)

el(t) = yp(t) -ym(t), e(t) = [Eo(t) 0 1(t) Om(t)],
(4.1)

wT (t) = [yT(t) wT(t) T (t)], (t) = [~I]w(t), a lR.

The control input is given by

u(t) = O(t)w(t) + O(t)w(t) (4.2)

'A matrix A is a stable matrix if all the eigenvalues of Am have non-positive real parts and those
with zero parts are simple zeros of the minimal polynomial of A.



Figure 4-1: The Low Order Adaptive Control Scheme.
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where wl (t) is generated as

ýl(t) = -Awl(t) + u(t), A(-A) n A(Am) = 0, A > 0. (4.3)

The adaptive law for adjusting 6(t) is given by

o(t) = -Fel(t)OT (t ).  (4.4)

The following Theorem states a main result.

Theorem 4 When Gp(s) satisfies assumptions (Al), (A2) and (A3), and the desired

trajectory ym(t) is given by Eq. (3.24) satisfying assumption (Ml), then the adaptive

controller given by Eqs. (4.2) - (4.4) ensures that all signals in the loop are globally

bounded and that el (t) tends to zero asymptotically. *

Proof: Based on the discussion in Chapter 3, the control input is chosen as

u(t) = O(t)w(t) + ((t)-(t), (4.2)

where O(t) is a time-varying gain. The second term in Eq. (4.2) is needed since

ri[G,(s)] may be one or two. Define O* = [E* O* 0*]. Note that if O(t) - 0*

then the controller reduces to the controller discussed in Lemma 7. With the controller

in Eq. (4.2), the closed loop dynamics is given by

= + (Oo(t)yp(t) + Om(t)xm(t) + (•(t))(t))
01 0 E1 (t) - A I I

YP = [Cp 0][ ]X

Define the parameter error matrix 4(t) as 4 (t) = O(t) - O*, we then obtain the

following closed loop equation:

x = Ax + B[EOxm(t) + 4(t)w(t) + 4(t)O(t)]

y, = Cx,



with {A, B, C} defined as in Eq. (3.16). The input-output relation is given by

yp(t) = Wm(s)Kp [oxm(t) + 4(t)w(t) + ((t)-(t) .

From the discussion in Chapter 3 we have that the reference signal can be represented

as

ym(t)= Wm(s)KpE*xm(t),

neglecting exponentially decaying initial conditions, so that the error equation is

el(t) = Wm(s)K,[I(t)w(t) + 4(t)o(t)].

Since #(t)w(t) -+ (t)w(t) = [(s + a)1] 4(t)o(t), the error equation can be simplified

RS6

(4.5)

where Wl/(s) = [(s + a)I] Wm(s) is SPR from Lemma 7. Neglecting exponentially

decaying initial conditions, the state-space representation of Eq. (4.5) is given by

S=Ace + BKp K{Kp4(t) 0 (t)}

eI :=: [(s + a)I] Ce = [aC + CA]e + CBKp1 {Kp4((t)W(t)}.
(4.6)

Since Wm(s) is SPR, Lemma 2 assures that there exist a matrix P = pT > 0, matrices

K and L and a scalar p > 0 such that

A P +PA

(BKp l)Tp + KT LT

KTK

- -LLT - 2pP

= aC + CA

CBKp1 + (CBKpl)T.

Choose a Lyapunov function of the form

V(e, (p) = eTPe + tr(4TKKT(KpF)- 1K, ).

(4.7)

el (t) = Wm (s)Kp(t) ~ (t)



The derivative evaluated along the trajectories of Eqs. (4.4) and (4.6) is given by

V(e, 4) = -eT(LLT + 2pP)e + 2eTPB(PJ - 2eTK, p.

Since BTPe = el - CB7O - KTLTe, we have

V(e, (D) = -2peTPe - e _e2 < 0,

where e2 = LTe+KKpDO. This implies that e and 4) are bounded, and that e, e2 E 2

Since wl is a part of e, we have that 01w £ . Also, yp - Ym = Ce, and hence P, is

bounded. As a result, CE £L. Since A is exponentially stable and 4, 0, e C £~ we

have that E £L'. Since e E LI n L2 and E £L', Barbalat's Lemma [47] gives that

limt,,_o e(t) = 0. Also, el = C(6 + ae) is bounded. Hence, all signals in the loop are

bounded.

We shall now show that limt,,_ el (t) = 0 as well. Since e e £OO, it follows that FP

and W E £L. Hence, since e2 = LTe+KKpdw+ KKpIw, e2 E O• as well, Barbalat's

Lemma gives that limtoo e2 = 0 and hence

lim KKp,(t))0(t) = 0.
t-*oo

We note that, using Lemma 4, KTCB can be simplified as

KTCB = (CB)TCB + (CAB)TNPCB = (CB)TCB.

Hence, using Eq. (4.7), K = V/2CBK,-1. Therefore, we have that

lim CBK-1 {Kp~((t)a(t)} = 0,

hence limt_~, el (t) = 0. I



Figure 4-2: Simplified Low Order Adaptive Control Scheme when rank(CpB) = m

If it is known a priori that rank(CpB) = m so that in assumption (Al) ri[Gp(s)] =

I Vi, then the controller can be simplified as described below. Define (Fig. 4-2)

el(t) =yp(t) - ym(t), O(t)=[Oo(t) Om(t)], wT (t)=[y'(t) xT(t)].

(4.8)

The control input is given by

u(t) = 8(t)w(t), (4.9)

and the adaptive law for adjusting E is given by

e(t) = -Fei(t)wT (t). (4.10)

Then we have the following result.

Theorem 5 When G,(s) is such that rank(CpB) = m and assumptions (A2) and

(A3) are satisfied, and the desired trajectory ym(t) is given by Eq. (3.24) satisfying

assumption (Ml), then the adaptive controller given by Eqs. (4.9) - (4.10) ensures

that all signals in the loop are globally bounded and that el (t) tends to zero asymp-

totically. *



Proof: Using Lemma 6, the proof follows along similar lines as the proof of

Theorem 4. EO

Remarks:

1. In assumption (Al), knowledge of the relative degrees, together with a nonsin-

gular E[Gp(s)], implies that the Hermite normal form of the plant is diagonal

where the transfer functions on the diagonal are of order one or two. This

essentially replaces assumption (II) discussed in Chapter 1.

2. It is worth noting that in contrast to many multivariable adaptive control algo-

rithms, the observability index v is not required to be known for designing the

adaptive controller (assumption (I) in Chapter 1). Furthermore, the adaptive

control algorithm presented here is of significantly lower order than most other

MIMO adaptive schemes (Table 4.1).

3. One of the most important parameters in designing the adaptive controller given

in Theorem 4 is the filter parameter a in Eq. (4.1). a determines indirectly

how large a loop gain 0o is needed to achieve the desired strictly positive real

transfer function Wi(s) = [(s + a)I](1 - GoGp(s)G,(s)Oo)-iG,(s)Gc(s). In

general, if a is chosen to be large with respect to the open loop bandwidth a

high gain 0* is required to make Win(s) SPR. The benefit of the high gain is

that Wn(s) will have a high bandwidth and a fast speed of response. For the

tracking problem, this implies that the effect of initial conditions diminishes

quickly. The disadvantage of a large gain 0o is that unmodeled dynamics may

get excited, that actuator saturation can occur and that the controller becomes

more sensitive to measurement noise.

4. The controllers presented in Theorem 4 and Theorem 5 are based on the non-

adaptive phase-lead and static output feedback controllers discussed in Chapter

3. Tracking is achieved using an adaptive version of the feedforward controller

discussed in section 3.4. Naturally, the comments made in section 3.2.1 regard-

ing the use of more sophisticated compensator structures apply here as well.



A can be chosen, based on prior information, such that Win(s) becomes SPR

for lower gain. Also, A can be chosen close to stable open loop poles so that

tracking can be achieved using fewer states in the feedforward model Am.

When constant or sinusoidal disturbances are present then the internal model

principle as discussed in section 3.2.2 can be applied here as well. In the sin-

glevariable case for example, if a sinusoidal disturbance is present the term wd

in
s + ao s2 + C1S + CoGe(s) =
s + bo s 2 + Wd

can be assumed unknown, and the control algorithm can be modified to in-

clude an estimate of Wd. The adaptation algorithm then ensures that exact

tracking is achieved. In case the disturbance is known not to be constant or si-

nusoidal, exact tracking cannot be achieved. If the disturbance is band limited,

the augmented algorithm can still be used to achieve disturbance attenuation.

However, the modified adaptive algorithm presented in section 4.3 will have to

be used to guarantee boundedness of the loop signals.

5. When ri[Gp(s)] = 1 Vi and E[Gp(s)] is non-singular, and all rij[Gp(s)] are

known (i,j = 1,..., m) then Gp(s) can be augmented with a precompensator

We(s) e Rnmxm(s) so that for G,(s) = Gp(s)We(s) satisfies ri[-p(s)] = 1 or 2

and E[G,(s)] is almost always nonsingular [56]. If ri[Gp(s)] = 2 Vi, even though

a compensator can be found for which E[G,(s)] is almost always nonsingular,

ri[G,(s)] exceeds 2 and therefore Theorem 4 is not directly applicable.

6. Assumption (Ml) is included for ease of exposition as well as to allow better

tracking of slowly decaying exponentials.



MRAC Low Order Controller

Number of on-line 2vm 2 > 2nm 2m 2 + mp
adjustable parameters

Order of the underlying 2m(v - 1) + p > 2(n - m) + p m + p
fixed controller

Order of the adaptive 2m(v - 1) + 2vm + p
controller > 2(n - m) + 2n +p 3m + 2p

Total number of 2vm 2 + 2m(v - 1) + 2vm + p
controller states > 2nm + 2(n - m) + 2n + p 2m 2 + mp + 3m + 2p

Table 4.1: Comparison of the order of the MRAC and the Low Order Adap-
tive Controller. (MIMO MRAC for a plant satisfying assumption (Al) with
ri[Gp(s)] = 2 Vi. For the MRAC, p denotes the order of the reference model.
For the Low Order Controller, p denotes the dimension of Am.)



4.3 The Robustified Adaptive Control Algorithm

The adaptive controller presented in section 4.2 is developed assuming that (Al),

(A2) and (A3) are satisfied. Furthermore, the analysis assumes that no unexpected

external disturbances are present. In any practical application these assumptions will

not always be valid. The modified algorithm presented in this section guarantees

boundedness of the loop signals in the case that these assumptions are violated. The

non-ideal MIMO LTI system that will be considered in this section is described by

yp = G(s)u + Gd(s)d = {G,(s)[I + pAi(s)] +MApa(s)}u + Gd(s)d (4.11)

where the minimal representations of Gp(s) and Gd(s) are given by

G,(s) = C,O(sI - Ap)- 1 B, (3.2)

Gd(s) = Cp(sI - Ap)- 1 Lp. (3.3)

GP(s) e Rmxm(s) is the nominal plant for which the adaptive controller described

in section 4.2 is developed, Gd(s) e Rmx 8 (s) shows how the bounded disturbance

d : ]R+ - IR1 enters the system. The violation of assumptions (Al) and (A2) is

reflected by Aa(s) and Ai(s). Without loss of generality, we weight Aa(s) and Ai(s)

by the same positive scalar p.

The following assumptions regarding the nominal plant are needed.

(A1') (i) ri[Gp(s)] = 1 or 2 (i = 1, 2,..., m) and, (ii) E[Gp(s)] is nonsingular.

(A2) The transmission zeros of G,(s) lie in (-.

(A4) K, is sign definite, and F = sgn(K,)-yI where sgn(K,) is known.

(A5) An upperbound Imax on the desired control parameter matrix is known,

where oE*IF < Omax,

and |Al2F trace(AT A).



In describing the assumptions on a, and Ai, and in the proof of Theorem 6, the

following notation will be used. If f :IR -+ IR' and T c IR+ , Ifl = Iflf o I

esssupt>0 If (t)12 and fT(t) = f(t) for t T and fT(t) = 0 for t > T. Let H be a

MIMO, LTI operator such that H : £" -+ C" where £'" = {f : IR-+ ]R I IlflloI <

oo}. The £" induced operator norm of H is denoted by H Ii, and is defined as

(see [14], for example)

SH i = sup lIHS10 IIIil "

The assumptions on the plant perturbations are as follows:

Am and Aa are assumed to be LTI, and

(Ul) IIA,,m1 is bounded,

(U2) IIAa,1i is bounded,

where the Laplace transform of A, is defined as Aa(s) = Aa(s)[I(s + e)] for some

SE IR+. Am, and A, are allowed to be infinite dimensional.

The adaptive control algorithm is described below. Let el, O, w and 0 be defined

as in Eq. (4.1). Define

(t = [controlo(t) (tlawremains) unchange(t) ].as

The control law remains unchanged as

u(t) = O(t)w(t) + O(t)o(t), (4.2)

and the control parameters E are determined as projection of E given by

e(t) = I e(t)
9i(t)IF

if le(t)lF _< eax
if Io(t)IF > oaxi,

(4.12)

and E is adjusted according to the adaptive law

O(t) = -Fe (t))z (t) - ua((t) - (t)), (4.13)a > 0.



The following Theorem states the boundedness result.

Theorem 6 When Gp(s) in Eq. (3.1) satisfies assumptions (Al), (A2), (A4), and

(A5), the uncertainties A,(s) and Ai(s) satisfy assumptions (Ul) and (U2), the dis-

turbance d is bounded and the desired trajectory is given by Eq. (3.24) satisfying

assumption (Ml), then a p* > 0 exists such that for all p E [0, ,*) the adaptive

controller given by Eqs. (4.2), (4.12) and (4.13) ensures that all the signals in the

loop are globally bounded. If p = 0 and d(t) - 0 then the adaptive controller ensures

that the output error el(t) tends to zero asymptotically. *

Proof: In what follows, let i (t) (i = 1,...,4) denote exponentially decaying

signals of appropriate dimension due to initial conditions. Define the parameter error

,(t') = O(t) - e* and define the nonminimal state error

e =x-- X ,

where x E IRn is given by

x = Ae + B(O8xm + 4w + 40) + B1O*/Aa[u] + BIAAm [U] + Ldd

y, = CX + Ana[],

where A, B and C are defined by Eq. (3.16), BT = [BpT  0], LT = [LT  0]. A,

and Am denote LTI operators. x* E lRn is the state in the nonminimal state-space

representation of

Ym = Wm(s)sgn(Kp)Emxm -x1

where, from the discussion in section 3.4, (1(t) = CeAt(x(O) - eOmxmo). It follows

that the nonminimal state error representation is given by

e = Ae + B(Dw + (i-) + BEOpAa[u] + B1iAm[u] + Ldd
(4.14)

el = Ce.+An[u]+1,

From Corollary 2 it is known that Wm(s) is SPR, hence Lemma 2 implies there exist



a matrix P = PT > 0, a vector L, a scalar k and a positive scalar p such that

ATP +PA = -LLT - 2pP

sgn(Kp)BTP + kLT = aC + CA (4.15)

sgn(Kp)KTK = CB + (CB)T.

Define the fictitious state E as

e = [ I- e, (4.16)

then E evolves as

e = A + B4F + BOePAa[E~ ]J + B1/iAm[EO ] + Ldd ± '2

el = (aC + CA)- + CBDJ + CBEOi/A[EO] + pHAa[EO7] + CB/iAml[EO ]+

CLd + CQ2 1 + -3.
(4.17)

In Eq. (4.17), A, and H denote MIMO LTI operators. 2A is defined as in assumption

(U2), the Laplace transform of H is defined as H(s) = [Is+], E E ]R+ . 3 E R" is

an equivalent input disturbance defined as d(t) = fot e-aI(t-')d(T)dT. We choose a

Lyapunov function candidate of the form

V(e, 8) = JTP- + y7-tr(4DT) + 27-1tr(DjT(- - E)). (4.18)

Since

tr( 4 T(e -  )) > ( GIF - 0oa.)(eo0m - e* IF) > 0 if -OeF > Omax,

it follows that V(E, ) is continuous, positive definite, and radially unbounded (Fig

4-3). Also, V has continuous first partial derivatives with respect to the elements of

E and &. Evaluating V along the trajectories of (4.12), (4.13) and (4.17), together

with the definition of P as in Eq. (4.15) and the fact that tr(T((G - E)) = 0, we



Figure 4-3: Example of a level set of V for a scalar case. V(E, 0) = e2 + /2 +
20(0 - 0), 0* = 0.5, O*ax = 2. Vo = {(, 0) I V(-, 0) = 11}.

obtain that

(, ) -2 - e 2 + 2ETP(Ldd + (2)+

2 (0TPB - sgn(Kp,) TOTCB) E9OPAa[EO]-

2sgn(Kp,)JT T)T pH 2 a[ O.•+ (4.19)

2 (ETPB 1 - sgn(Kp)OT4jTCBi) ILAmm[O]-

2sgn(K,)~T(D T (CLdd + CC2 + C + 3)-

2a<y-ltr (T(- - 0))

where T2 = LT - + sgn(Kp)K#W. The proof of Theorem 6 is completed by considering

the cases p = 0, d _ 0 and y 0 0, d $ 0 separately. First we show that when i = 0,

d -_ 0, the closed-loop system given by Eq. (4.17) and the adaptive law in Eqs. (4.12)

and (4.13) leads to globally bounded solutions and el (t) -+ 0 asymptotically. When

t 0 0 and d 4 0, we show that all signals in the loop remain globally bounded using

a small-gain type argument.



p = 0, d = 0 For ease of exposition, we will neglect the effect of exponentially

decaying initial conditions (i (i = 1,..., 3), although the result can also be shown if

they are present. Since tr(4T(o -_)) > 0, Eq. (4.19) can be reduced to

V(9, O) 5 - 2p-TPRE - ET2. (4.20)

This implies that E and O are bounded. By definition, E is bounded. Since e E '",

ae £c7L. It therefore follows from Eq. (4.17) that -e E Ll. Hence e E L£, so that all

loop signals are bounded. Also, Eq. (4.20) implies that

eE 2, E2 E 2

Therefore, E(t) -+ 0 as t -4 oc. Since

= if 0I1F • ~a (4.21)

·-- T{ RIF - 1512 tr(E 6)e6 if IOIF > 8xIoF la

and w = -aI +w, it follows that e2 E L'. Hence, E2(t) -+ 0 as t -+ oc. This implies

that 4'0 - 0 asymptotically, and as a result, limt,-oo el (t) = 0.

M # 0, d # 0 In what follows, let ci (i = 0,..., 15) denote positive, finite constants.

The exact definition of the ci's is given in Table 4.2. Substituting Eq. (4.18) in Eq.

(4.19) results in

V < -2aV+2JTP(Ldd+2)-2sgn(Kp,))TT (CLdd+C2+ )+2ay-ltr(To)+6,

(4.22)

where a = min(p, "), and

6 = 2 (-TPB - sgn(Kp,)OT1TTCB) O*Aa[e,[ ] - 2sgn(Kp)ODT MH2Ka[60]

+2 (-TPB1 - sgn(Kp) TOTCB) [6Am[O].



The definition of e as the nonminimal state error implies that

= 01

0 0.
e+ wu = We

This, together with the definition of W as in Eq. (4.1) and e as in Eq. (4.16), implies

that E can be expressed as

a(t) = WT(t) + ±*(t) + 4(t),

Also, using Eq. (4.18), we have

(t) -a(t-)w*(r)dr. (4.23)

(4.24)2 -< Amin (P) V.

Using Eqs. (4.23) and (4.24), Eq. (4.22) can be simplified as

7 < -2aV + coV + cl + 6 < -aV + c2 + 6.

Eq. (4.25) implies that

IIVTII < V(0) + 3a- ' (C2 + 116TI I)

Since

II(oE)TiI = ess sup jo(t)O(t)l _< Oax 0*IWTII
O<t<T

we have using Eq. (4.23) that

I(60) TI • * Oex(amaz (W) I TI + II(V* + 64)T I),

(4.25)

(4.26)

(4.27)

and, similarly,

II(47)T1I 5 20•ax(amax(W) I(ETII + II(w* + ý4)T I).

w[

--I:I
+ w*.

T T

(4.28)



Using Eqs. (4.27) and (4.28) it follows that

116Tll • I llallI(C4IT(11I2  + C511ýTI + C6)+ jllAmlll(C7I 2 + c8ll2TII + Cg)
c4 c )_< /pL2all(2c4 llT1 2 + C+ ) + llp l (2C7 p T11 + + Cg). (4.29)

4C4 4C7

Also, Eq. (4.24) implies that

IleT 11 < 1(P)VTIIV, (4.30)

so that, using Eqs. (4.29) and (4.30), Eq. (4.26) can be written as

IIVTII < C3 + Ci1•o0•Iall + C11/IImjI1 1+ Cl2/IIIa1jalIVTII + cl3PjlAm•1jjVll V I.

Assumptions (Ul) and (U2) imply that there exist positive, finite constants C14 and

C15 such that jl\alll - c14 , IAmilll = C15 . If we define C* = 121413C15' then for all

4p E [0, "*) we have that

VI ~ 3 + P(c• 0C14 + C11C15) (4.31)
1 - A(c 12C14 + C13C15)

Hence, IIVTII is bounded for all T E IR+. Since V is bounded, Z and # are bounded,

which implies that all signals in the loop are bounded. El



CO = 2[Amin (P)]-1 { max(PLd)3a-l d + Amax(P)H•2 +

20 ax•amax (W) (max(CLd)3a - ' Ild + max(C)11211 + II1 + 1111 )}
c1 4O0;xfl * + ý4 11 Umax(CLd)3a di + Umax(C)2 ~ ±~ 33) +

8ai--10*

2

8cr(10*rmax2
C2 - C1

4a

C3 = V (0) + 3C- c 2

C4 -- Oax 03E Omax(W)(2Umax(PB) + 2Umax(CB)OmaxO-max(W)) +

4l Hl6Omax Umax(W)

c 5 = 20*naxrf -* -+ 4I { 0 3c-l(rmax(PB) + 2Umax (CB)Omaxmax (W))+

4m0nax Hf Omaxz(W)}

C6  Omar J 112( 36 13 20max(CB) + 4 H I1)

C7 = marxo* maz(W) (2'max(PB1) + 20maxamax (CB)oamax(W))

C8 = 20*ax 1*± 04 0(max (PB) + 20 maxO-max (CB) 'max (W))

C9 = 2 0* azOo maz(CB)-
* + D412

2

C10 = 3a-( + C6)
4C7

cl1  3 1 c~7 + C9 )

C12 = 6c4CV- 1[Amin(P)]- 1

C13 = 6C7C'--'1[min(P)]- 1

C1 4 -• la 1

C15 = l Am 1

Table 4.2: Definition of Constants in Robustness Proof



Remarks:

1. If an estimate 8* of the desired control parameters is available, then the al-

gorithm can be modified by replacing O(t) in Eq. (4.2) by O(t) + 8*, and by

replacing O(t) in Eqs. (4.12) and (4.13) by O(t). Furthermore, if the magnitude

of 0max in assumption (A5) can be reduced then p* can be increased.

2. A projection-like algorithm is used in Eqs. (4.12) and (4.13) for guaranteeing

robustness. While a similar continuous-time algorithm has been proposed in

[46], Eqs. (4.12) and (4.13) are significantly simpler.

3. If it is known a priori that rank(CpB) = m, then the algorithm given by

Eqs. (4.2), (4.12) and (4.13) can be simplified in a manner similar to the non-

robustified algorithm given in Theorem 5.

4. It follows from Eqs. (4.30) and (4.31) that

1 c3 + ± (c1oc14 + u11C15)
\ Ami,(P) - 6a- 1P(c4c 1 4 + C7C15 ))

which together with Eq. (4.17) provides a quantitative bound on the tran-

sient performance of the adaptive controller. Since the plant parameters are

unknown, this bound can not be evaluated in practice. This bound is also

conservative by the very nature of the way it is derived. However, it does pro-

vide some insight as to how the system parameters affect the performance. For

example, as Omax increases the bound on IEll increases.

5. It should be noted that the control input u in Eq. (4.2) with e defined as in Eq.

(4.12) is not continuous when elF = 0*ax. This is because at lolF = O*ax, E

is continuous but not differentiable, i.e. 8 in Eq. (4.21) is not continuous. For

this reason, the modifcation of the adaptive law presented here may be more

appropriate for bounding slowly drifting control parameters.

6. The Lyapunov based approach taken here to analyze the stability of the adaptive

control system in the presence of unmodeled dynamics is significantly different



from the approach taken in the non-adaptive robust control literature where the

stability analysis is based on the small-gain theorem. The small-gain theorem

can provide powerful stability criteria for nonstructured as well as structured

uncertainties. Clearly, the connection of robust adaptive control methods with

non-adaptive robust control design techniques is of crucial importance for last-

ing success of adaptive control. Unfortunately, although the adaptive system

presented in this section can be cast into the small-gain framework, the evalu-

ation of the relevant operator norms is a non-trivial task.

7. Theorem 4.3 states that a robust adaptive controller exists for small enough

plant perturbations. The robust adaptive controller synthesis problem is an

open problem, although some partial results have been reported in [34, 61].

8. As was noted in [27], the characterization of the unmodeled dynamics as in

assumptions (Ul) and (U2) implies that the perturbations can not have a direct

throughput at I=O, i.e. perturbations of the form /pAi = 1 (i = a, m) are

not allowed, whereas perturbations of the form pAi = " (i = a,m) are

admissible. The design of adaptive controllers such that this assumption is

relaxed is still an open issue.



4.4 Summary

In this Chapter the low order adaptive controller was developed in two parts. In the

first part, under certain assumptions, the adaptation algorithm was presented. Using

results from Chapter 3, a compact stability proof was given. The algorithm ensures

that the plant output converges asymptotically to the reference trajectory.

In the second part the adaptive laws were modified to account for fast unmodeled

dynamics and high frequency disturbances. When unmodeled dynamics are present,

the controller is shown to result in bounded loop signals with a tracking error propor-

tional to the size of the unmodeled dynamics, the magnitude of the exogenous input

and the size of the parametric uncertainty.



Chapter 5

Application to Vibration Systems

5.1 Introduction

In this chapter the adaptive controller developed in Chapter 4 will be applied to two

illustrative examples motivated by practical control problems. The Chapter is divided

into two parts. In section 5.2 it is shown how the low order adaptive controller can be

applied to flexible structures for tracking and disturbance rejection. In section 5.3 the

controller is used to stabilize a combustion process. These applications illustrate the

different aspects of the low order adaptive controller by tuning selected gains only.

The mass-spring-damper example discussed in section 5.2.5 shows how by tuning

the feedforward gain EO, tracking can be achieved. In this case, the other control

parameters remain fixed. Similarly, in section 5.2.6 it is shown how by only tuning the

compensator gain 0 1, disturbance rejection is achieved. The combustion example in

section 5.3 shows how by tuning the feedback gain Eo, pressure modes are stabilized.

The systems considered in this Chapter can be described by a finite-dimensional,

second order matrix differential equation of the form

Mi + CG + Kx = Buu, (5.1)

where x : R + -+ IRnp/ 2, n even, and u : R+ ]Rm , np > 2m. The measurements



are given by

y = CYzx (5.2)

where y : IR+ -+ IRm . In the applications that we will consider here we have that

M = MT > 0 and K = KT > 0. The properties of the matrix C depend on the

specifics of the system under consideration. The input-output representation of Eqs.

(5.1) and (5.2) is given by y = Gp(s)u where

G,(s) Cxy [M2 + Cs + K]-1 B.

For application of the adaptive controller to the system described by Eqs. (5.1)

and (5.2), it is important to recognize when assumptions

(Al) (i) ri[G,(s)] = 1 or 2 (i = 1, 2,..., m) and, (ii) E[G,(s)] is nonsingular,

(A2) the transmission zeros of Gp(s) lie in Y-, and

(A3) an adaptation gain matrix F can be found such that KpF = (Kp,)T > 0,

are satisfied without relying on the parameters of the system. For satisfaction of as-

sumptions (Al) and (A3), it is sufficient that the actuators and sensors are colocated,

i.e. C,, = BuT. Namely, the high frequency gain matrix of the system is then given

by

K, = E = lim s 2B [Ms 2 + CS + K] - 1 Bux
T -1+ O

= BM- Bux

> 0

since M is symmetric and positive definite. An adaptation gain F = ylmxm, / > 0

will satisfy assumption (A3). In fact, since Kp > 0, Corollary 2 implies that any

F = pT > 0 can be used. In case Eq. (5.1) represents a discretization of a continuous

system, as is the case in the finite element method for example, then the colocation

assumption may be weakened, and also proximally located actuator sensor pairs are



allowed. Even for colocated systems, the verification of assumption (A2) is difficult

in general. Without loss of generality, Eqs. (5.1) and (5.2) can be rearranged such

that the frequency domain representation is given by

Mils 2 + C11s + K1  M12s 2 + C12s + K12  x1 B

M21s2 + C12s + K12  M22s2 + C22s + K22  X2 0[ ]

y = [B 0] K]
where x1 E IRm and x2 E IRnp/ 2 -m , and B•, has full rank. The transmission zero

locations are therefore given by the solution of

det(M 22s 2 + C22s + K22) = 0. (5.3)

Since the principal submatrix of a positive definite matrix is itself positive definite,

we have that M22 = M2T > 0 and K 22 = K2T > 0 as well. Hence, there are a total

of np - 2m finite transmission zeros. If n, = 2m no transmission zeros exist and

assumption (A2) is trivially satisfied. In this case, one control input is available for

each mode of vibration. If n, > 2m, the minimum phaseness of the transmission zeros

depends on the properties of the matrix C22 which depends on C. The structure of C

depends on the specifics of the system considered, and we will therefore address the

verification of assumption (A2) separately for each of the applications considered in

sections 5.2 and 5.3.

This Chapter is organized as follows. The flexible structure and combustion appli-

cations are presented in section 5.2 and section 5.3, respectively. Both these sections

are divided into subsections giving an introduction to the problem, a motivation for

using adaptive control, the derivation of the dynamic model, a sample system descrip-

tion, simulation results and a discussion. The main contributions of this Chapter are

summarized in section 5.4.



5.2 Flexible Structures

5.2.1 Introduction

In this section the application of the low order adaptive controller to flexible struc-

tures is discussed. The section is organized as follows. In section 5.2.2 a motivation for

using adaptive control is given. In section 5.2.3 a dynamic model of flexible structures

is presented, and the assumptions required for application of the low order adaptive

controller are verified. In section 5.2.4 a sample structure is given, this sample struc-

ture was used in simulations whose results are presented in sections 5.2.5 and 5.2.6.

Simulation results of an example dealing with unmodeled dynamics are given in 5.2.7.

A discussion of the simulation results is given in section 5.2.8.

5.2.2 Motivation

Deployment of large space structures for communications, space defense and man-

ufacturing has motivated many investigations in the automatic control of flexible

structures. For active control of flexible structures using conventional, non-adaptive,

high performance control methods, a high fidelity model of the structure is required.

Such models are developed using finite element analysis. However, when a controller

based on a finite element model is applied to the actual structure, the closed loop

system is not necessarily stable due to differences between the actual plant and the

plant model. The primary cause of instability in this case is the (small) difference in

the parameters that describe the plant and the model, and the low inherent damping

in metal structures. The parametric uncertainties may have occurred in the model-

ing phase, finite element models will have errors of about 10% in modal frequencies

and mode shapes [10], or may occur due to in-flight structural modifications. An-

other fact that complicates control design is the close spacing of the vibration modes

which makes controller roll-off in the presence of the parametric uncertainty and low

damping a difficult problem [28, 54].

Since conventional methods do not work well, many efforts have been undertaken



to develop more robust control methods for flexible structures. The simplest, robust

control method is the use of velocity feedback. Here colocated velocity feedback is

used to add damping to the structural modes [10]. This can be accomplished without

requiring an accurate plant model. The disadvantage of this method is that it is dif-

ficult to find feedback gains so that selected modes have the desired amount of added

damping. More recently, an approach has been suggested that enables the feedback

to add more damping in a selected frequency range using impedance matching ideas

[4:01. These methods work well if vibration suppression is desired for broadband dis-

turbance inputs, and are known as Low Authority Control (LAC) since they seek

to modify the structural modes only slightly [3]. In case certain modes strongly in-

fluence performance, as may be the case in pointing or shape control applications,

high added damping or mode shape adjustment of a few modes is desirable. This

is typically accomplished using High Authority Control (HAC). Examples of such

controllers are LQG, LQG/LTR and Ho. Since these controllers are model based,

the controller order is in principle as high as that of the plant model which could

make the controller practically infeasible. Also, since the controllers rely heavily on

the fidelity of the plant model they can perform badly in the presence of parametric

uncertainties in the plant model. Methods have been developed to guard against the

adverse effects of parametric uncertainty however (real p-analysis, for example). In

HAC/LAC both control strategies are combined.

Since parametric uncertainty is a primary concern in designing high performance

controllers for flexible structures, the use of adaptive control is only natural and

this application was therefore the initial motivation for the development of the con-

troller presented in this thesis. The adaptive controller can be viewed as a HAC/LAC

controller. The feedback loop with 0o in combination with the phase-lead based com-

pensator ensures that some damping is added to the vibration modes (LAC part).

The use of a feedforward input with gain 0m and further augmentation of the com-

pensator with gain 6 1 assures that tracking and disturbance rejection are achieved at

the measured outputs (HAC part). Adaptive control for flexible structures has been

investigated in [7, 8, 44]. The disadvantage of these controllers is that they rely heav-



ily on the use of both position and velocity measurements while in most cases only

one of the two is available. The adaptive controller presented in this thesis requires

position measurements only.

5.2.3 Dynamic Model

In this section we outline briefly why flexible structures can be represented as in

Eq. (5.1), and we verify assumption (A2) regarding minimum phaseness. Using finite

element analysis, assuming small displacements, dynamic models of flexible structures

are of the form
Mi + Kx = B (5.4)

y = CxyX

where M = MT > 0 is the (consistent) mass matrix and K = KT > 0 is the stiffness

matrix. Here we will assume that the finite element mesh is chosen such that Eq.

(5.4) is a model of the continuous structure valid in the frequency range upto 4 to 10

times the desired closed loop bandwidth 1. From a physical point of view, it is known

that any flexible structure, with no rigid body modes, will come to rest when released

from any initial condition. However, the model in Eq. (5.4) implies that all system

trajectories remain on the same level set 2. Hence, although the model in Eq. (5.4)

does capture the kinetic and potential energies of the structure, it does not capture

the dissipative mechanism. The model postulated in Eq. (5.1) is the simplest linear

model that captures the energy dissipative mechanism, with C > 0 3. The dissipative

mechanism is attributed to the presence of material damping, which is very difficult

to model explicitly. Since material damping is typically very small, Amin,(C) > E > 0

where c E IR+ is small.

The properties of C are important to establish if the system described by Eqs.

(5.1) and (5.2) is minimum phase. Consider Eq. (5.3). For n, > 2m, since C > 0 it

follows that C22 > 0 as well. The roots of Eq. (5.3) are then the poles of a structure

'In section 5.3 this issue is addressed in a finite element representation of a combustion process.
2 Choose a Lyapunov function of the form V(x,i) = IiTTMi + xTKx, u = 0.
3This can be shown using the same Lyapunov function and LaSalle's Invariant Set Theorem.
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Figure 5-1: Sample flexible structure.

described by M 22 + C22z + K 22z = 0 where z : IR+ - R/ 2- m . Since these poles are

exponentially stable, it follows that the transmission zeros of the system described by

Eqs. (5.1) and (5.2) are finite, and lie in (-. Assumption (A2) is therefore satisfied.

In numerical simulations of the dynamic response of flexible structures, damping is

typically modeled as proportional or modal with, respectively, coefficients or damping

ratios chosen based on experimental observations [9]. In case proportional or modal

damping is assumed, even more can be said about the locations of the transmission

zeros, see [64].

5.2.4 Sample Structure

In this section a sample problem to illustrate the use of the controller for flexible

structures is discussed. This sample problem has deliberately been kept simple, the

underlying system dynamics is easy to understand. For application of the controller to

a complex flexible structure, see [4, 5]. The sample system consists of five masses with

five identical springs and dampers connected in series (Fig. 5-1). The xi (i = 1,..., 5)

denote positions of the masses with respect to a fixed reference frame. We will consider

a two-input two-output case, with two colocated actuator-sensor pairs at xl and x 5.

X-- · ~-t x, I , X3
I



The equation of motion of the mass-spring-damper is given by
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For this sample system two control objectives will be considered, tracking and dis-

turbance rejection.

5.2.5 Tracking Example

It is the objective of this example to show how the low order adaptive controller reacts

to parameter changes that occur on-line. The control objective is for the first and

fifth mass to follow an up-and-down reference trajectory. During the tracking task, a

parametric uncertainty is introduced. These parametric changes cause the controller

to be mismatched to the actual structure, and results in a tracking error. The param-

eters in the adaptive controller are then tuned on-line such that this tracking error is
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eliminated.

The low order adaptive controller in Theorem 4 was used. Based on the discussion

in section 3.4, to achieve good tracking performance using a low gain design, one mode

can be controlled per actuator. Since in this case two actuators were used, the other

modes have to be either canceled using a more elaborate compensator design or they

have to be such that their adverse effect on the tracking performance is small. In

this example the latter case was considered. The nominal values for the masses are

ml1 = m5 = 1, m 2 = m3 = m 4 = 0.1. The value for the stiffness is k = 1, and

the damping is chosen as c = 0.01. For the selected actuator-sensor pairs, these

values result in two dominant modes at the lowest frequencies wl and w2 (Table 5.1).

The remaining, higher frequency modes are less dominant. These modes can not be

neglected however since they lie within 10 times the desired closed loop bandwidth

of the controller, and can be destabilized in a closed loop dynamic system. The

parametric uncertainty is introduced by increasing the masses to mi = 2 and m 2 = 2

on-line. The other masses are not changed. It is worth noting that this parameter

change causes a large change in the low frequency, dominant modes (Table 5.1). Such

changes are difficult to accommodate using conventional, fixed control methods.

'To illustrate that tracking is primarily achieved using an (adaptive) feedforward

input, only Om will be tuned on-line (Fig. 5-2). 0o and 8 1 are chosen a priori

such that Wi(s) = [(s + a)I]Wm(s) is SPR for the range of values expected in

ml and m 5. With the filter parameters chosen as a = 1 rad/s and A = 0.212x2

rad/s, the feedback parameters that result in a SPR Win(s) are E0 (0) = -2 1 2x2 and

C-)(0) = -1.512x2. Following the discussion in section 3.4, the reference trajectory

for each output channel is chosen of third order, relative degree two:

02x2 I2x2 02x2 02x2

-W I2x2 -2(mWmI2x2 0 2x2 I2x2
Am =

(ao - bo)I 2x2  02x2 -boI 2x2 02x2

02x2 02x2 02x2 02x2

Cm = [ 12x2 0 2x2 012x2 02x2]

MCI [01x2 0 1x2 01x2 1 1, Or



frequency nominal(rad/s) perturbed (rad/s) change (%)
wi 0.41 0.30 27

w2 1.11 0.80 28

w3 2.61 2.51 4
w4 4.53 4.50 3
w5s 5.86 5.85 1

Table 5.1: Tracking Example. Natural Frequencies of the Sample Structure.

Figure 5-2: Low order adaptive control scheme for tracking.
parameter Om is adjusted on-line.

Only the feedforward

L .



Xo = [01x2 01x2 01x2 [0 0]].

A real zero at ao = -A(1, 1) = -0.2 rad/s is needed to eliminate initial condition

effects. To cancel the effect of this zero in the reference trajectory, an almost pole-

zero cancellation was created by placing a pole at bo = 0.21 rad/s. Effectively, the

resulting reference model is of second order of bandwidth wm = 0.5 rad/s, damping

ratio (m = 0.707 and unity DC-gain. The bandwidth of this reference trajectory

implies that primarily the first and second mode are excited, the remaining modes

are excited to a lesser degree. Based on the nominal plant values and the initial

feedback gains, the initial value of E)m was computed using Eq. (3.26) in section 3.4

as
2.78 -0.30 0.89 0.04 -200.55 38.60 0.28 0.01

-0.30 1.72 0.04 0.88 38.60 -44.42 0.01 0.28

Note that since all the entries in (m are nonzero, there exists a cross-coupling between

the two input and output channels, indicating the multivariable character of the

problem. To only adjust ,m on-line, the adaptation gains were chosen as m, = I2x2,

ro == 0 2x2 and F1 = 02x2-

Simulation results are shown in Figs. 5-3-5-6. In these simulations, the masses m,

and m 5 are increased at t = 100s. For comparison, the response using the underlying

fixed controller, computed using the nominal parameters, is shown as well. When

the adaptive control parameters are matched to those of the plant (t < 100s), the

response of the adaptive controller is similar to that of the (matched) fixed controller

(Figs. 5-3 and 5-4). When the desired trajectory undergoes a sudden step change at

t == Os and t = 50s, there is some change in the estimated control parameters due

to the effect of the higher modes, but their net effect on the parameter estimation

is negligible (Fig. 5-5). Once the parameter change is introduced at t = 100s, the

control parameters change more significantly (Fig. 5-5). For t > 100s, the adaptive

controller improves significantly on the tracking performance of the now mismatched

fixed controller (Fig. 5-3). Interestingly enough, the improvement of the tracking

performance in the upward phase (t = 100s, t = 200s) is much better than the



improvement in the tracking in the downward phase (t = 150s, t = 250s). This may

be due to the fact that the kinetic energy increases in the downward phase, and is

more difficult to compensate for. Convergence of the trajectory in the downward phase

occurs after continued excitation as well. The improvement in tracking performance

is achieved with only a modest increase in control action (Fig. 5-4). Not only is the

tracking performance at the measured outputs very good, the response at the other

masses is acceptable (Fig. 5-6).
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Figure 5-3: Comparison of the low order adaptive controller with the under-
lying fixed controller. Plant output Y2 for a tracking example. For t < 100s
the adaptive controller and the matched fixed controller give identical tracking
performance. The adaptive controller recovers after the parameter change at
t = 100s.
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Figure 5-4: Comparison of the low order adaptive controller with the under-
lying fixed controller. Control input u2 for a tracking example. For t < 100s,
the control input for the fixed controller is slightly smoother than that of the
adaptive controller. For t > 100s the control input generated by the adap-
tive controller is more oscillatory than that of the fixed controller due to the
presence of non-linear terms in the control law.



75

1.65

1.55

1

Time (s)
200 250 300

Figure 5-5: Comparison of the low order adaptive controller with the underly-
ing Fixed Controller. Feedforward gain em (2, 2)(t) in a tracking example. For
t < 100s the control gain changes slightly due to the excited higher modes.
For t > 100s the control gain varies in such a way that tracking is achieved
asymptotically.
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Figure 5-6: Comparison of the low order adaptive controller with the under-
lying fixed controller. Plant response at 3a. For t < 100s the displacement
of the third mass is the same for both controllers. For t > 100s the adaptive
controller results in a smaller overshoot of the third mass.
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Next the low order adaptive controller is compared with a standard MIMO Model

Reference Adaptive Controller [47, 55]. One of the difficulties in designing the MRAC

is the selection of the observability index v (assumption (I) in Chapter 1). For this

example, v was computed numerically based on the nominal model and was found to

be v = 6. It is assumed that the on-line change in mass does increase U. Due to the

lack of a state space solution in the literature for the ideal MRAC control parameters,

the initial control parameters (at t = Os) for the MRAC were generated by imposing

the same up-and-down trajectory for a long period of time. A second order reference

model for each output channel was used with bandwidth Wm = 0.5 rad/s and damping

Gm = 0.707. The adaptation gains for the MRAC were chosen such that the tracking

error converged in a manner similar to the low order adaptive controller.

'The simulation results are shown in Figs. 5-7-5-8. As before, the masses m, and

n5 are increased at t = 100s. From the simulations it can be concluded that the

low order adaptive controller has at least as good a tracking performance as a model

reference adaptive controller. This is accomplished using significantly fewer on-line

adjustable parameters and with a controller that is of much lower order (Table 5.2).

LOAC MRAC RO MRAC
Order of the adaptive controller 18 48 16
Number of parameters adjusted on-line 16 48 16
Total controller states 34 96 32

Table 5.2: Comparison of the order of the Low Order Adaptive Controller with
that of a MRAC scheme. (Using Table 4.1. Low Order Adaptive Controller
(LOAC): m = 2, p = 8 with a correction since 6o and E1 are not tuned on-line.
MRAC: v = 6, m = 2, p = 4. Reduced Order (RO) MRAC: v = 2, m = 2,
p = 4.)

One could argue that the large difference in the controller order as given in Table

5.2 is obtained in an unfair manner because the observability index v = 6 used in

designing the MRAC controller was chosen too large. After all, the structure contains

only two dominant modes, and a smaller v will result in a lower order MRAC scheme

(Table 4.1). Below this issue is addressed qualitatively. Since only two dominant



modes are present in the input-output transfer function matrix, it seems reasonable

to approximate the dynamics of the sample structure in Fig. 5-1 by a two mass-

spring-damper system. For such a system with one actuator-sensor pair on each

mass, the observability index v = 2. Namely, the observability index v is defined as

the smallest integer q such that rank([CT  ATCT ... (AT)q-ICT]) = n where C

is the output matrix, A the system matrix and n the system order. For a flexible

structure we have, using Eqs. (5.1) and (5.2),

0 1
A= -- M - 1K  -M-'C C=[C' 0].

For a two mass-spring-damper, two input-output system we have

rank([C T  ATCT]) rank( CX  ) = rank(I4x 4) 4,
0O C•Xy, a (× 4

so that v = 2. The resulting order of the MRAC scheme using v = 2 as a control

design parameter is given in Table 5.2. The order of the Reduced Order MRAC

is lower than that of the Low Order Adaptive controller proposed in this thesis,

and might therefore seem more attractive. To verify, qualitatively, whether such a

Reduced Order MRAC is indeed attractive for this application, a comparison with

the full order MRAC was performed (Figs. 5-9 and 5-10). The tracking objective

and the on-line parameter change in the simulations was the same as before. The

simulations show that the response of the Reduced Order MRAC is more oscillatory

than that of the full order MRAC (Fig. 5-9). Also, the control input is larger, and

more oscillatory (Fig. 5-10). Although not shown here, the parameter estimates for

the Reduced Order MRAC do not seem to converge for the given reference trajectory.
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Figure 5-7: Comparison of the low order adaptive controller with a MRAC
scheme. Plant output Y2 for a tracking example. For t < 100s the tracking
performance of both controllers is comparable. When a parameter change is
introduced at t = 100s, the MRAC response shows much more oscillatory
behavior in the upward phase than the low order controller. The MRAC does
better in the downward phase than the low order controller, although the low
order controller recovers further when more excitation takes place.
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Figure 5-8: Comparison of the low order adaptive controller with a MRAC
scheme. Control input u 2 for a tracking example. For t < 100s, the control
input of the MRAC is more oscillatory than the control input of the low order
controller although this is in part due to the choice of the initial gains for
the MRAC design. When the parameter error is introduced at t = 100s, the
MRAC control input is much more oscillatory and larger in magnitude than
the low order control input.



S ...........I.

- - Reference trajectory
- Model Reference Adaptive Controller

- Reduced Order Model Reference Adaptive Controller

150
Time (s)

200

.kL.

250 300

Figure 5-9: Comparison of a MRAC scheme with a reduced order MRAC.
Response at Y2 for a tracking example. The reduced order MRAC gives a
much more oscillatory response than a (full order) MRAC.
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Figure 5-10: Comparison of a MRAC scheme with a reduced order MRAC.
Control input u2 for a tracking example. The control input coming from the
reduced order MRAC is larger and more oscillatory than that of the (full order)
MRAC.



5.2.6 Disturbance Rejection Example

It is the objective of this example to illustrate how persistent low frequency sinusoidal

disturbances acting on a flexible structure can be rejected at the measured outputs. In

this example the focus will be on the change in the frequency in the input disturbance,

although the same control strategy can be used if parametric modeling errors or on-

line parameter changes are present as well. Disturbance rejection can be accomplished

regardless of how many dominant modes relative to the number of in- and outputs

are present in the structure . As a sample problem we choose mi = 1 (i = 1, ... , 5),

k == 1 and c = 0.01 which results in 5 dominant modes for two colocated actuator

sensor pairs at x1 and z 5 . The external sinusoidal disturbance d = sin(wdt) enters

at x 3. The nominal modal frequencies are given by w = 0.28, 0.83, 1.31, 1.68 and

1.92 rad/s. This system exhibits most of the properties of a large flexible structure;

it is of high order, and has closely packed modes. The nominal value of the input

frequency was chosen to be Wd = 1 rad/s. The perturbed value of the input frequency

was chosen to be Wd = 1.1 rad/s.

To accomplish exact disturbance rejection, following the discussion in section 3.2.2,

the compensator is augmented with an internal model of the disturbance. The fixed

compensator is given by

s + ao s 2 + 2(-zws + wz 12.
s + bo S2 + j d

Since Wd is uncertain, in the adaptive controller it will be estimated on-line. Ge(s) is

parameterized in a form suitable for adaptation using Theorem 4 as

Ge(s) = (I - 01(sI + A)-1 L)-l

where

S aoI22 2x2

A = 02x2 02x2 -12x2 L 02x2

(ao -b o)I 2x 2 zI2 x2 2(WzI 2x 2 I 2x2



The initial gains of the adaptive controller have been chosen to correspond to those

of the underlying fixed controller which is designed using the nominal model and

using the nominal value of the disturbance input frequency, wd = 1 rad/s. The

corresponding zero pair is chosen close to the nominal disturbance frequency, (z = 0.1

and wz = 1 rad/s. Hence, 6 1(1,3)(t = 0) = E1(2,4)(t = 0) = 0. Since the SPR

property of Wm (s) holds for reasonably large parameter changes, ao and bo can be

chosen a priori, and were fixed at ao = 0.2 rad/s and bo = 1.2 rad/s. A feedback gain

that assures that Win(s) is SPR is given by Oo = -1012x2. The adaptive laws are

given by Theorem 4. The adaptation gain was chosen as Fr = 0.112x2-

Simulation results are shown in Figs. 5-11-5-16. When the structure is excited

by the nominal input frequency of wd = 1 rad/s, both the (matched) fixed controller

and the adaptive controller give a similar response (Fig. 5-11). The rejection of the

disturbance is achieved for both controllers with almost identical control inputs (Fig.

5-12). Most interesting is the time-history of the compensator parameters. Due to the

effect of initial conditions, the parameters first diverge from their desired value, but as

the excitation persists the parameters eventually come close to the desired values (Fig.

5-13). When the input frequency is perturbed to wd = 1.1 rad/s, the now mismatched

fixed controller does a poor job at rejecting the disturbance, the adaptive controller

recovers in a very reasonable time period (Fig. 5-14). This recovery is achieved with

a control input apparently no different than that of the fixed controller (Fig. 5-15).

In this case, the compensator gain converges to a new value (Fig. 5-16). It should

be noted that although the rejection at the measured outputs is very good, the other

masses are still excited and the disturbance rejection at those locations is not that

good (Fig. 5-17).

0, = [(ao - bo)I2x2 -2 _ W 2x2 2(zwzI2x2
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Figure 5-11: Comparison of the low order adaptive controller with the under-
lying fixed controller. Plant output yl for a disturbance rejection example.
The fixed controller is matched to the disturbance frequency at Wd = 1 rad/s.
The adaptive and fixed controller give the same performance.
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Figure 5-12: Comparison of the low order adaptive controller with the underly-
ing fixed controller. Control input ul for a disturbance rejection example. The
matched fixed controller and the adaptive controller generate almost identical
control inputs.
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Figure 5-13: Comparison of the low order adaptive controller with the un-
derlying fixed controller. Compensator parameter E1(1, 3) for a disturbance
rejection example. For t < 150s the changes in the control parameter are due
to initial condition effects.
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Figure 5-14: Comparison of the low order adaptive controller with the underly-
ing fixed controller. Plant output yl for a disturbance rejection example. The
disturbance input frequency is perturbed to Wd = 1.1 rad/s. The mismatched
fixed controller results in poor disturbance rejection. The adaptive controller
recovers with very reasonable transients for yl.
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Figure 5-15: Comparison of the low order adaptive controller with the under-
lying fixed controller. Control input ul for a disturbance rejection example.
The adaptive control input is very reasonable despite the non-linear terms in
the control law. (Although not clear from the figure, the magnitude of the
adaptive control input is slightly larger than that of the fixed control input,
the frequency of both control inputs is the same).
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Figure 5-16: Comparison of the low order adaptive controller with the un-
derlying fixed controller. Compensator parameter 01 (1, 3) for a disturbance
rejection example. The mismatch in the initial compensator parameter causes
the parameter to converge to a new value such that disturbance rejection is
achieved.
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Figure 5-17: Comparison of the low order adaptive controller with the underly-
ing fixed controller. Plant response at x3 for a disturbance rejection example.
Despite the good disturbance rejection at the actuator-sensor locations, the
rejection at the other locations is poor for both the adaptive and (mismatched)
fixed controller.
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5.2.7 Unmodeled Dynamics Example

In section 5.2.3 the dynamic model of a flexible structure was discussed. The main

idea there was that if colocated actuators and sensors are used, assumptions (Al),

(A2) and (A3) required for application of the low order adaptive controller are met.

Under these assumptions, in sections 5.2.5 and 5.2.6 the controller was applied to

a sample structure to meet certain performance objectives. Naturally, these exper-

iments were performed under ideal circumstances. When a controller is applied to

a real physical plant, unmodeled phenomena such as fast actuator dynamics, small

computational time delays, small gain non-linearities and a small dislocation of actu-

ator and sensor may be present. Also, other exogenous inputs such as measurement

noise and high frequency disturbances may be present. For the adaptation to remain

stable in the presence of these unmodeled phenomena, the robustified adaptive con-

troller presented in section 4.3 was developed. Specifically, the robustified controller

was developed with in mind the presence of fast actuator dynamics, and small high

frequency external disturbances.

The purpose of this example is to show, qualitatively, that the robustified adap-

tive controller presented in Theorem 4.3 results in bounded loop signals when the

unmodeled actuator dynamics is excited by a (high frequency) external disturbance.

For comparison the unaltered low order adaptive controller and the underlying fixed

controller is used. Also, for ease of exposition, a singlevariable, low order dynamic

system was considered. A mass-spring-damper oscillator with nominal mass m = 1,

nominal stiffness k = 1 and c = 0.01 was chosen as a sample system. Similar to

section 5.2.5, the reference trajectory was of third order with an almost pole-zero

cancellation at s = -ao = -0.1 rad/s resulting in a good tracking controller if all

parameters were known. The complex pole pair was chosen at frequency w, = 1

rad/s and damping ratio -= 0.707. An actuator was modeled as a first order system

with unity DC-gain and a corner frequency at a = 20 rad/s. The initial feedback

gains were chosen as 6o = -10 and 6 1 = -9.9 resulting in a well damped closed loop

plant pole (w,l = 1.11 rad/s, (c1 = 0.5). The parameter values of the nominal plant
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and the initial gains were used to compute the feedforward gain EO. These values

were used as the initial values for both the robustified adaptive controller (as given

in Theorem 6), and the unaltered adaptive controller (as given in Theorem 4). For

both adaptive controllers, all gains were adjusted on-line using high adaptation gains,

Fm = 10 and rFo = L = 5. Naturally, the benefit of using high adaptation gains is

good tracking performance when parametric uncertainties occur. The disadvantage

of using high adaptation gains is higher and more oscillatory control inputs, and that

unmodeled dynamic effects increase with time more rapidly. The filter parameters

were chosen as a = 1 rad/s and A = a, = 0.1 rad/s. The additional leakage-term

a in Theorem 6 was chosen as a = 0.1 rad/s. Following the construction in [53],

based on the actual plant (including actuator dynamics) and the initial values of the

control gains, a worst case output disturbance was chosen to be a sinusoid of fre-

quency Wd = 14.05 rad/s and amplitude Ad = 0.01. The actual measurement used for

feedback is given by y(t) = yp(t) + Adsin(wdt) where yp is the actual plant response.

Under these conditions, the adaptive controller can become unstable for a nonzero,

constant reference input chosen as r(t) - 1.

The control objective is to track an up-and-down reference signal with intervals

of 50s. At t = 100s, an on-line parametric uncertainty is introduced by doubling the

mass m. At t = 200s, the external high frequency disturbance exciting the unmodeled

dynamics is removed. Note that this control objective is similar to the one posed in

section 5.2.5. In this case however, a worst case external disturbance is also entering

the system and unmodeled actuator dynamics is present as well. In other words, in

this example the control objective is to achieve robust tracking performance; in a

worst case scenario, tracking of a low frequency signal despite parametric uncertainty

as well as attenuation of a high frequency disturbance despite unmodeled dynamics

should be achieved.

In designing the fixed controller, it was assumed that the nominal plant (excluding

actuator dynamics) was well known. Following the remarks in section 4.3, this prior

information was used in designing the modified adaptive controller as well. The

benefit of using this prior information is that it can increase the size of the allowable
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unmodeled dynamics. The anticipated parametric uncertainty in the plant parameters

were captured in the modified adaptive controller by choosing Omax = 5.

Simulation results are shown in Figs. 5-18-5-20. Without any modification of

the adaptive law, the control parameters drift and the plant output diverges (Fig.

5-18). With the robustified adaptive controller, a bounded plant output is obtained

(Fig. 5-19(b)). Note that the output disturbance of magnitude 0.01 is considerably

amplified at the output to almost 2, this is an amplification factor of almost 200 (Fig.

5-19(b)). This is a disconcerting result, since the underlying fixed controller exhibits

very good disturbance attenuation at Wd. When the reference input is changed at

t = 50s, the amplification vanishes (50s < t < 100s). This makes sense, as a nonzero

reference input is needed to achieve the amplification of the disturbance [53]. At

t = 100s, when a parametric uncertainty and a step change are introduced, the fixed

controller shows considerable overshoot while the adaptive controller results in good

tracking (100s < t < 120s). The high frequency disturbance is still amplified in

the robustified adaptive controller (120s < t < 150s). However, since the worst

case disturbance frequency Wd is now mismatched to the plant parameters (frozen

at t = 100s), the amplification is significantly less. When the external disturbance

is removed at t = 200s, the modified adaptive controller achieves good tracking,

despite the presence of unmodeled dynamics, whereas the fixed controller shows a

large overshoot. The robustified adaptive controller achieves boundedness of signals

through a projection of the adaptive parameters (Fig. 5-20). Comparison of the

control input for the fixed and robustified adaptive controller for t < 50s shows that

the adaptive control input is 800 times larger than the fixed control input when the

actuator dynamics are excited (t < 50s).
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Time (s)

(a) Adaptive controller plant response for a robust tracking example.

0 5 10 15 20 25
Time (s)

(b) Adaptive controller feedback gain eo0 for a robust tracking example.

Figure 5-18: Response of the unaltered adaptive controller. The reponse of
the matched, unaltered adaptive controller appears fine for t < 10s. Due to
the excited unmodeled dynamics the feedback gain 1o starts to drift, and the
output error starts to diverge (t > 10s). The other control gains change in a
similar manner. The simulation was terminated at t = 20s.
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(a) Fixed controller plant response for a robust tracking example.

(b) Robustified adaptive controller plant response for a robust tracking example.

Figure 5-19: The robustified adaptive controller results in a bounded but large
tracking error when matched to the actual plant (t < 50s). On the other hand,
the matched fixed controller exhibits good disturbance attenuation (t < 50s).
When a parametric uncertainty is introduced (t = 100s), the robustified adap-
tive controller results in good tracking but worsening disturbance attenuation
(120s < t < 150s). The mismatched fixed controller results in a large over-
shoot (t = 100s), but good disturbance attenuation. When the external dis-
turbance is removed (t > 200s), the robustified adaptive controller shows good
tracking despite the presence of the unmodeled actuator dynamics.
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Figure 5-20: Feedback gain Eo for a robust tracking example. Due to the
excitation of unmodeled dynamics, the feedback control parameter eo in the
robustified adaptive controller drifts until it reaches a bound determined by
Omax (t < 200s). When the external disturbance is absent, the parameter
converges such that the tracking objective is realized (t > 200s). The other
control gains change in a similar manner.
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5.2.8 Discussion

In this section the low order adaptive controller was applied to lightly damped flexible

structures. Three control objectives were considered: tracking, disturbance rejection

and robust tracking. To accomplish these control objectives, different control pa-

rameters were tuned on-line. To achieve tracking, only Em was adjusted (Fig. 5-2).

To achieve disturbance rejection, only elements of E1 were adjusted. In the robust

tracking example, all control parameters were tuned on-line (i.e. Om, Eo and e1

were all time-varying). In what follows the simulation results for each of the control

objectives are discussed.

In section 5.2.5 the adaptive controller has been shown to result in good tracking

performance in the presence of on-line introduced parametric changes in the system

dynamics. This was accomplished for a two-input two-output flexible structure with

two dominant modes using a low order multivariable adaptive controller. Comparisons

with multivariable MRAC schemes showed that the low order adaptive controller

was the better controller, either from the viewpoint of controller order or from the

viewpoint of tracking performance. A full order MRAC showed tracking performance

comparable to that of the low order adaptive control scheme, for both schemes the

tracking error converged to zero after continued excitation. However, the order of

the MRAC was almost three times higher than the order of the low order adaptive

controller. A reduced order MRAC was used for comparison as well. The reduced

order MRAC and the low order controller had a comparable number of controller

states. However, in the reduced order MRAC case the tracking error showed more

high frequency components, and the control input was much more oscillatory. This

may be because the reduced order MRAC destabilizes the higher frequency modes,

making them more dominant in the closed loop input-output map. A rigorous analysis

that explains the behavior of the reduced order MRAC scheme requires the use of

the desired control parameters. Unfortunately, a state-space solution to determine

these parameters is not available in the literature. Naturally, it would be desirable

to control flexible systems with more dominant modes than control inputs. With
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the controller presented in this thesis, this would be possible by augmenting the

compensator with additional zeros placed in the vicinity of selected modes so that

they become weakly observable/controllable in the closed loop input-output map at

the expense of increasing the order of the controller.

In section 5.2.6 the low order adaptive controller was used for rejecting a sinusoidal

input disturbance of unknown frequency acting on a flexible structure. Excellent dis-

turbance rejection was obtained using very reasonable control inputs. No assumptions

regarding the number of dominant modes relative to the number of inputs and out-

puts were needed. This approach to (adaptive) disturbance rejection is well known,

see [24, 47] for example. However, the controllers proposed in [24, 47] are of very high

order when applied to this sample problem. It should be noted that the disturbance

rejection approach presented in this thesis can deal with narrow band disturbances

quite effectively, although vibrations at points other than the sensor locations are

not necessarily attenuated. Broadband disturbance attenuation, for systems where

many modes affect the performance, require other feedback methods where sufficient

damping is added to the modes.

Finally, in section 5.2.7, the tracking performance of the adaptive controller in

the presence unmodeled dynamics and external disturbances was illustrated. As the

theory presented in section 4.3 suggested, a bounded response is obtained. Unfortu-

nately, for this example, the tracking error is extremely large. Also, the control inputs

are unacceptable. Three remedies are suggested for this problem: (1) One remedy

may be to constrain the magnitude of the control input, and modify the control in-

puts accordingly [30]. The benefit of this modification is twofold. First, the control

in:put would now be physically realizable. Second, qualitatively, for a stable plant a

smaller control input may result in a smaller tracking error. (2) When only Om was

adjusted on-line, and 6o and 6 1 were fixed, high frequency disturbance attenuation

comparable to that of the underlying fixed controller was obtained, as well as tracking

when the parametric error was introduced. Therefore, when in the range of expected

parameter variations Win(s) is SPR for fixed Eo and 6 1, adjusting only Em seems a

robust adaptive control approach. (3) There is a tradeoff between the size of 0"max
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and the amplification of the high frequency disturbance. If O*ax is small, less ampli-

fication is obtained. Hence, the smaller 0max can be chosen using prior information

on the parameter uncertainty, the better the controller will perform.

In conclusion, it should be kept in mind that the robust tracking example was

constructed by choosing the input frequency Wd to create the worst possible amplifi-

cation of loop signals. In practice, such an external signal may not always be present

for all time and the responses presented here may never occur.
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5.3 Control of an unstable Combustion System

5.3.1 Introduction

In this section the application of the low order adaptive controller to a combustion

process is discussed. This section is organized as follows. In section 5.3.2 the use of

active control in combustion is motivated. In section 5.3.3 the constitutive relations

describing the combustion process are given, and the finite element solution of these

relations is presented. In Appendix A the discretization of these constitutive laws

is given. In section 5.3.3, assumptions (Al), (A2) and (A3) required for application

of the low order adaptive controller are discussed as well. In section 5.3.4 a sample

system is described and simulation results are presented. A discussion of the results

is given in section 5.3.5.

5.3.2 Motivation

In this section we will discuss an application in the area of power generation. Exam-

ples of power generation systems are propulsion systems such as rocket motors and

jet engines, and combustion devices such as utility boilers and furnaces. The two

major issues in power generation are efficiency, and emission. The performance in

terms of efficiency and emission is determined by the underlying process, combus-

tion. Many issues are of importance in the design of a well controlled combustion

process as to achieve high efficiency and low emission. One phenomenon that can

severely degrade the efficiency and emission of a combustor is combustion instabil-

ity. Combustion instability manifests itself by large, growing pressure fluctuations

that eventually settle into a limit cycle. This condition is tied to increased emission

and undesirable increased heat transfer, and requires increased design specifications

of components for a given life expectancy of the combustor. Combustion instability

mechanisms are very system dependent, and it is perhaps impossible to develop a gen-

eral model of the combustion process that captures all these phenomena. As a result,

any stability problems only appear first in the testing phase. The instability problems
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are typically combatted by identifying the cause of the instability, and then making

the necessary design modifications. These modifications are for example changes in

the flame holder geometry, the addition of acoustic dampers, and changes in the di-

mensions of the combustion chamber. However, these changes may not always be

successful. For example, an acoustic damper can be implemented by perforating the

cooling liner close to the flame holder [65]. By tuning the size of the holes and cavity

in the liner, the acoustic damping can be maximized for a particular unstable mode.

However, the effectiveness of the damping liner decreases significantly for frequencies

below 1000Hz, and devices of this type are almost impossible to implement for lower

frequencies because of constraints on the allowable volume of the cavity.

Another way to prevent combustion instability is through active control. A survey

of active control methods for combating combustion instabilities can be found in [41].

There are many system dependent issues when selecting the appropriate active control

method for an unstable combustion process. A very important issue is the selection

of the actuators and sensors used for control. The actuators used can be divided into

three groups. In the first group the actuator changes the pressure field directly, an

example of such an actuator is a loudspeaker [25, 52]. In the second group the gas

flow inside the combustor is changed, for example by changing the flow at the inlet

[12]. In the third group the combustion process is changed by changing the air-fuel

ratio of the mixture to be burned [11, 22, 37]. The effectiveness of these actuation

types depends on the actuator bandwidth and authority relative to the combustion

dynamics. Two types of sensors are typically used for determining the state of the

combustion process, pressure sensors [11, 12, 22, 25, 52] and flame emission sensors

[11, 37, 51]. Pressure sensors are for example high bandwidth condenser microphones.

A flame emission sensor is typically a photodiode generating a signal that depends

on the intensity of Chemiluminesence of the flame. The output of a flame emission

sensor is therefore directly related to heat release. However, a flame emission sensor

requires optical access to the flame and may therefore not be practical.

Active control of combustion instability has been attempted before. In [25] a

phase-lead controller cascaded with various filters is used to stabilize the combustion
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process. The control gains are determined experimentally. In a theoretical study,

[21] discusses the use of a PI-controller. In this case the control gains are selected

such that the controlled unstable mode is least sensitive to a loop time delay. An

adaptive control approach is discussed in [11]. The controller is based on the anti-

sound concept, where fluctuations created by an actuator are superimposed on the

combustion oscillations. The adaptive rule in this case is based on a least squares

algorithm. Stability of the controller is not discussed. Both emission and pressure

measurements are inputs to the adaptive algorithm, the control output is a change

in the air-fuel ratio. Much of the work done in the active control of combustion

instability has been experimental because of the lack of a fundamental model that

shows the interaction between the pressure perturbations in the combustor and the

flame dynamics. Recently, such a fundamental model has been developed in [2].

This model gives a complete description of the combustion process and explains the

instability phenomenon and will be used in part here.

5.3.3 Dynamic Model

In this section the model of the unstable combustion process is presented. First,

a simplified one-dimensional model of the combustion process is given. Next, the

fundamental laws describing the one-dimensional fluid flow and the flame dynamics

are presented. Since the fundamental equations have the form of partial differential

equations, a finite dimensional solution to these equations is derived. It should be

noted that the formulation and derivation of the combustion instability model is not

a contribution of this thesis, but is taken from [2]. The finite element discretization

of the partial differential equations is quite different from the approach taken in [2]

where an assumed mode solution is used.

Combustion systems can have quite complex three dimensional geometries. How-

ever., the instability phenomenon that is considered here is dominated by the flow

in the radial direction. The combustor is therefore modeled as a long, slender duct.

The duct is either closed at the left end and open at the right end (Fig. 5-21) or

open at both ends. We will consider the first type of boundary condition, the same

117



approach can be applied to the latter. Along the duct, at a distance xo, a flame

holder is mounted. A mix of fuel and air enters the duct at the upstream end with a

flow rate determined by a compressor, the mixture is ignited when passing the flame

holder, and exits at the downstream end as a burned gas at atmospheric pressure.

For controlling the pressure in the duct a loudspeaker will be used. The loudspeaker

can be either end-mounted or side-mounted at a distance xa along the duct. In both

cases a microphone is mounted at x,, the output of the microphone is a measure of

the pressure. Here a closed open combustor with an end-mounted loudspeaker will

be considered (Fig. 5-21).

air-fuel mixture

exhaust

Figure 5-21: Combustion system with end-mounted loudspeaker.

The dynamics of a fluid flow is governed by a set of coupled partial differential

equations describing a highly nonlinear system. Starting from the conservation of

mass, the Euler equation and the energy equation, it is shown in [2] that for the

one-dimensional model considered, the governing equations can be simplified to a set

of equations describing the steady flow and a perturbation of the flow. In deriving

this model it is assumed that the fluid low is one-dimensional and laminar, and that

viscosity effects are negligible. The mean flow is (piecewise) constant along the duct,

and perturbations of the system variables from the mean are small. Heat is localized

at one location (xo) and this heat is transferred to the flow only i.e. conductivity and
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Symbol

P
U, V

p
q, or qo
-y

su
e
R
T
h

Description
Density
Flow velocity
Pressure
Heat generated
Ratio of specific heats
Mach number
Velocity of sound
Burning velocity
Internal energy
Gas constant
Temperature
Enthalpy

Table 5.3: List of Symbols.

radiation effects are negligible. The fluid is assumed to behave as a perfect gas. For

reference, most of the symbols used are given in Table 5.3. A system variable a(x, t)

(such as flow velocity or pressure) is separated into its mean part i and its perturbed

part a' as a(x, t) = -(x) + a'(x, t). Below first the equations for the steady flow are

presented, followed by the equations that describe the perturbed flow.

When the mach number of the mean flow M = _ < 1, it can be shown that the
C

change in mean pressure p along the duct, and across the flame holder is negligible

[2., 36]. However, p and a will have a significant step change at xo. Let the upstream

mean variable d be denoted by di, and let the downstream mean variable be denoted

by ZL2 . p, ul, p, and 81 are known quantities, the objective is to find the values for

the downstream variables. The temperature in the combustion chamber is related to

the temperature in the premixing chamber by

T2= RTT1

where RT is the temperature ratio. RT is determined experimentally [2, 36]. Since
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ms - 1
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N m- 2

J s - 1 m -3 , or J s- 1 m - 2

n - 1

m 8- 1

m s-
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N m kg - 1 oK - 1

oK
Jkg- 1



the conservation of mass for the steady flow is given by

d(p ui)
= 0,

dx

it follows that
U2- Pi U1
u2

P2

The equation of state for an ideal gas gives p = pRT = ;2 RT 2 so that

P1
P2 -

P I

RT

Also, since

it follows that

E2 C1

P2

This completes the description of the mean flow.

The equations describing the perturbed flow are given by

a2 p 2 p1 2p' q' (5.5)q
S+ (2_ 2) • + 2U = (7- 1) + [- . (5.5)at82 aX2 aat

Op' ap' au'
-+ U +P = (-y - 1)q'. (5.6)at ax 8x

Eq. (5.5) is known as a wave equation, and is obtained by linearizing the Euler

equation around an operating point (p, TU). Eq. (5.6) is essentially the linearized

energy equation. Eqs. (5.5) and (5.6) describe the dynamics of the fluid flow in

terms of pressure perturbations and flow velocity perturbations. More importantly,

Eqs. (5.5) and (5.6) show how the acoustic dynamics is excited by the generated heat

q'. The heat is generated at the interface of the air-fuel mixture and the exhaust.

In [2] a model of the flame has been developed by looking at the energy exchange

mechanism at this interface more closely. The idea behind this model is that the

perturbation in the velocity of the flow causes the flame area to change. Since the heat
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generated is proportional to the surface area of the flame, qo(t) = q'(xz, t) increases

with u'o(t) = u'(xo, t). When no flow velocity perturbation is present, the flame area

will decrease since then the flame will burn inward. For a flame holder consisting of

a perforated plate of area Af with a total of nf flame holes each of radius rf, the

change in heat generated can be described quantitatively by

4o(t) = -a 2q(t) + Uo1u(t), (5.7)

where u'(t) = u'(x o, t), and

al = a2h n  r= 2
Af rAf

h is the enthalpy of the air-fuel mixture, and s, the burning velocity of the flame.

The perturbed system dynamics is completely described by Eqs. (5.5)-(5.7).

To complete the model, a solution to Eqs. (5.5)-(5.7) is needed. For this purpose

a finite element discretization of Eqs. (5.5) and (5.6) was performed. The procedure

for the discretization is outlined in Appendix A.2 and Appendix A.4. In what follows,

first the finite dimensional model in case no mean heat an no mean flow is presented

and used to explain the instability mechanism. Then the complete finite dimensional

model with mean heat and mean flow effects included is presented, and used to verify

assumptions (Al), (A2) and (A3).

In case no mean heat and no mean flow is present, the combustor dynamics over

a selected bandwidth can be described by, from Eqs. (A.25)-(A.27), (Fig. 5-22):

MP(t) + BpqdalaoCqpdP(t) + KP(t) = -Bpqd(7 - 1)g 3q'(t) + Bpcc 2iLc(t)
1

q'o(t) = -a 3qo(t) - ol 1-CqpdP(t) (5.8)

p's(t) = CyCP(t).

In Eq. (5.8), P denotes the vector with nodal pressures. qo is the heat generated

by the flame. p'(t) is the (perturbed) pressure measurement obtained from the loud-

speaker, and uc(t) is the velocity of the loudspeaker diaphragm. M is a symmetric,
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Figure 5-22: Block diagram of Combustor Dynamics with no mean heat and
no mean flow effects.

positive definite, dimensionless matrix. K is also symmetric, positive definite, and

has the units of Z2. In order to interpret Eq. (5.8), the following simplification will be

made. For typical combustor parameters, the corner frequency of the flame dynamics,

as = 02 - alao > 0, is much lower than the modal frequencies characterized by M

and K. Furthermore, the DC-gain of the flame dynamics, 2, is small compared to

the DC-gain of the acoustic dynamics, characterized by K. Therefore, from a systems

point of view, in the frequency range of the acoustic modes the model is very well

approximated by

MPj(t) + BpqdOalaoCqpdP(t) + KP(t) = Bpc c2it(t) (
(5.9)

p'(t) = CpP (t).

From Eq. (5.9) it can be seen when open loop acoustic modes are unstable. Namely,

the modal form of Eq. (5.9) is given by

i(t) + 'TB,pqdlaoCqpd4ý(t) + diag(w?)rj(t) = DTBP 2 ip c(t)
(5.10)

p (t) = cJr77(t)

where 'D contains the undamped, unforced modeshapes characterized by M and K.

From Eq. (5.10) it is seen that all modes are coupled through the (non-diagonal)

damping matrix, C = DTBpqdalaoCqpdE. In case the model contains one mode only,

C is a scalar and ITBpqd corresponds to the mode evaluated at x = xo. For example,
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Figure 5-23: Block diagram of Combustor Dynamics including mean heat and
mean flow effects.

for the closed open combustor (Fig. 5-21), if the model contains the fundamental

mode only, then BBpqd = COS(0L). Cqpd4 corresponds to the integral of the mode

evaluated at x = xo. For the lowest mode, this implies that Cqpd4 = foo cos(L)dx =

s;in(x ). If the product of these two terms is positive, positive damping is obtained,

and the mode is stable and vice versa. The fundamental mode in the above example

is therefore always stable. This observation corresponds with the conclusion in [2].

When multiple modes are present, using a Lyapunov stability argument, a sufficient

condition for open loop stability of all modes is Cqpd(Xo)Bpqd(Xo) > 0 4 . Whether

or not this condition is satisfied depends on the location of the flame xz, which is

typically determined by combustor design constraints.

When mean heat and mean flow are present, the combustor dynamics is described

by, from Eq. (A.36), (Fig. 5-23):

MP + OP + (k + )P = -Bpqdqo + Bpcupcic uc + Bpcvkauv-ai2e

q = -C3qo - 1(- CqpdP+ -CqpP) (5.11)

p/ = CpP.

Comparing Eq. (5.11) to Eq. (5.9), the introduction of mean flow and mean heat

has introduced two additional terms to the acoustic dynamics, G and ko, where

4(Choose V = ½PTMP + ½PTKP, then 1 = --PTBpqdalaoCqpdP. The result follows by noting
that rank(BpqdCqpd) = 1 and X(BpqdCqpd) = A(CqpdBpqd).
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G = G + BpqdOaaoCqpd. G is a gyroscopic term due to mean flow, and is skew

symmetric. Ko is due to additional feedback effects of the flame. It is worth noting

that if U,1 -- 0, then Eq. (5.11) reduces to Eq. (5.8). Similar to the case where

no mean heat and no mean flow was present, the flame dynamics feedback loop

described by a, and a3 has a negligible effect on the acoustic dynamics. Therefore,

from a systems point of view, the system dynamics can be described by:

MP + (G + BpqdalaoCqpd)P + (K + Ko)P = BpcuPjicuc (5.12)

p = CcpP,

In what follows, assumptions (Al), (A2) and (A3) for the system described by

Eq. (5.12) are discussed. Since the original system in Eq. (5.11) is only a small

perturbation of the system described by Eq. (5.12), the conclusions made based on

Eq. (5.12) will hold for Eq. (5.11) as well. First, since Eq. (5.12) is of the same form

as Eqs. (5.1) and (5.2) and since M is positive definite, assumptions (Al) and (A3)

are satisfied if a colocated actuator and sensor are used. Since Eq. (5.12) represents

a discretization of a continuous system, assumptions (Al) and (A3) will hold as well

when a small dislocation between the actuator and sensor exists. Assumption (A2)

is much more difficult to verify than in the case of flexible structures. This is in

part due to the nontrivial structure of the damping matrix C = G + BpqdalaoCqpd.

The approach taken here to verify assumption (A2) was through extensive numeri-

cal computation of the system zeros for reasonable ranges of the system parameters.

Below the conclusions of these computations are discussed qualitatively for the pre-

mixed laminar combustor with closed-open boundary conditions (Fig. 5-21). Typical

pole-zero plots show that the low frequency system zeros are minimum phase for

dislocations between the actuator and sensor of upto 25% of the combustor length

(Fig. 5-24). For small dislocations between the actuator and sensor, the well known

pole zero interleaving as they occur in flexible structures, is maintained. When the

non-colocation between actuator and sensor is increased further, the zeros move past

the associated poles which, for a selected bandwidth, implies a loss in relative degree.
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No real zero pairs (stable and unstable) are obtained. This corresponds to results

obtained for wave equations with no damping terms [42]. A change in the operating

point, i.e. a change in the mean flow and the mean heat, results in the same pole zero

patterns, with the imaginary parts of the poles and zeros changed only. (This obser-

vation can be explained intuitively from the structure of G, which is skew-symmetric).

The conclusion that can be drawn from these computation studies is that the system

described by Eq. (5.12) satisfies assumption (A2) for realistic values of the system

parameters. Naturally, in practice these parameters are known to within a certain

range only.
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Figure 5-24: Locus of the system zeros with varying sensor location. The
sensor is colocated with the actuator at x, = 0, and then moved to x, =
xo = 0.24m. The low frequency zero becomes unstable if the dislocation is
larger than 0.12m. An almost pole zero cancellation occurs at x, = 0.16m.
Physically, this location corresponds a node of the second mode which lies at
x = L = 0.16m and makes the second mode unobservable from this sensor3
location. When x, -+ xo the low frequency zero approaches the imaginary
axis, but now from the unstable side.
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parameter value
L 0.48 m
Xo 0.24 m
x, 0.1 m
nf 80
Af 16 x 10-4 m2

r 0.75 x 10-3 m
SU 0.4 ms-1

y 1.4
h 2.563 x 106 Jkg-1

P 1 kgm-3
350 ms-1

Pi 1 kgm -3

Ul 230 mls-1 or 0.14 ms-
41 350 ms-1

RT 1.8

Table 5.4: System parameters for the Combustion Example.

5.3.4 Example

In this section a sample combustor will be given and a case will be made for the use

of adaptive control in actively controlling combustion instabilities. The control ob-

jective is clear from the onset, it is desired to stabilize the unstable mode(s) without

destabilizing other, open loop stable modes. The sample combustor that will be con-

sidered here is a premixed, laminar combustor with closed open boundary conditions

(Fig. 5-21). The parameters that characterize the combustor were taken from [2, 52]

(Table 5.4).

The finite element discretization as discussed in section 5.3.3 and Appendix A

was performed. 48, 3-node elements were used. This mesh results in smooth low

frequency modeshapes, and is sufficient to obtain an accurate model in the selected

frequency range. It should be apparent that these finite element parameters result in

a 96 mode model. Close inspection of these modes reveals a total of 48 stable modes

and 48 unstable modes, alternating stable and unstable along the imaginary axis.

Two steps have to be undertaken to make this model physically more realistic, and

computationally feasible. First, in a real physical combustor only a few, low frequency
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modes are unstable. The higher, theoretically unstable modes are still present but

are in practice open-loop stable due to the presence of (as of yet unmodeled) passive

damping mechanisms such as notches or damping resonators. Therefore, to obtain a

physically realistic model, these higher modes should have added passive damping.

In this example a case will be considered where the second mode is the only unstable

mode, the passive damping for the higher modes was implemented through modal

damping for the acoustic modes with uniform modal damping coefficient ( = 0.0075.

The resulting modal damping coefficients in the presence of the flame dynamics for

the lowest six modes are shown in Table 5.5. Second, for control simulation purposes,

the model has to be accurate up to 4 to 10 times the desired closed loop bandwidth.

In this case, as it is desired to stabilize the unstable mode, the desired bandwidth is

about 3400 rad/s. In the simulations, a model fidelity of 10 times the desired closed

loop control bandwidth was chosen. This implies that 15 modes need to be included

in the model. Using a mode superposition technique, the full order model with 96

modes was reduced to a 15 mode model. This technique is presented in detail in

Appendix A.3 and A.4. The frequency response plot shows that of these 15 modes,

about 5 are dominant (modes 1, 2, 4, 5 and 6) (Fig. 5-25).

mode number Cwi (i (i
i (rad/s) (Theory) (Corrected)

1 1050 0.21 0.21
2 3371 -0.023 -0.023
3 5584 0.0086 0.0161
4 7828 -0.0044 0.0031
5 10059 0.0027 0.0102
6 12299 -0.0018 0.0057

Table 5.5: Modal frequencies and damping ratios for the lowest six modes in
the Combustion Example.
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Figure 5-25: Frequency response plot of the sample Combustor (il = 0). Of
the 15 modes, modes 1, 2, 4, 5 and 6 are dominant. The third mode is almost
canceled due to the placement of the microphone on a node of the third mode.
Since the second mode is unstable, an additional phase lead of 1800 around
W2 = 3371 rad/s occurs. The alternating pole zero pattern is maintained upto
about w = 104 - 2 104 rad/s, In this frequency range a zero-pole-pole-zero
pattern appears causing the 1800 roll-off in this region.
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In what follows, a case for the use of adaptive control in combustion stabilization

is made, and illustrated for the numerical example. The need for the use of adaptive

control is twofold. First, the system parameters are not precisely known; i.e. the

plant structure is well modeled, but is uncertain in the parameters. Few fixed control

strategies exists that can deal with this parametric uncertainty elegantly and still

result in non-conservative performance. Second, not only are the system parameters

unknown, they may change on-line. Specifically, the model relies on the fact that the

mean flow and mean heat are constant. These however may vary during the operation

of the combustor due to a change in power demand for example. Adaptive control

can take care of both concerns, parametric uncertainty and a change in operating

conditions, simultaneously. From a systems point of view, the uncertainty in the

parameters causes uncertainty in the locations of the poles and zeros (Fig. 5-26).

That such uncertainties can be reduced through the use of feedback is well known

[17]. To illustrate this, a fixed controller was designed and the sensitivity of the poles

and zeros was examined. The fixed controller was designed following the discussion

in section 3.2.1. A phase-lead compensator was used augmented with a complex pole-

zero pair such that a low feedback gain is needed to stabilize the combustor. The

compensator transfer function is given by

s + 3500 s2 + 800s + 20002
Gc(s) = 3.25 500(5.13)

s + 4500 s2 + 1200s + 30002'

The uncertainty in the closed loop pole-zero locations is less than in the open loop

case (Fig. 5-26).
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Figure 5-26: Uncertainty in the combustor pole-zero locations due to para-
metric uncertainty (2 < h < 3 [x106 Jkg-1]) and uncertainty in the operating
point (0 < Ul 5 230 [mls-1]). Comparison between the open loop sensitivity
and the closed loop sensitivity. The graph illustrates that feedback, although
low gain, reduces the uncertainty in the pole and zero locations.
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The scenario that was considered in the simulations is when the fixed compensator

(as in Eq. (5.13)) does not stabilize the unstable modes for all possible, physically

realistic parameter values (as in Fig. 5-26). Note that for a fixed control design,

the closed loop can be further desensitized by simply increasing the gain in Ge(s).

However, the extend to which this gain can be increased is uncertain and increasing it

too much result in excitation of unmodeled dynamics. It is precisely this uncertainty

that the adaptive controller will accommodate. In the adaptive control design, to

tune the feedback gain on-line, the adaptation gain for Eo E IR is chosen as Fo = 105 .

Furthermore, to accommodate for uncertainties in the imaginary part of the poles and

zeros, 6 1 C IR1x 3 is tuned on-line with Il = 10'. Based on the nominal parameter

values the filter was chosen as a = 1000 rad/s. The input filter is chosen as

4500 [1
A,= 0 1 L= 0

-20002 -800 1

The initial parameter values Eo(t = 0) and E1(t = 0) were chosen such that the initial

adaptive controller corresponds to the fixed control design with the compensator as

in Eq. (5.13). The initial condition of the combustor was set by exciting the first two

modes as rl~(t = 0) = r 2 (t = 0) = 10 Pa and ýi1(t = 0)= i 2 (t = 0) = 0.

The simulation results for a worst case operating point and parameter uncertainty

are shown in Figs. 5-27-5-29. The adaptive controller results in a stable response

whereas the fixed controller response is unstable (Fig. 5-27). The adaptive stabiliza-

tion is achieved using an initially larger control input due to the presence of adaptation

terms in the adaptive control law (Fig. 5-28). The stabilization is essentially the re-

sult of increasing the feedback gain judiciously on-line (Fig. 5-29). To show that the

adaptive controller results in stabilization for a wide range of operating points, simu-

lations were performed for Ui varying between 0 and 230 ml/s. The results are shown

in Figs. 5-30-5-32. The adaptive controller shows uniform stabilization, whereas the

fixed controller is stable in only a small region (Fig. 5-30).
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Figure 5-27: Combustion example, h = 3 x 106 J/kg and ýU1 = 230 ml/s.
Comparison of the plant response using the adaptive and the fixed controller.
The fixed controller is unstable, the adaptive controller establishes a stable
response.
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Figure 5-28: Combustion example. Comparison of the control input using the
adaptive and the fixed controller. Due to high adaptation gains, the control
input for the adaptive controller is higher between t = 0 ms and t = 40 ms.
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Figure 5-29: Combustion example. Time history of the feedback gain eo. The
initial value of Eo corresponds to that of the fixed controller.
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(a) Fixed controller plant response.
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(b) Adaptive controller plant response.

Figure 5-30: Combustion example. Maximum value of the pressure for differ-
ent values of mean flow.
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Figure 5-31: Combustion example. Maximum value of
different values of mean flow.

the control input for
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Figure 5-32: Combustion example. Time history of the feedback gain 60 for
different values of mean flow.

5.3.5 Discussion

In this section the low order adaptive controller was applied to an unstable combus-

tion process. Using a non-colocated actuator-sensor pair, a model was derived that

includes the first 15 pressure modes. For realistic values of the model parameters, this

model satisfied assumption (A2), i.e. the system was mimimum phase. In the lower

frequency range the model satisfied assumptions (Al) and (A3) as well. The control

objective was to stabilize the unstable mode in the presence of parametric modeling

errors and changes in the operating point. The low order adaptive controller was

shown to result in satisfactory stabilization over a range of parametric uncertainties

and operating points.

In an actual physical experiment it is advisable to use lower adaptation gains than

the ones used in the simulations presented here. This is because, ideally, the on-line

tuning of the gains should be driven by a possible instability only. In the simulations

presented here, even if the conditions are such that the underlying closed loop system

is stable, the feedback gains increase. This effect can be diminished by reducing the
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adaptation gain. In the simulations presented here, a high adaptation gain was used

to achieve stabilization within a computationally tractable time. Also, in practice,

environment noise will excite the acoustic modes. This noise can destabilize the

adaptive controller. However, using a standard dead-zone modification in the adaptive

law stabilization can still be achieved [47].

The combustion example presented here is a SISO example. The adaptive con-

trol theory presented in this thesis provides the basis for extending the adaptive

stabilization approach to MIMO situations as well. For example, in case the com-

bustor is of larger size, more unstable modes will be present in the lower frequency

range. Although by careful compensator design the combustor can be stabilized us-

ing one actuator sensor pair, a more robust approach would be the use of multiple

loudspeaker/microphone pairs. Specifically, an effective control design is obtained by

using as many control inputs as there are unstable modes.

5.4 Summary

I:n this Chapter two examples of the use of the low order adaptive controller were

given. Using an academic example of a flexible structure, the controller was shown

to result in good tracking performance and good disturbance rejection. The contri-

bution of these examples is that they show how control objectives can be realized in

the presence of large parametric uncertainty using a practically feasible multivariable

adaptive controller. Tracking in the presence of unmodeled dynamics and parametric

uncertainty was examined as well. Bounded signals were obtained, tracking perfor-

mance was not satisfactory however.

A truly physical example was provided in the adaptive control of an unstable com-

bustion process. Over a range of unknown operating points, the adaptive controller

was shown to stabilize the combustion process. The contribution of this example

is that it shows how adaptive control techniques can be used systematically in a

practically important problem.
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Chapter 6

Conclusion

This thesis contributes to the theory of adaptive control as well as in the area of

the application of adaptive control. First, this thesis provides a theory for the de-

sign adaptive controllers whose stability does not depend on the order of the plant.

This is achieved by limiting the minimum row relative degrees in the plant transfer

function matrix to be either one or two. The resulting controller is of lower order

and complexity than most other multivariable adaptive control schemes. Since in a

real physical system the assumptions made in designing the adaptive controller are

not always met at higher frequencies, a robust adaptive controller is developed as

well. When unmodeled dynamics are excited and using this controller, bounded loop

signals are obtained.

Second, since the control method does not require the order of the plant to be

known, it is well suited for the control of distributed systems using multiple inputs

and outputs. Two applications are considered: flexible structures and combustion.

In an academic example of a flexible structure, using colocated actuators and sensors,

it is shown that tracking is achieved in the presence of parametric uncertainties.

Attenuation of poorly known bandlimited disturbances can be realized as well. In an

example of an unstable combustion process it is shown that unstable pressure modes

are stabilized in the presence of parametric uncertainties and changes in the operating

point.
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We will now focus on future research directions. Naturally, further relaxation of

the assumptions made regarding the plant to be controlled is desirable. Specifically,

elegant adaptive control strategies that can deal with non-minimum phase zeros are

of interest when controlling flexible structures. For example, structures that contain

bending modes and that use sufficiently non-colocated actuator sensor pairs will have

low frequency non-minimum phase real zeros. In this case, because of the structural

limitations imposed by non-minimum phase zeros on the tracking performance, a

control approach different from model-following will have to be used. Also, since

positive realness does not allow non-minimum phase zeros, adaptive rules based on

other principles than positivity have to be found.

Another open research direction is the design of adaptive controllers in the pres-

ence of unmodeled dynamics. One can view the adaptive control approach discussed

in this thesis as the adaptive control of plants which contain non-negligible unmod-

eled dynamics. In this thesis, it has been shown how to deal elegantly with dynamics

that do not change the relative degree of the input-output map. Results were also

obtained in the case where unmodeled dynamics change the relative degree. How-

ever, simulation results showed that when these unmodeled dynamics are excited,

bad high-frequency disturbance attenuation is obtained. This bad high-frequency be-

havior is in part inherent to the adaptive laws used. On the other hand, to a certain

extend this behavior may be due to the fact that the underlying fixed controller does

not roll-off. However, such a feature is desirable from a stability-robustness point of

view. The development of adaptive algorithms that provide controller roll-off in a

systematic way may yield interesting robustness results.

The distributed systems that were considered in this thesis contain many modes

inside the desired bandwidth. In many instances, all of these modes will contribute

in some way to a performance criterion. The criteria considered in this thesis were

all measurable on-line, as we considered regulation, tracking and disturbance atten-

uation at the measured outputs. However, in some cases it is desirable to consider

performance criteria that are not directly measurable. For example, in the application

of an unstable combustion process it is desirable not only to stabilize the unstable
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modes but also to minimize the energy contained in all modes when excited by process

noise. Current adaptive control methods cannot deal with such performance criteria

well. The development of a theory that can deal with not directly on-line measurable

performance criteria in the presence of parameter uncertainty may lead to practically

important adaptive control strategies.

143





References

L1] B. D. O. Anderson and John B. Moore. Optimal Control: Linear Quadratic
Methods. Prentice Hall, Englewod Cliffs, N. J., 1990.

[2] A.M. Annaswamy, M. Fleifil, Z. Ghoniem, and A.F. Ghoniem. A feedback model
of thermoacoustic instability in combustion processes. Technical Report 9502,
Adaptive Control Laboratory, MIT, Cambridge, MA, submitted for publication
to Journal of Fluid Mechanics, 1995.

[3] J.N. Auburn. Theory of the control of structures by low-authority controllers.
Journal of Guidance and Control, 3(5):444-451, 1980.

[4] R. Bakker and A.M. Annaswamy. Simple multivariable adaptive control with
application to flexible structures. In Proceedings of the A CC, Baltimore, MD,
1994.

[5] R. Bakker and A.M. Annaswamy. Low order multivariable adaptive control with
application to flexible structures. Automatica, Accepted for Publication, 1995.

[6] R. Bakker and A.M. Annaswamy. Stability and robustness properties of a simple
adaptive controller. IEEE Transactions on Automatic Control, Accepted for
Publication, 1995.

[7] I. Bar-kana and H. Kaufman. Simple adaptive control of large flexible space
structures. IEEE Transactions on Aerospace and Electronic Systems, 29(4),
1993.

[8] I. Bar-kana, H. Kaufman, and M. Balas. Model reference adaptive control of
large structural systems. Journal of Guidance and Control, 6(2):112-118, 1983.

[9] K.-J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall,
Englewood Cliffs, 1982.

[10] R. J. Benhabib, R.P. Iwens, and R.L. Fackson. Stability of large space structure
control systems using positivity concepts. Journal of Guidance and Control,
4(5):487-494, 1981.

[11] G. Billoud, M.A. Galland, C. Huynh Huu, and S. Candel. Adaptive active control
of combustion instabilities. Combust. Sci. and Tech., 81:257-283, 1992.

145



[12] G.J. Bloxsidge, A.P. Dowling, N. Hooper, and P.J. Langhorne. Active control of
reheat buzz. AIAA Journal, 26(7), July 1988.

[13] M. Corless. Adaptive control of a class of nonlinearly perturbed linear systems
of relative degree two. Systems & Control Letters, 21:59-64, 1993.

[14] M. A. Dahleh and I.J. Diaz-Bobillo. Control of uncertain systems. A linear
programming approach. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[15] M. de Mathelin and M. Bodson. Multivariable model reference adaptive control
without constraints on the high-frequency gain matrix. Automatica, 31:597-604,
1995.

[16] C. A. DeSoer and Y. T. Wang. Linear time-invariant robust servomechanism
problem: A self-contained exposition. In C. T. Leondes, editor, Control and
Dynamical Systems: Advances in Theory and Application, volume 16, pages 81-
129. Academic Press, 1980.

[17] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control Theory.
Macmillan, 1992.

[18] L. Dugard and J.M. Dion. Direct adaptive control for linear multivariable sys-
tems. International Journal of Control, 42(6):1251-1281, 1985.

[19] H. Elliott and W.A. Wolovich. Parameter adaptive control of linear multivariable
systems. IEEE Transactions on Automatic Control, 27:340-352, 1982.

[20] B.A. Francis and W.M. Wonham. The internal model principle of control theory.
Automatica, 12(5):457-465, 1976.

[21] Y-T. Fung and V. Yang. Active control of nonlinear pressure oscillations in
combustion chambers. Journal of Propulsion and Power, Vol. 8, No. 6:1282-
1289, 1992.

[22] Y.-T. Fung, V. Yang, and A. Sinha. Active control of combustion instabilities
with distributed actuators. Combust. Sci. and Tech., 78:217-245, 1991.

[23] F. R. Gantmakher. Theory of Matrices, volume 1. Chelsea Publishing Co., New
York, 1959.

[24] G. C. Goodwin and K. S. Sin. Adaptive Filtering, Prediction, and Control.
Prentice-Hall, 1984.

[25] A. Gulati and R. Mani. Active control of unsteady combustion-induced oscilla-
tions. Journal of Propulsion and Power, 8(5):1109-1115, 1992.

[26] A. Ilchman. Non-identifier based high-gain adaptive control. In Lecture Notes
in Control and Information Sciences, volume 189. Springer-Verlag, 1993.

146



[27] P. Ioannou. Reply to comments on the robust stability analysis of adaptive con-
trollers using normalizations. IEEE Transactions on Automatic Control, 35:1184,
1990.

[28' S.M. Joshi and P.G. Maghami. Robust dissipative compensators for flexible
spacecraft control. IEEE Transactions on aerospace and electronic systems,
28(3), 1992.

[29] T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980.

[30] S.P. Karason. Adaptive control in the presence of input constraints. Master's
thesis, M.I.T., Cambridge, MA., 1993.

[31] H. Kaufman and G. W. Neat. Asymptotically stable multiple-input multiple-
output direct model reference adaptive controller for processes not necessarily
satisfying a positive real constraint. International Journal of Control, 58(5):1011-
1031, 1993.

[32] B. Kouvaritakis and A.G.J. MacFarlane. Geometric approach to analysis and
synthesis of system zeros: Part 1. Square systems. International Journal of
Control, 23(2):149-166, 1976.

[33] B. Kouvaritakis and U. Shaked. Asymptotic behaviour of root-loci of linear
multivariable systems. International Journal of Control, 23(3):297-340, 1976.

[3.4] J. M. Krause, P. P. Khargonekar, and G. Stein. Robust adaptive control: Sta-
bility and asymptotic performance. IEEE Transactions on Automatic Control,
37(3):316-331, 1992.

[35] I.D. Landau. Adaptive Control. Marcel Dekker, Inc., New York, 1979.

[36] W. Lang, T. Poinsot, and S. Candel. Active control of combustion instability.
Combustion and Flame, 70:281-289, 1987.

[37] P.J. Langhorne, A.P. Dowling, and N. Hooper. Practical active control system for
combustion oscillations. Journal of Propulsion and Power, 6(3):324-333, 1990.

[38] R. Lozano-Leal and S.M. Joshi. Strictly positive real transfer functions revisited.
IEEE Transactions on Automatic Control, 35(11):1243-1245, 1990.

[39] A.G.J. MacFarlane and I. Postlethwaite. The generalized nyquist stability crite-
rion and multivariable root loci. International Journal of Control, 25(1):81-127,
1977.

[40] D. G. MacMartin and S. R. Hall. Control of uncertain structures using an H,
power flow approach. Journal of Guidance and Control, 14(3):521-530, 1991.

[41] K.R. McManus, T. Poinsot, and S.M. Candel. A review of active control of
combustion instabilities. Progress in energy and combustion science, 19(1):1-30,
1993.

147



[42] D. K. Miu. Physical interpretation of transfer function zeros for simple con-
trol systems with mechanical flexibilities. ASME Journal of Dynamic Systems,
Measurement, and Control, 113:419-424, September 1991.

[43] A.S. Morse. A three-dimensional universal controller for the adaptive stabi-
lization of any strictly proper minimum phase system with relative degree not
exceeding two. IEEE Transactions on Automatic Control, 30:1188-1191, 1985.

[44] I. H. Mufti. Model reference adaptive control of large structural systems. Journal
of Guidance and Control, 10(5):507-509, 1987.

[45] Y. Mutoh and R. Ortega. Interactor structure estimation for adaptive control of
discrete-time multivariable nondecoupable systems. Automatica, 29(3):635-647,
1993.

[46] S. M. Naik, P.R. Kumar, and B. E. Ydstie. Robust continuous-time adaptive
control by parameter projection. IEEE Transactions on Automatic Control,
37(2):182-197, 1992.

[47] K. S. Narendra and A. M. Annaswamy. Stable Adaptive Systems. Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1988.

[48] K.S. Narendra and J.H. Taylor. Frequency Domain Criteria for Absolute Stabil-
ity. Academic Press, New York, 1973.

[49] R. W. Newcomb. Linear Multiport Synthesis. McGraw-Hill, New York, 1966.

[50] M.J. O'Brien and J.R. Broussard. Feedforward control to track the output of a
forced model. In Proceedings of the IEEE CDC, 1978.

[51] T.P. Parr, E. Gutmark, D.M. Hanson-Parr, and K.C. Schadow. Feedback control
of an unstable ducted flame. Journal of Propulsion and Power, 9(4):529-535,
1993.

[52] T. Poinsot, F. Bourienne, S. Candel, and E. Esposito. "Suppression of combus-
tion instabilities by active control". Journal of Propulsion and Power, 5(1):14-20,
1989.

[53] C. Rohrs, L. Valavani, M. Athans, and G. Stein. Robustness of continuous-
time adaptive control algorithms in the presence of unmodeled dynamics. IEEE
Transactions on Automatic Control, 30:881-889, 1985.

[54] U. Shaked and E. Soroka. On the stability robustness of the continuous-time
LQG optimal control. IEEE Transactions on Automatic Control, 30:1039-1043,
1985.

[55] R.P. Singh. Stable Multivariable Adaptive Control Systems. PhD thesis, Yale
University, 1985.

148



[56] R.P. Singh and K.S. Narendra. Prior information in the design of multivariable
adaptive controllers. IEEE Transactions on Automatic Control, 29:1108-1111,
December 1984.

[57] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, Englewood
Cliffs, NJ, 1991.

[581] G. Tao and P.A. Ioannou. Strictly positive real matrices and the Lef-
schetz-Kalmnan-Yakubovich lemma. IEEE Transactions on Automatic Control,
33(12):1183-1185, 1988.

[59] G. Tao and P.A. Ioannou. Stability and robustness of multivariable adaptive
control schemes. Control and Dynamic Systems: Advances in Theory and Ap-
plications, 53:99-124, 1993.

[60] M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, 2nd edition, 1993.

[61] P.G. Voulgaris, M.A. Dahleh, and L.S. Valavani. Robust adaptive control: a
slowly varying systems approach. Automatica, 30:1455-1461, 1994.

[62] S.R. Weller and G.C. Goodwin. Hysteresis switching adaptive control of linear
multivariable systems. Automatica, 39(7), 1994.

[63] J. T. Wen. Time domain and frequency domain conditions for strict positive
realness. IEEE Transactions on Automatic Control, 33(10):988-992, 1988.

[64] T. Williams. Transmission zero bounds for large space structures, with applica-
tions. Journal of Guidance and Control, 12(1):33-38, 1989.

[65] E. E. Zukoski. Afterburners. In Gordon C. Oates, editor, The aerothermody-
namics of aircraft gas turbine engines, chapter 21, pages 42-48. Air Force Aero
Propulsion Laboratory, Report No. AFAPL-TR-78-52, 1978.

149





Appendix A

Discretization of the Combustor

Equations

A.1 Introduction

In this Appendix the finite element discretization of the fundamental laws that de-

scribe the unstable, perturbed combustion process is presented in detail. First, in

Appendix A.2 the discretization is performed for the case that no mean flow and no

mean heat is present. Next, in section A.3 the order of the finite element model is

reduced to include a physically reasonable number of modes. Finally, in section A.4

the results are given for the case that mean flow and mean heat are present.

A.2 Discretization

When no mean heat and no mean flow is present, Eqs. (5.5) and (5.6) reduce to

02pf _0 _2

-0 2 aX0t 2  Ox2

Op' Ou'
--+ "-Pat ax

aq/
(_ - 1) Otq'

= (-y - )q'.
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In what follows, p'(x, t) in Eq. (A.1) is solved first, u'(x, t) is then found through

direct integration of Eq. (A.2). Eq. (A.1) can be rewritten as

a2 =_ fB (A.3)Ox2

where
- q' 02p 'f = ( - 1) (A.4)

fB is a forcing term that acts inside the fluid body. The essential boundary condition

is given by

p'(L, t) =0 (A.5)

since at the outlet p = p. The natural boundary condition due to an end-mounted

loudspeaker follows from Eq. (A.2), evaluated at x = 0,

p' 0u' uu'(0,t)= -a (0,t) - pT (0,t)

= -Pic(t), (A.6)

where itc(t) = ' (0, t). The natural boundary condition due to a side-mounted

loudspeaker can not be derived from the one dimensional flow dynamics. However,

considering the Euler equation in the radial direction and incorporating the trans-

ducer modeling considerations, the natural boundary condition for a side-mounted

loudspeaker is given by

Ox ( x + t) = (X-), t) - kuv-* i(t), (A.7)

where v, is the velocity of the loudspeaker diaphragm. k,, is a dimensionless atten-

uating factor which depends on the flow characteristics and the radial dimensions of

the combustor. Eq. (A.7) says that the side-mounted loudspeaker affects the pressure

gradient at x = xa.

Eqs. (A.3)-(A.7) specify the solution of p'(x, t). Below we will derive a finite

dimensional fit in x to p' using a finite element discretization. Similar to the principle
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of virtual work, we multiply Eq. (A.3) with an admissible virtual pressure 6p' and

integrate from 0 to L,

I L 2 02P
0 Z2a X +fsB) 6p'dx = 0.

Note that
0 {Op' \ 2 -'

x (p) _p = 2 p ' +

so that Eq. (A.8) can be written as

(A.8)

api Osp
Ox ax'

Op' 6 p'I
Ox Ox J+ fBSpI)dx = 0.

We have that

L  ( Op'

1 = x a 1
Op'

p') dx

ap'Iax
S Lp'

- + p p'O
a @ -6

) t) )= p'(t) + (x t)

= Pc6p'o + kuvpbc6p'a

Jp'( a, t) + Ox 6p'(L, t)19X

where 6p'o = 6p'(0, t), and 6p'a = 6p'(Xa, t). The last equality in Eq. (A.10) follows

from the natural boundary conditions given by Eqs.

that 6p' is an admissible variation, i.e.

that Eq. (A.9) can be written as

6p'(L, t) = 0.

(A.6) and (A.7), and the fact

Using Eq. (A.10), it follows

2L Op' P 6  xp' dx
SOx Ox x SL0

fB6p'dx + p c 2itcp'o + k-,,P c2 icp' a. (A.11)

We will divide the duct into N elements, Eq. (A.11) can then be rewritten as a sum
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(A.9)

dx + + dxJ. 09X ( a

(A.10)

Zo
L (e2

9 1 (X+
19X a



of integrations over the length of all elements,

N 2 p(m (m) J d - (m) f B(m)6PI(m)dX + p 2 iUc6 P'o + k,•,-P 2 c6p'a.m=1 m=1
(A.12)

In the finite element method, the pressure in the mth element is approximated by

PI(m) (x, t) = H(m)(x)P(t) (A.13)

where H(m) is the pressure interpolation matrix for the mth element, and P is an n-

dimensional vector with nodal pressures. Similarly, the admissible pressure variations

are interpolated as

6p'(m) (x, t) = H(m)(x)P(t) (A.14)

where P is the vector with nodal pressure variations. If o denote the number of nodes

per elements, then H(m)(x) is of the form

H(m)(x)=[0 ... h(m)(x) ... h(m)(x) 0 ... 0].

The one-dimensional interpolation functions hA chosen depend on the number of

nodes o per element. For example, 2, 3 or 4 node elements can be used. For 2 node

elements, linear interpolation functions would be used, for 3 node elements quadratic

interpolation functions would be used [9]. For the variation 6p'0 and 6p'a we have,

respectively,

p'o = H(1)(x = O)P(t), (A.15)

6p'a = H(ma)(Xa)P(t), (A.16)

where m• denotes the element in which Xa lies. We will develop an iso-parametric

finite element discretization in which the pressure gradient is interpolated as

Op(m)(x, t) = B(m)(x)P(t)
Ox
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a6p'(M)(z, t)
ax = B(m) () P(t)

where B(m)(x) = d4H(m)(x).

Substituting Eqs. (A.13)-(A.17) into Eq. (A.12) results in

PT (t)KP(t) = T (t)FB(t) + PT (t)Fs(t)

K = EmK(m),

= E F(m)B(t),

= Fs(t) + Fs(t),
= Bpcvkuvp 2c(t),

K(m)

F(m)B(t)

Fu(t)

= 2 fL(m) B(m)T(x)B(m) (x)dx,

= fL(m) H(m)T(x)fB(m) )(, t)dx,

= BpCp -Ec(t)
= H (m a)T (x a ) .

We now choose the nodal variations as P = ei for i = 1,..., n, where ei is a basis

vector in IR n . Combining the resulting n equations we obtain

KP(t) = FB(t) + Fs(t). (A.19)

Substituting for the body forcing term in Eq. (A.4), we find that Eq. (A.19) can be

written as

MP(t) + KP(t) = Fq(t) + FS(t), (A.20)

where M is given by

M = E M(m),
m

M(m) = JLm H(m)T(x)H(m) (x)dx,

and the forcing function due to heat generation is given by

Fq(t) = (7 _ 1) E (m)
m Lm)

H(m)T(x) a(x, t) dx.
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(A.17)

where

(A.18)

FB(t)

Fs(t)
Fs(t)

Bpc = H(1)T( 0),



For the system we are considering, the heat generated is localized to x = xz so that

q(x, t) = 6(x - xo)qt'(t)

where 6(.) is the Dirac impulse function, and q' is the heat generated per unit area

given in Eq. (5.12). Hence, for localized heat generation, Fq(t) can be simplified as

Fq(t) = Bpqd(7 - 1)0'(t) Bpqd = H(ma)T(Xo)

where mo denotes the element in which xz lies. P is an n dimensional vector containing

the modal pressures. Let Pi be the ith component of P, and let P be ordered such

that P1 corresponds to the pressure for the node at x = 0, and P, corresponds to the

pressure for the node at x = L. The essential boundary condition given by Eq. (A.5)

prescribes that P, = 0. Eq. (A.20) can therefore be reduced by one degree of freedom

by eliminating the last row and last column. To avoid proliferation of notation we

will assume that this reduction has been performed, and that the resulting P is n

dimensional.

We will use the solution for p(x, t) to find the solution for u'o(t) in Eq. (5.7). The

essential boundary condition for u'(x, t) is given by

u'(0, t) = 0. (A.21)

Since p : 0 we have from Eq. (A.2)

9u' 1 [ Op'1
a = -[ (7-y 1)q'- -t

Integrating this equation from x = 0 to L, with the interpolation of p'(x, t) given by

Eq. (A.13) and using Eq. (A.21), results in

'o(t) = u'(0, t) + ao q'(x, t)dx -1 T- O d'
= q() - at
= aoqo(t)- CqpdP(t),

7P1
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i-i
ao = "yp

m -1

Cqpd = E L()m= 1
H(m)(<)d + ) H(mo)(-)d.

L

Summarizing the results of this section, the finite element discretization of the

governing partial differential equations is given by

MP(t) + KP(t)

u'4(t)

' (t)

= Bpqd(Y - 1)4q'(t) + Bpc 2 itc(t) + Bpcvk,,p 2i(t)(A.22)

= aq',(t)- CqpdP(t)

= -a 2qo1(t) + lu•(t).

(A.23)

(A.24)

These equations can be simplified by eliminating u'.0

Eq. (A.24) we find

4i0(t) = -Ca3qo(t)

Substituting Eq. (A.23) into

(A.25)

where

a 3 = a 2 - alao.

Substituting Eq. (A.25) into Eq. (A.22) results in

MP(t) + BpqdajaoCqpdP(t) + KP(t) =

-Bpqd(7 - 1) 3q'(t) + Bpcup ý2i(t) + Bpcvk,,p c2 (t).

The pressure perturbation at the microphone location x, is given by

p'(t) = H(m8)(x,)P(t) = CpP(t),

(A.26)

(A.27)

where x, lies in element ms. Eqs. (A.25), (A.26) and (A.27) completely specify the

input-output dynamics of the system.
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1
- ~1CqpdP(t),

YPy



A.3 Reduced Mode Superposition

In the previous section we derived a finite dimensional representation of the system

dynamics. The order of the system described by Eq. (A.26) is too high for several

reasons. First, the modal frequencies and mode shapes computed at high frequencies

are inaccurate by the very nature of finite element analysis, and should therefore not

be excited in a realistic dynamic model. Second, the frequency range spanned by all n

modes is a much larger frequency range than we are interested in from the viewpoint

of controller bandwidth, and frequency content of external disturbances. Typically

the model is required to be accurate to within 4 to 10 times the controller bandwidth.

Hence, the presence of higher modes in the model is undesireable and a lower order

model for the system dynamics described by Eqs. (A.25), (A.26) and (A.27) should

be obtained. The added advantage of such a lower order model is that it is suitable

to be used in a model based control method.

Based on computational considerations, a technique frequently employed in dy-

namic finite element analysis is to reduce the order of the governing equations by

reducing the number of modes considered in a mode superposition solution. The

number of modes retained is typically chosen to include all modes whose frequencies

lie below 4 to 10 times the highest frequency expected in the external forcing terms.

The non retained modes are not excited and their dynamic contribution is therefore

discarded. The static contribution of the non retained modes is incorporated through

what is known as a static correction. In this section we will apply this technique to

the system described by Eqs. (A.25), (A.26) and (A.27).

An accurate model of the system in the frequency range of interest may be de-

termined by looking at the open loop mode shapes qi (i = 1,..., n) found as the

solution of the generalized eigenvalue problem

Koi = Mwjki. (A.28)

Having determined the required number of elements N, the number retained modes

p and the number of non retained modes (n - p), a low order dynamic model can
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be obtained as described below. A full mode superposition solution of Eq. (A.25) is

found by setting

P = OD'q

where ) = [ 01 ¢2 ... 0n ] is the solution to Eq. (A.28), and qj is the vector with

modal coordinates. The eigenvectors are normalized such that

4rTM( = I, (IDTK = Q 2 ,

where Q = diag(wl, 2,... , wn). We will order the modal frequencies in ascending or-

der., wl 5 w2 < ... < w,, and order the eigenvectors Oi (i = 1, ... , n) correspondingly.

The modal decomposition can then be partitioned as

P= [Dr Or ]
?nrJ

(A.29)

where , : IR+ -- IRP is the vector with modal coordinates of the retained modes,

and rnr :IR+ _- IR (" -p) is the vector of modal coordinates of the non retained

modes. Substituting the decomposition given by Eq. (A.29) into Eq. (A.26), and

premultiplying with OT, results in

[[+ K+ - T BpqdolaoCqpd [ (r onr + 0 Q21 o I(n-p) 7,nr -r r 2r nrj

- Bpqd(y - 1)a3qo +

where Qr = diag(w,, w,... , wp)

and (A.27) we have

q' = -a3qo

Ips=

p 2 it, + rk, p c2UcPCU c+ pcvnr pc nr p

and Qnr = diag(wp+l,w2,. .. , Wn). For Eqs.

- 1Cqpd [r Inr] i

:Ccp [ r Cnr ] [ Tr

(A.30)

(A.25)

(A.31)

(A.32)
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Based on the considerations discussed in the beginning of this section, we assume

that the non retained modes are not excited. Hence

oinr(t) = 0, and nr =(t) - 0. (A.33)

Note however that we will still incorporate the static

modes in the analysis. The reduced model is found

Eqs. (A.30), (A.31) and (A.32) and eliminating T/nr.

form, is given by

contribution of the non retained

by substituting Eq. (A.33) into

The result, in first order control

= Arx, - Brqqo + Brcuitc + Brcvic

-= ao - aCqrxr

= CsXr - Dsqq, + Dsc7izc + Dscv~ i

where

1

0 IpAr = Ar-[ -Q Bpqda aoCqpd ~rj

0
Brqr pqd 7j3

rffrBpcu

0
Brcv = Bpc k ,pcv 2

Cqr = [O -Cqpd'r],

Cs = [ C-cpr cpnrnr nrpqd

Dsq = Ccp nrnrnrBpqd( - 1)3,

Dscu = - C ýR Bpcu-p T c2-DC, = Ccp nr nr nrpckp C 2

scv CcpT- Q2Bpcvkuv-p 2

:SC C o r n r n r~ o ~ ~

j

I
1
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A.4 Mean Heat and Mean Flow

In the solution of the fundamental laws in section A.2 we assumed that U - 0 and

4 =- 0. We will now rederive the solution of Eqs. (5.5) and (5.6) in the case that these

mean variables are not zero. Specifically, we will consider the case that M < 1. With

Al < 1, Eq. (5.5) can be written as

92'  -2 a2'  2P' 2 i a' P a q a
-' 2 + 2U t- = (-1) + (A.34)ata a2 tt ax

The essential boundary condition is

p'(L, t) = 0.

The natural boundary condition in case of an end-mounted loudspeaker is given by

ap' (O, t) au' (O, t) au'(o, t) (A35)
x = - at pl (A.35)

where we assumed that the second term in Eq. (A.35) is negligible. This assumption

is reasonable since at x = 0 the mean flow enters radially. The natural boundary

condition in case a side-mounted loudspeaker is used is given by

ap' ap'p- (X+ It)=- p _) t)- ku,-fii(t),

where we neglect the effect of U on the radial pressure distribution at x = xz. Mul-

tiplying Eq. (A.34) with an admissable pressure and integrating from 0 to L results

in

OL 2-- -_ 2U a I + fB 6p'dx = 0

where
fB 1) q' q' I t2 pat ax 6t
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A finite element discretization similar to the one performed in section A.2 can be

carried out. However, since U and e are not constant over the over the entire duct,

different elements have to be used for x < xo and x > zo. The following result is

obtained:

MP± + GOP + (K + Ko)P

where Pa = p(xa) and ia = ý(xa).

A.2. Due to the different element

k

Ko

K(m)

Kim)

K(m)
0~.,

S-Bpqdqo + BpcupicUc + Bpcvkuvpacic

= -a3qo - a1( CqpdP + 'CqvP)

= cCP,

(A.36)

The matrices and vectors are defined as in section

properties used for x < zX and x > xo we have

mI N= EK~(m)+ E Km)
m=1 m=m1+1

= B,qdalaolCqp+ E K m)
m

S (m) B(m)T (x) B (m) (x) dx,

= H(m)T (x o ) [-B(m'+l)(Xo) -E •B(ml)(xo)],

where m, is the element directly to the left of xo. The transport effect of the mean

flow, and the destabilizing effect of the flame feedback, is expressed by

G
G

G(m)

G(m)

=G +- BpqdalaoCqpd,
mI N= EG(m)+ G(m)

m=1 m=mi+1

= 2U,1 J H(m)T(x)B(m)(x)dx,

= 2;U2 m ) H(m)T(x)B(m)(x)dx,

and

Bpq = B(ml+1)T ( o ) ,
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Bpqd = Bpqd(Y - 1)a3 + Bpq(Y - 1) 2,
ml

Cqp = JL B(m) (() d .
m=-1

The reduced order model of the full order model described by Eq. (A.36) can

be derived as follows. Let 4 denote the eigenvectors of the generalized eigenvalue

problem

Rk = M4Q 2 .

Using the frequencies Q and modeshapes 4, the model reduction method outlined in

section A.3 can be carried out for the system described by Eq. (A.36). The result is:

Xrm = Armxrm - Brmqqo + Brmcuitc + Brmcvic

0 = -a3qo - 0(Cqrmrm - Dqqo + Dqcuic + Dqcv)c)

p = CsrmXrm - Dsqmqo + Dscumitc + Dscvmitc

where

Xrm

Arm r ko(onn" nrko)ir r0 I
Brmq = T(I - -2-Tr ko4nr s n2r f)pqd

Brmcu = (I - 2

o 0

1 (I U- lq( - -2 )pc va
Cqrr 1D Qnrs rKo)'r CqdT Q-2(T

c-P [ icUl (I - k, S 2 nrko Crqpd( kr 2 nr

7Ul - q-2pT nDq, = -Cqp(nr• 2 TB rfpqd,

Dqcu = ? Cqppnr 2( rBpcu; 1 C,
-yp1
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U 1  2Dqcv -= C pnQ,;2 TnrBpcvkvuPa c,
DcvS CQ,(I - nr -2 T or _c -2TG•Yp

Dsqm Ccp rs ns 2 
d

T pd

Dscum = Ccnr2 I-2? TrBpcuP1 C2

Dscvm = Ccp Inr 2 TrBpcukvPa C,

and

G = G + Ko(nrQs uDnrG

2 nr (Kro + r_ Bpqd laoujCqp)n r

Qs is assumed to be invertible.

l ! • . ..•
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