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D. G. Brennan
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partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

ABSTRACT

The following theorem is proved: If f and g are R -valued random
n

variables on an arbitrary probability space, and if f and g are measure-

continuous (i.e., send sets of small measure into sets of small

measure) and have image sets in R of positive outer measure, then

f and g are not independent. This theorem, which appears to be the

first result of this type obtained since random variables were first

adequately defined, provides considerable information about various

probability-theoretic questions related to independence or the lack

thereof. Some of this information is exhibited in a sequence of

remarks, including: (a) The theorem is at least close to being

"best possible". (b) Independent r.v.'s on product spaces are

independent essentially because they collapse the dimension of the

domain. (c) Two continuous and measure-continuous real r.v.'s on a

connected topological probability space are independent if and only

if at least one is constant. (d) In particular, absolutely continu-

ous r.v.'s on the unit interval are continuous and measure-continuous.

(e) The theorem has important consequences for applications of prob-

ability theory to physics and engineering.

Thesis supervisor: Norbert Wiener, Institute Professor
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I. INTRODUCTION

With respect to the usual axiomatic framework of modern probability

theory, in which random variables are taken to be measurable functions

on a totally finite measure space, it is fairly well known that the

structure of the measure space underlying any particular development

is by no means completely arbitrary. See, for example, the discussion

by J. L. Doob in Appendix I of [1]. But it is less widely appreciated

that the random variables themselves, occurring in such developments,

are also subject to very stringent constraints, especially in the

case of independent random variables. There appears to be no information

in the literature about the function-theoretic properties of independent

random variables. even when the underlying space is quite simple, such

as an interval or product of intervals under Lebesque measure.

The objective of this paper is to set forth a theorem concerning

the function-theoretic character of independent random variables

defined on a completely arbitrary probability space. This theorem,

which seems to be the first result obtained in this direction since

random variables were adequately defined about 30 years ago, provides

a good deal of illumination on various probability-theoretic questions

related to independence or the lack thereof. Several of these questions

will be exhibited. In special cases, the theorem provides a complete

characterization of independence. It will be seen that the structure

of independent random variables is such as could reasonably be

described as "pathological" from the point of view of ordinary fuzction

theory; e.g., real-valued random variables on the unit interval I

that are C1 on I cannot be independent unless constant, and there are

no non-trivial, complex-valued independent random variables on the
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unit square I x I that are analytic on I x I.

II. DEFINITIONS AND STATEMENT OF THE THEOREM

We recall that a probability space (a, A, P) is a collection

of a point set Q, a sigma-ring A of subsets of a such that a E A,

and a measure P defined on A such that P(a) = 1. A real-valued

random variable on (a, A, P) is a function f from Q to R1 that is

measurable with respect to A, i.e., if E c R1 is measurable, then

-1
f (E) e A. More generally, R -valued random variables are functions

from a to R satisfying the same condition. (It is immaterial for

our purposes whether the measurable sets of R are taken as then

Lebesgue-measurable sets or only the Borel sets, or whether the

measure space (f, A, P) is completed or not.) We say that two

random variables f and g are independent if P[f- 1 (E1 ) n gl(E 2 )] =

P[ff1(El ) ]P(gl I (E2 ) ] whenever E1 and E2 are measurable sets in Rn.

Although random variables are point functions, in writing f(E) we

shall as usual mean the set f(o)ljaEI in R, whenever E is a set

in a. We shall write p for n-dimensional Lebesgue measure and ;I

for outer Lebesgue measure. We shall usually write a for a probability

space, with the understanding that A and P are implied.

One of the key ideas in the development below is that of

"measure-continuity", meaning the property of sending sets of small

measure into sets of small measure, more precisely formulated in the

Definition, Let f: a -- R be a random variable. We say that f isn

measure-continuous if, whenever e > 0 is given, there is a 6 > 0

such that P(E) < & implies .{f(E)l < e. We say that f is weakly measure-

continuous if f sends no sets of zero P-measure into sets of positive
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outer p-measure.

Of course, measure-continuity can be formulated for functions

(which need not be measurable) between any two measure spaces; however,

the setting employed in this definition will suffice for present purposes.

But even a measurable function need not send measurable sets in its

domain into measurable sets in its range, which accounts for the pres-

ence of the outer measure in the definition. It is obvious that any

measure-continuous f is weakly measure-continuous, but the converse is

false. It should be noted that measure-continuity neither implies nor

is implied by absolute continuity (with respect to j) of the measure

induced in RR by f. Also, in cases where the measure space a is equipped

with a topology, there is in general no relation between topological

continuity and measure-continuity of f; for example, a real-valued

measure-continuous f on the unit interval need not be continuous at

any point, and the Cantor function [2] shows that even a monotone

continuous function need not be weakly measure-continuous.

We are now ready to state our main result.

Theorem. Let (a,, A, P) be an arbitrary probability space and let

f and g be measure-continuous random variables on a with ± {f(L)}>

0, sg(a)l > 0. Then f and g are not independent.

What we shall actually prove is the slightly sharper but less symmetric

Theorem'. -Let (a, A, P) be a probability space and let f and g be

random variables on 2 with ,4f(Q)} > 0, 4 g( 0)}> . If f is weakly

measure-continuous and g is measure-continuous, then f and g are not

independent.



-6-

(In speaking of "the theorem" without further qualification, either

the symmetric form or the sharper form may be substituted.)

Thus,. independent random variables cannot have "thick" image

sets if they are required to fill up their image sets "smoothly".

Before presenting the proof of this theorem, we shall provide a

sequence of observations and applications to illustrate some of the

content of the theorem.

III. VARIOUS REMARKS AND CONSEQUENCES

Remark 1. There is no deep significance attached to the use of

(Rn, Lebesgue) for the range space. As can be seen from the proof,

the only vital property required of the range space is that it be a

measure space that admits a systematic way of splitting it up into

disjoint pieces of arbitrarily small measure, and this will be the

case under very general conditions. The measure-continuity of the

random variables would then be formulated in terms of the given measure

(and its induced outer measure) on the range space. We shall not pur-

sue this here, however, and (Rn, Lebesgue) will be used throughout as

the range space.

Remark 2. Although the theorem is true in the generality stated above,

it is interesting to note that the theorem has no content in cases

where a is a finite or countable set. There is thus some sense in

which the notion of independence is most "natural" for.discrete

random variables.

Remark 3. If the hypotheses of the theorem are regarded as two

separate conditions each on f and g, then no one of the four conditions



can be dropped. This can be proved with simple real random variables

(n = 1) with a taken to be the unit interval I = [0, 1] with Lebesgue

measure, as follows, i) Let f be the trigonometric function f(t) =

sin 2ut, t e I, and let g be the second Rademacher function g(t) =

sgn(sin 4rt). Then it is easy to see (draw pictures) that a) f and

g are independent, b) f and g are measure-continuous, c) g f(m)j =

2 > 0, d) o g()} = 0. (In this example, both r.v.'s have non-
degenerate distributions; an even simpler example with g(2)• = 0

can be obtained by taking g = constant, as g would then be independent

of any other r.v, whatever on the same space, but this g would have

a degenerate distribution.) ii) Let f(t) = sin 2nt as before. Let

C(t) be the Cantor function on I and let g(t) = C(t) for every t

in the Cantor set and let g(t) = 0 on every interval in the comple-

ment of the Cantor set. Then a) f and g are independent (since

g = constant a.e.), b) p f(Q) = 2 > 0, 4 g(Q)ý = 1 > 0, c) f is

measurecontinuous, but d) g is not weakly measure-continuous. These

examples show that the theorem certainly cannot be substantially

improved. Obviously the condition of positive outer measure of the

image sets cannot be weakened at all; but whether or not the measure-

continuity conditions can be significantly relaxed is a slightly open

question, which will be further discussed below.

Remark 4. The usual method of constructing independent r.v.'s on

product spaces leads to r.v.'s that are not measure-continuous. For

example, let a be the unit square I x I under Lebesgue measure, let

n = 1, and let f(x, y) = x, g(x, y) = y. Then it is well known (and

also easy to verify) that f and g are independent. But if yo E I

and xo E I, then f and g respectively send the lines I x Yo and
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xo x I (of P-measure 0) onto I (of 4-measure 1), and similarly if

f(x, y) = fo(x), g(x, y) = go(y). Therefore, such (real) variables

can be measure-continuous only if their complete image sets are of

measure zero in the first place. Random variables on a product space

that take values in a range space of the same dimension as the

domain cannot be independent if they are "smooth". For example,

if f and g are non-constant complex-valued random variables on

I x I that are analytic on I x I, then they are measure-continuous

(because the Jacobians of the transformations given by f and g are

respectively jf'(z)j 2 and Ig'(z)j 2 , which are bounded on I x I) and

have image sets of positive outer measure in R2 (because non-constant

analytic functions are open maps). It follows from the main theorem

that such f and g cannot be independent.

Remark 5. It is not possible to formulate a theorem with the general-

ity of the main theorem yielding "if and only if" conditions for

independence in terms of measure-continuity and measures of image

sets. This can be seen by considering two independent, non-

degenerate rv.,'s on any Q; by composing one of these r.v.'s with a

suitable measure-preserving transformation of 2, it is always possible

to destroy the independence without affecting the measure-continuity

or measure of the image sets of these variables. However, if there

are additional conditions on the structure of the domain and range

spaces, then it is possible to formulate "if and only if" theorems

in terms of the function-theoretic structure of the rev.'s, as in

the following

Corollary. Let Q be a connected topological probability space, and

let f and g be real-valued, continuous and measure-continuous r.v,'s
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on a. Then f and g are independent if and only if at least one of

f or g is constant.

Proof of Corollary: The continuous image of a connected set is

connected. and the only connected sets in the line are (possibly

degenerate) intervals. If both the image intervals of f and g are

non-degenerate, they would both have positive measure, which

completes the "only if" part; the "if" part is the same trivial

fact mentioned previously that a constant r.v. is independent of

any other r.vo on the same space.

Remark 6. One special case of the preceding corollary is of suffi-

cient interest to warrant discussion on its own. This is the case

where Q is the unit interval I under Lebesgue measure, and f and

g are continuous relative to the usual topology on I. Let us recall

that a real function f of a real variable is said to be absolutely

continuous if, whenever e > 0 is given, there is a S> 0 such that

for every finite collection of disjoint half-open intervals

(al, bl], (a2, b2], .. , (an, bn] in the domain of f with

Z I bk - ak 1< 6~ it follows that Z If(bk) - f(ak)I < e. It is then

obvious that any absolutely continuous r.v. on I is continuous and

measure-continuous, which establishes the

Sub-Corollary. Let f and g be absolutely continuous (real) random

variables on I. Then f and g are independent if and only if at

least one of f or g is constant.

Although any absolutely continuous function is continuous and

measure-continuous, the converse does not hold. This is illustrated

in Fig. 1. The (continuous) function f whose graph is given there
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is defined in a sequence of trapezoidal

qI t-)PF 53/4

/2

1/3

1/4
1/5

0

Fig. 1: Example of a continuous and measure-continuous
function that is not absolutely continuous.

pieces whose base widths (2 "k ) decrease much more rapidly than their

th
heights (1/k). The slope on the sides of the kth trapezoid is

2k+2/k; by considering a sequence of intervals under these sides,

k = 1, 2, 3, ... , it is easy to show that f is not absolutely continu-

ous on [0, 1]. However, for r > 0, f is absolutely continuous on

(0, 1 - 7] and uniformly small on (1 - q, 1]; from this, it can be

seen that f is measure-continuous. The essential reason why this

example "works" is that the pieces If(bk) - f(ak)I that cause the

failure of absolute continuity "overlap" when seen in the image set.

It is easy to see that a monotone function that is continuous and

measure-continuous is also absolutely continuous.

Hence, the "sub-corollary" above is not actually as good a

theorem as results simply from specializing f to I in the corollary.

But it is of interest to note the connection with the familiar notion

of absolute continuity.



Remark 7. An attempt to construct relatively simple non-constant,.

independent, continuous (but not measure-continuous) real r.v. s on

I is likely to lead to the suspicion that the word "absolutely" could

be deleted from the sub-corollary above. However, this is not the

case. If f and g are the x and y component functions of the square-

filling Peano curve [81, then f and g are (a) continuous, (b) non-

constant,- and (c) independent. I am indebted for this example to

J. D, Lordan and Norbert Wiener, each of whom independently sug-

gested the Peano curve, The independence of these functions can be

proved by routine but long-winded computations which we omit,

Remark 8. The definition of measure-continuity used in connection

with the main theorem is a "uniform" measure-continuity requirement.

A natural way of formulating "local" measure-continuity for topological

measure spaces would be: If E > 0 is given and x E Q, then there

is a neighborhood U of x and a o > 0 such that if E S U and P(E) < 6

then K f(E)i < E. But any continuous function has this property, and

Remark 7 shows that this is not a possible direction of sharpening

the main theorem even in cases where the measure space is equipped

with the Haar measure of a topological group. Whether there is

some other direction of "local" measure-continuity that would lead

to fruitful results is not entirely clear, but it does not seem very

likely that there is much to be done in this direction.

However, there are certainly other directions of formulating

similar but non-overlapping theorems, especially for the case of

real random variables on I. For example, a simplified version of

the proof below will easily establish: If f is strictly monotone

and g is measure-continuous and g(I)i > O, then f and g are not



independent. Also, it does not seem likely that two non-constant,

continuous functions of bounded variation on I could be independent.

any variations of this type are possible.

Remark 9. In the light of the comments about r.v.'s on product spaces

in Remark 4 and the behavior of the Peano functions in Remark 7, it

is possible to summarize the content of the main theorem rather

vaguely with the statements Independent random variables must

either "collapse" the "dimension" of their domain or else be

wildly pathological. The "collapsing" (which is itself a form of

pathology) can take place in various ways; e.g., in the honest sense

of sending a product of one-dimensional spaces into Euclidean space

of lower dimension than the product (the usual case of independent

rov. s on product spaces), or by sending the entire domain into a set

of measure zero.

Remark lO As illustrative applications to random variables on I of

prescribed functional form studied elsewhere in the literature, we

mention: (a) The Rademacher functions, which are well known to be

independent, are obviously measure-continuous, but they all have

image sets of measure zero. In consequence of the main theorem, any

attempt to construct independent r.v. s similar to the Rademacher

functions but with "tilted" tops (and/or bottoms) would be doomed

to failure. (b) Kac [3, 41 and Fine (5, 6] have studied asymptotic

distributions of sums of "sawtooth" functions such as 2pt - [2t -

1/2, noted by these authors to have "a certain degree of statistical

dependence". The existence of such dependence is an immediate con-

sequence of the theorem; for every n, these functions are obviously

-12-
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measure-continuous and have image sets of positive measure,

Remark 11 Segal [7] has criticised the usual measure-theoretic setting

of random variables as follows: "Random variables are usually defined

as measurable functions on probability spaces. This is a long way

from either the practical statistical or intuitive conceptual formula-

tion of the notion, especially as the probability spaces required for

dealing with simple concrete situations may be mathematically relatively

sophisticated." Although Segal's criticism may possibly have some

merit in the case of discrete r.v.'s, it is not well taken in the case

of r.v.'s intended to represent quantities that vary continuously in

time. I have discussed elsewhere [91 a rather large class of interesting

applications in which the underlying probability space enters in a

completely natural way, and the r.v.'s on this space are as close

as could be imagined to the "practical statistical" and "intuitive

conceptual" notions involved. In order to demonstrate the relevance

of the main theorem to such applications, and show incidentally in the

process that Segal's criticism is misplaced, let us consider a repre-

sentative application of this type, We must introduce some physical

considerations for this purpose.

The output voltage of a random noise generator is often said to

have a "distribution" of specified form, say the normal distribution.

So far as such a statement ever has any operational significance, it

means the following: If the output voltage of the generator is recorded

on a chart recording or oscillogram throughout an interval of suitable

length in time, and the waveform is "sampled" at closely spaced inter-

vals, and the fraction of sampled values < x is counted, the resulting

(step-) function of x will be closely approximated by the normal
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(Gaussian) distribution function. It is easy to see that this

"sampled" distribution function converges (weakly) to the distribution

function of that random variable on I whose graph is identical to

the given chart recording. It follows that any physically measurable

statistical properties of the noise generator will be precisely

properties of real r.v.'s on I, the said r.v.'s having whatever con-

tinuity or other analytical properties are appropriate to the output

voltage of the generator. Exactly the same situation prevails in

similar applications in meteorology, communication, oceanography,

seismology, ionosphere physics, the study of electroencephalograms, and

more generally wherever the statistical study of data given continu-

ously in time is of interest. We believe that this is sufficient in

itself to place Segal's remarks in their proper light.

However, there is more to be said. Consider the "shot" noise present

in the output circuit of a vacuum tube, consisting of the sum of

pulses of current due to the arrival of individual electrons at the

collector anode of the tube. In most tubes, there would be between

1015 and 1020 electrons per second arriving at the anode, and, the

individual pulses of current being "small" and "random", it is

universally argued in physics and engineering texts and papers on

the subject that the sum of these pulses--i.e., the total output

current--must have a Gaussian distribution, in consequence of the

central limit theorem. But let us look more closely at both the

physics and the mathematics of this situation. The operational signi-

ficance of the "Gaussian distribution" is the same as before, i.e.,

it means that sections in time of the output current considered qua

random variables over intervals with Lebesgue measure should have
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approximately Gaussian distributions. The individual current pulses

constituting the summands are also r.v.'s relative to such intervals,

and the total output current is simply the pointwise sum of such

functions. Now, the magnitude of each current pulse as the corres-

ponding electron nears the anode is proportional to the velocity of

the electron, so the time derivative of the current pulse is propor-

tional to the acceleration of the electron. This acceleration is

evidently bounded, since the mass of the electron is bounded below

by the rest mass of the electron and the available forces acting on

the electron are bounded-.-outside the anode by the accelerating

potential of the tube, inside the anode by the gradient of the

potential barrier at the anode surface. It follows that the appro-

priate mathematical functions to represent the current pulses would

be continuous functions with first derivatives that were bounded

uniformly in time and over all electrons. But every such function

is absolutely continuous, and these same functions are the r.v.'s

constituting the summands of the random variable representing the

total output current. It follows from the sub-corollary to the

main theorem that the summand r v.'s cannot be independent. There-

fore, all of the standard forms of the central limit theorem are

inapplicable to this case.

A few central-limit type results have been obtained in special

cases where independence of all summands was not assumed. Most of

these assume independence "sufficiently far out", i.e., they assume

a sequence of r.v.'s such that a given r.v. in the sequence is

independent of all the r.v.'s in the sequence beyond some later

point in the index set. It is clear that this setting is of no
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use in the problem above. Kac (3, 4] and Fine (5, 6] have studied

asymptotic distributions of sums of the "sawtooth" functions mentioned

above and related functions of the form f(2nt), where f in the first

instance is periodic of period one on the line and the gn(t) = f(2nt)

are considered as r,v,'s on I. These are not actually independent

"sufficiently far out", but they "approach" independence for large

n; it is easy to see that they are not measure-continuous uniformly in

the index n. In contrast, the uniform bound on the derivatives of

the r.v. s representing the current pulses implies that a fixed a in

the measure-continuity defintion would suffice for all the r~v.'s

of the family. Presumably one should call a family of r.v,'s satisfy-

ing this condition "equi-measure-continuous". The problem then is

that there appear to be no known theorems giving results on the

asymptotic distribution of sums of equi-measure-continuous r.v. 's,

whereas the "current pulse" r.v.'s are equi-measure-continuous, and

have image sets of positive measure. Moreover, this "shot noise"

example is by no means isolated; it appears that most or all theoreti-

cal applications in physics and engineering where "the central limit

theorem" is invoked for sums of continuously varying quantities suffer

from this same problem. It is not at all impossible that this fact

is closely related to the fact that many experimentalists in recent

years have obtained measured distributions of noise-like quantities,

and found them distinctly non-Gaussian. On the other hand, some

noise-like quantities have been found to have approximately Gaussian

distributions, which offers some hope of positive results on the

unsolved

Central Limit Problem. To what extent, if any, can one characterize
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the conditions under which normalized sums of equi-measure-continuous

r.v.'s with image sets of positive outer measure have asymptotic

distributions of prescribed form, especially Gaussian? In particular,

what can be said for such r.v.'s that are absolutely continuous on I?

Let us note that the entire development of this paper is a direct

consequence of taking seriously the idea that a random variable is a

measurable function on a probability space. Simply by exploiting

this fact, we have obtained interesting purely mathematical relation-

ships between probability-theoretic properties and other mathematical

properties such as absolute continuity. In turn, these relationships

have indicated the existence of unsolved problems, an adequate solu-

tion to which would (a) be of intrinsic mathematical interest, and

(b) have considerable importance for problems in physics and engineer-

ing. In this sense, the wheel has turned full circle: Experimental

observations on dice-throwing and the raising of crops led ultimately

to the formulation of an axiomatic mathematical framework for prob-

ability theory, and the apparently abstract formulation can now be

seen to lead directly to results of much relevance for physics.

Perhaps Segal should rather have criticised unquestioning acceptance

of the idea of independence.

IV. PROOF OF THE THEOREM

The basic idea of the following proof is quite easy to see in

the case of real, linear r.v.3 s on I. Let, say, f(t) = t, g(t) =

t + 2; by sketching the graphs of these functions, it is easy to

see that they are not independent. The reasons why these particular

r.v.'s are not independent extend to very general circumstances, with



the aid of the following machinery. We use the notation in the

statement of the theorem'.

Partition Rn into disjoint half-open cubes Qm such that each

-incube is of length 2-m per side, where k enumerates the cubes of the

partition. We do this for m = 1, 2, 3, ... , where the cubes of

the (m + 1)~- partition are obtained from the m- by splitting each

cube into 2n identical pieces. (E.g., for n = 1i, take Qk
k- 1 k n m+l n, -- i Thus Q l• , ,where k' runs over 2 indices,

n all Q °, for each m, and ( 2 for all k. Put E=

f-1 ( ) M i. For each m, the E are disjoint. Let N(m) = number of

indices k for which P(Ek) > 0. Applying f-1 to Q = ~ ,Q+1, we have

Em ,kCEmk+l from which N(m + 1) Ž N(m). The weak measure-continuity

of f implies that at most N(m) of the f(Emk) have Plf(E)ý > 0. On the

other , so f(E) < 2-, and we have ý if() =

).(ff < Z )f k < N(m)2-m , or N(m) > 2 j f (a

Since ( .f(n) > 0, we have N(m) - * or N(m) = o from some index m
0

onwards. In the former case, since P(Q) = 1 and the E- are disjoint,

we see that among the N(m) E with P(E4) > 0, there must be at least

one with 0 < P(E~) < 1/N(m), Hence, given any I > 0, there exists an-lin
m and k such that 0 < P[f-1 (Q)] < i, The same conclusion obviously

holds if N(m) = co for m . m

Next, let A = g(R). Since j(A) > 0, the measure-continuity of

g implies that there exists 8> 0 such that P(E) < 6 implies

P g(E) < I(A)/3. (If -(A) = o, choose S so that jLg(E)- < 1;

it will be seen that we may henceforth assume 4(A) < u.) Fix 6.

As above, choose m and k so that 0 < P[f-1 (Q) ] < 6 fix this m and k,

m -( Thus - g(and putQ QQ),, Thus 1 - g(E < -(A)/3 Put B= g(E)
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There exists a measurable Bo 2 B such that [(Bo ) < j(B) + -(A)/3

< 2ý(A)/3. Take a measurable A 2 A such that A o  B . Let V

g(g-l(Ao - B )); then V = A - B . For, if xeV, then xeA, and x

g() for some meg-l(Ao - Bo ) = gl(Ao) - g'l(Bo), so mwg-l1Bo),

hence x = g(w)+Bo, and xeA - Bo. If xeA - Bo, then x = g(w) for

some weg-1(Ao), 4g-l(Bo), hence xeV. Thus V = A - B o. Hence Aý_

VuBo, so j(A) < W(V) + 4(Bo) < 4(V) + 2ý(A)/3, or P(V) >

_(A)(1 - 2/3) = -(A)/3. But -(A) > 0, so _(V) > 0. Hence, for

C =-A - B , C is measurable, and P[gl (C)] > 0 since j[g(g (C)) =

9(V) > 0 and g is measure-continuous.

Finally, C = Ao - B implies CAB = $, which implies CAB = ,
O O

which implies -= g-l(C)1g-l(B) = gl(c))(E = g-1(c)fl(af ( ,)
since E g'l(B). Thus P(g'l(c)(f-1 (Q)] = 0. But P[g 1 (c)]<

p[f-l(Q)] > 0, and the proof is complete.
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