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Abstract

This document describes the design and implementation of three digital acoustic
noise suppression systems for the Boeing CH-47D Chinook helicopter's interphone
system. The Chinook's forward transmission produces narrowband noise spikes, or
gear whine, which change frequency as the gearbox's rotation rate varies. Three
algorithms are explored as possible methods to remove this changing narrowband
noise from the pilots' microphone signal in order to increase the signal-to-noise ratio
and intelligibility of the pilots' voices. These algorithms are the Least Mean Squared
Adaptive Noise Cancellation (LMS) algorithm, the Tracking Filter (TF) algorithm,
and the Variable Sampling Rate (VSR) Algorithm.

The LMS and TF algorithms, were implemented in computer simulation and in
real-time hardware, and were tested with four inputs: sinusoidal, speech, cockpit
noise, and cockpit interphone (speech plus noise). A normalized-frequency VSR al-
gorithm was studied as well, but hardware limitations prevented its implementation
as a real-time system. The parameters of the LMS and TF systems were varied,
and the outputs of the resultant systems were compared with one another and the
unfiltered signal. Also, maximum-attenuation systems were implemented to examine
the distortion caused by a large number of filters.

The LMS and TF algorithms were found to reduce the noise content at the noise
spike frequencies by 10-35 dB, without significantly affecting the signal content of
the pilots' voices. The systems were successful at tracking the RPM changes of the
forward transmission in order to maintain suppression of the notch frequencies as
they changed over time. The noise reduction capability of the two algorithms were
comparable for very narrow (less than 5 Hz) band noise, whereas the TF algorithm
provided better attenuation for larger bandwidths. However, both systems added
distortion to the signal, in the form of a ringing sound at the suppressed frequencies.
The ringing sound was stronger for the LMS algorithm than for the TF approach,
although the TF algorithm removed more of the pilots' speech frequencies. Using
equivalent-parameter systems, tuned to provide a subjective best tradeoff between
noise reduction and distortion, the TF algorithm resulted in a slightly better quality



output. These two algorithms do (and the VSR algorithm promises to) improve the
sound quality of the CH-47D interphone system, and may be useful in other, similar
applications.
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Title: Department of Aeronautics and Astronautics

Thesis Supervisor: Richard S. Teal, Staff Engineer
Title: Boeing Defense and Space Group, Helicopters Division
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Chapter 1

Introduction

1.1 Project Overview

This document describes the development, testing, and results of applying adaptive

notch filter techniques to reduce noise in the interphone system of the Boeing CH-47D

Chinook helicopter. Gear whine generated by the forward transmission produces high

amplitude, narrowband noise spikes which are picked up by the pilots' microphones

and mask their speech, reducing the signal to noise ratio (SNR) in the cockpit radio

system and decreasing the intelligibility of pilots' speech. As the rotation rate of the

transmission changes during wind gusts and manuevers, the gear mesh frequencies

change, "sliding" up and down the frequency spectrum.

Three adaptive filtering techniques were used in an attempt to suppress the noise

spikes while leaving most of the desired signal intact, with the hope of increasing

the SNR and the intelligibility of the pilots' speech. First, the Least-Mean-Square

Adaptive Noise Cancellation (LMS ANC) algorithm was applied to implement notch

filters of constant bandwidth whose center frequencies could be controlled by changing

the frequencies of reference inputs. The LMS algorithm determines the correlation

between the input and reference inputs, and subtracts the integral of this value from

the input. The frequencies of the reference inputs were proportional to the rotation

rate of the gearbox, allowing the filters to track the frequencies of the gear mesh noise.

Second, the Tracking Filter (TF) algorithm, which utilizes quadrature modulation



and a lowpass filter in a feedforward manner to obtain a notch filter, was applied in a

similar manner. Last, a Variable Sampling Rate (VSR) algorithm was implemented,

which utilized fixed-coefficient notch filters and a sampling rate proportional to the

transmission rotation rate. Because the frequencies of digital systems are normalized

to the sampling frequency, changing the sample rate changes the frequencies of the

filters. The sample rate was proportional to the gearbox rotation rate, allowing the

filters to track the gear mesh noise as well.

The three algorithms were first modelled on a computer, to explore their poten-

tial, evaluate the effects of nonidealities, and compare the results. Then, the LMS

and TF algorithms were implemented in hardware systems and run in the labora-

tory with recordings from the CH-47D helicopter. The real-time VSR algorithm was

not fully implemented due to unforseen hardware limitations of the development sys-

tem. The VSR algorithm required the least computation time', although obtaining

a high-frequency, stable signal to drive the sampling rate required careful design of

a phase-locked loop frequency multiplier. The LMS algorithm needed a moderate

amount of calculation time, and had better frequency-response characteristics than

the other two. The TF algorithm required the most computation, but had a better

subjective effect on the interphone signal than the LMS approach. All three algo-

rithms proved satisfactory in ideal and nonideal (limited precision) implementations,

and when designed carefully, produced comparable reductions in the background noise

of the interphone system without greatly affecting the pilots' speech2 . While formal

intelligibility tests were not conducted, the LMS and TF algorithms improved the

quality of the interphone signal, providing 10-35 dB of attenuation at the noise spike

frequencies, while introducing low to moderate amounts of distortion to the pilots'

speech. The distortion was noticeable as attenuated speech frequency bands and a

ringing sound present at the attenuated frequencies. The ringing was somewhat more

'While the system was not able to run with the variable sampling rate, it was implemented in a
normalized form with a constant sampling frequency. Thus, the LTI characteristics of the algorithm
were evaluated, but the time-varying effects remain unstudied.

2The normalized-frequency VSR algorithm had effects very similar to the TF algorithm, but its
attenuation while tracking the gear mesh frequencies remains unstudied.



pronounced with the LMS algorithm, making the TF algorithm slightly more pleasing

to the ear.

1.2 Problem Description

The harsh environment of a helicopter cockpit makes it difficult for the pilot and

copilot to concentrate on the jobs they must perform. They must constantly moni-

tor their instruments, surroundings, and crew, while enduring continuous vibration,

movement, and loud noise. The tasks and environment demand a great deal from the

pilots, and any device to lessen the strain they must endure is a welcome addition.

Noise is perhaps one of the least controllable and most annoying of these problems,

causing increased fatigue, shifts in hearing threshold levels, and reduced intelligibility

of communication[15, 25]. Repeated exposure without personal hearing protection

(earmuffs, earplugs, etc.) to the noise levels in many of today's helicopters would

cause permanent hearing damage. These high levels of noise exist because of system

design tradeoffs. A helicopter that was almost noise-free internally would result in

extreme performance penalties, so sacrifices (such as the requirement to wear per-

sonal hearing protection) are made in order to maximize the aircraft's potential. As

a result, high noise levels are present in many of today's helicopters, and the CH-47D

is no exception.

1.2.1 Noise in Helicopter Cockpits and a Potential Solution

Excessive noise in the cockpits of helicopters contributes to, among other things,

reduced intelligibility of pilot and copilot speech[15, 25, 44]. This occurs because

microphones used by the pilots and crew pick up noise inside the helicopter, and

transmit this noise over the helicopter's communication system. Many approaches

have been tried in the past to reduce this unwanted noise, but as the lifting power

of new helicopters increases, previous solutions become less and less effective, and

new techniques are sought[40, 44]. A new approach has become feasible with the

advent of high-speed Digital Signal Processing (DSP) microprocessors, utilizing the



fact that the noise spectrum is dominated by narrowband noise spikes generated by

the forward transmission[7, 25, 41, 44]. These noise spikes degrade the signal-to-noise

ratio, making the pilots' speech difficult to understand. Notch filters may be used to

decrease the contribution of this narrowband noise to the transmitted signal, without

greatly affecting the signal power of broadband speech. This decreases the noise power

while leaving the signal power relatively unchanged, resulting in a higher signal-to-

noise ratio and better intelligibility. As the rotating speed of the transmission varies

over time due to wind gusts and maneuvering, the notch filters must change their

center frequencies as well in order to continue suppressing the gear mesh noise. In

other words, the filters must track the rotation speed of the transmission. Filters

with changing characteristics are difficult to implement using analog techniques, but

are quite feasible with the use of DSP algorithms.

1.2.2 Types of Noise and What is Affected

The noise present in the cockpit gets to the pilots' ears by two routes: direct and

indirect[25]. Direct noise is the sound that travels from the noise source to the

eardrum directly, most often through the pilots' helmet and earcups. Indirect noise

is the sound that gets picked up by the pilots' microphones, travels electronically

through the communication system, and is then converted to an audible signal by

the speaker in the pilots' earcup. Direct noise is experienced only by the pilots and

crew in the helicopter, whereas indirect noise is heard by anyone listening to the

communication system: the pilot and copilot as well as air traffic controllers, other

pilots, ground troops, etc. Both noise sources contribute to reduced intelligibility

for the pilots, but only the indirect noise makes the pilots harder to understand by

others. Furthermore; this indirect noise, because it is combined in the microphone

with what the pilots say, creates a major obstacle to the use of voice recognition (VR)

systems. VR systems are becoming feasible as a method to reduce pilot workload in

airplanes, but extending their use to helicopters has been hindered by the extremely

noisy cockpit environment. If this noise could be suppressed, perhaps VR systems

could become an integral part of helicopter avionic systems, and some of the demands



imposed on helicopter pilots could be reduced.

1.2.3 CH-47D Cockpit Noise Characteristics

In examining how to reduce noise in the cockpit, the sources of the noise must be

identified. For all helicopters, there are three primary noise sources: the sound of

the rotor blades moving through the air, the turning of the gears in the transmission,

and the turning of the engine components[44]. The rotors produce loud but very

low frequency vibrations which are often transferred to the entire fuselage of the

helicopter. Noise from gears in the transmission tends to be narrowband, but has

substantial noise power at several frequencies. Engine noise has high power, due

largely to its wide bandwidth, and is primarily located in high frequency ranges.

The helicopter used in this project was the Boeing CH-47D Chinook helicopter,

which produces a great deal of noise due to its large size and lifting capability. This

aircraft generates noise levels as high as 115 dB and 100 dBAS inside the cockpit, even

with full acoustic treatment[7, 15, 41, 44]. This is mostly due to the large size and

lifting capacity of the helicopter; the noise of rotors, transmissions, and engines is a

function of the power they must provide or transfer. In fact, the noisiest point in the

helicopter is immediately below the forward and aft transmissions [7], and their high

noise levels are largely due to the high power transmitted through the gearbox[24].

The CH-47 is therefore a good choice for testing noise reduction equipment for several

reasons. First, the noise problem is so evident that a minor improvement will be

more noticeable than if the noise were not so severe. Second, noise reduction in

such an environment will provide a greater benefit than a proportional reduction

in a helicopter where noise is not so severe. Third, if the noise suppression system

is capable of reducing such high-amplitude noise, it is also likely to work on lesser

amplitude noises; this is not necessarily true the other way around. Therefore, if a

3Decibels (dB) is a measure of absolute sound pressure level, defined as 20 log , where spl is
the sound pressure level, and ref is a reference sound pressure level (usually 20 pPa). dBA is the
A-weighted sound pressure level, which takes into account the human ear's varying sensitivity to
different frequencies. While dBA is most important for measuring intelligibility, the actual level in
dB is more important when determining the potential hearing damage that may result.



noise reduction system has the potential for use with various helicopters 4 , it makes

sense to develop and test the system on a CH-47.

The D-model of the CH-47 has been selected for several reasons. First, it is the

most common of the five basic Chinook models, and is manufactured in both military

and civilian configurations. Second, they are still being manufactured (unlike the A,

B, and C models) and are expected to remain in service for some time. Third, the E

model is substantially different, utilizing more modern components, so that a noise

reduction system that works on the E model may not work for any of the earlier

models.

A diagram of the CH-47D can be seen in Figure 1-1, and shows how the helicopter's

specific configuration makes its noise problems unique. First of all, the gas turbine

engines that provide its power are located at the aft of the rather large helicopter, so

their contribution to the cockpit noise is relatively small. Secondly, the CH-47D is a

tandem rotor helicopter, and therefore has a forward rotor and transmission as well

as an aft rotor and transmission. The cockpit and the pilots are located very close

to the forward transmission and rotors, and as a result, most of the cockpit noise is

generated by these sources. Furthermore, the fact that these sources are so close to

the cockpit does not allow room for much soundproofing material to be applied. In

fact, the forward transmission sits immediately behind and above the two pilots; a

pilot with a long arm could touch the bottom of the gearbox casing while still sitting

in his or her seat. As a result, the noise from the forward transmission dominates the

frequency spectrum of the cockpit.

1.3 Existing Technologies for Cockpit Noise Re-

duction

Noise in helicopter cockpits is not a new problem. Much time and effort has been

devoted to reducing the amount of noise they produce in the first place, and to

'Other helicopters have very similar noise problems; Laskin[24] found the UH-1D's noise is dom-
inated by its gearbox as well.
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suppressing the noise that they do generate. As the focus of this project is to suppress

noise that is already present, the sound-reducing design issues of rotors, gearboxes,

and engines will not be explored. However, many other approaches have been used to

attack the direct and indirect noise that reaches the pilots, and a brief introduction

to these techniques is presented in the following sections. Also included is a synopsis

of previous literature on adaptive noise cancellation, the noise reduction technique

used in this project.

1.3.1 Suppressing Direct Noise

Perhaps the most obvious solution to reducing the effect of noisy machinery is to

isolate the machinery from the operating environment, either by distance or sound

absorbing and insulating materials. Because of the design of the CH-47, it is not

possible to move the pilots further away from the transmission. However, sound insu-

lation and blanketing can lessen the noise substantially; soundproofing has obtained
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reductions of up to 35 dB at speech frequencies in the CH-47 cabin, but cockpit

reductions have been limited to no more than 20 dB5[40]. But, using this sound

absorbing material has two drawbacks. First, a lot of insulation is required to obtain

substantial dissipation of loud sounds, such as those generated by the tranmission,

and second, the insulation is bulky and heavy. There isn't much room in the CH-47

cockpit to place a lot of insulation, and the weight of the material imposes a sacri-

fice on the performance characteristics of the helicopter. Each additional pound of

soundproofing means that one less pound of fuel or other cargo can be carried. This

can be a difficult sacrifice to make, especially when lives are at stake; helicopter pilots

in Vietnam were known to strip out cabin insulation material in order to obtain as

much performance as possible from the helicopter[44]. As a result, better methods

have long been sought to provide the same benefits as physical soundproofing, but

without its weight and size penalties.

To this end, several alternate and complementary approaches have been found.

The simplest of these is isolating the pilots' ears from the noise source, rather than

isolating the source from the whole cockpit. This is most often done through the

use of insulated helmets and/or noise reducing earcups. Because these treat only the

small area around the ear instead of the entire cockpit, the same noise dissipations

of other insulating techniques can be achieved with much smaller weight penalties.

The attenuation achieved by the standard helmet/earcup combination used on the

CH-47 ranges from under 15 dB below 250 Hz to a maximum of about 50 dB near

3500 Hz[15]6. The drawbacks of this approach stem from the fact that the reduc-

tion obtainable is largely a function of the earcup's seal to the pilot's head. The

amount of attenuation is directly related to the integrity and force of the seal, so

attenuating loud sounds requires high-pressure "bonecrusher" headsets that are often

painful and fatiguing, especially when worn for extended periods. Furthermore, while

sEven with 95% surface coverage using 1.5 bT blanketing material, cockpit reductions did not
exceed 20 dB at speech frequencies. This is largely due to the fact that windows are excellent sound
radiators, and the surface of the cockpit of the CH-47 (as with any helicopter) is mostly windows.

"This is typical, as most flight helmets achieve more than 30 dB of attenuation at frequencies
over 1 kHz[43] but are often limited to a maximum of 13 dB in the 125 and 250 Hs octave bands[14].



these earcups do a good job of attenuating high-frequency noise (above approx. 1000

Hz)[15], they become less effective as the frequency decreases. So, while such earcups

are excellent for relatively low-amplitude, high-frequency noise, the extreme volume

and lower frequencies of helicopter cockpit noise (especially that of the CH-47) makes

these earcups only a partial solution.

A more recent development has been Active Noise Reduction (ANR). An ANR

system "listens" to the ambient noise present, and drives speakers to send out an

identical noise signal, but 180 degrees out of phase with the original signal. This

technique attempts to achieve complete elimination of the unwanted noise through

destructive interference. These systems can produce reductions (in the pilot's earcup)

of 10-20 dB for low-frequency (below 500 Hz) aircraft engine noise[6, 42, 43], these

systems have several drawbacks. First, a microphone must be present very close

to the point where the noise is to be cancelled7 , because displacement between the

microphone and the zero-noise location affects the phase of the signals. Obviously,

phase errors decrease the effectiveness of the system, and enough error (greater than

90 degrees) can actually lead to constructive interference, which only worsens the

noise. While phase errors do not pose a problem for the use of ANR in an earcup, it

does prevent such systems from working in large spaces, such as the cockpit. Second,

such systems are limited by their finite response times and the need to listen to the

noise present while attempting to cancel it. These two problems can cause positive

feedback, where an ANR system actually generates its own noise, causing negative

attenuation. For typical systems, this positive feedback can occur at frequencies as

low as 1 kHz[42]. Finally, ANR systems do not perform well with extremely high

amplitude noise, as the very high sound levels (on the order of 125 dB) can cause

the control system to go unstable[43]. Thus, while ANR is attractive for in-the-

earcup, low-frequency noise reduction, it does not provide a very good solution to

high-frequency, cockpit-wide noise.

7Typically, reduction can only be achieved when there is less than half a wavelength distance
between the speaker and the microphone[12].



1.3.2 Suppressing Indirect Noise

A limitation of the latter two techniques is that they only attack the direct noise

that reaches the pilot's ears. Every time the pilot or copilot tries to talk to the other

or transmit a message, his or her microphone picks up all the noise in the cockpit,

including any noise that is reduced by his or her earcups. As a result, the pilots

is speech mixed with a blast of noise - the indirect noise. While this noise (at the

proper volume settings) is not as dangerous to their hearing as the direct noise, it

makes their speech difficult to understand, hindering communications between pilot

and copilot as well as between the helicopter and external receivers. Furthermore, as

described earlier, it is the indirect noise that has prevented the use of VR systems in

helicopters. At least four methods (in addition to insulating the entire cockpit from

the noise source) have been used in attempts to address the problem of indirect noise.

One approach involves the use of a pressure-gradient microphone, instead of an

absolute pressure microphone. By exposing the diaphragm of the microphone on both

of its sides, it should only move when a pressure gradient existss . Assuming that the

noise field is nearly uniform on both sides of the microphone, the noise impinges

equally on both sides of the diaphragm, and it registers nothing. However, when

the pilot speaks, his or her voice is present only (or at least mostly) on one side of

the microphone, and the resulting pressure gradient is picked up and amplified by

the communications system. While such a device has great promise in theory, the

improvements actually realized by such microphones have generally been small[25].

Along the same lines, alternate means of picking up the pilots' voices has led to

some improvements in reducing the indirect noise. Throat-mounted accelerometers

can be used to directly measure vocal cord vibrations to complement and enhance

the signal of a standard microphone[35, 46, 47]. Summing the outputs of the micro-

phone and the accelerometers results in a signal with higher intelligibility, because

SMost microphones are absolute pressure microphones, with the diaphragm exposed to the am-
bient air on only one side. These microphones register pressures that are different from the pressure
on the inside of the microphone, which is held constant. The relative pressure (what is measured)
thus comes from the difference between the two pressures, rather than the pressure gradient between
the external and the internal pressures.



the accelerometer is relatively insensitive to acoustic noise. Thus, the microphone

provides most of the high-frequency content of the signal, whereas the accelerometer

registers more of the low frequencies of the pilot's voice. Dividing the information

acquisition in this manner allows better signal-to-noise ratios over the range of speech

frequencies (especially if there is a large amount of low frequency noise), resulting in

better intelligibilty.

Another approach involves filtering the microphone signal to lessen its signal power

at frequencies where the noise is the loudest. While such filtering will affect the speech

quality as well (the filter must be applied to the speaker's voice as well as the ambient

noise, as the microphone picks up both), the technique has promise for narrowband or

well-defined noise spectra. If the noise is narrowband and its frequency is relatively

constant, the filter can be designed such that the power of the broadband speech

signal is only moderately affected, while the power of the narrowband noise can be

greatly reduced. Such filters were used on early production aircraft of the CH-47A

helicopter, but their wide bandwidth proved to degrade communication so severely

that they were discontinued in later models[25].

More recently, an evaluation of the communication system used in the CH-47 was

performed. The results of this analysis concluded that the communication system

itself (particularly the resonances of the microphone and the earcup) contributed

greatly to the intelligibility problems, because its transfer function is nonlinear, and

amplifies many of the frequencies which contain the most noise[25] 9. The transfer

function of the standard CH-47 communication system (including microphone, junc-

tion box, and speaker output inside the earcup) is shown in Figure 1-2. If the current

communication system could be replaced with a linear-response microphone and a

redesigned earcup, then perhaps the unwanted noise could be decreased and intelligi-

bility could be increased. An improved design was developed, resulting in the transfer

function shown in Figure 1-3[32]. This system obviously has better performance than

9More specifically, the intercom system's transfer function has a large peak in the 2500 to 4500 Hz
frequency range. Many of the gear mesh frequencies of the transmission fall into this frequency range,
and are thus amplified more than the pilot's speech, which consists primarily (for male speakers) of
frequencies below this range.
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Figure 1-2: Transfer Function of Standard CH-47 Interphone System

the standard configuration and thus provides a more intelligible signal, but very few

helicopters were upgraded to the improved communication system. This was largely a

result of the fact that the current system is adequate, and the upgrade would require

modification of the cockpit hardware, costing money10 .

1.3.3 Summary of Noise Suppression Capability

Even with the many attempts to reduce the noise in the cockpit, problems remain.

The extreme amplitude of the noise, scattered over a large range of frequencies, cre-

ates a spectrum that is particularly difficult to attack. Furthermore, most of the

previous work intends to attack broadband noise, making small gains at many fre-

quencies. While this is adequate for low volume noise, the amplitude of the CH-47D's

noise remains high even after subtantial sound treatments, keeping intelligibility low

enough that attempts to use voice recognition systems in helicopters have met with

repeated failure[45]. Solutions to these problems seem to lie along two separate paths:

1oThe upgrade uses a powered microphone, while the CH-47's standard microphone is an un-
powered condenser microphone. Thus, upgrading to the new system would require modification or
replacement of the current interphone junction box, in order to provide power to the mike.

I
1 I
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Figure 1-3: Transfer Function of Improved CH-47 Interphone System

combining previous work to gain the best aspects of different suppression techniques,

and finding new approaches tailored to the noise spectra that obtain significant noise

reductions in the frequency ranges that cause the largest problems. Combining a

linear-response interphone system with a microphone and accelerometer input system

would certainly improve the quality of speech over the radio system, and matching

ANR techniques with good earcups can provide substantial noise reductions over the

entire range of speech. However, this project concentrates on utilizing the charac-

teristics of the noise spectra to tailor a noise reduction system to the frequencies of

the CH-47's gearbox that are most intrusive. Taking this approach should yield a

substantial difference in the signal's unwanted noise power without greatly affecting

the desired signal, the pilots' speech. The result is a better signal to noise ratio,

critical for thesuccess of voice recognition systems, and better intelligibility for the

humans who have to listen to the gear whine picked up by the microphones.



1.4 Proposed Solutions

In order to develop a system that is customized to the sound spectrum of the CH-47D,

knowledge of the spectrum is crucial. If some characteristic of the noise can be well-

defined, then this knowledge can be used to reduce the noise that causes the greatest

problems. The Chinook's noise spectrum has this characteristic, in that the noise

created by the forward transmission is periodic in nature, producing narrowband noise

spikes. However, while this noise is periodic, its frequency does not remain constant,

and a system is needed that can predict or react to changes in the characteristics of

the noise. This can be done with an adaptive filter or similarly adaptive system, and

the technique of cancelling varying periodic interference is known as Adaptive Notch

Filtering, or Adaptive Noise Cancellation (ANC).

1.4.1 Adaptive Noise Cancellation

Many papers have been published exploring techniques of ANC filtering, especially

for the retrieval or cancellation of periodic, sinusoidal signals in a noisy environment.

Widrow[48] described the LMS ANC algorithm and several of its applications to notch

filtering. Also describing the use of this algorithm for notch filtering is Glover[17],

who demonstrated that if the reference sinusoid signals have amplitudes of less than

one, the resultant notch is of narrower bandwidth, and that a sum-of-sinusoids ap-

proach can be used to reduce the required number of reference signals, at the sacrifice

of substantial time-variant noise. Clark[10] expanded the basic LMS to a block LMS

method, in order to take advantage of parallel processing techniques for MIMO LMS

algorithms. The LMS algorithm itself can be greatly simplified if the sampling rate

is an integer multiple of the noise frequencies[11], producing better notch filters with

large reductions in computation time. Goodwin[16] explored the Kalman filter as

an adaptive notch filter, and related its characteristics to the LMS methods. In

situations where the input is not well-characterized and LMS performs poorly, the

Recursive LMS (RLMS) method can be used[13], at the cost of calculation speed. If

low steady state error must be combined with rapid convergence rate, then the inte-



gration constant can be varied over time rather than held constant, called the Variable

Step (VS) LMS algorithm[19]. Another option is to utilize the Sequential Regression

(SER) method, especially if extremely narrow notches are required[29]. Again, this

comes at the cost of higher complexity, especially for MIMO problems. Higher Har-

monic Control has been explored by several[18, 36, 37] for elimination of narrowband

vibrations, especially as applied to helicopter rotor harmonics. Sievers[38] brought

classical control, HHC, LMS, and modern control methods together for comparison

in one paper.

1.4.2 Algorithms Examined

There are several DSP algorithms which can be used to implement notch filters with

varying center frequencies, three of which were explored in this project. Perhaps the

most common approach is to utilize some form of Widrow's Adaptive Noise Cancella-

tion (ANC)[3, 12, 13, 17, 31, 33, 48] techniques, most notably the Least-Mean-Squared

(LMS) algorithm, which implements a notch filter whose center frequency can be con-

trolled by changing the frequencies of the sinusoidal reference inputs. In short, the

algorithm uses an integrator to progressively estimate the frequency components of

the input signal that are near the reference frequency, and uses a feedback loop to

subtract this error from the input signal. If the reference input's frequency is propor-

tional to the transmission rotation rate, then the algorithm can be used to cancel the

gear mesh frequencies. A second approach, related to this technique, is the Tracking

Filter (TF) algorithm[18, 231". This procedure performs the same frequency esti-

mation, but uses a lowpass filter and a feed-forward loop to cancel the noise. The

third approach is to utilize the frequency normalization that occurs when sampling

an analog signal to .control the center frequencies of constant-coefficient filters. In this

case, traditional digital notch filters are designed and implemented based on a nom-

inal sampling rate, and as the actual sampling rate changes, their center frequencies

will change proportionally with that rate. Thus, if the sampling frequency is pro-

"1 The TF algorithm is a particular implementation of an algorithm more generally known as
Higher Harmonic Control, or HHC.



portional to the transmission rotation rate, the notches will reduce the signal power

in the desired frequency bands. This approach is called the Variable Sampling Rate

(VSR) algorithm. These three algorithms were explored' 2 to evaluate their relative

effectiveness in improving speech intelligibility in the helicopter cockpit environment.

1.4.3 Testing Procedures and Results

The algorithms were implemented and tested in several ways. First, the LMS and

TF algorithms were numerically simulated on a computer. This allowed analysis of

their performance under ideal, controllable circumstances, and provided the ability

to explore the effects of non-idealities, such as quantization errors. The simulations

were run with impulse inputs as well as recorded flight data, providing frequency-

domain graphical analyses. These two algorithms were also implemented in 12-bit

forms on a Texas Instrument TMS32020 microprocessor. Unfortunately, its speed

limitations prevented utilization of this chip for more than one or two notch filters.

These two algorithms were also implemented in 14-bit, constant sampling versions

on the Motorola DSP56001, as was the normalized version of the VSR algorithm.

The systems were tested with frequency-response analysis equipment, to compare

to the computer simulation, and several inputs were used to examine the system's

characteristics. Speech was used to explore the system's impact on the intelligibility

of speech with no noise, and cockpit noise recordings were used to determine how

effective the systems were in reducing the transmission's gear whine. Laboratory

tests also explored recordings of the cockpit interphone system as a substitute to

in-flight testing, to determine their effects on the interphone signal.

The LMS and TF algorithms successfully attenuated the selected gear mesh fre-

quencies, and were able to adapt the filter locations as the transmission rotation rate

varied. Both algorithms provided attenuations of 10-35 dB at the selected frequen-

cies, thereby decreasing the noise in the interphone signal. However, they also added

12 The LMS and TF algorithms were analyzed fully in a simulation and in real-time hardware.
The VSR algorithm's normalized frequency response was simulated and run in real-time as well, but
the variable nature of the algorithm was not implemented.



distortion to the pilots' speech, evident as a noticeable reduction in the speech's fre-

quency content, and a ringing sound at the attenuated frequencies. The systems'

characteristics were tuned by varying the parameters of the system to provide a good

subjective tradeoff between noise reduction and speech degradation. The resultant

systems, with equivalent design parameters, were compared using speech, cockpit

noise, and the cockpit interphone. The LMS algorithm caused a slightly more no-

ticeable ringing, whereas the TF algorithm produced a more noticeable absence of

speech frequencies. Subjectively, the ringing was more degrading than the missing

frequencies, and the TF algorithm provided slightly better sound quality. Then, to

explore the maximum attenuation, notch filters were added to the systems until the

computation limits of the processor were reached. The resulting systems provided

significant reductions in almost all of the gear mesh noise, but introduced substantial

distortion into the speech signal, such that the overall sound quality was reduced.

The VSR algorithm was not implemented in real time due to an unforseen hardware

limitation, but was run in a frequency-normalized format. The results of this imple-

mentation indicate that its characteristics should be very similar to those of the TF

algorithm, with substantially reduced computation requirements.

1.5 Reader's Guide to Document

Chapter Two is devoted to characterizing the noise of the helicopter used for this

project, the Boeing CH-47D Chinook. It describes the sources of noise, the potential

effects of this noise on intelligibility of speech, the way the noise changes over time,

and the implications of this variance on the noise reduction algorithms. Chapter

Three details the three algorithms used to combat this noise. It explains how the

algorithms work, describes practical considerations of the algorithms, and defines the

requirements of the reference signal in designing the systems' characteristics. Chapter

Four is devoted to the implementation of the algorithms, including data recording,

how the algorithms were modelled in computer simulations, and testing procedures.

Chapter Five explains the results of the testing, describing how the simulations and



real-time implementations were used to determine the best algorithm design, the

results of testing those systems, and recommendations for future work.



Chapter 2

CH-47D Noise Characterization

2.1 General Analysis

The cockpit of the CH-47 is a very noisy environment, due to its proximity to noise

sources and its poor sound damping qualities. Noise in the cockpit is reflected off

of surfaces such as the windows and instrument panels, and is partially absorbed

by the seats, acoustic blankets, and pilots themselves. Some of the obvious sources

of this noise include noise from the rotors turning overhead, noise from the forward

transmission which sits immediately aft and above the pilots, and to a lesser extent,

noise from the auxiliary power units and turbine engines at the rear of the helicopter.

Modelling the acoustics of such a complex environment is virtually impossible, and

analyzing the problem leads instead to collecting experimental measurements of the

noise. Boeing has collected a rather exhaustive library of recordings of cockpit noise,

and has attempted to determine the sources of this noise as well as the contribution

of each source to the total noise. These analyses are presented and built upon in the

following section.

2.1.1 Cockpit Noise Spectra

To identify what noise creates the largest problems for pilots and voice recognition

systems, it is perhaps best to first identify the frequency range used for speaking.



For this purpose, the frequency range from 200 to 6100 Hz has been broken down

into 20 frequency bands, each of which contributes equally to the intelligibility of

adult male speakers[1]'. These frequency bands are shown in Table 2.1. If each of

these frequency bands supplies an equivalent amount to the understanding of speech,

removing any one of these bands should have the same effect on intelligibility as

removing any other band. This breakdown provides a good start at examining how a

noise spike at a particular frequency affects intelligibility. A noise spike will be defined

as a narrowband (less than approximately five Hz) noise signal of large amplitude;

in the case of the CH-47 interphone system, the noise spike has an magnitude larger

than that of the pilot's voice at the same frequency. By this definition, a noise spike

will dominate the spectrum of the signal at the frequencies where it is present. So,

if a noise spike is present in a larger frequency band (such as that from 5050 to

6100 Hz), it will obscure a smaller percentage of the total frequency band than an

equivalent spike in a smaller band (such as 330 to 430 Hz). Thus, the noise spike in

the larger band will have a smaller effect on the intelligibility of the voice signal that

it is superimposed on. So, reducing a noise spike in a smaller frequency band is more

important than suppressing one in a larger frequency band.

Furthermore, the table denotes a good range of the frequencies that compose male

speech. Defining an upper limit on the necessary frequency range is important, be-

cause a digital system is going to be used. The sampling frequency must be more

than twice the maximum frequency desired because of Nyquist's sampling theorem.

Of course, the higher the sampling frequency, the less time the microprocessor will

have to perform calculations. Furthermore, the input signal will have nonzero magni-

tude at frequencies above the maximum desired frequency, so an analog lowpass filter

must be used to attenuate these frequencies before sampling the signal. This analog

filter will need a finite frequency bandwidth above the highest desired frequency in

order to achieve adequate rolloff at the Nyquist frequency. Based on the idea that the

lower the sampling frequency, the more flexibility will be available in implementing

1A similar breakdown for the adult female would undoubtedly be quite different. However, as
most Chinook pilots are male, the unusual case of a female pilot was not addressed in this project.



the algorithm on the DSP chip, the sampling frequency should be chosen as small as

possible, while allowing for the analog filter and the highest necessary frequency for

communication. For instance, if 5000 Hz is chosen as the highest frequency and 3000

Hz is allowed for filter rolloff, we must sample faster than 2(5000 + 3000) = 16 kHz.

This will allow ' = 62.5 ms for calculation, and if the DSP chip has a clock speed

of 5 MHz, then it has an instruction cycle of • = 200 ns. Therefore, with this

example, the algorithm on the DSP chip must be performed in less than 62500= 312

cycles, including time for the analog-to-digital (AD) and digital-to-analog (DA) con-

versions. If this is not possible, then the sampling frequency must be decreased so

that more time is available to perform the necessary computations. Obviously, how-

ever, the highest desired frequency must cover most of the range of speech. The range

of speech as defined by the military is identical to that of the frequency response of

telephones, spanning from 300 to 3000 Hz[26] 2 . Because the noise reduction system

will be designed to maximize intelligibility, it will be designed with a substantially

larger range (to at least 6 kHz, the point where the CH-47D interphone begins sub-

stantial rolloff) so that more of the important speech frequencies are present, and to

enable the system to be transferred to other environments where higher frequencies

may be more important (such as for female speakers).

Once the maximum frequency to work with has been identified, the next step is to

examine the frequency spectrum of the helicopter cockpit. A typical noise spectrum

of the CH-47D cockpit is shown in Figure 2-1. The sampling rate for this graph was 12

kHz, and the spectrum represents a data sample of 2.75 seconds. It is obvious from the

diagram that there are several noise peaks that are substantially louder than the rest

of the noise. The loudest of these peaks occur at around 1500 and 3400 Hz, although

there are substantial peaks near 800, 1200, and 3000 Hz as well. These frequencies all

fall within the range of speech, and appear to be narrowband noise (note especially the

three distinct peaks near 1450, 1500, and 1600 Hz). Such characteristics make these

peaks good candidates for suppression, and closer inspection is warranted. Shown in

2 Note, however, that telephones operate in a largely noise free environment, and intelligibility
over phone lines becomes seriously degraded if the background noise exceeds 75 dBA.



All Frequencies are in Hz
Band Frequency Center Band-
No. Limits Frequency Width
1 200-300 270 130
2 330-430 380 100
3 430-560 490 130
4 560-700 630 140
5 700-840 770 140
6 840-1000 920 160
7 1000-1150 1070 150
8 1150-1310 1230 160
9 1310-1480 1400 170
10 1480-1660 1570 180
11 1660-1830 1740 170
12 1830-2020 1920 190
13 2020-2240 2130 220
14 2240-2500 2370 260
15 2500-2820 2660 320
16 2820-3200 3000 380
17 3200-3650 3400 450
18 3650-4250 3950 600
19 4250-5050 4650 800
20 5050-6100 5600 1050

Table 2.1: Frequency Bands of Equal Contribution to Speech Intelligibility
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Figure 2-1: Frequency Spectrum of CH-47D Cockpit
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Figure 2-2: Close-up of Frequency Spectrum Near 1450 Hz

Figure 2-2 is a closeup of the highest peak in the frequency spectra. It is apparent

in this view that the peak actually consists of several very narrowband noise spikes.

These spikes appear to be centered around the peak at 1452 Hz, at roughly ±13.5 Hz,

±27 Hz, ±40.5 Hz, and about ±54 Hz. Because of the even spacing of these spikes,

it is logical to conclude that the peak is actually comprised of a central noise spike

and several sidebanded frequencies. All of the spikes have very small bandwidth, on

the order of less than 2 Hz. It would therefore seem that removing the signal content

at these frequencies could yield a substantial improvement in speech intelligibility.

--



2.1.2 Primary Noise Sources

Now that the target frequencies for suppression have been identified, the next step is to

identify the source of the noise spikes in order to determine how they behave over time.

As explained earlier, the two prevalent (very high amplitude) noise sources for the

CH-47 cockpit are rotor noise and gear whine noise from the forward transmission. Of

these sources, it is easy to determine which could produce high-frequency narrowband

noise. The rotors create a low-frequency "whop-whop-whop" sound as they move past

the cockpit. The forward transmission, however, generates high-frequency noise due

to the interaction of its gears. The action of gear teeth deformations as they come

into and out of contact with one another creates high amplitude noise whose signal

power is primarily located at a single frequency, called the gear mesh frequency, and

its harmonics[5, 24, 25, 34, 39, 41]. If the geometry and speed of rotation of the

gears are constant, then the noise that results is a narrowband noise spike at the gear

mesh frequency. If the rotation speed and/or number of gear teeth is high, then the

resultant gear mesh frequency can be high as well. Based on these observations, it

is quite clear that the primary noise source for this problem is the gear whine of the

forward transmission.

2.2 Forward Transmission Gear Whine Analysis

In order to fully understand the noise in the cockpit, one must understand precisely

how the noise is generated. To this end, the forward transmission of the CH-47D

was analyzed in order to determine what gears could create the primary spikes and

secondary sidebands visible in the noise spectra.

2.2.1 Gearbox Description

The forward transmission of the CH-47 is designed to offer a high reduction of gear

speed, under high torque, with a minimal amount of vibration. To accomplish this, a

dual planetary gear system is used. Figure 2-3 shows a 3-D view of the lower (first)



planetary gear system of the forward transmission. It shows that the ring gear, which

is stationary, surrounds the four planetary gears, which mesh with a gear at the center

of the system, the sun gear. The sun gear's center is stationary, but free to rotate,

while the planets are free to rotate and move, but are held together by a brace called

the carrier. Driving the sun gear causes, in conjunction with the fixed ring gear,

a torque to be applied to the planet gears. This torque causes the planet gears to

rotate; as they rotate, the ring gear forces them to translate as well, and their centers

orbit in a circle around the sun gear. As the carrier is connected to the centers of

the planet gears, it rotates at the orbital speed of the planets. A side view of the

complete, two-stage forward transmission can be seen in Figure 2-4. The incoming

drive shaft3 turns a spiral bevel gear to change the rotation axis from near-horizontal

to near-vertical, with a reduction in RPM. The near-vertical shaft then turns the sun

gear for the lower (first) stage of speed reduction. The torque applied by the central

sun gear and the fixed ring gear of the lower stage causes the lower planetary gears

(four) to orbit the sun gear. The lower carrier turns at the orbital speed of the lower

planet gears, and drives the upper (second) stage sun gear. Just as in the lower stage,

this sun gear and the fixed ring gear cause the upper planetary gears (six) to orbit

the upper sun gear. The upper planets' carrier then drives the rotor shaft which is

connected to the forward rotors. Both the forward and aft rotors have a nominal

rotation rate of 225 RPM, or 3.75 Hz4 .

Once the geometry of the gearbox is known, if the rotational speed of one of

its components can be determined, it is relatively easy to calculate the rotational

speeds of all the gears, and thus their gear mesh frequencies. Before examining the

sun-planet gear system, however, consider two interlocking gears with fixed axes of

rotation. Because the teeth of these gears must interlock during the entire rotation of

3For a diagram showing the drive shaft and tranmission locations in the CH-47, see Figure 1-1.
The main drive shaft emanates from the combining transmission, which is a differential gearbox that
combines the engine drive shafts. This drive shaft runs both the forward and aft transmissions, and
thus the rotors, at the same speed.

4D and E models only. The A, B, and C models have the same gearboxes but a nominal rotation
rate of 243 RPM (4.05 HE), while the 47-352 (the RAF's version of the Chinook) has a nominal
rotation speed of 250 RPM (4.17 Hs)[34].
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Figure 2-5: Two Interlocking Gears

the gear, the gear teeth must be the same size on both gears. Therefore, the number

of teeth on any gear is proportional to its circumference, and thus its radius. So, for

the simple 2-gear diagram shown in Figure 2-5,

W1- = -
(2.1)

W2 1r

where w is the rotational speed (angular velocity) of the gear, and r is the radius of the

gear. However, a planet-sun combination is considerably more complex. The formulas

can be derived from Figure 2-6, which is an overhead view of a single planetary gear

stage with four planets.

Here, the subscript . denotes the sun gear for the stage, and , represents any of

the planetary gears, while , denotes the carrier. A subscript , denotes the surround-

ing ring gear, which remains stationary. With r and w representing the radius and

gear-fixed rotational speed (angular velocity), respectively, for the appropriate gear,

the following equations describe the operation of the sun-planet gear system. First,

because the ring gear is stationary, the sun will cause the planet gear's edge to move.

For an instant in time, the movement can be considered linear, and the center of the

gear moves exactly half as far as the inner point (touching the sun gear) of the gear

because the outer point's location is fixed by the ring gear. Equation (2.1) can be
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Figure 2-6: Overhead View of a Typical Planetary Gear System



altered to take this into account, resulting in

- r. (2.2)
WS 2r,

Next, consider the planet gear's rotation relative to its neighboring gears s. In one

full orbit about the sun gear, the number of teeth that come into contact with the

ring gear must be equal to the number of teeth on the ring gear. Thus, the planet

gear must rotate at a speed that is proportional to the carrier rotation rate, as well

as the radius (i.e., number of teeth) of the ring gear. Furthermore, its rotation rate

for a given carrier speed must be inversely proportional to its own radius, so that

=- = (2.3)
Wc rp

Next, the ratio of a planetary gear to its adjacent sun gear can be found by multiplying

(2.2) with (2.3) to produce
-p = ' ?'(2.4)

w, 2rcrp"

It is clear from Figure 2-6 that the radius of the stationary ring gear is equal to the

radius of the sun gear plus the diameter of the planet gear,

r, = 2r, + r., (2.5)

and similarly, the radius of the carrier is equal to the radius of the sun gear plus the

radius of the planet gear,

rc = rp + r,, (2.6)

sDue to the translation of the planet gear, its measured rotation rate depends on whether an
inertially fixed coordinate frame or a frame fixed to the gear itself is used. The gear-fixed coordinate
frame should be used to determine w, because that is the rotation rate that is used to determine the
gear's mesh frequency. Because of this, the gear-fixed coordinate frame is used for the rotation rate
derivations.



No. of Nominal Rotation Rate
Gear Description Teeth RPM Hertz
Drive Shaft 29 6911.85 115.1975
Spiral Bevel Gear 51 3930.27 65.5045
Lower Stage Sun 28 3930.27 65.5045
Lower Stage Fixed Ring Gear 106 - -

Lower Stage Planet Gears 39 2232.12 37.2019
Upper Stage Sun (Lower Carrier) 40 821.250 13.6875
Upper Stage Planet Gears 33 722.727 12.0455
Main Rotor (Upper Carrier) - 225.000 3.75000

Table 2.2: Teeth Per Gear and Rotation Rates of Forward Transmission Gearbox

so that substituting (2.5) and (2.6) into (2.4) results in

wp 2rp + r,-- =, . (2.7)WS 2rp(rp + r,)

Using equations (2.1), (2.7), and the number of teeth on each gear, the nominal

angular velocity of all the gears in the transmission can be found from the 225 RPM

nominal rotation rate of the rotor. Table 2.2 shows the nominal rotation speeds

of each gear in the forward transmission in RPM and Hz, as calculated from the

geometry of the transmission's dual-planetary gear system.

2.2.2 Primary Offending Gear Mesh Frequencies

Now that the rotation rates of the gears in the gearbox have been determined, the

next step is to calculate the gear mesh frequencies for each of the gears. For two

rotating gears, the gear mesh frequency f is the product of the rotational speed of

the gear relative to the other gear w and the number of teeth on that gear n:

f = nw. (2.8)

It is important that w represent the relative angular velocity, as the ring and planetary

gears are meshing with one another and must have equal gear mesh frequencies. The

inertially-fixed rotation rate of the ring gear is zero, which would imply a gear mesh



frequency of zero, a clearly incorrect result. However, if the gear-fixed rotation rate

is used (in this case, the planet gears are moving at wc with respect to the ring gear),

then the gear mesh frequency matches that of the planet. Thus, with w representing

the gear-fixed rotation rate of the gear, the gear mesh frequencies of the planet, ring,

and sun gears in any planetary gear system can be calculated with the following

equations:

fP = rpwp (2.9)

f, = rrWc (2.10)
r.(2rp + r,)

f = 2, . "(2.11)
2(r. + rp)

Using Equation 2.8 and the data in Table 2.2, the gear mesh frequencies of the forward

transmission were calculated and are shown in Table 2.3. The frequencies in this table

can be compared with the spectrum of Figure 2-1, which showed a large spike near

1450 Hz. This is clearly a result of the lower planetary gear meshing, which has

a mesh frequency of 1450.875 Hz for a nominal rotation speed. Furthermore, the

first harmonic of this frequency is 2901.75 Hz, which is the location of another noise

spike. Therefore, the noise spikes present in the CH-47D cockpit are a result of

the fundamental and harmonic frequencies of the forward transmission's gear mesh

frequencies. Continuing this analysis for all of the large peaks in Figure 2-1 identifies

the primary frequency spikes shown in Table 2.4. Note that these frequencies are

based on the nominal rotation rate of the transmission, and will change as the speed

of the gearbox varies.

2.2.3 Prevalent Harmonics

However, these frequencies do not encompass all of the frequency spikes shown in the

previous spectra. The primary frequencies were sidebanded with other frequencies,

as examined earlier in Figure 2-2. For this figure, the sidebands were found to exist

near the frequencies of the center frequency ±13.5n Hz where 1 < n < 4. Because



Table 2.3: Fundamental Gear
for Nominal Rotation Rate

Mesh Frequencies of Forward Transmission Gearbox

Table 2.4: Nominal Gear Mesh Frequencies and Harmonics of Forward Tranmission

Gear Mesh Description Frequency, Hz
Spiral Bevel Gear 3340.728
Lower Stage Sun/Planet/Ring 1450.875
Upper Stage Sun/Planet/Ring 397.5000

Gear Mesh Description Frequency, Hz
Upper Planet Fundamental 397.5
Upper Planet First Harmonic 795
Upper Planet Second Harmonic 1192.5
Lower Planet Fundamental 1450.875
Upper Planet Third Harmonic 1590
Upper Planet Fourth Harmonic 1987.5
Upper Planet Fifth Harmonic 2385
Lower Planet First Harmonic 2901.75
Spiral Bevel Fundamental 3340.728
Lower Planet Second Harmonic 4352.625



these sidebands are equally spaced, it is likely that they are the result of harmonics

of a fundamental frequency of about 13.5 Hz. Therefore, a physical source that could

generate this frequency is sought. This frequency is clearly not present in Table 2.3,

but a very likely candidate is the 13.6875 Hz nominal rotation rate of the lower carrier

(which is the same as the upper stage sun rotation rate) in Table 2.2. Performing the

same analysis for the other primary noise spikes, it is apparent that the lower stage

gear mesh frequencies (spiral bevel fundamental, lower planet fundamental, and their

harmonics) are sidebanded with the lower carrier rotation rate and its harmonics.

Similarly, the upper stage gear mesh frequencies (upper planet fundamental and its

harmonics) are sidebanded with the upper carrier rotation rate and its harmonics.

Throughout the rest of this document, the fundamental frequencies of important

gears will be denoted by xxF, where F stands for the fundamental frequency, and xx

denotes the Spiral Bevel (SB), Lower Planet (LP), or Upper Planet (UP) gear mesh

frequency, or the Lower Carrier (LC) or Upper Carrier (UC) rotation rate. Harmonic

frequencies will be noted by a number followed by the letter H, such that LP1H is

the lower planetary first harmonic frequency of 2(1450.875) = 2901.75 Hz.

Thus, the spikes that appear prominently in Figure 2-2 can be referred to as

LPF±LCnF Hz where 0 < n < 3. Note that the noise spikes appear at regular

intervals, but their magnitude diminshes rapidly as n increases beyond three. More

significantly, the loudest noise spikes in the figure occur when n = 3, followed by

n = 0, and n = 1. The odd multiples of the carrier frequencies (even harmonics)

have substantially smaller magnitudes. This analysis in agreement with experiments

performed by Boeing, where the whole forward transmission has been found to vibrate

at the LCF and its harmonics. However, it is not known why the third harmonic of the

LCF tends to create the highest amplitude sidebands, although it could be attributed

to the fact that there are four lower stage planet gears[2]8 . Previous analyses of this

"If a manufacturing defect or case mounting caused a bulge in the ring gear, every time a planet
gear passed this bulge, additional vibrations would be induced in the transmission. In the case of
the lower planet configuration, which has four planet gears, it would then make sense that the fourth
harmonic of the carrier frequency (the rate at which the lower planetary gears would be passing the
bulge) would cause the greatest disturbance.



phenomenon have concentrated on the resonant frequencies of the gearbox casing,

under the premise that excitation near a resonant frequency would result in large

oscillations7 .

2.3 Reduction Goal

Based upon this analysis, it is desired to reduce the peaks caused by the forward

transmission gear meshing to or below the level of the surrounding background noise.

For most of the noise spikes, this will require a reduction of at least 20 dB, and almost

30 dB for the LPF and SBF frequencies. The spikes appear to have a bandwidth

of less than 2 Hz8; this implies that a very narrowband notch filter may be used.

Ranking the relative magnitude of the noise spikes from loudest to quietest creates a

prioritized list of the frequencies to be attacked. Then, the system can be designed

to accomodate as many peaks as feasible, until the limits of sampling frequency and

processing time are reached, or all the desired frequencies have been attenuated. The

prominent noise spikes, ranked roughly loudest to quietest, are shown in Table 2.59.

2.3.1 Rotation Rate Variance Characterization

Ideally, the rotors of a helicopter turn at a constant rate at all times during flight.

However, the forces on the rotor blades change as the helicopter undergoes maneuvers

and experiences wind gusts. This change in force on the rotors causes the speed of the

7It is interesting to note that the loudest sidebands on the helicopter are not the same as the
loudest for a ground-based transmission test stand. Data from the test stand indicates that the
loudest sidebands should occur at ± the UC1H frequency; half of the UC3H. This discrepancy has
not been explained.

8 Any frequency spectrum's resolution is limited by the number of points at which the spectrum
was calculated. As such, it is impossible to determine the exact bandwidth of the noise spikes. To
calculate the spectrum at more points requires a longer sampling of the input signal, and with noise
spikes that change frequency, increasing the sample time decreases the accuracy of the noise spike
locations. Theoretically, a gear mesh frequency is just that, a single frequency, and the noise spikes
should have infinitessimal bandwidth. Of course, this is not practical, and a finite bandwidth is
chosen in order to allow for limitations in the frequency analysis methods.

9 The magnitude of the spikes vary over time as well, so this table should only be used as a guide.
It is an approximate ranking based on the average spike magnitudes observed for one particular
helicopter.



No. Gear Mesh Source Nominal Frequencies, Hz
1,2 LPF ± LC3H 1396.125, 1505.625
3 LPF 1450.875
4 SBF 3340.728

5,6 SBF ± LC3H 3285.978, 3395.478
7,8 UPIH ± UC1H 787.5, 802.5

9,10 UP1H ± UCF 791.25, 798.5
11 UPF 397.5

12,13 UP3H ± UC3H 1575, 1605
14,15 UP3H ± UC1H 1582.5, 1597.5
16,17 UP2H ± UC3H 1177.5, 1207.5
18,19 UP2H ± UCIH 1185, 1200
20,21 LPF ± LC1H 1423.5, 1478.25
22,23 LP1H ± LC3H 2847, 2956.5

24 LP1H 2901
25,26 SBF ± LC1H 3313.353, 3368.103
27,28 LPF ± LCF 1437.189, 1464.563
29,30 LPF ± LC2H 1409.813, 1491.938

31 UP4H 1987.5
32 UP5H 2385
33 LC2H 4352.535

Table 2.5: List of Noise Spikes, Approximate Decreasing Amplitude



rotors (and thus all connecting drive shafts and gears) to vary as well. This variance

is minimized in the CH-47 by a speed regulator which attempts to keep the rotational

rate of all components constant. However, there is obviously a time lag in this system

due to inertial effects and the inherent time constant of any control system. Therefore,

the rotation rate of the planetary gear system, and thus the frequencies of the noise

spikes, vary over time during the flight. If the noise reduction system is to attack

the precise location of the narrowband noise, the rotational speed of the transmission

must be known accurately in real time. Furthermore, the bounds of this variance

have to be determined in order for the suppression system to accomodate the full

range of frequencies it may encounter, and the rate of change is needed to ensure that

the system will respond quickly enough to track those changes.

There are two speed regulator systems currently in use on CH-47s. The older

regulator (a mechanical governor) is not as effective as the newer Full Authority

Digital Engine Controller (FADEC) in maintaining a constant rotation speed. Thus,

if the noise suppression system works for the older regulator, it will also work for

the newer regulator. Furthermore, most of the CH-47s currently in service do not

have the FADEC system, so designing a noise reduction scheme around the FADEC

controller provides a system that cannot necessarily be used on helicopters with the

older regulator. Therefore, the noise reduction schemes will attempt to suppress noise

spikes with the wider and more rapid frequency variations that occur with the older

regulator.

The range and rate of rotation speed variance was determined from data recorded

by flight test engineers during testing of various CH-47s. If the noise reduction scheme

is to handle the most severe variances, then it must be able to suppress the noise spikes

during violent maneuvers such as jump takeoffs'0 with a heavily-loaded helicopter.

Strip chart records were obtained from Boeing for various helicopters and operating

scenarios. Maximum deviations and maximum deviation rates were measured from

10A jump takeoff occurs when the helicopter is sitting on the ground, and the pilot pulls up on
the collective as quickly as possible. This essentially provides a step input to the pitch of the rotor
blades, inducing a great deal of drag and slowing the rotation rate substantially. Under powered
flight conditions, this manuever has the most extreme effect on the transmission rotation speed.



the records in order to determine the bandwidth and reaction time regimes, respec-

tively, required of the noise suppression system. A typical strip chart of rotor RPM

during a jump takeoff is shown in Figure 2-7. Using graphs similar to these, the

maximum experimental deviations from nominal rotation rate (100%) were -9% and

5%. Furthermore, the maximum slope measured was about 14% per second. While

this rate variance is indicative of the maximum rate of change that could be expected

in normal combat operation, maximum deviation amounts are perhaps better deter-

mined from the Operating Limits and Restrictions sections of the CH-47 Operator's

Manual. This manual lists the minimum transient rotor rate as 91% of nominal,

and the maximum transient rotor rate as 106% of nominal. For reference, the min-

imum allowable sustained rate is 96% and the maximum allowable sustained rate is

102%. Therefore, the noise suppresion system must be able to handle rotation speeds

from 91% to 106% of nominal, at a maximum rate variation of 14% per second".

This implies that the notch filter for the LPF noise spike at 1450.875 Hz must be

able to suppress frequencies ranging from at about 1320 to 1538 Hz, and must be

able to change its center frequency by 203 Hz in one second. The actual range and

movement rates of the filter will have to be somewhat higher when measurement and

implementation errors are considered, as well as the finite update rate of the system

(see section 3.6). Note that it is practically impossible to design traditional filters

to suppress this kind of noise, without significantly affecting a large portion of the

frequency spectrum. However, certain DSP algorithms can implement adaptive filters

with these capabilities.

1 1A CH-47D pilot felt that jump takeoffs were extremely rare events, and that the system should
be designed to handle variations from about 95% to 108%, to include autorotation conditions, and
a rate variation of less than 10% per second[27].
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Chapter 3

Proposed Solutions

As described in section 2.2.3, a large percentage of the sound power present in the

CH-47 cockpit and interphone signal is contained in a few very narrowband frequency

ranges. If these frequency ranges could be suppressed or filtered, then a substantial

amount of the noise power could be reduced, without greatly affecting the power of

broadband speech signals. Applying such a filter to the cockpit interphone system

could enhance the signal-to-noise ratio, and therefore increase the intelligibility of the

voice signal.

This chapter describes the three algorithms used to attack the gear whine fre-

quencies of the forward transmission: the ANC algorithm (specifically, its LMS im-

plementation), the TF algorithm, and the VSR algorithm. An explanation of the

ideas behind each algorithm is presented first, as an introduction to the techniques.

After the introductions, the algorithms are analyzed in more detail. The VSR utilizes

an entirely different approach than the other two algorithms, so it is treated sepa-

rately at the end of this chapter, in section 3.5. However, the LMS and TF algorithms

are different utilizations of the same core algorithm, the Modulate-Filter-Demodulate

(MFD) algorithm. Thus, the MFD algorithm is analyzed in section 3.2, as a prelude

to the analyses in sections 3.3 and 3.4.



3.1 Introduction to the Noise Suppression Algo-

rithms

The following three sections introduce the algorithms studied in this project. The

ideas behind the algorithms are explained without formula derivations or diagrams,

so that the motivations for the algorithms can be described. More formal analyses

appear in the subsequent sections.

3.1.1 LMS ANC Algorithm

The LMS algorithm is an elegant means of implementing a notch filter. It multiplies

the input signal with a sinusoidal signal of frequency wo in order to determine if the

input has a component at that frequency. If it does, then the two signals will be at

least partially correlated, and the result of the multiplication will have a nonzero DC

component, due to the constant phase difference between the two signals. If the input

signal is uncorrelated with the sinusoid, the phase difference is essentially random,

and the multiplication results in an output with a DC value that is very close to zero.

Thus, the DC component of the product is a measure of the input signal's power

content at the frequency wo.

The result of the multiplication is then integrated, to obtain a time history of the

DC components of the product, and then subtracted from the input signal. Thus,

the sinusoidal components of the input at the frequency w0 are not present in the

system's output. The effect of this integration is to adapt to the frequency content

of the input signal, so that the output is always missing the sinusoidal component.

If the same procedure is used with a cosinusoidal input of frequency wo as well, then

the sinusoidal and cosinusoidal components of the input signal are removed, and the

output is completely devoid of the frequency wo. Such an implementation has the

characteristics of a notch filter placed at the frequency wo.

The constant of integration controls how quickly the system adapts to changes

in the frequency content of the input signal, and thus determines the bandwidth of



the notch filter. The higher the integration constant, the faster the system responds,

and the wider the notch's bandwidth. Perhaps the most powerful aspect of the LMS

algorithm, however, is the fact that the notch filter's frequency is controlled by the

frequencies of the sinusoidal and cosinusoidal signals. The frequencies of these signals

can be changed to control the frequency of the notch filter in real time. Thus, the

LMS algorithm can be used isolate a particular component of a signal, even if that

component varies in frequency.

3.1.2 TF Algorithm

This algorithm is not quite as intuitive as the LMS algorithm, although it can be

understood using frequency domain explanations. Consider the frequency spectrum

of an input signal to a discrete-time system. If a notch filter is to be implemented at a

frequency wo, the frequencies near wo need to be isolated. This can be accomplished

by convolving the frequency spectrum of the input with impulses located at ±wo

and lowpass filtering the result. The convolution moves the frequencies near wo to

the origin, and lowpass filtereing subsequently removes frequencies that are not near

the origin. Convolving once again with the impulses at ±wo maps the remaining

frequency spectrum back out to ±wo. The result is the equivalent of a bandpass filter

at wo. Then, a bandstop filter can be realized by subtracting this signal from the

original input, removing the frequency content of the input signal near the frequency

W0.

Because convolution in the frequency domain is the same as multiplication in the

time domain, this system can be implemented by multiplying the input by a sine or

cosine signal of frequency wo, lowpass filtering the result, and multiplying once again

by the sine or cosine signal. Multiplication with both sine and cosine signals must

be performed in order to prevent aliasing that would otherwise result from mapping

different frequencies to the same region in the frequency spectrum. So, the complete

algorithm involves multiplying the input by sine and cosine signals of frequency w0,

lowpass filtering the results, multiplying again by the sine and cosine signals, summing

the products of the multiplications, and subtracting the result from the input signal.



This is precisely the idea behind the TF algorithm, where a narrowband lowpass filter

is used to create a narrowband bandstop filter. When a signal is multiplied by a sine

and cosine signal at the same frequencies, it is often said to be modulated, so the core

part of the TF algorithm involves a Modulate-Filter-Demodulate procedure, called

the MFD algorithm (the summation of the sine and cosine paths is assumed). This

algorithm, like the LMS algorithm, implements a narrow bandstop filter centered at

the modulation frequency wo. If the lowpass filter is designed without a passband,

then the TF algorithm implements a notch filter. As with the LMS algorithm, the

center frequency of the notch can be controlled by changing the frequencies of the

sine and cosine modulation signals.

3.1.3 VSR Algorithm

The VSR algorithm utilizes an approach very different from that of the LMS and

TF algorithms to obtain adaptive filters. It utilizes the properties of discrete-time

systems to obtain a notch filter with a controllable center frequency. Because all the

frequencies of a digital system are proportional to the sampling rate of the system,

changing the sample rate of the system changes its frequency response. Therefore, if a

digital notch filter is implemented at frequency wo assuming a sample rate of 12 kHz,

then if the sample rate is changed to 13 kHz, the frequency of the filter will move to

1wo. Therefore, the VSR algorithm controls the center frequency of the notch filter

by changing the sampling rate of the digital system.

3.2 Modulate-Filter-Demodulate Algorithm

First, the effects of the Modulate-Filter-Demodulate 1 algorithm are examined,

whose signals will be denoted by the subscript MFD. This algorithm forms the key

parts of the LMS ANC and TF algorithms, and its block diagram is shown in Figure 3-

1. The input is modulated by both a cosine signal (upper path) and a sine signal (lower

'See section 3.1.2 for a description of this algorithm's operation.



cos(oot)

Figure 3-1: Block Diagram of the Modulate-Filter-Demodulate (MFD) Algorithm

path) of frequency wo. Then, the signal is passed through identical transfer functions

(lowpass filters in the case of the TF algorithm) with a gain of two to account for the

modulation's gain of 1. The signals are then demodulated and summed, producing

the output. This is clearly a nonlinear system, due to the quadrature modulation.

However, if wo is kept constant, the MFD algorithm behaves as a linear, time-invariant

(LTI) system[28]. Therefore, standard z-transform analysis applies, and a transfer

function may be found for the system. The analysis of the upper and lower paths

are very similar (differing only by the 41 term of the sinusoid's Fourier transform),

so only the analysis of the upper path is presented in detail. The input to the MFD

algorithm is modulated with a cosine signal of frequency wo, whose z-transform is

e-j * + ej"
Z(cosw+o) =- + (3.1)2

Thus, given an input of z, with a z-transform XMFD(z), the z-transform of the

modulated siginal at A is

1
A(z) = -[XMFD(ze -j' ) + XMPD(zeý")]. (3.2)

2



This signal is filtered by 2H(z), which results in the signal at B,

B(z) = 2A(z)H(z), (3.3)

and demodulated by the same cosine signal. Thus, the output of the cosine-modulated

path at C is described by

C(z) = -[B(ze -jwo) + B(zeaj)]..
2

To solve for C(z) in terms of the input, (3.3) is substituted into (3.4), giving

C(z) = 2[2A(ze-'•")H(ze-j") + 2A(zejwO)H(zewO)].

Then, substituting (3.2) into (3.5) and combining terms produces

C(z) = ( {H(ze-7o)[XMFD(ze- 'j o) + XMFD(z)] +
H(ze•wo)[XMar(z) + XMFD(ze2li0)},

(3.4)

(3.5)

(3.6)

which is the z-transform of the input after it has travelled through the upper half

(cosine-modulated path) of the MFD algorithm. The z-transform of the input after

passing through the lower, sine-modulated path (at point F) can be determined in a

similar manner, yielding

F(z) = .- {H(ze-"' )[XMFD(ze -'j io) - XMFD(z)I +
H(zeiwo)[XMFD(ze 2'wo) - XMFD(z)I }. (3.7)

The output of the MFD block is described by

YMFD(Z) = C(z) + F(z), (3.8)

and combining (3.6) and (3.7) into (3.8) and simplifying gives the output in terms of



the input,

YMFD(Z) = XMFD(Z)[H(ze - jWO) + H(zeJW•)], (3.9)

which implies an overall transfer function of

YMFZ)(z)YMFD(Z) = GMFD(Z) = H(ze-jwo) + H(zeJwo). (3.10)
XMFD(rZ)

Thus, when wo is constant, the effect of the MFD algorithm is to apply the transfer

function H(z) (normally centered at the origin) centered at the frequencies +wo and

-wo. For example, if H(z) is an ideal lowpass filter with a cutoff frequency of w,,

the MFD algorithm will act as a bandpass filter centered at frequency wo with a

bandwidth equal to twice w,. In other words, given an input signal of frequency w,

the output of the MFD algorithm will be be identical to the input at frequencies

wo - we < w < wo + wc, and zero at all other frequencies. If the effects of H(z) are

desired at a different frequency, then w0 can be changed, and the transfer function

will be centered at the new frequency 2. Thus, the algorithm is ideal for controlling

noise with frequencies that change over time. This concept will provide the basis for

deriving the transfer functions of the LMS and TF algorithms, which are analyzed in

the following sections.

3.3 Least-Mean-Squared Adaptive Noise Cancel-

lation

A common approach to notch filtering, especially when the frequencies to be

filtered do not remain constant over time, is known as Adaptive Noise Cancelling. The

heart of this algorithm is the use of the MFD algorithm in a feedback loop. A reference

signal correlated in an unknown manner with the unwanted noise, but not with the

desired signal, is fed into the MFD system, which integrates the correlated components

of the two signals. This result is treated as an error signal, which is fed back and

2Note that if wo is changed, the system becomes non-LTI, and the derived transfer function is no
longer valid.
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Figure 3-2: Block Diagram of the Adaptive Noise Cancellation Algorithm

subtracted from the input, producing a signal-minus-noise output. This output signal

is then used as the input to the MFD algorithm, so that it may determine the amount

of the remaining signal that is still correlated with the reference inputs. Thus, the

MFD algorithm adapts to changes in the input and reference signals, continually

removing the frequencies of the input that are correlated with the reference signals.

If H(z) of the MFD algorithm is the transfer function of a digital integrator, then

the ANC algorithm utilizes the LMS approach, and its output power is minimized to

its least-mean-square[48]. The LMS ANC algorithm (hereafter referred to as the LMS

algorithm) thus converges to a solution which minimizes the signal power according

to the spectrum of the reference signals, and once it has converged, it tracks changes

in the reference input to keep the output power minimized. This algorithm has

several attractive qualities. First, it can be easily expanded in a parallel manner to

minimize the signal's frequencies that are correlated with multiple reference signals,

rather than just one, as shown in Figure 3-3. Second, the implementation of the LMS

algorithm is straightforward and computationally efficient. The core calculations are

only five multiplications, four additions, and two memory locations per frequency to

be reduced. This algorithm has found widespread use due to its effectiveness, ease of

implementation; and diinimal computation time requirements.

3.3.1 Transfer Function Derivation

First the transfer function of the ANC algorithm will be derived, and then the specific

case of the LMS approach will be examined. The signals of the ANC algorithm will be
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Figure 3-3: Block Diagram of LMS Algorithm for Multiple Notch Filters

denoted by the subscript ANC and its analysis builds upon the earlier derivation of the

MFD input-output relations (equation 3.9). Therefore, the following analysis assumes

that GMFD(Z) is LTI, which is only true when wo is constant. If the z-transforms of

the input and output of the ANC algorithm are denoted by XANC(Z) and YANC(Z),

respectively, then the output of the ANC algorithm can be represented by

YANC(Z) = XANC(Z) - YMFD(Z) (3.11)

where the input to the MFD part of the ANC algorithm is in fact the output of the

ANC algorithm itself,

XMFD(z) = YANC(Z). (3.12)

The first step to finding YANG in terms of XANC alone is substituting (3.12) into (3.9),

which gives the.output of the MFD part of the algorithm in terms of YANG,

YMFD(z) = YANC(z)[H(z o) )+ H(zejwo)]. (3.13)



Substituting (3.13) into (3.11) results in the output of the ANC algorithm,

YANC(z) = XANC(Z) - YANc(z)[H(ze - jwo) + H(zej"O)], (3.14)

and YANC and XANC can be moved to the left-hand side so that the overall transfer

function of the ANC algorithm for constant wo is

YANC(Z) 1= GANC(z) (3.15)XANC(Z) 1 + H(ze-jwo• + H(ze••o)

Notice that frequency-shifted copies of H(z) (from the MFD algorithm) appear in

the denominator. To obtain a notch filter, the magnitude of GANC should go to zero

at wo, which can be accomplished if the magnitude of Hze j 'wo goes to infinity. This

occurs if H(z) is an integrator; its magnitude approaches infinity when the input has

a DC component. When an integrator is shifted by wo, its magnitude goes to infinity

if the input has components at that frequency. So, when H(z) is an integrator, then

at frequencies near ±wo, the denominator tends towards infinity, and the output of

the ANC algorithm appraoches zero. This is, in fact, the theory behind the LMS

algorithm, which is analyzed next. For this purpose, let H(z) be a digital integrator

with transfer function
z-1 1

H(z) = 1 = (3.16)
1-z-1 z -1

where 3 is the integration constant. Substituting this equation into (3.15) and sim-

plifying results in a transfer function of

z= - 2z coswo + 1(3.17)
z2 - 2(1 -8)z coswo + 1 - 2/3'

which has zeros located on the unit circle at

z = e± W' (3.18)



and poles placed at

z=(1I-0) coswoe -(1- 3)2 cos2o + 20 - 1. (3.19)

Letting a = 1 - 3, equation (3.19) can be rewritten as

z = C cos W0 + ± 2 cos 2 • o + 1 - 2a. (3.20)

This causes the ANC algorithm to act as a notch filter centered at w0 whose

bandwidth is controlled by a. A pole-zero plot of GLMs(z) for = 2140.875 in the

z-plane is shown in Figure 3-4 for a = .8. It can be seen that the zeros lie on the unit

circle at an angle 0 which corresponds to the ratio of the notch's center frequency to

the sampling frequency. The poles are located inside the unit circle, near the zeros,

but are not located at the same angle. As a is increased, the poles approach the

zeros on the unit circle, resulting in a sharper notch (narrower bandwidth). At the

limit of a equal to one, the poles lie immediately on top of the zeros, the system

becomes marginally stable, and the poles cancel the effects of the zeros, resulting in

GLMS(Z) = 1. Except for this limiting (and physically insignificant) case, note that

the depth of the notch is infinite, because the zero is located precisely on the unit

circle.

The ability to obtain a notch filter in this manner has several advantages over

conventional techniques. First, the bandwidth of the notch is controlled by a single

constant, a. Traditional notch filter design requires calculating new coefficients in

order to change a filter's bandwidth. Furthermore, the center frequency of this notch

filter is controlled by the frequencies of the reference signals, wo. Simply altering

the frequencies of the sine and cosine signals will change the frequency of the notch.

Changing the frequency of a traditional notch filter again requires recalculating the

filter's coefficients, a task that is substantially more complex.
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Figure 3-4: Pole-Zero plot of GLMs(z) for a = .8

3.3.2 Implementation

There are two implementations of the LMS algorithm that are worth developing.

Because the LMS algorithm reduces the signal power according to the frequency

content and phase differences of the reference signal, different reference signals will

produce different results. The most obvious choice for the reference signals is to use

delayed copies of the noise signal as the reference inputs. In the case of CH-47 noise,

that requires adding a microphone to the cockpit that registers the ambient noise

but not the pilots' voice3 . The other approach is the notch filtering approach, where

a sinusoid and cosinusoid signal at the desired frequency are used; this is the LMS

approach that utilizes the MFD algorithm. The theories and constraints of these two

approaches are described in the following sections.

3Note that, in this case, the transfer function of the LMS algorithm is not represented by Equa-
tion 3.17 because the reference inputs are not a sine/cosine pair. Instead, the system response is
dependent upon the characteristics of the reference signal. As the cockpit noise is extremely complex,
a simple transfer function cannot be derived for this implementation of the LMS algorithm.
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Delayed Ambient Noise as Reference Signals

Assuming that the signal from an ambient microphone in the cockpit contains mostly

the unwanted noise and little of the desired spoken signal, delayed copies of this signal

can be used as reference signals to the LMS algorithm. If a correlation exists between

the input and reference signals, the output should be the LMS of the input minus

the noise. The potential advantage of this approach lies in the fact that the ambient

noise is broad band, and using it as a reference allows the LMS algorithm to attack

noise present over a large range of frequencies. However, this can only occur if the

phase differences between the input and reference signals are relatively small and do

not change substantially over time. If varying phase differences are present, then

the signals will not be well correlated and the LMS algorithm will not be efficient at

suppressing the noise.

Sinusoids as Reference Signals

When the frequencies of the noise are concentrated in a few well-characterized, nar-

row bandwidth regions, it is perhaps better to use sine and cosine signals as reference

signals for the LMS algorithm. Because the algorithm utilizes phase differences to

cancel the noise, the 90 degree phase difference of the reference signals results in a

notch filter with infinite attenuation at the frequency of the reference signals. The

most significant drawback of this approach is the need to obtain or generate sinu-

soids at these frequencies. With digital microprocessors, however, it is not difficult

to construct accurate sinusoidal signals at multiple frequencies, and this implemen-

tation seems well-suited to reduce the nonstationary narrowband noise spikes of the

Chinook's forward transmission.

3.3.3 Design Considerations

There are a number of important design considerations to be made when implement-

ing the LMS algorithm. Most of these considerations are tradeoffs between the per-

formance of the system (in terms of reducing the noise without reducing the desired



signal) and ease of implementation (in terms of algorithm complexity and computa-

tional requirements). The three primary design decisions for the LMS algorithm are

the number of filters to be implemented (i.e., the number of MFD blocks), the type

of integrator used, and selection of the speed of convergence.

Number of Filters

The LMS algorithm can be utilized to suppress noise spikes at multiple frequencies.

However, each notch requires the generation of a pair of sinusoidal reference signals

and uses a two memory locations. The limitation on the number of notches that can

be used is primarily a matter of processing speed (although available memory can also

be a factor). Each additional notch increases the complexity of the implementation

and computation time of the system. Because the CH-47D has numerous noise spikes,

it is possible that the algorithm will not be able to attack all of them. As a result,

it is important to first apply notch filters to the noise spikes most detrimental to

intelligibility. If all of these frequencies can be suppressed and the DSP chip is not

utilizing all of its computation time, then filters can be added to suppress the less

crucial noise spikes.

Integrator Selection

Selection of the type of integrator is the most basic design criterion of the LMS al-

gorithm. Many different integrators can be used as the H(z) of the MFD block,

with different implications for performance and complexity. Using a simple digital

integrator (such as that of Equation 3.16) allows an implementation that is computa-

tionally efficient, although a more complex integrator may provide better performance

in terms of faster convergence, or better notch filter characteristics. For example, if

a small width bandstop filter is desired in place of a notch filter, an integrator might

be chosen to tailor the pole and zero locations of the LMS transfer function to obtain

that kind of frequency response.



Speed of Convergence

The speed of convergence of the LMS algorithm is a parameter that controls how

fast the MFD system responds to changes in the reference and input signals. This

parameter is tied closely with the integrator selection; for the integrator of the LMS

algorithm derived earlier, the integration constant 0 is the speed of convergence. If

the speed is high (fast), then the algorithm will converge quickly and have a short set-

tling time. Unfortunately, the fast convergence will cause the algorithm to respond to

frequencies near the reference frequency, resulting in significant attenuation in adja-

cent bands and increasing the bandwidth of the notch filter. Also, if the convergence

speed is extremely high, the LMS algorithm becomes unstable4. If the speed is low

(slow), then the bandwidth of the notch filter will also be small, because the weights

will not respond quickly to other frequencies. However, due to the slower adaptation

rate the system will have a larger time constant and will not converge to the LMS

solution as quickly. In fact, if variations in the inputs are fast enough, the algorithm

may never fully converge.

3.3.4 LMS Algorithm using Ambient Noise as Reference

Signals

To determine the potential success of the LMS algorithm with delayed ambient noise

as reference inputs, it was modelled in a computer simulation. The simulation used

a recording of the cockpit interphone signal as the input, and the reference signals

were derived from simultaneous recordings of a microphone added to the cockpit for

this purposes . However, the results of the simulation were not promising. The LMS

weights did not converge very often, and when they did, the noise reduction in the

4Instability in the LMS algorithm occurs when the convergence speed is equal to or exceeds one
divided by the largest eigenvalue of the inputs' cross-correlation matrix. As this project is only
concerned with the use of narrowband notch filters to attenuate narrowband noise spikes, 3 remains
low and instability of the LMS algorithm is not a concern. The notch filter bandwidth becomes
entirely too large for this application long before the system becomes unstable.

SThe simulation and data recording are described in more detail in the next chapter. However,
due to the lack of success with the delayed-noise reference signal approach of the LMS algorithm,
its use is not discussed again until the Recommendations section.



interphone signal was not appreciable. This was most likely due to the less than

ideal location of the ambient microphone. Because it was not located close to the

interphone microphones, the phase of the signals changed over time (especially as the

pilots moved their heads), and the phase of the noise in the pilot's interphone signal

was completely different from that of the copilot's interphone signal. While better

microphone placement or differently tuned algorithms may produce better results,

this approach of the LMS algorithm was abandoned for this project due to the time

constraints involved and the potential success promised by other techniques6 .

3.3.5 LMS Algorithm using Sinusoidal Reference Signals

As described earlier, using sinusoidal reference signals in the LMS algorithm results

in notch filters centered at the frequencies of the reference signals, with a conver-

gence rate and bandwidth controlled by the speed of convergence constant. The

number and nominal frequencies of the noise spikes to be attenuated have already

been determined, so the remaining design choices are the type of integrator and the

bandwidth of the filter. The performance of different integrators was not explored

in detail; the simple digital integrator already described provides ample attenuation

with minimal computation time, and utilizing more complicated integrators imposes

substantial penalties in processing speed. Maximum computation speed is essential

for suppressing the large number of noise spikes caused by the CH-47D's forward

transmission. The filter bandwidth required to guarantee suppression of the noise

spike is determined in section 3.6, and is not discussed here. However, it is useful

to examine the ideal frequency responses of the LMS algorithm with several different

speeds of convergence (integration constants).

sUsing an ambient microphone attached directly to each pilots' helmet should provide substan-
tially better phase information than a single microphone placed at one location inside the cockpit.
Also, bandpass filtering the reference signal to the frequencies of interest could reduce the overall
phase variances in the signals so that better attenuation could be achieved in those bands. However,
a substantial challenge still lies in keeping the LMS algorithm converged for each pilot as he or
she turns his transmit button on and off. At the very least, a separate system is required for each
microphone connected to the interphone system (see section 5.4.4).



Ideal Frequency Response to Constant Frequency

Figure 3-5 shows the ideal Bode response of the LMS system for a constant reference

frequency of 1450.875 Hz (the LPF) and integration constants of , = .002 (solid line),

.006 (dashed line), and .015 (dotted line). These values correspond to a values of .998,

.994, and .985, respectively. Note that the LMS algorithm achieves an infinute null

exactly at the reference frequency, but this is not apparent due to the finite resolu-

tion of the frequency response. However, this figure clearly shows how the notch's

bandwidth increases as # increases. Also apparent is that the phase angle passes

from 180 to -180 degrees at the reference frequency and that the phase deviation at

adjacent frequencies also increases with 3. Figure 3-6 shows the LMS algorithm with

five notch filters (parallel MFD blocks) for constant center frequencies at the lower

planetary fundamental frequency, plus and minus two and four times the lower car-

rier rotational frequency (LPF, LPF+LC1H, LPF±-LC3H), again for 3 = .002 (solid

line), .006 (dashed line), and .015 (dotted line). Note the shapes of the frequency and

phase responses between the notch frequencies. At low 0, the shapes are practically

identical to those seen in Figure 3-5. However, at higher 8 values, adjacent notches

affect one another's performance, resulting in shapes differing from the single-notch

response. The frequency response is nearly symmetrical about the frequency that is

midway between notches for low 0, but becomse very asymmetrical at high P. This

is also true of the phase response characteristics between close-proximity notches. An

interesting characteristic of the LMS algorithm is that there is always a point of 0 dB

attenuation between the notch filters. This is not true of the other algorithms.

3.4 Tracking Notch Filters

The tracking notch filter approach is similar to the LMS algorithm, but instead

of using a feedback loop, the MFD algorithm is used in a feedforward manner. The

block diagram of the TF algorithm is shown in Figure 3-7, showing how the output of

the MFD algorithm is subtracted from the input signal. Thus, if the MFD algorithm

isolates the noise in the desired frequency bands, subtracting its output from the input
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Figure 3-8: Block Diagram of TF Algorithm for Multiple Notch Filters

of the TF system results in a signal-minus-noise output at those frequencies. Like the

LMS algorithm, this approach has several advantages over traditional filtering. The

center frequency of H(z) is determined by the frequencies of the reference sinusoids,

and can be changed in real time. When the TF algorithm is used to implement

notch filters, the bandwidth of the notch is controlled by just two related constants.

Changing either of these parameters with a traditional filter requires recalculation

of the filter's coefficients. Furthermore, multiple notches can be implemented by

cascading serial TF blocks, as shown in Figure 3-8. Note that the TF algorithm

cannot be used in parallel, as the phase distortions introduced by the lowpass filter

will result in different phase delays for each output of the MFD block. Thus, the

subsequent summation combines signals of different phase, and the output becomes

highly distorted.

While strikingly similar to the LMS algorithm, a few differences are worth noting.

First of all, the TF algorithm does not have a feedback component. Furthermore, it

does not become unstable, like LMS algorithm can, at very high 8 (low a). However,

it is not as computationally efficient as the LMS algorithm. The input signal must be

modulated, filtered, and demodulated for both paths before it is subtracted, requiring

at least twelve multiplies, six additions, and four memory locations for each notch

filter7.

'These requirements assume that H(z) is a second order IIR filter block. Depending on the exact
H(z) used, more memory and/or calculations may be necessary.



3.4.1 Transfer Function Derivation

The transfer function of the TF algorithm is derived using the input-output relation

of the MFD algorithm, equation 3.9. The signals in the TF algorithm will be denoted

by the subscript TF. Assuming that the input and output of the TF algorithm in

the z-domain can be represented by XTF(Z) and YTF(Z), respectively, and that wo

is constant (guaranteeing that the MFD algorithm behaves as an LTI system), the

output of the TF algorithm is defined by

YTF(Z) = XTF(Z) - YMFD(Z) (3.21)

and in this case, the input of the MFD algorithm is identical to the input of the TF

algorithm

XTF(Z) = XMFD(Z), (3.22)

so substituting (3.22) and (3.9) into (3.21) results in the output of the TF algorithm

in terms of the input

YTF(Z) = XTF(z)[1 - H(ze- j"w) - H(zeJiW)]. (3.23)

Moving the input to the left hand side of the equation, the overall transfer function

of the TF algorithm for constant wo is

XTF(Z)
GTF(Z) = XTF(Z) = 1- H(ze - w ) - H(zejwo). (3.24)

It is easy to see that the output of the TF algorithm is the input minus the

frequency response of H(z), shifted left and right by the frequency wo. Thus, when

H(z) is an ideal lowrpass filter with cutoff frequency we, the output of the tracking

filter algorithm will be identical to the input at all frequencies w except for w0 - wc <

w < w0 + we, where the output will be zero. The TF algorithm is now examined for

a specific case of H(z), a second-order infinite-impulse response lowpass filter. The



transfer function of such a filter in the z-domain is

H(z) = (1 - a) (1 - a) (3.25)

Substituting this function into equation (3.24) and simplifying leads to

GTF(Z) = (2a - 1)z' - 2a2Z COS + (3.26)
z2 - 2az cos wo + a2

which has poles at

z = ae ±jWo (3.27)

and zeros at

S= a2 (1 - 2a) cos wo ± a a2 Cs 2 W0 - 4a 2 + 2a. (3.28)

A pole-zero plot of GTF(z) with wo = 2 1 o75 in the z-plane is shown in Figure 3-9

for a = .8. Compare this plot with the one shown for the LMS algorithm in Figure 3-

4. In this case, it is the poles that are located at the angle 0, not the zeros. In fact, the

zeros are outside of the unit circle. This reduces their effect on the system's frequency

response, which is evaluated on the unit circle. In the limiting case of a = 1, the

notch approaches an infinite null as the zeros move toward the unit circle, but once

again the poles also converge to the same location. Just as in the LMS algorithm,

as a approaches one, the poles move closer to the zeros, resulting in a notch with

a narrower bandwidth. Therefore, the fact that the zeros are outside the unit circle

imply that, for the same a, the TF system should have a slightly wider notch than

the LMS algorithm.

3.4.2 Design Considerations

As with the LMS algorithm, some design tradeoffs must be made when implementing

the TF algorithm. These implementation considerations are mostly choices between

performance and complexity, trading off the filter's characteristics against ease of im-

plementation and processing time. The two primary design decisions are the number
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Figure 3-9: Pole-Zero plot of GTF(Z) for a = .8

of notch filters to be used, and the bandwidth necessary to ensure adequate noise

suppression. The issues for selecting the number of filters are the same as those in

section 3.3.3. The TF algorithm has processing requirements similar to the LMS al-

gorithm for additional notches, that is, generation of two sinusoidal reference signals

and two memory locations for each filter that is implemented. However, due to the

increased complexity of the core of the algorithm, the TF approach requires slightly

more computation time.

Notch Width Considerations

The first consideration in designing a tracking notch filter is the width of the notch.

The filter must be large enough to suppress the noise without attenuating significant

amounts of the desired signal. The bandwidth of a notch filter implemented with the

TF algorithm-is wholly dependent upon the type and characteristics of the lowpass

filter H(z).

In fact, the versatility of choosing a lowpass filter for H(z) promises more flexibility

than the integrator choice afforded by the LMS algorithm. Lowpass filter design is

well-understood, and the TF algorithm allows use of both finite and infinite impulse
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response filters, of virtually any order. Theoretically, a sharp lowpass filter with

virtually no passband would result in a notch filter, whereas a lowpass filter with a

unity passband out to a cutoff frequency w, used as H(z) would result in a bandstop

filter. This could be useful in applications where the unwanted noise has a wide

bandwidth, where the noise is not well characterized or understood, or where many

spikes occur so close together that it is more efficient to use one bandstop filter rather

than several notch filters to suppress them all.

However, mathematical simulation of higher-order filters did not produce band-

stop filters. Instead, they produced notch filters with unusual characteristics. For

example, stopband ripple in the lowpass filter caused the TF algorithm to produce

gains greater than unity adjacent to the center frequency, before approaching 0 dB

gain asymptotically. Also, if the phase response of the lowpass filter crossed through

180 degrees in the pass band, another notch appeared in the TF algorithm due to

the phase cancellation that resulted. This phenomenon is shown in Figure 3-10 for

a 12th order IIR lowpass filter with a passband of 8 Hz and a cutoff frequency of 10

Hz (sampled at 16 kHz). The Bode response of the filter alone is shown first, above

the Bode response of the TF algorithm using that filter (the dotted lines represent

the response using quantized coefficients). It is clear that a bandstop filter does not

result, but at the locations where the phase of the lowpass filter crosses 180 degrees

(where it passes from 180 to -180 degrees on the phase plot), a notch filter appears

in the magnitude response. Therefore, the phase characteristics of the lowpass fil-

ter affect the frequency response of the TF algorithm, which prevents implementing

bandstop filters using the TF algorithm. Further analysis of the phase characteristics

of the TF algorithm is required before the possible advantages of customizing H(z)

can be realized.
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3.4.3 Tracking Filter Algorithm using Finite Impulse Re-

sponse Filters

The output of a Finite Impulse Response (FIR) filter is solely a function of its input.

Thus, FIR transfer functions have only zeros, and no poles. They are always stable,

but require very high order to achieve tight filter specifications. They are not very

susceptible to nonidealities, such as quantization error, and can be designed to have

linear phase, which introduces no relative distortion[30]. Lowpass FIR filters were

simulated in the TF algorithm to examine their potential for creating tracking notch

filters. While they did produce notch filters, the bandwidth of these notches were

quite large. Even for 50-tap FIR filters, the -3 dB bandwidth was still over 170

Hz wide. Due to the poor frequency response characteristics and large computation

and memory requirements for such long filters (one multiplication and one memory

location is required for each tap), FIR filters were not used in the real-time TF system.

Simple, low-order IIR filters provided much sharper notches with significantly reduced

compution time.

3.4.4 Tracking Filter Algorithm using Infinite Impulse Re-

sponse Filters

The output of an Infinite Impulse Response (IIR) filter is dependent upon its input

as well as its past outputs. As such, IIR transfer functions implement both poles and

zeros, and can usually achieve frequency specifications with much lower order than

FIR filters, requiring fewer computations. However, they are not always stable (due

to the presence of poles), are much more susceptible to nonidealities such as quantiza-

tion errors, and can produce substantial nonlinear phase distortion[30]. Various IIR

lowpass filters were simulated in the TF algorithm to explore their ability to create

tracking filters. As described before, the high-order IIR filters did not fare well in

the TF algorithm due to the nonlinear phase distortions they introduced. Further-

more, actually implementing such filters on finite-precision microprocessors would

have proved very difficult due to their extreme sensitivity to quantization error. Be-



cause of these problems, high-order IIR filters were not utilized in the real-time TF

system. However, low-order (even first order) IIR lowpass filters did perform well,

producing narrow notches with high quantization error tolerances and little danger of

instability. Therefore, only first-order IIR filters were analyzed in the mathematical

simulation and used in the hardware implementations.

Ideal System Response to Constant Frequency

Figure 3-11 shows the ideal Bode response of a few typical first-order IIR lowpass

filters used in the TF algorithm. The values of a for these filters are .999 (solid

line), .995 (dashed line), and .990 (dotted line). The Bode responses that result when

these filters are placed in the TF algorithm with a modulation frequency of 1450.875

Hz (the LPF) are shown in Figure 3-12, again for a = .999, .995, and .990. The

frequency response shows a well-defined notch filter centered at the LPF frequency,

and the phase response passes from 180 to -180 degrees at the same frequency. The

reduced attenuation expected because of the location of the zeros is not noticeable

in this plot, primarily due to the high a values. For a close to one, the zero is so

close to the unit circle that differences in attenuation between the TF algorithm and

the LMS approach are very small. Figure 3-13 shows the Bode responses for the TF

algorithm with five notch filters (serial TF blocks) for constant center frequencies at

the LPF, LPF±LC1H, and LPF±LC3H frequencies with the same filters that were

used in the earlier figures. Note that for the wider bandwidth filters (lower a), there

is a nonzero attenuation at all points between the notch filters. The filters are so close

together that their attenuations combine, so that for a = .99, there is no less than

18 dB of attenuation over a 130 Hz bandwidth. Furthermore, the magnitude and

phase characteristics of are symmetrical about the frequency located at the midpoint

between the notches, regardless of how close the notches are placed to one another.

Both of these characteristcis are in contrast with the LMS algorithm, which always

has a point of zero dB attenuation between the notches. Also note that the phase

deviation from zero is substantially higher for the TF algorithm than for the LMS

algorithm.
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3.5 Variable Sampling Rate Filtering

The last algorithm to be examined is the VSR algorithm, where traditional, constant-

coefficient IIR filters are placed at appropriate frequencies, and the sampling rate is

varied proportionally to the RPM of the transmission. Because a digital system's

operating frequencies are a proportional to sampling frequency, the center frequencies

of the filters move as the sampling rate changes. As a result, the filters' centers are

proportional to the rotation rate of the transmission, and are thus always aligned with

the gear mesh noise spikes. This effect is strictly a result of discrete-time processing;

a continuous-time equivalent of this approach does not exist.

This approach has several advantages and disadvantages when compared with the

other two algorithms. First of all, it is by far the most computationally efficient of the

three algorithms, because the tracking portion of the system is controlled externally

of the microprocessor, by the sampling rate. The only calculations that need to

be implemented are the difference equations for the filters themeselves, typically four

multiplies using six memory locations for each second-order notch filter. Furthermore,

no sine or cosine signals need to be generated, a process that eats up substantial

processing time in the other two algorithms. As a result, the VSR is certainly the

easiest algorithm to implement on a microprocessor, and allows many more filters to

be implemented for the same amount of processing time. Furthermore, there are no

restrictions on the type of filters that can be used in the VSR algorithm, allowing

great flexibility in tailoring the frequency response of the adaptive filter.

However, the VSR algorithm also has a few drawbacks. First, it is not easy to

change the filter's characteristics. If a different bandwidth is desired, or if a notch

needs to be implemented at a different normalized frequency, then new filter coeffi-

cients must be-calculated, just as when designing any fixed-coefficient filters. While

doing so is not exceedingly difficult, it is certainly more complicated than changing

the value of a single parameter, which is all that is needed for the other algorithms$.

8To change the bandwidth, a can be altered directly in the LMS and TF algorithms, and the
center frequency can be modified simply by changing wo. Filters implemented in the VSR algorithm
have coefficients that are calculated based on these parameters, so it is not as easy to alter the filter



Second, the bandwidth of the filter will change as the sampling rate changes. This

occurs because all of the frequencies of the system are proportional to the sampling

rate. While this is a disadvantage when the noise spikes maintain a constant band-

width (as for the CH-47 transmission noise), it would be a certain benefit if the

bandwidth of the noise increased as the frequency of the noise increased as well. A

third potential drawback of the VSR algorithm is the requirement of a highly consis-

tent, high-frequency input signal to control the sampling rate. As discussed earlier,

the sampling rate must be more than twice the maximum desired frequency, allowing

plenty of bandwidth for the rolloff of a lowpass filter. This usually places the min-

imum sampling rate at or above 12 kHz. This is equivalent to 72,000 RPM, and it

is unlikely that any gear or shaft in rotating machinery nominally operates at such

a high rate9. Therefore, a slower frequency signal must be used as the input to a

phase-locked loop (PLL) used as a frequency multiplier, to generate a faster oscillat-

ing signal that can be used to drive the sampling rate. The potential problem with

such a solution is the fact that the PLL must interpolate between rising edges of the

slower frequency in order to generate a faster signal. Slight errors in the interpolated

period of the input signal can produce large errors in the sampling frequency, thus

moving the filter locations even when the transmission speed has not changed.

3.5.1 Transfer Function Derivation

In the interest of simplicity, the filters used in the VSR algorithm for this project are

simple second-order IIR notch filters. When a notch filter is placed at frequency fo

and the digital system uses a sampling rate of f,, the transfer function for the VSR

algorithm in the z-domain is the same as that of a traditional fixed-coefficient notch

filter,
Z - 2z cos( 24) + 1

GvsR(z) = (3.29)
z2 - 2 z cos(.) + a2

charcteristics.
9 1n fact, the fastest spinning device in the CH-47D's transmission is the engine itself, which turns

at a nominal 18,720 RPM.



The value 2fP is the normalized frequency of the notch filter, which corresponds tof.

an angle 0 in the z-plane10 . The notch is then designed by placing the zeros precisely

on the unit circle (radius = 1) at the angle 0,

z = e+±*j•, (3.30)

and placing the poles at the same angle but with a radius of a less than one,

z = ae±2w•d. (3.31)

The pole-zero plot for the VSR algorithm with a single notch at 1450.875 Hz, a

sampling rate of 16 kHz, and a = .8 is shown in the z-plate in Figure 3-14. The

zeros are located on the unit circle at the normalized angle 0, while the poles lie on

the same angle but are closer to the origin. As before, as a approches one, the poles

move closer to the zeros, and the bandwidth of the notch filter is reduced. Because

the zeros lie on the unit circle, the frequency response of the system has an infinite

null at that frequency. It is interesting to compare this pole-zero plot with the pole-

zero diagrams for the LMS (Figure 3-4) and the TF (Figure 3-9) algorithms. The

LMS algorithm preserves the position of the zeros (thus maintaining the infinite null)

but moves the location of the poles slightly. On the other hand, the TF algorithm

maintains the position of the poles but moves the zeros outside of the unit circle,

sacrificing the infinite null. This is not a major sacrifice for narrow bandwidth filter,

because the zero will be very close to the unit circle. For high a, the three algorithms

have basically the same pole-zero diagram, because all of the values converge at a = 1.

3.5.2 Design Considerations

Just as with the previous two algorithms, there are design tradeoffs to be made

with the VSR algorithm. The number of notches implemented, whether they are

10on other words, the filter is designed by the ratio of its center frequency to the sampling frequency.
In the LMS and TF algorithms, the filter was designed independent of frequency, and the ratio was
taken into account during generation of the sinusoidal and cosinusoidal reference signals.



0.5

0

-0.5

-1

-1 -0.5 0 0.5 1

Real Axis

Figure 3-14: Pole-Zero plot of GvsR(z) for a = .8

implemented in parallel or serial, and the type of filters used play important roles

in the characteristics of the system. The number of filters implemented is decided

by the same considerations outlined in section 3.3.3. However, the VSR algorithm

has processing requirements that are different from the LMS and TF algorithms. It

does not require a pair of generated sinusoidal reference signals, but it does utilize six

memory locations for every notch. Furthermore, the core computations required for

the VSR are substantially less complex than for the other two algorithms. Because

each notch can be implemented in fewer instructions, much more flexibility is available

in choosing the number of filters. In fact; it is more likely that the maximum number

of filters that can be implemented will be limited by memory constraints and not

processing speed.

Parallel or Serial Implementation

Multiple notch filters are not easily implemented in parallel using the VSR algorithm,

due to the serial input-output nature of the notch filter itself. There is no feedback or

feedforward signal where a subtraction takes place, as in the LMS and TF algorithms.

If a parallel approach were used to implement n notches, then the effectiveness (atten-
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uation) of each notch would be reduced to 1 its normal amount. Therefore, the VSR

algorithm cannot take advantage of parallel processing techniques. However, this is

not a significant drawback; because of its extremely low computation requirements,

it is unlikely to exceed the ability of even the slowest microprocessors.

Filter Considerations

Just as the previous two algorithms could be altered by changing H(z), the VSR

algorithm can be designed with any kind of filter". In fact, any FIR or IIR filter can

be implemented, and its frequency response characteristics will remain normalized to

the sampling frequency. In the case of notch filters, the important considerations are

the depth and bandwidth of the notches. As shown in the transfer function derivation,

the depth of the notch filters used in this project are infinite (because the zeros of the

transfer function were placed on the unit circle) and the bandwidth is controllable by

the parameter a. The VSR will utilize notch fiters with bandwidths slightly wider

than the filters described for the LMS and TF algorithms, in order to account for the

reduction in filter bandwidth that occurs when the sampling frequency decreases.

3.5.3 Variable Sampling Rate Algorithm using IIR Notch

Filters

One problem in analyzing the VSR approach is that it is extremely difficult to model.

Most digital systems are not designed to handle variable time increments for sampling,

and this is certainly true of computers. Due to the increase in numerical calculations

required to keep track of the time that has elapsed, simulating the ideal characteristics

of this approach in a numerical analysis program is difficult. Furthermore, if one

wishes to analyze the system's ideal response to recorded data, then the data has to

be sampled in a variable manner, just as it would be in the actual system. Again,

most digital systems are based on a uniform sampling rate, and getting the data to

"Furthermore, the filter is implemented in the traditional manner, so that phase distortions do
not affect the magnitude response of the filter, as they did in the TF algorithm.



the simulation would require building an interrupt-driven sampling system tied to the

rotor rotation speed - just the device needed for implementing the hardware algorithm

in the first place! Due to the time constraints on the project and the complexity of

such an endeavor, the VSR algorithm was not modelled by a computer simulation.

3.5.4 Simulation of System at Nominal Frequencies

Although modelling the VSR algorithm is difficult, it is fairly straightforward to use

standard techniques to obtain its normalized frequency response. This is because the

algorithm uses traditional, fixed-characteristic digital filters. These filter equations

can be entered into a numerical model to obtain the frequency response for a particular

sampling rate, f,. A real-time system utilizing the VSR algorithm can be expected

to have the same frequency response characteristics when it is driven at the same

frequency. To examine how the filters might change in frequency and bandwidth, f,

can be altered to obtain the system's frequency response for other sampling rates.

The VSR algorithm's Bode response is shown in Figure 3-15 for five notches with

a = .999 (solid line), .995 (dashed line), and .99 (dotted line). The notches are
centered at the nominal LPF, LPF±LC1H, and LPF±LC3H frequencies and the

sampling rate f, is the nominal rate of 16 kHz. The responses are very similar to

those of the TF algorithm (Figure 3-13), in that for low a, there is always a nonzero

attenuation between the notches. The phase deviation that occurs adjacent to the

notch frequencies is also similar to that of the TF algorithm, in that there is roughly

twice as much phase deviation as in the LMS algorithm for notches with similar

bandwidths, but the phase change from 180 to -180 degrees at the notch frequency

still takes place.
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3.6 Reference Signal Analysis and Obtaining Fre-

quency Information

All approaches examined in this project require a reference signal of some kind for

successful operation. The algorithms need a way to determine the rotational speed

of the transmission so that they may calculate the appropriate gear mesh frequencies

(LMS and TF algorithms), or to calculate the appropriate sampling frequency (VSR

approach). To this end, the LMS and TF algorithms utilize a Frequency Determi-

nation System, or FDS, while the VSR algorithm needs a Frequency Multiplication

System, or FMS. This section describes the criteria of the input signal, explaining

what characteristics were used to evaluate the signals on the CH-47D which could

potentially be used as reference signals.

3.6.1 Required Signal Characteristics

The reference signal must meet several criteria in order for it to be able to adequately

define the rotational speed and rate of change of the rotor system. The characteristics

used to measure the reference signal's performance can be termed resolution, update

rate, and accuracy.

Resolution

Resolution is the smallest change in rotation rate that can be discerned from the

signal; for continuous systems, resolution is usually infinite. However, for a digi-

tal system, the resolution is finite, allowing only discrete values for the calculated

frequency. A fine resolution implies that small rate changes in the signal can be mea-

sured, while a coarse resolution means that it takes a substantial rate change to occur

before the system will be able to recognize the change. It is clear that resolution is

very important, because if the rotation rate changes but the system doesn't respond

to it, the filter will be acting at the wrong center frequency, and its effectiveness at

suppressing the noise will be reduced. Therefore, the system must be able to dis-



tinguish a fine enough resolution that the rotation rate can be determined with a

small degree of uncertainty. The frequencies acted upon by the system remain very
close to the actual frequencies of the gear mesh, and the attenuation remains high.

If the resolution is too coarse, then the bandwidth of the filters must be increased to

compensate for the lack of certainty in the reference frequency.

The resolution of the signal depends upon the signal's characteristics as well as the

method used to determine the frequency of the signal. In a frequency determination

system, or FDS, there are two approaches to calculating the frequency of an oscillating

signal: direct pulse counting and gated pulse counting[21]. A sinusoidal (or other

periodic) signal can be converted to a square wave (a series of pulses), so that a

digital system may implement either of these methods.

Direct Pulse Count A direct pulse count (DPC) is performed by counting the

number of pulses that occur in a given amount of time. Knowing the number of

pulses n and the duration of the count (gate time) t, the frequency, F, of the signal

is easily calculated by

F = n. (3.32)
t

When performing a direct pulse count, the maximum error occurs when the rising

edge of a pulse occurs immediately before the counter starts or stops counting. In

the former case, the count is one less pulse than it should be, and in the latter, the

count is one more than it should be. These error bounds are used to determine the

resolution, R, of DPC by subtracting the smaller from the larger, such that

n+1 n-I 2n
R == -. (3.33)t t t

Thus, the resolutio'ni of DPC is independent of the frequency of the input signal, but

can suffer if the update rate needs to be high (t is small) or the frequency of the signal

is low (n is small). This method can experience overflow if there are not enough bits

in the counter to keep track of the number of pulses, but this only becomes a problem

for fast input signals and slow gate times.



Gated Pulse Count Gated pulse counting (GPC), on the other hand, finds the

time between N consecutive pulses by waiting for a rising edge, enabling a counter

driven by a high-frequency clock, waiting for an (N + 1)th rising edge, and stopping

the counter. If the frequency of the clock signal is C and the number of clock ticks

that are counted is n, then the frequency F of the signal is found by

F = NC (3.34)

The maximum errors of this method occur in the same situations as for DPC, that

is, the situation when almost n - 1 clock ticks occur but only n are read, and when

almost n + 1 clock ticks occur but only n are read. Again, the resolution is defined

as the difference between the maximum and minimum error cases,

NC NC 2NCF2

R = = (3.35)n-1 n+1 N2C2 - F2

This method has an advantage over DPC in that the resolution can be made as fine

as necessary by increasing the clock frequency C. However, it suffers from the fact

that the size of the counter is speed dependent, so that for a given number of bits,

there is a minimum and a maximum frequency that can be read before the counter

overflows or doesn't count at all, respectively. Generally speaking, C should be chosen

large enough that the maximum frequency can be read with fine enough resolution,

and then the required size of the counter is determined such that an overflow does

not occur with the the minimum frequency is applied. If the frequency range is very

large or the resolution requirements are very fine, this may demand a counter with a

prohibitively large number of bits.

Update Rate

Update rate is the rate at which accurate rotation speeds may be determined from

the reference signal. It is primarily dictated by the frequency at which the reference

signal oscillates, although a very busy or slow microprocessor could put limits on

the update rate as well. Clearly, a slowly oscillating signal has a low update rate,



because it takes a long time for a measurable change to occur in the signal. When

a signal oscillates rapidly, discernible changes occur much more quickly, implying a

faster update rate. The key concern that results from a slow update rate is that the

rotation rate of the rotors may change before the system can react to this change. If

this occurs, the filters remain stationary as the noise moves outside the bandwidth

of the filters. Therefore, the update rate must be fast enough that the digital system

can update the reference frequency before the gear mesh frequencies move outside the

filters' effective bandwidth.

Accuracy

Accuracy is a measure of the maximum difference between the calculated value of

the frequency and the actual rotation rate of the transmission, neglecting time delays

imposed by the digital nature of the system"2. This value is primarily dependent

upon errors in the digital components of the system (such as deviations in the oscilla-

tor's clock rate), miscorrelation between the reference signal and the actual gearbox

rotation rates (due to lags in the mechanical/electrical systems), and inconsistencies

in the analog circuitry used to make the reference signal readable by digital compo-

nents (i.e., the zero-crossing detector). These errors are hard to quantify, although

the errors in the circuit components will most likely be small. Generally, accuracy is

not as important a source of error as are resolution and update rate.

3.6.2 Implications for Reference Signal Selection

The maximum variance and rate of change of the transmission rotation speed will

dictate a large part of the design of the noise suppression system. In order to de-

termine exactly how these variation characteristics influence the performance of the

noise suppression system, their effects are quantified here. Let R be the resolution

of the FDS (all values are in Hz unless specified otherwise). Let U be its update

rate, and Ett.l its total error (akin to accuracy). The bandwidth of the filter will be

12These time delays are accounted for in the update rate of the FDS.



denoted by Bfilz,. Lastly, the maximum variation rate of the helicopter rotor will be

represented by V, in Hertz per second. Variables that are a function of frequency will

be followed by (F) 13. To derive the equations governing how these parameters affect

one another, consider first a system with infinite resolution (i.e., a system with com-

pletely continuous frequency information). In this case, the filter bandwidth will be

placed so that its center is perfectly aligned with the noise spike, and the system need

not update until the noise spike moves to the edge of the filter's bandwidth. This will

occur when the infinitely-thin noise spike travels one-half of the filters bandwidth:

U > 2V(F) (3.36)Bftei.(F)"

However, the noise spike is not infinitely thin, but instead has a bandwidth of Bi,,.

Thus, the update must occur before the edge of the spike meets the edge of the

filter, which is the same as subtracting half of the noise's bandwidth from the filter's

effective suppression range. Thus,

U 2V(F)(3.37)
Bf>B•.,c(F) - Bnoir•

Consider now the effects of an error in the calculation, such that the noise spike may

actually be located anywhere within "Etrosw(F) of the calculated frequency, so that

the necessary update rate becomes

2V(F)U> VF)(3.38)
U Bflf,(F) - B~,oi - Etat(F)

However, the FDS will not have an infinite resolution, due to its digital nature. Con-

sider the effect that finite resolution will have on the accuracy of the filter placement.

If the accuracy of the FDS is infinite (no error), but its resolution is only 10 Hz,

then the noise spike must lie within ±5 Hz of the frequency calculated by the system.

"aNote that the filter bandwidth, Bilt,,, is shown in the equations as a function of frequency.
This is true only of the VSR algorithm; for the LMS and TF algorithms, the bandwidth of the filter
is constant.



Thus, resolution effectively contributes to the error of the system such that

R(F)Eresoluton(F) = R(F)2 (3.39)

and the total error can be broken down into error due to resolution limits, Eesolution,

and the inherent error of the system, Einh,,et (see the above section on accuracy).

Thus,

Etotai(F) = Einterent(F) + E,,esoution(F), (3.40)

and the actual update rate required to ensure that the notch filter always suppresses

the gear mesh noise is found by combining (3.39) and (3.40) into (3.38), which leads

to

U > (3.41)i Bit,,(F) - Bnoi - Einhere,,,t(F)- ½R(F)

The parameters U, V, Bnie, Einh,,et, and R are defined by the rotation charac-

teristics of the system to be suppressed (in this case, the CH-47D transmission) and

the reference signal. Thus, the primary design choice is the filter bandwidth. For this

reason, Equation 3.41 is rearranged to solve for Bfitter, such that

2V(F) 1
Bfitt, + Bnoie,, + Einherent(F) + R(F). (3.42)

U 2

Assume that the bandwidth of the noise is 2 Hz and the inherent error is 1 Hz. Also

assume that the frequency of the reference signal is 1180 Hz with a maximum variation

of 14% (166 Hz/second)' 4 . To minimize the filter bandwidth required when using the

DPC algorithm, combine equations (3.42) and (3.33) and take the derivative of the

result with respect to t, and solve for the point of zero slope,

dBfie = 2V(F) + = 0. (3.43)
dt t2

14These values approximate the parameters of the signals actually used for the noise reduction
system.



The second derivative with respect to t is

d2 Byiit, .2ndt 2 Bf = _ 2n(3.44)dt2 t3 '

which is always positive, so that the zero point of the first derivative identifies a

minimum. Thus, 3.43 can be solved to find the update rate that minimizes the

necessary filter bandwidth, such that

1 2V(F) (345)U =, (345)

and solving results in U = 18.2 Hz. Using this update rate to calculate the necessary

filter bandwidth results in

(2)(166) 18.2
Bitet= +2 +1+ = 30.3 Hz(18.2) 2

This is a rather large bandwidth, considering that some of the notches will be only

27 Hz apart to begin with. As it is the smallest bandwidth attainable, DPC does

not yield a high enough resolution/update rate combination to accurately determine

the frequency of the reference signal. Therefore, an analysis of GPC is warranted.

Unfortunately, the derivative of Bilt,,. with respect to t must be solved numerically

when using the resolution equation for GPC. Furthermore, the update rate of GPC

must be a multiple of the duration of a pulse of the input signal, Z, which leaves only

a few discrete values for the update rate. If the straight 1180 Hz signal is used for the

FDS, an update rate of .85 ms results. Given the inertia of the transmission system

(including gears, rotors, shafts, and engines), it is clear that not much change will

take place in such a short period of time. Furthermore, the counters used in the FDS

are limited to a 20 MHz clock signal, which would result in a counter value of only

14 bits. In order to increase the number of bits of resolution, the update rate can be

decreased by skipping N pulses. If N = 6, then the update rate increases to only 5.1

ms, and a slower clock frequency can be used. Choose a 10 MHz clock frequency, and



the resolution of GPC is

R - (2)(6)(106)(11802)R = .0464 Hz.
62(106)2 - 11802

Then, the minimum bandwidth of the filter is

(2)(166) .0464
Bfter= 180 +2+1+ =4.7 Hz.

6

This is certainly an acceptable filter bandwidth, even when implementing notch fil-

ters that are fairly close together s5 . The only remaining concern is that there are

enough bits in the counter to prevent an overflow from occurring. The number of

bits necessary for these assumptions can be found by finding the number of oscillator

clock cycles that will occur in the time that passes between six rising edges of the

reference frequency. Thus,

CN (106)(6)CountsMAX = = (10)(6) 50,848.
F 1180

This many counts can be held in 16 bits (216 = 65,536). While this is not a small

counter, it is not prohibitively large, either. In fact, single-chip counters are available

that contain more than 8 bits, so that this counter could be implemented with only two

chips. The high oscillator frequency and counter size are the only real drawbacks of the

GPC approach, but these are the tradeoffs made to obtain the resultant combination

of high resolution and high update rate.

15Note that all filter bandwidths calculated in this section were based on placing a notch filter
at the same frequency as the reference signal, 1180 Hz. Because the parameters are a function of
frequency, the necessary filter bandwidth increases if the notch filter is to be placed at a higher
frequency. For example, to guarantee suppression of the LP2H+US3H frequency of 4407.375 Hz, V
becomes 617 Hz per second and R increases to .0869. This results in a necessary filter bandwidth
of at least 9.5 Hz for the same GPC-based FDS.



Chapter 4

System Realization

4.1 Choosing the Reference Signal

As described in the previous chapter, all of the algorithms explored in this project re-

quire some means of determining the rotation rate of the transmission. Several signals

were considered as possible sources for providing this signal, and the characteristics

of these signals are discussed in the following sections.

4.1.1 Transmission Accelerometer

Perhaps the most obvious means of measuring the rotation rate is to add an ac-

celerometer to one of the gears in the forward transmission. This approach has an

advantage in that it is connected directly to the component that is to be measured, so

that there would be virtually no error due to indirect measurement of the transmis-

sion rotation rate. However, adding or modifying any hardware on a CH-47 is costly

in terms of money, time, and manpower. Due to the relatively short-term nature of

the project, and the relatively tight constraints of the IR&D budget, making changes

to an existing CH-47 was not deemed feasible. It is worth noting that the CH-47E

already has such a device, and the rotor rotation rate is one of the many items that

is sent across the helicopter's MIL-STD-1553 data bus. However, the update rate of

this signal is apparently only 20 Hz[20], so it would have to have a high resolution



and accuracy to perform better than the rotor tachometer signal chosen for use in

the CH-47D. If this is the case, then a noise reduction system implemented on the

E model of the helicopter could use the on-board data bus rather than obtaining a

reference signal from an analog source.

4.1.2 Blade Tracking Signal

Of the signals already present on the helicopter, the first considered as a possible

reference signal was the blade tracking signal. Magnetic strips (called strikers) are

placed on the underside of the rotor blades near the rotor shaft. These strips pass

over a magnetic phase detector as the rotors spin. This action interrupts the phase

detector's magnetic field, creating an electronic pulse (approximately sinusoidal) each

time a striker passes it. The result is a series of pulses whose frequency is directly

related to the rotor speed.

There were several drawbacks to utilizing this signal as the reference. First, the

rotor rotation speed (on the D model) is 3.75 Hz, a very slow rate. Thus, with three

rotor blades, the output of the magnetic phase detector includes three pulses per

revolution, and thus has a frequency of 11.25 Hz. As discussed in section 3.6, a signal

with such a low frequency puts severe restrictions on the capabilities of the FDS, and

would require notch filters of very wide bandwidth. Second, the strikers are placed

only to indicate which rotor blade is passing; as such, the time of its passage is not

important, and the strikers are hand-glued to the rotors. This results in inconsistent

placement, which would further increase the error of the FDS. Lastly, one of the

blades has two striker plates rather than one1 which would further complicate the

FDS. Because of these difficulties, it was concluded that the blade tracking signal

would not provide adequate resolution, update rate, nor accuracy for the FDS.

'This is how the test engineers determine which blade is passing: one of the blades produces a
double pulse (blade 1) and the subsequent pulses are rotor blades two and three. The blade tracking
signal is primarily used for balancing the rotors so that they all fly true, which requires the ability
to determine which blade is out of balance.



4.1.3 Aircraft Power

The standard aircraft alternating current power is 3-phase, 400 Hz power at 117 volts.

This power comes from generators attached to the main engines. Because the engines,

drive shafts, transmission, and rotors are all directly connected, the engine speeds vary

with the rotors, and thus the transmission. Therefore, it would be possible to use

the nominally 400 Hz signal as the reference signal for the FDS. However, the only

requirements placed on the power signal are voltage, rate, and current specifications.

As such, the signal does not have to be a clean sinusoidal signal, and the accuracy of

the frequency measuring system would be substantially reduced by any high frequency

noise or DC variations. While some of these problems may be lessened by the use of

lowpass filters or other techniques, the noisy power signal was not used for the FDS

in favor of finding a better reference signal source.

4.1.4 Oil Pump Ripple

The oil pump in the CH-47 is driven by a pickup gear off of the forward transmission.

Thus, the pump has a cycle rate tied directly to the rotation rate of the transmission.

This periodicity could be measured by the addition of a transducer in the oil line to

observe transients in the oil pressure. While this is certainly a potential solution, the

time and financial constraints imposed by the project did not allow modifications to

aircraft hardware.

4.1.5 Rotor Tachometer Signal

Another signal readily available on the CH-47 is the rotor tachometer signal. This

signal is created by a generator in the combiner transmission, and is used to drive

the rotor tachometer in the cockpit. This analog gauge displays the rotor rotation

rate, in percent, so that the pilot can monitor engine speed. If the rate moves outside

the operating range, the pilot can alter the power to the transmission to bring the

rotation rate back near nominal.

This signal holds great promise for the FDS. The signal is a relatively low-noise



sinusoid with low DC variance, and has a nominal frequency of 1183.17 Hz. The

generator's rotor has six strikers, similar to those used for the blade tracking signal,

and a single magnetic pickup that detects the passage of each of these strikers. The

rotor turns at a nominal 11831.7 RPM, so that six pulses per revolution and sixty

seconds per minute translate to an 1183.17 Hz output frequency. While this frequency

is high enough to achieve substantial resolution, update rate, and accuracy, there are

still two concerns that need to be addressed.

The first is the potential error that could result if the six strikers are not evenly

spaced around the rotor. If their spacing is not uniform, then the resulting sinu-

soid will have slightly nonuniform periods. This nonuniformity could produce errant

frequency measurements, and result in misplaced filters. However, due to the tight

manufacturing tolerances placed on spinning parts, this error was assumed to be

negligible.

The second potential source of error stems from the fact that the measurement

system will not be measuring the rotation rate of the noise source directly. Because

it is the forward transmission that generates the gear mesh frequencies, and not the

combining transmission where the rotor tachometer signal is generated, there is a

potential discrepancy between the rotation rate of the gears in the transmission at

the front of the helicopter and the rotation rate of the combining transmission, which

is located near the engines in the aft of the helicopter. Any discrepancies will result

in an error in the calculated forward transmission rotation rate. This potential error

is difficult to quantify, but the whole drive system of the CH-47 has to meet extreme

tolerances from engine to rotor in order to ensure a long service life. Furthermore, the

drive system always rotates in the same direction, and when in normal operation there

is always torque applied to the gears2 . Therefore, it is assumed that discrepancies

between the rotation rate of the generator and the rotation rate of the transmission

2This is true in all operating conditions except for autorotation, where the engines are discon-
nected from the drive shafts at the combining transmission. This is a fairly rare occurrence which
produces large variations in rotation speed. Because autorotation presents a more difficult tracking
problem than normal operation, and because it is not a common occurrence, the noise suppression
algorithm was not designed to work in this case.



are negligible and can be neglected for purposes of determining the rotation rate of

the forward transmission.

4.2 Data Recording

In order to allow testing of the algorithms in a laboratory environment where con-

ditions could be controlled, the ambient cockpit noise, the interphone signal, and

the rotor tachometer signals were recorded. No previous recordings were adequate

for this purpose, because there were no synchronized recordings of the cockpit inter-

phone signal and the rotor tachometer signal. These two signals must be recorded

simultaneously in order for any of the algorithms to track the transmission rotation

rate and thus the gear mesh frequencies over time. To provide the maximum flexibility

in testing the algorithms, four signals were desired even though only two are needed

to run the noise reduction system. These four signals were the pilot's microphone, the

ambient noise in the cockpit, and the left and right rotor tachometer signals. In order

to obtain synchronized recordings, a B&K four-track flight-worthy recorder was used

to obtain the data. The first track was configured to record the pilot's microphone,

the second was connected to a microphone placed in the cockpit, and the third and

fourth tracks recorded the two rotor tachometer signals. A schematic showing the

connections between the recorder and the helicopter is shown in Figure 4-1.

For the pilot's microphone, an interface had to be built to convert the microphone

adapter plugs (type U-93A/U) to a BNC-type connector. The ambient microphone

was chosen to be a B&K instrumentation microphone, already designed for use with

this recorder. It was mounted above, behind, and to the right of the copilot (i.e.,

near the middle aft portion of the cockpit), taped to a flexible lifting strap in order to

help isolate it from the vibrations of the frame of the cockpit. The rotor tachometer

signals were accessed at terminal blocks in the left and right avionics bays of the

helicopter, located immediately behind the cockpit. An interface cable ending in

a BNC connector was constructed for each rotor tachometer signal. All of these

components were then connected to the recorder, which was strapped to a seat in
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B&K Microphone (Cockpit)

Figure 4-1: Schematic of Recorder Connections

the front of the cabin, immediately behind the avionics bays. The microphone was

calibrated before the flight using B&K calibration equipment, and proper recording

levels for the four signals were set by adjusting the attenuation of each channel while

the helicopter was undergoing preflight checks on the ground.

4.3 Simulation and Modelling

Perhaps the best way to test and see if a digital signal processing system will work is

to model it in a computer simulation. The Matrix Laboratory (MATLAB) software

provides an excellent environment for working with large arrays of data, and has

many built-in signal processing functions required for implementing and analyzing

the noise reduction systems described. Therefore, before attempting real-time tests

with hardware systems, the LMS and TF algorithms were modelled using MATLAB

on Athena, M.I.T.'s computer network. The VSR algorithm was not implemented

due to the variable nature of the sampling rate, as explained in section 3.5.3. The

modelling approaches and methods are too complex to detail here, but the primary

concerns about the implementation and validity of the model are discussed in the
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following sections3

4.3.1 Implementation Considerations

In order to accurately model the system, care must be taken in converting the real-

time design to a software-based simulation. Several concerns had to be addressed in

order to gain confidence that the model accurately represented the real-time system.

Calculating the Frequency of the Rotor Tachometer Signal

The real-time system calculates the frequency of the rotor tachometer signal by mea-

suring the time it takes for N rising-edge zero-crossings to occur. Thus, E is the

rotation rate of the engine (six pulses per revolution). Once this rate has been deter-

mined, the rotation rate of any item in the gearbox can be found by multiplying that

rate by a constant. Furthermore, the gear mesh frequencies are linearly related to

the rotation rates of the gears, so any mesh frequency can be calculated in the same

manner. However, determining the times of the zero crossings is not easily done in a

simulation, because of the necessity to keep the main and reference inputs synchro-

nized. In order to maintain the correlation of the two signals, they must be digitized

simultaneously4 . The main problem of this approach comes from the fact that the

zero-crossing is no longer well-defined once digitization has occurred (only rarely will

the sample time exactly coincide with a zero crossing). In order to determine the

point of zero amplitude, a linear interpolation algorithm was used to estimate the

actual times of the zero-crossings by interpolating between successive negative and

positive sample values. The time between two estimated zero crossings was then used

in the same manner as the time between rising edges found by the analog frequency

measurement system. A graphic example of this interpolation is shown in Figure 4-2

3Incidentally, the simulations of the algorithms are what produced the ideal Bode responses
shown in the previous chapter. MATLAB provided the capability to obtain frequency responses not
limited by hardware considerations, such as finite precision arithmetic.

4It would be possible to construct a system to digitize the frequency of the signal rather than the
signal itself, much like the actual hardware, but it is easier to calculate the frequency using software
algorithms.
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Figure 4-2: Linear Interpolation of Digitized Rotor Tachometer Signal

with a digitized rotor tachometer signal, where the input sinusoid is 1180 Hz, sampled

at 16 kHz with 16-bit precision. The solid line represents the digital sampled values

(with no error), the dashed line shows linear interpolations between these values, and

the dotted line is the actual continuous sinusoid. The plus symbol near the center of

the figure denotes the actual zero crossing of the sinusoid, and it can be seen that the

dotted line does not pass exactly through its center. This error, introduced by the

linear interpolation, must be analyzed to ensure that it will not invalidate the results

of the simulation.

This approach has two inherent sources of error that are not present in the ana-

log frequency measurement system (although both are susceptible to noise and DC

variations). The first is evident from the fact that the sinusoid is not precisely lin-

ear in the region between the negative and positive sample values. As a result, the

linear approximation is inaccurate, and the actual location of the zero-crossing will

be different from the calculated location. In a worst case, the error due to the non-
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linearity is about 8.6 * 10-3% 5 for an 1180 Hz signal sampled at 16 kHz, implying a

frequency error of about .1 Hz. The second source of error comes from the fact that

the rotor tachometer signal has already been sampled, and therefore the magnitude

of the sample points has been quantized to the accuracy of the digitization. In this

case, the rotor tachometer has been quantized to 16-bit accuracy. Therefore, the

actual magnitude deviates by no more than -L from the sampled magnitude (one bit

is used as a sign bit). If both values have maximum error in the same direction, then

this adds 3.5 * 10-3% error. The combined effects of these errors must be taken into

account to ensure that the results of the simulation are not jeopardized.

Reducing Noise in the Rotor Tachometer Frequency

Figure 4-3 shows the frequency of the rotor tachometer reference signal as calculated

by the simulation. The calculated frequency jumps around erratically by about 5

Hz, indicating a random error of approximately .42%. Clearly, this error is much

greater than the predicted error of 1.15 * 10-2%, or .137 Hz. Therefore, the jumps in

frequency must be due to inconsistent playback tape speed6 . Lowpass filtering this

signal will remove the rapid changes in frequency, resulting in a weighted average of

the calculated frequency. Using the output of the lowpass filter should reduce the

error introduced by the tape player, and produce a more accurate estimate of the

actual rotor tachometer frequency. The result of such a lowpass filter applied to the

signal of Figure 4-3 is shown in Figure 4-4. From this figure it can be seen that many

of the high frequency components of the signal have been eliminated, and only slow

variations remain.

5If both points are equidistant from the actual zero crossing, the nonlinearity cancels due to the
symmetry of the sinusoid. If one point is very far away and the other is close, then the error is low
because the zero crossing is close to one of the data points. Solved numerically, the maximum error
occurs when one of the sampled values is about 21% away from the actual zero crossing.

8 This is likely, because the digitization was performed using a home stereo cassette player, which
does not need to have a motor accurate to frequencies in the MHz range.
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4.3.2 Simulation of the Least Mean Squared Algorithm

Figure 4-5 shows the simulated 5-Notch LMS algorithm's frequency response to the

recorded data of the CH-47D 7 in steady, forward flight with a speed of .006 (the dotted

line is the input frequency spectrum, and the solid line is the frequency spectrum of

the output). Note that at the frequencies of the noise spikes, the signal has been

attenuated by 20-40 dB, bringing their spikes' magnitudes down to (or below) the

background noise level. Figure 4-6 shows the frequency response of the same system to

a recording of the signals at takeoff, when the rotor rotation rate changes dramatically.

Note how, even when the gear mesh frequency is rapidly changing, a high-amplitude

plateau is visible near the nominal gear mesh frequency. It is clear from the figure that

the LMS algorithm has successfully tracked the changing frequency because it reduced

the plateaus by approximately 10-20 dB at the LPF and LPF+UC3H frequencies. It

does not appear to have performed as well at the LPF±UC1H gear mesh frequencies,

providing only about 5-10 dB of attenuation. Note, however, the minimal effect of the

algorithm between the noise spikes. This is a result of the zero dB point that exists

between the notches seen earlier in Figure 3-6. The algorithm does a good job of

attenuating the desired frequencies without affecting the neighboring signal content.

4.3.3 Simulation of the Tracking Filter Algorithm

Figure 4-7 shows the frequency response of a simulated 5-Notch TF system to the same

in-flight recordings that were used for Figure 4-5. Again, note that the magnitude of

the frequency spikes has been reduced by 20-40 dB, enough to bring the magnitude

of the noise spikes to or below the background noise. Figure 4-8 is the frequency

response of the same system to data recorded from the CH-47 at takeoff. Even at

takeoff, when the frequencies of the gear mesh are changing rapidly, the TF system

7 For this and the next three plots, the input to the system is actually the ambient microphone in
the cockpit, and not that of the cockpit interphone system. The reason this input was used is because
it is much easier to identify the noise spikes from the gear mesh frequencies. Therefore, it is easier
to observe whether or not the algorithm is successfully suppressing the appropriate frequencies. If
attenuations are seen in the desired frequency bands, then similar reductions can be expected when
using the interphone system as an input. The noise spikes simply show up better when the ambient
microphone is used.
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has sucessfully reduced the noise spikes present in the original spectrum by 10-20 dB.

Note that, unlike the LMS algorithm, there is substantial attenuation at frequencies

between the noise spike locations. This is due to the fact that neighboring notch filters

combine their attenuations for these nearby frequencies. Thus, there is a large range

of frequencies with a minimum attenuation that is greater than zero (see Figure 3-13

and its associated description).

4.3.4 Simulation of the Variable Sampling Rate Algorithm

For reasons previously explained (see Section 3.5.3), the VSR algorithm could not be

simulated, so no results are available with recorded data. However, the normalized,
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ideal frequency responses are shown in Section 3.5.4.

4.4 Real-Time Implementation

Real-time LMS and TF algorithms were implemented on two different DSP micropro-

cessors, the Texas Instruments' TMS32020 and the Motorola DSP56001, but due to

unforseen hardware limitations with the DSP development system, the VSR algorithm

was not implemented. Because the standard components of any DSP system are an

ADC, a DSP microprocessor, a DAC, and appropriate lowpass filters, the frequency

measurement circuitry used to obtain the transmission rotation rate is explained in

the following sections.

4.4.1 Frequency Determination System for LMS and TF

Algorithms

A block diagram of the FDS is shown in Figure 4-9. The incoming sinusoidal reference

signal is converted to a TTL square wave through a diode-capacitor network. Once

the start count signal has been given, the counter chip is enabled, and the rising

edges of the input are shifted into a shift register. After the (N + 1)th rising edge

passes (N + 1 rising edges are equivalent to N full pulses), the output of the shift

register turns off the counter and indicates that the count has been completed. The

value stored in the counter is sent to the DSP chip, the counter and shift register are

cleared, and the process begins again.
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4.4.2 Frequency Multiplication System for Variable Sam-

pling Rate Algorithm

The VSR algorithm is based on the premise that the reference signal can be used to

drive the sampling frequency of the VSR system through the use of interrupts. In

order to do this, a high-frequency, uniform-period reference signal is required. Because

the rotor tachometer signal is only around 1180 Hz, and the sampling frequency needs

to be in the 16 kHz range, the rotor tachometer signal must be used as the input to

a phase-locked-loop (PLL) which multiplies its frequency.

The block diagram for the FMS is shown in Figure 4-10. The incoming reference

sinusoid is converted to a TTL square wave through a diode-capacitor network. This

square wave is then fed into one of the two inputs of the phase comparator of the

PLL. The phase comparator determines the difference in phase between this signal

and a fedback signal, and outputs a voltage proportional to this phase difference.

This voltage is passed through a narrowband lowpass filter to eliminate any high-

freqency components, and is used to drive a voltage controlled oscillator. The output

of the VCO is fed through a divide-by-n counter and back into the other input of the

phase comparator. Because the PLL matches the phase and frequency of the phase

comparator's input signals, the output of the VCO is a square wave at n times the

input frequency. This signal can be used to trigger the sampling interrupts for the

DSP chip, so that the sampling rate is always proportional to the frequency of the

rotor tachometer.

The most critical aspect of the PLL frequency multiplier is the lowpass filter

between the phase comparator and the voltage controlled oscillator. This is because

the PLL's output between rising edges of the input must be as uniform as possible

to ensure a steady sample rate. In order to obtain this consistency, the lowpass filter

must have extremely narrow bandwidth in order to filter out the periodic pulses in

the output of the phase comparator. Once the components for the lowpass filter

have been properly chosen, however, the output of the frequency multiplier holds

quite consistent over its n samples. The following section quantifies the error of the
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frequency multiplier and its effects on the VSR algorithm.

Error Analysis

A divide-by-16 counter was used for analysis of the frequency multiplier, producing

a nominal sampling rate of (16)(1183.17) = 18930 Hz. The higher the multiplication

rate, the greater the test of the PLL and its lowpass filter; reducing the multiplication

factor only improves the accuracy of the frequency multiplier. The input frequency

was held at 1183 Hz by using a precision sine wave generator. The output of the PLL

was examined using a Hewlett-Packard 1501 logic analyzer, which provides timing

information to an accuracy of 10 ns. The times between rising edges of the multiplied-

by-16 frequency were measured to examine the variations that occurred between

rising edges of the output signal. Several data runs were collected, and the error

in the output frequency was found to be no more than .44%. This translates into a

variation of up to 6.33 Hz at the LPF frequency. This error must be accounted for

in the bandwidth of the notch filter, because there is no way to compensate for this

error without redesigning the PLL. This error, EPLL(F) can easily be included in the

analysis of section 3.6 by modifying equation 3.42 such that

2V(F)
> Bilt(F) - Bnoise - Einherent - EPLL - R( (4.1)
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4.4.3 Implementation on Texas Instruments TMS32020 Mi-

croprocessor

Boeing had a VME-based TI TMS32020 development system on-hand, so the first

real-time system ran on that processor. The LMS and TF algorithms were successfully

implemented, with satisfactory results. The primary drawback to utilizing this chip

was its long instruction cycle (200 ns, permitting only 312 instructions when sampling

at 16 kHz) and its limited instruction set. Problems with the VME interface, and the

fact that four separate hardware systems had to be integrated in order for the noise

suppression system to operate, hindered development and further limited the speed of

the system. These difficulties combined to result in a limited noise reduction system,

one that could implement only two notch filters in the case of the LMS algorithm,

and only one filter in the case of the TF algorithm. The VSR algorithm was not

implemented because bus errors in the VME data transfer hindered development of

an FMS.

Nonetheless, the initial results were encouraging, demonstrating that the LMS and

TF algorithms did work successfully on real-time hardware. Narrowband attenuations

of over 30 dB were achieved with both algorithms, promising excellent results with a

more powerful microprocessor.

4.4.4 Implementation on Motorola DSP56001 Microproces-

sor

To overcome the limitations of the TI-based system, Boeing purchased a PC-based

development system for the Motorola DSP56001 from Ariel Corporation (the PC-56)

to continue work on the project. The 56001 purchased had an instruction cycle of only

60.5 nanoseconds (1033 instructions when sampling at 16 kHz), and a more advanced

architecture that supported a much more expansive instruction set. Furthermore,

the 56001 has a 24-bit architecture (as opposed to the 32020's 16-bit design), which
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allows much greater precision for numerical calculations'. Also, the PC-based system

provided better debugging capabilities, and included on-board ADC and DAC units,

simplifying the system and its development.

The TF and LMS algorithms, along with the FDS, were successfully implemented

on the DSP56001 system. The details of implementation are too extensive to explain

here, but the variables used in testing the algorithms are presented at the beginning

of the next chapter.

The VSR algorithm was not implemented on the DSP56001 microprocessor either,

due to unforseen hardware limitations of the PC-56. A normalized-frequency VSR

algorithm was implemented, however, but because the sampling rate could not be

varied, the filters were stationary and the system could not be tested with any of the

recorded data.

'The dynamic range supported with 16 bit arithmetic is 96.3 dB, whereas 24 bits spans an
entire 144.5 dB. While the data was not sampled with 24-bit accuracy, the extra bits provided
better overflow protection, higher precision data storage, and more accurate results from calculations
internal to the microprocessor.
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Chapter 5

Results, Conclusions, and

Recommendations

5.1 Implementation

The LMS and TF algorithms were implemented in real-time hardware, in many dif-

ferent configurations and with different input signals. Throughout the testing, the

microprocessor ran at 33.6 MHz, and used 14-bit ADCs and 14-bit DACs, main-

tained 24-bit accuracy throughout compuations and data storage, utilized a 24-bit,

256-value sine lookup table, and a sine increment value that had seven integer bits

and 17 fractional bits. The varied parameters included:

1. Sampling rate of 12 or 15.9 kHz.

2. Frequency Determination System utilizing a 10 MHz oscillator, measuring the

time for six pulses to pass, or one using a 20 MHz oscillator, counting the

duration of three pulses.

3. Reference sine and cosine signals generated by one of two methods: direct table

lookup or linear interpolation. The direct table lookup method simply utilized

the closest value in the table as the signal amplitudes, whereas the interpola-

tion method calculated the magnitudes of the reference signals by interpolating

between the two closest values in the table.
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4. Bandwidth of filters (integration constant 0 of the LMS algorithm, lowpass filter

coefficients a and # of the TF algorithm).

5. Number and location of filters (i.e., how many filters were used and which gear

mesh frequencies were suppressed).

6. Notch filters of identical bandwidths, independent of the filter center frequency,

or filter bandwidths proportional to the center frequency.

7. Using a sinewave frequency generator as the reference input to the FDS, or

driving the FDS with the actual rotor tachometer signal.

8. One of four different inputs: sinusoidal (to obtain frequency responses), speech

with no noise, ambient cockpit noise, or the cockpit interphone signal (speech

plus noise).

The TF algorithm was implemented in both serial and parallel versions, while the

LMS algorithm was implemented only in the standard parallel version. As expected,

the parallel TF algorithm worked fine for a single notch filter, but did not succeed

when two or more notches were placed in close proximity (see section 3.4). The VSR

algorithm was implemented in a frequency-normalized version, also at 12 and 15.9

kHz'. It was tested with sinusoidal inputs alone, in order to obtain a normalized

frequency response, and a speech without noise signal. Because the filters could not

track a reference signal, testing with the ambient noise or interphone was not done.

Its frequency responses were practically identical to those of the TF algorithm, just

as predicted from the simulation. As a result, it is expected that a fully implemented

VSR algorithm would have characteristics very similar to the TF algorithm, but with

substantially reduced computation requirements.

1Due to an unforseen hardware limitation, the DSP development system was unable to implement
the VSR algorithm fully. The sampling rate could not be controlled externally without an extremely
accurate PLL with an output frequency in the MHz range, and several modifications to the hardware
of the system itself.
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5.2 Results

The LMS and TF systems were found to have the following characteristics:

1. The systems were successful in implementing notch filters whose center fre-

quency varied with the frequency of the reference signal, in this case, the rotor

tachometer signal.

2. The systems (with filters of adequate bandwidth) were able to attenuate most

of the noise spikes selected for suppression even as their frequencies varied over

time. However, algorithms that implemented filters with identical bandwidths

did not perform as well as the proportional-bandwidth systems when attenuat-

ing high frequency noise. This was because the filter bandwidth adequate for

suppressing the LPF was too small to guarantee suppression of the more rapidly

changing high frequencies, and the amplitude of the high-frequency noise spikes

would vary over time.

3. Alternating the sample rates (between 12 kHz and 15.9 kHz) showed no differ-

ence in performance, except for the fact that the faster sampling rate resulted

in less time available for computation, thereby reducing the maximum num-

ber of filters that could be implemented. Also, note that a and 3 had to be

changed proportionally with the sampling rates in order to achieve equivalent

attenuation effects.

4. The 20 MHz FDS allowed slightly smaller bandwidths to be used for the filters

when compared with the 10 MHz FDS, while still maintaining the tracking

capability. With the proper filter design, both performed adequately and were

able to attenuate the noise spikes as their frequencies changed.

5. Little appreciable distortion occurred in speech signals for systems with few fil-

ters and narrow bandwidths. Filters with extremely narrow bandwidths caused

a loud ringing when the speech contained rapidly-changing signals, but the

ringing died away quickly.
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6. Too many filters with too wide a bandwidth caused substantial degradation

of speech signals. The wide-bandwidth systems also experienced ringing, and

while the volume of the ringing was lower, it persisted for a longer period of

time.

7. Utilizing the less accurate direct lookup method for reference signal genera-

tion resulted in substantially worse output effects than the more accurate linear

interpolation method. Using the interpolation method resulted in a clean out-

put on an oscilloscope, and largely noise-free audible output. When the direct

lookup method was used, the reference signals showed a substantial amount of

high frequency noise on the oscilloscope (with a magnitude of roughly 10% that

of the input), and resulted in degraded performance that was easily heard. It

was clear that the algorithms did not track the gear mesh frequenies well when

using the direct lookup approach, due to the distortion present in the reference

signals.

8. The effectiveness of a notch filter in attenuating a noise spike was dependent

upon how accurately the notch was placed with respect to the noise. Due to the

notches' extremely narrow bandwidth at high attenuations, a slight placement

error resulted in a very noticeable audible difference. Furthermore, when the

filter bandwidth was too small, the system could be heard attempting to track

the reference frequency. If the reference frequency changed quickly and the FDS

was not able to keep up, the amplitude of the noise spikes increased (the noise

spike moved outside the high-attenuation range of the filter) until the system

could adapt and realign the notches with the noise spikes.

Several unanticipated characteristics of the CH-47D interphone and its signal noise

also became apparent during the real-time tests. These are described below.

1. The loudest noise spikes did not always occur at the calculated gear mesh fre-

quencies described in Chapter Two. All of the calculated LPF and LCF har-

monic frequencies were noticeable, from the LPF-LC3H to the LPF+LC3H.

117



However, there were several frequency spikes between the harmonics, which

dominated the frequency spectrum once the others had been suppressed. Fur-

thermore, there were several noise spikes near the UP1H frequency that were

not linear combinations of the UPF and the UCF.

2. Several high-magnitude noise spikes were present in the interphone system that

were apparently not generated by the forward transmission gear mesh'. These

spikes appeared at frequencies near 4720, 4732, and 4743 Hz, and had magni-

tudes approaching that of the LPF frequency. Their source is unknown.

3. When the pilot or copilot used the radio to transmit outside of the helicopter

(rather than simply communicating with someone else in the helicopter), the

impedance of the interphone line changed. This altered the characteristics of

the interphone frequency spectrum. From the signals recorded, the transmitted

signal seemed to have less of a noise problem than the internal communication

system had when the signal was not transmitted, although this may have been

an illusion resulting from the lower overall magnitude of the transmitted signal.

In addition to the above implementations and analyses, the VSR algorithm was

implented in a normalized-frequency form, such that fixed-coefficient filters were used

with a constant sampling frequency. This system was tested at 12 and 15.9 kHz sam-

pling rates with sinusoids, and speech alone as inputs. The system had a frequency

response almost identical to that of the TF algorithm, and when speech was used as

its input, produced an output that sounded the same as that of the TF algorithm.

Due to the fact that the VSR algorithm could not be tested with a variable sam-

pling rate, and the system's extreme similarity to the TF algorithm, the following

explanations of bandwidth, filter number, filter placement, ringing, attenuation, and

sound quality for the TF algorithm are the same for the VSR algorithm. Because the

system could not adapt to changing frequencies of the gear mesh, it was not run with

the recorded signals.

2This was evident from the fact that the noise spikes appeared very strongly in the interphone
signal all the time but did not have substantial magnitude in the ambient microphone signal. This
can be seen in the frequency response plots shown in the following section.
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5.2.1 Frequencies Suppressed and Filter Characteristics

It was difficult to analyze the systems' performance with a spectrum analyzer due

to the constantly changing center frequencies and amplitudes of the noise spikes.

However, the spectrum analyzer revealed very clearly when a frequency spike was

attenuated successfully, even if listening to the output did not reveal any change. The

analyzer also indicated when the filter bandwidth was too small for the noise spike,

because the amplitude of the peak could be seen rising and falling on the display. A

surprising result was the fact that there seemed to be only a weak correlation with

the spectrum analyzer's display and the audible change in the signal. For example,

placing a notch at the LPF frequency produced a very significant change in the audible

output, as did the LPF±LC3H frequencies. However, suppressing some frequencies

which appeared very loud on the spectrum analyzer (for example, three peaks located

near the UC1H frequency) did not produce a substantial change in the audible signal.

The effect of suppressing a particular noise spike could not always be guessed by

its absolute magnitude, nor its magnitude relative to background noise in adjacent

frequency bands. The true test was listening to the signal with and without the

suppression to see if the difference was audible.

The systems were fine-tuned by listening to their output with a particular

characteristic alternating between two values. For example, the bandwidth of all

the filters was alternated, or a particular notch was added or removed from the

system. The characteristic that created the best sounding output was then added

permanently to the code, and a different characteristic was altered. In this way, the

system was iteratively tuned to offer the best subjective performance. The use of 12

notch filters seemed to offer the best tradeoff between noise attenuation and speech

distortion. These filters were implemented at the frequencies shown in Table 5.1,

using the interpolated sine/cosine amplitude values and the 20 MHz, 3-pulse FDS,

while sampling at 12 kHz. The bandwidth chosen corresponded to an a of .988 and

a / of .012 at the LPF frequency (8 increased proportionally as the suppression

frequency increased, and a = 1 - S). This value was chosen because an a of .990

or higher resulted in noise spikes occasionally leaving the high attenuation region of
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No. Frequency (Hz) Associated Gear Mesh a 0
1 800 near UP1H .99338 .00662
2 1185 UP2H-UC1H .99020 .00980
3 1207.5 UP2H+UC3H .99001 .00999
4 1396.125 LPF-LC3H .9885 .0115
5 1450.875 LPF .9880 .0120
6 1464.5625 LPF+LCF .9879 .0121
7 1505.625 LPF+LC3H .9875 .0125
8 1575 UP3H-UC3H .9870 .0130
9 1597.5 UP3H+UC1H .9868 .0132

10 3340.728 SBF .9724 .0276
11 3395.478 SBF+LC3H .9719 .0281
12 4732 n/a .9609 .0391

Table 5.1: Filter Characteristics of "Optimized" LMS and TF Algorithms

the filter. When implementing twelve filters at 12 kHz with a clock speed of 33.6

MHz, neither algorithm taxed the microprocessor's capabilities. The LMS algorithm

completed all the calculations for the filters in 28.97 ps, using approximately 35%

of the available time. The TF algorithm was slightly less efficient, requiring 38.97

ps for its computations, which is equivalent to nearly 47% of the microprocessor's

computing power 3. For comparsion, a fully-optimized VSR algorithm should take

about 4.3 ps to implement 12 filters, or only 5.2% of the processor's capability4 .

To examine the limits of attenuation that can be achieved, and the effect that

a large number of filters has upon the output spectrum and clarity of the voice sig-

nal, the number of filters in the LMS and TF algorithms was increased until the

computation limit of the microprocessor was reached. Filters were added based on

a combination of the audible difference in the signal and the effect that the filters

had on the frequency response5 . For the LMS algorithm, this point occurred af-

SNote that the algorithms were fairly well-optimized to calculate the system output in a minimum
amount of time. However, it is likely that more efficient coding and better memory organization
could speed both algorithms up somewhat, although gains beyond about 20% are unlikely.

4This is an estimate based on implementing cascaded second-order IIR filters. Such a filter can
be executed in only four instructions, with nine more for overhead operations. The ADC and DAC
interfaces require only six instructions, plus about ten for interrupt servicing; for twelve filters this is
25 + 4(12) = 73 instructions, and at 12 kHz the microprocessor can execute up to 1400 instructions!

5After about fifteen to twenty filters, it was no longer possible to hear the effect that a single
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ter implementing 39 filters, which required almost 82 ps, or 98% of the processor's

computation time at 33.6 MHz, sampling at 12 kHz. The TF algorithm reached its

maximum at 32 filters, taking 82.7 us to calculate its output, or 99% of the available

time. For comparison purposes, the VSR algorithm will utilize 99% of the available

computation time when an estimated 340 second-order IIR sections are implemented.

This would allow 340 notch filters, or any combination of notch and other filters that

require less than 340 cascaded second-order blocks.

5.2.2 Frequency Response and Input/Output Spectra

The following plots were generated by running the specified input (sinewave, ambient

cockpit noise, or cockpit interphone signal) through the specified algorithm (none,

"optimized" LMS or TF algorithm, or maximized LMS or TF algorithm). and sending

the results to an HP plotter. Significant points about each figure are explained below 6 .

The first plot was created using a Solartron frequency response analyzer, while the

remaining plots were generated by a Rockland real-time spectrum analyzer. All plots

were sent to an HP plotter to create the figures.

Figure 5-1 is a closeup of the frequency response of the "optimized" LMS and

TF algorithms in the frequency range of 1350 to 1550 Hz. Both of these algorithms

implement seven filters in this frequency range, and the differences in their frequency

responses are clear. The LMS algorithm has a point of 0 dB attenuation between every

notch filter (note that the y-axis is relative and not absolute attenuation), whereas

the TF algorithm has at least 18 dB of attenuation for two bandwidths of about 35 Hz

(where two notches are very close to one another) and has at least 8 dB of attenuation

over a bandwidth of about 135 Hz. Thus, it is clear that the LMS algorithm provides

notch had on the audible output, so the noise spikes that had the highest peaks relative to the
adjacent background noise were suppressed. With the addition or removal of several filters rather
than just one, an audible difference in the output noise was apparent.

"Note that the plots were not all constructed from precisely identical input spectra. Due to the
need to have two simultaneous signals recorded, the only way to perform this analysis without undue
overhead was to hand-start and stop the recorder for each system. However, due the audio signal
used to cue the start of the analysis and the fact that each spectrum is a time-averaged plot of
almost three seconds duration, the plots do accurately represent the attenuation achieved with each
algorithm.
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better (narrower) notch characteristics, whereas the TF algorithm will result in more

attenuation in neighboring bands (the effective bandwidths of the filters are larger).

However, for notches that are not close to one another (for example, the left and

rightmost notches in the diagram), the bandwidth of the TF filters is smaller than

the bandwidth of the LMS filters. Furthermore, the frequency response of the TF

algorithm is symmetrical about the frequency that is exactly in the middle of two

notches, while the LMS algorithm has an asymmetrical frequency response between

notches.

Figure 5-2 shows the spectrum of the ambient noise in the helicopter cockpit.

Notice the prevalent spikes near the UPF, UP1H, UP2H, LPF and its sidebands,

UP3H, LP2H and its sidebands, and the SBF and its sidebands, as well of the absence

of a substantial noise spike near 4730 Hz. Clearly, the magnitudes of the LPF and

the SBF frequencies are the strongest, followed immediately by the UP1H, UP3H,

and LP2H frequencies.

Figure 5-3 shows the spectrum of the ambient noise in the cockpit after it has been

passed through the "optimized" LMS algorithm. Note the substantial reductions of

the UP1H (one filter), UP2H (two filters), LPF (four filters), UP3H (two filters), and

SBF (two filters). The 12th filter is near 4730 Hz, but the ambient noise does not

have a spike near this frequency. It is obvious from the plot that a substantial amount

of reduction has occurred at the frequency spikes that have been filtered, resulting in

10 to 30 dB of attenuation.

Figure 5-4 shows the spectrum of the ambient noise in the cockpit after it has been

passed through the "optimized" TF algorithm. The filter frequencies are the same as

those for the LMS algorithm shown in the previous figure, and it can be seen that the

TF algorithm has also successfully suppressed the noise spikes. The TF algorithm

shows slightly more attenuation, ranging from 15 to 35 dB at the filter frequencies.

Figure 5-5 is the pilot's microphone signal, as present in the cockpit interphone

system. Note the noise spikes at the UP1H, UP2H, LPF, UP3H, LP2H, and SBF

frequencies, as well as an additional spike in the 4730 Hz area. Also note the absence

of low and high frequencies due to the frequency response of the interphone system
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(the UPF spike seen in the ambient noise spectrum is insignificant here). The noise

spikes in the interphone are closer to the level of the background noise by 10-20 dB

than they are in the ambient noise spectrum, so the audible difference caused by the

systems was not as great.

Figure 5-6 is the frequency spectrum of the output of the "optimized" LMS al-

gorithm, using the interphone signal as its input. Again, the noise spikes have been

suppressed appreciably, and just as before the attenuation ranges from about 10 to

30 dB. In addition, note the almost 45 dB reduction in the frequency spike near 4730

Hz!

The response of the "optimized" TF algorithm to the interphone input is shown

in Figure 5-7, and the selected noise spikes have again been suppressed by about

15-35 dB, except for the spike near 4730 Hz, which has all but vanished after 45 dB

of attenuation.

Figures 5-8 and 5-9 show the frequency responses of the maximized LMS and TF

algorithms, respectively, when applied to the interphone signal. Note the extreme

reduction of almost all significant noise spikes, with attenuations on the order of 30

dB. Note the left over spike near the SBF frequencies in the LMS plot, and how it is

attenuated in the TF algorithm. This is due to the 0 dB point of the LMS algorithm

and the combining effects of the TF notches; this frequency range utilized only three

filters, when five substantial noise spikes were actually present. The TF algorithm

caused substantial attenuation at nearby frequencies, whereas the LMS did not. As

a result, the neighboring spikes were suppressed more by the TF algorithm than they

were by the LMS system. Furthermore, note the spikes still present in the 3500 to

4000 Hz range for the TF algorithm. These spikes remain because the maximized TF

algorithm implemented seven less filters than the LMS, and as a result, some of these

noise spikes were not filtered.
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5.3 Conclusions

The real time systems were able to attenuate the noise spikes in the interphone signal

without causing undue distortion to the pilots' speech. While no formal intelligibility

tests were performed, the overall sound quality of the interphone signal seemed to

improve, provided that the parameters of the algorithms were chosen carefully. The

following section describes the subjective testing results of the three algorithms. The

second section performs a more analytical analysis of the performance and capabilities

of the systems.

5.3.1 Subjective Results

The LMS and TF algorithms were largely successful in attenuating the noise spikes

caused by the CH-47D transmission. While the sound quality of the pilots' speech

did not improve as dramatically as hoped, the significant noise peaks in the spectrum

were reduced to very near the background noise level (a reduction of 10-35 dB),

making a "hot mike" situation in the cockpit much less objectionable. Furthermore,

the noise spikes were attenuated even when the pilots were speaking, which produced

an audible improvement in the sound quality of the signal due to the decreased noise

level. As the filters did not greatly affect the pilots' speech, the signal was clearer,

more understandable, and less offensive after acted on by one of the "optimized"

systems. However, the substantial distortion introduced by ringing did degrade the

speech signal if the number and/or bandwidth of the filters was too high. Therefore,

it is important to carefully design the systems to find a balance between the amount

of attenuation achieved and the amount of distortion added to the speech signal.

The VSR algorithm, while only tested in its normalized-frequency form, had al-

most identical characteristics to that of the TF algorithm. Therefore, it is believed

that the VSR algorithm can offer noise suppression capability and signal distortion

levels very similar to those of the TF algorithm, with substantially reduced com-

putation requirements. This algorithm also has the advantage of flexibility in filter

design, and should permit implementation of adaptive bandstop, bandpass, lowpass,
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and highpass filters, which the LMS and TF algorithms are not capable of doing. Fur-

thermore, these filters could be implemented in FIR forms with linear phase charac-

teristics, with the possible result of substantially decreasing the amount of distortion

caused by the system.

When the LMS and TF algorithms are designed to have filters of identical band-

width (same a values) located at the same frequencies, it is difficult to distinguish

between the effects of the two algorithms. While both successfully reduced the noise

spikes to the background level, and both algorithms produced ringing, the ringing of

the LMS algorithm seemed slightly louder than that of the TF algorithm. On the

other hand, the interaction of adjacent notch filters in the TF algorithm caused no-

ticeable amplitude reductions in certain bandwidths of the pilot's voice, which were

not as apparent in the LMS system. Subjectively, the ringing had a more degrading

effect on the speech signal, and when designed identically, the TF algorithm produced

an output with slightly better sound quality. Formal objective testing would have to

be performed to more accurately analyze the algorithms' effects on the intelligibility

of the cockpit interphone signal.

As a result, the three approaches have the capability to reduce noise in situa-

tions where the noise characteristics are similar to those of the CH-47: narrowband,

variable-frequency noise spikes whose frequencies are proportional to the frequency of

a reference signal. Further development and testing needs to be done to fully develop

and test the algorithms presented in this document (especially the VSR algorithm),

but the systems can most likely be refined and expanded to handle other circum-

stances, such as wider bandwidth noise or systems with noise that has less predictable

qualities.

5.3.2 Comparison of the Three Algorithms

Although there are certainly more similarities between the effectiveness of the three

algorithms than differences, a thorough comparison of the advantages and disad-

vantages of the algorithms is warranted. While which system produced the largest

improvement in sound quality was not determined by formal testing, there are several
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areas where comparisons between the algorithms can be done easily. These compar-

isons are described below.

Pole-Zero Analysis

As discussed earlier, the LMS and TF algorithms can be treated as LTI systems when

the modulation frequency wo is held constant. Traditional second-order digital notch

filters are designed with zeros on the unit circle at angles ±-, where 0 < 1. These

zeros cause the attenuation at the notch frequency, and the steepness of the notch is

controlled by the proximity of the accompanying poles, also at angles ±0, but inside

the unit circle (magnitude less than 1). The closer the zeros and poles are located to

one another, the steeper the notch filter and the narrower its bandwidth, although

infinite attenuation always occurs exactly at the notch frequency.

The pole-zero analyses of the three noise reduction systems provide interesting

results. The VSR algorithm uses traditional fixed-characteristic filters, so its poles

and zeros are exactly as described in the previous paragraph. The LMS algorithm

preserves the zero locations of the VSR algorithm, but moves the poles. This keeps

an infinite null at the notch frequency, but because the poles are now farther away,

the bandwidth of the notch filter is larger. Conversely, the TF algorithm keeps the

pole locations identical to those of the VSR algorithm, but moves the zeros. As a

result, the zeros are no longer located at a position for maximum attenuation, but

are moved outside of the unit circle. This distance from the unit circle decreases their

effectiveness in attenuating the signal near the desired frequencies, so that the pole's

effect is stronger. This produces a more narrowband notch. For high a, this difference

is not significant because the zeros are still very close to the unit circle, but it may

become a factor as a is decreased and the bandwidth of the notch is increased.

The most significant effect caused by the pole-zero movement became apparent

in the frequency response analyses of the algorithms (shown in Chapter Two, and

visible in Figure 5-1). For notch filters that are so close together that their frequency

response affects one another, there is always a point of 0 dB attenuation between the

notches when the LMS algorithm is used. This is due to the fact that the poles of the
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LMS algorithm have moved from the traditional notch filter locations, and reduce the

attenuation effects of the adjacent filter. This results in a superior notch filter when

the primary design concern is minimizing filter bandwidth. The other two algorithms

do not guarantee a 0 dB point between notches, and if the bandwidth of the notches is

high and they are located close to one another, the minimum attenuation between the

notches may be high. For the TF notches shown in Figure 5-1, their close proximity,

combined with an a of .988, resulted in a minimum attenuation between the notches

of 8 dB over a 135 Hz frequency band, and a minimum 18 dB reduction spanning a 35

Hz frequency range. However, it should also be noted that, for isolated notch filters of

identical a, the LMS algorithm produces a notch with a wider bandwidth than that

produced by the TF or VSR algorithms. So, depending on the type of filters desired,

the LMS algorithm may have an advantage over the TF and VSR algorithms.

Ease of Implementation and Calculation Requirements

While the implementations of the LMS and TF algorithms were similar, both requir-

ing sinusoid and cosinusoid signal generation, the VSR algorithm sidestepped this

requirement by using the sampling frequency to control the filter frequencies. This

moves much of the calculation burden out of the microprocessor and into support

circuitry, in this case a PLL. As a result, the VSR algorithm was by far the most

computationally efficient of the three systems, reaching the microprocessor's compu-

tation limit only after implementing an estimated 340 second-order IIR filters (the

LMS and TF algorithms were limited to 39 and 32 filters, respectively). Furthermore,

the VSR algorithm provides great flexibility in the design of adaptive filters, allowing

any kind of band pass/reject filter to be used in an adaptive form. However, it is not

easy to control the filter parameters over time, and it is more difficult to design the

filters in the first place than with the other two algorithms. Also, it may be difficult

to obtain an accurate, consistent, high-frequency reference signal whose frequency is

proportional to the frequencies of the noise (which is required to control its sampling

rate). However, if this signal is available, the VSR algorithm is almost certainly the

system of choice due to its flexibility in tailoring the system's frequency response and
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its minimal computation requirements 7.

The LMS and TF algorithms require external circuitry (an FDS) of comparable

complexity to that needed by the VSR algorithm (an FMS), but the design of the

FDS is not as difficult as that of the FMS. Furthermore, both algorithms require

substantially more computation from the DSP chip, because of their need for dig-

itally generated reference signals8 . Furthermore, the LMS and TF algorithms are

not well-suited to implement filters other than notch filters. Thus, if other types

(lowpass, highpass, bandstop, etc.) of filters are desired, the VSR algorithm holds a

clear advantage. However, if the reference signal does not lend itself to controlling

the DSP chip's sample rate, or if the system only needs to have notch filters, the

LMS and TF algorithms can be used quite effectively to attenuate noise spikes of

varying frequency. In this case, the LMS algorithm holds two advantages. First, it

is more computationally efficient than the TF algorithm, as it is able to take advan-

tage of parallel processing techniques. As a result, more filters can be implemented

using the LMS approach than the TF approach. Second, for notch filters close to-

gether, the LMS algorithm always has a point of 0 dB attenuation, resulting in a

more narrowband notch filter than when the same filters are implemented in the TF

algorithm. Therefore, if the number of required filters is high and the bandwidth of

the filters needs to remain narrow, even for notches that are close together, then the

LMS algorithm is better suited to the problem than the TF approach. So, if the noise

reduction application needs wider bandwidth notch filters (or indeed bandstop filters;

the additive attenuation between notches can be used to simulate a bandstop filter),

then the TF algorithm is probably a better choice. When all design considerations

are equal, the TF algorithm had a more favorable effect upon the cockpit interphone

signal in subjective audio tests.

7This, of course, assumes that the VSR algorithm has virtually the same effects on the audible
signal as the TF algorithm. Based upon the analyses of this project, this is believed to be the case,
although the VSR algorithm was not run with the recorded data.

sThe reference signals could be externally generated instead, but this would require two ADC
channels for each notch filter to be implemented. While possible, such a design is not very practical
for multiple notch filters because of the cost of ADC chips and the software overhead needed to read
their values. Furthermore, generating the signals themselves would be hardware-intensive, most
likely requiring PLL circuitry for each notch filter.
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Overall Evaluation

Due to the great advantages of minimal computation time and the ability to im-

plement different kinds of filters, the VSR algorithm is most likely the best of the

three algorithms when used to suppress variable frequency noise spikes. However, if a

consistent, high-frequency reference signal is unobtainable, then the LMS and TF al-

gorithms both provide viable alternatives. If the number of filters to be implemented

is high, or approximate bandstop filters are not desired, then the LMS algorithm is

the better choice. If, however, computation time is not a critical concern, or a band-

stop filter is needed, the TF algorithm is a better choice due to its ability to simulate

a bandstop filter when notches are placed close together. If there are no design con-

cerns that lead to one algorithm over the other, then the TF algorithm should be

used because it does not produce as much ringing as does the LMS algorithm.

5.4 Recommendations for Future Work

As implemented, the systems were successful in attenuating the primary noise spikes

present in the CH-47D interphone system. However, there are several improvements

that could be made to the real-time system in order to improve its performance.

These possible improvements and areas requiring further study are split into two cat-

egories below. The first five sections deal with alterations or improvements that could

be made to the system to improve its performance in the specific case of suppressing

CH-47D interphone noise. The last section describes a more general area for future

research, which could expand the potential applications of the LMS and TF algo-

rithms. The capabilities of the algorithms may extend well beyond the scope of their

implementation in this project, and further analysis is warranted.
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5.4.1 Real-Time Implementation and Testing of the VSR

Algorithm

The VSR algorithm was not implemented during this project due to unforseen hard-

ware limitations, so its true characteristics could only be guessed at, based on the

responses of the other two algorithms and the responses of the normalized VSR al-

gorithm. In future efforts, the VSR algorithm should be implemented and studied

in a real-time system (simulating the algorithm is difficult) to determine its tran-

sient characteristics and its audible effect on the cockpit interphone signal. While it is

expected that the results will be very similar to those of the TF algorithm when imple-

menting IIR notch filters, the VSR algorithm holds two possibilities for improvements

which cannot be realized in the LMS or TF systems. First, the ability to implement

different filters, such as bandstop filters, may be able to remove several noise spikes

that are located close to one another without introducing as much distortion as when

they are removed one by one with notch frequencies. Second, and perhaps the most

promising aspect of any of the algorithms, is the ability to implement FIR filters in

the VSR algorithm. With this capability, the filters could be designed to have lin-

ear phase characteristics, which, while increasing computation time, could produce

appreciably less distortion that their IIR counterparts. If the same noise reductions

could be achieved without the ringing present in the current systems, then a very

significant improvement in the intelligibility of the cockpit interphone signal could be

realized.

5.4.2 Error Reduction, Update Rate improvements of FDS

The accuracy and update rate of the FDS could be improved to provide better track-

ing of the reference input frequency. Some of the faster rotor tachometer variations

allowed the noise spikes to move outside of the filters' effective ranges, temporarily

increasing the noise. While this can be somewhat compensated for by increasing the

filter bandwidth, doing so is not as attractive a solution as making better measure-

ments of the rotor tachometer signal in the first place. If the system could respond
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more quickly and more accurately, the filter bandwidth necessary to ensure attenua-

tion could be reduced.

5.4.3 Flight Testing

A logical extension of the current project is to flight test one or more of the noise sup-

pression systems on-board a CH-47D aircraft during flight. This would be necessary

as a proof-of-concept test for the algorithm, and the system could be verified in the

high-vibration environment of the helicopter. Furthermore, the system's effectiveness

could be tested in a real time, immediate-response scenario, where the pilot could

perform abrupt maneuvers in an attempt to cause the system to lose track of the

noise spikes, and turn the system on and off at will to analyze any improvements in

the quality of the signal. Flight testing was planned for the noise reduction systems

studied in this project, but was not completed at the time of this writing.

5.4.4 LMS Algorithm with Delayed-Noise Reference Sig-

nals

As explained in Chapter Three, there are two implementations of the LMS algorithm

that are commonly used. Only one was explored in detail for this project, the imple-

mentation that uses sinusoid and cosinusoid signals at the frequency to be attenuated

as the reference inputs. The other approach involves using delayed noise signals as

reference inputs. While this latter implementation of the algorithm was not successful

in simulation, there are several possible explanations. First, a single cockpit micro-

phone placed at a fixed location was used as the reference noise source. This causes

problems when the pilots move their heads, because the phase difference between the

interphone signal and the reference microphone changes rapidly. Furthermore, the

phase difference between the pilot and copilot's microphone signals are completely

different, and switching from one to another would undoubtedly cause the algorithm

to fail. A possible solution to this problem is to utilize a separate reference micro-

phone for each pilot, mounted to his or her helmet. That way, the phase differences
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should be relatively well-behaved as the pilots turn their heads, and because each

interphone microphone has its own reference microphone, the phase difference in the

other pilot's signal will not affect the algorithm. Another possibility of improving the

performance of this implementation of the LMS algorithm is to bandpass the refer-

ence microphone signal to leave only the frequencies of interest. That way, the phase

differences in other frequency bands of the signal do not greatly affect the LMS cal-

culations, and the algorithm is better able to supress the noise signals in the desired

bands.

5.4.5 Characterization of Gearbox and Interphone Noise

A better analysis and understanding of the noise spikes created by the gearbox would

simplify determination of what frequencies the filters should be suppress. A sub-

stantial amount of the implementation time was spent hunting for the loudest noise

spikes, and accurately determining or confirming their frequencies. If the spikes'

amplitude and frequencies could be determined through analytical research, ranking

them loudest-to-quietest on average across multiple helicopters, much of the tedious

experimenting would be unnecessary. Furthermore, the fact that the analysis in Chap-

ter Two did not exactly identify all of the noise spikes indicates that there may be

substantial variations between different helicopters, or harmonic frequencies may be

present that were not revealed by the analysis. If a large scale noise survey of CH-

47D transmission noise were undertaken, the fundamental gear mesh spikes and their

sidebanded harmonics would be better understood.

Also, two problems with the interphone system should be addressed. First, the

source of the noise spikes near 4730 Hz should be identified. While these spikes

are narrowband and of high amplitude (characteristics of a gear mesh frequency or

harmonic), they do not appear in the recordings of the ambient microphone. This

seems to indicate that their source is not the gearbox, but something internal to the

interphone system. The source of this noise needs to be identified. Furthermore,

the changing impedance of the interphone system should be analyzed more closely to

determine what effect that has upon the noise reduction algorithms. The results of
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such an analysis could be used to improve the noise reduction systems over the full

range of conditions that they would experience in the Chinook.

5.4.6 Combining Noise Reduction Techniques

Many of the noise reduction techniques that have already been used in the CH-47 were

used individually, in order to determine the improvements achieved by the technique.

However, as explained in Chapter One, many of the techniques are complementary in

terms of what kind of noise problem each addresses. Combining these techniques and

systems into one helicopter would undoubtedly cause substantial reductions in the

noise heard by the pilots, both direct and indirect. Furthermore, combining systems

that treat the indirect noise would undoubtedly increase the quality of the interphone

signal as well. The right combination of these approaches could probably yield a

signal-to-noise ratio good enough that VR on a helicopter might become feasible.

5.4.7 Experimentation with H(z)

Chapter Three derived the LTI transfer functions of the LMS and TF algorithms for

specific cases of H(z) in the MFD algorithm9 . However, other transfer functions may

be obtained using alternate systems as the H(z). For example, the TF algorithm was

simulated with the use of high-order lowpass filters in an attempt to obtain bandstop

filters, but phase problems affected the output, resulting in distorted notch filters.

Perhaps other transfer functions used in the MFD algorithm could result in different

adaptive filters, which could expand the application of these two algorithms.

9 Specifically, a simple integrator was used as H(z) in the LMS algorithm and a second-order IIR
lowpass filter was implemented as the H(z) for the TF algorithm.
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