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ABSTRACT

Nonlinear transient global response of shear deformable composite
laminated plates subjected to impact loading was investigated analytically
and compared with linear transient global response, which was also
reviewed in this study, and with existing experimental data. Based on
energy equations derived by applying geometrical nonlinearity in strain-
displacement relations, the impacted plate response model was developed
employing the Lagrangian equations of motion and the Rayleigh-Ritz
method in conjunction with assumed mode shapes. The resulting system
of second-order nonlinear differential equations with respect to time was
solved using the fourth-order Runge-Kutta numerical time integration
scheme to produce a transient response in terms of force- and
displacement-time histories at the point of impact where a nonlinear local
contact law was assumed. Comparison between linear and nonlinear
analysis clearly showed the importance of considering the geometrical
nonlinear effect of membrane stiffening. Comparison of the analytical
results with existing experimental data indicated that the nonlinear plate
impact response model with partial geometrical nonlinearity accounting
for the flexible boundary was able to predict the impact response well
especially for the primary frequency response. However, the secondary
frequency response predicted by the model showed relatively poor
correlations with the existing experimental data. Further refinement
needs to be done to bring this nonlinear impact response analysis into better
agreement with the experimental data.
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Normal science does and must continually strive to bring theory and fact

into closer agreement, and that activity can easily be seen as testing or

as a search for confirmation or falsification. Instead, its object is to

solve a puzzle for whose very evidence the validity of the paradigm must

be assumed. Failure to achieve a solution discredits only the scientist

and not the theory.

"The Structure of Scientific Revolutions"

- Thomas S. Kuhn, 1962
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Chapter 1

Introduction

1.1 Motivation

Advanced composite laminated materials such as graphite/epoxy

have been successfully employed as structural components in aircrafts,

missiles, and space vehicles. The performance of these composites has

shown their superiority over metals in applications requiring high

strength-to-weight and stiffness-to-weight ratios [1]. The composite

laminates are, however, particularly susceptible to impact damage with

foreign objects such as tool drops, runway kickup, bird strikes, and hail;

these impacts can produce significant damage in terms of fiber

breakage, matrix cracking, and delamination which may be embedded

inside the composites [2,3]. Such damage is sometimes hardly

detectable by the naked eye, but can cause significant reductions in the

strength and stiffness of the structure [4]. Therefore, to utilize

composites to their full advantage their response to impact must be

understood, and the damage caused by impact must be predictable.
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The response of the structure to an impact can be assumed to

occur at two levels; a global response of the structure and a local

response under the point of impact [2]. As a first step to understanding

the impact damage issue in composite laminates, an accurate

prediction of the transient global response during an impact event is

necessary. Then, the output of the global response analysis can be used

to produce useful information to compute stresses and strains at the

local level. Those results coupled with other appropriate analyses such

as failure criteria may be used to predict damage in the structure and,

ultimately, the residual strength. Again, an accurate prediction of the

transient global response is a first key to reach the goal - prediction of

the damage and residual strength.

1.2 Objective

This report focuses on the problem of analyzing the transient

global response of composite laminated plates subjected to impact. In

particular, it deals with impact modeling using both linear and

nonlinear laminated plate theory with first-order shear deformation.

The results of those analyses are compared to a particular impact

condition observed experimentally [19].

The linear plate theory is based on the assumption that a

membrane force effect, which may be a function of out-of-plane

displacement, is negligible. Consequently, linear strain-displacement

relations are employed. On the other hand, nonlinear plate theory can

account for the membrane force effect by adding second-order nonlinear
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terms to the linear strain-displacement relations. The membrane force

effect may be crucial in predicting the transient global response

depending on impact conditions such as impactor mass, impactor

velocity, plate geometry, and boundary conditions. No material

nonlinearity is considered in this investigation.

1.3 Review of Previous Work

The impact of a foreign object with a composite laminated plate is

a complex event occurring over a very short period of time (on the order

of milliseconds typically). There are several features which preclude a

simple modeling and solution for the analytical prediction of this impact

event. Some of those features might include a shearing deformation

effect, an influence of bending-twisting coupling in the constitutive

behavior, a nonlinear constitutive relation between plate and projectile,

and a geometric nonlinearity of the plate depending on a boundary

condition.

Many researchers have developed models to predict the global

response of laminated plates with shear deformation effect due to an

impact event, but relatively few researchers have considered the

geometrical nonlinearity in plate analysis. Abrate [47] presented an

extensive review in the field of impact on laminated composite materials

and Chia [48] described a review for the geometrically nonlinear

behavior of composite plates. Some of the prominent work, as well as

recent developments, are reviewed in this section.

27



Linear Plate Analysis

Yang, Norris, and Stavsky [5] deduced a two-dimensional linear

theory of the motion of heterogeneous plates from the three-dimensional

theory of elasticity. They included transverse shear deformations [11]

and rotary inertia in their formulation of the plate theory. Although

they were investigating the propagation of elastic waves in a

heterogeneous plate, the governing equations of the free vibration of the

plate are the same as for the problem of impact transverse to the plate.

The impact of a sphere on a half-space was treated by Timoshenko

and Goodier [6]. In their approach, wave effects in the half-space and

ball were neglected. Greszczuk [7] studied the impact of both isotropic

and transversely isotropic half-spaces by a sphere. Internal stresses in

the body were determined using the finite element method. The results

showed that the largest contact stresses were under the point of impact

within the composite, and that the critical stress was usually shear.

This analysis neglected global bending of the laminate and inertial

forces. These effects need to be considered to accurately model the

dynamics of composite plates.

For plates, the basic approach presented by Timoshenko [81 for the

analysis of transverse impact of a beam by a sphere was extended by

Karas [91 to the analysis of the central impact of a rectangular simply

supported plate. Sun and Chattopadhyay [10] extended this approach to

analyze laminated composite plates under initial stress including

transverse shear deformation [11]. They obtained the contact force and

the dynamic response of the plate by solving an integral equation

numerically.

28
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Whitney and Pagano [11] showed that the influence of shearing

deformation in composite laminates can be significant because of high

through-the-thickness shearing compliances. Their results showed

that Reissner-Mindlin plate theory, in which planar rotations are

introduced as independent variables, can accurately represent the

displacement of composite plates compared to exact elasticity solutions.

Laterally loaded models that do not account for shearing deformation

(i.e., Kirchhoff-Love) can be unrealistically stiff. , In impact analyses

where contact load introduction is essentially a point load, these errors

may be severe.

Tan and Sun [12] used a two-dimensional finite element approach

to study the impact of a laminated plate by a rod. The plate was modeled

using shear flexible plate elements, while the rod was represented using

higher order rod elements. Very good agreement with experimental

results was reported for both contact force and strains at several

locations on the surface of the plate. However, these results were

limited to relatively low impact force (i.e., maximum force was

approximately 200 Newtons) and four-sides free boundary condition or

hung plate condition. Sun and Chen [13] used essentially the same

model to conduct a study of the influence of the local indentation law

studied by Yang and Sun [14], impactor mass, laminate pre-stress, and

impactor velocity on the impact event. Experimental impact tests were

not conducted to verify their analysis.

A three-dimensional finite element method modeling each ply of

the laminate was developed by Wu and Springer [151. This model was

extended to predict the damage state on a local level. The three
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dimensional model incorporated through the thickness effects, but the

accuracy of the model was governed by the degree of refinement of the

mesh used. If the damage state occurred on a very local level, a high

degree of refinement in the mesh was required, and the solution cost

increased correspondingly.

Graves and Koontz [16] developed approximate closed-form

solutions for orthotropic plates subjected to impact loadings.

Experimental impact tests using four-sides simply supported boundary

conditions were also conducted to determine threshold values of damage

initiation. The analysis was then correlated with the experimental

results so that predictions of damage initiation in other laminates could

be made. The magnitude of the resultant transverse shear was

considered the critical parameter controlling impact damage.

Cairns and Lagace [17] developed the equations of motion of an

impacted composite plate using the Rayleigh-Ritz method. Assumed

mode shapes were used in the in-plane x and y directions to satisfy both

the geometric and force boundary conditions. Some of the experimental

data were compared with this type of analysis by Ryan [18] and Wolf [19];

however, comparisons using a relatively heavy impactor mass (i.e., 1.53

kg) did not give good correlations. Typically, analysis predicted longer

impact durations, lower peak forces, and smaller deflections.

Similar types of analyses were also performed by Qian and

Swanson (20]. They also obtained strain data experimentally and

compared with analysis. Although the comparison gave good

agreement, the strain data could not be measured at the point of impact

and may have resulted in poor correlation with local damage
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assessment. Also, the impactor mass used for comparison was

relatively small (approximately 0.023 kg).

In general, the predictions for impact using linear plate theory

show good agreement with experimental data for limited impact

conditions such as using a relatively small impactor mass or using

four-sides free boundary conditions. However, there are some

difficulties in prediction for cases using relatively large impactor

masses (i.e., 1.53 kg) and using some other boundary conditions. These

limitations need to be further studied and clarified.

1.3.2 Nonlinear Plate Analysis

The nonlinear transient response of composite plates was

considered by Reddy [21] and Chen and Sun [22]. Including transverse

shear in a finite element analysis of the large deflection response, Reddy

[21] found for undamped laminated plates that the bending-stretching

coupling increased the amplitude of the center deflection in a simply

supported antisymmetric two-layer cross ply plate under suddenly

applied patch loading. Using a method of solution similar to that stated

above, Chen and Sun [22] studied the effect of initial stress on the

nonlinear transient response of a composite plate. Also, wave

propagation in composite plates was discussed by Sun and Shafey [23]

using a nonlinear shear-deformable theory. It was found that large

deflections have a substantial stiffening effect on the phase velocity.

Recently, several researchers studied nonlinear plate theory with

a first or higher-order shear deformation included [24-28]. Among
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them, Kant and Mallikarjuna [26] developed a finite element model for

nonlinear dynamics of laminated plates to analyze impact response.

Although they did not compare the analytical results with experimental

data, the numerical results clearly showed that the nonlinear theory

predicted smaller deflection compared to linear theory.

1.4 Contributions of this Thesis

In this thesis, the energy equations for both linear and nonlinear

plate theories are derived. Lagrangian equations of motion. and the

Rayleigh-Ritz method are used in conjunction with assumed mode

shapes to yield the impacted plate response models. This modeling

procedure based on Cairns' work [2] uses assumed mode shapes instead

of the finite element method employing shape functions in order to

attempt to reduce computational intensity. The results of these models,

in particular impact force-time histories during impact, are compared

with the existing experimental data obtained by Wolf [19]. The

importance of considering the geometrical nonlinear effect of membrane

stiffening depending on boundary conditions is discussed for particular

impacting events.

1.5 Thesis Outline

Chapter 2 deals with an impact modeling technique using linear

laminated plate theory including first-order shear deformation. This is

a review chapter from Cairns [2]. In Chapter 3, some of the parametric
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studies using the impact model developed in Chapter 2 are presented in

order to clarify the source of problem. The parameters to be varied are

the number of modes, the time increment for numerical integration,

and the local stiffness parameters. Chapter 4 presents a one-

dimensional beam version of the impact analysis using geometrical

nonlinearity. Chapter 5 which is a highlight of this report deals with

impact modeling using nonlinear laminated plate theory with first-

order shear deformation. In Chapter 6, results obtained using the

nonlinear impact model developed in Chapter 5 are discussed and also

compared with existing experimental results. In Chapter 7, the

conclusions and recommendations are given.
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Chapter 2

Review of Impact Modeling Using
Linear Laminated Plate Theory with
First-Order Shear Deformation

2.1 Overview

This chapter reviews the impact modeling for the global response

of composite laminated plates using shear deformable linear plate

theory as discussed by Cairns [2]. Also, a similar analytical review was

done by Tsang [29]. It starts with a linear strain-displacement relations

assumption. Energy equations are developed using constitutive

equations based on linear strain-displacement relations and laminated

plate theory. Using Lagrangian equations of motion and the Rayleigh-

Ritz method in conjunction with assumed mode shapes for both x and y

directions yields a system of second-order linear ordinary differential

equations with respect to time for the plate equations of motion. Also, a
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impactor equation of motion can be developed using Newton's second

law of motion. These plate and impactor equations of motion are

coupled in terms of a Hertzian local contact relation. The coupled

differential equations are solved using a numerical integration scheme

over time.

2.2 Development of the Equations of Motion

2.2.1 Assumptions

The following assumptions are made to develop a system of

equations of motion for both a plate and an impactor.

a) Linear strain-displacement relations and stress-strain relations
are assumed.

b) Through-the-thickness strain, e33, is negligible and, out-of-plane
displacement, w, is a function of in-plane coordinates, x and y,
only.

c) The plate deforms both in bending and in shear.

d) First-order shear deformation terms are included.

e) The contact force between the impactor and the plate is a point
load.

f) Constant material properties are assumed throughout the impact
event.

g) No structural damping is considered.

h) Impactor is assumed to be rigid.
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i) Local indentation of the plate is accounted for by a nonlinear
Hertzian stiffness relation.

A schematic of the laminated plate impact model is shown in Figure 2.1.

There will be additional assumptions later to reduce the system of

equations.

2.2.2 Linear Laminated Plate Theory with First-Order
Shear Deformation

Strain-Displacement Relations

Analogous to the Timoshenko beam theory, the shear deformable

plate theory assumes that plane sections originally perpendicular to the

midplane of the plate remain plane, but. not necessarily perpendicular to

the midplane (Figure 2.2).

The displacement field is assumed to be described as,

u (x, y, z) = u(x, y)+ zV,(x, y)

uz2(x,y,z) = v(x, y) +z ,(x, Y) (2.2.1)

u3(x,y,z) = w(x,y)

where (u, v, w) denote displacement components of a point along the

(x,y,z) coordinates, and V, and y, denote the rotations of a plane

section, originally perpendicular to the midplane, about the y and x

axes, respectively.t The linear strain tensor components associated with

the displacement fields (2.2.1) are given by,

tClassical plate theory (Kirchhoff plate theory) can be recovered by setting,
WxuW W
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~Hert~zian Contact Spring

Lamrinated Plate
Midplane

Figure 2.1: Schematic of Laminated Plate Impact Model
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Figure 2.2 : Shear Deformation in a Beam
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du
el = d'

dv
=x

dy
+z dx
+Z dy

du2E12 = - +
3 = dy

2E13 = Yx +

+d40x
dw

(2.2.2)
dw

2e23 = ry +

e33 =0

Note that the transverse shear strains are non-zero.

Eq. (2.2.2) can be expressed using vector notations.

El1

2e12
-_7=J 2 e23

By including time, t, as another variable, the strains can be written as,

(x, y, z,t) = (x,y, t) + z K(x, y, t)
(2.2.4)

y(x,y,z,t)= y(x,y,t)

where,

go 2211

Eo012

du

dy
Sdu 49V

Ox~
l 122 = _ _

ay axdy
dyd
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Eqs. (2.2.3), (2.2.4), and (2.2.5) represent linear strain-displacement

relations including shear deformation.

Constitutive Behavior of the Plate

The basic laminate constitutive equations can be defined as,

{{N} I [A] [B] 1 Eo1{M}j [ [B]T [D]JiJ

Qx l[Gss G45 ]Je5j
Qy G45 G44 e4

(2.2.6)

where [A], [B], and [D] are the in-plane, bending-stretching, and

bending stiffnesses of the plate, respectively. Each of the matrix

components are given as,

N
(AV, BZ, D)= _ + Ca (1, z, z2dfD4) Z2)d, (i, j=1, 2,6) (2.2.7)

where n denotes nth ply and there are total of Nplies. Also, where C#
are assumed to be the plane stress material constantst for this

investigation and i, j = 1,2,4,5,6 by letting,

e 11, 1 eli

2ez2 e6J
2e,23 e

t It is assumed that the normal stress in the through-the-thickness direction does not
contribute to the strain energy.
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The transverse shear stiffness matrix [G] and each of the matrix

components are defined as,

N

G= KKj" c/l" dz (i, j = 4, 5) (2.2.9)

The value of the shearing correction term, KiKj, used here is the

isotropic correction factor of 5/6, shown to be adequate for laminates

made from thin plies [11].

By assuming symmetric laminates (B- = 0), in-plane stretching

behavior will be decoupled from bending behavior. Since we are

interested in out-of-plane behavior only, we can extract only the

constitutive bending behavior of the plate from Eq. (2.2.6).

Mx Dil A2 A6 D IllI
My = 12 D2 26 K1221

Mx D6 D26 D66 J K12 (2.2.10)

Ix Gs5 G45]fe5{} G45 GJLe4 J

Potential Energy

The potential energy stored in a body under load can be separated

into two different parts:

a) the internal strain energy, defined as the product of strain and

stress assuming a linear stress-strain behavior as:
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U= 2 •ijeiej dVSJJ (2.2.11)

b) the work done by the external forces:

W= pwi dS i = 1,2,3 (2.2.12)
S

where pi denotes external force per unit area and wi denotes

displacement from original position.

The total potential energy is simply the difference of these two terms and

a function of the displacements only.

Introducing Eqs. (2.2.3), (2.2.4), (2.2.5), and (2.2.10) into the strain

energy equation (2.2.11) and integrating over the thickness, the following

expression which is now a function of three displacements variablest,

w, v•, fy, is obtained:

U=•jJ ( Kx[D] + T [G]  ) dxdy (2.2.13)

or this strain energy expression can be separated into two kinds of

energy expressions, bending strain energy, Ub, and shearing strain

energy, U,.

t In-plane stretching behavior can be decoupled in this case as mentioned previously.
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Ub = ~J 0 T [D] K dxdy2f f~
I

dyx

ady aVy
dy dx

D1,(-f7) 2 +2 D 12 (-
dy +2 +26 yx C X Ž

+D22 + 2D26

+D66 2,K 2 + (J 2J
(( 0-ý 0-ý & &·(i)'

(2.2.14)

Us =2 1 b [G] y dxdy

1 lf[b2 GE23 3 55 G45 •2e 23 d
2 012eI 0[G4s G44]12e 32 xd

1 rbr.
-- "2 Oo0

G dw
+2G45 ( x vy + YO ' "

dw
+ 2 Y- w

dw
+y +dx

dw+ -OW 2

dxdy (2.2.15)
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The kinetic energy, T, of the plate is given by,

T(u, v,w, x ,) = II 2' + k 2 ] dV (2.2.16)

where ul, u2 , u3 denote displacements in x, y, z directions respectively and

(') denotes differentiation with respect to time. Substituting Eq. (2.2.1)

into Eq. (2.2.16) and integrating over the thickness yields,

\I- J

VI Y
u dxdy

v

(2.2.17)

where

(Ii, 12)= fh2 (1, Z2)pdz (2.2.18)

Since in-plane displacements u and v can be decoupled here again, Eq.

(2.2.17) is reduced to a function of three variables.

T(w, , Vy)

P Tr -

S L

O 4I(r dxdy
(2.2.19)

Using these energy expressions, the differential equations of

equilibrium of composite laminated plates can be derived for either the
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static or the dynamic case. For static analysis, there is no need to

consider the kinetic energy term and time variable; hence, the principle

of minimum total potential energy can be used to obtain differential

equations of equilibrium.t For the dynamic case, Hamilton's principle

can be employed to obtain the differential equations or so-called

equations of motion. In this investigation, Lagrangian equations of

motion which can be obtained using the Hamilton's principle to extract

the equations of motion at a given point tt are used.

2.2.3 Plate Equations of Motion

Plate equations of motion are obtained by applying Lagrangian

equations of motion and the Rayleigh-Ritz method in conjunction with

assumed mode shapes to the energy equations obtained in the previous

section.

Assumed Mode Shapes

For spatial discretization of the displacements as functions of x

and y , let,

Vy(x,y,t) = 4 A,(t) f,(x) g,(y)
r s

=y,(x,y,t)= = Bs(t) hk(x) 1,(y) (2.2.20)

w(x, y, t) = Crs,(t) m(x) n,(y)
r s

t The principle of minimum total potential energy is defined as &611 U + 6K = 0.
tt In this investigation, the impacted point is assumed at the center of the plate.
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Cairns [2] rewrote Eq. (2.2.20) using single summation instead of double

summation as follows.

V (x, y, t) = Ai(t) fr (x) g,(y)

Vy(x, y,t) = Bi (t) kh(x) 1,(y) (2.2.21)

w(x, y,t) = Ci(t) m,(x) n,(y)

where,

f,(c)= dnt[m,]
hr( ) = m,( 4)

(2.2.22)
g, (q)= n,(Y1)

l,(t1) = [n,(7)]

where, =X x Y
a b

and A.(t), B,(t), and Ci(t) are modal amplitudes to be determined from

the analysis. The functions shown in Eq. (2.2.22) for the planar rotations

are derivatives in the lateral displacement. The choice of these

functions is appropriate since, in the limit as the plate thickness

approaches zero, the slope of the lateral displacement can approach the

planar rotations which result in the recovery of classical plate theory or

Kirchhoff plate theory. This precludes some of the well known shear

locking problems associated with other types of discretization methods

[40]. Note that index numbers, i, r, and s, are related by some

organized scheme as shown in Table 2.1.
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Beam shape functions m,(x) and n,(y) represent mode shapes in

the x and y directions respectively, and in this analysis, Generalized

Beam Functions (GBFs) studied by Dugundji [30] are employed.t

Lagrangian Equations of Motion

Lagrangian function, L, is defined to be,

L=T-U (2.2.23)

Then, the Lagrangian equations of motion [31] can be expressed as,

td dL = Qj  j=1,2, ... , M (2.2.24)
dt d4u qJ j

where M denotes the number of degrees of freedom, and qj denote the

generalized coordinates. In this analysis, qj are Ai, Bi, Ci, and the

number of degrees of freedom would be j = 3xi = 3xrxs. Since the kinetic

energy is a function of only 4j and the potential energy is a function of

only qj, Eq. (2.2.24) can be expanded to the following forms.

d (dT) dUT A +-= P

d +') = Pbi (2.2.25)

d (T dU
i--i + -=PC

where Pa, Phi, Pci indicate the work done by the external forces.

t See Appendix A for more detail in Generalized Beam Functions.
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Table 2.1: Index Numbering System for Beam Functions

Example Case (taken from Tsang [29]):

There are three modes for each x and y direction.

49

r (x - direction) s (y - direction) i

1 1 1

1 2 2

1 3 3

2 1 4

2 2 5

2 3 6

3 1 7

3 2 8

3 3 9



Substituting Eq. (2.2.21) into Eqs. (2.2.14), (2.2.15), (2.2.19), and (2.2.12),

then, into Eq. (2.2.25) yields the following system of equations,

Lx 0 -0 Ai .a Kab K-ac IiRa
[L, g ; + abT K_ Kh= = -F _•, (2.2.26)Ml, _J KT {hT KC},L

Each element of the inertia matrix, the stiffness matrix, and the

generalized force vector is given as follows.

Inertia Matrix:

Lx(i,i ) = , J (f ,g)(fj g) dx)dy

L,(i, j) = I2 'J (hk 1)(h lj) dx dy (2.2.27)

m(ij) = l l•a(m, ni)(mj nj) dxdy

where I,, 12 are defined in Eq. (2.2.18) and fi, gi, hg, 1i, , m, n, are the modal

functions (or eigenfunctions) of the beam due to the boundary conditions

as defined in Appendix A and also Eq. (2.2.22).

Stiffness Matrix:

.D,(.(fg: )(Xfg.)+ D,6(fjgi)(f.gi )

. (i, j) = bot +D X(fg;+fg) D6)+ D~g(fi,) fij)

+Gss(figi)(fjgj)

dxdy (2.2.28a)
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D2(f + gi )(hl/) + D 4(fi'gi)(hIl)

Lb (i, j)= JJo +D+26,(f)(hl)/ )+ D(fig)(hl)

-+G45(fif )hjlj)

dxdy (2.2.28b)

Kc (i, j) = JG 45 f ii )(jnj + G 5(fig)(mnj)] dx dy (2.2.28c)

D" l)(l)(hI ) + D26(Alf)(hl )

b (i,)=o + D26 (h ) h' ) + D66 (h )(hl ) dxdy (2.2.28d)

o +G44(hl ) hl)

Kc(i, j)= G45(ili)(mnj) + G44(hil)(mn j ) dxdy (2.2.28e)

. n )(mjn) + G4 s(mn )(m j )

Kc (i, j) = Jo dx dy (2.2.28f)+ L+G45 (mni )(mjnj) + G55 ( (m nj )

Generalized Force Vector:t

bi = i 0 (2.2.29)
Rcj mi(4c)nj(rc)

where (4c, ic) are the normalized coordinates of the point of impact as

shown in Figure 2.1.

t In this impact modeling, a transverse impact is assumed.
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The plate equations of motion (2.2.26) are simplified by statically

condensing out the rotary inertia terms. The rotary inertia is the inertia

associated with the planar rotations and contributes to the formation of

shearing waves in the laminates, whereas the lateral inertia governs

the formation of bending waves in the laminate. Tan and Sun [12] have

argued that for the geometries of interest, the rotary inertia terms are

small and may be neglected. As discussed by Cairns and Lagace [17],

an examination of the relative amplitudes of the inertia matrix as

defined in Eq. (2.2.18) shows that the relative amplitude of the inertia

matrices (rotary/lateral) is h'/12. For a practical laminate thickness on

the order of 1 to 10 mm, this ratio is on the order of 10-7 to 10-5. Since the

terms populating the matrices are greater in the shearing stiffness

matrices than the bending stiffness matrices, this huge difference in

inertia illustrates that the frequency arising from the rotary inertia is

much higher than that of the lateral displacement. Consequently, static

condensation of the plate equations of motion (2.2.26), neglecting the

rotary inertia terms, while retaining the influence of shearing

deformation, results in,

mCi + K C = -FRci (2.2.30)

where,

K.=K _.J[KT K_. K_, r. LK (2.2.31)

is the condensed stiffness matrix neglecting rotary inertia.t

t By using the beam functions for free-free boundary conditions, the inversed term in
Eq. (2.2.31) becomes singular. Rearranging the matrix is required before inversion.
Some details are discussed in Section 5.3.1.
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2.2.4 System of Equations of Motion

The system of equations of motion including the impactor

equation of motion is now constructed. The impactor is assumed as a

point mass whose equation of motion can be drawn from Newton's

second law of motion as,

m,ii, = -F (2.2.32)

where m, is the mass of the impactor, u is the displacement of the

impactor, and F is the impact force. Eqs. (2.2.30) and (2.2.32) can be

combined to give,

M + K*q = -FR (2.2.33)

where,

M = - , K* = , R = {i (2.2.34)

and the generalized coordinates are now,

= = }, =q = (2.2.35)iil - fuil

The plate displacement and the impactor displacement are

assumed to be coupled together by the Hertzian contact lawt which

assumes a nonlinear local contact spring [14]. Rigid impactor contact is

illustrated in Figure 2.3. The constitutive equation for the Hertzian

stiffness relation can be written as,

t This analytical contact law model [41] is summarized in Appendix B for the case of
isotropic material.
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Figure 2.3 : Rigid Impactor in Contact with Flexible Plate
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F = ka" (2.2.36)

where k is the local contact stiffness of the plate and n is the exponent

value controlling the stiffening property of the contact spring. The

indentation of the plate is modeled as,t

a = u, + w = Rq (2.2.37)

The system of equations of motion are expressed in terms of Eqs.

(2.2.33), (2.2.36), and (2.2.37). In the next section, the solution method is

discussed.

2.3 Solution Method

Eqs. (2.2.33), (2.2.36), and (2.2.37) are solved together to produce q

and F as functions of time. The initial conditions for this particular

analysis are,

qo oo = {11} =(2.3.1)

where io indicates the initial impactor velocity.

Following Cairns' formulation [2], the Newmark constant-

average-acceleration integration technique or Newmark (beta=1/4)

method [32] is employed to solve the coupled second-order ordinary

differential equations (2.2.33), and Eqs. (2.2.36) and (2.2.37). Eq. (2.2.33)

can be rewritten as,

t The coordinate system for the impactor motion uses the opposite direction of the z-
coordinate difined for the plate motion.

55



M iq(j + ) + K* q(+l) = -Fj+3) R2

where the superscript (j +1) represents the (j +l)th integration time

step. The Newmark integration method assumes the generalized

velocity and displacement can be written as,

(j+) =40J) +At-[ ..(+) + q(]
(2.3.3)

q(j+I) qi) +) + +1) + ()]

where At is the integration time increment. Rearranging Eq. (2.3.3)

gives,

(j At2)- _ (j)_ (j) (j)

(2.3.4)
4 (j+) At[q(+) - q(j ) ()

2

Substituting Eq. (2.3.4) into Eq. (2.3.2) and rearranging gives,

q(J+) (-M + K* ' - F(j+')R + M[ A~q " +4- q " + (2.3.5)

There is another relationship given by Eqs. (2.2.36) and (2.2.37). This

can be written as,

F(j + = k [RTq(j+l )] (2.3.6)

Eqs. (2.3.5) and (2.3.6) can give the values of q(j+l), FOj+'); however, for

n 1, those coupled equations require a numerical root finding

technique. Tsang [29] used the Newton-Raphson method to evaluate

q(J+l), Fj+'. Once those values are determined, the next time
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integration can be performed using the determined values as previous

step values.

2.4 Numerical Example

The developed global plate response model due to impact in

Section 2.2 and its solution method in Section 2.3 were implemented in a

FORTRAN program by Tsang [29] called "GLOBAL". Initially, this code

was used to analyze some of the impact cases in this investigation;

however, it took more than 10 hours of CPU time to produce the output,

such as force-time history during the impact, on a Macintosh IIfx. The

required CPU time is strongly dependent on the number of modes used

as input as well as the number of time steps. For a 7x7 mode case, it

may take less than a half hour of CPU time, but for a 17x17 mode case, it

may take more than 15 hours of CPU time on the same machine. In this

investigation, GLOBAL was installed on MIT's CRAY X-MP EA/464

supercomputer to improve the computational efficiency.

In the following numerical example, an impact problem for a 252

mm by 89 mm AS4/3501-6 graphite/epoxy plate in a [±452/02] s

configuration was analyzed.

Example Problem

The input data are summarized in Table 2.2. Note that the values

of local contact stiffness are approximated values taken from Ryan's

experimental work [18]. This case took about 4.5 minutes of CPU time
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Table 2.2: Inputs for GLOBAL Analysis - Example Problem

Laminate Material System
Lay-up

x-direction Boundary Condition
y-direction Boundary Condition

Plate Length (x-direction)
Plate Width (y-direction)

Plate Thickness
Plate Density

D1122

D1112
D2222

D2212

D1212

A44

A45

A55

Shear Correction Factor
Impactor Mass

Impactor Velocity
Local Contact Stiffness

Local Contact Exponent Value
Number of Modes in x-direction
Number of Modes in y-direction

Time Step Increment
Number of Time Stens

AS4/3501-6 Graphite/Epoxy
[±452/021s

Clamped-Clamped
Free-Free
252 mm
89 mm
1.608 mm
1540 kg/m3
17.072 N-m
11.272 N-m
2.560 N-m
15.365 N-m
2.560 N-m
12.325 N-m
6.92 MN/m
0.00 MN/m
8.06 MN/m
0.833
1.53 kg
3.0 m/s
0.5 GN/mS.5
1.5
17
17
5.0 gs
7,000 time steps
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on the Cray X-MP EA/464. As results, force-time history (Figure 2.4)

and displacement-time history at the center of the plate (Figure 2.5) are

presented. The signatures of both plots are typical as previously

reported by Ryan [18] for relatively high impactor mass and low

impactor velocity. The force-time history contains many high frequency

waves, although the overall trend of the plot is almost a sinusoidal

curve. The displacement-time history shows a relatively smooth

sinusoidal curve.

These analytical results are compared with experimental results

obtained by Wolf [191. In Figure 2.6, the experimental force-time history

during the impact event occurring under the same impacting condition

as analysis is over-plotted on the analytical force-time history which is

the same as shown in Figure 2.5. Notice that analysis predicts

approximately 45% less in peak force than the experiment. Also, the

impact duration predicted by analysis is approximately 2.7 times longer

than the impact duration observed by experiment.

Experimental displacement-time history was calculated from the

experimental force-time history by means of numerical integration. The

force-time history devided by the impactor mass gives the approximation

of acceleration-time history at the point of impact. Then, integrating the

acceleration-time history twice gives the displacement-time history.

Although this method gives only an approximated quantity of

displacement since we don't include the effective plate mass during the

impact, this gives a good correlation as shown by Williamson [33]. In

Figure 2.7, this experimental displacement-time history at the center of

the plate is compared with the analytical prediction shown in Figure 2.5.
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Figure 2.4 : Impact Analysis using Linear Theory :
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Example Problem
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Figure 2.5 : Impact Analysis using Linear Theory :
Displacement-Time History at the Point of Impact
for the Example Problem
(Input Data are shown in Table 2.2)
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Again, it is observed that there is a large difference between these

results. The analysis predicts the maximum displacement

approximately 2.4 times larger than the experiment shows. The impact

duration predicted by analysis is approximately 2.7 times longer than

the impact duration observed by experiment.

For the given example problem case, the analysis does not give

predictions which are sufficiently close to the experimental results, and

therefore, some refinement or redevelopment in the analysis method is

necessary.

2.5 Summary

In this chapter, the impact modeling using linear laminated plate

theory with first-order shear deformation was reviewed. The system of

equations of motion for both the laminated plate and the impactor was

derived and the solution method was also given. As a numerical

example, one problem was solved using the impact analysis developed in

this chapter and compared with the existing experimental results.

However, for the given example problem case, the analysis did not give

the predictions which are sufficiently close to the experimental results

in terms of force-time and displacement-time histories, and therefore,

some refinement or redevelopment in the analysis method is necessary.

In the next two chapters, the source of the problem in the existing

linear analysis is described.
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Chapter 3

Parametric Studies for Impact Analysis
of Linear Laminated Plate Model

3.1 Overview

This chapter describes an initial attempt to address the source of

the problem in the analytical method developed in Chapter 2. Some of

the input parameters of the analysis are varied to observe their

influences on the results of the analysis. The result of interest is the

force-time history during the impact event.

The first study is a convergence study. Two parameters, the time

increment used for the numerical integration and the number of modes,

which control the convergence of the analysis, are varied to check the

convergence of the solution. In the example problem of section 2.4 and

Ryan's work [18], 17x17 modes were chosen; however, there was no

check for convergence done and in fact, Qian and Swanson [34] used a
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similar analysis technique and claim that it may require more than

50x50 modes depending on the nature of the impact. The second study is

a sensitivity study for the local parameters, Hertzian stiffness constant,

k, and local nonlinearity exponent, n. The sensitivity of the force-time

history is studied by varying these local parameters. Lastly, there is a

discussion of boundary conditions for both the experimental apparatus

used by Wolf [19] and the analysis. This issue of the boundary conditions

serves as a bridge to Chapter 4.

3.2 Convergence Study

In this section, convergence of the solution for the impact analysis

of the linear laminated plate model developed in Chapter 2 is

investigated. This provides information on the number of modes and

time increment needed for the analysis. The example problem described

in Section 2.4 is used for this investigation.

3.2.1 Time Increment

The example problem considered in Section 2.4 is used with the

time increment varied with a range of 1-20 jisec. Each maximum force

is compared in Figure 3.1. As can be seen, as the time increment

becomes smaller, the maximum force increases slightly and becomes

relatively stable, which is assumed to be a convergence criteria, in the

region of 1-5 Ilsec. This kind of stability dependent on the time

increment is typical and a similar phenomena is presented by Qian and

Swanson [34]. Consequently, 5 jisec of time increment appears to
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be sufficient for this particular case of impact analysis. However, it is

important to remember that the time increment is dependent on the

impacting conditions, such as impactor mass, plate geometry, boundary

condition, etc. In fact, for smaller impactor mass, 0.008537 kg, a time

increment of 0.1-0.2 psec would be necessary for a converged solution

[34].

3.2.2 Number of Modes

A parametric study was performed by varying the number of

modes while maintaining a constant time increment of 5 psec. Again,

the maximum force output was used to judge the convergence. The

same number of modes in both the x and y directions were assumed in

this study with a range of 7x7 to 35x35 modes used as input data of the

analysis. As can be seen in Figure 3.2, there is a stable region of

maximum force for more than 25x25 to 30x30 modes. As for the time

increment, the required number of modes also depends on the impact

conditions. For the case investigated by Qian and Swanson [34], more

than 50x50 modes may be necessary to provide convergence of the peak

contact force.

As a result of this convergence study, the time increment and the

number of modes required to obtain the converged force-time history in

terms of the maximum force output were captured. However, this

convergence study for this example case is essentially a "fine tuning" of

the force-time history output. Obviously, varying the time increment

and number of modes does not give a force-time history close to the one
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observed experimentally as shown in Figure 2.6. After the "fine tuning"

of the analysis using 5 gpsec of time increment and 25x25 modes, the

maximum force output is approximately 656 N which is still half of the

peak force observed by experiment.

3.3 Sensitivity Study for Local Parameters

In this section, the sensitivity of the force-time history in terms of

the maximum contact force and impact duration due to the change in

local parameters, Hertzian stiffness constant and local nonlinearity

exponent value are discussed.

As described in Section 2.2 and Eq. 2.2.37, the impact analysis

employs a Hertzian contact law which assumes a nonlinear local

contact spring.t The constitutive equation for the Hertzian stiffness

relation can be written as,

F = ka n  (3.3.1)

where k is the local contact stiffness of the plate and n is the local

nonlinearity exponent value. These local parameters are typically

obtained through experiment. By performing static indentation testing

[14], force-indentation data can be obtained. The local parameters are

then computed by means of a "curve fit" to the experimental force-

indentation data. Some researchers [10,12,17,42] assume the local

nonlinearity value of n= 1.5 for anisotropic material even though this is

t The analytical Hertzian contact law model [411 is summarized in Appendix B for
isotropic material case.
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strictly true only for local indentation in isotropic material. However,

presetting values for k and n is necessary for anisotropic material, so

that these local parameters have unique values. In fact, Ryan [18]

showed that the method of curve fitting to the experimental force-

indentation data usually produced some variations in the local

parameters computed. Furthermore, local nonlinearity values other

than n= 1.5 may fit the experimental force-indentation data better.

Hence, it might be difficult to compute the exact values of these local

parameters. Also, it is not guaranteed that the local parameters

obtained from static indentation test can be applied directly to the

dynamically occurring indenting event in this particular impacting

condition case.

In this study, those local parameters were varied in realistic

ranges to determine if there were any significant influences to the

impact force output.

3.3.1 Local Stiffness Constant

The input parameter, Hertzian stiffness constant, k, was varied

in the range of 0.005 - 8.6 GN/m n . The local nonlinearity exponent

value, n, was assumed to be 1.5 and fixed. In Figure 3.3 and 3.4, the

maximum forces and the impact durations for various Hertzian

stiffness constants are presented. Using 25x25 modes and 5 psec of time

increment was assumed to give sufficiently converged solutions. The x-

axis for Hertzian stiffness constant uses a logarithmic scale. There is

little influence observed in terms of the maximum force and the impact
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duration due to varying the Hertzian stiffness constant. For example,

one of the force-time history comparisons is shown in Figure 3.5 using

two different values of the Hertzian stiffness constant,

0.5 GN / m'. s , 0.005 GN / m.s5 . Although there are some changes observed

in two curves, the overall trend of the signature of the curves is

essentially the same. As can be seen from the Figure 3.5, those

deviations of maximum force in Figure 3.3 come from the changes in

the peak values of the many "spikes". Typically, a lower Hertzian

stiffness value produces a smoother force-time history which contains

fewer of the "spikes". This implies that the secondary frequency

response refered to as "spikes" may be mostly controlled by the

characteristics of the local parameters in this particular example case.

3.3.2 Local Nonlinearity Exponent Value

The input parameter, local nonlinearity exponent value, n, was

varied in the range of 1.05 - 2.0. The Hertzian stiffness constant, k, was

assumed to be 0.5 GN/m 5.s and fixed. In Figures 3.6 and 3.7, the

maximum forces and the impact durations for various local

nonlinearity exponent values are presented. Using 25x25 modes and 5

psec of time increment is assumed to give sufficiently converged

solutions. Again, there is little influence observed in terms of the

maximum force and the impact duration due to varying the local

nonlinearity exponent values. For example, one of the force-time history

comparisons is shown in Figure 3.8 using two different values of the

local nonlinearity exponent; one uses 1.5 and the other uses 1.3.
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Although there are some changes observed in two curves, the overall

trend of the signature of the curves is essentially the same.

The sensitivity study provides the following conclusion. For this

particular impacting example case, local parameters do not have a

significant influence on the force-time history and therefore, the effect of

the local-global interaction is negligible in the given realistic range of

the local parameters.

This conclusion leads to the following observation. As shown in

Figure 3.9, this type of impact model can be analogous to using two

springs; one represents local nonlinear stiffness and the other

represents the linear plate motion. In the presented sensitivity study,.

only the characteristics of the local nonlinear stiffness were varied and

these local characteristics provided some influence on the secondary

frequency response, but did not have much influence on the primary

frequency response. The next step is to focus on the characteristics of

the other spring, the plate itself, which possibly has a greater effect on

the primary frequency response. According to Shivakumar et al [35],

the characteristics of the spring representing the plate motion can be

governed by the plate geometries and the boundary conditions as well as

the material properties of the plate. By assuming that input parameters

for the plate geometries and the material properties are correct, the

boundary conditions will now be investigated.
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3.4 Issues in Boundary Conditions

According to the experimental set-up by Wolf [19], the plates were

rigidly clamped in order to pursue the consistency in obtained data by

avoiding unexpected slipping at the clamped boundary regions (see

Figure 3.10). Because of this rigidly clamped boundary condition, it is

possible that there is a significant force in the in-plane direction or so

called membrane force which is a function of the out-of-plane

displacement of the plate occurring during the impact event. However,

linear plate theory cannot account for this membrane force effect which

requires the use of geometrical nonlinearity in the analysis.

This geometrical nonlinearity is first considered in the impacted

beam problem as a preliminary study for the nonlinear plate impact

analysis. Since the plate in the example case is clamped on two opposite

sides and free on other sides, its bending can be modeled as a beam and

the simplified analysis using a beam model should give some indication

of the influence of the membrane force.

3.5 Summary

In this chapter, two studies were performed to address the source

of the problem discussed in Section 2.4, that is, the discrepancy in force-

time history between the experimental data and the analytical

prediction.

The first study was a convergence study where the time

increment for numerical integration and the number of modes were
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varied to obtain the converged solution for the example problem in

Section 2.4. By making the time increment smaller and also the number

of modes greater, the maximum impact force taken from the force-time

history was found to be converged. However, the peak force after

convergence was still approximately 45% of the experimental peak force.

The second study was a sensitivity study. The sensitivity of the

force-time history in terms of the maximum contact force and impact

duration due to the change in local parameters, Hertzian stiffness

constant and local nonlinearity exponent value were studied. For the

example case, local parameters have influence on the secondary

frequency response but not on the primary frequency response.

Consequently, the effect of the local-global interaction is negligible in the

given realistic range of the local parameters.

The effect of the rigidly clamped boundary condition using a

simplified beam model including the geometrical nonlinearity is

discussed in Chapter 4.
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Chapter 4

Impact Analysis of Linear and

Nonlinear Beam Model

4.1 Overview

This chapter investigates the effect of membrane force due to the

rigidly clamped boundary condition in a beam model by including the

geometrical nonlinearity. This initial approach is a preliminary study

for a plate model assuming that the plate is clamped at two opposite

sides and free at the other two sides so that the plate bends like a beam.

A simplified out-of-plane displacement for the beam equation of

motion is developed using a support stiffness which is a virtual spring

in order to distinguish the boundary condition difference between the

rigidly clamped and loosely clamped cases.t The governing equation of

the beam can be solved simultaneously with the equation of motion of the

t Loosely clamped boundary condition means loose in the in-plane direction to allow
sliding motion as illustrated in Figure 4.2.
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rigid impactor and the constitutive relation of the nonlinear contact

spring. Also, analogous beam equations of motion are developed using a

similar approach taken in Chapter 2. This approach produces an in-

plane stretching equation of motion as well as an out-of-plane

displacement equation of motion of the beam. The effect of in-plane

stretching is also investigated to check the feasibility of a reduction of the

system of equations of plate motion used in Chapter 5.

4.2 Development of Beam Equation of
Motion Using Support Stiffness

Assume that a Bernoulli-Euler beam with a clamped-clamped

boundary condition can be modeled as shown in Figure 4.1 as suggested

by Dugundji [361 and Dowell [46]. The basic beam equation of motion for

this model is expressed as,

d4 w  d 2W
EI F-- = pd - mw (4.2.1)

dX dx

where F is a beam forcet in the x-direction and can be obtained as

follows:

F EA= s (4.2.2)

where u5 is the beam elongation and expressed as,

S (w') d- u(4.2.3)

t In this formulation, the beam force is assumed to be a function of out-of-plane
displacement only. Therefore, in-plane displacement is not considered.
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but also,

F
F = k,uF or u, =- (4.2.4)

k,

Substituting Eqs. (4.2.3) and (4.2.4) into Eq. (4.2.2) yields,

F R=EA I (w') dx (4.2.5)

where,t

EA· = •--•l, (4.2.6)

Note that there are relationships among the support stiffness (k,), fi,

and physical meanings of boundary conditions as shown in Figure 4.2.

The fourth-order differential equation of motion of the beam can be

obtained by substituting Eq. (4.2.5) into Eq. (4.2.1).

94 EA F'i( & ' d)w d2 wA I dx2 = P - m- (4.2.7)
&4 ý 2 1 x dxf & & t

For the simplified analysis, take the first clamped mode (01) only. Let,

w(x, t)= 1(x) ql (t) (4.2.8)

Substituting Eq. (4.2.8) into Eq. (4.2.7), and applying the Galerkin's

method [43] (multiplying by 01 and integrating over the length) yields,

t 8 represents a geometrical nonlinearity factor which is discussed in Section 6.1.
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CL Cq+() q ( (4.2.9)

where CI, C2, C3 are the constants based on the first clamped mode

shape as expressed in Eq. (4.2.10).

1  2Ct = o Zdxr

f =dxC2 ( d (4.2.10)

where qI denotes a modal amplitude and / controls the rigidity of

clamped boundary condition. When P is equal to zero, Eq. (4.2.9)

describes the linear beam model with loosely clamped boundary

conditions. When P is equal to one, Eq. (4.2.9) contains a nonlinear

termt and describes the geometrically nonlinear beam model with

rigidly clamped boundary conditions.

The governing equation of motion of the beam (4.2.9) can be solved

simultaneously with the equation of motion of the rigid impactor (4.2.11)

and the constitutive relation of the local nonlinear contact stiffness

(4.2.12).

m,ii -P(t) (4.2.11)

P(t) = k[u + q, #(1/2)]" (4.2.12)

Eqs. (4.2.9), (4.2.10), and (4.2.11) are solved using a fourth-order

Runge-Kutta numerical integration method. This analysis procedure is

t This nonlinear term is refered to as a cubic stiffening term.
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implemented in a FORTRAN program called "NLBEAM" listed in

Appendix C1. In order to investigate the effect of support stiffness or

membrane force, this beam model was analyzed for two cases, P=0

(linear case) and = 1 (nonlinear case).

4.3 Numerical Example

A graphite/epoxy plate made from AS4/3501-6 with the stacking

sequence of [±452/021s as shown in Table 2.2 is modeled as a beam and all

the input parameters are given in Table 4.1. This example problem is

solved using both P = 0 (linear case) and P = 1 (nonlinear case).

Results of the force-time history and displacement-time history for

each case are shown in Figures 4.3 and 4.4 respectively. In Figure 4.3, it

is observed that the nonlinear beam model generates a greater

maximum force and shorter impact duration than the linear beam

model. This phenomena is similar to what was observed in Figure 2.6

showing a force-time history comparison of experiment and linear plate

analysis. In Figure 4.4, the nonlinear beam model produces a smaller

displacement than the linear beam model. This also agrees with the

Kant and Mallikarjuna [26] claim that the nonlinear theory predicts

smaller deflections compared to linear theory. Consequently, the effect

of the membrane force in this particular example case can not. be

neglected and by analogy must be included in the plate analysis.
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Table 4.1: Input Parameters for Beam Analysis

h (thickness) [m] :

1 (length) [m]:

b (width) [m] :

E [N/m 2] :

density [kg/m3] :

m, (impactor mass) [kg] :

VI (impactor velocity) [m/s] :

n (local nonlinearity exponent)

k (local stiffness) [N/m n] :

0.001608 (= 1.608 mm)

0.252 (= 252 mm)

0.089 (= 89 mm)

61.8 e+9 (assumed from EL)

1,540

1.53

3.0

1.5

1.0 e+6
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4.4 Importance of In-Plane Displacement

The beam equation of motion developed in Section 4.2 accounts for

out-of-plane displacement only. In-plane displacement is not

considered.t Using the approach described in Section 2.2 in conjunction

with nonlinear strain-displacement relationstt can yield a set of

equations including both out-of-plane and in-plane displacements.

Assume that the in-plane displacement, u, and the out-of-plane

displacement, w, can be expressed by using the first rigidly clamped

mode as follows.

u(x,t) = pl(t) Wp(x)
(4.2.13)

w(x,t) = q1(t) 01(x)

where pi(t) and q1(t) denote modal amplitudes in in-plane and out-of-

plane directions respectively and ql(x) and 01(x) denote first mode

shapes in in-plane and out-of-plane directions respectively. The

resulting coupled system of equations of beam motion is now expressed

as follows.

JlPl + J2 ()P + J3(--)q2 =O

(4.2.14)
41 + (162 EA 3 EA (t)J4-il + J5(i14 + (+J )q, = , (1V2) Pml)l 2m14l m m

t The terms, in-plane and out-of-plane, are used for the beam model. In-plane and out-
of-plane refer to longitudinal and transverse directions for the beam model,
respectively.
ft The nonlinear strain-displacement relations are discussed in Section 5.2.2.
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where,

J4= Js J =1 3J , 5=/,• Zdx, (4.2.15)

J71 I  I

The coupled nonlinear differential equations (4.2.14) and also the

rigid impactor equation of motion and the constitutive equation of

Hertzian local contact relation given in Eqs. (4.2.11) and (4.2.12) can be

solved by means of numerical integration and this procedure is

implemented in a FORTRAN program "NLBEAM2" listed in Appendix

C2. The force-time history of the output of this program is compared

with the one produced by the nonlinear equation (4.2.9) which contains

only out-of-plane displacement (shown in Figure 4.3) in Figure 4.5. The

maximum difference in these two curves is less than 1% indicating the

effect of in-plane displacement is almost negligible in this example case.

Consequently, it will be assumed that nonlinear plate analysis, which is

described in Chapter 5, can also be simplified by neglecting the in-plane

displacement behavior.
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4.5 Summary

In this chapter, the effect of membrane force due to the rigidly

clamped boundary condition in a beam model including the geometrical

nonlinearity was investigated as a preliminary study for the plate

analysis. Two different approaches were taken to obtain the beam

equation of motion. One approach used a support stiffness which acts as

a virtual spring at the boundary. This approach produced the equation

of motion in terms of transverse displacement and included both linear

and nonlinear cases by simply changing the support stiffness

parameter, 1. The nonlinear beam model showed a greater maximum

force and shorter impact duration than the linear beam model. Also,

the nonlinear beam model produced a smaller displacement than the

linear beam model. The other approach was the same as the procedure

reviewed in Section 2.2. This approach produced two coupled equations

of motion in terms of both in-plane and out-of-plane displacements.

From the output of this system of equations, the effect of in-plane

displacement was observed. As a result of this preliminary study, it is

concluded that the membrane force should be considered in the plate

analysis by including geometrical nonlinearity. The effect of in-plane

displacement, however, appears to be negligible for the example problem

considered.
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Chapter 5

Impact Modeling Using Nonlinear

Laminated Plate Theory with
First-Order Shear Deformation

5.1 Overview

In this chapter, an impact model using a nonlinear laminated

plate theory is developed. A geometrical nonlinearity in plate analysis

without shear deformation has been considered by several authors, such

as Reismann [37], Chia [38], and Whitney [39] and is known as von

Kdrm~n nonlinear plate theory. A nonlinear laminated plate theory

with shear deformation can be derived from the three-dimensional

nonlinear theory of elasticity by combining Timoshenko-type theory and

von Kdrmin nonlinear plate theory as described by Reddy [21]. In this

investigation, nonlinear plate equations of motion subjected to impact

are obtained from energy equations by means of Lagrangian equations of
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motion and a Rayleigh-Ritz method in conjunction with assumed mode

shapes.

5.2 Development of the Equations of Motion

5.2.1 Assumptions

The following assumptions were made initially to develop a

system of equations of motion for both a plate and an impactor.

a) Nonlinear strain-displacement relations including second-order

nonlinear terms in the reference surface strains at z= 0 are

assumed.

b) Linear stress-strain relations are assumed.

c) Through the thickness strain, e33, is negligible and out-of-plane

displacement, w, is a function of in-plane coordinates, x and y,

only.

d) The plate deforms both in bending and shear.

e) First-order shear deformation terms are included.

f) The contact force between the impactor and the plate is a point

load.

g) Material properties are assumed constant throughout the impact

event.

h) No structural damping is considered.

i) Impactor is assumed to be rigid.
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j) Local indentation of the plate is accounted for by a nonlinear

Hertzian stiffness relation.

A schematic of the laminated plate impact model is shown in Figure 2.1.

There are additional assumptions made later to further reduce the

system of equations.

5.2.2 Nonlinear Laminated Plate Theory with First-
Order Shear Deformation

Strain-Displacement Relations

In the Lagrangian description, the coordinates x1, x2, x3 are

regarded as independent variables and the Green strain tensor or the

Lagrangian strain components can be defined as,t

e I =2ý +i + +i + i  4' (5.2.1)

By including first-order shear deformation which assumes that cross-

sections remain planar but not normal to the plate midplane during

deformation, a linear variation of the displacements is assumed

through the thickness for the shear deformation. Now, the

displacement fields are expressed as follows.

t Reference for general theory of strain may be made to Love, A. E. H., A Treatise on
the Mathematical Theory of Elasticity, Cambridge University Press, 1927.
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u1(x,y,z,t) = u(x,y,t) + zv.(x,y,t)

u2 (x, y, z, t) = v(x, y, t) + z••,(x,y, t) (5.2.2)

u3(x,y,z,t) = w(x, y,t)

u1, uS, and u3 are the displacements in the x, y, and z directions,

respectively; u, v, and w are the associated midplane displacements.

Vf and yt are the rotations in the xz and yz planes owing to bending

only. From Eqs. (5.2.1) and (5.2.2), strain-displacement relations can be

derived as shown in Eq. (5.2.3).

e1 = v+-- (52+z )dx 2 dx

dw
2e3 = -0 +-

Eq. (5.2.3) can also be expressed in terms of vector notation.
(12, y, z, ) = (, y, ) + z -,y, t)

(5.2.4a)

r(,y, z, t)= _y(x,y,t)

where,
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Sf 2e23622 2e
12612J

CO-° eo 22 -+ •-220x 2 dx

ry•dx d•x y

(5.2.4b)

Eqs. (5.2.4a) and (5.2.4b) represent nonlinear strain-displacement

relations including shear deformation. Note that second-order terms in

60 are the source of geometrical nonlinearity and are the only

differences in the analytical development compared with Eq. (2.2.6) for

linear theory.

Constitutive Behavior of the Plate

The basic laminate constitutive equations are the same as those

used.in the linear analysis and defined by,

Ij{N}[ [A] [B]ifeo)
{M}J [B]T [D]] [K J

(5.2.5)
Q [ G55 G45{Q2J G45 G44J

where [A], [B], and [D] are the in-plane, bending-stretching, and

bending stiffnesses of the plate, respectively. Each of the matrix

components are given as,
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(At, B, DB ) = + C' (") (1, z, z2) dz
n, D#) Z=

(i, j = 1,2, 6)

where n denotes the nth ply and there are total of Nplies. Also, where

C, are assumed to be the plane stress material constants for this

investigation and i, j = 1,2,4,5,6 by letting,

2ell [ 1 (61
e=622 = 62 ,

2e12  e66J

The transverse shear stiffness

components are defined as,

N X0G= KiKjJf' Cy) dz

Y 2e= eY 26131 =e65
(5.2.7)

matrix [G] and each of the matrix

(i, j = 4, 5) (5.2.8)

The value of the shearing correction term, KiK j , used here is the

isotropic correction factor of 5/6, shown to be adequate for laminates

made from thin plies [11].

In Section 4.2, Eq. (2.2.7) could be decoupled by assuming By = 0

for linear plate analysis; however, Eq. (5.2.5) can not be decoupled

because the out-of-plane displacement is a function of in-plane

displacement for nonlinear plate theory.

Potential Enegy

The potential energy stored in a properly constrained body under

load can be separated into two parts:
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a) the strain energy, defined as the product of strain and stress, or,

since we assumed a linear stress-strain behavior as:

U =I f Cjeje, dV (5.2.9)
V

b) the work done by the external forces:

W = piwi dS i = 1,2,3 (5.2.10)
S

where pi denotes external force per unit area and wi denotes

displacement from original position.

The total potential energy is simply the difference of these two terms and

a function of the displacements only.

Introducing Eqs. (5.2.4a,b) and (5.2.5) into the strain energy

equation (5.2.9) and integrating over the thickness yields the following

strain energy expression.

U= IJJ( goT [A] _o + 2•oT [B] D + •'[D] K + Y'[G]• ) dS (5.2.11)
2S

For convenience, the strain energy is devided into four parts as,

U = UI + U, + U, + UvU (5.2.12)

where each of the strain energy parts can be written as follows,
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UI = 1 - goT [A] go dS
2 S

-jfofo:

du
dx

dv

du
dy+
4,

1 (-dwýV 2

•+-a2 dx TS[ A11
dv dwdw A16

ax adx dy

(5.2.13)

Ul =1 = oT [B] v dS2rr2 J
s

du 1 dw 2

dv 1 d 2
+ I " A2o 2 6 4

du adv dw A6

aydx dx

B12

B22
B26

16

B26
B66-

dx
dy

+ &

dAdy

(5.2.14)

Un = 1JKT[B] KdS
S

dxdvy
dyd Vf d vf

T

D12
L16

DI2

D22
D26

16
Di26D6 J

dx

dy

(5.2.15)
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UIV JJJ ZT [G] ydS
2 S

Sdw dw (5.2.16)
f I ba Vf4+- f- G55 G45 - Vfy +'dy I/ ,+
2 oo dw bG 4 5 G44 dwlKx + a+ JL

Each of the strain energy components has a specific physical meaning

as described by Minguet [40].

UI : is an energy representing the in-plane stretching, the geometric

coupling between in- and out-of-plane deformations, and fourth-order

terms representing the stiffness of the large deformation.

U1 : is an energy containing linear terms which represent the

material coupling between in- and out-of-plane deformations that

occurs, for instance, in unsymmetric plates and nonlinear terms

representing the in-plane strains.

Um: represents the bending energy of the plate.

UIv:is the energy representing the plate transverse shear

deformation. Notice that this is the only term coupling w with yV and

yy, and also the only one containing terms which are functions of w

alone.
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Kinetic Energy

The kinetic energy, T, of the plate is given by,

T(u,v,w, vxwy) = Sl 2 +,2 + 2]dV (5.2.17)

where ui, u2, u3 denote displacements in x, y, z directions respectively and

(') denotes differentiation with respect to time. Substituting Eq. (5.2.2)

into Eq. (5.2.17) and integrating over the thickness yields,

T(u, v, w, Vx, ',)

4i, '13 0 z2 0 0
!br y 0 /3 0 12 0
S4 2 0 I 0 0

1 0 0 0 0 11

*X'

*7 (5.2.18)
i dx dy

j

where,

(1, I, I)= (1, z, z2) p3dz =(5.2.19)

Now, all the energy equations required to produce the plate equations of

motion have been presented. General plate equations of motion can be

derived using Hamilton's principle [44]:

h 8L dt = 0 (5.2.20)
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where 8L is the first variation of the Lagrangian,

8L = 8I - sT (5.2.21)

where I and T are the total potential and kinetic energies, respectively.

The variations of total potential energy and kinetic energy can be

obtained by substituting Eqs. (5.2.3), (5.2.5), (5.2.9), (5.2.10), and (5.2.18)

into Eq. (5.2.21).

Variation of Total Potential Energy :

a[8] + dw ___,_N +Nx +MXS

+N +N& N +MY [8

dy d dy & ddy
VN d+ mxy[N &8 av +[& w •Gy]• +d

M, [8lv ]+M a, a• +Q.6w,+Q,.? aJ

dR

-q~w dR- I,6u, dS- ,3 dS- IM8,y. dS- ff6Sy, dS - fJ-.& dS
R C2  c, cS . c,

(5.2.22)
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Variation of Total Kinetic Energy :

Sdt w~d

+ d + +Ofk 13

S t dr

dR
(5.2.23)

where subscripts n and s denote normal and tangential, respectively, R

denotes the midplane of the plate, and the symbol, ^ , represents a

prescribed quantity.

Integrating Eqs. (5.2.22) and (5.2.23) by parts with respect to both

time (t) and coordinates (x, y) and setting f' L dt =0 yields the
0

following equations of motion.

8u: Nx + = ll +12 (5.2.24a)
ax dy

NI dN
bv: Y+ = I•V + 12 (5.2.24b)

dy dx

d2w d2w d2w
Sw: Nx + 2NxY + NY

dN + + (5.2.24c)
+ x dy )qx y x d+ y

dx &y
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dMI
Zax

dM
syr,: _dy

dM
+ - x =YQ2iu+,I3 xdy

dM
+ M-Q, = 12 +13 V,

The natural boundary conditions of the plate are given.by,

5uno: Nn - n = O onC1

6uo: N ,- N =0 on C2

5yn: M- Mn = O onC 3

6y,: M-, =O0 onC 4

5wo: Q ,-, =o onC 5

where the subscript, o, represents a quantity at the midplane. Note that
C, thru C5 denote the segments of the total boundary C such that on

C- C, C-C 2, C-C 3, C-C 4, and C-C 5, essential boundary conditions

are specified:

Uno = no on C - C,

uSo = 4so on C- C2

o. = Wn on C-C 3  (5.2.26)

Ws = Vs  on C-C 4

wo = o on C-C5

111

(5.2.24d)

(5.2.24e)

(5.2.25)



For a rectangular plate, with coordinate axes parallel to the edges of the

plate, the natural and essential boundary conditions take the following

simple form:

Natural Essential

Specify Nx or uo
N, or Vo
Mx or Igx
My or W,
Q, (or Q,) or WO (5.2.27)

Eqs. (5.2.24) can be rewritten in terms of the displacements only by

substituting Eqs. (5.2.4) and (5.2.5) into Eqs. (5.2.24). These formulations

are, however, not necessary for an impact analysis. Since a transient

analysis at a given point on the plate is the focus of this investigation,

Lagrangian equations of motion are sufficient.

5.2.3 Plate Equations of Motion for Transient Analysis

Plate equations of motion at a given point are obtained by applying

the Lagrangian equations of motion and the Rayleigh-Ritz method in

conjunction with assumed mode shapes to the energy equations obtained

in Section 5.2.2.

Assumed Mode Shapes

For spatial discretization of the displacements as functions of x

and y, let,
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w,(x,y,t)= (5QA(t)f;(x)g,(y) (5.2.28a)

y,, (x,y,t)= t) B (t)h• (x)I (y) (5.2.28b)

u(x,y,t) = j Cu (t)m;(x)n,(y) (5.2.28c)

v(x, , t) = DX(t)o;(x)pj(y) (5.2.28d)

w(x, y, t) = Et)=)q, (x) r(y) (5.2.28e)

or, using single summation instead of double summation yields,

y,(x, y,t)= Ai(t) f (x)g, (y) (5.2.29a)

y (x, y, t) = Bi (t) h. (x) lu (y) (5.2.29b)

u(x,y,t) = Ci(t)m,(x)n (y) (5.2.29c)

v(x, y,t) = Di(t) o(x) p (y) (5.2.29d)

w(x, y,t) = E (t) q (x) r. (y) (5.2.29e)

where Ai, Bi, Ci, Di, E, are modal amplitudes to be determined from the

analysis and the index numbers, i, , 4,u, are related by some organized

scheme as previously shown in Table 2.1.t Beam functions,

f, g, h, 1, m, n, o, p, q, r representing mode shapes are discussed in Section

5.2.4 after a reduction of the system of equations.

t In this case, ; and A are replaced by r and s shown in Table 2.1.
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Lagrangian Equations of Motion

The Lagrangian function L, is defined to be,

L=T-U

The Lagrangian equations of motion [31] can be expressed as,

d(tL
dt (qi

dL
j=1,2, . . ., M

(5.2.30)

(5.2.31)

where M denotes the number of degrees of freedom, and qj denotes the

generalized coordinates. In this analysis, qj are A., Bi, Ci, Di, Ei, and

the number of degrees of freedom would be j = 5xi = 5xqxpu. Since the
kinetic energy is a function of 4q only and the potential energy is a

function of qj only, Eq. (5.2.31) can be expanded to the following forms.

dt d4 A= P) A

d (dT) dU

(-* I+-= P

dt di diDi

dt j + E = Pei

where Paj, Pbs, Pci, Pdi, Pi indicate the work done by the external forces.
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Substituting Eqs. (5.2.11), (5.2.18), and (5.2.29) into Eqs. (5.2.32) yields the

following system of equations,

Ai
Bi

D

+ [Ku}

AkEI
BkEI

CkEI

DkEL
EkE,

BkEIEm

+ [Km]- CA4E.,
DkEtEm

= -FI{} (5.2.33)

where,

[]1 =
O

LbT

-0o
K T

Kc T

K 
T

-f.l T

0oo

0
.- n..

0
I

IdT

o

KIab

KIbb

K T

KIbeT

0

0

K',I

KIC-- loc

Kib-KIbc

I T
_.Icd T

0

0
0
0

o

(5.2.34a)

Klad
KI

o
0-c~

K.

-0KI.
leI

0 Km.'

0 Ku,.
O K_.
-Had

(5.2.34b)

(5.2.34c)
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[Km] =
0000•

0000 0

0. 0 0 0 K ee

(5.2.34d)

Rai '

Rbi

{R} = Rci  (5.2.34e)
Rdi

R-ei

F denotes an external applied force. Each element of the inertia matrix,

stiffness matrices for the linear and nonlinear terms, and the

generalized force vector is given in terms of assumed mode shapes as

follows.

Inertia Matrix [M]:

I b= oI f (5.2.35a)

-Isb ,(f ,)( ) dy (5.2.35b)

, = obo (hI)(h l)dx dy (5.2.35c)

I = oI'I (h~ liXo p)dx dy (5.2.35d)

= b•l (mi ni Xmj nj) dx dy (5.2.35e)

Lf = 1 1 (iPi)(ojPj) dx dy (5.2.35f)
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m= fb oIz(qi ri)(q rj) dx dy (5.2.35g)

Stiffness Matrix [K1 ]:

4Df, ii)(f ;j () + D16 (ig)(f ) +D6(fi)(f)
S+Dj (fi g)(f& g;)+eG5 (fi g)(f g dxdy (5.3.36a)

+Di2 (fi gi)(j g9i) + G55 (fi (i)(fj g9)

S=b • (f o )(h I)+ 6(f )(h (f (h dx dy (5.2.36b)
+D6(A lh'l)+ G45(fi gi )(hjlj)

a lB(fl'gi )(m, n )+ B16(f i g')(m; n,)+ B16(figi)(mj n;)

ac = ob (f' g(n) J dxdy (5.2.36c)
L +B6(fi 9 !)(mj n;)

Bl2(••(fgi)(o° P)+ Bj16(fi'gi)(o° Pj )+ B(fi gi)(oi P]
Kad-0 =of (pdx dy (5.2.36d)

+66 (fi g)(o; py)

K. = , Jo[Gss (fgi)(qj r) +G45 i gi)( r)] ddy (5.2.36e)

b D22(41'Xhjlj)+D2a(h4!giXhjlj)+D26(4()(hjlj)
KIbb= J+o D(h lXh)+ D+ dxdy (5.2.36f)

L+D(hifXh l,)+ G44(hi li)(hG f i)

B16(hi'i)(m j n) + B(h iXmj n(5.2.36g)
dx dy (5.2.36g)
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B, (h )(o p) + B,(h.'li)(o p) +B B(h•:)o; pjl)
KI = f•2o2 dx dy)

=f = G45 i )(q' r) + G4 (hi i )(q1 r] dx dy

Kcc
-- Ic C

-Ai6(mfni)(oj pj)+ A26(mi ni')(oj pj)d
dx dyKIcd =

SA (o, p(o p) + A26(o~p)(oj p;) + A• (o pf(, p Y
KIdd= J dx•dy

L+A66(oi pi)(O opj)

SGs(q r)(q r) + G45 (q i r)(q r)
iae =fa dx dyJJ

S L +G45 (qi r)(qj r) + G44(qi ri')(qj rj)J

Stiffness Matrix [Ku :

(5.2.36h)

(5.2.36i)

(5.2.36j)

(5.2.36k)

(5.2.361)

(5.2.36m)

B-1  (fg,)(q, r, )(qr,
2 )+ B12(fi'gi)(qk rk)(

+2 B16 (f g')(qk' rk X4qrt) + B16(fgi r)(q r )(q

2
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A16(mi n')(mj) n)+ A(mnidxdm y nj)
dx dy

Kn, = Jo



nbe = JoJO

Ka f = .Jo

b-= oo

KII.b = J0J0fo

~1 1

+ B (k l"X kr" )(q, r') + B2 ( W li ) (qk r)

1 A,(mnirk r)+ A12(mn)q r Xqj r;)

2 (m (q+ 2

+ 16(mn)(; rk)(q i) + ( )(q rk)(q r,

+1 A(mi n;)(qk2 r-)(q r4') + A6(m i nX)(qk rk)(ql r4)

2 2

1

2

+- A(odpi)(qk r)(q 1 K) + A (o pi)(q" rk)(qj r4)
2

"B1 (q~r)(f' gk)(qjrl) + B12(qi r)(fk gk)(ql r4)

+Bi(qri)(fk Xg)(qr,) + Bi6(q;rXfgk)(q, r;)

+B6(qi iXf; gk,)(q;r,) + B26(qi rX'Xfk g)(q r4)

+Bf(q riXf k g Xq r) + B(qi r) (f k g'Xqr,)

"A2 ( q'i ri X At l'A X ql rl ) + B16 (qý ri )(hhlt I)(q r1 )

+B2(qi rXhk 1)(qt r4) + B2(qi r)(ht lt)(q r4)

+B (qr ri Xh k Xq, r4) + B2(q i r)(h k lk* )(qX r)

+B6 (q;ri )(Xh' 4 X q r;)+ B ( q rX)(h' X)(q'r,)_
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dxdy

dxdy

dxdy

Ixdy

(5.2.37b)

(5.2.37c)

(5.2.37d)

(5.2.37e)

(5.2.37f)

L

I

"

I

L
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KneeII_ o

lld = for

A1,(q, ri )(m nkXq r) + A12(qi r )(m; nk)(qt r)

+A16 (qi r,)(m"k nk)(qI rf) + A16 (q, r)C)(mk' nk)(ql r,)

+A 6i(qf ri)(mk nk )(q r) + A26(qi r, )(mk nk )(qX r)

+A66 (q r)(mk n)(q, r) + A66 (q r)(mk 4X)(q•ir,)

A,12(q ri)(ok p )(q r) + A22 (qi )(ok P)(q r;)

+A16(q, ri)(o Pk )(q; rl) + A26(q ri)(ok pk)(q r4)

+A26(qir l)(Ok P )(qr;) + A26(q i r ')(o Pk )r

+A66(qfri)(o' Pk)(Q r;)+ A66(qiri')(o' Pkt)(4'r
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Stiffness Matrix [Km] :

K, b

+ A2(q i r)(q k rk)(qX rl)(q r.)2

+1 A,(qi K)(q" k rt)(q' rX)(q r.)

+3 An(qi r')(qk rk )(qt r`)(q, r" )22

*A1 (q" ri`)( q rk)(q Xq r)( q,. r.)+ 2 k2

+ 26(Xi ri))(qk rk)( r, r.")2

-+A66(q ri)(q'k rk)(q,"r Xqm r.)

Generalized Force Vector t {R} :

R O

Rbi 0
{R}= , = (5.2.39)

SThe transverse impact force is assumed to act at

t The transverse impact force is assumed to act at (4, 'Is) as shown in Figure 2.1.
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The index systems used in Eq. (5.2.33) are organized as in the following

examples.

Index "i" system:

rA
A2
A3 (5.2.40a)

Index "k & l" system:

{AkElt

A1E,
A1E2A2 E

a2 2
A2E3

AA3
A3E2

A3E3

(5.2.40b)
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Index "k, 1, & m" system:

{EkEIEm}=

'E1 E1 E 1

El El El
EI EzlE2EEE1E1 E3

E1Ez E1

E1E 2E 2

E1E2 E3

EIE3 E1
E1E3E2

E1 E3E3

E2E1E1

E2E1E2

E2E1E3

2E2E, (5.2.40c)
E2E E2

E2E2E3

Note that for g xA =3x3 mode case in Eq. (5.2.29), the sizes of the

matrices in Eq. (5.2.33) are, 45 x 45 for [M] and [K1], 45 x 405 for [Kg],
and 45 x 3,645 for [Km]. For the case of g x A = 7 x 7 mode, the sizes of the

matrices increase geometrically to 245 x 245 for [M] and [KI],

245 x 12,005 for [K,], and 245 x 588,245 for [K,].
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Reduction of the Plate Equations of Motion

The plate equations of motion (5.2.33) are reduced by making

additional assumptions in order to minimize the computational

intensity. These assumptions are as follows.

i) symmetric laminate is assumed (By = 0).

ii) in-plane displacements are neglected compared to the out-of-plane

displacement.

Assumption i) was also made in Chapter 2 and is appropriate since

many of the practical laminated composite plates take symmetrical

stacking sequences. Assumption ii) is based on the assumption that the

influence of in-plane displacement is negligible for the particular

impact problem studied here as evidenced from the nonlinear beam

study in Section 4.4.

By assuming symmetric laminates, Bj =0, and neglecting all the

in-plane displacements, u and v, as well as the corresponding assumed

mode shapes, m,(x), n,(y), o,(x), p. (y), representing the u, v terms, Eq.

(5.2.33) can be reduced to the following form.

A _A AAEjE
[M]A +[1 + [Kml IBEm kE. =-F, {R} (5.2.41)

wh, eEeE,E

where,
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-4I
[IM] = 0_o

0 0 0
KM = 0 0 0{} o O]I•,,-,=l oLQ 9 KM- J

Raii
Rbi

{R.}R_.,~i

Since there is no coupling involved in

of motion (5.2.41) are simplified

Neglecting rotary inertia terms,

shearing deformation, results in the

of-plane modal amplitude only.

i the [Km] term, the plate equations

further by static condensationt.

while retaining the influence of

following equations in terms of out-

(5.2.43)[MI{l + [K {&E} + [Ki]{EkEIE = -F1 {Bi}

where,

K1 = Kr - [K T K,,T1I I -K i
LKab KIbb, -Kb 1 (5.2.44)

t Discussion regarding the static condensation by neglecting rotary inertia terms are
made in Section 2.2.3.
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By using the beam shape functions for free-free boundary conditions in

one direction, the inversed term in Eq. (5.2.44) becomes singular and can

not be inversed without some rearrangement. Normally, some of the

rows and columns are all zero's and those should be eliminated. Also,

corresponding rows and columns in Eq. (5.2.42b) should be eliminated

and compressed.

Since the in-plane displacements, u and v, and their

corresponding assumed mode shapes are neglected, only the rotations,

Vf and Vy, the out-of-plane displacement, w, and their corresponding

assumed mode shapes should be considered. Following the procedure

taken in Section 2.2.3, the beam functions representing mode shapes in

Eqs. (5.2.29a,b,e) are assumed to have the relations described as,

d

(5.2.45)
gpT( ) r.l )

l() = d [rP(q)]

Each beam function takes a form depending on the boundary condition.

In this analysis, Generalized Beam Functions (GBFs) studied by

Dugundji [30] are employed.t

t See Appendix A for more detail concerning the Generalized Beam Functions.
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System of Equations of Motion

The system of equations of motion including both the plate and

rigid impactor equations of motion is now constructed. The impactor is

assumed as a point mass whose equation of motion can be derived from

Newton's second law of motion as,

mrii1 = -F3 (5.2.46)

where m, is the mass of the impictor, u, is the displacement of the

impactor, and F, is the impact force in the transverse direction. Eqs.

(5.2.43) and (5.2.46) can be combined to give,

MA + K*A + K* ] = -F, R

M=[j M

KM* [0 mm= IKM 01

. K * R=O

R 1

and the generalized coordinates are,

- L{f} J -={ ,}

The plate midplane displacement, w, and the impactor

displacement, ul, are assumed to be coupled together by the Hertzian

contact law which assumes a nonlinear local contact spring 114].t The

t The analytical contact law model [41] is summarized in Appendix B for isotropic
material case.
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(5.2.49)A23 = E1EIE0
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schematic of the rigid impactor contact on a flexible plate is illustrated

in Figure 2.3. The constitutive equation for the Hertzian stiffness

relation can be written as,

Fz = F = ka n  (5.2.50)

where k is the local contact stiffness of the plate and n is the exponent

value controlling the stiffening property of the contact spring. The

indentation of the plate is modeled as,

a = uI + w = RTTA (5.2.51)

The system of the equations of motion are expressed in terms of Eqs.

(5.2.47), (5.2.50), and (5.2.51).

5.3 Solution Method

5.3.1 Solution Technique

Direction of Applying Geometrical Nonlinearity

The development of the plate equations of motion in Section 5.2

contains geometrical nonlinearities in both the x and y directions. Due

to the reduction of the system of equations performed in Section 5.2.4

based on the assumption which neglects in-plane displacement

behavior, the strain energy, UI, as described in Eq. (5.2.13) is reduced

and can be expressed in terms of out-of-plane displacement and in-plane

stiffnesses, A,, and Az2, only. Now, A,, and A22 control the stiffening
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effect in the x and y directions, respectively. If a boundary condition

does not allow any constraint in either of the directions (i.e. free-free

boundary conditions in the x or y direction), only one of the A I and A2

terms should be included in order to apply the geometrical nonlinearity

in one direction.

Time-Integration

Eqs. (5.2.47), (5.2.50), and (5.2.51) are solved together to produce

the generalized coordinates, A, and impact force, Fz, as functions of

time. The initial conditions for this particular impact analysis are,

r&. = 0o= {4 0 = {I (5.3.1)

where 4o indicates the initial impactor velocity.

For the impact analysis using linear plate theory as discussed in

Chapter 2, the Newmark (beta=1/4) time-integration scheme was applied

to solve a system of second-order linear differential equations since the

scheme is unconditionally stable for linear problems.t This scheme

requires a Newton-Raphson method to find a root for a coupled

nonlinear equation (Hertzian contact relation) for each time step.

However, in order to apply the Newmark (beta=1/4) time-integration

scheme to the impact analysis using nonlinear plate theory which deals

with multiple coupled second-order nonlinear differential equations

t The Newmark (beta=1/4) numerical integration scheme, although unconditionally
stable for linear problems, is not proven stable for nonlinear problems [21].
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plus a coupled nonlinear Hertzian contact relation, all the roots of the

plate equations need to be determined first. Also, apparently, these root

findings have to be done for each time step. Since this computation

using the Newmark (beta=1/4) time-integration involving root findings

would be very costly, the standard fourth-order Runge-Kutta method [45]

is employed for the present nonlinear analysis of the impacted plate.

To complete the discretization with respect to time, Eqs. (5.2.47),

(5.2.50), and (5.2.51) can be combined and rewritten as,

(j)+1l) = -MKA() - M - K* [31() - k[RT( j ) ]M-R (5.3.2)

where the superscripts (j + 1) and (j) indicate the time steps.

Eq. (5.3.2) is now divided into two coupled first-order differential

equations in order to apply the numerical integration.

.(j+1) -M - K* (j ) - M1'K* [31() -k[RTA(j)] M-1R

(5.3.3)
(j+l ) = (J+1)

Eqs. (5.3.3) are now ready for application of the fourth-order Runge-

Kutta method.

5.3.2 Computational Issues

The impact model developed using nonlinear laminated plate

theory with first-order shear deformation was implemented in a

FORTRAN program called "GLOBAL2" and installed on MIT's CRAY
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X-MP EA/464 supercomputer. The source code of the program is listed

in Appendix D. Although GLOBAL2, which is an extended version of

GLOBAL, has the capability to solve both linear and nonlinear problems,

it encounters a problem due to the hardware constraint. GLOBAL2

deals with a relatively large coefficient matrix for the nonlinear (cubic)

term as shown in Eq. (5.2.38). For example, using 9 x 9 modes results in

a 81x 531,441 non-square Km* matrix. Because of its size, GLOBAL2

requires much more memory (RAM) than GLOBAL; the maximum

RAM on MIT's CRAY supercomputer limits the GLOBAL2 to 10 x 7 (or

9 x 8) modes. Therefore, GLOBAL2 has a option that only odd modes can

be included, so that, for example, using the maximum of 9 x 8 modes

yields up to 17 x 15 odd modes. Although it is understood that some

laminates having non-zero bending-twisting coupling terms (i.e.

[±452 /021 laminate case) may not bend symmetrically, using odd modes

may still provide an adequate response.

Computational time (CPU time) required for this nonlinear

analysis is also one of the issues to be noted. The required CPU time

seems to be strongly dependent on the number of modes used as input.

Initial investigation using GLOBAL2 indicated that using the 17 x 15 odd

modes, which is the maximum capability of this investigation at this

point, and 3,000 time steps requires more than 12 hours of CPU time on

the CRAY supercomputer. However, using the 9 x 9 odd modes and the

same number of time steps required less than 30 minutes. Increasing

the number of modes leads to an increase of the CPU time at a

geometrical rate.
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5.4 Numerical Example

In the following numerical example, an impact problem for a 252

mm by 89 mm AS4/3501-6 graphite/epoxy plate in a [±452 /02h

configuration is analyzed. This is the same problem analyzed in Section

2.4 using the linear theory. The input data are summarized in Table

5.1. In Figure 5.1, the force-time histories of both linear analysis and

nonlinear analysis are shown. Clearly, there is a notable difference

between the results obtained by linear and nonlinear analysis. Peak

impact force using nonlinear analysis is five times larger than the one

using linear analysis and the impact duration using nonlinear analysis

is one fifth of the one using the linear analysis. As claimed by Kant and

Mallikarjuna [26], the nonlinear analysis predicts larger peak impact

force and shorter impact duration than the linear analysis. In Figure

5.2, this force-time history obtained by nonlinear analysis is compared

with experimental data obtained by Wolf [19]. The nonlinear analysis

predicts a larger peak force and shorter impact duration than the

experimental data.
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Table 5.1: Inputs for GLOBAL2 Analysis - Example Problem

Laminate Material System
Lay-up

x-direction Boundary Condition
y-direction Boundary Condition

Plate Length (x-direction)
Plate Width (y-direction)

Plate Thickness
Plate Density

All

D111,

Dill

D1112
D2222

D=12

D1212

Als

A45
A55

Shear Correction Factor
Impactor Mass

Impactor Velocity
Local Contact Stiffness

Local Contact Exponent Value
Number of Modes in x-direction
Number of Modes in y-direction

Time Step Increment
Number of Time Steps

AS4/3501-6 Graphite/Epoxy

[±452/02,]
Clamped-Clamped (Rigid)
Free-Free
252 mm
89 mm
1.608 mm
1540 kg/m3

125,542,700 N/m
17.072 N-m
11.272 N-m
2.560 N-m
15.365 N-m
2.560 N-m
12.325 N-m
6.92 MN/m
0.00 MN/m
8.06 MN/m
0.833
1.53 kg
3.0 m/s
0.5 GN/mnl
1.5
15 (odd modes only)
15 (odd modes only)
5.0 ps

3,000 time steps
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5.5 Summary

In this chapter, an impact model using nonlinear laminated plate

theory with first-order shear deformation was developed. The energy

equations were derived from the three-dimensional nonlinear theory of

elasticity by combining Timoshenko-type theory and von Kirmin

nonlinear plate theory as described by Reddy [21]. Using the energy

equations, a transient impact model was developed by means of

Lagrangian equations of motion and the Rayleigh-Ritz method in

conjunction with assumed mode shapes.

From the numerical example, the nonlinear analysis predicted a

larger peak impact force and shorter impact duration than the linear

analysis as expected; however, the nonlinear analysis also predicted a

larger peak impact force and shorter impact duration than experiment

showed. Some further investigations are discussed in Chapter 6 which

provide insight into the usage of nonlinear analysis.
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Chapter 6

Results and Discussion of Nonlinear
Plate Impact Analysis

6.1 Parametric Studies Using Nonlinear
Impact Analysis

The result of the numerical example in Section 5.4 showed that

the nonlinear analysis predicted a larger peak impact force and shorter

impact duration than the experimental data showed. In order to

improve the ability of prediction using nonlinear analysis, there were

several parametric studies performed. The parameters varied were the

number of modes, the local contact stiffness, and the degree of the

geometrical nonlinearity.

6.1.1 Number of Modes

The number of modes used in Section 5.4 was 15 x 15 modes
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containing only odd modes due to the computer hardware constraint as

discussed in Section 5.3.2. The validity of the assumption neglecting

even modes can be checked by comparing the force-time history using

7 x 7 modes including both odd and even modes with the force-time

history using 7 x 7 modes including only odd modes which lead to zero

bending-twisting coupling terms as shown in Figure 6.1. There was no

significant difference in the output which indicated that the bending-

twisting coupling terms associated with the even modes in GLOBAL2

nonlinear analysis were negligible.

Convergence was also checked for the force-time history by

changing the number of modes. As can be seen from Figure 6.2, there

was little change in the force-time history due to the change in the

number of modes. The peak impact force gradually decreased as the

number of modes increased, although the change in impact force was

small. The assumption that 9 x 9 modes containing only odd modes was

sufficient for convergence appears to be valid. All the following analyses

were based on 9 x 9 modes containing only odd modes.

6.1.2 Local Contact Stiffness

In Figure 6.3, the force-time histories are shown for various

values of the local contact stiffness. Unlike the linear analysis results

shown in Section 3.3.1, the force-time history obtained by nonlinear

analysis was sensitive to the change in the local contact stiffness. The

reason for this can be explained using the simplified spring-mass model

shown in Figure 3.9. For nonlinear analysis, the ratio of the two spring
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Figure 6.1 : Effect of Bending-Twisting Coupling
in Nonlinear Analysis

(Using only odd modes results in zero bending-
twisting coupling.)
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stiffnesses representing local contact stiffness and plate motion would be

in the range that could influence one another due to the stiffening effect

of the plate. By artificially adjusting the value of the local contact

stiffness to 2 x 106 N / ml5 , the force-time history approached to the one

obtained experimentally by Wolf [19] in terms of the peak impact force

and the impact duration as shown in Figure 6.4. However, as can be

seen from Figure 6.5 showing the displacement-time history, the

maximum indentationt was approximately 0.008 m which was five

times larger than the plate thickness. Since this phenomenon is

physically unrealistic, this artificially chosen number for the local

stiffness constant should not be used.

6.1.3 Geometrical Nonlinearity

The impact model using nonlinear laminated plate theory with

first-order shear deformation developed in Chapter 5 assumed that the

clamped boundary condition in the numerical example currently

discussed was perfectly rigid. However, in a realistic situation, the plate

holding jig used in the experiment was made of aluminum [19] and

would not be perfectly rigid. The plate holding jig might be flexible and

allow some unexpected small displacement in the in-plane direction

during an impact. As shown in Section 4.4, the effect of in-plane

displacement for the beam analysis was negligible, although the effect of

membrane force could not be neglected. This implies that the quantity of

the in-plane displacement is very small but still contributes to the

t (Indentation) = (Impactor Displacement) - (Plate Midplane Displacement)
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membrane force effect. This observation can be applied to the nonlinear

plate model. In other words, small displacements due to the slightly

flexible boundary condition can still cause a significant effect in

membrane force. For this reason, a study was performed using a

nonlinear analysis which applied a geometrical nonlinearity partially.

The system of equations of motion (5.2.47) was modified so that the

nonlinear cubic stiffening term could be applied partially by multiplying

by some factor, 1, ranging from 0 to 1.t

Now, the modified system of equations of motion representing both

the plate and the impactor can be expressed as,

MA+ K*A + Ki*[3 ] = -F,R (6.1.1)

where,

for 8 = 0: loosely clamped boundary condition (equivalent to a
linear analysis)

for 8 =1 : rigidly clamped boundary condition (equivalent to a
nonlinear analysis)

In Figure 6.6, the force-time histories for various P values are

presented. By decreasing the P value, a smaller peak force and longer

impact duration can be obtained. The force-time history using P =0.05

or 5% of the stiffening force effect is shown with experimental force-time

history [19] in Figure 6.7. Although the analysis predicted a peak force

approximately 30% larger than the experimental peak force, the overall

trend of the signature or the primary frequency response of the force-

time histories were close. The difference in peak forces was primarily

due to the larger amplitudes in the secondary frequency response

t The factor, 1, is defined as a geometrical nonlinearity factor in this investigation.
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predicted by the nonlinear analysis. The displacement-time histories

are shown in Figure 6.8. The analysis predicted the maximum plate

midplane displacement approximately 15% larger than the experiment

showed; however, again, the overall trends of the curve were very

similar. Also, the analysis predicted a realistic indentation which was

approximately one tenth of the plate thickness. Comparison between the

nonlinear and the linear analysis shown in Figures 6.9 and 6.10 clearly

shows that the effect of the geometrical nonlinearity of the membrane

force is crucial, even though only 5% of the stiffening effect is accounted

for.

6.2 Comparison of Nonlinear Analysis and
Experiment

By assuming that the partially applied geometrical nonlinearity

(f=0.05) gives a sufficient prediction of impact response, six other

impact cases were analyzed and compared with experimental data

obtained by Wolf [19]. The material system, the stacking sequence, and

the initial impactor velocity of each case are summarized in Table 6.1.

Two cases, Case 1 and Case 2, were performed based on the same

material system and stacking sequence as described in Table 5.1 but

using different initial impactor velocities. Case 1 used an initial velocity

of 2 m/s and Case 2 used an initial velocity of 1 m/s. For Case 1, as can

be seen in Figure 6.11, the analysis predicted a peak force approximately

30% larger than the experimental peak force. This was assumed due to

the large amplitude in the secondary frequency response; however, the
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overall trend of the force-time signature was close. Figure 6.12 shows a

comparison of the displacement-time histories between the analysis and

experiment. Although approximately 10% difference in the maximum

displacements was observed, the overall trend of both displacement-time

histories was similar. Force-time histories and displacement-time

histories for Case 2 are shown in Figures 6.13 and 6.14, respectively.

The analysis predicted 8% less peak force and approximately 50% longer

impact duration. Using a value of P higher than 0.05 in the nonlinear

analysis could perhaps give a better correlation with experimental data.

This suggests that the geometrical nonlinearity factor might depend on

the applied impact energy as well as the flexibility of the boundary

region. Assuming that the mass of the impactor is fixed, the value of 1

would be influenced by the initial impactor velocity.

Case 3 used a stacking sequence of [904/02]. and an impactor

velocity of 3 m/s. The input data used in the analysis is shown in Table

6.2. The comparisons of force-time histories and displacement-time

histories are presented in Figures 6.15 and 6.16, respectively. There are

relatively poor correlations compared to Cases 1 and 2. The analysis

predicted longer impact duration, higher peak force, and larger

displacement. For this case, varying P would not improve the impact

response since a higher P value produces a higher peak force and a

shorter impact duration and a lower P value produces a lower peak.

force and a longer impact duration as observed in Figure 6.6.

Case 4 used a stacking sequence of [+452/02/902]. and an impactor

velocity of 3 m/s and showed relatively good correlations as can be

observed in Figures 6.17 and 18. The input data used for Case 4 is shown
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Six Cases Investigated and Compared with Experiment

153

Case Material System Stacking Initial Impactor
Sequence Velocity

1 AS4/3501-6 [±452/02]. 2 m/s

2 AS4/3501-6 [±452/021. 1 m/s

3 AS4/3501-6 [904/02]. 3 m/s

4 AS4/3501-6 [±452/02/902]. 3 m/s

5 IM7G/X8553-50 [±452/02]. 3 m/s

6 IM7G/X8553-50 [±452/02]. 5 m/s

Table 6.1 :



in Table 6.3. Although the peak force predicted by the analysis was

approximately 60% higher than the experimental results, the primary

frequency response or the overall trend of the curve produced by the

analysis was similar to the experimental data. The displacement-time

histories shown in Figure 6.18 present good correlations. The difference

seen after the peak displacements might be due to the material

nonlinearity induced by damage since the displacement obtained from

the experiment never returned to zero.

Cases 5 and 6 used a different tmaterial system, IM7G/X8553-50,

known as a "toughened" graphite/epoxy composite. The input data for

the analysis is listed in Table 6.4. Cases 5 and 6 used initial impactor

velocities of 3 m/s and 5 m/s, respectively. From the comparisons of

force-time histories shown in Figures 6.19 and 6.20, the analyses

predicted impact durations which were close to the experimental data;

however, the analyses predicted more than 60% higher peak forces than

experimental data showed, although the overall trends were still

similar.
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Figure 6.13 : Case 2 : Comparison of Force-Time Histories -
Nonlinear Analysis (P = 0.05) and Experiment
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AS4/3501-6 [±452,
252 mm x 89 mm pli

-Clamped-Free

Impactor Velocity: 1 m/s
Impactor Mass: 1.53 kg

/021s
ate

Experiment [Ref.19]
..........--- Analysis (Plate Midplane)
- - - Analysis (Impactor)

c·~.'N

,FN

N.

0 0.004 0.008 0.012 0.016 0.02
Time [sec]

Figure 6.14: Case 2: Comparison of Displacement-Time
Histories -
Nonlinear Analysis (3 = 0.05) and Experiment
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Table 6.2 : Input Data for Case 3 Analysis

Laminate Material System :
Lay-up :

x-direction Boundary Condition :
Geometrical Nonlinearity Factor (p):

y-direction Boundary Condition :
Plate Length (x-direction) :
Plate Width (y-direction) :

Plate Thickness :
Plate Density:

All :
D1A11:

Duss :

D2222 :
D2212 :
D1212 :

A, :
A45

Shear Correction Factor :
Impactor Mass :

Impactor Velocity :
Local Contact Stiffness :

Local Contact Exponent Value :
Number of Modes in x-direction :
Number of Modes in y-direction :

Time Step Increment :
Number of Time Steps :

AS4/3501-6 Graphite/Epoxy
[904/021s
Clamped-Clamped
0.05
Free-Free
252 mm
89 mm
1.608 mm
1540 kg/m3

87,170,300 N/m
5.1272 N-m
1.0261 N-m
0.0 N-m
47.8009 N-m
0.0 N-m
2.0789 N-m
8.06 MN/m
0.00 MN/m
6.92 MN/m
0.833
1.53 kg
3.0 m/s
0.5 GN/mlz
1.5
9 (odd modes only)
9 (odd modes only)
5.0 ps
3,000 time steps
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0 0.005 0.01 0.015
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Figure 6.15: Case 3 : Comparison of Force-Time Histories -
Nonlinear Analysis (P = 0.05) and Experiment
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IExperiment [Ref.19]
-........--------- Analysis (Plate Midplane)
- - - Analysis (Impactor)

AS4/3501-6 [904/021s
252 mm x 89 mm plate
-Clamped-Free

Impactor Velocity: 3 m/s
Impactor Mass: 1.53 kg

1

/

0.005 0.01 0.015
Time [sec]

Figure 6.16 : Case 3 : Comparison of Displacement-Time
Histories -
Nonlinear Analysis (l = 0.05) and Experiment
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Table 6.3: Input Data for Case 4 Analysis

Laminate Material System:
Lay-up :

x-direction Boundary Condition :
Geometrical Nonlinearity Factor (l) :

y-direction Boundary Condition :
Plate Length (x-direction) :
Plate Width (y-direction) :

Plate Thickness :
Plate Density:

D1122 :

D1112 :

D2222 :

D2212 :

D1212

A44

A45

A55

Shear Correction Factor
Impactor Mass

Impactor Velocity
Local Contact Stiffness

Local Contact Exponent Value
Number of Modes in x-direction
Number of Modes in y-direction

Time Step Increment
Number of Time Steps
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AS4/3501-6 Graphite/Epoxy
[±452/02 /90,21
Clamped-Clamped
0.05
Free-Free
252 mm
89 mm
2.144 mm
1540 kg/m3

130,838,300 N/m
45.7821 N-m
35.5402 N-m
3.8406 N-m
35.5402 N-m
3.8406 N-m
26.9961 N-m
9.93 MN/m
0.00 MN/m
9.93 MN/m
0.833
1.53 kg
3.0 m/s
0.5 GN/ml1

1.5
9 (odd modes only)
9 (odd modes only)
5.0 gs
3,000 time steps
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Experimtn [Ref. 19]

........--- Nonlinear Analysis
(8 = 0.05)

0.0150.005 0.01

Time [sec]

Figure 6.17: Case 4 : Comparison of Force-Time Histories -
Nonlinear Analysis (1 = 0.05) and Experiment
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0.005 0.01
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Figure 6.18: Case 4 : Comparison of Displacement-Time
Histories -
Nonlinear Analysis (8 = 0.05) and Experiment
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Table 6.4 : Input Data for Case

Laminate Material System
Lay-up

x-direction Boundary Condition
Geometrical Nonlinearity Factor (P)

y-direction Boundary Condition
Plate Length (x-direction)
Plate Width (y-direction)

Plate Thickness
Plate Density

All

D1112

Dl22
D2212

D1212

A44

A45
Am

Shear Correction Factor
Impactor Mass

Impactor Velocity

Local Contact Stiffness
Local Contact Exponent Value

Number of Modes in x-direction
Number of Modes in y-direction

Time Step Increment
Number of Time Steps

IM7G/X8553-50
[±452/02,]
Clamped-Clamped
0.05
Free-Free
252 mm
89 mm
1.740 mm
1540 kg/m3

143,591,000 N/m
22.5264 N-m
15.0949 N-m
3.5227 N-m
20.1778 N-m
3.5227 N-m
16.5905 N-m
10.27 MN/m
0.00 MN/m
10.27 MN/m
0.833
1.53 kg
3.0 m/s (Case 5)
5.0 m/s (Case 6)
0.5 GN/mrl-
1.5
9 (odd modes only)
9 (odd modes only)
5.0 jis
3,000 time steps
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Experiment [Ref.19]

--........- Nonlinear Analysis
(8 = 0.05)

0.0150.005 0.01

Time [sec]

Figure 6.19: Case 5 : Comparison of Force-Time Histories -
Nonlinear Analysis (3 = 0.05) and Experiment
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Experiment [Ref. 19]
-----.......---- Analysis (Plate Midplane)
- - - Analysis (Impactor)

IM7G/X8553-10 [±452/02]s
252 mm x 89 mm plate

-Clamped-Free

0.005

Impactor Velocity: 3 m/s
Impactor Mass: 1.53 kg

0.01

Time [sec]

Figure 6.20: Case 5 : Comparison of Displacement-Time Histories -
Nonlinear Analysis (P = 0.05) and Experiment
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Experiment [Ref.19]

---------- ...... Nonlinear Analysis
(B = 0.05)

5000

4000

3000-

2000

1000

0
0.015

Time [sec]

Figure 6.21 : Case 6 : Comparison of Force-Time Histories -
Nonlinear Analysis (3 = 0.05) and Experiment
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Experiment [Ref.19]
-------........--- Analysis (Plate Midplane)
- - - Analysis (Impactor)

IM7G/X8553-10 [±452/02]s  Impactor V

252 mm x 89 mm plate Impactor M
-Clamped-Free

I \'.

elocity: 5 m/s
ass: 1.53 kg

0.005 0.01

Time [sec]
0.015

Figure 6.22 : Case 6 : Comparison of Displacement-Time Histories -
Nonlinear Analysis (,B = 0.05) and Experiment
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6.3 Summary

In this chapter, parametric studies and comparisons with the

existing experimental data were performed using the nonlinear plate

impact analysis developed in Chapter 5. Parameters varied were the

number of modes, the local contact stiffness, and the geometrical

nonlinearity factor. The nonlinear plate impact model was relatively

insensitive to the inclusion of the even modes which contribute to the

bending-twisting coupling; however, the model was sensitive to the

change in the local contact stiffness. A partial geometrical nonlinearity

was applied to the nonlinear plate impact model using the geometrical

nonlinearity factor, P. This factor was included after considering the

flexible plate holding jig which might allow some unexpected

displacement in the in-plane direction resulting in a reduction of

membrane stiffening effect during an actual impact situation. Using

p = 0.05 or 5% of the membrane stiffening effect gave a good correlation

with experimental data in terms of the force- and displacement-time

histories. Although the overall trends or the primary frequency

responses of the force-time history were predicted well, there were

significant differences in the secondary frequency responses between the

analysis and the experiment. Further refinement needs to be done to

bring this nonlinear plate impact response analysis into better

agreement with the experimental data.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Including geometrical nonlinearity in the shear deformable

laminated plate impact analysis showed a significant effect in impact

response compared to linear plate impact analysis.

Specific conclusions are drawn as follows.

1) The impact response predicted by the linear impact analysis did

not agree with the impact response observed by experiment using

a rigidly clamped boundary. Linear impact analysis produced a

lower peak force and longer impact duration than the experiment

showed.

2) Using a linear analysis, a large number of modes (i.e. more than

25x25 modes) would be necessary to converge for the impact

problem investigated. Increasing the number of modes to more
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than 15x15 modes gave essentially a "fine tuning" of the force-time

history output and did not influence the overall trend of the force-

time signature.

3) The linear impact response was insensitive to changes in certain

combinations of the characteristics of the local nonlinear contact

spring and the spring representing the plate stiffness.

4) The geometrical nonlinearity for a beam model could be included

using two different approaches. One approach used a support

stiffness which was a virtual spring, and the other approach was

based on nonlinear strain-displacement relations. The first

approach produced a nonlinear equation in terms of the out-of-

plane displacement only and the second approach produced

coupled nonlinear equations in terms of both the in-plane and the

out-of-plane displacements.

5) The investigation using a beam model showed that the

geometrical nonlinear effect of the membrane stiffening was

significant in terms of the impact response. The nonlinear beam

model produced a higher peak force and a shorter duration than

the linear beam model.

6) The investigation using a beam model showed that the effect of the

in-plane displacement on the beam equation of motion was

negligible for the example problem studied.
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7) The nonlinear impact model for the laminated plate produced a

higher peak force and a shorter impact duration than the linear

impact model.

8) The nonlinear impact model for the laminated plate produced a

higher peak force and a shorter impact duration than the

experiment showed.

9) The impact response produced by the nonlinear impact analysis

was relatively sensitive to the change in the local contact spring

characteristics. Using an unrealistically low value for the local

stiffness constant gave a reasonable force-time history, but

generated an indentation larger than the plate thickness, a

physically unrealistic result.

10) The impact model which included the geometrical nonlinearity

partially (i.e. 5% of the full nonlinearity) gave reasonable impact

responses in terms of the primary frequency response compared

to the experimental data. Typically, the analysis predicted larger

amplitudes for the secondary frequency response.

7.2 Recommendations

Although the impact model which included the geometrical

nonlinearity partially gave reasonable impact responses, there are still

significant differences in the secondary frequency response observed by
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comparisons with the experimental data. The recommendations for the

future work are summarized as follows.

1) The membrane stiffening force during the impact needs to be

obtained experimentally so that the geometrical nonlinearity

factor (1) can be determined.

2) Since the nonlinear plate model is sensitive to the change in the

local contact spring characteristics, sufficiently accurate values

in local contact stiffness and the local nonlinearity exponent

should be obtained.

3) Further simplification of the nonlinear analysis should be

introduced in order to reduce the computational intensity so that

more modes can be included.

4) The current analysis assumed a point loading. A distributed

patch loading might improve the analysis.

5) The local modeling for the impacted region including fully three-

dimensional effects should be coupled with the current nonlinear

global model in order to properly include the influence of the local

contact characteristics.

In particular, the focus should be to verify the influence of the

membrane stiffening force due to the flexibility/rigidity in the boundary
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region and the importance of the global-local interaction with respect to

the impact response modeling.
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Appendix A

Generalized Beam Functions (GBFs)

Dugundji [36] derived approximate beam shape functions (GBFs)

for various boundary conditions. Although these GBFs are

approximations to the traditional beam shape functions, the difference

between the two becomes negligible when the mode number is greater

than 2.

The GBFs are written in the form,

Sn(x) = ý -2sin(& x + 0)+ Ae - fax + Be -BP(l - x ) (A.1)

where the constants or shape parameters Pn, 9, A, and B are given in

Table A.1 for some common boundary conditions. The corresponding

frequencies for an isotropic beam are given by,

(On =2 4El/ml 4  (A.2)

All modes are normalized such that the mode shape 0n(x) satisfies the

condition,
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SIn2 (x)dx = 1
0

(A.3)

These modes also apply for n = 1 with less than a 1% error, except for the

clamped-free case. The form of Eq. (A.1) has the advantage that GBFs

can be written in one single parametric form and easily evaluated

numerically. Also, Eq. (A.1) can be useful in performing large

multimode Rayleigh-Ritz type analyses for beam, plates, and shells with

different boundary conditions.

Table A.1 : Euler Beam Elastic Mode Shape Parameters

Boundary
Conditiont fn 0 A B

SS-SS nr 0 0 0

CL-FR (n- 1/2)7r -/4 1 (-l)n+1

CL-CL (n+1/2)-/4 1 (-1)n+

FR-FR (n + 1/2)r +37r/4 1 (-1)n+l

SS-CL (n + 1/2)r 0 0 (-0) n+ l

SS-FR (n + 1/2) 0 0 (-1)

t SS = simply supported, CL = clamped, and FR = free.
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Appendix B

Analytical Contact Law Model for Response of an
Isotropic Plate to Impact Loading

In this analytical development, a contact law model for response

of a plate to impact loading is considered. The problem of low velocity

impact on laminated composites is idealized using the classical

Hertzian contact law. For a detailed discussion of the origins of the law

and limiting assumptions, see the work by Goldsmith [41]. The law as

applied to composite plates has been investigated by a number of

researchers such as Tan and Sun [12], Yang and Sun [14], and Dobyns

(42]. The essential feature of this contact law is given below (Eq. B.1) in

the relationship between the force generated between two colliding

elastic bodies and their relative displacement. The geometry of the

colliding bodies is illustrated in Figure B.1.

F(r) = kao3 = k(w, - w)3/2B.1)
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vot IMPACTOR

PLATE

TIME, t= 0

ao = Wa - Wp
W WAp

TIME, t > 0

GEOMETRY OF COLLIDING BODIES

where,

radius of impactor
mass of impactor
velocity of impactor at t= 0

: structural deflection of plate at center of contact
displacement of impactor relative to position at t = 0
force generated between the colliding bodies
relative displacement or approach of the colliding
bodies

Figure B.1 : Geometry of Colliding Bodies
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To determine the force, F(t), the following procedure is used. First, the

proportionality constant or local stiffness constant, k, can be found

either experimentally [14] or analytically using the Hertzian contact

theory [41]. The present discussion uses the analytical constant

describing a spherical body contacting a plane surface and can be

written as,

4 4•k = (B.2a)
3x (31+62)

where,

1 = 1- impactor (B.2b)
zEI

82 = - plate (B.2c)xEz

and
E1 : modulus of impactor
v• : Poisson's ratio of impactor
E2 : transverse modulus of plate
v2 : transverse Poisson's ratio of plate

Second, the displacement, w,, can be determined from Newton's second

law if the contact force is assumed to cause the impactor to decelerate.

Taking the initial velocity as Vo , the expression for w, becomps,

-= Vot-1 F(r)(t-r) dr (B.3)

The approach, aq, can then be written as,

ao0 = Vo- I-•- F(r)(t- r) d'r-wp (B.4)
MO
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Substituting the Hertzian contact law equation (B.1) for ao , the Eq. (B.4)

becomes,

SVo t - fm F(r)(t-r)dr- w, (B.5)
k MO 0

which is the governing nonlinear integral equation in terms of the

contact force, F(t), and the plate displacement, wp, which can be

expressed in terms of F(t) for a four-sides simply supported boundary

condition case [10] as,

w,(x,y,t) = 4abm • F(r)sin ,(t- r)dl
(B.6)

x sin(mm) sin(m ) sin(m ) sin(nzy)2 2 a b

where, mp, a, and b denote a plate mass of unit area, dimensions of a

plate in the x and y directions, respectively.
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Appendix C1

NLBEAM FORTRAN Source Code

NLBEAM is the FORTRAN program analyzing both linear and

nonlinear transient response of an isotropic beam due to an impact

loading used in Section 4.3. The program algorithm is based on solving

Eqs. (4.2.9), (4.2.11), and (4.2.12) using a fourth-order Runge-Kutta

numerical integration method.

Sample input data file "beam.dat" and output data file "beam.out"

are also listed.
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PROGRAM NLBEAM
C
C
C Program developed by Hiroto Matsuhashi,
C Technology Laboratory for Advanced Composites,
C Department of Aeronautics and Astronautics, MIT, 1992.
C
C
C Copyright c1992 Massachusetts Institute of Technology
C
C
C Permission to use, copy, and modify this software and its
C documentation for internal purposes only and without fee is hereby
C granted provided that the above copyright notice and this
C permission appear on all copies of the code and supporting
C documentation. For any other use of this software, in original or
C modified form, including but not limited to, adaptation as the
C basis of a commercial software or hardware product, or distribution
C in whole or in part, specific prior permission and/or the
C appropriate licenses must be obtained from MIT.
C
C This software is provided "as is" without any warranties
C whatsoever, either express or implied, including but not limited to
C the implied warranties of marchantability and fitness for a
C particular purpose.
C
C This software is a research program, and MIT does not represent
C that it is free of errors or bugs or suitable for any particular
C task.
C
C
C
C This test program computes transient response of impact force
C and displacement of the rigidly clamped beam using nonlinearity
C effect which produces stiffening effect.
C
C The governing equation of the beam used in this program is,
C
C q" + C1*q + C2*(q**3) = C3*P
C
C where,
C q : Modal amplitude for the transverse displacement ( w )
C P : Impact force
C (") : Second derivative with respect to time
C C1, C2, C3 : Constants due to given mode and other
C conditions.
C
C This equation and also impactor equation of motion can be
C solved by numerical time integration (this program uses 4th-
C order Runge-Kutta method).
C
C Note that in-plane displacement ( u ) is not considered in this
C analysis.
C
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C
C
C [ VARIABLES ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION mB,L,k,n,mI
INTEGER ts

C
C

CALL INPUT(E,aI,aA,mB,L, beta,k, n, vI,mI,dt,ts, ITI)
C

OPEN( UNIT=11, FILE='beam.out', STATUS='NEW'
C
C

C1 = 500.6*E*aI/(mB*(L**4))
C2 = 75.6*beta*E*aA/(mB*(L**4))
C3 = 1.588/(mB*L)

C
C
C
C * VARIABLE INITIALIZATION
C
C

time= 0.
y =0.
q =0.
z = vI
u =0.
P =0.
P1 = 0.
IT = 0

C
C
C
C
C * TIME INTEGRATION USING 4th-ORDER RUNGE-KUTTA METHOD
C
C

DO 10 I=l,ts
C

IT = IT+1
C

CALL RK4(C1,C2,C3,mI,y,q, z,u,P,dt)
C

alpha = u+1.588*q
IF(alpha .LT. 0.) THEN

P = k*(-alpha)**n
P = 0.
Po- 0.

ELSE
P = -k*(alpha)**n
PO= -P

ENDIF
C

w = -1.588*q
time = time+dt
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C

40

IF(IT .EQ. ITI) THEN
WRITE (11,40)time, PO, w
FORMAT (3F16.8)
IT = 0

ENDIF
C
10 CONTINUE

C
C
C

CLOSE( UNIT=11 )

STOP
END

C
C--------------------------------------------------------------------
C
C
C SUBROUTINE LIBRARIES
C
C
C--------------------------------------------------------------------

SUBROUTINE INPUT(E,aI,aA,mB,L,beta,k,n,vI,mI,dt,ts,ITI)
C--------------------------------------------------------------------
C
C [ VARIABLES ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION mB, L, k, n, mI
INTEGER ts

C
C

OPEN( UNIT=10, FILE='beam.dat', STATUS='OLD'

READ(10,*) E, aI, aA, mB, L
READ(10,*) beta, k, n
READ(10,*) vI, mI, dt, ts, ITI

CLOSE( UNIT=10 )

RETURN
END

C
C
C---------------------------------------------------------------------
C
C---------------------------------------------------------------------

SUBROUTINE RK4(C1,C2,C3,mI,y,q,z,u,P,dt)
C---------------------------------------------------------------------
C
C [ VARIABLES ]
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IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION mI

C
C

FUN1(C1,C2,C3,P,q) = C3*P - C1*q - C2*(q**3)
C

akl = dt * FUN1(C1,C2,C3,P,q)
bkl = dt * y
ak2 = dt * FUN1(C1,C2,C3,P,q+.5*bkl)
bk2 = dt * (y+.5*akl)
ak3 = dt * FUN1(C1,C2,C3,P,q+.5*bk2)
bk3 = dt * (y+.5*ak2)
ak4 = dt * FUN1(C1,C2,C3,P,q+bk3)
bk4 = dt * (y+ak3)
y = y + (akl+2.*ak2+2.*ak3+ak4)/6.
q = q + (bkl+2.*bk2+2.*bk3+bk4)/6.

C
ckl = dt * (P/mI)
dkl = dt * z
ck2 = ckl
dk2 = dt * (z+.5*ckl)
ck3 = ckl
dk3 = dt * (z+.5*ck2)
ck4 = ckl
dk4 = dt * (z+ck3)
z = z + (ckl+2.*ck2+2.*ck3+ck4)/6.
u = u + (dkl+2.*dk2+2.*dk3+dk4)/6.

C
C

RETURN
END

C
C
C --------------------------------------------------------------------
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Sample Input Data File "beam.dat"

70.E+9 3.084E-11
1.0 1.0OE+6 1.5
3.0 1.53 0.000001

0.000143112 0.22 0.252

30000

Each input number represents (in order);

First Line :

Second Line :

Third Line :

- Young's Modulus of Elasticity of Beam [Pa]
- Area Moment of Inertia of Beam Cross Section [m4]
- Cross Sectional Area [m2 ]
- Mass of Beam for Unit Length [kg/m]
- Length of the Beam [m]

- Geometrical Nonlinearity Factor, /
[range from 0 to 1]

- k: Local Contact Stiffness [N/mn]
- n: Local Nonlinearity Exponent

- Initial Velocity of Impactor [m/s]
- Mass of Impactor [kg]
- Time Increment for Numerical Integration [sec]
- Time Steps
- Time Steps to be skipped for Reduction of the Output
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Sample Output Data File "beam.dat"

First Column

Time [sec]

0.00005000
0.00010000
0.00015000
0.00020000
0.00025000
0.00030000
0.00035000
0.00040000
0.00045000
0.00050000
0.00055000
0.00060000
0.00065000
0.00070000
0.00075000
0.00080000
0.00085000
0.00090000
0.00095000
0.00100000
0.00105000
0.00110000
0.00115000

Second Column

Impact Force [N]

1.83668781
5.18916491
9.51042019

14.58464281
20.26597376
26.43471571
32.98214768
39.80411433
46.79826615
53.86313209
60.89823773
67.80487145
74.48726969
80.85407277
86.81994612
92.30728863
97.24796853

101.58504245
105.27442534
108.28648802
110.60756402
112.24134631
113.21014790

Third Column

Plate Midplane
Displacement [m]

0.00000002
0.00000027
0.00000110
0.00000302
0.00000658
0.00001243
0.00002124
0.00003373
0.00005063
0.00007270
0.00010065
0.00013522
0.00017707
0.00022683
0.00028508
0.00035229
0.00042888
0.00051514
0.00061125
0.00071726
0.00083307
0.00095841
0.00109284
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NLBEAM2 FORTRAN Source Code

NLBEAM2 is the FORTRAN program analyzing both linear and

nonlinear transient response of an isotropic beam due to an impact

loading used in Section 4.3. The program algorithm is based on solving

Eqs. (4.2.9), (4.2.11), and (4.2.12) using a fourth-order Runge-Kutta

numerical integration method. Both an in-plane and out-of-plane

displacements are considered in this program.

Input data file "beam.dat" and output data file "beam.out" take the

same formats as listed in Appendix C1.
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C
PROGRAM NLBEAM2

C
C
C Program developed by Hiroto Matsuhashi,
C Technology Laboratory for Advanced Composites,
C Department of Aeronautics and Astronautics, MIT, 1992.
C
C
C Copyright c1992 Massachusetts Institute of Technology
C
C
C Permission to use, copy, and modify this software and its
C documentation for internal purposes only and without fee is hereby
C granted provided that the above copyright notice and this
C permission appear on all copies of the code and supporting
C documentation. For any other use of this software, in original or
C modified form, including but not limited to, adaptation as the
C basis of a commercial software or hardware product, or distribution
C in whole or in part, specific prior permission and/or the
C appropriate licenses must be obtained from MIT.
C
C This software is provided "as is" without any warranties
C whatsoever, either express or implied, including but not limited to
C the implied warranties of marchantability and fitness for a
C particular purpose.
C
C This software is a research program, and MIT does not represent
C that it is free of errors or bugs or suitable for any particular
C task.
C
C
C
C This test program computes transient response of impact force
C and displacement of the rigidly clamped beam using nonlinearity
C effect which produces stiffening effect. Also, in-plane
C displacement ( u ) is considered in this analysis.
C
C The governing equations of the beam used in this program are,
C
C q" + C1*q + C2*(qk*3) + C6*p*q = C3*P
C p" + C4*p + C5*(q**2) = 0
C
C where,
C q : Modal amplitude for the transverse displacement ( w )
C P Impact force
C p : Modal amplitude for the inplane displacement ( u )
C (") : Second derivative with respect to time
C C1, C2, C3,
C C4, C5, C6 : Constants due to given mode and other
C conditions.
C
C These coupled equations and also impactor equation of motion
C can be solved by numerical time integration (this program uses
C 4th-order Runge-Kutta method).
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L;-

c
C [ VARIABLES ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION mB,L,k,n,mI
INTEGER ts

C
C

CALL INPUT(E,aI,aA,rmB,L, beta, k, n, vI,mI, dt,ts, ITI)

OPEN( UNIT=11, FILE='beam.out', STATUS='NEW' )

CALL INTEGRL(L,D1,D2,D3)

Cl = 500.6*E*aI/(mB* (L**4))
C2 = 75.6*beta*E*aA/(mB*(L**4))
C3 = 1.588/(mB*L)
C4 = D2/Dl*E*aA/mB
C5 = D3/Dl*E*aA/mB
C6 = D3*E*aA/(mB*L)

* VARIABLE INITIALIZATION

time= 0.
y 0.
q = 0.
z = VI
u =0.
P 0.
P1 = 0.
IT = 0
s =0.
r =0.
P1 0.

* TIME INTEGRATION USING 4th-ORDER RUNGE-KUTTA METHOD

DO 10 I=1,ts

IT = IT+1

CALL RK4(C1,C2,C3,C4,C5,C6,mI,y,q, z,u,P, dt, s,r)

alpha = u+1.588*q
IF(alpha .LT. 0.) THEN
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C

40

C

P = k*(-alpha)**n
PO= 0.

ELSE
P = -k*(alpha)**n
PO= -P

ENDIF

w = -1.588*q
time = time+dt

IF(IT .EQ. ITI) THEN
WRITE (11, 40)time, PO,w
FORMAT(4F16.8)
IT = 0

ENDIF

10 CONTINUE
C
C
C

CLOSE( UNIT=11 )

STOP
END

C
C
C---------------------------------------

C SUBROUTINE LIBRARIES
C
C
C-----------------------------------------------------------------

SUBROUTINE INPUT(E,aI,aA,mB,L,beta,k,n,vI,mI,dt,ts,ITI)
C-----------------------------------------------------------------------
C
C [ VARIABLES ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION mB, L, k, n, mI
INTEGER ts

C
C

OPEN( UNIT=10, FILE='beam.dat', STATUS='OLD'

READ(10,*) E, aI, aA, mB, L
READ(10,*) beta, k, n
READ(10,*) vI, mI, dt, ts, ITI

CLOSE( UNIT=10 )

RETURN
END
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C
C
C----------------------------------------------------------------------
C

C----------------------------------------------------------------------
SUBROUTINE INTEGRL(L,D1,D2, D3)

C----------------------------------------------------------------------
C
C [ VARIABLES ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION L

C
C
C

SI (x,L) =SIN(2.*3.14159*x/L)
DSI(x, L)=2.*3.14159/L*COS(2.*3.14159*x/L)
DPI(x,L) =1.5*3.14159/L*SQRT(2.) *

& COS(1.5*3.14159*x/L-(3.14159/4.))
& +(-1.5*3.14159/L)*EXP(-1.5*3.14159*x/L)
& +(1.5*3.14159/L)*EXP(-1.5*3.14159+1.5
& *3.14159*x/L)

C
C

D1 = (L/5.)*(0.5*(SI(L/5.,L)**2) + SI(2.*L/5.,L)**2
& + SI(3.*L/5.,L)**2 + SI(4.*L/5.,L)**2
& + 0.5*(SI(5.*L/5.,L)**2))

C
D2 = (L/5.)*(0.5*(DSI(L/5.,L)**2) + DSI(2.*L/5.,L)**2

& + DSI(3.*L/5.,L)**2 + DSI(4.*L/5.,L)**2
& + 0.5*(DSI(5.*L/5.,L)**2))

C
D3 = (L/5.)*(0.5*(SI(L/5.,L)*(DPI(L/5.,L)**2))

& + SI(2.*L/5.,L)*(DPI(2.*L/5.,L)**2)
& + SI(3.*L/5.,L)*(DPI(3.*L/5.,L)**2)
& + SI(4.*L/5.,L)*(DPI(4.*L/5.,L)**2)
& + 0.5*SI(5.*L/5.,L)*(DPI(5.*L/5.,L)**2))

C
C

RETURN
END

C
C
C----------------------------------------------------------------------
C
C---------------------------------------------------------------------

SUBROUTINE RK4(C1,C2,C3,C4,C5,C6,mI,y,q,z,u,P,dt,s,r)
C---------------------------------------------------------------------
C
C [ VARIABLES ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION mI

C
C
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FUN1(C1,C2,C3,C6,P,s,q) = C3*P - Cl*q - C2*(q**3) - C6*s*q
FUN2(C4,C5,s,q) = - C4*s - C5*(q**2)

C
C

ekl = dt * FUN2(C4,C5,s,q)
fkl = dt * r
ek2 = dt * FUN2(C4,C5,s+.5*fkl,q)
fk2 = dt * (r+.5*ekl)
ek3 = dt * FUN2(C4,C5,s+.5*fk2,q)
fk3 = dt * (r+.5*ek2)
ek4 = dt * FUN2(C4,C5,s+.5*fk3,q)
fk4 = dt * (r+ek3)
r = r + (ekl+2.*ek2+2.*ek3+ek4)/6.
s = s + (fkl+2.*fk2+2.*fk3+fk4)/6.

C
akl = dt * FUN1(C1,C2,C3,C6,P,s,q)
bkl = dt * y
ak2 = dt * FUN1(C1,C2,C3,C6,P,s,q+.5*bkl)
bk2 = dt * (y+.5*akl)
ak3 = dt * FUN1(C1,C2,C3,C6,P,s,q+.5*bk2)
bk3 = dt * (y+.5*ak2)
ak4 = dt * FUN1(C1,C2,C3,C6,P,s,q+bk3)
bk4 = dt * (y+ak3)
y = y + (akl+2.*ak2+2.*ak3+ak4)/6.
S q q + (bkl+2.*bk2+2.*bk3+bk4)/6.

C
C

ckl = dt * (P/mI)
dkl = dt * z
ck2 = ckl
dk2 = dt * (z+.5*ckl)
ck3 = ckl
dk3 = dt * (z+.5*ck2)
ck4 = ckl
dk4 = dt * (z+ck3)
z = z + (ckl+2.*ck2+2.*ck3+ck4)/6.
u = u + (dkl+2.*dk2+2.*dk3+dk4)/6.

C
C

RETURN
END

C
C
C-----------------------------------------------------------------
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GLOBAL2 FORTRAN Source Code

GLOBAL2 is the FORTRAN program analyzing both linear and

nonlinear transient response of a shear deformable composite laminated

plate due to an impact loading used in Chapters 5 and 6. The program

algorithm is based on solving Eqs. (6.1.1), (5.2.50), and (5.2.51) using a

fourth-order Runge-Kutta numerical integration method.

Sample input data files "global2.dat" and output data file

"global2.out" are also listed.
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C
PROGRAM GLOBAL2

C
C
C Program developed by Hiroto Matsuhashi,
C Technology Laboratory for Advanced Composites,
C Department of Aeronautics and Astronautics, MIT, 1992.
C
C
C Copyright c1992 Massachusetts Institute of Technology
C
C
C Permission to use, copy, and modify this software and its
C documentation for internal purposes only and without fee is hereby
C granted provided that the above copyright notice and this
C permission appear on all copies of the code and supporting
C documentation. For any other use of this software, in original or
C modified form, including but not limited to, adaptation as the
C basis of a commercial software or hardware product, or distribution
C in whole or in part, specific prior permission and/or the
C appropriate licenses must be obtained from MIT.
C
C This software is provided "as is" without any warranties
C whatsoever, either express or implied, including but not limited to
C the implied warranties of marchantability and fitness for a
C particular purpose.
C
C This software is a research program, and MIT does not represent
C that it is free of errors or bugs or suitable for any particular
C task.
C
C
C
C This program analyzes the both linear and nonlinear global
C transient response (i.e. force- and displacement-time histories)
C of shear deformable composite laminated plates subjected to impact
C loading.
C
C
C
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION mI, k, n,M1,M2,M3,

& Klaa, Klab, Klae, Klbb, Klbe, Klee, K3ee,
& KI,KIII
INTEGER Ibx, Iby, IBCX, IBCY, NX, NY, IBC, ts

C
PARAMETER ( N1=10, N2=N1*7, N4=N2**3 )

C
DIMENSION BETAX(NI),BETAY(NI),BX(N1),BY(N1)
DIMENSION CX(Nl),CY(Nl),DX(Nl), DY(N1),EX(N1),EY(N1)
DIMENSION M1(N2),M2(N2),M3 (N2)
DIMENSION Klaa(N2,N2),Klab(N2,N2),Klae(N2,N2)
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DIMENSION Klbb(N2,N2),Klbe(N2,N2),Klee(N2,N2)
DIMENSION KI(N2,N2),KIII(N2,N4),Ri(N2),Rii(N2)

C * Main Program
C
C

CALL INPUT(IEO, Ibx, Iby,beta, IBCX, IBCY, NX, NY, XL, YL,
A11,A22,A12,A16,A26,A66,

D11,D22,D12,D16,D26,D66,

G44,G55,G45, zl, z3,
mI,vI,cf,
k,n, dt,ts, ITI)

IF(IEO .EQ. 0) THEN

CALL BOUND(IBCX,NX,AX, THETAX, BETAX, BX, CX,DX,EX)

CALL BOUND(IBCY,NY,AY, THETAY, BETAY, BY,CY, DY,EY)

ENDIF

IF(IEO .EQ. 1) THEN

CALL BOUND1(IBCX,NX,AX, THETAX, BETAX, BX, CX,DX, EX)

CALL BOUND1(IBCY,NY,AY,THETAY,BETAY,BY,CY,DY,EY)

ENDIF

CALL INTGRL1(NX,NY,AX, AY, THETAX, THETAY, IEO,
BETAX, BETAY, BX, BY,
CX, CY, DX, DY, EX, EY,
D11, D22,D12,D16,D26,D66,
G44,G55,G45, zl, z3,XL,YL,
M1, M2, M3, Ri, cf, Rii,
Klaa, Klab, Klae, Klbb, Klbe, Klee)

CALL ARRANGE (NX, NY, iKaa, iKab, jKab, iKae, iKbb, iKbe,
M1, M2, Klaa, Klab, Klae, Klbb, Klbe)

CALL CONDENS(NX, NY, iKaa, iKab, jKab, iKae, iKbb, iKbe,
Klaa, Klab, Klae, Klbb, Klbe, Klee, KI)

IF((Ibx .EQ. 0) .AND. (Iby .EQ. 0)) GOTO 100
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CALL INTGRL2(Ibx, Iby, beta, NX, NY, AX, AY, THETAX, THETAY, IEO,
BETAX, BETAY, BX, BY,
CX, CY, DX, DY, EX, EY,
All,A22,A12,A16,A26,A66,
XL, YL, KIII)

C
C
100 CONTINUE

OPEN( UNIT=11, FILE='global2.out', STATUS='NEW' )

IF(cf .EQ. 0.)THEN

CALL SOLVE(NX,NY,M3,KI,KIII, Ri,vI,mI,k,n, dt,ts, ITI,
IbxIbyXLYLBET 

,

AX, AY, BX, BY, CX, CY, DX, DY, EX, EY)

ELSE

CALL SOLVE2(NX,NY,M3,KI,KIII,Ri,vI,mI,mI,k, n,dt, ts,ITI,
Ibx,Iby,XL,YL,BETAX,BETAY,THETAX,THETAY,
AX, AYBX, BY, CX, CY. DX, DY, EX,EY, Rii)

ENDIF

CLOSE( UNIT=11 )

STOP
END

C
C
C
C SUBROUTINE LIBRARIES
C
C
C
C
C
C--

SUBROUTINE INPUT(IEO, Ibx, Iby, beta, IBCX, IBCY, NX, NY, XL, YL,
All, A22,A12, A16,A26,A66,
Dl1,D22,D12,D16,D26, D66,
G44,G55,G45,zl,z3,
mI, vI, cf,
k.,n, dt, ts, ITI)
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This subroutine reads data from existing input data file called
"global2.dat". The format of the "global2.dat" is described as

comment line (program does not read)
Ibx, Iby, beta
IBCX, IBCY, NX, NY
IEO
XL, YL, THICK, ROU
All, A22, A12, A16, A26, A66
Dll, D22, D12, D16, D26, D66
G44, G55, G45, sc
ml, vI, cf, k, n
dt, ts, ITI

: nonlinearity index numbers (integer) in the x and y
direction
1 => include nonlinear effect
0 => do not include nonlinear effect (linear)

: geometrical nonlinearity factor ranging from 0.0 to
1.0
0.0 => linear case
1.0 => perfectly nonlinear case

C follows;

line 1-5:
line 5 :
line 6 :
line 7 :
line 8 :
line 9 :
line 10 :
line 11 :
line 12 :
line 13 :

Ibx, Iby

beta

IBCX, IBCY: index numbers for the boundary conditions in x and
y directions
1 => simply supported - simply supported
2 => clamped - free
3 => clamped - clamped
4 => free - free
5 => simply supported - clamped
6 => simply supported - free

C NX, NY : number of modes in the x and y directions

IEO

C XL, YL

THICK, ROU

A's
D's
G's
sc

: switch for turning off even modes
0 => both odd and even modes
1 => odd modes only

: dimensions of plate in the x and y directions (m)

: thickness of the plate (m), density of the plate
(kg/m^3)

: tensor components of A matrix (N/m)
: tensor components of D matrix (N-m)
: shear stiffness components (N/m)
: shear correction factor

C ml, vI : mass of impactor, initial impactor velocity
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C
C cf
C
C
C
C
C
C k, n
C
C
C dt, ts
C
C ITI
C
C
C
C--------------------------------------------------------------------
C

: dimension of the square shape of the patched
loading for point loading, let cf = 0.0
(This program is capable of dealing with double-
cosine type distributed patch loading, although
there has not been verified, yet.)

: local contact stiffness (N/m^n), nonlinearity
exponent

: time increment (sec), number of time steps

: number of time steps to be skipped for reducing the
output results. (i.e. for ITI=10, every 10th data
will be recorded in the output data file.)

[ Variables ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION mI,k,n
INTEGER ts

OPEN( UNIT=10, FILE='global2.dat', STATUS='OLD' )

READ (10, *)
READ (10, *)
READ (10,*)
READ (10,*)
READ (10, *)
READ (10, *)
READ (10,*)
READ (10,*)
READ (10,*)
READ (10, *)
READ (10, *)
READ (10, *)
READ (10,*)
READ (10, *)

Ibx,Iby,beta
IBCX,IBCY,NX,NY
IEO
XL, YL, THICK, ROU
All,A22, Al2, A16,A26, A66
D1l,D22, D12,D16,D26,D66
G44,G55,G45,sc
mI, vI, cf, k, n
dt, ts, ITI

zl = ROU*THICK
z3 = ROU*(THICK**3)/12.

G44 = sc*sc*G44
G55 = sc*sc*G55
G45 = sc*sc*G45

CLOSE( UNIT=10 )
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C
C
C

RETURN
END

C
C
C
C----------------------------------------------------------------------
C
- ---------------------------------------

SUBROUTINE BOUND(IBC,N,A,THETA,BETA,B,C,D,E)
C--------------------------------------------------------------------

This subroutine determines the the euler beam elastic mode shape
parameters depending on the boundary condition of each x and y
direction based on the Generalized Beam Functions described in
Appendix A.

C--------------------------------------------------------------------
C
C

[ Variables ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
INTEGER IBC,N

PARAMETER ( N1=10 )

DIMENSION BETA(N1),B(N1),C(N), D (N1),E (N1)
C
C
C

PI = 3.14159265
C
C
C

201

C
C

IF(IBC .EQ. 1) THEN
A = 0.
THETA = 0.
DO 201 I=1,N

BETA(I) = (1.*I)*PI
B(I) = 0.
C(I) = 1.
D(I) = 0.
E(I) = 0.

CONTINUE
ENDIF

IF(IBC .EQ. 2) THEN
A=1.
THETA = -PI/4.
DO 202 I=1,N

BETA(I) = (1.*I-0.5)*PI
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B(I) = (-l.)**(I+1)
C (I) = 1.
D(I) = 0.
E(I) = 0.

202 CONTINUE
ENDIF

C
C

IF(IBC .EQ. 3) THEN
A = 1.
THETA = -PI/4.
DO 203 I=1,N

BETA(I) = (1.*I+0.5)*PI
B(I) = (-l.)**(I+1)
C(I) = 1.
D (I) = 0.
E(I) = 0.

203 CONTINUE
ENDIF

C
C

IF(IBC .EQ. 4) THEN
A = 1.
THETA = 3.*PI/4.
C(1) = 0.
C(2) = 0.
D(1) = 0.
D(2) = 1.
E(1) = 1.
E(2) = 1.
DO 204 I=3,N

BETA(I) = (1.*I+0.5)*PI
B(I) = (-l.)**(I+1)
C(I) = 1.
D(I) = 0.
E(I) = 0.

204 CONTINUE
ENDIF

C
C

IF(IBC .EQ. 5) THEN
A = 0.
THETA = 0.
DO 205 I=1,N

BETA(I) = (1.*I+0.25)*PI
B(I) = (-l.)**(I+1)
C(I) = 1.
D(I) = 0.
E(I) = 0.

205 CONTINUE
ENDIF

C
C

IF(IBC .EQ. 6) THEN
A = 0.
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THETA = 0.
DO 206 I=1,N

BETA(I) = (1.*I+0.25)*PI
B(I) = (-1.)**(I)
C(I) = i.
D(I) = 0.
E(I) = 0.

206 CONTINUE
ENDIF

C
C
C

RETURN
END

C
C
C
C----------------------------------------------------------------------
C
C----------------------------------------------------------------------

SUBROUTINE BOUND1(IBC,N,A,THETA,BETA,B,C,D,E)
C----------------------------------------------------------------------
C
C This subroutine determines the the euler beam elastic mode shape
C parameters for odd modes only case depending on the boundary
C condition of each x and y direction based on the Generalized Beam
C Functions described in Appendix A.
C
C---------------------------------------------------------------------
C
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
INTEGER IBC,N

C
PARAMETER ( N1=10 )

C
DIMENSION BETA(Nl),B(Nl),C(Nl),D(Nl),E(N1)

C
C
C

PI = 3.14159265
C
C
C

IF(IBC .EQ. 1) THEN
A = 0.
THETA = 0.
DO 201 I=1,N

BETA(I) = ((I*2.)-1.)*PI
B(I) = 0.
C(I) = 1.
D(I) = 0.
E(I) = 0.
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201 CONTINUE
ENDIF

C
C

IF(IBC .EQ. 2) THEN
A = 1.
THETA = -PI/4.
DO 202 I=1,N

BETA(I) = (1.*((I*2.)-1.)-0.5)*PI
B(I) = (- .)**(((I2)- )+ )
C(I) = i.
D(I) = 0.
E(I) = 0.

202 CONTINUE
ENDIF

C
C

IF(IBC .EQ. 3) THEN
A = 1.
THETA = -PI/4.
DO 203 I=1,N

BETA(I) = ((I*2.-1.)+0.5)*PI
B(I) = (-1.)**((I*2-1)+1)
C(I) = 1.
D(I) = 0.
E(I) = 0.

203 CONTINUE
ENDIF

C
C

IF(IBC .EQ. 4) THEN
A = 1.
THETA = 3.*PI/4.
C(1) = 0.
D(1) = 0.
E(1) = 1.
DO 204 I=2,N

BETA(I) = (((I*2.-1.))+0.5)*PI
B(I) = (-1.)**(((I2-1))+1)
C(I) = 1.
D(I) = 0.
E(I) = 0.

204 CONTINUE
ENDIF

C
C

IF(IBC .EQ. 5) THEN
A = 0.
THETA = 0.
DO 205 I=1,N

BETA(I) = ((I*2.-1.)+0.25)*PI
B(I) = (-1.)**((I*2-1)+1)
C(I) = 1.
D(I) = 0.
E(I) = 0.
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205 CONTINUE
ENDIF

C
C

IF(IBC .EQ. 6) THEN
A = 0.
THETA = 0.
DO 206 I=1,N

BETA(I) = (1.*I+0.25)*PI
B(I) = (-1.)**(I)
C(I) = i.
D(I) = 0.
E(I) = 0.

206 CONTINUE
ENDIF

C
C
C

RETURN
END

C
C
C
C--------------------------------------------------------------------
C
C----------------------------------------------------------------------

SUBROUTINE INTGRL1(NX,NY,AX, AY, THETAX, THETAY, IEO,
& BETAX,BETAY,BX,BY,
& CX, CY, DX, DY, EX, EY,
& D11,D22,D12,D16,D26,D66,
& G44,G55,G45,zl,z3,XL,YL,
& M1,M2,M3,Ri,cf,Rii,
& Klaa, Klab, Klae,Klbb, Klbe,Klee)

C----------------------------------------------------------------------
C
C This subroutine computes the each matrix component for the
C stiffness matrix [K] for linear term.
C
C--------------------------------------------------------------------
C
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION l,MI,M2,M3,

& Kaa,Kab,Kae,Kbb,Kbe,Kee,
& Klaa, Klab, Klae,Klbb, Klbe, Klee

INTEGER NX,NY,NXY,i, j
C

PARAMETER ( N1=10, N2=N1*7, N4=N2**3 )
C

DIMENSION BETAX(Ni),BETAY(NI),BX(NI),BY(Ni)
DIMENSION CX(NI),CY(NI),DX(Nl),DY(NI),EX(NI),EY(N1)
DIMENSION M1(N2),M2(N2),M3(N2)
DIMENSION Klaa(N2,N2),Klab(N2,N2),Klae (N2,N2)
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DIMENSION Klbb(N2,N2),Klbe(N2,N2),Klee(N2, N2)
DIMENSION Ri (N2),Rii (N2)
DIMENSION DUM4Y (N2)

C
C
C
C
C * Defining Beam Functions & Derivatives of Beam Functions
C
C
C

f(i,x) = (BETAX(i)*SQRT(2.)*COS(BETAX(i)*x+THETAX)
& -BETAX(i)*AX*EXP(-BETAX(i)*x)
& +BETAX(i)*BX(i)*EXP(-BETAX(i)*(1.-x)))*CX(i)
& +DX(i)*(-2.)

C
C

df(i, x) =((-(BETAX(i)**2)*SQRT(2.)*SIN(BETAX(i)
& *x+THETAX)
& +(BETAX(i)**2)*AX*EXP(-BETAX(i)*x)
& +(BETAX(i)**2)*BX(i)*EXP(-BETAX(i)
& *(1.-x)))
& *CX(i))/XL

C
C

g(i,y) = (SQRT(2.)*SIN(BETAY(i)*y+THETAY)
& +AY*EXP(-BETAY(i)*y)
& +BY(i)*EXP(-BETAY(i)*(1.-y)))*CY(i)
& +2.*EY(i)*(DY(i)*(-y)+0.5)

C
C

dg(i, y) =((BETAY(i)*SQRT(2.)*COS(BETAY(i)*y+THETAY)
& -BETAY(i)*AY*EXP(-BETAY(i)*y)
& +BETAY(i)*BY(i)*EXP(-BETAY(i)*(1.-y)))
& *CY(i)+DY(i)*(-2.))/YL

C
C

h(i,x) = (SQRT(2.)*SIN(BETAX(i)*x+THETAX)
& +AX*EXP(-BETAX(i)*x)
& +BX(i)*EXP(-BETAX(i)*(1.-x)))*CX(i)
& +2.*EX(i)*(DX(i)*(-x)+0.5)

C
C

dh(i,x) =( (BETAX(i)*SQRT(2.)*COS(BETAX(i)*x+THETAX)
& -BETAX(i)*AX*EXP(-BETAX(i)*x)
& +BETAX(i)*BX(i)*EXP(-BETAX(i)*(1.-x)))
& *CX(i)+DX(i) *(-2.))/XL

C
C

1 (i,y) = (BETAY(i)*SQRT(2.)*COS(BETAY(i)*y+THETAY)
& -BETAY(i)*AY*EXP(-BETAY (i)*y)
& +BETAY(i)*BY(i)*EXP(-BETAY(i)*(1.-y)))
& *CY(i)+DY(i)*(-2.)

C
C
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dl(i,y) =((-(BETAY(i)**2)*SQRT(2.)*SIN(BETAY(i)
& *y+THETAY)
& +(BETAY(i)**2)*AY*EXP(-BETAY(i)*y)
& +(BETAY(i)**2)*BY(i)*EXP(-BETAY(i)

& *CY(i))/YL
C
C

q(i,x) = (SQRT(2.)*SIN(BETAX(i)*x+THETAX)
& +AX*EXP(-BETAX(i)*x)
& +BX(i)*EXP(-BETAX(i)*(l.-x)))*CX(i)
& +2.*EX(i) * (DX(i) * (-x) +0.5)

C
C

dq(i,x) =((BETAX(i)*SQRT(2.)*COS(BETAX(i)*x+THETAX)
& -BETAX(i)*AX*EXP(-BETAX (i)*x)
& +BETAX(i)*BX(i)*EXP(-BETAX(i)*(l.-x)))
& *CX(i)+DX(i) * (-2.))/XL

C
C

r(i, y) = (SQRT(2.)*SIN(BETAY(i)*y+THETAY)
& +AY*EXP(-BETAY(i)*y)
& +BY(i)*EXP(-BETAY(i)*(l.-y)))*CY(i)
& +2.*EY(i) * (DY(i) * (-y)+0.5)

C
C

dr(i,y) =((BETAY(i)*SQRT(2.)*COS(BETAY(i)*y+THETAY)
& -BETAY (i)*AY*EXP(-BETAY (i)*y)
& +BETAY(i)*BY(i)*EXP(-BETAY(i)*(1.-y)))
& *CY(i)+DY(i)*(-2.))/YL

C
C
C

xunit = XL/20.
yunit = YL/20.

C
C
C
C -----------------------------------------------------
C * Calculating inertia matrix components by numerical
C integration using "Extended Trapezoidal Rule"
C -----------------------------------------------------
C
C

DO 310 ix = 1, NX
DO 311 iy = 1, NY

i = i+1
C

j= 0
DO 312 jx = 1, NX

DO 313 jy = 1, NY

j = j1+1
c

xMl = 0.

218



Appendix D: Program GLOBAL2

xM2 = 0.
xM3 = 0.

yM1 = 0.
yM2 = 0.
yM3 = 0.

x = -0.05
y = -0.05

IF(IEO .EQ. 1) NNN = 11
IF(IEO .EQ. 0) NNN = 21

DO 314 II = 1, NNN

x = x+0.05
y = y+0.05

rc = 1.
IF((II .EQ. 1) .OR. (II .EQ. 21)) rc = 2.
IF(IEO .EQ. 1) THEN

IF((II .EQ. 1) .OR. (II .EQ. 11)) rc=2.
ENDIF

xMl = xMl+f(ix,x)*f(jx,x)*xunit/rc

xM2 = xM2+h(ix,x)*h(jx, x)*xunit/rc

xM3 = xM3+q(ix,x)*q(jx,x)*xunit/rc

yMl = yMl+g(iy,y)*g(jy,y)*yunit/rc

yM2 = yM2+1(iy,y)*1(jy, y)*yunit/rc

yM3 = yM3+r(iy,y)*r(jy,y)*yunit/rc

CONTINUE

IF(i .EQ. j) THEN
Ml(i) = z3 * xMl * yM1
M2(i) = z3 * xM2 * yM2
M3(i) = zl * xM3 * yM3

ENDIF

•IF(IEO .EQ. 1) THEN
IF(i .EQ. j) THEN

Ml(i) = z3 * xMl * yMl * 4.
M2(i) = z3 * xM2 * yM2 * 4.
M3(i) = zl * xM3 * yM3 * 4.

ENDIF
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ENDIF
C
C
313 CONTINUE
312 CONTINUE

C
311 CONTINUE
310 CONTINUE

C
C
C
C
C * Calculating stiffness matrix components by numerical
C integration using "Extended Trapezoidal Rule"
C
C
C

i=0
DO 300 ix = 1, NX

DO 301 iy = 1, NY
i = i+l

C
j=0
DO 302 jx = 1, NX

DO 303 jy = 1, NY
j = j+1

C
xKaal = 0.
xKaa2 = 0.
xKaa3 = 0.
xKaa4 = 0.
xKabl = 0.
xKab2 = 0.
xKab3 = 0.
xKab4 = 0.
xKael = 0.
xKae2 = 0.
xKbbl = 0.
xKbb2 = 0.
xKbb3 = 0.
xKbb4 = 0.
xKbel = 0.
xKbe2 = 0.
xKeel = 0.
xKee2 = 0.
xKee3 = 0.
xKee4 = 0.

C
yKaal = 0.
yKaa2 = 0.
yKaa3 = 0.
yKaa4 = 0.
yKabl = 0.
yKab2 = 0.
yKab3 = 0.
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yKab4 = 0.
yKael = 0.
yKae2 = 0.
yKbbl = 0.
yKbb2 = 0.
yKbb3 = 0.
yKbb4 = 0.
yKbel = 0.
yKbe2 = 0.
yKeel = 0.
yKee2 = 0.
yKee3 = 0.
yKee4 = 0.

C
x = -0.05
y = -0.05

C
NNN = 21
IF(IEO .EQ. 1) NNN = 11

C
DO 304 II = 1, NNN

x = x+0.05
y = y+0.05

C
rc = 1.
IF((II .EQ. 1) .OR. (II .EQ. 21)) rc = 2.

C
IF(IEO .EQ. 1) THEN

IF((II .EQ. 1) .OR. (II .EQ. 11)) rc=2.
ENDIF

C
xKaal = xKaal+df(ix,x)*df(jx,x)*xunit/rc
xKaa2 = xKaa2+df (ix, x)*f (jx, x)*xunit/rc
xKaa3 = xKaa3+f(ix,x)*df(jx,x)*xunit/rc
xKaa4 = xKaa4+f(ix,x)*f(jx, x)*xunit/rc

C
xKabl = xKabl+df(ix,x)*h(jx,x)*xunit/rc
xKab2 = xKab2+df(ix,x)*dh(jx,x)*xunit/rc
xKab3 = xKab3+f(ix,x)*h(jx,x)*xunit/rc
xKab4 = xKab4+f(ix,x)*dh(jx,x)*xunit/rc

C
xKael = xKael+f(ix,x)*dq(jx,x)*xunit/rc
xKae2 = xKae2+f(ix,x)*q(jx,x)*xunit/rc

C
xKbbl = xKbbl+h(ix,x)*h(jx,x)*xunit/rc
xKbb2 = xKbb2+dh (ix, x) *h (jx,x) *xunit/rc
xKbb3 = xKbb3+h (ix,x) *dh (jx, x) *xunit/rc
xKbb4 = xKbb4+dh(ix, x)*dh(jx, x)*xunit/rc

C
xKbel = xKbel+h(ix,x)*dq(jx,x)*xunit/rc
xKbe2 = xKbe2+h(ix,x)*q(jx,x)*xunit/rc

C
xKeel = xKeel+dq(ix,x)*dq(jx,x)*xunit/rc
xKee2 = xKee2+dq(ix,x)*q(jx,x)*xunit/rc
xKee3 = xKee3+q(ix,x)*dq(jx,x)*xunit/rc
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xKee4 = xKee4+q(ix,x)*q(jx,x)*xunit/rc

yKaal = yKaal+g(iy,y)*g(jy,y)*yunit/rc
yKaa2 = yKaa2+g(iy,y)*dg(jy, y)*yunit/rc
yKaa3 = yKaa3+dg(iy,y)*g(jy,y)*yunit/rc
yKaa4 = yKaa4+dg(iy,y)*dg(jy,y)*yunit/rc

yKabl = yKabl+g(iy,y) *dl(jy, y)*yunit/rc
yKab2 = yKab2+g(iy, y)*l(jy,y)*yunit/rc
yKab3 = yKab3+dg(iy,y)*dl(jy,y)*yunit/rc
yKab4 = yKab4+dg(iy,y) *(jy,y)*yunit/rc

yKael = yKael+g(iy,y)*r(jy,y)*yunit/rc
yKae2 = yKae2+g(iy,y)*dr(jy,y)*yunit/rc

yKbbl = yKbbl+dl (iy, y) *dl (jy, y) *yunit/rc
yKbb2 = yKbb2+1(iy,y)*dl (jy,y) *yunit/rc
yKbb3 = yKbb3+dl(iy,y) * (jy,y)*yunit/rc
yKbb4 = yKbb4+1 (iy,y) *1 (jy,y) *yunit/rc

yKbel = yKbel+l(iy,y)*r(jy,y)*yunit/rc
yKbe2 = yKbe2+1 (iy,y) *dr (jy,y) *yunit/rc

yKeel = yKeel+r(iy, y)*r(jy, y)*yunit/rc
yKee2 = yKee2+r(iy, y)*dr(jy, y)*yunit/rc
yKee3 = yKee3+dr(iy,y)*r(jy,y)*yunit/rc
yKee4 = yKee4+dr(iy, y)*dr(jy, y)*yunit/rc

CONTINUE

asm=l.
IF(IEO .EQ. 1) asm=4.

Klaa(i, j)

Klab(i,j)

Klae(i, j)

=(D11 * xKaal *
+D16 * xKaa2 *
+D16 * xKaa3 *
+D66 * xKaa4 *
+G55 * xKaa4 *

yKaal
yKaa2
yKaa3
yKaa4
yKaal) *asm

=(D12 * xKabl * yKabl
+D16 * xKab2 * yKab2
+D26 * xKab3 * yKab3
+D66 * xKab4 * yKab4
+G45 * xKab3 * yKab2)*asm

=(G55 * xKael * yKael
+G45 * xKae2 * yKae2)*asm

Klbb(i,j) =(D22 * xKbbl * yKbbl
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+D26
+D26
+D66
+G44

Klbe (i, j)

Klee (i, j)

* xKbb2
* xKbb3
* xKbb4
* xKbbl

yKbb2
yKbb3
yKbb4
yKbb4) *asm

=(G45 * xKbel * yKbel
+G44 * xKbe2 * yKbe2)*asm

=(G55
+G45
+G45
+G44

* xKeel
* xKee2
* xKee3
* xKee4

yKeel
yKee2
yKee3
yKee4) *asm

303 CONTINUE
302 CONTINUE

301 CONTINUE
300 CONTINUE

C * Compute force vector terms for concentrated loading

x = 0.5
y = 0.5

i=0

DO 330 ix = 1, NX
DO 331 iy = 1, NY

i = i+1
Ri(i) = q(ix, x)*r(iy, y)

331 CONTINUE
330 CONTINUE

IF(cf .EQ. 0.) GOTO 345

* Compute force vector terms for cosine distributed patch
loading

Pi = 3.14159265
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af = cf/XL
bf = cf/YL

C
aunit = cf*cf/100.

C
p0 = (Pi**2)/(4.*cf*cf)

C
ij = 0

C
C

DO 335 ix = 1, NX
DO 336 iy = 1, NY

C
x = 0.5-af/2.
SUM= 0.

C
DO 340 I = 1, 10

y = 0.5-bf/2.
x = x+af/10.

C
DO 341 J = 1, 10

y = y+bf/10.
C

PR = COS(Pi/af*(x-0.5)) *COS(Pi/bf* (y-0.5))
& *q(ix,x) *r (iy,y) *aunit

C
SUM = SUM+PR

C
341 CONTINUE
340 CONTINUE

C
ij = ij+l
Rii(ij) = p0*SUM

C
336 CONTINUE
335 CONTINUE

C
C

345 CONTINUE
C
C

RETURN
END

C
C
C
C--------------------------------------------------------------------
C
C--------------------------------------------------------------------

SUBROUTINE ARRANGE (NX, NY, iKaa, iKab, jKab, iKae, iKbb, iEbe,
& M1,M2,Klaa,Klab,Klae,Klbb,Klbe)

C------------------------------------------------------------------
C
C This subroutine rearrange the stiffness matrix [K], if there is
C any singularity due to the free-free beam boundary condition used.
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C
C------------------------------------------------------------------

[ Variables ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION M1,M2,

Klaa, Klaa, ,Klaer Kl1rt L(te
INTEGER NX, NY,NXY

PARAMETER ( N1=10, N2=N1*7 )

DIMENSION M1(N2),M2(N2)
DIMENSION NM1 (N2) ,NM2 (N2)
DIMENSION Klaa(N2,N2),Klab(N2,N2),Klae(N2,N2)
DIMENSION Klbb(N2,N2),Klbe (N2,N2)

NXY = NX*NY

DO 250 i = 1, NXY

NMl(i) = 0
IF(M1(i) .EQ.

NM2(i) = 0
IF(M2(i) .EQ.

0.) NM1(i) = 1

0.) NM2(i) = 1

250 CONTINUE

iKaa = NXY
iKab = NXY
jKab = NXY
iKae = NXY
iKbb = NXY
iKbe = NXY

ii = 0
DO 251 i = 1, NXY

iKaa = iKaa-1
iKab = iKab-1
iKae = iKae-1
IF(NM (i) .EQ. 1) GOTO 251
ii - ii+l
iKaa = iKaa+l
iKab = iKab+l
iKae = iKae+l
DO 252 j = 1, NXY

Klaa(ii,j) = Klaa(i,j)
Klab(ii,j) = Klab(i,j)
Klae(ii, j) = Klae(i,j)

252 CONTINUE
251 CONTINUE
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IF(iKaa .EQ. NXY) GOTO 253

jj = 0
DO 254 j = 1i, NXY

IF(NM1(i) .EQ. 1) GOTO 254
jJ = jj+l
DO 255 i = 1, iKaa

Klaa(i, jj) = Klaa(i, j)
CONTINUE

CONTINUE

CONTINUE

ii = 0
DO 256 i = 1, NXY

iKbb = iKbb-1
iKbe = iKbe-l
IF(NM2(i) .EQ.
ii = ii+l
iKbb = iKbb+l
iKbe = iKbe+l
DO 257 j = i,

Klbb (ii, j)
Klbe (ii, j)

CONTINUE
CONTINUE

1) GOTO 256

NXY
= Klbb(i,j)
= Klbe(i,j)

IF(iKbb .EQ. NXY) GOTO 260

=0
258 j = 1, NXY
jKab = jKab-1
IF(NM2(j) .EQ.
jKab = jKab+l
jj = jj+l
DO 259 i = 1,

Klbb (i, j j)
CONTINUE
DO 261 i = 1,

Klab (i, jj)
CONTINUE

CONTINUE

1) GOTO 258

iKbb
= Klbb(i,j)

iKab
= Klab(i,j)

260 CONTINUE

RETURN
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END
C
C
CC ------------------------- - ---- ------------------------------------C
C-------------------------------- -----------------------------------

SUBROUTINE CONDENS (NX, NY, iKaa, iKab, Kab, iKae, iKbb, ibe,
& Klaa, Klab,Klae,Klbb, Klbe,Klee,KI)

C--------------------------------------------------------------------
C
C This subroutine performs the static condensation in order to
C reduce the system of equation.
C
.C--------------------------------------------------------------------
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION Klaa,Klab, Klae, Klba, Klbb, Klbe,

& Klea,Kleb,Klee,
& K1,KK,KI
INTEGER NX,NY, NXY

C
PARAMETER ( N1=10, N2=Nl*7, N3=N2**2, N4=N2**3, N5=N2*2 )

C
DIMENSION Klaa(N2,N2),Klab (N2,N2) ,Klae (N2,N2)
DIMENSION Klba(N2,N2),IKlbb(N2,N2),Klbe(N2,N2),Klee(N2,N2)
DIMENSION Klea(N2,N2),Kleb(N2,N2),K1(N5,N5),KK(N2,N5)
DIMENSION KI (N2,N2),Ri (N2),A (N5, N5)
DIMENSION DUM(N2)

C
C

NXY = NX*NY
C
C
C
C
C * Obtain transpose of matrix
C
C
C

DO 404 I = 1, iKab
DO 405 J = 1, jKab

Klba(J,I) = Klab(I,J)
405 CONTINUE
404 CONTINUE

C
C

DO 406 I = 1, iKae
DO 407 J = 1, NXY

Klea(J,I) = Klae(I,J)
407 CONTINUE
406 CONTINUE

C
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c
DO 408 I = 1, iKbe

DO 409 J = 1, NXY
Kleb (J, I) = Klbe (I, J)

409 CONTINUE
408 CONTINUE

C
C
C
C ----------------------------------
C * Compute inverse of [ K ] matrix
C ----------------------------------
C
C

DO 424 I = 1, iKaa
DO 425 J = 1, iKaa

A(I,J) = Klaa(I,J)
425 CONTINUE

DO 426 J = 1, jKab
A(I,iKaa+J) = Klab(I,J)

426 CONTINUE
424 CONTINUE
C

DO 427 I = 1, iKbb
DO 428 J = 1, iKab

A(iKaa+I,J) = Klba(I,J)
428 CONTINUE

DO 429 J = 1, iKbb
A(iKaa+I,iKab+J) = Klbb(I,J)

429 CONTINUE
427 CONTINUE

C
NN = iKaa+iKbb

C
C

CALL INVERSE (A, NN)
C
C

DO 430 I = 1, NN
DO 431 J = 1, NN

K1(I,J) = A(I,J)
431 CONTINUE
430 CONTINUE

C
C
C
C ----------------------------------------
C * Static condensation for .[ K* ] matrix
C ----------------------------------------
C
C

DO 440 I = 1, NXY
DO 441 J = 1, NN

SUM = 0.
DO 442 JJ = 1, iKaa
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PR = Klea (I, JJ) *K1 (JJ, J)
SUM = SUM+PR

442 CONTINUE
DO 443 JJ = 1, iKbb

PR = Kleb (I, JJ) *K1 (JJ+iKaa, J)
SUM = SUM+PR

443 CONTINUE
KK(I,J) = SUM

441 CONTINUE
440 CONTINUE

C
C

DO 444 I = 1, NXY
DO 445 J = 1, NXY

SUM = 0.
DO 446 JJ = 1, iKaa

PR = KK(I, JJ) *Klae(JJ, J)
SUM = SUM+PR

446 CONTINUE
DO 447 JJ = 1, iKbb

PR = KK(I, JJ+iKaa)*Klbe (JJ, J)
SUM = SUM+PR

447 CONTINUE
K1(I,J) = SUM

445 CONTINUE
444 CONTINUE

C
C

DO 448 I = 1, NXY
DO 449 J = 1, NXY

KI(I,J) = Klee(I,J) - K1(I,J)
449 CONTINUE
448 CONTINUE

C
C
C

RETURN
END

C
C
C--------------------------------------------------------------------
C
C --------------------------------------------------------------------

SUBROUTINE INVERSE (A, N)
C--------------------------------------------------------------------
C
C This subroutine calculates the inverse of given NxN matrix [A].
C Taken from "Numerical Recipes for FORTRAN77"
C
C--------------------------------------------------------------------
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C
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PARAMETER ( N1=10, N2=N1*7, N5=N2*2 )
C

DIMENSION A(N5,N5),Y(N5,N5),INDX(N5),B1 (N5)
C
C

DO 340 I = 1, N
DO 341 J = 1, N

Y(I,J) = 0.
341 CONTINUE

Y(I,I) = 1.
340 CONTINUE

C
C

CALL LUDCMP(A,N,INDX)
C
C

DO 342 J = 1, N
DO 345 I = 1, N

Bl(I) = Y(I,J)
345 CONTINUE

C
C

CALL LUBKSB(A,N,INDX,B1)
C

DO 346 I = 1, N
Y(I,J) = Bl(I)

346 CONTINUE
C
342 CONTINUE

C
C

DO 343 I = 1, N
DO 344 J = 1, N

A(I,J) = Y(I,J)
344 CONTINUE
343 CONTINUE

C
C

RETURN
END

C
C
C-------------------------------------------------------------------------
C
C-------------------------------------------------------------------

SUBROUTINE LUDCMP(A,N,INDX)
C-------------------------------------------------------------------
C
C This subroutine performs LU decomposition.
C Taken from "Numerical Recipes for FORTRAN77"
C
C--------------------------------------------------------------------
C
C [ Variables ]
C
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IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C

PARAMETER ( N1=10, N2=N1*7, N5=N2*2 )
PARAMETER ( TINY=1.OE-16 )

C
DIMENSION A(N5,N5),INDX(N5) ,VV(N5)

C
C
C

D = 1.
C
C

DO 350 I = 1, N
AAMAX = 0.
DO 351 J = 1, N

IF(ABS(A(I,J)) .GT. AAMAX) AAMAX=ABS(A(I,J))
351 CONTINUE

IF(AAMAX .EQ. 0.) AAMAX=TINY
VV(I) = 1./AAMAX

350 CONTINUE
C
C
C

DO 352 J = 1, N
C

DO 353 I = 1, J-1
SUM = A(I,J)
DO 354 K = 1, I-i

SUM = SUM - A(I,K)*A(K,J)
354 CONTINUE

A(I,J) = SUM
353 CONTINUE

AAMAX = 0.
C

DO 355 I = J, N
SUM = A(I,J)
DO 356 K = 1, J-1

SUM = SUM - A(I,K)*A(K,J)
356 CONTINUE

A(I,J) = SUM
DUM = VV(I)*ABS (SUM)
IF(DUM .GE. AAMAX) THEN

IMAX = I
AAMAX = DUM

ENDIF
355 CONTINUE

C
IF(J .NE. IMAX) THEN

DO 357 K = 1, N
DUM = A(IMAX,K)
A(IMAX,K) = A(J,K)
A(J,K) = DUM

357 CONTINUE
D = -D
VV(IMAX) = VV(J)
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ENDIF
C

INDX(J) = IMAX
C

IF(A(J,J) .EQ. 0.) A(J,J)=TINY
C

IF(J .NE. N) THEN
DUM = l./A(J,J)
DO 358 I = J+1, N

A(I,J) = A(I,J)*DUM
358 CONTINUE

ENDIF
C
352 CONTINUE

C
C

RETURN
END

C
C
C----------------------------------------------------------------------
C
C----------------------------------------------------------------------

SUBROUTINE LUBKSB(A,N,INDX,B1)
C----------------------------------------------------------------------
C
C This subroutine performs LU back-substitution.
C Taken from "Numerical Recipes for FORTRAN77"
C
C----------------------------------------------------------------------
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C

PARAMETER ( N1=10, N2=N1*7, N5=N2*2 )
C

DIMENSION A(N5,N5) ,INDX (N5),B1 (N5)
C
C
C

II = 0
C
C

DO 360 I = 1, N
LL = INDX(I)
SUM = B1(LL)
B1(LL) = Bl(I)

C
IF(II .NE. 0) THEN

DO 361 J = II, I-1
SUM = SUM - A(I,J)*Bl(J)

361 CONTINUE
ELSE IF (SUM .NE. 0.) THEN

II = I
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ENDIF
C

Bl(I) = SUM
360 CONTINUE

C
C

DO 362 I = N, 1, -1
SUM = Bl(I)
DO 363 J = I+1, N

SUM = SUM - A(I,J)*B1(J)
363 CONTINUE

Bl(I) = SUM/A(I,I)
362 CONTINUE

C
C

RETURN
END

C
C
C
C--------------------------------------------------------------------
C
C----------------------------------------------------------------------

SUBROUTINE INTGRL2(Ibx, Iby, beta, NX, NY, AX, AY, THETAX, THETAY,IEO,
& BETAX,BETAY,BX,BY,
& CX,CY,DX,DY,EX,EY,
& All,A22,A12,A16,A26,A66,
& XL,YL,KIII)

C-----------------------------------------------------------------
C
C This subroutine computes the stiffness matrix for the nonlinear
C cubic term. Note that this matrix is a non-square matrix.
C
C---------------------------------------------------------------------
C
C
C - [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION KIII
INTEGER NX,NY,NXY, i, j

C
PARAMETER ( N1=10, N2=N1*7, N4=N2**3 )

C
DIMENSION BETAX(N1),BETAY(N1),BX(N1),BY(N1)
DIMENSION CX(N1),CY(Nl),DX(Nl),DY(N1),EX(N1),EY(N1)
DIMENSION KIII (N2,N4)

C
C
C
C
C * Defining Beam Functions & Derivatives of Beam Functions
C
C
C
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q(i,x) = (SQRT(2.)*SIN(BETAX(i)*x+THETAX)
& +AX*EXP(-BETAX(i)*x)
& +BX(i)*EXP(-BETAX(i)* (.-x)) )*CX(i)
& +2.*EX(i) * (DX(i) * (-x)+0.5)

C
C

dq(i, x) =((BETAX(i)*SQRT(2.)*COS(BETAX(i)*x+THETAX)
& -BETAX(i)*AX*EXP(-BETAX(i)*x)
& +BETAX(i)*BX(i)*EXP(-BETAX(i)*(l.-x)))
& *CX(i)+DX(i)*(-2.))/XL

C
C

r(i,y) = (SQRT(2.)*SIN(BETAY(i)*y+THETAY)
& +AY*EXP(-BETAY(i)*y)
& +BY(i)*EXP(-BETAY(i)*(l.-y)))*CY(i)
& +2.*EY(i)*(DY(i)* (-y)+0.5)

C
C

dr(i,y) =((BETAY(i)*SQRT(2.)*COS(BETAY(i)*y+THETAY)
& -BETAY (i)*AY*EXP(-BETAY (i)*y)
& +BETAY(i)*BY(i)*EXP(-BETAY(i)*(l.-y)))
& *CY(i)+DY(i)*(-2.))/YL

C
C
C
C
C
C * Calculating non-square stiffness matrix components for
C nonlinear (cubic) term by numerical integration using
C "Extended Trapezoidal Rule"
C
C
C

xunit = XL/20.
yunit = YL/20.

C
C

IF(Ibx .EQ. 0) THEN
All = 0.

ENDIF
C

IF(Iby .EQ. 0) THEN
A22 = 0.

ENDIF
C
C
C

i=0
DO 320 ix = 1, NX

DO 321 iy = 1, NY
i = i+l
j=0
DO 322 kx = 1, NX

DO 323 ky = i, NY
DO 324 lx = 1, NX
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DO 325 ly = 1, NY
DO 326 mx = 1, NX

DO 327 my = 1, NY
j = j+l

c
xKeel = 0.
xKee4 = 0.

C
yKeel = 0.
yKee4 = 0.

C
x = -0.05
y = -0.05

C
IF(IEO .EQ. 1) NNN = 11
IF(IEO .EQ. 0) NNN = 21

C
DO 328 KK = 1i, NNN

C
x = x+0.05
y = y+0.05

C
C

rc = 1.
IF((KK .EQ. 1) .OR.

& (KK .EQ. 21)) rc = 2.
IF(IEO .EQ. 0) THEN

IF((KK .EQ. 1) .OR.
& (KK .EQ. 11)) rc=2.

ENDIF
C
C

xKeel = dq(ix,x)*dq(kx,x)
& *dq(lx,x) *dq(mx,x)
& *xunit/rc + xKeel

C
C

xKee4 = q(ix,x)*q(kx,x)
& *q(lx, x)*q(mx, x)
& *xunit/rc + xKee4

C
C
C

yKeel = r(iy,y)*r(ky,y)
& *r (ly, y) *r (my, y)
& *yunit/rc + yKeel

C
C

yKee4 = dr(iy,y)*dr(ky,y)
& *dr(ly, y) *dr (my, y)
& *yunit/rc + yKee4

C
C
328 CONTINUE

C
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asm=l.
IF(IEO .EQ. 1) asm=4.

KIII(i,J) = beta*
(0.5 * All * xKeel

* yKeel
+0.5 * A22 * xKee4

* yKee4)* asm

327 CONTINUE
326 CONTINUE
325 CONTINUE
324 CONTINUE
323 CONTINUE
322 CONTINUE
321 CONTINUE
320 CONTINUE

C
C

RETURN
END

C
C
C
C--------------------------------------------------------------------
C
C------------------------------------------------------------------

SUBROUTINE SOLVE(NX, NY,M3,KI, KIII,Ri,vI,mI, k, n, dt,ts,ITI,
IbxIbyXLYLBETAXBETAYTHETAXTHETA

,CYDXDYEXEY)

C--------------------------------------------------------------------
C
C This subroutine solves the system of second-order differential
C equations with respect to time by numerical time integration
C scheme of the fourth-order Runge-Kutta method.
C
C--------------------------------------------------------------------
C

[ Variables ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION M3, KI,KIII,mI,k,n
INTEGER ts

PARAMETER ( N1=10, N2=N1*7, N4=N2**3 )

DIMENSION BETAX(NI),BETAY(NI),BX(N1), BY(N1)
DIMENSION CX(N1),CY(N1),DX(N1),DY(N1),EX(N1),EY(N1)
DIMENSION M3(N2),KI(N2,N2), KIII (N2,N4)),Ri (N2)
DIMENSION x(N2+), z (N2+1),A (N2+1),B (N2+1,N2+1), S (N2+1)

q(i, xx) = (SQRT(2.) *SIN(BETAX(i)*x+THETAX)
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+AX*EXP (-BETAX (i) *xx)
+BX(i)*EXP (-BETAX (i) * (.-xx) ) ) *CX(i)
+2. *EX (i) * (DX (i) * (-xx)+0.5)

r(i, yy) = (SQRT(2.) *SIN(BETAY(i)*yy+THETAY)
+AY*EXP (-BETAY (i) *yy)
+BY(i) *EXP(-BETAY (i) * (. -yy) ) ) *CY (i)
+2. *EY (i) * (DY (i) * (-yy) +0. 5)

* Preparation of matix

NXY = NX*NY

DO 510 i = 1, NXY
A(i) = 1./M3(i)

510 CONTINUE
C

A(NXY+1) = l./mI
C
C

512
511

DO 511 i = 1, NXY
DO 512 j = i, NXY

B(i,j) = A(i) * KI(i,j)
CONTINUE

CONTINUE

DO 513 j = 1,
B (NXY+1, j)
B (j, NXY+1)

513 CONTINUE
C
C

515
514

C
C

NXY+1
= 0.
= 0.

DO 514 i = 1, NXY
DO 515 j = 1, NXY**3

KIII(i,j) = A(i) * KIII(i,j)
CONTINUE

CONTINUE

DO 516 i = 1, NXY
S(i) = Ri(i)

516 CONTINUE

S(NXY+1) = 1.
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* Variable initialization

DO 500 I = 1,
x(I) = 0.
z(I) = 0.

500 CONTINUE

NXY+1

z(NXY+l) = vI

time = 0.
IT = 0

* Time integration using 4th-order Runge-Kutta method

DO 501 ITT = 1, ts

IT = IT+l

CALL RK4(NX,NY, A,B, KIII, S, x, z,dt, Ibx, Iby, k, n)

SUM = 0.

DO 502 i = 1, NXY
PR = S(i)*x(i)
SUM = SUM+PR

CONTINUE

w = SUM

alpha = w + x(NXY+1)
IF(alpha .LT. 0.) THEN

FI = 0.
ELSE

FI = k* (alpha**n)
ENDIF

wO = -w
uO = x(NXY+1)
time = time+dt

IF(IT .EQ. ITI) THEN
CALL OUTPUT(time, FI,wO, uO)
IT = 0
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ENDIF

501 CONTINUE
C
C
C

RETURN
END

C
C
C
C-------------------------------------------------------------------
C
C-------------------------------------------------------------------

SUBROUTINE RK4(NX,NY,A,B,KIII, S, x, z, dt, Ibx, Iby, k, n)
C------------------------------------------------------------------
C
C This subroutine performs a numerical integration using. fourth-
C order Runge-Kutta method.
C
C-----------------------------------------------------------------
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION KIII, k, n

PARAMETER ( N1=10, N2=N1*7, N4=N2**3 )

DIMENSION A(N2+1),B(N2+1,N2+1),KIII (N2,N4),S (N2+1)
DIMENSION x(N2+1), z (N2+1),xl (N2+1), zl (N2+1)
DIMENSION akl(N2+1),ak2(N2+1) ,ak3(N2+1), ak4 (N2+1)
DIMENSION bkl(N2+1),bk2(N2+1),bk3(N2+1),bk4(N2+1)

* Solving 2nd-order differential equations

NXY = NX*NY

DO 550 i - 1, NXY+1
xl (i) = x(i)
zl (i) = z(i)

550 CONTINUE
C
C
C

DO 551 i = 1, NXY+1
akl(i) = dt*func(NXY,i,x,A, B, KIII, S, Ibx, Iby,k, n)
bkl(i) = dt*zl(i)
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551 CONTINUE
C
C

DO 552 i = 1, NXY+1
x(i) = xl(i)+0.5*bkl(i)

552 CONTINUE
C
C

DO 553 i = 1, NXY+1
ak2 (i) = dt*func(NXY,i,x,A,B,KIII,S,Ibx,Iby,k, n)
bk2(i) = dt*(zl(i)+0.5*akl (i))

553 CONTINUE
C
C

DO 554 i = 1, NXY+1
x(i) = xl (i)+0.5*bk2 (i)

554 CONTINUE
C
C

DO 555 i = i, NXY+1
ak3(i) = dt*func(NXY,i,x,A,B,KIII,S,Ibx,Iby,k, n)
bk3(i) = dt*(zl(i)+0.5*ak2(i))

555 CONTINUE
C
C

DO 556 i = i, NXY+1
x(i) = xl(i)+bk3(i)

556 CONTINUE
C
C

DO 557 i = 1, NXY+1
ak4(i) = dt*func(NXY,i,x,A,B,KIII,S,Ibx,Iby,k,n)
bk4(i) = dt*(zl(i)+ak3(i))

557 CONTINUE
C
C

DO 558 i = 1, NXY+1
z(i) = zl(i) + (akl(i)+2.*ak2(i)+2.*ak3(i)+ak4(i))/6.
x(i) = xl(i) + (bkl(i)+2.*bk2(i)+2.*bk3(i)+bk4(i))/6.

558 CONTINUE
C
C
C

RETURN
END

C
C
C
C----------------------------------------------------------------------
C
C--------------------------------------------------------------------

C
C
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C
C [ Variables ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION KIII,k,n

PARAMETER ( N1=10, N2=N1*7, N4=N2**3 )

DIMENSION A(N2+1) ,B(N2+1,N2+1) ,KIII (N2,N4), S (N2+1) ,x(N2+1)

SUM = 0.

DO 580 J = 1, NXY+1
PR = B(i,J)*x(J)
SUM = SUM+PR

580 CONTINUE

S1 = SUM

IF((Ibx .EQ. 0) .AND. (Iby .EQ. 0)) THEN
S2 = 0.
GOTO 584

ENDIF

IF(i .EQ. NXY+l) THEN
S2 = 0.
GOTO 584

ENDIF

SUM = 0.
JJJJ = 0

DO 581 J = 1, NXY
DO 582 JJ = 1, NXY

DO 583 JJJ = 1, NXY
JJJJ = JJJJ+1
PR = KIII (i, JJJJ) *x (J) *x (JJ) *x (JJJ)
SUM = SUM+PR

583 CONTINUE
582 CONTINUE
581 CONTINUE

S2 - SUM

584 CONTINUE

SUM = 0.

DO 585 J = 1, NXY+1
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PR = S(J)*x(J)
SUM = SUM+PR

585 CONTINUE
C

IF(SUM .LT. 0.) THEN
SUM = 0.

ENDIF
C

F = k*(SUM**n)
C
C

S3 = F*A(i)*S(i)
C
C

func = -S1-S2-S3
C
C

RETURN
END

C
C
C
C------------------------------------------------------------------
C
C--------------------------------------------------------------------

SUBROUTINE SOLVE2(NX,NY,M3,KI, KIII,Ri,vI,mI,k,n, dt,ts,ITI,
& Ibx,Iby,XL,YL,BETAX,BETAY,THETAX,THETAY,
& AX,AY,BX,BY,CXCYX,CY,DX, EXEY,Rii)

C------------------- -----------------------------------------------
C
C This subroutine solves the system of second-order differential
C equations
C with respect to time by numerical time integration scheme of the
C fourth-order Runge-Kutta method. Cosine-type distributed patch
C loading is also considered.
C
C--------------------------------------------------------------------
C
C [ Variables ]
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION M3, KI, KIII,mI, k, n
INTEGER ts

C
PARAMETER ( N1=10, N2=N1*7, N4=N2**3 )

C
DIMENSION BETAX(N1),BETAY(N1),BX(N1),BY(N1)
DIMENSION CX(N1),CY(N1),DX(Nl),DY(N1),EX(N1),EY(N1)
DIMENSION M3(N2),KI(N2,N2),KIII(N2,N4),Ri(N2),Rii(N2)
DIMENSION x(N2+1),z(N2+1),A (N2+1), B (N2+1,N2+1)
DIMENSION S(N2+1),S2(N2+1)

C
C

q(i,xx) = (SQRT(2.)*SIN(BETAX(i) *x+THETAX)
& +AX*EXP(-BETAX(i)*xx)
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& +BX(i)*EXP(-BETAX(i)*(1.-xx)))*CX(i)
& +2.*EX(i) * (DX(i) * (-xx)+0.5)

C
C

r(i,yy) = (SQRT(2.)*SIN(BETAY(i)*yy+THETAY)
& +AY*EXP(-BETAY (i)*yy)
& +BY(i)*EXP(-BETAY(i)*(1.-yy)))*CY(i)
& +2.*EY(i)*(DY(i)*(-yy)+0.5)

C
C
C
C
C * Preparation of matix
C
C
C

NXY = NX*NY
C

DO 510 i = 1, NXY
A(i) = 1./M3(i)

510 CONTINUE
C

A(NXY+1) = l./mI
C
C

DO 511 i = 1, NXY
DO 512 j = 1, NXY

B(i,j) = A(i) * KI(i,j)
512 CONTINUE
511 CONTINUE

C
C

DO 513 j = 1, NXY+1
B(NXY+1,j) = 0.
B(J,NXY+1) = 0.

513 CONTINUE
C
C

DO 514 i = 1, NXY
DO 515 j = 1, NXY**3

KIII(i,j) = A(i) * KIII(i,j)
515 CONTINUE
514 CONTINUE

C
C

DO 516 i = 1, NXY
S(i) = Rii(i)
S2(i)= Ri(i)

516 CONTINUE
C

S(NXY+1) = 1.
S2(NXY+1)= 1.

C
C
C
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* Variable initialization

DO 500 I =
x(I) =
z(I) =

500 CONTINUE

1, NXY+1
0.
0.

z(NXY+1) = vI

time = 0.
IT = 0

* Time integration using 4th-order Runge-Kutta method

DO 501 ITT = 1, ts

IT = IT+1

CALL RK4p(NX, NY, A,B, KIII, S, S2,x, z, dt, Ibx, Iby, k, n)

SUM = 0.

DO 502 i = 1, NXY
PR = S2(i)*x(i)
SUM = SUM+PR

CONTINUE

w = SUM

alpha = w + x(NXY+1)
IF(alpha .LT. 0.) THEN

FI = 0.
ELSE

FI = k* (alpha**n)
ENDIF

w0 = -w
uO = x(NXY+1)
time = time+dt

IF(IT .EQ. ITI) THEN
CALL OUTPUT (time, FI,w0, uO)
IT = 0
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ENDIF

501 CONTINUE
C
C
C

RETURN
END

C
C
C
C--------------------------------------------------------------------
C

C--------------------------------------------------------------------
SUBROUTINE RK4p(NX,NY,A,B,KIII,S,S2,x,z,dt,Ibx,Iby,k,n)

C-----------------------------------------------------------------

This subroutine performs a numerical integration using fourth-
order Runge-Kutta method. Cosine-type distributed patch loading is
also considered.

C--------------------------------------------------------------------

[ Variables ]

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION KIII,k,n

PARAMETER ( N1=10, N2=N1*7, N4=N2**3 )

DIMENSION A(N2+1),B (N2+1,N2+1),KIII (N2,N4)
DIMENSION S(N2+1),S2(N2+1)
DIMENSION x(N2+1),z (N2+1),xl (N2+1), zl (N2+1)
DIMENSION akl(N2+1),ak2(N2+1),ak3(N2+1),ak4 (N2+1)
DIMENSION bkl(N2+1),bk2(N2+1) ,bk3 (N2+1),bk4 (N2+1)

* Solving 2nd-order differential equations
* Solving 2nd-order differential equations
------- ---------------------------------

NXY = NX*NY

DO 550 i = 1, NXY+1
xl(i) = x(i)
z1(i) = z(i)

550 CONTINUE
C
C
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c
C

DO 551 i = 1, NXY+1
akl (i) = dt*funcl(NXY,i,x,A, B, KIII, S,S2,Ibx,Iby,k,n)
bkl(i) = dt*zl(i)

551 CONTINUE
C
C
C

DO 552 i = 1, NXY+1
x(i) = xl(i)+0.5*bkl(i)

552 CONTINUE
C
C
C

DO 553 i = 1, NXY+1
ak2(i) = dt*funcl(NXY,i,x,A,B,KIII,S,S2,Ibx,Iby,k,n)
bk2(i) = dt*(zl(i)+0.5*akl(i))

553 CONTINUE
C
C
C

DO 554 i = 1, NXY+1
x(i) = xl(i)+0.5*bk2(i)

554 CONTINUE
C
C
C

DO 555 i = 1, NXY+1
ak3(i) = dt*funcl(NXY,i,x,A,B, KIII,S,S2,Ibx,Iby,k,n)
bk3(i) = dt*(zl(i)+0.5*ak2(i))

555 CONTINUE
C
C
C

DO 556 i = 1, NXY+1
x(i) = xl(i)+bk3(i)

556 CONTINUE
C
C
C

DO 557 i = 1, NXY+i
ak4(i) = dt*funcl(NXY,i,x,A,B, KIII,S, S2,Ibx,Iby,k,n)
bk4(i) = dt*(zl(i)+ak3(i))

557 CONTINUE
C
C
C

DO 558 i = 1, NXY+1
z(i) = zl(i) + (akl(i)+2.*ak2(i)+2.*ak3(i)+ak4(i))/6.
x(i) = xl(i) + (bkl(i)+2.*bk2(i)+2.*bk3(i)+bk4(i))/6.

558 CONTINUE
C
C
C
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RETURN
END

C
C
C
C---------------------------------------------------------------------
C
C-----------------------------------------------------------------------

FUNCTION funcl(NXY,i,x,A,B, KIII, S, S2, Ibx,Iby,k,n)
C-----------------------------------------------------------------------

[ Variables ]

IMPLICIT DOUBLE PRECISION (A'-H, O-Z)
DOUBLE PRECISION KIII,k,n

PARAMETER ( N1=10, N2=Nl*7, N4=N2**3 )

DIMENSION A(N2+1),B (N2+1,N2+1), KIII (N2,N4)
DIMENSION S(N2+l),S2(N2+1),x (N2+1)

C
C
C

SUM = 0.
C

DO 580 J = 1i, NXY+l
PR = B(i,J)*x(J)
SUM = SUM+PR

580 CONTINUE
C

Al = SUM

IF((Ibx .EQ. 0) .AND. (Iby .EQ. 0)) THEN
A2 = 0.
GOTO 584

ENDIF

IF(i .EQ. NXY+1) THEN
A2 = 0.
GOTO 584

ENDIF

SUM = 0.
JJJJ = 0

DO 581 J = 1, NXY
DO 582 JJ = 1, NXY

DO 583 JJJ = 1, NXY
JJJJ = JJJJ+1
PR = KIII (i, JJJJ) *x (J) *x (JJ) *x (JJJ)
SUM = SUM+PR
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583 CONTINUE
582 CONTINUE
581 CONTINUE

C
A2 = SUM

C
584 CONTINUE

C
C
C

SUM = 0.
C

DO 585 J = 1, NXY+1
PR = S2(J)*x(J)
SUM = SUM+PR

585 CONTINUE
C

IF(SUM .LT. 0.) THEN
SUM = 0.

ENDIF
C

F = k*(SUM**n)
C
C

A3 = F*A(i)*S(i)
C
C

funcl = -Al-A2-A3
C
C

RETURN
END

C
C
C
C----------------------------------------------------------------------
C
C----------------------------------------------------------------------

SUBROUTINE OUTPUT(time,FO,wO,uO)
C----------------------------------------------------------------------
C
C This subroutine writes desirable information in the output data
C file "global2.out".
C Time [sec], force [N], plate midplne displacement [m], impactor
C displacement [m] are produced.
C
C-------------------------------------------------------------------
C
C [ Variables J
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C
C

WRITE(11,*)time,FO,wO,uO
c
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RETURN
END

C
C
C--------------------------------------------------------------------
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Sample Input Data File "global2.dat"

IM7G/X8553-50 [+45/-45/+45/-45/0/0]s 252mn x 89mrm plate
Nonlinearity in x-direction (beta=0.05)
1.53kg inpactor @ 5m/s
9 x 9 modes (only odd modes) 5 microsec time incrennt
3000 time steps Recording every 10th time step data
1 0 0.05
3455
1
0.252 0.089 0.00174 1540.
143591000. 54249900. 37682300.
22.5264 20.1778 15.0949 3.5227
10266000. 10266000. 0. 0.833
1.53 5.0 0. 5.0E8 1.5
0.000005 3000 10

0. 0. 42568300.
3.5227 16.5905

The format of the "global2.dat" is described as follows:

comment lines (program does not read)
Ibx Iby beta
IBCX IBCY NX NY
IEO
XL YL THICK ROU
All A22 A12 A16 A26 A66
Dll D22 D12 D16 D26 D66
G44 G55 G45 sc
m vI cf k n
dt ts ITI

nonlinearity index numbers (integer) in the x- and y-
direction
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Line
Line
Line
Line
Line
Line
Line
Line
Line

1-5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

where,

Ibx, Iby :
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=> include nonlinear effect
=> do not include nonlinear effect (linear)

beta:

IBCX, IBCY :

NX, NY :

IEO :

XL, YL :

THICK, ROU :

geometrical nonlinearity factor ranging from 0.0 to
1.0
0.0 => linear case
1.0 => perfectly nonlinear case

index numbers for the boundary conditions in x and
y directions
1 => simply supported - simply supported
2 => clamped - free
3 => clamped - clamped

free - free
simply supported - clamped
simply supported - free

number of modes in the x and y directions

switch for turning off even modes
0 => both odd and even modes
1 => odd modes only

dimensions of plate in the x and y directions (m)

thickness of the plate (m), density of the plate (kg/m3)

tensor components of A matrix (N/m)
tensor components of D matrix (N-m)
shear stiffness components (N/m)
shear correction factor

mass of impactor, initial impactor velocity

dimension of the square shape of the patched loading
for point loading, let cf = 0.0
(This program is capable of dealing with double-
cosine type distributed patch loading, although there
has not been verified, yet.)

local contact stiffness (N/mn ), nonlinearity exponent

time increment (sec), number of time steps

number of time steps to be skipped for reducing the
output results. (i.e. for ITI=10, every 10th data will be
recorded in the output data file.)
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A's
D's
G's
sc :

mI, vI :

cf :

k, n:

dt, ts :

ITI :

--
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Sample Output Data File "global2.out"

First Column

Time [sec]

Second Column

Impact Force [N]

Third Column

Plate Midplane
Displacement [m]

Fourth Column

Impactor
Displacement [m]

5.E-5, 563.9444566804, 1.4143283511979E-4, 2.4978665302005E-4
9.9999999999999E-5, 561.5300020527, 3.9067406494724E-4, 4.9871839325297E-4
1.5E-4, 489.8141990071, 6.4805422765267E-4, 7.4669146746603E-4
1.9999999999999E-4, 197.1448177938, 9.4011445903343E-4, 9.9388489703504E-4
2.4999999999999E-4, 137.7189637977, 1.1983886311825E-3, 1.2407219672911E-3
2.9999999999999E-4, 186.3529445234, 1.4355325612436E-3, 1.4873223536263E-3
3.4999999999999E-4, 84.64649828287, 1.7030468658694E-3, 1.7336495365059E-3
3.9999999999999E-4, 201.8817150805, 1.9251416199655E-3, 1.9797699579251E-3
4.4999999999998E-4, 216.9672580041, 2.168261242569E-3, 2.225578156295E-3
4.9999999999998E-4, 239.2794938581, 2.4097734244457E-3, 2.4709554218636E-3
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