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Abstract

We investigate one-dimensional (1D) wave turbulence (WT) systems that are
characterised by six-wave interactions. We begin by presenting a brief introduction
to WT theory - the study of the non-equilibrium statistical mechanics of nonlinear
random waves, by giving a short historical review followed by a discussion on the physical
applications.

We implement the WT description to a general six-wave Hamiltonian system that
contains two invariants, namely, energy and wave action. This enables the subsequent
derivations for the evolutions equations of the one-mode amplitude probability density
function (PDF) and kinetic equation (KE). Analysis of the stationary solutions of these
equations are made with additional checks on their underlying assumptions for validity.
Moreover, we derive a differential approximation model (DAM) to the KE for super-local
wave interactions and investigate the possible occurrence of a fluctuation relation. We
then consider these results in the context of two physical systems - Kelvin waves in
quantum turbulence (QT) and optical wave turbulence (OWT).

We discuss the role of Kelvin waves in decaying QT, and show that they can be
described by six-wave interactions. We explicitly compute the interaction coefficients for
the Biot-Savart equation (BSE) Hamiltonian and represent the Kelvin wave dynamics in
the form of a KE. The resulting non-equilibrium Kolmogorov-Zakharov (KZ) solutions
to the KE are shown to be non-local, thus a new non-local theory for Kelvin wave
interactions is discussed. A local equation for the dynamics of Kelvin waves, the local
nonlinear equation (LNE), is derived from the BSE in the asymptotic limit of one long
Kelvin wave. Numerical computation of the LNE leads to an agreement with the non-
local Kelvin wave theory.

Finally, we consider 1D OWT. We present the first experimental implementation
of OWT and provide a comparable decaying numerical simulation for verification. We
show that 1D OWT is described by a six-wave process and that the inverse cascade
state leads to the development of coherent solitons at large scales. Further investigation
is conducted into the behaviour of solitons and their impact to the WT description.
Analysis of the fluxes and intensity PDFs lead to the development of a wave turbulence
life cycle (WTLC), explaining the coexistence between coherent solitons and incoherent
waves. Additional numerical simulations are performed in non-equilibrium stationary
regimes to determine if a pure KZ state can be realised.
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Chapter 1

Introduction

1.1 Wave Turbulence

We define wave turbulence (WT) theory as the study of the non-equilibrium statistical

mechanics of random nonlinear waves [6, 1], consisting of a large number of random wave

modes evolving far from their thermodynamic equilibrium. Hence, a non-equilibrium

statistical description is preferred over a deterministic one. The origins of WT theory

began in 1929, when Rudolph Peierls investigated the kinetics of phonons in anharmonic

crystals [12]. In his work, he derived evolution equations for the wave action density,

now known as the kinetic equation (KE), and for the wave amplitude probability density

function (PDF), with the subsequent description of their thermodynamic equilibrium

solutions. Whilst significant progress in the field has been made since 1929, these two

equations remain the key focal points in the theory.

It was not until the 1960s that WT theory gained increased attention from the

physics community, with its application to plasma physics [13, 14] and water waves [15,

16, 17, 18, 19, 20]. One of the major reasons for this new interest, was the discovery of

a new type of solution to the KE describing a non-equilibrium turbulent cascade. These

new solutions were discovered by Vladimir Zakharov in 1965, and correspond to states

defined by a constant flux of a cascading invariant through scales [21]. They are known

as Kolmogorov-Zakharov (KZ) solutions, due to their analogy with the Kolmogorov

energy spectrum of hydrodynamical turbulence [22].
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Since the pioneering work of Zakharov, there have been many physical systems

that lend themselves to the application of WT theory including water surface gravity and

capillary waves in oceans [19, 20, 6, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35];

internal, inertial, and Rossby waves in atmospheres and oceans [36, 37, 38, 39, 40, 41,

42, 43, 44]; Alfvén waves in solar wind and interstellar turbulence [45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56]; Kelvin waves on quantised vortex lines in superfluid helium

[57, 11, 58, 59, 60, 61, 9]; waves in Bose-Einstein condensates (BECs) and nonlinear

optics [62, 63, 64, 65, 8]; waves in fusion plasmas [13, 66, 14, 6]; and waves on vibrating,

elastic plates [67].

WT theory is often associated with weakly nonlinear dispersive waves, where the

theory enables the description of weakly interacting random waves and the prediction of

KZ cascade states. In this case, WT is referred to as weak WT. However, when wave

amplitudes become large, and the nonlinearity is strong, the weak WT description fails,

resulting in a regime of strong WT. In strong WT regimes, we observe a suppression

of the KZ states with the development of non-universal features, such as shocks [68],

vortices [69, 70, 62], condensates [62, 64], and solitons [8]. Strong WT descriptions have

been proposed for several wave systems, usually resulting in the formation of a wave

turbulence life cycle (WTLC) [71, 1]. The WTLC presents a qualitative description of

the mutual coexistence of random waves, coherent structures, and the energy exchange

between them.

It is the weak WT description that allows for the systematic evaluation of the

nonlinear evolution of a WT system. When the nonlinearity of a system is weak, the small

amplitudes of weakly nonlinear random waves are approximately time-independent, and

thus the waves evolve close to the linear theory. However, over long times, these ampli-

tudes gradually evolve, and the nonlinear interactions between weakly nonlinear random

waves become apparent. It is this separation of the characteristic linear timescale, TL,

and the nonlinear evolution timescale, TNL, that allows for an ensemble average to be

taken over the linear timescale and for a prediction to the nonlinear evolution to be

made.

Recently, improved experimental and numerical simulations of WT systems have,
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in many situations, indicated towards deviations in the WT predictions [72, 64, 73]. This

has led to an emphasis on the verification of the weak WT assumptions, the investigation

of strong WT effects, and the role of turbulent intermittency. Discreteness of wave

modes - a fact arising from the consideration of a finite box, has led many theorists

to examine if the infinite box assumption of WT theory is consistent with experimental

and numerical observations. This discreteness imposes restrictions to the number of

wave resonances that can occur. If the nonlinearity of the system is too low, then only

exact wave resonances can satisfy the resonance condition1, which subsequently leads

to the development of discrete WT [74, 75, 76, 77, 78, 79, 80]. In such circumstances,

isolated clusters of exact wave resonances are formed. When the nonlinear frequency

broadening is of the same order as the frequency spacing, isolated clusters of interacting

waves can become connected, but still being of insufficient size for the transfer of energy

to the dissipation scale. Such situations are known as frozen turbulence [81]. If a frozen

turbulent system is under continuous forcing, then we can observe intermittent cascade

bursts or sand-pile behaviour. This is formally known as mesoscopic WT [82, 27, 31,

52, 83]. If the nonlinear frequency broadening is larger than the frequency grid spacing,

then the system is in a kinetic WT regime and is described by WT theory. However,

the infinite size box assumption is only really applicable to systems present in nature.

Therefore the understanding of discreteness effects is of fundamental importance in WT

modelling.

1.2 One-Dimensional Wave Turbulence

Interestingly, one-dimensional (1D) WT systems can be highly complex, even more so

than WT systems in higher dimensions. This is because the one-dimensionality of k-

space imposes more restrictions than simplifications, i.e. resonant interactions on a 1D

line are much harder to satisfy than on a multi-dimensional grid. Moreover, certain

wave frequency structures can further restrict wave resonances. That said, there are

not many physical examples of 1D WT systems and therefore the motivation for their

1This is when the nonlinear frequency broadening, approximately the inverse of the nonlinear timescale
TNL, is smaller than the frequency spacing in the finite box.
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investigation has been limited until recently. Most notably was the introduction of an

artificial equation called the Majda-McLaughlin-Tabak (MMT) model. The MMT model

is a 1D wave equation containing several adjustable parameters, that give rise to a whole

family of new 1D four-wave WT systems [72, 84, 73]. Interestingly, the MMT model,

was initially used as a model for the verification of weak WT assumptions. However, it

was subsequently found to produce results that were not fully consistent with the WT

predictions [72]. This has again motivated the investigation into the validity of the WT

assumptions.

In this thesis, we will discuss two examples of 1D WT. First, we consider the role

of Kelvin waves on 1D quantised vortex lines in superfluid helium quantum turbulence

(QT) [11], and secondly, waves in 1D optical wave turbulence (OWT) [8]. Both of

these systems are defined by six-wave interactions that arise due to the inability of the

system to support four-wave interactions. This lack of four-wave resonance is down

to the structure of the linear wave frequency, which only permits trivial wave number

pairings to the four-wave resonance condition.

1.3 Layout of Thesis

In this thesis, we investigate 1D wave turbulent systems, with emphasis on systems that

are described by six-wave interactions. There have been many studies in WT in three-,

four- and five-wave interaction systems, however, there has been little investigation into

the consideration of six-wave systems.

In Chapter 2, we develop the WT description for a general six-wave system.

We begin by presenting the WT statistical setup. We introduce the definitions of the

random phase and amplitude (RPA) field, the generating functional (GF), the canonical

transformation (CT), and finally apply the WT description to a general six-wave Hamil-

tonian. This enables the formulation of the GF for the six-wave system, which leads to

construction of evolution equations for the amplitude PDF, and KE. The main focus of

WT theory has been predominantly on the KE and its solutions. However, we emphasise

the importance of the amplitude PDF, which subsequently allows for the investigation
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into intermittency and strong WT. Towards the end of Chapter 2, we concentrate on

the solutions of the KE, and check the locality assumption of the derived KZ solutions.

Finally, we introduce the differential approximation model (DAM) for strongly local wave

interactions as a means to investigate the energy and wave action fluxes.

With the main generalised results already derived in Chapter 2, we proceed by

considering applications to QT in Chapter 3. Six-wave theory for Kelvin waves was

originally developed by Kozik and Svistunov [11]. However, their initial work failed

to fully check the validity of the underlying WT assumptions. Therefore, we present

a detailed and thorough analysis of the Biot-Savart equation (BSE) Hamiltonian de-

scription for Kelvin waves and investigate the legitimacy of the local wave interaction

assumption for the KZ solutions. Moreover, we examine two simplified models for Kelvin

waves interactions: the local nonlinear equation (LNE) and the truncated local induc-

tion approximation (TLIA) model. Both greatly reduce the computational expense of

the BSE, whilst maintaining the same WT characteristics. We perform numerical sim-

ulations of the LNE and TLIA model and compare the results with the local [11], and

recently proposed non-local [85] Kelvin WT theories.

In Chapter 4, we present an experimental setup for 1D OWT, and verify our

observations with comparisons to numerical simulations and the WT predictions of

Chapter 2. We examine OWT in two limits of k-space and derive the long-wave

equation (LWE) and the short-wave equation (SWE). The LWE, which models the ex-

perimental setup, is similar to the integrable 1D nonlinear Schrödinger equation (NLSE)

and therefore contains soliton-like solutions. These coherent structures appear after an

inverse cascade in the decaying OWT setup. However, the presence of a large number

of solitons in the system can inhibit the weak WT regime and invalidate the kinetic

description. This behaviour can be understood with the aid of the WTLC. We per-

form additional numerical simulations of both the LWE and the SWE in non-equilibrium

stationary states to compare with the theoretical KZ predictions.

Finally, in Chapter 5 we conclude with a discussion of the results from Chapters 3

and 4 and highlight areas where further investigation is needed.
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Chapter 2

Wave Turbulence Theory

There have been several approaches to the description of WT statistics, first using a

diagrammatic approach [86, 87, 88], then by cumulants expansions [17, 18, 89, 90, 91],

and finally by the use of the random phase approximation [6, 20]. However, the random

phase approximation is insufficient for a rigorous treatment of WT theory - the wave

amplitudes must also be random independent variables1. This was the approach that

was recently developed in [2, 3, 4, 5, 1], using RPA wave fields. The RPA field approach

is what we shall consider in this thesis. Moreover, it allows for the derivation of not only

the KE, but of Peierls’ equation for the PDF, and for the ability of considering non-

Gaussian wave fields. These provide a formulation for the study of the underlying WT

assumptions, the phenomena of turbulence intermittency, and the presence of coherent

structures.

In this Chapter, we will present the bulk of the mathematics within this thesis.

We will lay down the necessary statistical foundations before developing the RPA field

approach to a general six-wave Hamiltonian system. WT theory has been applied on

several occasions to six-wave systems [11, 7, 8, 9], however, this is the first time the

detailed derivation to a general six-wave system using the RPA field approach has been

considered.

1The wave amplitudes do not necessarily have to be Gaussian.
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2.1 The Statistical Setup

To set the foundations for the WT description, we need to present a few concepts and

definitions that will aid us in the development of the theory [1]. The vast number of

degrees of freedom in a wave turbulent system implies that a deterministic approach is

inconvenient and far too cumbersome. Therefore we find that a statistical strategy is

more suitable. The non-equilibrium nature of turbulence means that applying a näıve

thermodynamic approach of defining temperature as energy per degree of freedom, would

lead to an absurdly high temperature for the system. Therefore, WT theory is based

upon non-equilibrium states defined by fluxes through scales. The most fundamental

and universal of these statistical quantities is the PDF of the wave field, containing all

the information of the system.

Let us consider a 1D wave field, a(x, t), in a periodic box of length L, and let the

Fourier transform of this field be represented by Fourier amplitudes al(t) = a(kl, t), with

wave number, kl = 2πl/L, where l is taken from a finite box BN ⊂ Z, centred around

zero. Finiteness of the number of wave modes, implies that there exists a maximal wave

number, kmax, such that the total number of modes is defined by N = kmax L/π. The

strategy we shall take will be to consider the system in a finite box of N wave modes,

and then take the large box and long evolution time limits towards the end.

In addition, let us consider an amplitude and phase factor decomposition of wave

mode al(t) = Al(t)ψl(t), such that Al is a real positive amplitude and ψl is a phase

factor that takes values on the unit circle in the complex plane (∈ T). The reason

why we take phase factors, ψl, and not phases, φl, with ψl = eiφl , is because phase

factors remain independent up to the nonlinear evolution time, whereas phases do not.

Correlation of phases would result in breakdown of the random phase assumption [92, 2].

We now introduce some important definitions to the theory:

Definition 1. The N -mode joint PDF, P(N){s, ξ}, is the probability for wave intensities

Jl = |Al|2 to be in the range (sl, sl + dsl), and for the phase factors, ψl, to be on the

unit circle segment, (ξl, ξl + dξl), for all l ∈ BN . We have used the notation that

{s, ξ} = {sl, ξl : l ∈ BN}.
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Definition 2. The full joint PDF of the wave field, a(x, t), is defined as the large box

limit of the N -mode joint PDF:

P{s, ξ} = lim
N→∞

P(N){s, ξ}. (2.1)

The joint PDFs above, contain all the information of the system. However, we

can consider the PDF of the wave amplitudes of the field a(x, t) by averaging over phase

factors,

Definition 3. P(N,a){s}, is known as the N -mode amplitude PDF, and is defined by

integration of the N -mode joint PDF over all phase factors:

P(N,a){s} =
∏
l∈BN

∮
S1
P(N){s, ξ} |dξl|. (2.2)

Moreover, we can define the amplitude PDF of a smaller subset of M modes,

called the M -mode joint amplitude PDF, where M < N , by integrating the N -mode

amplitude PDF over all but M amplitudes.

Definition 4. The M -mode amplitude PDF is defined as

P(M,a){s} =
∏

l 6=l1,l2,··· ,lM

∫
R+

P(N,a){s} dsl, (2.3)

where we have labelled the M modes as l1, l2, · · · , lM .

2.2 Random Phase and Amplitude Fields

Let us introduce the RPA field strategy by first beginning with the definition of an ideal

RPA field [3, 93, 2, 4].

Definition 5. We say a wave field, a(x, t), is an ideal RPA field, if it possesses the

following statistical properties:

• All amplitudes, Al, and phase factors, ψl, are independent random variables.

Therefore, the N -mode joint PDF is equal to the product of the one-mode PDFs
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of each amplitude and phase factor:

P(N){s, ξ} =
∏
l∈BN

P(1,a)
l (sl) P

(1,ψ)
l (ξl). (2.4)

• The phase factors, ψl, are uniformly distributed on the unit circle. Hence, for any

mode l we have

P(1,ψ)
l (ξl) =


1

2π if 0 ≤ ξl < 2π

0 otherwise.

(2.5)

A consequence of an ideal RPA field is that we can write the N -mode amplitude

PDF, P(N,a){s}, as a product of N one-mode amplitude PDFs:

P(N,a){s} =
∏
l∈BN

P(1,a)
l (sl). (2.6)

We remark, that the ideal RPA field does not require us to fix the shape of the amplitude

PDF, and therefore, we can deal with strongly non-Gaussian wave fields. However, the

ideal RPA field does not hold precisely, but only approximately, up to the nonlinear

evolution time [93, 2, 3]. Fortunately, the WT closure is still valid if we use a weaker

definition of an ideal RPA field - an essentially RPA field:

Definition 6. We say that the field, a(x, t), is an essentially RPA field if:

• The phase factors are statistically independent and uniformly distributed variables

up to O(ε2) corrections with:

P(N){s, ξ} =
1

(2π)N
P(N,a){s}

[
1 +O

(
ε2
)]
. (2.7)

• The amplitude variables are almost independent, in the sense that for a subset of

modes of number M � N , the M -mode amplitude PDF is equal to the product

of the M one-mode amplitude PDFs up to an accuracy of O (M/N) and O
(
ε2
)

with:

P(M)
l1,l2,...,lM

=

 M∏
j=1

P(1,a)
lj

 [
1 +O

(
M

N

)
+O

(
ε2
)]
. (2.8)
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With this weaker definition, the phase factors are independent from each other

by O(ε2) corrections, where ε is a formal parameter quantifying the weak nonlinearity of

the system (ε� 1). Moreover, there is only the independence of M wave amplitudes up

to a correction of O(M/N) for M � N , but this is still sufficient for the WT closure.

2.3 The Generating Functional

The GF provides a useful tool in deriving the evolution equations for all the statistical

quantities of the wave system.

Definition 7. The N -mode GF is defined as

Z(N){λ, µ} =

〈∏
l∈BN

e(
L
2π )λlJl ψµll

〉
, (2.9)

where {λ, µ} = {λl, µl : l ∈ BN} is a set of parameters such that λl ∈ R and µl ∈ Z.

Here 〈·〉 = 〈·〉J,ψ represents the ensemble amplitude and phase averages with respect to

J and ψ.

Due to the statistical independence of the amplitudes, Al, to the phase factors,

ψl, we can define the N -mode amplitude GF.

Definition 8. The N -mode amplitude GF is defined as

Z(N,a){λ} =

〈∏
l∈BN

e(
L
2π )λlJl

〉
= Z(N){λ, µ}|µ=0. (2.10)

We will only concentrate on the one-mode statistics of the system for brevity2.

Therefore, we will only need to consider the one-mode amplitude GF, Z(1,a)
k (λk).

Definition 9. The one-mode amplitude GF is defined as

Z(1,a)
k (λk) =

〈
e(

L
2π )λkJk

〉
, (2.11)

for wave number k.
2There exist several papers that consider the full N -mode statistics of three-wave and four-wave

systems, for instance see [2, 3].
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We can reconstruct the one-mode amplitude PDF for wave intensities, sk = Jk,

by taking the inverse Laplace transform of the one-mode amplitude GF:

P(1,a)
k (sk) =

1

2πi

∫ i∞+c

−i∞+c
e−( L

2π )λksk Z(1,a)
k (λk) dλk, (2.12)

where c is a constant greater than the real part of all singularities of Z(1,a)
k (λk).

2.4 The Hamiltonian Formulation

Many systems that contain waves are described by different natural variables, which

pose a problem if we would like to apply a universal wave theory. Fortunately, most of

these systems possess a Hamiltonian structure, arising from the fact that most of these

equations can be derived from the initial microscopic Hamiltonian equations of motion.

If we are only interested in small amplitude waves, then all the information describing the

propagation of non-interacting waves is fully contained in the linear dispersion relation

ω(k). Furthermore, in the weakly nonlinear regime, the Hamiltonian structure can be

represented as a power series in terms of the complex amplitudes of these waves, with

the leading quadratic order describing non-interacting linear waves. Subsequently, the

higher order terms then describe the nonlinear interactions of these waves.

To begin with, the simplest Hamiltonian structure can be defined by a pair

of canonical variables, usually defined as the coordinate, q(x, t), and the momentum,

p(x, t), with the canonical equations of motion expressed as

∂q(x, t)

∂t
=

δH
δp(x, t)

, (2.13a)

∂p(x, t)

∂t
= − δH

δq(x, t)
. (2.13b)

The Hamiltonian H is a functional, dependent on the variables, q(x, t), and, p(x, t),

with δ/δq and δ/δp denoting variational derivatives. The advantage of the Hamiltonian

formulation is the symmetry it possesses between q(x, t) and p(x, t). If we define new

canonical variables, q̃ = λ∗q, and, p̃ = p/λ∗, choosing the dimensional factor λ∗ such
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that both q̃ and p̃ have the same dimensions, then one can introduce the complex

variables

a(x, t) =
q̃ + ip̃√

2
, (2.14a)

a∗(x, t) =
q̃ − ip̃√

2
. (2.14b)

Subsequently, the Hamiltonian (2.13) can be expressed as

i
∂a(x, t)

∂t
=

δH
δa∗(x, t)

, (2.15a)

−i∂a
∗(x, t)

∂t
=

δH
δa(x, t)

. (2.15b)

Equation (2.15b) follows from (2.15a) by complex conjugation. Hence we have obtained

one complex equation out of two real equations, (2.13). It should be noted that variables

a(x, t) and a∗(x, t) are not the only canonical variables to choose from. The Hamiltonian

structure can be significantly simplified if one considers (2.15) in Fourier space. The

wave interaction variable ak = a(k, t) is defined as the Fourier representation of the

wave field a(x, t) such that

a(k, t) =
1

L

∫
Box

a(x, t)eikx dx. (2.16)

Subsequently, the Hamiltonian equations (2.15) can be represented as

i
∂ak
∂t

=
δH
δa∗k

. (2.17)

In the limit of small amplitude waves (i.e. |ak|2 � 1), we can expand the Hamiltonian

H in powers of ak and a∗k:

H = H2 +Hint, (2.18a)

Hint = H3 +H4 +H5 + · · · , (2.18b)

such that H2 � H3 � H4 � · · · . Here, H2 is the quadratic part of the Hamiltonian,

describing the free non-interacting propagation of linear waves andHint is the interaction

12



Hamiltonian, containing all terms that describe the nonlinear interaction of waves. The

subscript i in each term Hi defines the order of the interaction process with respect to

the canonical variables ak and a∗k.

The most general form3 of the quadratic Hamiltonian, H2, is given by

H2 =
∑
k

A(k)aka
∗
k +

1

2

[
B(k)aka−k +B∗(k)a∗ka

∗
−k
]
, (2.19)

with the restrictions that A(k) be a real function and B(k) be an even function (B(k) =

B(−k)) imposed by the Hamiltonian H being real. In addition, the presence of negative

wave numbers is for H2 to satisfy the conservation of momentum (see Equation (2.21a)

below).

However, one would like to diagonalise (2.19) into the form

H2 =
∑
k

ω(k) ãkã
∗
k, (2.20)

where ãk and ã∗k are new canonical variables and ω(k) is the linear frequency or disper-

sion relation. This is because we would like variable ãk to correspond to a single mode

with frequency ωk and not a linear combination of modes4. This can be done with the

aid of the Bogoliubov transformation, that we omit from this thesis for brevity, (see [6]

for an overview). Once diagonalised, we can proceed with the application of WT theory.

2.5 The Canonical Transformation

Nonlinear wave interactions can only occur if the waves satisfy a resonance condition.

For an N ↔ M wave scattering event in an N + M -wave process, this resonance

condition is defined as

k1 + · · ·+ kN = kN+1 + · · ·+ kN+M , (2.21a)

ω(k1) + · · ·+ ω(kN ) = ω(kN+1) + · · ·+ ω(kN+M ), (2.21b)

3This generality arises from the possible combinations of ak and a∗k up to the quadratic order in ak.
4From this point on, we omit tildes, and assume that the system is already diagonalised.
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where ki is the wave number and ω(ki) = ωi is the frequency of wave i. Waves

with index i = 1, . . . , N , on the left-hand side of (2.21), are incoming waves to the

interaction, whereas waves with index i = N + 1, . . . , N + M , on the right-hand side

determine outgoing waves.

WT theory automatically implies the conservation of the linear energy H2 and

momentum M:

M =
∑
k

k aka
∗
k. (2.22)

This is reflected in the resonance condition (2.21), where Relation (2.21a), corresponds

to the conservation of momentum in the wave interaction, and (2.21b), the conservation

of linear energy5. In special situations, there can be additional conserved quantities or

invariants. An additional conserved quantity (or even two) would allow for a dual

(triple) cascade scenario, with the cascading invariants being transferred to separate

regions of Fourier space [65, 62, 63, 8, 7, 44, 94]. For instance, in this thesis we are

primarily concerned with dual cascade systems with an additional invariant arising from

the conservation of the total number of waves in the system. Systems of this form

are seen in nonlinear optics/BECs [65, 62, 63, 8] and in Kelvin waves in QT [7, 9]6.

Therefore, we consider systems of only even order wave interactions where the number of

waves before and after interaction are the same, i.e. four-wave and six-wave interactions,

which result from 2 ↔ 2 and 3 ↔ 3 wave scattering processes respectively. When N

and M in (2.21) are equal, we have that the total number of waves, that is the wave

action N , is conserved, where N is defined as

N =
∑
k

aka
∗
k. (2.23)

Aside from wave action, other invariants have been found in systems, such as enstrophy

and zonostrophy [95, 44]. But as we are only considering systems that conserve wave

action, our general system will only contain even order wave interactions. Therefore,

all terms of odd order in the Hamiltonian expansion (2.18), (H3, H5, etc.) will vanish.

5In the weak nonlinearity limit, one can approximate the conservation of energy with the conservation
of linear energy. This approximation is vital in WT theory.

6The majority of WT systems are defined by three-wave interactions
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Hence, (2.18) becomes

H = H2 +H4 +H6 + · · · . (2.24)

Let us consider a general Hamiltonian up to orderH6 that conserves wave action,

as well as the energy and momentum, in the form of

H =
∑
k

ωk aka
∗
k+

1

4

∑
1,2,3,4

T 1,2
3,4 a1a2a

∗
3a
∗
4 δ

1,2
3,4 +

1

36

∑
1,2,3,4,5,6

W 1,2,3
4,5,6 a1a2a3a

∗
4a
∗
5a
∗
6 δ

1,2,3
4,5,6 ,

(2.25)

where δ1,2
3,4 = δ(k1+k2−k3−k4) is a Kronecker delta function and T 1,2

3,4 = T (k1,k2,k3,k4)

and W 1,2,3
4,5,6 = W (k1,k2,k3,k4,k5,k6) are the interaction coefficients for the 2↔ 2 and

3 ↔ 3 wave scatterings respectively. Their structures determine the wave interaction

for their corresponding wave scattering process. The Hamiltonian (2.25) represents the

total energy of the system and therefore is real. Moreover, its value should not change

if we permute certain wave numbers, i.e. k1 ↔ k2 etc. This property establishes

symmetries on the interaction coefficients:

T 1,2
3,4 = T 2,1

3,4 = T 1.2
4,3 = (T 3,4

1,2 )∗, (2.26a)

W 1,2,3
4,5,6 = W 2,1,3

4,5,6 = W 3,2,1
4,5,6 = W 1,2,3

5,4,6 = W 1,2,3
6,5,4 = (W 4,5,6

1,2,3 )∗. (2.26b)

In the limit of |ak| � 1, the leading contribution to the interaction Hamiltonian of

(2.25) are the 2↔ 2 wave interactions defined by H4. These occur if the wave numbers

satisfy the 2 ↔ 2 wave resonant condition:

k1 + k2 = k3 + k4, (2.27a)

ω(k1) + ω(k2) = ω(k3) + ω(k4). (2.27b)

We will limit ourselves to 1D systems that possess waves with linear dispersion relations

of the form

ω(k) = Ck2, (2.28)

where C is a real constant and we use the notation k = |k| for the magnitude of the
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k

ω1

ω3

ω1 + ω2
= ω3 + ω4

ω1 = ω3
ω1 + ω2
ω3 + ω4

k1 k2

k3 k4

0

Figure 2.1: We plot a graphical representation of the four-wave resonance condition [1].
The four-wave resonance condition is satisfied at points where the green and blue lines
intersect, (shown by the black dot). However, for dispersion relations ωk ∝ kα, with
α > 1, there can only be one intersection, corresponding to the trivial wave resonance:
k1 = k4 and k2 = k3 (see text for details).

wave number. Indeed, dispersion relations in 1D of the form ω(k) ∝ kα with α > 1

cannot satisfy the four-wave resonant condition (2.27). This can be understood by

a simple diagrammatic representation presented in Figure 2.1 [13, 1]. In Figure 2.1

we observe the red dashed curve representing the dispersion relation ωk = Ckα with

α > 1. At two points along this curve (at k = k1 and k = k3), two further dispersion

curves (the green and blue solid lines) are produced at points (k1, ω1) and at (k3, ω3)

respectively. These subsequent lines represent the wave frequencies of ω1 + ω2 and

ω3 + ω4, where k1 and k3 are now fixed and along the green solid line, k2 is varying

and along the blue line, k4 is varying. If the green and blue lines intersect, it will be

when Equations (2.27) are satisfied (the four-wave resonance condition) at the point

(k1 + k2, ω1 + ω2) = (k3 + k4, ω3 + ω4). In Figure 2.1 this occurs once, and it can

be clearly seen that k1 = k4 and k2 = k3, corresponding to a trivial pairing of wave

numbers, which will not provide any nonlinear energy exchange between wave modes.

As a consequence, resonant four-wave interactions are absent in the system. However,
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there exists a weakly nonlinear CT that allows us to change to new canonical variables to

remove the non-resonant wave interactions. The side effect of this is the introduction

of a new additional term that describes the next order of wave interaction [6]. This

strategy was recently applied to four-wave systems in the context of Kelvin waves in

QT [7, 9] and nonlinear optics [8]. This technique has also been previously applied to

surface gravity waves [96, 97]. The CT can be re-iterated until one gets a leading order

resonant wave interaction.

The first step of the CT is to define a new canonical interaction variable, ck,

such that it satisfies an auxiliary Hamiltonian Haux, Equation (2.29), which contains

arbitrary interaction coefficients at all orders7. The auxiliary Hamiltonian for ck is of

the form:

Haux =
1

2

∑
1,2,3

Ṽ 1,2
3 δ1,2

3 (c1c2c
∗
3 + c.c.) +

1

6

∑
1,2,3

Ũ1,2,3 δ1,2,3 (c1c2c3 + c.c.)

+
1

4

∑
1,2,3,4

T̃ 1,2
3,4 δ1,2

3,4 c1c2c
∗
3c
∗
4 +

1

6

∑
1,2,3,4

X̃1,2,3
4 δ1,2,3

4 (c1c2c3c
∗
4 + c.c.)

+
1

24

∑
1,2,3,4

Ỹ 1,2,3,4 δ1,2,3,4 (c1c2c3c4 + c.c.)

+
1

120

∑
1,2,3,4,5

Ã1,2,3,4,5 δ1,2,3,4,5 (c1c2c3c4c5 + c.c.)

+
1

24

∑
1,2,3,4,5

B̃1,2,3,4
5 δ1,2,3,4

5 (c1c2c3c4c
∗
5 + c.c.)

+
1

12

∑
1,2,3,4,5

C̃1,2,3
4,5 δ1,2,3

4,5 (c1c2c3c
∗
4c
∗
5 + c.c.)

+
1

36

∑
1,2,3,4,5,6

W̃ 1,2,3
4,5,6 δ1,2,3

4,5,6 c1c2c3c
∗
4c
∗
5c
∗
6

+
1

120

∑
1,2,3,4,5,6

Q̃1,2,3,4,5
6 δ1,2,3,4,5

6 (c1c2c3c4c5c
∗
6 + c.c.)

+
1

48

∑
1,2,3,4,5,6

R̃1,2,3,4
5,6 δ1,2,3,4

5,6 (c1c2c3c4c
∗
5c
∗
6 + c.c.)

+
1

36

∑
1,2,3,4,5,6

S̃1,2,3,4,5,6 δ1,2,3,4,5,6 (c1c2c3c4c5c6 + c.c.) , (2.29)

7We have defined the auxiliary Hamiltonian up to six-wave interactions, which is sufficient for our
CT. This will be verified a posteriori.
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where c.c. means complex conjugate. The auxiliary Hamiltonian is completely arbitrary

and as such we denote all interaction coefficients with tildes to emphasise this. The orig-

inal Hamiltonian (2.25) will fix certain auxiliary interaction coefficients, whilst allowing

us to explicitly choose the remaining arbitrary coefficients to eliminate the non-resonant

interaction terms.

The CT is weakly nonlinear, thus preserving the linear dynamics of the system.

We use the fact that the time evolution operator is canonical, and use the Taylor

expansion of ak around a(k, 0) = c(k, 0) giving

a(k, t) = c(k, 0) + t

(
∂c(k, t)

∂t

)∣∣∣∣
t=0

+
t2

2

(
∂2c(k, t)

∂t2

)∣∣∣∣
t=0

+ · · · . (2.30)

The coefficients of the CT, (2.30), can be calculated using Relation (2.17) applied to

the auxiliary Hamiltonian, (2.29), i.e.

(
∂ck
∂t

)
t=0

= −iδHaux
δc∗k

, (2.31a)

(
∂2ck
∂t2

)
t=0

= −i ∂
∂t

δHaux
δc∗k

. (2.31b)

These coefficients will be of the form of summations, involving variable ck and the

interaction coefficients from the auxiliary Hamiltonian. Once coefficients (2.31) have

been found, we then substitute transformation, (2.30), into Hamiltonian (2.25). This

will result in a new Hamiltonian expressed in terms of the new interaction representa-

tion variable, ck, involving the interaction coefficients from the auxiliary Hamiltonian

(containing tildes), T 1,2
3,4 and W 1,2,3

4,5,6 . The aim is to eliminate the four-wave interaction

contribution by selecting the values of the arbitrary interaction coefficients. Because in

this specific case, we are considering a even N -wave system that conserves wave action,

we find that the CT does not result in any additional odd N -wave contributions. Hence,

all arbitrary interaction coefficients for odd orders are zero.

Elimination of all four-wave contributions can be achieved by selecting

T̃ 1,2
3,4 =

−4i
(
T 1,2

3.4

)∗
ω1 + ω2 − ω3 − ω4

. (2.32)
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Relation (2.32) is valid because the denominator does not vanish due to a lack resonant

four-wave interactions. After selecting (2.32), we find that Hamiltonian (2.25) reduces

to

H =
∑
k

ωkckc
∗
k +

1

36

∑
1,2,3,4,5,6

[
W1,2,3

4,5,6 − i (ω1 + ω2 + ω3 − ω4 − ω5 − ω6)

×W̃ 1,2,3
4,5,6

]
δ1,2,3

4,5,6 c1c2c3c
∗
4c
∗
5c
∗
6. (2.33)

Hamiltonian (2.33) represents Hamiltonian (2.25) in the new canonical variable ck, up to

the leading resonant wave interaction, in this case being of order six. Notice, that within

the six-wave contribution there is still an arbitrary contribution, W̃ 1,2,3
4,5,6 , that arises from

the auxiliary Hamiltonian (2.29). However, its prefactor, ω1 + ω2 + ω3 − ω4 − ω5 − ω6

vanishes when the six-wave resonance condition

k1 + k2 + k3 = k4 + k5 + k6, (2.34a)

ω(k1) + ω(k2) + ω(k3) = ω(k4) + ω(k5) + ω(k6), (2.34b)

is satisfied. Hence, W̃ 1,2,3
4,5,6 does not provide a contribution to the nonlinear wave dy-

namics. We can select W̃ 1,2,3
4,5,6 to equal minus the difference of W1,2,3

4,5,6 from its value

taken when the resonance condition, (2.34), is satisfied. For instance, if we decompose

W1,2,3
4,5,6 into two parts, the first being its value when the resonant condition is satisfied,

say RW1,2,3
4,5,6 and the second being its residual ⊥W1,2,3

4,5,6 =W1,2,3
4,5,6 −RW1,2,3

4,5,6 , we can then

express

W1,2,3
4,5,6 = RW1,2,3

4,5,6 + ⊥W1,2,3
4,5,6 . (2.35)

By choosing

W̃ 1,2,3
4,5,6 =

−i⊥W1,2,3
4,5,6

ω1 + ω2 + ω3 − ω4 − ω5 − ω6
, (2.36)

the arbitrary interaction coefficient, W̃ 1,2,3
4,5,6 , directly cancels with the residual contribu-
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tion of W1,2,3
4,5,6 . Therefore, the resulting transformed Hamiltonian reads

H =
∑
k

ωkckc
∗
k +

1

36

∑
1,2,3,4,5,6

W1,2,3
4,5,6 δ

1,2,3
4,5,6 c1c2c3c

∗
4c
∗
5c
∗
6, (2.37)

where the explicit formula for W1,2,3
4,5,6 stemming from the CT is given by

W1,2,3
4,5,6 = RW 1,2,3

4,5,6 −
1

8

3∑
i,j,m=1
i 6=j 6=m6=i

6∑
p,q,r=4
p 6=q 6=r 6=p

T p+q−i,ip,q T j+m−r,rj,m

ωj+m−r,rj,m

+
T i+j−p,pi,j T q+r−m,mq,r

ωq+r−m,mq,r

,

(2.38)

where we have use the notation of ω1,2
3,4 = ω1 + ω2 − ω3 − ω4. The second contribution

to the right-hand side of Equation (2.38) is an additional term arising from the CT

describing the sub-leading contribution of the four-wave dynamics. This term adds

to the resonant six-wave dynamics with the consideration of two coupled four-wave

interactions.

Hamiltonian (2.37) represents the the original Hamiltonian system (2.25) in the

new canonical variable ck. However, the interaction Hamiltonian has now been trans-

formed from having a leading non-resonant four-wave interaction term into one with a

leading resonant six-wave interaction contribution. From the formula of the new six-

wave interaction coefficient (2.38), the six-wave interaction stems from the coupling of

two non-resonant four-wave interactions connected by a virtual wave, see Figure 2.2.

By applying Relation (2.17) to Hamiltonian (2.37), we get an equation for the

time evolution of the wave interaction variable ck, where

iċk = ωkck +
1

12

∑
2,3,4,5,6

Wk,2,3
4,5,6 c∗2c

∗
3c4c5c6 δ

k,2,3
4,5,6 . (2.39)

This equation is the starting point for WT theory. This is the six-wave analogue of the

Zakharov equation, which describes four-wave interactions of water surface waves [98].

20



k

k

k

k
4

1

2

3

T
1,2

3,4

k

k

k

k

k

1

3
k

4

k

k

k
k

k
k

k

5

6

3

2

1 4

7

6

+52

1,2,3

4,5,6W

Figure 2.2: An illustration to show the four-wave interaction, T 1,2
3,4 , and the six-wave

interaction, W1,2,3
4,5,6 , after the CT. The six-wave interaction term (sextet) is a sum of a

3→ 3 wave process and the contribution arising from two coupled four-wave interaction
via a virtual wave.

2.6 The Weak Nonlinearity Expansion

The approach of WT theory is established by a separation of the linear and nonlinear

dynamics. i.e. when considering a weakly nonlinear regime, (when wave amplitudes are

small), the linear evolution time, TL, defined as

TL =
2π

ωk
, (2.40)

is smaller than the nonlinear evolution time, TNL - the time for the nonlinear energy

transfer between waves, i.e.

TL � TNL. (2.41)

This separation of timescales allows for an ensemble average over the fast linear timescale

and for the description of the nonlinear evolution of the wave system. For WT systems,

TL and TNL are usually wave number dependent, hence it is likely for (2.41) to be
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violated in some region of Fourier space. For instance, it was predicted that Condition

(2.41) would break down at small wave numbers in OWT [65], for Kelvin waves in QT

[99], and for capillary waves [6, 100]. Alternatively, a break down is predicted at large

wave numbers for gravity waves [6, 100] and Rossby/drift waves [94]. We will observe

later in this thesis, that (2.41) will almost always be violated in some region of Fourier

space resulting in the formation of coherent structures, strong turbulence, or a critical

balance (CB) regime.

For small wave amplitudes, |ck| � 1, we can re-scale ck by the introduction of

a small nonlinearity parameter ε ∈ R+. Therefore, we can express wave amplitudes in

terms of a new canonical variable bk ∼ O(1) and ε. By introducing ε, it allows us to

easily distinguish between the linear and nonlinear timescales. The nonlinear timescale

for a six-wave process is of the order TNL ∼ 2π/ε8ωk, which will be verified a posteriori,

and hence we seek a solution at an intermediate time, T , where

TL � T � TNL. (2.42)

Trivial pairings of wave numbers in Equation (2.39), do not contribute to the

nonlinear exchange of energy between wave modes, but they do provide an additional

contribution to the frequency. Therefore, before we can proceed, we must first consider

this contribution. This ensures that the weak nonlinearity expansion will be defined in

a self-consistent way [2]. By separating the diagonal terms from the main summation,

Equation (2.39) can be expressed as

iċk = (ωk + Ωc
k) ck +

1

12

∑
K2,3

4,5,6

Wk,2,3
4,5,6 c∗2c

∗
3c4c5c6 δ

k,2,3
4,5,6 , (2.43)

where

Ωc
k =

1

2

∑
7,8

Wk,7,8
k,7,8 |c7|2 |c8|2. (2.44)

The summation in (2.43) is now taken over the set K2,3
4,5,6 = {k2,k3,k4,k5,k6 :

k,k2,k3 6= k4,k5,k6}. We see that the nonlinear frequency, Ωc
k, acts as a correc-

tion to the linear wave frequency, and subsequently, the system is modified to a new
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frequency ω̃k = ωk + Ωc
k.

Let us define the interaction variable bk, such that all smallness of the wave

amplitude ck is represented by the parameter ε. In addition, we shall incorporate the

new system frequency, ω̃k, into variable bk. Therefore, we define bk as

bk =
ck
ε
eiωkt+i

∫ t
0 Ωkdt

′
. (2.45)

In (2.45), time-dependence of the nonlinear frequency correction, Ωc
k, must be taken

into account, and consequently, there remains an integration in the phase. In terms of

variable bk, the nonlinear frequency correction can be expressed as

Ωb
k =

ε4

2

∑
7,8

Wk,7,8
k,7,8 |b7|

2 |b8|2 = ε4Ωc
k. (2.46)

The change of variable introduces an extra prefactor of ε4. From now on, we will omit

the superscript in (2.46), thus Ωb
k will become Ωk.

Substitution of Formula (2.45) into Equation (2.43) implies that

iḃk =
ε4

12

∑
K2,3

4,5,6

Wk,2,3
4,5,6 b∗2b

∗
3b4b5b6 δ

k,2,3
4,5,6 e

iωk,2,34,5,6 t+iε
4
∫ t
0 Ωk,2,34,5,6dt

′
. (2.47)

As the nonlinear frequency correction is time-dependent, extra care should be taken

when considering its contribution to (2.47). Therefore, we expand the last exponential

in Equation (2.47) as

eiε
4
∫ t
0 Ωk,2,34,5,6dt

′
= 1 + iε4

∫ t

0
Ωk,2,3

4,5,6 dt
′ − ε8

2

(∫ t

0
Ωk,2,3

4,5,6 dt
′
)2

+ · · · . (2.48)

The main objective is to seek a solution of bk(T ), where T is our intermediate

scale defined in (2.42). Let us consider an ε-expansion of bk(T ) of the form

bk(T ) = b
(0)
k + ε4b

(1)
k + ε8b

(2)
k + · · · , (2.49)

and then solve each ε-order of bk(T ) by an iterative method using evolution Equation
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(2.47). Expansion (2.49) is in powers of ε4 because this is determined by the evolution

equation (2.47), which will only contribute at every fourth order of ε. We substitute

(2.49) into (2.47), and equate ε-orders. The leading O(ε0) contribution implies

iḃ
(0)
k = 0. (2.50)

Integration of (2.50), with respect to time gives

b
(0)
k (T ) = b

(0)
k (0). (2.51)

Result (2.51), implies that at leading order, the wave amplitude bk(T ) is time-independent.

Consideration of the following order, O
(
ε4
)
, implies that

ε4iḃ
(1)
k =

ε4

12

∑
K2,3

4,5,6

Wk,2,3
4,5,6 b

(0)∗
2 b

(0)∗
3 b

(0)
4 b

(0)
5 b

(0)
6 δk,2,34,5,6 e

iωk,2,34,5,6 t. (2.52)

The nonlinear frequency correction does not contribute to (2.52), as it contains an

additional ε4 prefactor. Therefore, integration with respect to time yields

b
(1)
k (T ) = − i

12

∑
K2,3

4,5,6

Wk,2,3
4,5,6 b

(0)∗
2 b

(0)∗
3 b

(0)
4 b

(0)
5 b

(0)
6 δk,2,34,5,6 ∆T

(
ωk,2,34,5,6

)
. (2.53)

Here we have used that b
(1)
k (0) = 0 and have defined

∆T (x) =

∫ T

0
eixtdt. (2.54)

Note that if we conjugate (2.54), we get that ∆∗T (x) = ∆T (−x). Finally, we use
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formulae (2.51) and (2.53) to determine b
(2)
k (T ):

ε8iḃ
(2)
k =

ε8

12

∑
K2,3

4,5,6

Wk,2,3
4,5,6 δk,2,34,5,6

(
2 b

(1)∗
2 b

(0)∗
3 b

(0)
4 b

(0)
5 b

(0)
6 + 3 b

(0)∗
2 b

(0)∗
3 b

(1)
4 b

(0)
5 b

(0)
6

)
× eiω

k,2,3
4,5,6 t

+
ε8

12

∑
K2,3

4,5,6

Wk,2,3
4,5,6 δk,2,34,5,6 b

(0)∗
2 b

(0)∗
3 b

(0)
4 b

(0)
5 b

(0)
6 eiω

k,2,3
4,5,6 t (0)Ωk,2,3

4,5,6t, (2.55)

where

(0)Ωk =
ε4

2

∑
7,8

Wk,7,8
k,7,8 |b

(0)
7 |

2 |b(0)
8 |

2, (2.56)

and (0)Ωk,2,3
4,5,6 = (0)Ωk + (0)Ω2 + (0)Ω3 − (0)Ω4 − (0)Ω5 − (0)Ω6. The last contribution in

Equation (2.55), stems from the nonlinear frequency correction and can be integrated

as b
(0)
k is time-independent. Substitution of the expression for b

(1)
k into Equation (2.55)

and integrating gives

b
(2)
k =

1

12

∑
K2,3

4,5,6, K
7,8
9,10,11

[
2Wk,2,3

4,5,6

(
W2,7,8

9,10,11

)∗
b
(0)∗
3 b

(0)∗
9 b

(0)∗
10 b

(0)∗
11 b

(0)
4 b

(0)
5 b

(0)
6 b

(0)
7 b

(0)
8

× δk,2,34,5,6 δ2,7,8
9,10,11ET

((
ω2,7,8

9,10,11

)∗
, ωk,2,34,5,6

)
− 3Wk,2,3

4,5,6 W
4,7,8
9,10,11

×b(0)∗
2 b

(0)∗
3 b

(0)∗
7 b

(0)∗
8 b

(0)
5 b

(0)
6 b

(0)
9 b

(0)
10 b

(0)
11 δk,2,34,5,6 δ4,7,8

9,10,11 ET

(
ω4,7,8

9,10,11, ω
k,2,3
4,5,6

)]
+
ε8

12

∑
K2,3

4,5,6

Wk,2,3
4,5,6 δk,2,34,5,6 b

(0)∗
2 b

(0)∗
3 b

(0)
4 b

(0)
5 b

(0)
6 eiω

k,2,3
4,5,6 t (0)Ωk,2,3

4,5,6t, (2.57)

where we have defined ET (x, y) as

ET (x, y) =

∫ T

0
∆t(x)ei

∫ t
0 ydt

′
dt. (2.58)

Symmetry of ∆T (x) implies that ET (x∗, y) = ET (−x, y). With Equations (2.51),

(2.53) and (2.57), we have calculated the ε-expansion of bk up to O(ε8)8. The next

objective is to define the GF, this provides a clear and concise way to describe the

evolution of all the statistical quantities in WT.

8We will find that this order is sufficient for all the analysis contained within this thesis.
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2.7 Calculation of the Generating Functional

The N -mode GF defines all the joint statistics in the system. The N -mode statistics are

essential if we are interested in verifying the WT assumptions of the system. However,

for the application of WT theory, the one-mode statistics are sufficient. Although wave

amplitudes will eventually become correlated as we approach the nonlinear evolution

time, any pair of wave modes will remain independent, up to an accuracy of O(ε2)

[2, 4]. This implies that for the description of WT theory (and to form the WT closure)

one-mode statistical objects are adequate. With this in mind, we will restrict ourselves

to only considering the one-mode amplitude GF Z(1,a)
k (λk).

Recall that the one-mode amplitude GF (2.11) is defined as

Zk(λk) =
〈
e(

L
2π )λk|bk|2

〉
. (2.59)

Here, we have dropped the superscript from the one-mode amplitude GF from definition

(2.11) for clarity. The aim is to calculate the ε-expansion of Zk at the intermediate

time, T , and subsequently, derive an evolution equation, using Equations (2.51), (2.53)

and (2.57) for bk. Assume that we can represent the GF in powers of ε, as

Zk = Z(0)
k + ε4Z(1)

k + ε8Z(2)
k + · · · . (2.60)

Then to calculate the GF, (2.59), we must average over random amplitudes, 〈·〉J , and

random phases, 〈·〉φ, in an RPA field. Once we have performed these, we can derive the

evolution equation for Zk, and thus any of the one-mode statistical objects we require.

To begin, we substitute the ε-expansion of bk, (2.49), into Definition (2.59) and

consider terms up to O(ε8):

Zk = 〈e(
L
2π )λk|b

(0)
k +ε4b

(1)
k +ε8b

(2)
k |

2〉+O(ε12). (2.61)

Expression (2.61) can be further simplified using a Taylor expansion for each exponen-
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tial9, thus obtaining

Zk =

〈
e(

L
2π )λk|b

(0)
k |

2

[
1 + ε4

(
L

2π

)
λk

(
b
(0)
k b

(1)∗
k + b

(0)∗
k b

(1)
k

)
+ ε8

((
L

2π

)
λk

(
|b(1)
k |

2 + b
(0)
k b

(2)∗
k + b

(0)∗
k b

(2)
k

)
+

(
L

2π

)2 λ2
k

2

(
b
(0)
k b

(1)∗
k + b

(0)∗
k b

(1)
k

)2
)]〉

+O(ε12). (2.62)

We now proceed by performing amplitude and phase averaging of each term in Expansion

(2.62). The leading O(ε0) contribution of Zk is

Z(0)
k =

〈
e(

L
2π )λk|b

(0)
k |

2
〉

=
〈
e(

L
2π )λkJ

(0)
k

〉
= Zk(0), (2.63)

where J
(0)
k = |b(0)

k |
2 is the amplitude of the interaction variable b

(0)
k . For clarity, we shall

omit the superscript of J
(0)
k which will thus become Jk

10. We have labelled the leading

order of the ε-expansion as Zk(0), corresponding to the initial value of the GF. The

next order yields

Z(1)
k =

〈(
L

2π

)
λke

( L
2π )λkJk

(
b
(0)
k b

(1)∗
k + b

(0)∗
k b

(1)
k

)〉
, (2.64)

and subsequently at the final order to be considered, we obtain

Z(2)
k =

〈(
L

2π

)
λke

( L
2π )λkJk

[
|b(1)
k |

2 + b
(0)
k b

(2)∗
k + b

(0)∗
k b

(2)
k

+

(
L

2π

)
λk
2

(
2Jk|b

(1)
k |

2 +
(
b
(0)
k b

(1)∗
k

)2
+
(
b
(0)∗
k b

(1)
k

)2
)]〉

. (2.65)

Having expressed Zk in terms of bk, we now proceed by evaluating the ensemble aver-

ages.

9This will not alter the the accuracy of the derivation.
10Note that now Jk is not the amplitude of the full interaction variable bk, as defined in Section 2.1.
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2.8 Phase Averaging

The next step is to evaluate the amplitude and phase average of each term in the GF.

We can identify three types of terms that appear in our expansion for the GF, these are

〈b(0)
k b

(1)∗
k 〉, 〈|b(1)

k |
2〉, and 〈b(0)

k b
(2)∗
k 〉. We will begin by considering the phase average of

these quantities.

From formula (2.53), we have that

〈b(0)
k b

(1)∗
k 〉φ =

i

12

∑
K2,3

4,5,6

(
Wk,2,3

4,5,6

)∗ 〈
b
(0)
k b

(0)
2 b

(0)
3 b

(0)∗
4 b

(0)∗
5 b

(0)∗
6

〉
φ
δk,2,34,5,6 ∆T (ωk,2,34,5,6 ).

(2.66)

To compute the phase average of (2.66), we implement Wick’s rule, i.e. we consider

all possible pairings of wave numbers that are allowed by the summation. However, due

to the trivial pairings leading to the nonlinear frequency correction, we are restricted to

which wave numbers can be matched11. Consequently, no pairings can occur, and thus,

the average (2.66) is zero. This is also the case for 〈
(
b
(0)
k b

(1)∗
k

)2
〉φ, which also results

in no contribution for the same reason.

In Z(2)
k , we have the term

〈
|b(1)
k |

2
〉
φ

=
1

144

∑
K2,3

4,5,6, K
7,8
9,10,11

Wk,2,3
4,5,6

(
Wk,7,8

9,10,11

)∗
×
〈
b
(0)∗
2 b

(0)∗
3 b

(0)∗
9 b

(0)∗
10 b

(0)∗
11 b

(0)
4 b

(0)
5 b

(0)
6 b

(0)
7 b

(0)
8

〉
φ

× δk,2,34,5,6 δk,7,89,10,11 ∆T (ωk,2,34,5,6 ) ∆∗T (ωk,7,89,10,11). (2.67)

In this case, we are able to match the wave numbers in such a way as to not contradict

the restrictions of the summations. Using Wick’s rule, we find that

〈
b
(0)∗
2 b

(0)∗
3 b

(0)∗
9 b

(0)∗
10 b

(0)∗
11 b

(0)
4 b

(0)
5 b

(0)
6 b

(0)
7 b

(0)
8

〉
φ

=
(
δ2

7δ
3
8 + δ2

8δ
3
7

)
×
[
δ4

9

(
δ5

10δ
6
11 + δ5

11δ
6
10

)
+ δ4

10

(
δ5

9δ
6
11 + δ5

11δ
6
9

)
+ δ4

11

(
δ5

9δ
6
10 + δ5

10δ
6
9

)]
. (2.68)

11See the definition of set K2,3
4,5,6.
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This simplifies Equation (2.67) to give

〈
|b(1)
k |

2
〉
φ

=
1

12

∑
K2,3

4,5,6

|Wk,2,3
4,5,6 |

2J2J3J4J5J6 δ
k,2,3
4,5,6 |∆T (ω̃k,2,34,5,6 )|2. (2.69)

Applying a similar approach to 〈b(0)
k b

(2)∗
k 〉φ we arrive at

〈b(0)
k b

(2)∗
k 〉φ =

1

12

∑
K2,3

4,5,6

|Wk,2,3
4,5,6 |

2Jk (J2 + J3) J4J5J6δ
k,2,3
4,5,6ET

((
ωk,2,34,5,6

)∗
, ωk,2,34,5,6

)
− 1

12

∑
K2,3

4,5,6

|Wk,2,3
4,5,6 |

2JkJ2J3 (J4J5 + J4J6 + J5J6) δk,2,34,5,6

×E∗T
(
ω4,5,6
k,2,3, ω

k,2,3
4,5,6

)
. (2.70)

Note that the last term in Equation (2.57), corresponds to the nonlinear frequency

correction and averages to zero.

2.9 Amplitude Averaging

So far, we have taken the phase average, now we must perform the amplitude average

over the Jks. Recalling Equations (2.62-2.65), we see that Z(1)
k is zero, as (2.66)

vanishes, and thus, the ε-expansion of the GF can be expressed as

Zk(T ) = Zk(0) +
ε8

12

∑
K2,3

4,5,6

|Wk,2,3
4,5,6 |

2δk,2,34,5,6

[〈((
L

2π

)
λk +

(
L

2π

)2

λ2
kJk

)

× e(
L
2π )λkJkJ2J3J4J5J6

〉
J

|∆T

(
ωk,2,34,5,6

)
|2

+2

〈(
L

2π

)
λke

( L
2π )λkJkJk (J2 + J3) J4J5J6

〉
J

<
[
ET

((
ωk,2,34,5,6

)∗
, ωk,2,34,5,6

)]
−2

〈(
L

2π

)
λke

( L
2π )λkJkJkJ2J3 (J4J5 + J4J6 + J5J6)

〉
J

×<
[
E∗T

(
ω4,5,6
k,2,3, ω

k,2,3
4,5,6

)]]
, (2.71)
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where <[·] denotes the real part. To calculate the amplitude averages, we can use the

independence of amplitudes and the fact that all wave numbers are non-identical due

to the restriction of trivial pairings within the summation. For example, for three wave

numbers, k 6= k2 6= k3 6= k, we can split an amplitude average as

〈JkJ2e
λ2J2eλ3J3〉J = 〈Jk〉J〈J2e

λ2J2〉J〈eλ3J3〉J . (2.72)

We can define the wave action spectrum nk, and the derivative of the GF with

respect to λk as

nk =

(
L

2π

)
〈Jk〉J , (2.73a)

∂Zk

∂λk
=

∂

∂λk

〈
e(

L
2π )λkJk

〉
J

=

〈(
L

2π

)
Jke

( L
2π )λkJk

〉
J

. (2.73b)

Therefore, Equation (2.71) can be written in the form,

Zk(T )−Zk(0) =

(
2π

L

)4 ε8

12

∑
K2,3

4,5,6

|Wk,2,3
4,5,6 |

2δk,2,34,5,6

[(
λkZk + λ2

k

∂Zk

∂λk

)

× n2n3n4n5n6

∣∣∣∆T

(
ωk,2,34,5,6

)∣∣∣2
+2λk

∂Zk

∂λk
(n2 + n3)n4n5n6 <

[
ET

((
ωk,2,34,5,6

)∗
, ωk,2,34,5,6

)]
−2λk

∂Zk

∂λk
n2n3 (n4n5 + n4n6 + n5n6)

×<
[
E∗T

(
ω4,5,6
k,2,3, ω

k,2,3
4,5,6

)]]
. (2.74)

2.10 The Large Box and The Long Evolution Limits

Next we consider the limits of both an infinite box and long evolution time to Equa-

tion (2.74). However, the order in which the limits are taken is essential. We must take

the large box limit, N → ∞, before the limit of long time behaviour, T ∼ 1/ε4 → ∞,

otherwise the width of the nonlinear resonance broadening will be smaller than the fre-

quency grid spacing, and therefore resulting in a zero contribution. In the N →∞ limit
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we have

lim
N→∞

∑
2,3,4,5,6

=

(
L

2π

)5 ∫
dk2 dk3 dk4 dk5 dk6, (2.75a)

lim
N→∞

Kronecker δ =

(
2π

L

)
×Dirac δ. (2.75b)

Now, we consider the limit of long time behaviour, T →∞. Only the functions ∆T (·)

and ET (·, ·) depend on time T . Hence, we much evaluate the asymptotic limit of these

functions as T →∞. Relation (2.54) implies that

|∆T (x)|2 =
|eixT/2 − e−ixT/2|2

x2
=

4 sin2
(
xT
2

)
x2

, (2.76)

and therefore,

lim
T→∞

|∆T (x)|2 = 2πTδ(x). (2.77)

Similarly for ET (−x, x) we have

ET (−x, x) =

∫ T

0

1− e−ixt

ix
eixt dt =

1− eixT

x2
+
iT

x
, (2.78)

therefore,

lim
T→∞

<[ET (−x, x)] = lim
T→∞

1− cos (xT )

x2
= lim

T→∞

2 sin2
(
xT
2

)
x2

= πTδ(x). (2.79)

As the intermediate time, T , is smaller than the nonlinear evolution time, TNL,

we can approximate the time derivative of Zk by

Żk ≈
Zk(T )−Zk(0)

T
. (2.80)

Therefore, using Results (2.75), (2.77), (2.79) and (2.80), we derive a continuous evo-

lution equation for the GF:

Żk = λkηkZk +
(
λ2
kηk − λkγk

) ∂Zk

∂λk
, (2.81)
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where

ηk =
ε8π

6

∫
|Wk,2,3

4,5,6 |
2 δk,2,34,5,6 δ(ωk,2,34,5,6 ) n2n3n4n5n6 dk2dk3dk4dk5dk6, (2.82a)

and

γk =
ε8π

6

∫
|Wk,2,3

4,5,6 |
2 δk,2,34,5,6 δ(ωk,2,34,5,6 ) [(n2 + n3)n4n5n6

−n2n3 (n4n5 + n4n6 + n5n6)] dk2dk3dk4dk5dk6. (2.82b)

2.11 Moments of the Wave Intensity Jk

Moments of Jk, defined as M
(p)
k =

(
L
2π

)p 〈Jpk〉, can be easily found by differentiating

the GF p times with respect to λk and evaluating at λk = 0:

M
(p)
k =

∂p

∂λpk
Zk

∣∣∣∣
λk=0

. (2.83)

Therefore, the evolution equation for M
(p)
k can be found directly from (2.81) using

Formula (2.83), giving

Ṁ
(p)
k = −pγkM

(p)
k + p2ηkM

(p−1)
k . (2.84)

For Gaussian wave fields we find that the p-th order moment is given by

M
(p)
k = p!npk. (2.85)

However, these solutions are invalid at small λk and at high p, as large amplitudes for

which nonlinearity is no longer weak have a strong contribution to their value. Therefore,

it is more suitable to consider quantities that are local in Jk, such as the amplitude PDF.

The evolution equation for the first order moment, M
(1)
k = nk, known as the

KE, is given by

ṅk = ηk − γknk, (2.86)
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where ηk and γk are given in equations (2.82a) and (2.82b). From (2.86), we see that

any stationary solution of the KE satisfies the relation:

nk =
ηk
γk
. (2.87)

We will consider the KE in more detail later, however, let us first investigate the

one-mode amplitude PDF.

2.12 The One-Mode Amplitude Probability Density Func-

tion

Recall, that the one-mode amplitude PDF12, P(1,a)
k , can be found by applying the inverse

Laplace transform, (2.12), to the GF, Zk. By applying the inverse Laplace transform to

Equation (2.81), we arrive at the equation for the evolution of the PDF:

Ṗk = −∂Fk

∂sk
, (2.88a)

where we have introduced a probability space flux Fk defined as

Fk = −
(
skγkPk + skηk

∂Pk
∂sk

)
. (2.88b)

If the PDF reaches thermodynamic equilibrium, then the probability space flux Fk will

vanish. In this situation, the PDF can be calculated from (2.88). This homogeneous

solution, we denote Phom, corresponds to the thermodynamic equilibrium distribution

of

Pk = Phom =
1

nk
e
− sk
nk , (2.89)

where nk corresponds to any stationary state of the KE satisfying (2.87). Solution

Phom, is the Rayleigh distribution. A solution to Equation (2.88) was obtained for a

12For clarity, we will omit the superscript.
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constant non-zero flux, Fk = F 6= 0 [3], of the form

Pk = Phom + Ppart, (2.90a)

where Ppart is a particular solution to Equation (2.88), given by

Ppart = −F
ηk

Ei

(
sk
nk

)
e
− sk
nk , (2.90b)

where function Ei(x) is the exponential integral function

Ei(x) =

∫ x

−∞

et

t
dt. (2.91)

The particular solution is a correction due to the presence of a non-zero flux. In the

region of the PDF tail, where nk � sk, we can expand Ppart in powers of nk/sk:

Ppart = − F
skγk

− ηkF
(skγk)2 − · · · . (2.92)

Thus, at leading order, the PDF tail has algebraic decay ∼ O(1/sk). This behaviour

corresponds to the presence of strong intermittency of WT [3]. However, it was also

noted in [3], that if the weak nonlinearity assumption was valid, uniformly on the whole

of sk-space, up to sk = ∞, then the probability flux, Fk, is forced to equal zero, to

ensure positivity of Pk and convergence of its normalisation:

∫ ∞
0
Pk dsk = 1. (2.93)

Hence, for a finite flux solution to exist, there must be a cut-off in sk-space, for which

the PDF vanishes. This can be viewed as a wave breaking process, which does not allow

wave amplitudes to exceed a critical value [3]. The wave breaking process is essential

for the presence of WT intermittency. The sign of the flux F , determines whether

the tail of the amplitude PDF is greater or less than the Rayleigh distribution. From

Equation (2.92), we observe that a negative F implies an increase in the probability of

high intensity events. Subsequently, a positive flux, F , would imply that we are less
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likely to observe high intensity structures than what is predicted by a Gaussian wave

field. In wave turbulent systems, we expect to observe signs of WT intermittency, as

it is a result of a WT cascade being inhibited by the breakdown of the WT description

through a wave breaking process.

2.13 The Kinetic Equation

The KE is one of the key objects in WT theory, it describes the evolution of the wave

action density, which corresponds to distribution of wave action within k-space. The

evolution of nk is given by the evolution equation of the first moment (2.86), and written

in its full form, using the definitions for ηk, (2.82a), and γk, (2.82b), it is expressed as

ṅk =
ε8π

6

∫
|Wk,2,3

4,5,6 |
2 δk,2,34,5,6 δ(ωk,2,34,5,6 ) nkn2n3n4n5n6

×
(
n−1
k + n−1

2 + n−1
3 − n

−1
4 − n

−1
5 − n

−1
6

)
dk2dk3dk4dk5dk6. (2.94)

The integral on the right hand side of the KE, (2.94), is known as the collision

integral. Stationary solutions of the KE are solutions that make the collision integral

zero. These stationary solutions of the KE satisfy Relation (2.87).

As previously mentioned in Chapter 1, there exist two types of solutions to

the KE. The first type are referred to as the thermodynamic equilibrium solutions.

These describe the profile of the wave action density, nk, when the system relaxes to its

thermodynamic equilibrium. The thermodynamic solutions correspond to an equilibrated

system and thus correspond to an absence of flux for the conserved quantities, (in

our case, energy, H, and total wave action, N ). The second type are known as the

KZ solutions. They correspond to non-equilibrium stationary states determined by the

transfer of constant non-zero flux. They arise when the system is in the presence of

forcing and dissipation, where there exists some intermediate range of scales, known

as the inertial range, where neither forcing nor dissipation influences the transfer of

the cascading invariant. The discovery of the KZ solutions for the KE has been one

of the major achievements of WT theory, and as such these solutions have received a

large amount of attention within the community. In systems that possess more than
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one invariant, the KZ solutions describe the transfer of invariants to distinct regions of

k-space [6]. For many systems, these regions are usually the low and high wave number

areas of k-space, however this is not necessarily the case [94]. The directions in which

the invariants cascade can be discovered by following a Fjørtoft argument.

2.14 The Fjørtoft Argument

As we are considering a WT system with two invariants, there are two KZ solutions

of the KE, each defined by the transfer with constant flux of either invariant. This

is analogous to two-dimensional (2D) turbulence, where the enstrophy, (the sum of

the square of vorticity), cascades towards small scales and energy towards large scales

[101, 102]. Weak nonlinearity of the system implies that in a non-equilibrium statistical

steady state, where the total energyH is conserved, we can approximate the total energy

conservation with the conservation of the linear energy (H ≈ H2). Consequently, it

allows for the formation of a Fjørtoft argument [103]. This argument was originally

derived in the context of 2D turbulence, and does not require any assumptions on the

locality of wave interactions. Firstly, let us define the (linear) energy flux P (k, t) = Pk

and wave action flux Q(k, t) = Qk:

∂εk
∂t

= −∂Pk

∂k
, (2.95a)

∂nk
∂t

= −∂Qk

∂k
, (2.95b)

where the energy density in Fourier space is defined as εk = ωknk, such that H2 =∫
εk dk. Below, we will outline the Fjørtoft argument in the context of our six-wave

system.

We should assume that the system has reached a steady state, therefore the

total amount of energy flux, Pk, and wave action flux, Qk, contained within the system

must be zero, i.e.
∫
Pk dk = 0, and

∫
Qk dk = 0 respectively - this corresponds to the

input of flux into the system equalling the output. Then, let the system be forced by a

narrowband forcing at a specific intermediate scale, say kf , with both energy and wave
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action fluxes being generated into the system at rates Pf and Qf . Moreover, let there

exist two sinks, one towards small scales, say at k+ � kf , with energy and wave action

being dissipated at rates P+ and Q+, and one at the large scales, say at k− � kf ,

dissipated at rates P− and Q−
13. Therefore, in between the forcing and dissipation,

there exist two distinct inertial ranges where neither forcing nor dissipation takes effect.

In the weakly nonlinear regime, the energy flux is related to the wave action flux by

Pk ≈ ωkQk ≈ k2Qk. In a steady state system, the energy and wave action balance

implies that

Pf = P− + P+, (2.96a)

Qf = Q− +Q+. (2.96b)

Therefore, approximately we have

Pf ≈ k2
fQf , (2.97a)

P− ≈ k2
−Q−, (2.97b)

P+ ≈ k2
+Q+. (2.97c)

Subsequently, the balance Equations (2.96) imply

k2
fQf ≈ k2

−Q− + k2
+Q+, (2.98a)

Qf = Q− +Q+. (2.98b)

Re-arranging Equations (2.98) enables us to predict at what rates the energy and wave

action fluxes are dissipated at the two sinks. From Equations (2.98) we obtain

Q+ ≈
k2
f − k2

−

k2
+ − k2

−
Qf , (2.99a)

Q− ≈
k2
f − k2

+

k2
− − k2

+

Qf . (2.99b)

13The dissipation mechanism could be natural in the system, i.e. friction with the box or fluid viscosity.
However, (especially in numerical simulations) this could be artificial, i.e. hypo- and hyper-viscosities or
large scale friction to enforce a statistical non-equilibrium stationary state.
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If we consider the region around large scales, k− � kf < k+, then Equation

(2.99a) implies

k2
fQf ≈ k2

+Q+, (2.100)

i.e. that energy is mostly absorbed at the region around k+. Furthermore, considering

the region around small scales, k− < kf � k+, (2.99b) implies that

Qf ≈ Q−, (2.101)

i.e. that wave action is mostly absorbed at regions around k−. If we force the system at

an intermediate scale, where there exists two inertial ranges either side of kf , we should

have the majority of the energy flowing towards small scales and the majority of the

wave action flowing towards large scales. This determines the dual cascade picture of

the six-wave system, illustrated in Figure 2.3.

k

Wave Action Cascade

Energy Cascade

DissipationDissipation Forcing

−
k k

f

P
f P

Q

Q

+

+

−

+

P

Q
f

−

Figure 2.3: A Graphic to show the development of the the dual cascade regime.

2.15 The Zakharov Transform

To formally derive the thermodynamic and KZ solutions of the KE we will use the

Zakharov transform (ZT). However this requires that the interaction coefficients of the

system are scale invariant. Scale invariance of an interaction coefficient is a self-similar

property of the structure when the length scales are multiplied by a common factor. i.e

for any real number λ, we say that an interaction coefficient is scale invariant with a
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homogeneity coefficient, β ∈ R, if

W(λk1, λk2, λk3, λk4, λk5, λk6) = λβW(k1,k2,k3,k4,k5,k6). (2.102)

For example, in 1D OWT, W1,2,3
4,5,6 = const. then trivially β = 0. If the six-wave

interaction coefficient was a product of six wave numbers (i.e. the TLIA model for

Kelvin waves in QT), i.e. W1,2,3
4,5,6 = k1k2k3k4k5k6, then β = 6. Moreover, the

frequency ω(k) must also posses the scale invariant property, i.e.

ω(λk) = λαω(k), (2.103)

with some α ∈ R. In this thesis, we are only considering systems that possess dispersion

relations of the form of Relation (2.28), therefore α will always be α = 2. In addition,

we seek solutions of the KE with power-law form, with respect to wave number k, i.e.

nk = Ck−x, (2.104)

where C is the constant prefactor of the spectrum, usually determined by the dimensional

quantities within the system, and x is the exponent of the spectrum.

An informal way of determining exponent x of the KZ and thermodynamic solu-

tions is to apply a dimensional analysis argument. For the thermodynamic equilibrium

solutions, we assume a zero flux, i.e. that both εk and nk are scale independent.

Conversely, for the derivation of the KZ solutions, we want to consider a wave action

density scaling that implies a constant flux of the cascading invariant. This is achieved

by considering Pk, Qk ∝ k0 in Equations

Pk =

∫ k ∂εk′

∂t
dk′, (2.105a)

Qk =

∫ k ∂nk′

∂t
dk′, (2.105b)

derived from Equations (2.95), using (2.104) and the KE, (2.94). However, this method

is not mathematically precise and does not allow for the evaluation of the prefactor in
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(2.104). Therefore, we will now describe the formal way of calculating such solutions

by using the ZT. The ZT expresses the KE in such a way that it overlaps sub-regions of

the KE’s domain, thus at each solution, the integrand of the collision integral is set to

zero over the whole domain [6]. The ZT takes advantage of the symmetries possessed

within the KE by a change of variables. In our case, this results in dividing the domain

of the KE into six sub-regions.

Applicability of the ZT requires locality of wave interactions. This means that

wave interactions are local in k-space, i.e. only waves with a similar order of wave

number can interact. The criterion of locality is equivalent to the convergence of the

collision integral [6]. Locality of these solutions will be checked in the following section.

The ZT is a change of variables on certain sub-regions of the domain, one such

sub-region is transformed by14

k2 =
k2

k̃2

, k3 =
kk̃3

k̃2

, k4 =
kk̃4

k̃2

, k5 =
kk̃5

k̃2

and k6 =
kk̃6

k̃2

, (2.106)

with the Jacobian of the transformation J = −
(
k/k̃2

)6
. We must apply four similar

transformations, to each of the remaining sub-regions, (see Appendix B).

Using the scale invariant properties of the interaction coefficients and frequency,

and the fact that a Dirac delta function scales as

δ((λk)α) = λ−αδ(kα), (2.107)

the ZT implies that the KE can be expressed as

ṅk =
C5ε8π

6

∫
|Wk,2,3

4,5,6 |
2 |kk2k3k4k5k6|−x (kx + kx2 + kx3 − kx4 − kx5 − kx6 )

×
[
1 +

(
k2

k

)y
+

(
k3

k

)y
−
(
k4

k

)y
−
(
k5

k

)y
−
(
k6

k

)y]
× δk,2,34,5,6 δ(ωk,2,34,5,6 ) dk2dk3dk4dk5dk6, (2.108)

where we have omitted the tildes and y = 5x−3−2β. We see that if x = 0 or x = 2, the

14The ZT is only defined for scalars. Our notation is that k is a 1D variable ∈ R and not a multi-
dimensional vector. In this case, one would need to apply the ZT to k and not k.
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integrand will be zero as we either have zero by cancellation of the third term within the

integral or via the Dirac delta function involving frequencies. In particular, when x = 0

or x = 2, the solutions will correspond to thermodynamic equilibria of the equipartition

of the wave action and the energy respectively:

nTk = CTNk
0, (2.109a)

nTk = CTHk
−2. (2.109b)

Solutions (2.109) correspond to zero flux states - in fact both energy and wave action

fluxes, Pk and Qk, are identically equal to zero on both equilibrium solutions. Spectra

(2.109) are two limiting cases in low and high wave number regions of the more general

thermodynamic equilibrium Rayleigh-Jeans solution, nRJk , where

nRJk =
Tc

ωk + µ
. (2.110)

Tc is the characteristic temperature of the system, and µ is a chemical potential.

In addition to these thermodynamic solutions, our system possesses two non-

equilibrium KZ solutions. The KZ solutions are obtained from Equation (2.108) when

either y = 0 or y = 2. When either condition is met, the integrand in Equation (2.108)

vanishes due to cancellation in the square bracket. The corresponding solution for the

direct energy cascade from low to high wave numbers is obtained when y = 2, this gives

the following wave action spectrum scaling:

nHk = CHk
− 5+2β

5 . (2.111a)

The wave action spectrum (2.111a) implies that the energy flux Pk is k-independent

and non-zero. The solution for the inverse wave action cascade from high to low wave

numbers is obtained when one sets y = 0, and is of the form

nNk = CNk
− 3+2β

5 . (2.111b)
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On each KZ solution, the respective flux is a non-zero constant - reflecting the Kol-

mogorov scenario, whilst the flux of the second invariant is absent. However, we em-

phasise that the KZ solutions are only valid if they correspond to local wave interactions

- an assumption in the ZT.

2.16 Locality of the Kolmogorov-Zakharov Solutions

The KZ solutions can only be realised if they correspond to local, in k-space, wave

interactions. This entails checking that the collision integral converges, when the wave

action density is of KZ type, (2.111). The locality of the KZ solutions have been proven,

disproven, and even logarithmically corrected if the non-locality is marginal in several

WT systems. For example, local (and logarithmically corrected) KZ solutions have been

proven in three-dimensional (3D) OWT and BEC [65] , gravity waves [6], and capillary

waves [6, 83], whilst non-local KZ solutions have been found for Rossby/drift waves [95]

and for Kelvin waves in QT [9].

Our strategy for determining the locality of the KZ solutions, (2.111), is to

check the convergence of the collision integral when one wave number vanishes, or when

one wave number diverges to ±∞. These limits correspond to the infrared (IR) and

ultraviolet (UV) regions of k-space. Although the collision integral is five-dimensional

(5D), the two Dirac delta functions, relating to the six-wave resonance condition, imply

that integration is over a 3D surface within the 5D domain. For linear frequencies of the

form, ωk = Ck2, we can parameterise the six-wave resonance condition, (2.34), which

subsequently allows us to neglect integrations in (2.94). We define our parameterisation

by making two wave numbers, functions of the remaining four. Therefore, to satisfy the

six-wave resonant condition, we set:

k2 =
(k4 − k)(k3 − k4)

k + k3 − k4 − k6
+ k6, (2.112a)

k5 =
(k4 − k)(k3 − k4)

k + k3 − k4 − k6
+ k + k3 − k4. (2.112b)
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2.16.1 Convergence in the Infrared Region

To check for convergence in the IR region, we must determine the scaling of the KE as

one wave number, say k6 → 0. Therefore, our strategy involves finding the IR scaling of

each contribution in the KE. As we are still considering a general six-wave system, let

us assume that the six-wave interaction coefficient has the following scaling as k6 → 0:

lim
k6→0

Wk,1,2
4,5,6 ∝ k

ξ
6, (2.113)

where ξ ∈ R. Then in the same limit, the following term in the KE, behaves as

lim
k6→0

nkn2n3n4n5n6

(
n−1
k + n−1

2 + n−1
3 − n

−1
4 − n

−1
5 − n

−1
6

)
(2.114)

∝ nkn2n3n4n5n6

(
n−1
k + n−1

2 + n−1
3 − n

−1
4 − n

−1
5

)
∝ n6 ∝ k−x6 ,

where x is the spectrum exponent from (2.104). Thus, we can factor out the integral

over k6 in the KE and write it as

∫
k2ξ

6 n6 dk6 ∝ 2

∫
0
k2ξ−x

6 dk6. (2.115)

Therefore, convergence of the KE in the IR limit corresponds to convergence of integral

(2.115) as k6 → 0. Hence, convergence of the collision integral is satisfied when

x < 1 + 2ξ. (2.116)

Note that all other integrals over k2, k3, k4, k5 diverge in exactly the same manner as

the integral over k6. Moreover, we can check for IR divergence if two wave numbers

are simultaneously small. When two wave numbers on the same side of the six-wave

resonance sextet are small , i.e. k2 and k3 or k4 and k6, then we see an integral

proportional to the square of (2.115).

If the two wave numbers are on opposite sides of the sextet, then we get con-
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vergence because of an additional vanishing contribution arising from:

lim
k2,k6→0

(
n−1
k + n−1

2 + n−1
3 − n

−1
4 − n

−1
5 − n

−1
6

)
→ 0. (2.117)

Full convergence and thus locality of the KZ solutions (2.111) is only assured if we have

convergence in both IR and UV limits. Therefore, if we have IR convergence, we must

also check UV convergence.

2.16.2 Convergence in the Ultraviolet Region

To check UV convergence, we will consider the scaling of the collision integral as one

wave number diverges. The conservation of momentum, implied by the Dirac delta

function of wave numbers, means that if one wave number diverges, so must a second

from the opposite side of the sextet15. This can be verified by parameterisation (2.112),

where if we force k6 to diverge, then so must k2. Indeed, due to this second divergence,

we must integrate the second wave number and further check the scaling of the resulting

Jacobian.

To begin, in the limit of one large wave number, let us assume that the six-wave

interaction coefficient scales as

lim
k6→∞

Wk,2,3
4,5,6 ∝ k

η
6 , (2.118)

where η ∈ R. Due to the integration of an additional wave number diverging to infinity

(in this case k2), we must check the scaling of the resulting Jacobian, corresponding to

the transformation between k6 and k2. The Jacobian for k2 can be written as

∣∣∣∣∣∂ω
k,2,3
4,5,6

∂k2

∣∣∣∣∣
−1

=
1

2|k + k3 − k4 − k6|
, (2.119)

where we have used the fact that k5 = k + k2 + k3 − k4 − k6. Hence, the Jacobian

produces a contribution to the KE ∝ k−1
6 , and the following expression in the KE scales

15Divergence of two wave numbers on the same side of the sextet would violate the Dirac delta
function involving frequencies.
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as

lim
k6→∞

(
n−1
k + n−1

2 + n−1
3 − n

−1
4 − n

−1
5 − n

−1
6

)
nkn2n3n4n5n6

∝ k−1−2x
6

(
k0

6 + k−2
6

)
. (2.120)

The first term on the right-hand side is a contribution from the Jacobian and the

product of nks. The second term stems from the difference of nks giving rise to two

contributions. The k0
6 scaling results from the difference of the four non-divergent nks,

while the k−2
6 factor comes from the leading order Taylor expansion of the two divergent

nks. This implies that the condition for UV convergence of the KE is

max(2η − 2x− 2, 2η − 2x) < 0. (2.121)

2.17 Linear and Nonlinear Transfer Times and The Critical

Balance Regime

In this Section, we estimate the nonlinear transfer times of the KZ cascades and discuss

the CB phenomenon of strong WT. The separation of timescales is essential for the

construction of the WT closure (see Section 2.6). The linear timescale was previously

defined in Equation (2.40). It was noted in Equation (2.42) that the nonlinear timescale,

TNL, is ∼ O(1/ε8). This was an a posteriori estimate, that will be verified shortly. From

the KE, we can define TNL as

TNL =
nk
∂nk
∂t

. (2.122)

WT theory is applicable when there is a large separation between the linear and

nonlinear timescales:
TL
TNL

� 1. (2.123)

The rates at which wave amplitudes evolve are wave number dependent, thus Relation

(2.123) can vary significantly in different regions of k-space. Therefore, it is natural to

consider the k-dependence of (2.123).

Estimation of the k-dependence of the nonlinear transfer time will provide in-
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formation on whether the KZ cascade is of self-accelerating or self-decelerating type,

i.e. the rate of the nonlinear evolution of a self-accelerating cascade will increase as the

cascade develops. The estimation of TNL, with respect to k, can be achieved using the

KE, (2.94), giving

TNL ∝ k4x−2β−2. (2.124)

Therefore, the ratio, (2.123), between the two timescales imply that

TL
TNL

∝ k−4x+2β � 1. (2.125)

Relation (2.125) can be violated when either k → 0 or k → ∞, depending on the sign

of −4x + 2β. When TL/TNL ∼ 1, then the KE approach breaks down and we are in

a regime called CB. When a system is in a CB regime, the turbulence is no longer

characterised by constant fluxes, but by fluctuations and non-Gaussian statistics.

CB arises when the system possesses characteristics of strong WT, i.e the forma-

tion of non-universal features, such as condensates, solitons, vortices, collapses, shocks,

etc. CB is characterised when the nonlinear evolution time, TNL, is of the same order

as the linear wave period, TL, over a large range of scales. A CB scaling for the wave

action density, nk, can be made by equating TNL with TL, on a scale by scale basis, i.e.

TL
TNL

∝ k−4x+2β ∼ 1, (2.126)

implying a CB spectrum of

nCBk = CCBk
−β

2 , (2.127)

where CCB is a constant prefactor of the spectrum.

CB was first introduced in the context of magneto-hydrodynamics [51]. However,

CB has arisen in several other applications, including gravity water waves [104], stratified

turbulence [105, 106], rotating turbulence [107, 108], quasi-geostrophic turbulence [109,

110], and for Kelvin waves on quantised vortices [111].
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2.18 The Differential Approximation for the Kinetic Equa-

tion

The DAM is an approximation of the KE by assuming strongly local wave interac-

tions. This enables the construction of a partial differential equation for the evolution

of the wave action density, nk. We stress that the DAM is an approximation and

thus can only be used when the KZ solutions are proved local. The DAM contains

both the thermodynamic and non-equilibrium KZ solutions of the KE, and can be

further simplified to reduced DAMs, which only consider a subset of these solutions.

Usefulness of the DAM can be shown with derivation of exact analytical solutions,

expressions for the fluxes and finally by its computational simplicity. The DAM can

also be adapted to classical turbulence theory, where it is known as the Leith model

[112, 113, 114]. This has led to the DAM being used extensively in WT and classical

turbulence [115, 116, 117, 118, 119, 59, 120, 7].

It is convenient for the DAM to be derived in ω-space, by angle averaging over

wave vectors. Hence, the DAM will be independent from the dimension of the wave

vector k, allowing for a universal description. The wave action density in ω-space is

defined as

Nω = nω
dk

dωk
, (2.128)

so that ∫
Nω dω =

∫
nk dk, (2.129)

and thus the KE, (2.94) ,can be expressed as

∂Nω

∂t
=

∫
S ω,2,3

4,5,6 nωn2n3n4n5n6

(
1

nω
+

1

n2
+

1

n3
− 1

n4
− 1

n5
− 1

n6

)
× dω2dω3dω4dω5dω6, (2.130)

where we have defined a new interaction coefficient given by

S ω,2,3
4,5,6 = S(ωk, ω2, ω3, ω4, ω5, ω6) =

〈
ε8π

6
|Wk,2,3

4,5,6 |
2δk,2,34,5,6

〉
dk

dωk

dk2

dω2

dk3

dω3

dk4

dω4

dk5

dω5

dk6

dω6
.

(2.131)
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S ω,2,3
4,5,6 has the same symmetry properties as Wk,2,3

4,5,6 , (see (2.26b)). Multiplication of

(2.130) by some arbitrary smooth function f(ω) = fω, and then integration with respect

to dω, with the use of the symmetry of the interaction coefficient S ω,2,3
4,5,6 , gives

∫
ṅωf(ω)ω−1/2dω =

1

6

∫
S ω,2,3

4,5,6 nωn2n3n4n5n6

×
(

1

nω
+

1

n2
+

1

n3
− 1

n4
− 1

n5
− 1

n6

)
(2.132)

× (fω + f2 + f3 − f4 − f5 − f6) dω2dω3dω4dω5dω6,

where fi = f(ωi), with i = k, 2, 3, 4, 5, 6. Strong locality of wave interactions imply that

each ωi with i = 2, 3, 4, 5, 6 can be approximated to ωk by a small deviation, pi, such that

each frequency can be represented as ωi = ωk(1 + pi) for i = 2, 3, 4, 5, 6. This permits

the Taylor expansion of the two brackets involving n−1
ω s and fs to O(p3). Furthermore,

by approximating nωn2n3n4n5n6 by n6
ω and using scale invariance of S ω,2,3

4,5,6 , we gain

the following equation:

∫
ṅωf(ω)ω−1/2 dω = S0

∫
ω(9+2β)/2 n6

ω

∂2

∂ω2

(
1

nω

)
∂2f

∂ω2
dω, (2.133)

where

S0 =
1

24

∫
S(1, 1 + p2, 1 + p3, 1 + p4, 1 + p5, 1 + p6)

×
(
p2

2 + p2
3 − p2

4 − p2
5p

2
6

)2
δp2,p3p4,p5,p6 dp2dp3dp4dp5dp6. (2.134)

From Integration by parts, we get

∫
ṅωf(ω)ω−1/2 dω = S0

∫ (
∂2

∂ω2

[
ω(9+2β)/2 n6

ω

∂2

∂ω2

(
1

nω

)])
f(ω) dω. (2.135)

As f(ω) is an arbitrary function, we can equate the two integrands, resulting in the

DAM:

ṅω = S0ω
1/2 ∂2

∂ω2

[
ω

9+2β
2 n6

ω

∂2

∂ω2

(
1

nω

)]
. (2.136)
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The thermodynamic solution, nω = Tc/(ω + µ) is found when

Rω = S0ω
9+2β

2 n6
ω

∂2

∂ω2

(
1

nω

)
, (2.137)

is equal to zero. The energy and wave action fluxes, Pω and Qω, can be derived from

Rω by the following formulae:

Pω = Rω − ω
∂Rω
∂ω

, (2.138a)

Qω = −∂Rω
∂ω

. (2.138b)

Consequently, both Pω and Qω vanish upon the thermodynamic solution. By assuming

the same power law scaling as (2.104), nω = Cω−x/2, we can calculate formulae for

the behaviour of the DAM with respect to ω and the exponent x:

ṅω = S0C
5x

2

(x
2
− 1
)
y (y − 1)ω−y−

1
2 , (2.139a)

R(ω, x, y) = S0C
5x

2

(x
2
− 1
)
ω−y+1, (2.139b)

P (ω, x, y) = S0C
5x

2

(x
2
− 1
)
yω−y+1, (2.139c)

Q(ω, x, y) = S0C
5x

2

(x
2
− 1
)

(y − 1)ω−y, (2.139d)

where y = 5x
2 − β −

3
2 . Stationary solutions (thermodynamic and non-equilibrium) for

the DAM are observed when ṅω = 0, i.e. when x = 0, x = 2, y = 0 or y = 1.

These solutions are identical to the ones determined by the KE. Relations (2.139c) and

(2.139d) enable for the calculation of the sign of the KZ fluxes. Furthermore, we observe

that both fluxes vanish upon reaching the thermodynamic solutions, when x = 0 and

x = 2, and that the non-cascading flux on the KZ solution is zero.

2.19 The Gallavotti-Cohen Fluctuation Relation

Further analysis to the statistical properties of the flux can be achieved by investigation of

fluctuation relations [121, 122, 123, 124]. Fluctuation relations are symmetries between

the positive and negative non-equilibrium fluctuations and provide some measure of
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how ‘non-equilibrium’ a statistical system is. The Gallavotti-Cohen fluctuation relation

(GCFR) is a statistical symmetry of the PDF for an averaged non-equilibrium quantity

Xτ taken from a non-equilibrium system. Xτ is defined as the time average of a physical

quantity, x(t), over a time window, [t, t+ τ ], of length τ . The quantity, x(t), is usually

the entropy production or energy dissipation, where the GCFR has been strictly proven

in chaotic and deterministic systems that are time reversible [122, 123]. Mathematically,

Xτ is defined as

Xτ =
1

τ

∫ t+τ

t
x(t′) dt′. (2.140)

The averaged quantity Xτ is considered positive on average, but may fluctuate to the

extent that negative values can be observed. The GCFR measures the ratio of the

probability of observing a positive fluctuation of magnitude σ over the probability of a

negative fluctuation of size −σ. This ratio is then considered to satisfy the GCFR if it

is exponential in the limit of τ →∞. Mathematically, the quantity Xτ is said to satisfy

the GCFR if

lim
τ→∞

ln

(
P (Xτ = σ)

P (Xτ = −σ)

)
= Cτσ, (2.141)

where C is a constant, independent of the averaging interval, τ .

There have been recent activity in the search for fluctuation relations in turbulent

(non-time reversible) systems [125, 124]. In [124], the authors performed turbulent, 2D

and 3D, Navier-Stokes simulations and showed that the PDF of the local power, obeys

Relation (2.141), and is well approximated by the product of two joint normal distributed

variables. However, in [125], a WT experiment was performed for waves on the surface

of water and mercury. The authors presented the left-hand side of Equation (2.141),

but noted that the data disagreed with the linear GCFR behaviour, but coincided with

the nonlinear prediction of a Langevin-type model. The authors stated that the linear

behaviour, consistent with the GCFR, is due to insufficient values for the averaged

injected power in previous experiments. However, we conjecture that the nonlinear

behaviour is a sign of intermittency, coherent structures, or finite box effects.

In this thesis, we study fluctuations of the energy flux over time, i.e. we take

x(t) = P (k = k∗, t), where k∗ is a given wave number. The flux statistics are likely
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to be affected by the presence of intermittency, and so the observation of Relation

(2.141) may be distorted. However, we consider the application of flux statistics as a

numerical experiment to see if a GCFR is satisfied. We note that there is no theory on

the statistical behaviour of the flux, but we consider this as a preliminary step towards

developing such a theory.

We conclude our analysis of the general six-wave system. The remainder of this

thesis will be dedicated to the applications of these results to QT and OWT.
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Chapter 3

Kelvin Waves in Quantum

Turbulence

3.1 Introduction to Quantum Turbulence

QT is turbulence in a pure superfluid, such as superfluid helium4. As is well known,

classical turbulence is a widespread phenomena in fluid dynamics, which poses one of

the major problems for fluid dynamicists at present. It is hoped that QT, with its

unique properties will aid in the understanding of classical turbulence. A superfluid,

for our purposes is made by supercooling helium4 atoms to below 2.17K, consists of a

normal fluid, described by classical hydrodynamics, coupled with an inviscid quantum

fluid. At temperatures below 1K, the normal fluid component (presumably) vanishes

leaving a pure superfluid. Superfluids experience severe quantum restrictions, such as

irrotational flow, quantised vortices, and inviscid behaviour. QT is usually characterised

by a tangle of quantised vortex lines [57, 126]. Superfluidity is similar to the concept of

BEC, where quantum effects dominate. However, helium4 atoms are strongly coupled,

unlike the atoms of a dilute gas of weakly interacting bosons that constitutes a BEC.

In BEC, pure superfluidity is seen at micro-Kelvin, with the quantised vortices being

relatively large in comparison to the vortices observed in superfluid helium4. There are

many theoretical aspects to QT, but this Chapter will focus on decaying QT in pure

superfluid helium. In a pure superfluid state, the fluid is irrotational, and therefore, any
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circulation in the system (imposed by rotating or mixing of the fluid) is represented in

a multi-connected domain by extremely thin quantised vortex lines - quantised because

of the discrete values of circulation that they must take. The vortex lines are defined by

vanishing density in their centre, with a usual vortex core size of a0 ' 0.1 nm. When

these quantised vortices reconnect, they excite Kelvin waves that propagate along the

1D vortex lines. These propagating waves, lend themselves to the application of WT

theory.

A pure superfluid, unlike a classical fluid, has no dissipative effects. However,

it is well understood that at large scales, or scales larger than the order of the mean

inter-vortex distance `, the flow is of quasi-Kolmogorov type, i.e. the large scale flow

behaves similarly to a 3D classical fluid. This is because polarised bundles of quantum

vortices behave similarly to large scale eddies in classical fluids. At scales smaller than

`, the energy contained in the flow gets transferred to Kelvin waves on the vortex lines.

The goal of this Chapter is to understand how energy is transferred via Kelvin waves

to frequencies sufficiently high enough, for the energy to be dispersed by phonons. Al-

though, not discussed here, one of the main unanswered questions in the QT community,

is the understanding of how energy at large scales in the flow is transferred to the 1D

vortex lines. There have been two recently proposed theories for this scenario; the first

considers that energy accumulates at the inter-vortex scale ` - forming a bottleneck

[60], whereas the second, consists of a variety of vortex interaction and reconnection

mechanisms around the scale `, that efficiently transfers energy to Kelvin waves without

the formation of a bottleneck [127]. However, there have been little direct experimental

observation or numerical simulations that favour either scenario. Let us now consider

the mathematical description of QT, specifically, the modelling of quantised vortices

and Kelvin waves.

3.2 Kelvin Waves and Quantised Vortices

There are two main approaches to the study of superfluid vortices. The first is to use

the Gross-Pitaevskii equation (GPE) that was developed for the modelling of weakly
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interacting BECs, and is defined as

i~
∂Ψ

∂t
+

~2

2m4
∇2Ψ− V (x, t)Ψ− gΨ|Ψ|2 = 0, (3.1)

where Ψ(x, t) is the 3D wave function for the condensate, V (x, t) is the profile of a

time-dependent magnetic trap, m4 is the mass of a helium4 atom and g is the coupling

constant. The GPE, (3.1), is the 3D NLSE with an external potential term. The GPE

can be expressed in terms of a compressible 3D Euler equation with a quantum pressure

term using the Madelung transformation [128]. The GPE contains fluidic properties

and vortex structures, that unlike in the 3D Euler equations, can reconnect without the

formation of a singularity. This has led to a large number of numerical simulations of the

GPE [129, 130, 131, 132, 133, 64, 134]. However, the GPE is more rigorously justified

for the modelling of weakly interacting Bose gases than superfluid helium. This has

contributed to the development of the Schwarz equation [135, 136, 134] based on the

BSE. The BSE approximates infinitesimally thin quantised vortices by 1D vortex lines

and is derived directly from the 3D Euler equation [137]. The BSE is of the form

ṙ =
κ

4π

∫
ds× (r− s)

|r− s|3
, (3.2)

where ṙ = ∂r/∂t is the velocity at point r on the vortex, and κ = 2π~/m4 is the

quantum of circulation. The BSE, (3.2), contains a divergence as s→ r, and as a result

we must introduce a strict cut-off at |s− r| > a0, where a0 is some value representing

the vortex core of the quantised vortex. At distances less than a0, the approximation to

a 1D vortex line is invalid and the quantum effects of the vortex core structure become

apparent.

The dispersion relation for the frequency of Kelvin waves on a hollow core vortex

line, was originally proposed by Lord Kelvin [138]:

ω(k) =
κk2

2πa2
0

[
1±

{
1 + ka0

[
K0(ka0)

K1(ka0)

]}1/2
]
, (3.3)

where Kn(·) is a modified Bessel function of order n. Formula (3.3) is usually expanded
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in the limit of long-wave Kelvin waves (ka � 1), which results in the form of the

dispersion relation usually observed in the modern literature:

ω(k) =
κk2

4π

[
ln

(
1

ka0

)
+ C

]
, (3.4)

where C is an O(1) constant that is vortex core structure dependent. For instance,

C = −γ + ln(2) for a hollow core [139], C = −γ + ln(2) + 1
4 for a vortex with uniform

vorticity inside a cylinder of radius a0 [135], and C = −γ − 3
2 for the BSE with cut-off

(Equation (3.6)) [7], where γ is the Euler constant. The ambiguity and small size of

the vortex core structure has led to the core being given little importance. Therefore,

the BSE with its cut-off is assumed to be an accurate model for quantised vortices in

superfluid helium.

The applicability of Formula (3.4) is granted for long-wave Kelvin waves on

vortex lines with very thin vortex cores, which is indeed the case in superfluid helium4.

Moreover, we see from Formula (3.4) that the dispersion is not exactly of the form of

(2.28). However, the logarithmic dependence in (3.4) is slowly varying with respect to

wave number k, and it can be considered to be approximately constant when compared

to k2. In Section 3.5, we consider the effect of this logarithmic dependence by calculating

an adjustment to the six-wave interaction coefficient W1,2,3
4,5,6 to compensate for our

ω(k) ∝ k2 approximation to Formula (3.4).

3.3 The Local Induction Approximation and Biot-Savart Hamil-

tonians

It was shown, that under a simple geometrical constraint, we can introduce a complex

canonical coordinate w(z, t) = x(z, t) + iy(z, t), which enables the BSE to be written

in a Hamiltonian form of

iκ
∂w(z, t)

∂t
=

δH
δw∗

, (3.5)

55



with Hamiltonian

H =
κ2

4π

∫
|z1−z2|>a0

1 + <(w′∗(z1)w′(z2))√
(z1 − z2)2 + |w(z1)− w(z2)|2

dz1dz2, (3.6)

where we have used the notation of w′(z) = ∂w/∂z [10]. This is because we are able

to represent the position r of the vortex by a 2D parametric form r = (x(z), y(z), z),

which corresponds to small perturbations of the straight line configuration along z, i.e.

the vortex cannot fold into itself in order to preserve the single-valuedness of functions

x(z) and y(z). The geometrical constraint of small perturbations can be represented in

terms of a small parameter:

ε(z1, z2) =
|w(z1)− w(z2)|

z1 − z2
� 1. (3.7)

By expanding Hamiltonian (3.6) in powers of ε, we can express (3.6) in the form

of Expansion (2.24). Kozik and Svistunov found the exact expressions for the first three

even order contributions H2, H4 and H6 [11]:

H2 =
κ2

8π

∫
|z1−z2|>a0

[
2Re

(
w
′∗(z1)w

′
(z2)

)
− ε2

]
|z1 − z2|

dz1dz2, (3.8a)

H4 =
κ2

32π

∫
|z1−z2|>a0

[
3ε4 − 4ε2Re

(
w
′∗(z1)w

′
(z2)

)]
|z1 − z2|

dz1dz2, (3.8b)

H6 =
κ2

64π

∫
|z1−z2|>a0

[
6ε4Re

(
w
′∗(z1)w

′
(z2)

)
− 5ε6

]
|z1 − z2|

dz1dz2. (3.8c)

The divergent cut-off of the BSE is equivalent to truncation of integration in equations

(3.8) at |z1 − z2| > a0. This cut-off removes the singularity, but leaves logarithmic

divergent terms, that diverge as a0 → 0. By the introduction of an arbitrary effective

length scale, which for convenience we choose to be `, we can follow these divergent

terms at all orders with the introduction of the small parameter:

Λ−1
0 =

1

ln
(
`
a0

) � 1. (3.9)
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Therefore, we should perform a simultaneous expansion of (3.6) in both parameters ε

and Λ−1
0 . Furthermore, we find that the leading order terms in Λ−1

0 , give an integrable

model called the local induction approximation (LIA). The LIA corresponds to the

approximation that a vortex element is completely influenced by its adjacent segments.

This local behaviour makes the LIA significantly quicker than the BSE with regards

to computational expense. However, the LIA is an integrable system, making it a

poor choice in modelling nonlinear Kelvin wave interactions. The corresponding LIA

Hamiltonian can be expressed as

H =
κ2Λ0

2π

∫ √
1 + |w′(z)|2 dz. (3.10)

Integrability of LIA can be shown via the Hasimoto transformation leading to the 1D

NLSE [140]. The LIA conserves an infinite number of invariants, and therefore, wave

resonances are absent at all orders. Consequently, we have to expand Equations (3.8)

in powers of Λ−1
0 and consider the sub-leading, non-integrable, order.

It is convenient to represent Equations (3.8) in the wave interaction representa-

tion. Therefore, we introduce the Fourier representation for variable w(z, t) as

w(z, t) =
1

κ1/2

∑
k

a(k, t)eikz. (3.11)

It was shown in [11], that the resulting Hamiltonian in the wave interaction represen-

tation equates to several integrals involving various cosine functions, see Appendix C.

These integrals were analysed numerically in [11], however, we have analytically, com-

puted these integrals, thus deriving complete and exact formulae for the frequency and

interaction coefficients, ωk, T 1,2
3,4 and W 1,2,3

4,5,6 .

For clarity, we introduce notation to keep track for the Λ−1
0 -expansion of the

frequency and interaction coefficients. We will denote the leading integrable order of the

expansion with superscript Λ, and the proceeding O(1) contributions with superscript
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1. Hence, we represent the linear frequency and interaction coefficients as

ωk = Λωk + 1ωk +O(Λ−1
0 ), (3.12a)

T 1,2
3,4 = ΛT 1,2

3,4 + 1T 1,2
3,4 +O(Λ−1

0 ), (3.12b)

W 1,2,3
4,5,6 = ΛW 1,2,3

4,5,6 + 1W 1,2,3
4,5,6 +O(Λ−1

0 ). (3.12c)

The analytical expressions of Equations (3.12) are expressed below as [7, 9]

ωk =
κk2

4π

[
Λ0 − γ −

3

2
− ln(k`)

]
, (3.13a)

T 34
12 =

1

16π

[
k1k2k3k4(1 + 4γ − 4Λ0)−F1,2

3,4

]
, (3.13b)

W 456
123 =

9

32πκ

[
k1k2k3k4k5k6(1− 4γ + 4Λ0)− G1,2,3

4,5,6

]
. (3.13c)

The function F1,2
3,4 is symmetric with respect to k1 ↔ k2, k3 ↔ k4 and {k1,k2} ↔

{k3,k4}, whilst function G1,2,3
4,5,6 is symmetric with respect to k1 ↔ k2 ↔ k3, k4 ↔

k5 ↔ k6 and {k1,k2,k3} ↔ {k4,k5,k6}. These symmetries are required in order for

the interaction coefficients to posses Properties (2.26). The full definitions of F1,2
3,4 and

G1,2,3
4,5,6 are given in Appendix C.

The linear frequency (3.13a) is in the form of Relation (3.4) with C = −γ −
3
2 , albeit with the introduction of the arbitrary effective length scale `. The leading

contributions (the terms proportional to Λ0) of the frequency and interaction coefficients

(3.13) are none other than the frequency and interaction coefficients stemming from the

LIA Hamiltonian (3.10).

Re-definition of the LIA coefficient, Λ = Λ0−γ−3/2, allows us to incorporate the

O(1) contribution in the linear frequency, (3.13a), into the LIA coefficient. Physically,

this entails re-defining the vortex core radius, a0, to a = a0e
γ+3/2. Therefore, we can

explicitly write Λ as

Λ = ln

(
`

a

)
. (3.14)
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Subsequently, Equations (3.13) become,

ωk = Λωk + 1ωk,

=
κΛ

4π
k2 − κ

4π
k2 ln(k`), (3.15a)

T 1,2
3,4 = ΛT 1,2

3,4 + 1T 1,2
3,4 ,

= − Λ

4π
k1k2k3k4 −

1

16π

(
5k1k2k3k4 + F1,2

3,4

)
, (3.15b)

W 1,2,3
4,5,6 = ΛW 1,2,3

4,5,6 + 1W 1,2,3
4,5,6 ,

=
9Λ

8πκ
k1k2k3k4k5k6 +

9

32πκ

(
7k1k2k3k4k5k6 − G1,2,3

4,5,6

)
. (3.15c)

Note that in the full expressions for ωk, T 1,2
3,4 and W 1,2,3

4,5,6 , ` does not appear, but instead

ln(1/a). This is natural because we have artificially introduced the auxiliary parameter

`. Moreover, it is important to note that it was not necessary to introduce this scale, as

any effective intermediate scale `eff would suffice. Cancellation of ` provides a useful

check in verifying the derivations.

3.4 The Λ−1-Expansion of the Six-Wave Interaction Coeffi-

cient W1,2,3
4,5,6

To calculate the full interaction coefficient, we must begin by representing the Kelvin

wave system in the form of the general six-wave Hamiltonian system of Chapter 2.

Four-wave interactions of Kelvin waves are prohibited because there are no non-trivial

solutions to the four-wave resonance condition as ωk ∝ k2 ln(k). Therefore, we need

to apply the CT. The logarithmic dependence of the linear frequency poses a difficulty

which we overcome by performing a Taylor expansion around the leading contribution

Λωk. To be mathematically precise, we should deal with the full six-wave resonant

condition, where ωk equals Expression (3.15a). However, the logarithmic contribution

proves to be a complication to our mathematical analysis. Therefore, we consider the

leading order frequency contribution, Λωk to the six-wave resonance condition, and we
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denote this as the LIA resonance condition, given by

k1 + k2 + k3 = k4 + k5 + k6, (3.16a)

Λω1 + Λω2 + Λω3 = Λω4 + Λω5 + Λω6. (3.16b)

Although this is not an exact expression for Kelvin wave resonances, we will subsequently

correct the LIA resonance condition, (3.16), by an additional contribution to the six-

wave interaction coefficient in Section 3.5. Note that the LIA resonance condition is

of the same structure as the general six-wave resonance condition considered in (2.34),

with Λωk ∝ k2.

Application of the CT to the Kelvin wave system will give a six-wave interaction

coefficient with a Λ−1-expansion given by

W1,2,3
4,5,6 = ΛW1,2,3

4,5,6 + 1W1,2,3
4,5,6 +O(Λ−1), (3.17)

where the first two terms are given by

ΛW1,2,3
4,5,6 = ΛW 1,2,3

4,5,6−
1

8

3∑
i,j,m=1
i 6=j 6=m6=i

6∑
p,q,r=4
p 6=q 6=r 6=p

ΛT p+q−i,ip,q
ΛT j+m−r,rj,m

Λωj+m−r,rj,m

+
ΛT i+j−p,pi,j

ΛT q+r−m,mq,r

Λωq+r−m,mq,r

,

(3.18)

and

1W1,2,3
4,5,6 = 1W 1,2,3

4,5,6 + 1
1Q

1,2,3
4,5,6 + 1

2Q
1,2,3
4,5,6 + 1

3Q
1,2,3
4,5,6, (3.19a)

where

1
1Q

1,2,3
4,5,6 = −1

8

3∑
i,j,m=1
i 6=j 6=m6=i

6∑
p,q,r=4
p 6=q 6=r 6=p

ΛT p+q−i,ip,q
1T j+m−r,rj,m

Λωj+m−r,rj,m

+
ΛT i+j−p,pi,j

1T q+r−m,mq,r

Λωq+r−m,mq,r

,

(3.19b)

1
2Q

1,2,3
4,5,6 = −1

8

3∑
i,j,m=1
i 6=j 6=m6=i

6∑
p,q,r=4
p 6=q 6=r 6=p

1T p+q−i,ip,q
ΛT j+m−r,rj,m

Λωj+m−r,rj,m

+
1T i+j−p,pi,j

ΛT q+r−m,mq,r

Λωq+r−m,mq,r

,

(3.19c)
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and

1
3Q

1,2,3
4,5,6 =

1

8

3∑
i,j,m=1
i 6=j 6=m 6=i

6∑
p,q,r=4
p 6=q 6=r 6=p

ΛT p+q−i,ip,q
ΛT j+m−r,rj,m(

Λωj+m−r,rj,m

)2 · 1ωj+m−r,rj,m

+
ΛT i+j−p,pi,j

ΛT q+r−m,mq,r(
Λωq+r−m,mq,r

)2 · 1ωq+r−m,mq,r . (3.19d)

1
iQ, where i = 1, 2, 3 are the O(1) contributions arising from the six-wave contributions

stemming from the CT. Terms 1
1Q and 1

2Q originate from the product of 1T and ΛT ,

divided by the leading frequency contribution Λωk. Term 1
3Q is the correction from the

Taylor expansion around the leading frequency contribution.

When the LIA resonance condition, (3.16), is satisfied, the leading contribution

to the six-wave interaction coefficient, ΛW1,2,3
4,5,6 , vanishes, verifying the integrability of

the LIA. This was achieved using the Mathematica package and parameterisation

(2.112). Therefore, the leading contribution to Kelvin wave dynamics arises from the

sub-leading order correction 1W1,2,3
4,5,6 .

3.5 Correction to the Local Induction Approximation Reso-

nance Condition

Due to the logarithmic dependence of the Kelvin wave frequency, we have approximated

the six-wave resonant condition (2.34) by the leading order LIA resonance condition

(3.16). To compensate for this, we find an additional corrective term to the six-wave

interaction coefficient, that we denote 1S1,2,3
4,5,6 . Our strategy in finding 1S1,2,3

4,5,6 , is to

assume two corrections to the parametric formulae for wave numbers k2 and k5 in

(2.112). Let us denote them as 1k2 and 1k5, so our new parameterisation is given by

k2 = Λk2 + 1k2, (3.20a)

k5 = Λk5 + 1k5, (3.20b)
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where Λk2 and Λk5 are the right-hand sides of Equations (2.112). The wave num-

ber resonance condition for the conservation of momentum, (3.16a), fixes 1k2 = 1k5.

Moreover, the frequency resonance condition implies that

ω1,2,3
4,5,6 = 1k2

∂Λω2

∂k2
− 1k5

∂Λω5

∂k5
+ 1ω1,2,3

4,5,6 +O(Λ−1) = 0, (3.21)

where we have applied a Taylor expansion around the corrections, i.e.

Λω(Λki + 1ki) ≈ Λω(Λki) + 1ki
∂Λωi
∂ki

, (3.22)

for i = 2, 5. Therefore, to the leading order in Λ, our corrections to the parameterisation,

(2.112), are

1k2 = 1k5 ≈
2π1ω1,2,3

4,5,6

Λκ(k5 − k2)
. (3.23)

This enables us to express the correction to W1,2,3
4,5,6 as

1S1,2,3
4,5,6 = 1k2

∂ΛW1,2,3
4,5,6

∂k2
− 1k5

∂ΛW1,2,3
4,5,6

∂k5
+O(Λ−1),

≈
2π1ω1,2,3

4,5,6

Λκ(k5 − k2)

(
∂ΛW1,2,3

4,5,6

∂k2
+
∂ΛW1,2,3

4,5,6

∂k5

)
. (3.24)

Instead of using wave numbers, k2 and k5, in (3.20), we could have chosen any pair,

ki and kj with i = 1, 2.3 and j = 4, 5, 6. Considering this fact, we can write a fully

symmetric, with respect to these wave number permutations, expression for 1S1,2,3
4,5,6 :

1S1,2,3
4,5,6 =

2π

9κΛ
1ω1,2,3

4,5,6

∑
i=1,2,3
j=4,5,6

(
∂
∂ki

+ ∂
∂kj

)
ΛW1,2,3

4,5,6

(kj − ki)
. (3.25)

Therefore, the corrected six-wave interaction coefficient for describing Kelvin wave dy-

namics takes the form:

cW1,2,3
4.5.6 = 1W1,2,3

3,4,5 + 1S1,2,3
4,5,6 , (3.26)

with 1W1,2,3
3,4,5 from (3.19) and 1S1,2,3

4,5,6 from (3.25).
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Unfortunately, cW1,2,3
4.5.6 comprises of a large number of terms, making its analyti-

cal use inconvenient. However, we find that cW1,2,3
4.5.6 has remarkably simple asymptotics,

which we demonstrate in the next Section.

3.6 Asymptotics of cW1,2,3
4.5.6

In this Section, we examine the asymptotic limit of the corrected six-wave interaction

coefficient for Kelvin waves, (3.26). cW1,2,3
4.5.6 consists of five contributions given by

formulae (3.19) and (3.25). The explicit form of (3.26) involves ' 2×104 terms, making

any analytical expression cumbersome. However, we will consider the behaviour of

cW1,2,3
4.5.6 in various asymptotical regimes, analysed using Mathematica. We study cW1,2,3

4.5.6

on the LIA resonant condition, (3.16), allowing for the application of parameterisation

(2.112).

If the smallest wave number, say k6, is smaller than the largest, say k1, then we

have the following asymptotic property of cW1,2,3
4.5.6 :

cW1,2,3
4.5.6 → −

3

4πκ
k1k2k3k4k5k6, (3.27a)

as
min{k1, k2, k3, k4, k5, k6}
max{k1, k2, k3, k4, k5, k6}

→ 0. (3.27b)

For Expression (3.27a) to hold, it is enough that the smallest wave number be less than

the largest, and not all of the remaining five in the sextet. This was established using

Mathematica and the Taylor expansion of cW1,2,3
4.5.6 with respect to one, two and four

wave numbers1. These limits give the same expression as (3.27a). The analysis of these

asymptotic limits can be found in Appendix D.

Numerical evaluation of cW1,2,3
4.5.6 on a set of 210 randomly chosen wave numbers,

different from each other at most by a factor of two, indicate that the most important

contributions to cW1,2,3
4.5.6 are from the IR region - where the asymptotic expression (3.27a)

is exact. Therefore, for most purposes we can approximate the corrected six-wave

1The limit of three wave numbers tending to zero is not allowed by the six-wave resonance condition.
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interaction coefficient, cW1,2,3
4.5.6 , with its asymptotical expression, (3.27a).

3.7 The Local Nonlinear Equation

By considering Hamiltonian (2.37) with the asymptotic expression as its six-wave inter-

action coefficient, Equation (3.27a), and reverting back into physical space gives:

HLNE =
κ2

4π

∫
Λ

∣∣∣∣∂w∂z
∣∣∣∣2 − 1

12

∣∣∣∣∂w∂z
∣∣∣∣6 dz. (3.28)

Notice that the nonlinear part of the energy, H4, in (3.28) is a purely negative quantity.

Applying Relation (3.5), we get a dynamical evolution equation for w(z, t) given

by

i
∂w

∂t
= − κ

4π

∂

∂z

[(
Λ− 1

4

∣∣∣∣∂w∂z
∣∣∣∣4
)
∂w

∂z

]
. (3.29)

We denote Equation (3.29) as the LNE. Like the BSE, the LNE conserves the energy

(3.28), and wave action N =
∫
|w|2dz2. The LNE is a competent model for the

description Kelvin wave dynamics in QT, without relying on the computational expense

of the BSE, (3.2). The LNE includes the leading contribution obtained from local

elements (LIA) and in addition, the nonlinear interactions of Kelvin waves, whilst being

simpler than the BSE itself. The LNE is isomorphic to the TLIA model [7] in the limit of

weakly nonlinear Kelvin waves. However, unlike the TLIA model, which was introduced

by ad hoc reasoning, the LNE was systematically derived from the BSE.

A direct comparison of the LNE to the BSE would provide a useful and important

verification of the LNE dynamics. Not only for the WT scenario, but also for larger

amplitude waves, where the non-locality of the BSE plays an important role. The LNE

dynamics could easily be tested by performing an identical numerical simulation with

the same initial condition on the BSE.

2The consideration of a single quantised vortex line, as in this case for the LNE (Equation (3.29))
and in the previous case of the BSE Hamiltonian (Equation (3.6)), the total linear and angular momenta
of the corresponding flow are conserved.
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3.8 The Truncated Local Induction Approximation Model

The TLIA model was introduced as a simple model for Kelvin wave dynamics that

contained the same scaling properties as the BSE [7]. The model arises from a truncation

of the LIA Hamiltonian, (3.10). For small Kelvin wave amplitudes, |w′| � 1, the LIA

Hamiltonian can be expanded in powers of |w′|:

HLIA =
κ2Λ0

2π

∫ (
1 +

1

2
|w′|2 − 1

8
|w′|4 + · · ·

)
dz. (3.30)

The TLIA model is found by truncating the LIA Hamiltonian, (3.30), at the quartic

order in w′.

HTLIA = H0 +H2 +H4 =
κ2Λ0

2π

∫ (
1 +

1

2
|w′|2 − 1

8
|w′|4

)
dz. (3.31)

The truncation breaks the integrability of the LIA Hamiltonian, thereby allowing non-

trivial energy transfer in Kelvin wave interactions. Neglecting the constant term H0,

which only contributes a constant value to the Hamiltonian. The TLIA Hamiltonian has

the following interaction coefficients when represented in form (2.25):

ωk =
κΛ0k

2

4π
, (3.32a)

T 1,2
3,4 = − Λ0

16π
k1k2k3k4, (3.32b)

W 1,2,3
4,5,6 = 0. (3.32c)

Similarly to the BSE, the TLIA model cannot produce any non-trivial four-wave reso-

nances as ωk ∝ k2. Therefore, we should apply the CT from Chapter 2. After eliminating

the four-wave resonances, we result in a six-wave interaction coefficient given by

W1,2,3
4,5,6 = − Λ0

32πκ
k1k2k3k4k5k6. (3.33)

Formula (3.33) is of similar form as the six-wave interaction coefficient in the LNE.

Moreover, (3.33) is of opposite sign to the six-wave contribution that would arise from

the first term after the truncation in (3.30). This is expected, as the LIA Hamiltonian,
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(3.10), is an integrable model, and therefore after application of the the CT, all orders

of interaction coefficients should be zero.

3.9 The Kozik-Svistunov Spectrum

To calculate the Kelvin wave spectrum, we must find the homogeneity coefficient of the

six-wave interaction coefficient for the BSE. However the six-wave interaction coeffi-

cient, (3.26), is not scale invariant. The slowly varying logarithmic contribution can be

approximated as constant with the change of wave number k. Moreover, this is sup-

ported by the fact that (3.26) has an asymptotic limit of (3.27a), with no logarithmic

dependence. This was the case when the KZ solution, corresponding to a constant en-

ergy flux, Pk, was derived using a dimensional analysis argument from the six-wave KE

assuming that the scaling property of the six-wave interaction coefficient was assumed to

be a product of six wave numbers [11]. The neglected logarithmic terms were followed,

but assumed to be small in [60], and additional missing terms account for in [7, 9].

The resulting wave action spectrum for energy is known as the Kozik-Svistunov (KS)

spectrum, given by

nHk = CHκ
2/5P

1/5
k k−17/5. (3.34a)

The corresponding wave action spectrum for the inverse cascade yields a scaling of

nNk = CNκ
1/5Q

1/5
k Λ−1/5k−3. (3.34b)

Here we have added the dimensional quantities to the power law, so that the constant

in each spectrum is of O(1). We emphasise, that the KZ solutions (3.34) are only valid

solution if they correspond to local wave interactions. If not, then the solutions are

meaningless and a non-local description is required.

3.10 Non-locality of Kelvin Wave Turbulence

We apply the strategy in Chapter 2 for determining the locality of the two KZ spectra

for Kelvin wave turbulence.
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3.10.1 Infrared Convergence

To check the convergence property in the IR region we need to compute the asymptotic

limit of cW1,2,3
4,5,6 , for k6 � k, k2, k3, k4, k5. We find from (3.27a) that

lim
k6→0

cW1,2,3
4,5,6 ∝ k6. (3.35)

Therefore, ξ = 1 in Equation (2.113), and we find that the formula for convergence,

(2.116), reads

x < 3. (3.36)

Therefore, the KS spectrum, (3.34a), with x = 17/5, does not imply convergence of the

collision integral. Moreover, we find that the inverse spectrum, (3.34b), is borderline

divergent. As these KZ solutions do not make the collision integral convergent, they

are physically unrealisable. Divergence in the IR region is sufficient to dismiss the two

Kelvin wave spectra, (3.34), as valid solutions of the KE.

3.10.2 Ultraviolet Convergence

Although we have already shown that the two Kelvin wave KZ solutions, (3.34), are

non-local, for completeness we will check UV convergence. In the limit of one large

wave number, the interaction coefficient scales as

lim
k6→∞

cW1,2,3
4,5,6 ∝ k

0
6. (3.37)

Hence the criterion for convergence in the UV limit, (2.121), becomes

max(4− 2x, 2− 2x) < 0. (3.38)

We see from (3.38), that both the KS and inverse spectra, (3.34), imply UV convergence.

However, this does not change the fact that both spectra, (3.34), are non-local. The

inverse spectrum, (3.34b), is on the boarder of convergence, therefore, we consider a

logarithmic dependence to the power law to invoke convergence of the collision integral.
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3.11 Logarithmic Corrections to the Inverse Wave Action

Spectrum

In the IR limit, the inverse wave action spectrum, (3.34b), conveyed logarithmic di-

vergence of the collision integral. Although divergent, the rate is slow enough for the

spectrum to be corrected by considering a logarithmic dependence. The same scenario

occurs for the inverse enstrophy cascade for 2D turbulence, proposed by Kraichnan

[101, 102]. For the case of the inverse cascade for Kelvin waves, this implies looking for

a solution of the form:

nNk = CNk
−3 ln−y (k`) , (3.39)

where ` is the scale at which wave action is injected. The logarithmic power law exponent

is calculated by assuming that the wave action flux, Qk, remains k-independent when

considering that all wave numbers have the same magnitude, i.e. k1, k2, k3, k4, k5 ∝ k.

Then the wave action flux can be written as

Qk =

∫ k

ṅkdk ∝
∫ k

k14n5
k dk ∝

∫ k

k−1 ln−5y(k`) dk, (3.40)

where we have used the fact that the collision integral of (2.94) scales as ṅk ∝ k14n5
k.

Relation (3.40) is independent of k if we set y = 1/53, therefore our corrected spectrum

is given by

nNk = Cκ1/5Q
1/5
k k−3 ln−1/5 (k`) , (3.41)

With this logarithmic correction, the inverse wave action spectrum produces a convergent

collision integral, and thus becomes physically observable.

3.12 The L’vov-Nazarenko Spectrum

Non-locality of the KS spectrum and subsequent divergence of the collision integral has

prompted a new non-local Kelvin WT theory to be proposed and consequently a new

wave action spectrum for the direct cascade derived called the L’vov-Nazarenko (LN)

3The wave action flux is actually proportional to Qk ∝ ln(ln(k`)).
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spectrum [85]. In [85], the authors claim that the biggest divergence of the KS spectrum

arises when two wave numbers go to zero and as such the KS spectrum is unrealisable.

However, they develop an argument to derive a wave action spectrum away from the

small k region, when two wave numbers go to zero. Subsequently, this corresponds to

local four-wave interaction describing 1↔ 3 processes upon vortices with random large-

scale curvature. This process yields a new wave action spectrum, nk, with a constant

energy flux, Pk, of the form:

nHk = CLNP
1/3
k Ψ−2/3k−11/3, (3.42)

where Ψ is a dimensionless quantity denoting the mean-square angle of deviation from

a straight vortex line and where

Ψ =
2

κ

∫
1/`

k2nk dk. (3.43)

Whether the KS or the LN spectra are correct has remained a discussion point for

theorists. The exponents of both spectra are relatively close to each other, making it

difficult to distinguish between the spectra observed in numerical simulations [58, 99].

High resolution numerical simulations or experimental observations are essential for the

verification of either spectrum, and more importantly, the physics that determine them.

The numerical simulation for the direct cascade of the full BSE Hamiltonian,

(3.6), was performed by Kozik and Svistunov to confirm the scaling in (3.34a) [99].

However they used a scale separation scheme, that seems to artificially force locality of

wave interactions, and furthermore, they observe the scaling in a quasi-stationary state

from an initial condition close to the observed spectrum. This implies that the results

presented in [99] may still be in transition, and the agreement to spectrum (3.34a), may

be coincidental. A numerical scheme of high resolution that allows for a spectrum in a

statistically stationary state, with the ability to measure the energy flux is essential. The

energy flux for the KS spectrum was estimated in [11], however, its value was surprisingly

small. Due to the difference in the physics for the derivation of the LN spectrum, the

value of the energy fluxes for the KS and LN spectra should be fundamentally different.
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Therefore, the measurement of energy flux may be more insightful in determining which

theory is correct, than the exponent of the spectrum.

3.13 Numerical Results

In this Section, we present some numerical simulations of the TLIA model and the LNE.

The TLIA model was computed by Davide Dezzani [7]. In [7], the motivation was to

compare the TLIA model with the simulations of the BSE. The reasoning was that

the easily computable TLIA model contains the same WT predictions as the BSE, and

would provide a useful and time efficient way of modelling Kelvin wave dynamics.

Both the TLIA model and LNE are numerically simulated with forcing and dis-

sipation. The forcing is narrow-band (in Fourier space), which allows for an inertial

range to be produced between the forcing and dissipation regions where neither have

an effect. However, it should be noted that in reality, Kelvin waves are forced by vortex

reconnections, which force the system at discrete times and produce a forcing that is

largely non-local in Fourier space. It is thus a numerical simplification to use a contin-

uous local forcing to enable an inertial range, thus allowing for the better observation

of the WT scenario. The presence of dissipation at low wave numbers can also be

considered somewhat artificial. Numerically this is required to avoid condensation of

wave action (and the subsequent break down of the WT regime) at the lowest modes,

but in reality self-reconnections and the generation of vortex rings could be a natural

dissipation mechanism.

3.13.1 The Truncated Local Induction Approximation Model

We begin by performing a direct numerical simulation of the dynamical equation, stem-

ming from the TLIA model, (3.31), given by

∂w

∂t
=
iκΛ0

4π

[
w′
(

1− 1

2
|w′|2

)]′
− νhyper

(
∂

∂z

)8

w − νfriction w + Fk. (3.44)

The aim is to perform the simulation until a stationary non-equilibrium turbulent cascade

has developed. To achieve this we apply additive forcing to the system in the form of
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Fk = F (k, t), acting on a narrow-band of wave numbers around a given wave number,

kf . To prevent any accumulation or bottlenecks of an invariant appearing, we apply

friction in the form of −νfriction w acting at low wave numbers, to remove wave action

and hyper-viscosity at high wave numbers to remove energy. Physically, the forcing can

be interpreted as waves generated from vortex reconnections. The dissipation at low

wave numbers can be interpreted as friction with the normal fluid component at a rate

νfriction. At high wave numbers the hyper-viscosity term simulates the removal of energy

by heat radiation from phonons at a rate proportional to νhyper.

In ideal conditions, we would prefer to observe the dual cascade scenario in one

numerical simulation. However, due to computational and time restrictions, we are

forced to run separate simulations for each turbulent cascade.

The numerical code integrates the equation of motion, (3.44), using a pseudo-

spectral method for a periodic vortex filament of length 2π, with a resolution of 211

spatial points. The linear and dissipative terms are integrated exactly, whilst the non-

linear term is progressed in time by a second order Runge-Kutta method. The vortex

filament is initially a straight line and a long time integration is performed until a sta-

tionary regime is achieved4. The ratio of the linear H2 and the nonlinear H4 energies

is H2/H4 ' 20, confirming a posteriori the validity of the Perturbation (3.30) and the

condition of small amplitude Kelvin waves, where ε� 1.

The first set of simulations is devoted to the study of the direct cascade. Energy

fluctuations are injected at a forcing scale, kf ' 2, and the friction coefficient is set to

be νfriction = 4. Energy is removed at small scales by hyper-viscosity, which restricts the

range of dissipation to the wave number in a close vicinity of kmax.

In Figure 3.1, we plot the wave action spectrum for the direct cascade simulation,

averaged over time in stationary conditions. A well developed power law spectrum is

observed close to the theoretical prediction (3.34a), for over more than one decade (see

inset). However, we note that the resolution of these numerical simulations are not

sufficient for the comparison to the LN spectrum of non-local Kelvin WT.

We now consider the simulation for the inverse cascade regime. To observe an

4This is checked via stationarity of the energy H and wave action N .
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Figure 3.1: The averaged wave number spectrum nk for a simulation of the direct
cascade in stationary conditions, courtesy of Davide Dezzani. The straight line represents
the KE prediction nk ∝ k−17/5. The inset shows the spectrum compensated with the
theoretical prediction.
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Figure 3.2: The averaged wave number spectrum, nk, for a simulation of the inverse
cascade in stationary conditions, courtesy of Davide Dezzani. The straight line represents
the KE prediction, nk ∝ k−3. The inset shows the spectrum compensated with the
theoretical prediction.
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inverse cascade, we apply forcing to small scales, around kf = 300. In order to avoid

finite size effects and accumulation at the largest scales [141], the friction coefficient

νfriction ' 100 is chosen in such a way as to remove wave action at large scales. Fig-

ure 3.2 shows the spectrum for this inverse cascade in stationary conditions. In the

compensated plot, a small deviation from the power law scaling at small wave numbers

is observed, possibly due to the presence of condensate at the zeroth mode.

3.13.2 The Local Nonlinear Equation

We perform a numerical simulation of the LNE to check the power law scaling of the

energy spectrum for Kelvin WT. We use a pseudo-spectral method with 214 spatial

points in a periodic box of size L = 2π. The time step of the simulation is set to ∆t =

1 × 10−4. We numerically solve the LNE with the addition of forcing and dissipation,

giving the numerical model as

i
∂w

∂t
= − κ

4π

∂

∂z

[(
Λ− 1

4

∣∣∣∣∂w∂z
∣∣∣∣4
)
∂w

∂z

]
+ i (Fk −Dk) . (3.45)

The conservation of the energy and wave action is checked in the absence of forcing

and dissipation, providing a numerical verification of our numerical code.

We include additive forcing, Fk, with a profile of

Fk =


A exp(iθk) if 8 ≤ k < 16

0 otherwise ,

(3.46)

where A = 1× 103 is a constant amplitude and θk is a random variable sampled from

a uniform distribution on [0, 2π) for each k, and at each time step. We add dissipation

at both ends of the k-space to enable us to reach a non-equilibrium steady state, and

to avoid any bottleneck effects. The dissipation profile Dk = DL
k +DH

k , is the sum of

a low wave number friction and hyper-viscosity term acting at high wave numbers given

by

DL
k =

 νfriction ψk if 0 ≤ k ≤ 6

0 otherwise,
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and

DH
k = νhyper k

4 ψk,

where, νfriction = 1× 10−3 and νhyper = 1× 10−9 are the viscosity coefficients
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Figure 3.3: We plot the magnitude of the linear, H2, the nonlinear, H4, and the total,
H energies of the simulation at late times in units of the linear timescale of the forcing
mode, τ . Note that H2 is strictly non-negative and H4 is strictly non-positive. We
observe a statistically stationary state of the energy. However, we also observe sharp
jumps, peaks and troughs in the energy values.

Initially, the system is at rest and we allow the simulation to evolve until it

has reached a statistically non-equilibrium steady state. We verify this by observing

stationarity of the system’s energy, see Figure 3.3. Although statistically stationary,

the energy contains intermittent bursts. The cause of such behaviour may be down to

finite-box effects, giving rise to a sand-pile effect seen in mesoscopic turbulence [27, 82].

In Figure 3.4, we plot the numerical wave action spectrum and compare against both

the KS, (3.34a), and LN, (3.42), spectra. We observe an agreement with the LN scaling

and note that there is a clear deviation to the KS slope. We believe this supports the

LN spectrum and the non-local theory for Kelvin WT. In Figure 3.5, we plot three wave
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Figure 3.4: Averaged wave action spectrum nk for the LNE compensated by k11/3. The
spectrum has been averaged over a long time window once the steady state is reached.
We plot the theoretical predictions of the KS and LN spectra.

action spectra at different τ , where τ = 8π2/κΛk2
f is the unit of the linear time scale of

our forcing mode kf ≈ 10. We average two spectra, over a small time window around

the time of consideration, and compare with the fully averaged spectrum of Figure 3.4.

The first spectrum is at τ = 84, which is taken when the energy of Figure 3.3 is at a

peak. The spectrum is well developed of slightly higher magnitude to the fully average

spectrum, but with a similar power law slope to the averaged spectrum. At τ = 100, we

plot the spectrum when the energy is at a local minimum. The spectrum at this time

does not saturate fully to the high wave number region and a clear accumulation at low

wave numbers is apparent. As energy fluctuates between peaks and troughs, we observe

oscillations of the wave action spectrum between the specific time states in Figure 3.5.

We believe that this behaviour is down to the sand-pile behaviour of mesoscopic WT.

By taking a long time average, we see a clear power law behaviour of the spectrum in

Figure 3.5 (identical to the spectrum in Figure 3.4).

In Figure 3.6, we plot the statistically averaged energy flux, Pk, of the simu-

lation. We observe that at the forcing scale, the energy flux reaches a non-zero value
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Figure 3.5: We plot the wave action spectrum, nk, at two times τ = 84 and τ = 100,
where the energy at peka and in a trough respectively. We compare these two spectra
with the fully averaged wave action spectrum of Figure 3.4.

and remains constant until approximately k = 30. After this point the value of Pk,

declines and converges to a negative constant. Ideally, the energy flux should be con-

stant over a large inertial range, and then return to zero around the dissipation scale

at high wave numbers. However this is not the case in Figure 3.6, we believe this is

because numerically Pk is only the linear energy flux. Conservation of energy and the

Kolmogorov-Richardson cascade picture implies that the total, (linear plus nonlinear),

energy flux is constant over the inertial range. Therefore, this decline of Pk could be

accounted by the absence of the nonlinear energy flux contribution.

In Figure 3.7, we plot the intensity PDF of the system and compare to a straight

line, corresponding to a Gaussian wave field, (see Section 2.12). We observe a good

agreement at low intensities to a Gaussian wave field. However at at large intensities,

the PDF deviates from the straight line - this corresponds to WT intermittency. The

deviation corresponds to an increase in the probability of observing intermittent high

amplitude events or rogue waves, which break the WT assumptions and inhibit the WT

regime.
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Figure 3.6: We plot the averaged linear energy flux, Pk, verses k in a stationary state.
We observe a short inertial range where Pk is constant corresponding to the KZ solution.
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Figure 3.7: We plot the PDF of the intensity of the wave field from physical space. We
compare with the Gaussian fit of a straight line.
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Figure 3.8: We plot the GCFR for the LNE for time fluctuations in the energy flux Pk.
We superimpose a straight line corresponding to Relation (2.141). The length of the
average τ is taken over a window corresponding to 285 linear time periods of the mode
k = 32.

In Figure 3.8, we plot the ratio P (Pk = σ)/P (Pk = −σ) at wave number

k = 32, and plot the corresponding GCFR prediction using the constant C as a fitting

parameter. We average over a range τ of length 285 linear time periods of the mode

k = 32, once the system has reached a non-equilibrium steady state. Figure 3.8 is

consistent with the GCFR at low fluctuations. However, at larger fluctuations, the curve

deviates from the GCFR prediction. We note, that the numerical data may not be

sufficiently averaged. However, there is a distinct possibility that this deviation may be

a consequence of some nonlinear behaviour [125], thus further investigation is needed.

In this Chapter, we have considered the role of Kelvin waves in QT. We have

systematically calculated analytical expressions for the BSE Hamiltonian, and used WT

theory presented in Chapter 2 to derive the KZ solutions to the KE. With further inves-

tigation, we found that the KS spectrum for the direct energy cascade in Kelvin waves

is actually non-local. This implies that the KS spectrum is physically irrelevant. We dis-

cuss the proposed non-local theory to Kelvin waves, and perform numerical simulations

of the LNE that supports the predictions of the non-local theory.
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Chapter 4

Optical Wave Turbulence

OWT is the study of WT in light waves propagating in a nonlinear medium. OWT

demonstrates similar behaviour to fluid dynamics, such as vortex-like solutions [69, 70],

shock waves [68], and statistical properties of weakly interacting nonlinear random waves

[20]. Although there have been numerous theoretical and numerical studies of OWT

[65, 142, 143, 144, 62], there have been few experimental observations to date [8].

OWT was theoretically predicted to exhibit dual cascade properties when two conserved

quantities cascade to opposite ends of wave number space [65]. This is analogous to

2D turbulence, where we observe an inverse cascade of energy and a direct cascade of

enstrophy [101, 102]. In the context of OWT, energy cascades to high wave numbers,

while wave action cascades towards low wave numbers [65, 142, 143, 144]. An interesting

property of OWT is the inverse cascade of wave action which in the optical context

implies the condensation of photons - the optical analogue of BEC.

Experimental implementation of BEC in alkali atoms was first achieved in 1995,

and subsequently awarded the 2001 Nobel prize [145, 146]. This work involved devel-

oping a sophisticated cooling technique to micro-Kelvin temperatures, in order to make

the de Broglie wave length exceed the average inter-particle distance. This is known as

the BEC condition. Photons were actually the first bosons introduced by Bose in 1924

[147], and the BEC condition is easily satisfied by light at room temperature. However,

there was the belief that optical BEC would be impossible, because of the fundamental

difference between atoms, whose numbers are conserved and photons which can be ran-
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domly emitted and absorbed. However, we can think of situations where light is neither

emitted nor absorbed, e.g. light in an optical cavity, reflected back and forth by mir-

rors [148], or light freely propagating through a transparent medium. In the latter, the

movement of photons to different energy states (specifically the lowest one correspond-

ing to BEC) can be achieved by nonlinear wave interactions. The mechanism for these

nonlinear wave interactions is provided by the Kerr effect which permits wave mixing.

When the nonlinearity of the system is weak, OWT can be described by WT

theory [6], with the prediction of two KZ states in a dual cascade system. One aspect

of OWT is the inverse cascade of wave action, with the progression of wave action

towards large scales, where the nonlinearity of the system is predicted to grow. This will

eventually lead to a violation of the weak nonlinearity assumption of WT theory. The

high nonlinearity at low wave numbers will lead to the formation of coherent structures

[65, 143, 62, 72, 84, 73]. In OWT this corresponds to the formation of solitons and

collapses for focusing nonlinearity [8], or a quasi-uniform condensate and vortices in the

de-focusing case [62]. Experimentally, OWT is produced by propagating light through

a nonlinear medium, such as a liquid crystal (LC). However, the nonlinearity is typically

very weak and it is a challenge to make it overpower the dissipation of the LC. This is

the main obstacle regarding the photon condensation setup in a 2D optical Fabry-Perot

cavity, theoretically suggested in [148] but never experimentally implemented.

In this Chapter, we present the first ever conducted experimental setup for OWT.

We compare the experimental observations with the predictions of WT theory. The key

feature in our setup is to trade one spatial dimension for a time axis, i.e. we consider

a time-independent 2D light field where the principal direction of the light propagation

acts as time. This allows us to use a nematic LC, which provides a high level of tunable

optical nonlinearity [149, 150]. The slow relaxation time of the reorientational dynamics

is not a restriction of our setup because the system is steady in time. Similar experiments

were first reported in [151], where a beam propagating inside a nematic layer undergoes

a strong self-focusing effect followed by filamentation, soliton formation and an increase

in light intensity. Recently, a renewed interest in the same setup has led to further studies

on optical solitons and modulational instability (MI) regimes [152, 153, 154]. However,
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the previous experiments used a high input intensity, implying a strong nonlinearity of

the system, and therefore the soliton condensate appears immediately, bypassing the

WT regime.

In our experiment, we set up an initial condition of weakly nonlinear waves

situated towards high wave numbers from a laser beam. We randomise the phase of the

beam, so that we produce a wave field as close to RPA as possible. The nonlinearity

of the system is provided by the LC, controlled by a voltage applied across the LC cell.

This provides the means for nonlinear wave mixing via the Kerr effect. The LC we use

is of a focusing type, causing any condensate that forms to become unstable and the

formation of solitons to occur via a MI.

Experimentally we cannot force the system, therefore we consider a decaying

setup - with the initial condition relaxing as the beam propagates through the LC cell.

Fortunately, this does not pose a problem, as the inverse cascade spectrum is of a finite

capacity type - i.e. that only a finite amount of the cascading invariant (wave action in

this case) is needed to fill the infinite inertial range. In these cases the turbulent systems

have a long transient en route to the final thermodynamic equilibrium state, in which

the scaling is of KZ type. This is because the initial condition serves as a huge reservoir

of the cascading invariant. Note, that the situation here is not specific to WT and is

generally valid for turbulence. For example, it is valid for Navier-Stokes turbulence, e.g.

the Kolmogorov-Obukhov spectrum is also finite capacity. We emphasise that our work

is on the turbulent non-equilibrium transition leading to the thermalised state and not

the thermodynamic equilibrium itself.

The final thermalised state was extensively theoretically studied in various set-

tings for non-integrable Hamiltonian systems starting with the pioneering paper by Za-

kharov et al [155], and then subsequently in [156, 157, 158, 159, 160, 161, 162, 163,

164, 165]. The final state, with a single soliton and small scale noise, was interpreted

as a statistical attractor, and an analogy was pointed out to the over-saturated vapour

system, where the solitons are similar to droplets and the random waves behave as

molecules [165]. Here, small droplets evaporate whilst large droplets gain in size from

free molecules, resulting in a decrease in the number of droplets.
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4.1 The Experimental Setup

The experimental apparatus is shown in Figure 4.1a. It consists of a LC cell, inside

which a laminar shaped beam propagates. The input beam is prepared in such a way,

as to have an initial condition of weakly nonlinear random waves. The LC cell is made

by sandwiching a nematic layer, (E48), of thickness d = 50 µm, between two 20 × 30

mm2, glass windows and is schematically depicted in Figure 4.1b. On the interior, the

glass walls are coated with indium-tin-oxide transparent electrodes. We have pre-treated

the indium-tin-oxide surfaces with polyvinyl-alcohol, polymerised and then rubbed, in

order to align all the molecules parallel to the confining walls. When a voltage is applied

across the cell, LC molecules tend to orientate in such a way as to become parallel to

the direction of the electric field. By applying a 1 kHz electric field with a rms voltage

of V0 = 2.5 V we preset the molecular director to an average tilt angle Θ.

The LC layer behaves as a positive uni-axial medium, where n‖ = nz = 1.7 is

the extraordinary refractive index and n⊥ = 1.5, the ordinary refractive index [150]. LC

molecules tend to align along the applied field and the refractive index, n(Θ), follows the

distribution of the tilt angle θ. When a linearly polarised beam is injected into the cell,

the LC molecules orientate towards the direction of the incoming beam polarisation. The

input light comes from a diode pumped, solid state laser, with λ = 473 nm, polarised

along y and shaped as a thin laminar Gaussian beam of 30 µm thickness. The beam

evolution inside the cell is monitored with an optical microscope and a CCD camera.

The light intensity is kept very low, with an input intensity of I = 30 µW/cm2 to ensure

the weakly nonlinear regime. A spatial light modulator (SLM), at the entrance of the

cell is used to produce suitable intensity masks for injecting random phased fields with

large wave numbers.

Figure 4.2 depicts how the input light beam is prepared before entering the LC

cell. The beam is expanded and collimated through the spatial light filter shown in

Figure 4.2. The objective, OB, focuses the light into the 20 µm pinhole, PH, the lens

L1 collimates the beam with a waist of 18 mm. After that, the light passes through the

SLM, which is a LCD screen working in transmission with a resolution of 800x600, with

8 bits pixels, of size 14 µm. Each pixel is controlled through a personal computer PC,
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Figure 4.1: a) Sketch of the experimental setup: a laminar shaped input beam prop-
agates inside the LC layer; random phase modulations are imposed at the entrance of
the cell by means of a SLM. b) Schematic of the LC cell. Figure courtesy of Umberto
Bortolozzo and Stefania Residori.

to ensure that the outgoing light is intensity modulated. In our case we use a cosinus

modulation having a coloured noise envelope. The lenses, L3 and L4, are used to focus

the image from the LCD screen at the entrance of the LC cell. The half wave-plate,

W, together with the polariser, P, are used to control the intensity and the polarisation,

which is linear along the y-axis. The circular aperture is inserted in the focal plane to

filter out the diffraction given by the pixelisation of the SLM and the diffuser, PH, is

inserted to spatially randomise the phase of the light. In order to inject the light inside

the LC cell, we use a cylindrical lens, L4, close to the entrance of the LC layer.

LASER

z

yOB

L1 L2

PC

SLM L3
L4

P1
A

W P

PH LC

Figure 4.2: Detailed representation of the experimental setup, showing the initialisation
of the input laser beam. Figure courtesy of Umberto Bortolozzo and Stefania Residori.
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4.2 Equations for Optical Wave Turbulence

Theoretically, the experimental setup can be modelled by an evolution equation for the

input beam, coupled to a relaxation equation for the LC dynamics given by

2iq
∂ψ

∂z
+
∂2ψ

∂x2
+ k2

0n
2
aaψ = 0, (4.1a)

∂2a

∂x2
− 1

l2ξ
a+

ε0n
2
a

4K
|ψ|2 = 0, (4.1b)

where ψ(x, z) is the complex amplitude of the input beam propagating along the time

axis z; x is the coordinate across the beam; a(x, z) is the LC reorientation angle;

na = ne − no is the birefringence of the LC; k0 is the optical wave number; ε0 is

the vacuum permittivity; and lξ =
√
πK/2∆ε(d/V0) is the electrical coherence length

of the LC [166], with K being the elastic constant, q2 = k2
0

(
n2
o + n2

a/2
)

and ∆ε is

the dielectric anisotropy. Note that lξ fixes the typical dissipation scale, limiting the

extent of the inertial range in which the OWT cascade develops. In other contexts, (see

[152, 153, 154]), such a spatial diffusion of the molecular deformation has been denoted

as a non-local effect. In our experiment, when V0 = 2.5 V , we have that lξ = 9 µm.

The typical value of K in the experiment is of the order ∼ 10 pN , thus we can derive

a typical dissipation length scale of the order ∼ 10 µm.

4.2.1 The Evolution Equation

The evolution equations, (4.1), can be simplified by de-coupling the complex ampli-

tude of the input beam, ψ(x, z), to the LC reorientation angle, a(x, z). This can be

achieved by formally inverting the operator on a(x, z) in Equation (4.1b), yielding a

single equation for the evolution of ψ(x, z) along the LC cell. Equation (4.1b) implies

that

a(x, z) =
ε0n

2
a

4K

(
1

l2ξ
− ∂2

∂x2

)−1

|ψ|2. (4.2)
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Substituting this expression for a(x, z) into Equation (4.1a), we eliminate the depen-

dence on variable a(x, z). This gives

2iq
∂ψ

∂z
+
∂2ψ

∂x2
+
k2

0n
4
aε0

4K
ψ

(
1

l2ξ
− ∂2

∂x2

)−1

|ψ|2 = 0. (4.3)

Equation (4.3) is a single equation modelling the evolution of the complex amplitude,

ψ(x, z). Scale invariance of the system is a necessary property for the application of WT

theory. If we apply the procedures of Chapter 2, we find that Equation (4.3) does not

lead to a scale invariant nonlinear interaction coefficient. There are two ways in which

we can proceed, although we reach the same final outcome regardless. Firstly, we could

derive a KE for (4.3), and then take a limit of long and short wave numbers (klξ � 1

and 1 � klξ respectively). Secondly, we could take the long- and short-wave limits

of Equation (4.3), deriving new evolution equations for ψ(x, z) in each limit, and then

apply the WT approach1. Here, we use the latter procedure. The limitations imposed

by the dissipation of the LC prevent the experimental implementation in the short-wave

limit. However, we will continue to investigate this limit theoretically and numerically.

4.2.2 The Long-Wave Equation

The long-wave approximation to Equation (4.3) corresponds to the light wave length

λ ∝ 1/k being greater than the electrical coherence length of the LC, lξ. In physical

space, this limit corresponds to lξ∂/∂x� 1, which we can use to expand the nonlinear

operator of Equation (4.3) to give us

(
1

l2ξ
− ∂2

∂x2

)−1

= l2ξ

(
1 + l2ξ

∂2

∂x2
+ l4ξ

∂4

∂x4
+ · · ·

)
. (4.4)

Taking the leading order of this expansion yields

2iq
∂ψ

∂z
= −∂

2ψ

∂x2
−
ε0n

4
al

2
ξk

2
0

4K
ψ|ψ|2. (4.5)

1It has been checked by us that both ways yield the same interaction coefficients in each limit.
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Equation (4.5) is the 1D NLSE. Unfortunately, this would be a poor model for OWT,

as the 1D NLSE is an integrable model. The 1D NLSE can be exactly solved by the

inverse scattering transform [167], resulting in solutions that correspond to solitary waves

or solitons. Integrability of a system implies that wave turbulent interactions are not

possible. To overcome this, we must consider the sub-leading contribution of Expansion

(4.4). This extra nonlinear term breaks the integrability of the system, giving rise to

2iq
∂ψ

∂z
= −∂

2ψ

∂x2
−
ε0n

4
al

2
ξk

2
0

4K

(
ψ|ψ|2 + l2ξψ

∂2|ψ|2

∂x2

)
. (4.6)

We refer to Equation (4.6) as the LWE. As a consequence of Expansion (4.4), the

additional nonlinear term is of smaller order than the leading nonlinear term. Moreover,

note that the additional nonlinear contribution is smaller than the linear term in the

weak nonlinearity setting. Therefore, although we have lost integrability, the system

will remain close to the integrable one, (4.5). As a result, we expect to observe, in

the final condensed state, soliton-like solutions close to the exact solutions of (4.5).

Exact soliton solutions of Equation (4.5), do not change shape and have the ability to

pass through one another unchanged. We can postulate that in the LWE, (4.6), we

will observe similar solitons, but the non-integrability will allow solitons to interact with

other solitons, and with the weakly nonlinear random wave background.

4.2.3 The Short-Wave Equation

Before we apply the WT description of Chapter 2, let us consider the opposite limit of

Equation (4.3), when 1� l2ξ∂
2/∂x2. The nonlinear operator of Equation (4.3) can be

represented in terms of a Taylor expansion as

(
1

l2ξ
− ∂2

∂x2

)−1

= −
(
∂2

∂x2

)−1

+
1

l2ξ

(
∂2

∂x2

)−2

− · · · . (4.7)

It is sufficient for us to approximate the nonlinear operator of Equation (4.3) with just

the leading order term in Expansion (4.7), as integrability is not a factor. Therefore, we
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get an equation of the form:

2iq
∂ψ

∂z
= −∂

2ψ

∂x2
+
ε0n

4
ak

2
0

4K
ψ

(
∂2

∂x2

)−1

|ψ|2. (4.8)

We denote Equation (4.8) as the SWE. Consequently, we have derived two equations

from the long- and short-wave limits of system (4.3). We will proceed, by applying

the WT description to both the LWE and the SWE and compare the predictions with

experimental and numerical observations.

4.3 The Hamiltonian Formulation

Systems (4.6) and (4.8) conserve two quantities, energy H and wave action N . If we

define the equation for a Hamiltonian system as

2iq
∂ψ

∂z
=
δH
δψ∗

, (4.9)

then the LWE possesses a Hamiltonian of

HL = H2 +HL4 ,

=

∫ ∣∣∣∣∂ψ∂x
∣∣∣∣2 − ε0n

4
al

2
ξk

2
0

8K

[
|ψ|4 − l2ξ

(
∂|ψ|2

∂x

)2
]
dx. (4.10a)

In the nonlinear energy term H4, the term that is quartric with respect to ψ, we have

added a superscript L to denote that this quartic term corresponds to the LWE, (4.6).

Similarly, the SWE can be written in Hamiltonian form:

HS = H2 +HS4 ,

=

∫ ∣∣∣∣∂ψ∂x
∣∣∣∣2 − ε0n

4
ak

2
0

8K

(
∂−1|ψ|2

∂x−1

)2

dx. (4.10b)

In both the LWE and the SWE, the linear, (quadratic), energy H2 is of the same

form. In addition to energy conservation, there is an second invariant of both equation,

the wave action, N . This is a consequence arising from the fact that both equations
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correspond to even order wave interactions2.

The total wave action, N , is defined as

N =

∫
|ψ|2dx. (4.11)

Hamiltonians (4.10) can be written in the form of Equation (2.25), by applying

the Fourier representation (2.16) to function ψ(x, z). Subsequently, Hamiltonian (4.10a)

possesses the following interaction coefficients:

ωk = k2, (4.12a)

LT 1,2
3,4 = 1T 1,2

3,4 + 2T 1,2
3,4

= −
ε0n

4
al

2
ξk

2
0

2K
+
ε0n

4
al

4
ξk

2
0

4K
(k1k4 + k2k3 + k2k4 + k1k3

−2k3k4 − 2k1k2) , (4.12b)

W 1,2,3
4,5,6 = 0. (4.12c)

We denote the two contributions to LT 1,2
3,4 , from both nonlinear terms in (4.6), as 1T 1,2

3,4

and 2T 1,2
3,4 , where the first arises from the usual cubic nonlinearity seen in the 1D NLSE,

and the second from the sub-leading correction. Similarly, the SWE yields the following

coefficients:

ωk = k2, (4.13a)

ST 1,2
3,4 =

ε0n
4
al

4
ξk

2
0

4K

(
1

k1k3
+

1

k2k3
+

1

k1k4
+

1

k2k4
− 2

k1k2
− 2

k3k4

)
(4.13b)

W 1,2,3
4,5,6 = 0. (4.13c)

We have expressed the LWE and SWE in terms of the six-wave Hamiltonian

system of Chapter 2. We mentioned in Subsection 4.2.1 that the full evolution equation,

(4.3), also emits a Hamiltonian structure. For completeness, we derive the corresponding

interaction coefficients for Equation (4.3) and show that we can recover (4.12) and

(4.13) by taking limits.

2This is a consequence of an extra symmetry property of the equation. The U(1) gauge symmetry
or invariance with respect to a phase shift: ψ(x, z) → ψ(x, z) exp (iφ).
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4.4 The Hamiltonian Representation for the Evolution Equa-

tion

We mentioned previously that a KE for Equation (4.3) can be directly calculated. This

is because (4.3) also possesses a Hamiltonian formulation with interaction coefficients

given by

ωk = k2, (4.14a)

FT 1,2
3,4 = −

ε0n
4
al

2
ξk

2
0

8K

(
1

l2ξ (k4 − k1)2 + 1
+

1

l2ξ (k3 − k1)2 + 1

+
1

l2ξ (k4 − k2)2 + 1
+

1

l2ξ (k3 − k2)2 + 1

)
, (4.14b)

W 1,2,3
4,5,6 = 0. (4.14c)

A further verification, that the LWE and the SWE are correct, is given by checking the

asymptotic limit of FT 1,2
3,4 in the limits of klξ � 1 and 1� klξ. Indeed, we find that

lim
klξ→0

FT 1,2
3,4 = LT 1,2

3,4 , (4.15a)

lim
klξ→∞

FT 1,2
3,4 = ST 1,2

3,4 , (4.15b)

i.e. that the long- and short-wave limits of the Equation (4.3) are exactly the LWE and

SWE respectively, either before or after the formulation of the Hamiltonian.

4.5 The Nonlinearity Parameter

To verify that experimental and numerical simulations are in a weakly nonlinear regime,

we need to quantify the linearity and nonlinearity within the system. In this Section, we

present the nonlinear parameter, J , which is determined by the ratio of the linear term

to the nonlinear term within the dynamical equations.

90



The nonlinear parameter from the LWE (4.6) is defined as

JL =
4Kk2

ε0n4
ak

2
0l

2
ξI
. (4.16)

This is derived from the ratio of the linear term and the first of the two nonlinear terms.

Here, I =
〈
|ψ(x, 0)|2

〉
is the average value of the input intensity. Similarly, the SWE,

(4.8) yields a parameter of

JS =
4Kk4

ε0n4
ak

2
0I
. (4.17)

Calculation of JL and JS act as a verification of the weak nonlinear assumption

of WT, especially in the context of the experimental setup.

4.6 Scale Invariance of W1,2,3
4,5,6

Scale invariance of the interaction coefficients are essential for the prediction of the KZ

solutions of the KE. First, we consider the LWE. The four-wave interaction coefficient

of the LWE, (4.12b), contains two terms, each with a different scaling in wave number

k, where all four wave numbers are of the same order, i.e. k1, k2, k3, k4 ∝ k. This

does not necessarily pose a problem, however, let us consider the structure of the final

six-wave interaction coefficient, W1,2,3
4,5,6 , after we have applied the CT, (2.38). In fact,

for the LWE, we can represent the final six-wave interaction coefficient as a sum of three

contributions:

LW1,2,3
4,5,6 = 1W1,2,3

4,5,6 + 2W1,2,3
4,5,6 + 3W1,2,3

4,5,6 , (4.18a)

where

1W1,2,3
4,5,6 = −1

8

3∑
i,j,m=1
i 6=j 6=m6=i

6∑
p,q,r=4
p 6=q 6=r 6=p

1T p+q−i,ip,q
1T j+m−r,rj,m

ωj+m−r,rj,m

+
1T i+j−p,pi,j

1T q+r−m,mq,r

ωq+r−m,mq,r

,

(4.18b)
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2W1,2,3
4,5,6 = −1

8

3∑
i,j,m=1
i 6=j 6=m 6=i

6∑
p,q,r=4
p6=q 6=r 6=p

[
1T p+q−i,ip,q

2T j+m−r,rj,m

ωj+m−r,rj,m

+
1T i+j−p,pi,j

2T q+r−m,mq,r

ωq+r−m,mq,r

+
2T p+q−i,ip,q

1T j+m−r,rj,m

ωj+m−r,rj,m

+
2T i+j−p,pi,j

1T q+r−m,mq,r

ωq+r−m,mq,r

]
, (4.18c)

and

3W1,2,3
4,5,6 = −1

8

3∑
i,j,m=1
i 6=j 6=m6=i

6∑
p,q,r=4
p 6=q 6=r 6=p

2T p+q−i,ip,q
2T j+m−r,rj,m

ωj+m−r,rj,m

+
2T i+j−p,pi,j

2T q+r−m,mq,r

ωq+r−m,mq,r

.

(4.18d)

The three contributions have different orders in klξ - the small parameter arising from

the long-wave limit. Therefore, 1W1,2,3
4,5,6 ∝ (klξ)

4 is the leading contribution to the

six-wave dynamics, followed by 2W1,2,3
4,5,6 ∝ (klξ)

6 and finally 3W1,2,3
4,5,6 ∝ (klξ)

8.

The first term in Expansion (4.18), 1W1,2,3
4,5,6 , is generated from the coupling of

the leading cubic, nonlinear term of (4.6) with itself. If we were to consider the 1D

NLSE, then the six-wave interaction coefficient would only consist of the contribution

1W1,2,3
4,5,6 , as 2T 1,2

3,4 ≡ 0. Integrability of the 1D NLSE implies that 1W1,2,3
4,5,6 is zero when

the six-wave resonance condition is satisfied. We verify this by using parameterisation,

(2.112), in Mathematica.

The main contribution to the six-wave dynamics arises from the first non-zero

term in (4.18), 2W1,2,3
4,5,6 . This contribution, with the use of (2.112), gives a k-independent

result:

LW1,2,3
4,5,6 ≈

2W1,2,3
4,5,6 =

9ε2
0n

8
al

6
ξk

4
0

16K2
. (4.19)

Conversely, from the SWE, we see that the four-wave interaction coefficient,

ST 1,2
3,4 , is scale invariant and scales as ∝ k−2 when considering k1, k2, k3, k4 ∝ k. For-

mula (2.38), implies that the homogeneity coefficients for the LWE and SWE are βL = 0

and βS = −6 respectively. We omit the explicit expression for SW1,2,3
4,5,6 as it extremely

long. With these homogeneity coefficients, we are able to determine the solutions to

the KE.
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4.7 The Kolmogorov-Zakharov Solutions of Optical Wave

Turbulence

With the aid of the homogeneity coefficients calculated in the previous Section, we can

derive the energy and wave action KZ solutions for a non-equilibrium stationary state

in the LWE and the SWE. Results (2.111) imply that the KZ solutions for the LWE are

given by

LnHk = CLH

(
PkK

4

ε4
0n

16
a l

12
ξ k

8
0

)1/5

k−1, (4.20a)

LnNk = CLN

(
QkK

4

ε4
0n

16
a l

12
ξ k

8
0

)1/5

k−3/5, (4.20b)

where LnHk , is the KZ spectrum for the direct energy cascade, and LnNk is the inverse

wave action spectrum. Here, CLH and CLN are constant prefactors of the spectra. The

same analysis implies that the SWE contains the following KZ solutions:

SnHk = CSH

(
PkK

4

ε4
0n

16
a l

16
ξ k

8
0

)1/5

k7/5, (4.21a)

SnNk = CSN

(
QkK

4

ε4
0n

16
a l

16
ξ k

8
0

)1/5

k9/5, (4.21b)

where, CSH and CSN are constant coefficients of O(1)..

Solutions (4.20) and (4.21) are valid only if they correspond to local wave inter-

actions, therefore we must check that the collision integral converges for both systems.

4.8 Locality of Optical Wave Turbulence

In this Section, we will investigate whether the KZ solutions for OWT correspond to

local wave interactions. This is achieved by checking if the collision integral converges,

whilst assuming a KZ solution. We begin by investigating locality in the LWE. The

six-wave interaction coefficient LW1,2,3
4,5,6 was shown (at leading order) to be constant in

Equation (4.19). This implies that in the IR limit, LW1,2,3
4,5,6 remains constant, i.e. ξ = 0.
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Hence, the condition for IR convergence becomes

x < 1, (4.22)

when x is the exponent for nk. For KZ solutions, (4.20), we have that the direct cascade

of energy, when x = 1, implies divergence. However, the cascade only contradicts Rela-

tion (4.22) at equality, resulting in slow logarithmic divergence of the collision integral

(see Chapter 3). This implies that by taking into account a logarithmic dependence

to Spectrum (4.20a), we can prevent divergence of the collision integral. The inverse

cascade of wave action, with x = 3/5, implies convergence in the IR region.

Before a spectrum is deemed convergent, we must check for convergence in the

UV region. Due to Relation (4.19), we also have that η = 0, and therefore, the condition

for UV convergence is given by

max(−2x− 2,−2x) < 0. (4.23)

For both long-wave KZ solutions, (4.20), Condition (4.23) is satisfied. Thus giving total

convergence of the inverse cascade, and only convergence of the direct cascade in the

UV limit.

Consideration of the SWE in the IR region, implies that the six-wave interaction

coefficient, SW1,2,3
4,5,6 , behaves as

lim
k6→0

SW1,2,3
4,5,6 ∝ k

−1
6 , (4.24)

giving ξ = −1. Therefore, the condition for IR convergence of the KZ solutions becomes

x < −1. (4.25)

For both KZ solutions, (4.21), where x = −7/5 and x = −9/5 for the direct and inverse

spectra respectively, we have IR convergence. For total convergence, we must also have

that both KZ solutions are convergent in the UV region. Interaction coefficient SW1,2,3
4,5,6
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in the limit of k6 →∞ scales as

lim
k6→∞

SW1,2,3
4,5,6 ∝ k

0
6, (4.26)

thus η = 0. This implies that the UV condition for convergence is the same as Rela-

tion (4.23). Both short-wave KZ solutions, (4.21) do not satisfy the UV convergence

condition. Therefore, both short-wave KZ solutions are non-local spectra. Non-locality

of the KZ solutions implies that the local wave interaction assumption is incorrect, and

thus the approach taken to predict these spectra is invalid. However, the development

of a non-local theory to OWT for the SWE may yield further insight.

4.9 Logarithmic Corrections to the Direct Energy Spectrum

In the previous Section, the direct energy cascade in the LWE, (4.20a), was shown to be

marginally divergent in the IR limit. This is to say, that the collision integral diverges at

a logarithmic rate in the limit of one vanishing wave number. However, by considering

a logarithmic dependence to the KZ solution, we can produce a convergent collision

integral. Following Kraichnan’s argument [101, 102], let us assume a correction of the

form:

LnHk = CLH

(
PkK

4

ε4
0n

16
a l

12
ξ k

8
0

)1/5

k−1 ln−y(k`), (4.27)

where y is some power law to be found and ` is the scale of energy injection. The

exponent of the logarithmic power law, y, is calculated by assuming that the energy

flux, Pk, remains k-independent. Subsequently, the energy flux can be expressed as

Pk =

∫ k

ωk
∂nk
∂t

dk ∝
∫ k

k4n5
k dk ∝

∫ k

k−1 ln−5y(k`) dk, (4.28)

where we have used that the collision integral, (2.94), with interaction coefficients

(4.12), scales as ṅk ∝ k2n5
k. Therefore, Pk remains k-independent3 when y = 1/5.

3The energy flux is actually proportional to Pk ∝ ln(ln(k`)).
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This implies that the logarithmically corrected direct energy KZ spectrum is given by

LnHk = CLH

(
PkK

4

ε4
0n

16
a l

12
ξ k

8
0

)1/5

k−1 ln−1/5(k`). (4.29)

Hence, by considering a logarithmic contribution, Spectrum (4.20a) is a local KZ solution

of the KE and thus physically realisable.

4.10 Flux Directions in Optical Wave Turbulence

The Fjørtoft argument of Section 2.14, showed the directions of k-space in which energy

and wave action are permitted to flow. However, the direction of the invariant cascade

is ultimately determined by the sign of the invariant’s flux. Therefore, it is essential that

the direction of the flux agrees with the analysis of Fjørtoft’s argument.

We use the formulation of the DAM in Section 2.18, to determine the directions

of the energy and wave action fluxes Pω and Qω within the LWE. Non-locality of the

KZ solution (4.21) of the SWE implies that constant flux cascades do not occur and

thus the analysis of this Section does not apply.

By plotting formulae (2.139c) and (2.139d) for Pω and Qω against the exponent

of the KZ solution, x, we can qualitatively determine the sign of the fluxes. When

the exponent is that of both thermodynamic solutions (2.109), then both fluxes should

vanish. Moreover, to agree with Fjørtoft’s argument, when x = 1, the energy flux should

be positive and the wave action flux zero. Similarly, when the exponent agrees with the

KZ exponent of the inverse cascade, (4.20b), Fjørtoft’s argument implies that the wave

action flux should be negative.

In Figure 4.3, we plot Equations (2.139), for Pω and Qω. we observe that at

x = 0, 2 corresponding to the two thermodynamic equilibrium solutions, we have both

the energy and wave action fluxes identically zero. At x = 3/5, corresponding to the

wave action cascade, we have that the energy flux Pω is zero, whilst the wave action

flux Qω is positive. When x = 1, the exponent for the energy cascade, we have the

wave action flux Qω is zero, and the energy flux Pω negative.
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From Formulae (2.139c) and (2.139d), we have wave action flowing to small

scales, whilst the energy flows to large scales. However, the weak nonlinear regime

restricts the flow of the invariants in these directions. The authors of [65] suggest that

in such situations, we might expect to observe a finite temperature KZ solution. This

solution is predominantly a thermodynamic solution similar to (2.110), but with a finite

flux contribution of the form:

nk =
Tc

ωk + µ+ φ(ωk, Pk, Qk)
, (4.30)

where φ(·) is a function of the linear frequency and the energy and wave action fluxes,

and φ� ωk, µ. This results in a mixed solution of the thermodynamic equilibrium and

the non-equilibrium parts.
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Figure 4.3: Plot of the energy flux Pω and wave action flux Qω against the exponent x
of the power law distribution of nω = Cω−x/2 in the DAM representation of the LWE.
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4.11 Modulational Instability and the Creation of Solitons

in the Long-Wave Equation

The similarity of Equation (4.6) to the integrable 1D NLSE (4.5) means that we should

expect not only random waves but also soliton-like coherent structures. During the

inverse cascade, solitons appear naturally as wave action reaches the lowest wave num-

bers. Indeed, the KE description, (2.94) becomes invalid, and the MI of the wave field

occurs resulting in the filamentation of light and its condensation into solitons.

Solitons are permanent localised (in physical space) structures resulting from

the balance between the dispersion of the wave and the nonlinear wave breaking effect

of the focusing medium. Solitons appear in several nonlinear wave equations, with the

1D NLSE an example. The 1D NLSE can be solved exactly by the inverse scattering

transform, resulting in exact analytical soliton solutions of the form:

ψ(x, z) =

√
8K

ε0k2
0n

4
al

2
ξ

A sech

(
Ax− ABz

q
+ C1

)

× exp

(
i

[
Bx+

(
A2 −B2

)
z

2q
+ C2

])
, (4.31)

where A, B, C1 and C2 are constants. The soliton solution is a consequence of the

integrability of the 1D NLSE. Unlike Equation (4.5), the LWE, (4.6), is non-integrable,

and thus, will not possess exact analytical solutions. However, the LWE’s deviation

from integrability is small, so we would expect to observe coherent structures of the

LWE to be qualitatively similar to (4.31). Moreover, solitons of integrable systems

possess the property of passing through one another without being changed. However,

when integrability is slightly violated, we expect to observe weak nonlinear interactions

of solitons. This may be viewed as possible merging events, oscillations in profile, or

collapses.

In Figure 4.4, we plot the profile of soliton (4.31), with the corresponding wave

action spectrum given in Figure 4.5. The intensity profile of the soliton in Figure 4.4

corresponds to a value of the nonlinearity parameter (4.16) of JL ∼ 1, which clearly

makes sense if we consider solitons being the balance between linear dispersion and the
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nonlinearity. In Figure 4.5, we observe a scaling of nk ∝ k0 towards low wave numbers,

with a decline of the spectrum at large k. However, a nk ∝ k0 scalings is also observed

from the equipartition of wave action (2.109). Therefore, by mere observation of the

wave action spectrum, nk, it will be difficult to determine if the wave field is comprised

of equilibrated random waves or if is in the presence of solitons. To distinguish between

these two states, we can numerically produce a (k, ω)-plot, that involves an additional

Fourier transform over a time window. This method separates the random waves from

the coherent component by observation of the dispersion relation, ωk [8, 62, 64].
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Figure 4.4: Intensity profile of the 1D NLSE soliton profile given in Equation (4.31).

The inverse cascade of photons is an essential step in the creation of solitons

from a weakly nonlinear random wave field. The cascade provides the means, via non-

linear wave interaction, for wave action to reach large scales. As the inverse cascade

develops, the nonlinearity of the system increases and a condensate forms, resulting in

the dynamics of random waves deviating from the linear dispersion relation to one that is

Bogoliubov modified. If wave amplitudes at low wave numbers increase sufficiently, then

the Bogoliubov dispersion relation can become complex. The imaginary component of

the Bogoliubov wave frequency then instigates unstable exponential growth of the wave

amplitudes and thus we experience an instability of the wave packet known as MI. MI
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Figure 4.5: The corresponding wave action spectrum for the soliton profile in Figure 4.4

was first discovered in the context of water waves, where it was originally known as the

Benjamin-Feir instability [168].

To derive an expression for the Bogoliubov dispersion relation, we must first ex-

pand the wave function ψ(x, z) around a homogeneous condensate solution. The con-

densate solution describes the behaviour of the zeroth mode. The Bogoliubov dispersion

relation then comprises of the wave frequency for the disturbances on the condensate

and the rotation frequency of the condensate .

To derive an expression for the condensate, we consider an x-independent solu-

tion to the LWE, (4.6), i.e. a solution of the form ψ(x, z) = ψc(z). Then ψc(z) is given

by

ψc(z) = ψ0 exp(−iωcz), (4.32)

with ωc = −ε0n
4
al

2
ξk

2
0I0/8qK and where I0 = |ψ0|2 is the intensity of the zeroth mode.

Solution ψc(z) describes the background rotation of a uniform condensate in (4.6) with

a rotation frequency of ωc.

We consider a small perturbation, φ(x, z) around this condensate and study the
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linearised evolution of perturbation, where

ψ(x, z) = ψc(z) [1 + φ(x, z)] , (4.33)

with |φ(x, z)| � 1. Substituting Relation (4.33) into the LWE, (4.6), and linearising

to the first order in φ(x, z), gives a linear evolution equation for φ(x, z). Assuming

disturbance φ(x, z) takes the form of a single monochromatic plane wave:

φ(x, z) = A exp (ikx− iΩkz) +A∗ exp (−ikx+ iΩkz) , (4.34)

where A is a complex amplitude of the wave and Ωk is the frequency of waves on the

condensate. Then by equating both types of exponentials, we can derive the dispersion

relation for weakly nonlinear waves on the condensate given by

2qΩk =

√√√√(1 +
ε0n4

al
4
ξk

2
0I0

2K

)
k4 −

ε0n4
al

2
ξk

2
0I0

2K
k2. (4.35)

To obtain the Bogoliubov frequency of the original wave function ψ(x, z), we must

include the frequency in which the condensate is rotating, ωc. Therefore, the Bogoliubov

dispersion relation for a weakly nonlinear wave is given by

ωk = ωc + Ωk,

= −
ε0n

4
al

2
ξk

2
0I0

8qK
+

1

2q

√√√√(1 +
ε0n4

al
4
ξk

2
0I0

2K

)
k4 −

ε0n4
al

2
ξk

2
0I0

2K
k2. (4.36)

Formation of solitons occurs with the assistance of MI. The instability allows for

the growth of the wave amplitude to sufficient levels that the nonlinearity balances with

the dispersion. Frequency (4.36) becomes complex when the term inside the square

root turns negative. This gives an estimation to which wave numbers undergo MI. For

a specific condensate intensity I0, we can estimate for which wave numbers are effected

by MI using

k2 <
ε0n

4
al

2
ξk

2
0I0

2K + ε0n4
al

4
ξk

2
0I0

. (4.37)
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Hence all wave numbers smaller than the right-hand side of (4.37) will be subject to

MI.

4.12 The Numerical Method

For the numerical computation of the LWE and the SWE, we implement a pseudo-

spectral method [169, 170], with a resolution of N = 212 Fourier modes. The scheme

utilises the fast Fourier transform to convert physical space vectors into their Fourier

representation, where differentiation of the wave field is transformed to algebraic mul-

tiplication by wave number k. The linear terms are solved exactly in Fourier space and

then converted back into physical space with the aid of integrating factors, to greatly

improve the numerical stability. Nonlinear terms are more complicated. Multiplications

involving ψ(x, z), have to be performed in physical space. Moreover, multiplication

produces aliasing errors, due to the periodicity of the Fourier series expansion of the

solution. These errors can be removed by artificially padding the Fourier mode repre-

sentation with wave number modes of zero amplitude at either ends of k-space. The

amount of de-aliasing is subject to the degree of nonlinearity of the equation. For us,

this entails that half of the wave number resolution for the solution needs to be zero -

a quarter at each end of k-space [170].

For the LWE we perform two types of numerical simulation, one without forcing

and dissipation, and one with. Experimentally, the system is decaying from an initial

condition with natural dissipation resulting from scattering at the edge of the cell and

from the natural dissipation of the LC. However, this natural dissipation is relatively

weak, so we perform an idealised decaying numerical simulation with no forcing and

dissipation. Ideally, the WT regime is best observed in a non-equilibrium stationary

steady state with the formation of coherent structures inhibited, hence we perform an

additional simulations for the LWE and the SWE in this scenario. The low wave number

dissipation allows for the removal of the wave action and suppression of solitons, whilst

the high wave number dissipation allows for the removal of energy.

We evolve the simulations in time by using the fourth order Runge-Kutta method
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[170], using a time step that is small enough so that it satisfies the Courant-Friedrichs-

Lewy (CFL) condition of

max
k

(
∂ωk
∂k

)
∆t < ∆x, (4.38)

where ∆x = L/N is the spacing of our spatial grid and L = 32π, is the length of our

periodic box. Numerically we compute the non-dimensionalised equation given by

i
∂ψ

∂z
= −∂

2ψ

∂x2
+N (ψ) + i (Fk −Dk) , (4.39)

where N(ψ) represents the nonlinear part of our equations. Appendix F includes the

derivation of the non-dimensional versions of both the LWE and SWE. The non-

dimensional LWE contains an adjustable parameter α, defined in Appendix F. For

the decaying setup, we set α = 128, so that the numerical simulation is in the same

regime as the experiment. For the forced and dissipated cases, we set α = 1024, so that

the long-wave limit is better realised. Fk = F (k) is the forcing profile, where energy

and wave action are injected into the system. We define this in Fourier space, over a

specific range of wave numbers. For the direct cascade simulations we use a forcing

profile given by

F direct
k =

 A exp(iθk) if 9 ≤ k ≤ 11

0 otherwise,
(4.40)

where A is the amplitude of forcing and θk is a random variable chosen from a uniform

distribution on [0, 2π) at each wave number and at each time step. For the inverse

cascade simulations, we apply forcing over a small range of wave numbers situated in

the high wave number region. However, we must allow for some Fourier modes larger

than the forcing scale, as to not restrict the development of the inverse cascade, and for

dissipation purposes. Our forcing profile for the inverse cascade simulations is given by

F inverse
k =

 A exp(iθk) if N
16 − 10 ≤ k ≤ N

16 + 10

0 otherwise.
(4.41)

In all simulations, we dissipate at high wave numbers by adding a hyper-viscosity term

of the order ∝ k4 ψk. We use the fourth power of k, so that the dissipation profile is not
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too steep for the formation of a bottleneck, or too shallow as to prevent a large enough

inertial range developing. At low wave numbers, we use two types of dissipation profile.

Firstly, we can use a hypo-viscosity term ∝ k−4 ψk. However, this type of dissipation

profile has led to the WT description becoming invalid and a CB regime to develop [64].

In these situations, the CB scenario is avoided by the use of low wave number friction.

The numerical dissipation profile Dk = D(k), removes wave action and energy

from the system at low and high wave numbers. For clarity, we split Dk into the low and

high wave number contributions DL
k and DH

k . At high wave numbers our hyper-viscosity

profile is defined as

DH
k = νhyper k

4 ψk, (4.42a)

where νhyper is the coefficient for the rate of dissipation. If we apply hypo-viscosity at

low wave numbers, then DL
k is given by

DL
k =

 νhypo k
−4 ψk if k 6= 0

ψk = 0 if k = 0,

where νhypo is the coefficient for the rate of dissipation at low wave numbers. However,

in situations where we use friction, then DL
k is defined as

DL
k =

 νfriction ψk if 0 ≤ k ≤ 6

0 otherwise,

where νfriction is the rate of friction dissipation.

4.13 Results

We present the experimental and numerical results for OWT. We divide this Section

into two main parts, firstly, we consider the system described by the LWE, in both

experimental and numerical aspects. We begin this Subsection by considering the de-

caying setup with condensation at the lowest wave numbers. Then we move on to the

numerical simulations of the LWE in the forced and dissipated regime. In the second
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Subsection, we present the numerical results for the SWE.

4.13.1 The Long-Wave Equation

The Decaying Inverse Cascade with Condensation

The decaying simulation leading to photon condensation was originally reported by us in

[8]. Both experimental and numerical setups are configured for decaying OWT, where

an initial condition is set up and allowed to develop in the absence of any forcing or

artificial dissipation. We perform the numerical simulation with the same parameters as

the experiment, and present results in dimensional units for comparison.

The inverse cascade spectrum is of a finite capacity type, in a sense that only

a finite amount of the cascading invariant (wave action in this case) is needed to fill

the infinite inertial range. Indeed, this is determined as the integral of the wave action

spectrum nk converges at k = 0, i.e.

∫
0
nk dk ∝

∫
0
k−3/5 dk <∞. (4.43)

For finite capacity spectra, the turbulent systems have a long transient (on its way to the

final thermal equilibrium state) in which the scaling is of the KZ type. This is because

the initial condition serves as a huge reservoir of the cascading invariant.

Experimentally, the initial condition is setup by injecting photons at small spatial

scales by modulating the intensity of the input beam with a patterned intensity mask.

We randomise the phases by the use of a phase modulator. This is made by creating a

random distribution of diffusing spots with the average size ' 35 µm through the SLM.

This is done in order to create an initial condition close to an RPA wave field required

by the theory. The numerical initial condition is more idealised. We restrict the initial

condition to a localised region at small scales. The initial profile is given by

ψk(0) =

 A exp(iθk) if N
16 − 5 < k < N

16

ψk(0) = 0 otherwise,
(4.44)
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where A = 4.608× 103 is the amplitude of forcing and θk is a random variable chosen

from a uniform distribution on [0, 2π) at each wave number. In dimensional units, this

corresponds to an initial condition in the region around kf ≈ 1.5×102 mm−1. Moreover,

we apply a Gaussian filter in physical space to achieve a beam profile comparable to

that of the experiment.

Applicability of the WT approach is verified by the calculation of the nonlinear

parameter LJ for the numerical simulation, which agrees with the experiment and is of

the order LJ ' 100. Experimentally, we measure the light intensity I(x, z) = |ψ|2 and

not the phases of ψ. Therefore the wave action spectrum nk is not directly accessible.

Instead, we measure the intensity spectrum, N(k, z) = |Ik(z)|2, where the k-scaling for

Nk in the inverse cascade state is easily obtained from the KZ solution (4.20b) and the

random phase condition, (see Appendix E). This procedure gives an intensity spectrum

of

Nk ∝ k−1/5. (4.45)

The wave action spectrum from the numerical simulation is shown in Figure 4.6

at two different distances, we see at z = 0 mm the peak from the initial condition

at high wave numbers, then at z = 63 mm we see evidence of an inverse cascade, as

the majority of the wave action is situated towards low wave numbers. However, at

low wave numbers we do not see the spectrum matching our theoretical KZ prediction

(4.20b). We showed in Section 4.10, that the wave action flux, Qk, corresponding to

the KZ solution (4.20b), has the incorrect sign for an inverse cascade. Therefore, we

noted that the inverse cascade spectrum would correspond to a mixed thermal solution

with a finite flux contribution. This is the probable cause for the lack of agreement

with the KZ solution. We observe from Figure 4.6, that nk ∝ k0 at low wave numbers,

which may account for the mixed thermal solution (as this scaling corresponds to the

equipartition of wave action (2.109a)) or for the presence of solitons (c.f. Figure 4.5).

The experimental and numerical intensity spectra are shown in Figures. 4.7 and

4.8 respectively. In both plots, we observe an inverse cascade, resulting in a good

agreement with the WT prediction for the intensity spectrum (4.45). This agreement

may be coincidental, as we have shown that the flux directions are insufficient for a
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Figure 4.6: Numerical spectrum of the wave action, nk, at distances z = 0 mm and
z = 63 mm.

KZ wave action cascade. However, the intensity spectrum is a non-local quantity, and

therefore may not be affected by the lack of wave action flux. We can only confidently

say that we still do not fully understand the agreement.

Verification of the long-wave limit klξ � 1 and deviation from integrability is

checked by considering the ratio of the two nonlinear terms in the LWE (4.6), which we

denote as R, and is estimated in Fourier space as R ∝ k2l2ξ . We observe from Figures 4.7

and 4.8 that the inverse cascade is approximately in the region k ∼ 104 − 105 m−1,

giving an estimation of R ∼ 10−2− 1. Note, that if R is too small, then we are close to

an integrable system, which would be dominated by solitons and lack cascade dynamics,

and if R is too high, then the LWE is a poor approximation for 1D OWT.

The inverse cascade can be observed directly in the physical experiment by in-

specting the light pattern in the (x, z) plane of the LC cell. Two magnified images of

the intensity distribution, I(x, z), showing the beam evolution during propagation in the

experiment are displayed in Figure 4.9. For comparison, in Figure 4.9a and b, we show

the beam evolution in the linear and in the weakly nonlinear regimes, respectively. In

Figure 4.9a, we set a periodic initial condition with a uniform phase and apply no volt-
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Figure 4.7: Experimental spectrum of the light intensity, Nk = |Ik|2 at two different
distances z. Figure courtesy of Umberto Bortolozzo and Stefania Residori.
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Figure 4.8: Numerical spectrum of the light intensity, Nk = |Ik|2 at two different
distances z. Averaging is done over a small finite time window and over ten realisations.

age to the LC cell. We see that the linear propagation is characterised by the periodic

recurrence of the pattern with the same period, a phase slip occurring at every Talbot
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distance. This is defined by p2/λ, with p, the period of the initial condition and λ, the

laser wave length [171]. In Figure 4.9b, we apply a voltage, V = 2.5 V to the LC cell.

The initial condition is periodic with the same period as in Figure 4.9a, but now with

random phases. We observe that the initial period of the pattern is becoming larger as

the light beam propagates along z.

Figure 4.9: Intensity distribution I(x, z) showing the beam evolution during propagation;
a) linear case, b) weakly nonlinear case. Figure courtesy of Umberto Bortolozzo and
Stefania Residori.
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Figure 4.10: Two intensity profiles I(x) recorded at z = 0 and z = 1.9 mm in the
weakly nonlinear regime, with V = 2.5 V , showing the smoothing associated with the
inverse cascade. Figure courtesy of Umberto Bortolozzo and Stefania Residori.

While the linear propagation in Figure 4.9a, forms Talbot intensity carpets [172],

with the initial intensity distribution reappearing periodically along the propagation di-
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rection z, the weak nonlinearity in Figure 4.9b, leads to wave interactions, with different

spatial frequencies mixing and the periodic occurrence of the Talbot carpet being broken.

In Figure 4.10, we show two intensity profiles taken in the nonlinear case at

two different stages of the beam propagation. The inverse cascade is accompanied by a

smoothing of the intensity profile and the amplification of low wave number components.
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Figure 4.11: Experimental results for intensity distribution I(x, z). The area marked by
the dashed line is shown at a higher resolution (using a larger magnification objectif).
Figure courtesy of Umberto Bortolozzo and Stefania Residori.

Figure 4.12: Numerical results for intensity distribution I(x, z). The frame on the left
is a magnified section of the initial propagation of the beam.

The intensity distribution, I(x, z), showing the beam evolution during propaga-

tion in the experiment and in the numerical simulation are displayed in Figures 4.11
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and 4.12, respectively. In the high resolution inset of Figure 4.11, we can observe that

the typical wave length of the waves increases along the beam which corresponds to an

inverse cascade process. Furthermore, one can see the formation of coherent solitons

out of the random initial wave field, such that in the experiment, one strong soliton is

dominant at the largest distance z. Both the experimental and the numerical results in

Figures 4.11 and 4.12 indicate that the total number of solitons reduces. The observed

increase of the scale and formation of coherent structures represents the condensation

of light. Experimentally, the condensation into one dominant soliton is well revealed

by the linear intensity profiles I(x) taken at different propagation distances, as shown

in Figure 4.13 for z = 0.3, 4.5 and 7.5 mm. Note that the amplitude of the final

dominant soliton is three orders of magnitude larger than the amplitude of the initial

periodic modulation.

-0.4 -0.2 0 0.2 0.40.40

1000

2000

3000

4000

0.3 mm4.5 mm

7.5 mm

x [mm]

I (
gra

y v
alu

es)

Figure 4.13: Linear intensity profiles I(x) taken at different propagation distances,
z = 0.3, 4.5 and 7.5 mm. Figure courtesy of Umberto Bortolozzo and Stefania Residori.

Figure 4.14 displays three profiles of the PDF of the wave intensity along the

cell at distances z = 0 mm, z = 3 mm and z = 8 mm. In a pure Gaussian wave

field, we would observe a straight profile of the PDF tail. However, in Figure 4.14, non-

Gaussianity is observed with the deviation from the straight lines, indicating a slower

that exponential decay of the PDF tails. Non-Gaussianity corresponds to intermittency
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Figure 4.14: PDFs of the wave intensity within the experimental cell at three different
distances along the cell, z = 0 mm, z = 3 mm and z = 8 mm. Straight lines have
been fitted to each PDF to show Gaussianity. Figure courtesy of Umberto Bortolozzo
and Stefania Residori.
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Figure 4.15: PDFs of the wave intensity within the numerical cell at three different
distances along the cell, z = 0 mm, 31 mm and z = 63 mm. Straight lines have been
fitted to each PDF to show Gaussianity.

of WT. Intermittency implies that there is a significantly higher occurrence of high

intensity structures compared to that predicted by a Gaussian wave field. We see a
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similar scenario in Figure 4.15, showing the intensity PDFs of the numerical simulation.

We plot three PDFs at distances z = 0 mm, z = 31 mm and z = 63 mm. The

observation of intermittency could be a sign of the development of coherent structures

in the system. To be certain of the presence of any coherent structures, we should

produce a (k, ω)-plot.

Figure 4.16: The (k, ω)-plot of the wave field at z = 10 m. The Bogoliubov dispersion
relation is shown by the solid green line.

We perform an additional decaying simulation with a lower initial intensity, to

allow us to capture the inverse cascade dynamics in more detail and to enable us to

analyse the relationship between solitons and incoherent waves. However, to compensate

for the lower intensity initial condition, we must run the simulation for much larger times.

Separation of the random wave and the coherent soliton components can be achieved

by performing an additional Fourier transform with respect to z over a finite z-window

[62, 8].

The numerically obtained (k, ω)-plot enables the direct observation of the dis-

persion relation of random waves, and is shown in Figure 4.16. Here, the incoherent

wave component is distributed around the wave dispersion relation, which is Bogoliubov-

modified by the condensate (4.35), and is shown by the solid line in Figure 4.16. The
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distribution of the dispersion relation is centred around the theoretical prediction. We

observe that the width of the dispersion relation is narrow for large k, a sign of weak

nonlinearity, and progressively gets wider as it approaches smaller wave numbers. This

broadening, is an indication that the nonlinearity of the system increases towards smaller

k, as was theoretically predicted in [65]. At wave numbers around zero, we see that

the theoretical Bogoliubov curve vanishes, corresponding to the region defined by Equa-

tion (4.37), where the frequency becomes complex. For such wave numbers, MI of the

wave packets occurs and the WT description breaks down. Below the region where the

Bogoliubov relation becomes complex, we observe slanted lines. Each of these lines cor-

responds to a coherent soliton, whose speed is equal to the inclination of the slope. We

observe that the formation of solitons is seen in the (k, ω)-plot as straight lines ‘peeling’

from the dispersion curve with a gradient tangential to the dispersion curve. Moreover,

we observe the gradual migration of these lines to higher negative frequencies, as the

solitons begin to grow in size by the absorption energy from surrounding waves or by

merging with other solitons.

Further analysis can be achieved by separating the wave and soliton components

of the (k, ω)-plot by cutting along the ωk = 0 axis. Then, by inverting the Fourier

transforms of each half-plane, we can recover the wave field, ψ(x, z), for each half of

the (k, ω)-plot. This enables us to compare the soliton (ωk < 0) and wave (ωk ≥

0) components of the intensity profile, Figure 4.17, and the wave action spectrum,

Figure 4.18. In Figure 4.17, we plot the intensity profile of light in real space for the

soliton and wave components. We see that separating the negative and positive parts of

the (k, ω)-plot isolates the coherent solitons from the random wave background and we

observe that the main soliton is a least an order of magnitude greater than the random

wave field.

In Figure 4.18, we observe that the soliton component of the wave action spec-

trum, is heavily situated towards the low wave number region and scales as ∝ k0. This

profile is qualitatively similar to the wave action spectrum of the exact soliton of the

1D NLSE, seen in Figure 4.4. The wave component of the wave action spectrum is

more widely distributed in k-space. However, we still do not observe a KZ scaling,
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Figure 4.17: Plot of the intensity profile at z = 10 m of both the soliton and wave
components

but this is largely down to the incompatibility of the flux to the KZ solution. In other

wave systems, the separation of the coherent and wave components, may be a useful

technique in observing the KZ scaling otherwise masked by the presence of coherent

structures. From the same simulation, we plot the (x, z)-plot for the intensity distri-

bution, I(x, z), in Figure 4.19. With the longer propagation distance, we observe the

formation and evolution of solitons from the weakly nonlinear background. In the initial

stages of the simulation, we observe the formation of solitons out of the random wave

background, characterised by the increase in wave intensity and the deviation from the

linear wave propagation direction. As the simulation progresses, the solitons become

more pronounced and begin to behave independently from the waves, with an almost

random movement through the numerical box. A large number of solitons are produced

at the beginning of the simulation, but over long evolution times, the number of solitons

reduces, with the remaining solitons being of increasing amplitude. Indeed, there are a

large number of merging events between solitons, in Figure 4.20b we see a magnified

section of a merging event from Figure 4.19. At late times, Figure 4.19 shows a single

dominant soliton in the system that has subsequently grown by absorption of energy from
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Figure 4.18: The wave action spectrum of both soliton and wave components of the
spectrum, with the KZ prediction for comparison.

fellow solitons and the background wave field. This final state, is also observed in the

experiment (Figure 4.11), albeit at a much shorter propagation distance. In Figure 4.20,

we plot three zoomed in sections of Figure 4.11. In Figure 4.20a, we observe several

solitons passing through one another with little deviation in their trajectories. Moreover,

the weaker solitons (light grey in colour), have almost straight trajectories, like freely

propagating linear waves, whilst the stronger solitons’ movement is more erratic.

In Figure 4.20b, we magnify a merging event between two solitons. The larger

soliton engulfs the smaller soliton without any deviation in its trajectory. Therefore, in

the numerical simulation, large solitons absorb energy from smaller solitons, reducing the

total number within the system. In addition, we also observe at z = 11.5 m, a soliton

bouncing off the larger soliton. As the weaker soliton approaches the larger soliton, it

slows, before moving away at a fast speed. The understanding of when two solitons

merge or if they repel is a key question that still remains to be answered. Finally, in

Figure 4.20c, we observe two weak solitons propagating together, until around z = 13

m, when they both repel each other and disperse back into the random wave field. This

shows the break up of the coherent structures and the subsequent re-injection of wave
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action into high frequency waves.

In Figures 4.21 and 4.22, we plot the maximum of the intensity and the energy

of the system with z. To begin, we note that the maximum of the intensity of the

wave field is always growing, and moreover, we observe that there is a sharp increase

in the maximum at around z = 11 m. This jump corresponds to the merging event

seen in Figure 4.20b. Thus, the dominant soliton instantly grows in size once it absorbs

the other soliton. This merging event is also noticed in Figure 4.22, where we observe

a similar sharp increase to the linear and nonlinear energies at z = 11 m, showing

that as the dominant soliton’s amplitude increases, there is a significant increase in the

nonlinearity of the system.

From the beginning, the nonlinear energy from the first nonlinear term, grows

almost an order of magnitude in size, compared to just under double in size for the

linear contribution. This indicates that the inverse cascade and the subsequent soliton

development is associated with an increase in the nonlinearity of the system, and hence

the breakdown of the WT description. Moreover, we note that the total energy remains

conserved, verifying that our simulation is well-resolved.

Figure 4.19: Numerically obtained (x, z)-plot for a long time simulation with a low
intensity initial condition to see the inverse cascade and soliton merging.

In Figure 4.23, we plot the intensity PDF in k-space for two wave numbers,
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Figure 4.20: Three close-ups at different propagation distances showing solitons a)
passing through each other, b) merging and c) dissipating.
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Figure 4.21: Plot of the maximum of the wave intensity in physical space versus z.

k = 9.8 mm−1, and k = 3.8 × 102 mm−1. These two wave numbers are situated

in the low wave number and high wave number regions respectively. We observe that

both PDFs in the low intensity region are in good agreement with the Gaussian fit.

However, at higher amplitudes, we observe that in the PDF at k = 9.8 mm−1, there is

a depletion of the probability with regards to the Rayleigh distribution. This corresponds

to a lower likelihood of observing high intensity structures. In the context of the analysis

in Section 2.12, this implies that we are observing a positive probability flux, F , with

a flow from small to large Jk. Conversely, the PDF at k = 3.8 × 102 mm−1, we
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Figure 4.22: Plot of the magnitude of the energies for the long time simulation. We
see the conservation of the total energy, the growth of the linear and both nonlinear
energies (corresponding to the two nonlinear terms in equation (4.10a)). Note that the
first nonlinear energy is strictly a non-positive quantity, therefore we have plotted the
magnitude of the value in this Figure.

we observe an increase in probability from the Gaussian fit at high intensities. This

behaviour corresponds to a negative probability flux, F and flow from large to small Jk.

This can be interpreted as a wave breaking process at low wave numbers. The inverse

cascade transports wave action to small k and to higher Jk, as the inverse cascade is

associated with an increase in nonlinearity of the system. As wave action accumulates

at large scales, solitons form, with wave action spreading along the soliton spectrum

nk ∝ k0. Periodically, solitons will interact allowing for the emission of energy and

wave action to incoherent waves, resulting in a reversal of the probability flux F . This

continuous transport of wave action can be seen as a WTLC for 1D OWT [30, 1].

A diagram for the WTLC is presented in Figure 4.24. Here we see that wave action

is injected at high wave numbers, which subsequently gets transported to low k by

an inverse cascade. When the amplitude at low k is sufficiently high, MI causes the

formation of coherent nonlinear solitons. Solitons are a coherence of a broad range of

wave modes situated at low wave numbers. Non-integrability of the system allows for
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solitons to interact with surrounding structures, that enable energy exchange, and the

possible ejection of energy and wave action back into the wave field. This supplies the

random wave field with more wave action for the inverse cascade to transport, and the

cycle begins again.
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Figure 4.23: We plot the intensity PDF for variable sk = Jk, at two wave numbers,
k = 9.8 mm−1, and k = 3.8 × 102 mm−1. We fit a black dashed straight line that
corresponds to a Gaussian wave field.

Forced and Dissipated Simulations

In this Subsection, we explore numerical simulations of the LWE and SWE with forcing

and dissipation. This allows the system to reach a non-equilibrium stationary state,

where the observation of the KZ solutions, (4.20), can be made. In an infinite sized

system, both KZ solutions can be realised in the same simulation, with forcing acting

at an intermediate scale and two inertial ranges either side (see Figure 2.3). However,

computational and time restrictions make it impractical to perform such a simulation.

Therefore, we simulate each cascade separately, by performing two simulations with

forcing at either ends of k-space, allowing for just one inertial range. For both the

direct and inverse cascade setups, we set the low wave number dissipation profile, DL
k ,

to be friction, defined by (4.42b), with the friction coefficient of νfriction = 5 × 100
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Figure 4.24: We depict the WTLC for 1D OWT. High wave number forcing injects
wave action, that subsequently gets transferred to low k by the inverse cascade. At low
k, solitons form resulting in a nk ∝ k0 spectrum. The emission of waves from merging
or dissipating solitons re-injects wave action at low intensities.

for the direct simulation, and νfriction = 2 × 100 for the inverse simulation. We use

hyper-viscosity at high wave numbers with a coefficient of νhyper = 1 × 10−9 for the

direct and νhyper = 1 × 10−8 for the inverse setup. The forcing is situated at large

scales for the direct cascade defined by Equation (4.40), with amplitude A = 3.2× 103

and at small scales for the inverse cascade, defined by Equation (4.41), with amplitude

A = 1.6× 103. We numerically solve the non-dimensionalised equation in Appendix F,

with α = 1024. We run the simulations with a time step of ∆t = 1× 10−4 in a box of

length L = 32π, with spatial resolution of N = 212, until we are at a non-equilibrium

steady state. This is checked by observing stationarity of the total energy H and wave

action N in the system.

Once the simulations reach a statistically non-equilibrium steady state, we anal-

yse the statistics by performing time averages over this steady state regime. We have

plotted the wave action spectrum, nk, for both the direct, Figure 4.25, and inverse,

Figure 4.26 cascades.

In Figure 4.25, we observe the direct wave action spectrum for the LWE, with

the theoretical prediction also plotted. We do not observe any agreement with the WT

prediction (4.29). However, this is to be expected, as it was shown in Section 4.10 that
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Figure 4.25: The wave action spectrum nk in a statistically non-equilibrium stationary
state for the direct cascade simulation of the LWE. The straight line represents the WT
prediction of the KZ solution of nk ∝ k−1 ln(k`).
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Figure 4.26: The wave action spectrum, nk, in a statistically non-equilibrium stationary
state for the inverse cascade simulation of the LWE. The straight line represents the
WT prediction of the KZ solution of nk ∝ k−3/5.

the direction of the energy flux does not coincide with Fjørtoft’s argument. Moreover,
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we see the formation of an accumulation of energy, or a bottleneck in the high wave

number region. This could be caused by over-dissipation at high wave numbers, or a

hyper-viscosity profile that is too steep.

The inverse wave action spectrum is shown in Figure 4.26. We observe that there

is a build up of wave action around the forcing scale, k ≈ 16, however, there seems

to be no inverse cascade to low wave numbers. Although not surprising as the wave

action flux is positive, this does contradict the observation of the decaying simulation,

where an inverse cascade was observed. Over-dissipation at low wave numbers may be

inhibiting the inverse cascade, however dissipation only acts on the first six wave modes.

In Figures 4.27 and 4.28, we plot the averaged energy and wave action fluxes

corresponding to the two wave action spectra of Figures 4.25 and 4.26 respectively. In

Figure 4.27, we observe a constant-like energy flux just after the forcing region k ≈ 0.8,

however, it does not last long before it becomes negative and noisy. The noise is probably

down to an insufficient time average due to a lack of numerical data. A key observation

is that the flux immediately to the right of the forcing scale is positive, contradicting

the analysis of the DAM. Moreover, the energy flux becomes negative in the region

where we observe the bottleneck in the spectrum. This negative flux could be down

to the reflection of the flux due to over dissipation, or the physics of the system. In a

non-equilibrium steady state, the total flux of an invariant should be zero. However, in

the case of the energy flux Pk, this is not the case. A possible reason for this, is that

the definition of Pk implies it is the linear energy flux. Therefore, only the total energy

flux (including the nonlinear contribution to the flux) is conserved, and so we expect

that this non-zero total flux is attributed to us not taking into account the nonlinear

contribution4.

In Figure 4.28, we observe a noisy wave action flux, Qk. At low wave numbers,

the wave action flux is negative, which is inconsistent with the analysis of Section 4.10.

However, near the forcing scale at k ≈ 16, we see some volatility of the flux, where it is

changing rapidly in k-space from positive to negative. Indeed, this may be down to an

4The weak nonlinear regime implies that the total energy can be approximated by the linear energy,
and likewise with the flux. Moreover, it is a numerical difficulty to compute the nonlinear contribution
to the energy flux.
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insufficient time average, or simply the behaviour of the flux - fluctuating around zero

because the wave action cannot flow to either end of k-space as it is restricted by the

flux direction and the Fjørtoft argument.
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Figure 4.27: Averaged energy flux Pk versus wave number k in the direct cascade
simulation of the LWE. A KZ solution implies that Pk should be a non-zero constant
in the inertial range
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Figure 4.28: Averaged wave action flux Qk versus wave number k in the inverse cascade
simulation of the LWE. A KZ solution implies that Qk should be a non-zero constant
in the inertial range
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Finally, we plot the intensity PDFs for the direct and inverse cascades in Fig-

ures 4.29 and 4.30 respectively. In both plots we superimpose a straight line in log-lin

coordinates, corresponding to a Gaussian distribution for the wave field. In Figure 4.29,

we observe a good agreement with the Gaussian fit. However, there is a slight deviation

from Gaussianity at high intensities. In Figure 4.30, the intensity PDF for the inverse

cascade deviates significantly from the Gaussian fit. This corresponds to strong WT

intermittency, and the possible presence of coherent structures. Also, the restriction to

the movement of wave action (Fjørtoft’s argument and wrong flux sign), would result

in the accumulation of wave action at the forcing scale. This pile up would increase the

wave amplitudes in this region and been seen in the intensity PDF.
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Figure 4.29: PDF of the wave intensity in the direct cascade simulation of the LWE.
The straight line corresponds to a Gaussian distribution predicted by WT theory.

4.13.2 The Short-Wave Equation

We investigate the SWE, (4.8) by numerical simulations of the non-dimensionalised

model of Appendix F. We apply the same forcing and dissipation profiles that are

described in Section 4.12. We dissipate at low wave numbers using a hypo-viscosity

profile, while using hyper-viscosity at high wave numbers. The dissipation rates we use

are νhypo = 1× 10−2, νhyper = 1× 10−11 for the direct simulation and νhypo = 1× 100,

νhyper = 1× 10−8 for the inverse. For the direct cascade, we force the system with the
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Figure 4.30: PDF of the wave intensity in the inverse cascade simulation of the LWE.
The straight line corresponds to a Gaussian distribution predicted by WT theory.

profile (4.40), with amplitude A = 1.6 × 102 and for the inverse cascade with profile

(4.41), with amplitude A = 4.8× 102.
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Figure 4.31: The wave action spectrum nk in a statistically non-equilibrium stationary
state for the direct cascade simulation of the SWE. The straight line represents the WT
prediction of the KZ solution of nk ∝ k7/5.

In Figure 4.31 we plot the wave action spectrum for the direct cascade averaged

over a time window once the system has reached a statistically non-equilibrium steady
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Figure 4.32: Averaged energy flux Pk versus wave number k in the direct cascade
simulation of the SWE. A KZ solution implies that Pk should be a non-zero constant
in the inertial range

state. We observe a good agreement to the WT prediction (4.21a). However, notice

that there is some slight deviation of the spectrum in the middle of the inertial range.

This is likely to be caused by an insufficient time average of the statistics. The agreement

is surprising, as we showed that the KZ solution, (4.21a), does not produce convergence

of the collision integral in the UV limit. However, we may be observing a non-local

spectrum that is close to the local WT prediction. Investigation of the flux would

provide a useful check, as a constant flux would determine if we are observing a local

KZ spectra. In Figure 4.32, we plot the averaged energy flux, Pk, corresponding to the

wave action spectrum of Figure 4.31. We observe an extremely noisy flux, that does

not show any signs of a constant flux relation. Moreover, note that the flux oscillates

wildly between positive and negative values, with almost identical occurrence. From

Figure 4.32, we can state that we do not observe a constant flux and therefore, the

wave action spectrum does not correspond to a local transfer of constant energy flux.

We present the averaged wave action spectrum for the inverse cascade in Fig-

ure 4.33. We observe a good agreement, for almost a decade in k-space, with the

theoretical prediction (4.21b). At low wave numbers, we observe a slight accumulation

of wave action before the dissipation occurs. In Figure 4.34, we plot the corresponding
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wave action flux, Qk, for the wave action spectrum. We observe that there is almost a

constant negative flux for about a decade in k-space, in the inertial range where we see

the wave action spectrum close to the prediction (4.21b). These observations indicate

that we have a local KZ spectrum of the form (4.21b). However, analysis of the locality,

showed that the inverse KZ solution is invalid, raising many questions that need to be

investigated further.
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Figure 4.33: The wave action spectrum nk in a statistically non-equilibrium stationary
state for the inverse cascade simulation for the SWE. The straight line represents the
WT prediction of the KZ solution of nk ∝ k9/5.

In Figures 4.35 and 4.36, we present the intensity PDFs for the direct and inverse

setups for the SWE. In both Figures, we observe a clear positive deviation from the

Gaussian fit of a straight line. This indicates the presence of WT intermittency, with a

significantly higher occurrence of high intensity structures than what is expected from a

Gaussian wave field. The larger tails of the intensity PDFs imply that these systems are

in a wave turbulence regime in the presence of a wave breaking process that is restricting

the progression of the WT cascades and building up the wave intensity around the wave

breaking scale.

In trying to tackle OWT, we have ended with more questions than answers. We

presented an experimental setup for OWT that shows an inverse cascade of wave action
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Figure 4.34: Averaged wave action flux Qk versus wave number k for the inverse cascade
simulation of the SWE. A KZ solution implies that Qk should be a non-zero constant
in the inertial range
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Figure 4.35: PDF of the wave intensity in the direct cascade simulation of the SWE.
The straight line corresponds to a Gaussian distribution predicted by WT theory.

(in agreement with the intensity spectrum prediction), and subsequent development of

solitons. However, analysis of the energy and wave action fluxes, reveals that the LWE
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Figure 4.36: PDF of the wave intensity in the inverse cascade simulation of the SWE.
The straight line corresponds to a Gaussian distribution predicted by WT theory.

does not permit the realisation of KZ solutions. This is supported by a lack of KZ

spectra in the numerical simulations, Figures 4.25 and 4.26. Moreover, we observe good

agreements to the KZ solution in the numerical simulations for the SWE, although, the

non-local analysis of the spectra showed that they are not viable solutions. Additional

investigation into 1D OWT is needed before any concrete statements can be made.
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Chapter 5

Conclusions

Our main objective for this thesis, was to present a clear and concise description of

six-wave WT systems. The majority of wave systems can be explained in terms of three

and four-wave interactions, with only a few examples of six-wave systems known. We

introduced a generic 1D six-wave system that contains two invariants and systematically

applied WT theory in Chapter 2. With the general formulation set, we proceeded by

considering specific physical six-wave systems, namely, QT and 1D OWT. The layout

of the thesis, grants for the separation of the technical analysis of WT to the physical

aspects of real world problems, allowing for a transparent and straightforward approach.

In Chapter 2, we began by introducing the necessary statistical construction

for the development of WT. This took the form of the RPA field description and the

subsequent definitions of the amplitude PDFs and the GF. We began by considering a

general six-wave Hamiltonian system containing four-wave and six-wave contributions.

Moreover, we assumed that the system contained a linear frequency that does not permit

non-trivial solutions to the four-wave resonance condition. This invokes the application

of a CT to remove the leading non-resonance order, resulting in a re-definition of the

six-wave interaction coefficient. At this point, we used an iterative method from the

evolution equation for the wave amplitude to average over the fast linear timescale and

compute a nonlinear evolution equation for the GF. Subsequently, from this equation,

we derived evolution equations for the amplitude PDF and the KE. The main objective

in Chapter 2, was to analysis the stationary solutions of both the PDF equation and
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the KE. For the KE, we derived the thermodynamic and KZ solutions by applying the

ZT to the collision integral. The KZ solutions can only be realised if they in turn imply

convergence of the collision integral. We acquired necessary conditions for convergence

of the collision integral for the KZ solutions. Finally, we obtained a DAM for the six-

wave system by assuming super local wave interactions and determined the qualitative

behaviour of the fluxes.

In Chapter 3, we investigated the application of WT theory to Kelvin waves in

QT. Kelvin waves have been shown to interact via a six-wave process and we began by

introducing the original analysis of Kozik and Svistunov. However, with the aid of the

results of Chapter 2, we examined in more detail, the BSE description of Kelvin waves.

By introducing the LIA parameter, Λ, we were able to explicitly compute the leading

order contribution to Kelvin wave dynamics in the KE. Moreover, we noticed that the

Kelvin wave KE is considered on the LIA resonance surface, which is an approximation

to the real Kelvin wave resonance condition. We compensated for this, by deriving a

correction to the interaction coefficient, 1S1,2,3
4,5,6 . Indeed, we find that because the leading

LIA contribution is integrable, this correction has a leading order effect on the dynamics

of Kelvin waves - an essential step missed out in the previous analysis of [11]. We found

that the KS spectrum forces the collision integral to diverge, and therefore is not a

valid and realisable solution to the KE. Initially, this posed a problem, as the energy

transfer in Kelvin waves had been assumed to be local process. Fortunately, L’vov and

Nazarenko proposed a non-local theory for Kelvin waves, resulting in the LN spectrum

for the energy cascade. This has led to a debate on the non-locality analysis of the KS

spectrum and the subsequent non-local theory. We believe that due to the complexity of

the Kelvin wave theory, a numerical approach to be more suitable in settling the debate.

The full expression for the interaction coefficient for Kelvin waves is extremely

long, preventing any direct analysis, theoretically or numerically. This focused us to

examine the asymptotic limit in the region of one vanishing wave number. The asymp-

totic expression implied a drastic simplification of the interaction coefficient and led to

the LNE. As a high resolution numerical calculation of the BSE was beyond the scope

of this thesis, we numerically implemented the LNE and the TLIA model. In Subsec-
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tion 3.13.1, we observed a good agreement to the KS spectrum for the direct energy

cascade, however, it was of insufficient resolution for the distinction between the two

competing energy spectra. Nevertheless, in Subsection 3.13.2, we observed an excellent

agreement of the wave action spectrum to the non-local LN spectrum, supporting the

non-local analysis of the KS spectrum and the subsequent non-local theory for Kelvin

WT. Despite this, we observed sand-pile behaviour in the LNE, an indication of meso-

scopic WT. One factor contributing to this would be a lack of wave resonances, due to

an insufficient resolution - a fact not helped by the one-dimesionality of the problem.

The LNE would provide an interesting model for the investigation of mesoscopic WT

and would help understand the bursty behaviour we observe.

Although the wave action spectrum is important, it is only one indication of WT.

Further analysis in determining the constant prefactor of the energy flux is essential, as

both spectra involve different numerical prefactors. Ideally, this should be undertaken

in a high resolution direct numerical simulation of the unapproximated BSE. We plan

on implementing such an approach in the near future and hope to resolve the debate

about whether Kelvin wave interactions are local or not.

Finally in Chapter 3, we investigated a possible fluctuation relation for the time

fluctuations of the energy flux. We noted that the GCFR for entropy production has been

considered in various non-equilibrium systems and confirmed, however, a contradictory

nonlinear relation has also been suggested. Indeed, the subsequent analysis from the LNE

suggests a possible agreement with the GCFR at low disturbances. However, the result

is not of sufficient smoothness to determine any possible relation at high fluctuations.

This gives a positive indication that a high resolution and well averaged simulation, with

a possible extension to the theory to fluxes, would be beneficial.

In Chapter 4, we introduced the field of OWT, where waves of light propagat-

ing through a nonlinear medium weakly interact. One intriguing aspect of OWT is the

inverse cascade, where wave action is transported to large scales. This process is anal-

ogous to BEC in super-cooled alkali gases. We demonstrated this process with the first

experimental implementation of 1D OWT. We showed that by injecting high frequency

waves into a nonlinear LC cell, we observed a wave turbulent inverse cascade, followed by
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the condensation of photon into coherent solitons. Moreover, we supported the experi-

mental findings by performing numerical simulation of the LWE. Analysis of the inverse

cascade by WT theory predicted that a pure KZ state was not realisable. However, we

determined that the inverse cascade can be described by a mixed wave action spectrum

of thermal and non-equilibrium parts. The inverse cascade is associated with the growth

of nonlinearity of the system, gradually resulting in the formation of solitons by MI.

We observed solitons in both the experiment and numerical simulations, and found that

the system relaxes to a state of a single dominant soliton. During the transition to this

final state, we observed interactions between solitons and the random wave background.

With the aid of WT theory, we developed a strong WT description for the behaviour

of the system in the form of a WTLC. The WTLC diagrammatically represents the

coexistence of coherent solitons and the incoherent random wave background.

In addition to the experimental setup, we performed numerical simulations of the

LWE and SWE in non-equilibrium stationary regimes. This allowed for the subsequent

observation of the KZ solutions. Theoretically we discovered that the LWE emits fluxes

of opposite sign to what is necessary for the KZ states, and this was further verified by

a lack of agreement of the wave action spectrum to the KZ solutions. Conversely, this

problem does not occur for the SWE. However, we showed that both the KZ for the

SWE are non-local and thus, non-realisable. Surprisingly, we observed good agreements

to the KZ predictions for both the direct and inverse cascades. Further investigation

into the fluxes yielded a non-constant energy flux for the direct cascade - a constant

flux being an essential requirement for a local KZ solution. This indicates that we

observed a possible non-local wave action spectrum and if so, we are led to ask what

non-local process determines this power law? The answer to this can be determined

with a development of a non-local theory for 1D OWT in the short-wave limit - which is

a future goal of ours. The inverse cascade for the SWE yielded an excellent agreement

to the KZ solution and a good indication of a constant negative flux of wave action.

This suggests that the inverse cascade is of KZ type, contradicting the non-locality

analysis of Section 4.8 and thus raising questions in itself. Thus further analysis of the

numerical prefactor of the wave action spectrum is required and a possible explanation
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of the observations via a non-local theory.

We consider Chapter 4 as an initial investigation to OWT. Our analysis has

raised several new questions that need to be addressed with additional experiments and

numerical simulations. There is yet an experimental investigation into higher dimensional

OWT, which we believe is a natural extension to the research presented in this thesis. In

addition, the description of the evolution of solitons, with the possible understanding of

their behaviour and manipulation would be valuable to any future industrial applications

in nonlinear optics. Several applications of OWT have been recently suggested, including

a WT laser - the random coherence of light through weakly nonlinear wave interactions

and to applications in noise filtering and image reconstruction, which we plan on pursuing

in the near future.
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Appendix A

The Canonical Transformation

The CT enables the elimination of the non-resonant four-wave interactions, and the

subsequent description of the leading resonant six-wave interactions. The CT is derived

from an auxiliary Hamiltonian (2.29). The coefficients of the CT, (2.30), are derived by

applying formulae (2.31) to the auxiliary Hamiltonian. The first coefficient of the CT,
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(2.31a), is given by

(
∂c(k, t)

∂t

)
t=0

= −i

1

2

∑
1,2

Ṽ 1,2
k δ1,2

k c1c2 + 2
(
Ṽ k,1

2

)∗
δk,12 c∗1c2

+
1

2

∑
1,2

(
Ũk,1,2

)∗
δk,1,2c∗1c

∗
2 +

1

2

∑
1,2,3

W̃ 1,2
k,3 δ

1,2
k,3c1c2c

∗
3

+
1

6

∑
1,2,3

X̃1,2,3
k δ1,2,3

k c1c2c3 + 3
(
X̃k,1,2

3

)∗
δk,1,23 c∗1c

∗
2c3

+
1

6

∑
1,2,3

(
Ỹ k,1,2,3

)∗
δk,1,2,3c∗1c

∗
2c
∗
3

+
1

24

∑
1,2,3,4

(
Ãk,1,2,3,4

)∗
δk,1,2,3,4c∗1c

∗
2c
∗
3c
∗
4

+
1

24

∑
1,2,3,4

B̃1,2,3,4
k δ1,2,3,4

k c1c2c3c4 + 4
(
B̃k,1,2,3

4

)∗
δk,1,2,34 c∗1c

∗
2c
∗
3c4

+
1

12

∑
1,2,3,4

2C̃1,2,3
k,4 δ1,2,3

k,4 c1c2c3c
∗
4 + 3

(
C̃k,1,2

3,4

)∗
δk,1,23,4 c∗1c

∗
2c3c4

+
1

12

∑
1,2,3,4,5

T̃ 1,2,3
k,4,5 δ

1,2,3
k,4,5c1c2c3c

∗
4c
∗
5

+
1

120

∑
1,2,3,4,5

Q̃1,2,3,4,5
k δ1,2,3,4,5

k c1c2c3c4c5

+5
(
Q̃k,1,2,3,4

5

)∗
δk,1,2,3,45 c∗1c

∗
2c
∗
3c
∗
4c5

+
1

48

∑
1,2,3,4,5

2R̃1,2,3,4
k,5 δ1,2,3,4

k,5 c1c2c3c4c
∗
5

+4
(
R̃k,1,2,3

4,5

)∗
δk,1,2,34,5 c∗1c

∗
2c
∗
3c4c5

+
1

6

∑
1,2,3,4,5

(
S̃k,1,2,3,4,5

)∗
δk,1,2,3,4,5c∗1c

∗
2c
∗
3c
∗
4c
∗
5

 . (A.1)

The second coefficient, (2.31b), is derived by taking the time derivative of coeffi-

cient (A.1). Then each time derivative of variable ck can then be subsequently replaced

by using Formula (A.1).
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Appendix B

The Zakharov Transform

The ZT acts on six regions of the domain of the collision integral. It enables for five

of the regions to be transformed onto just one region with the aid of the symmetries in

the collision integral. In Chapter 2, we have already presented one transform. In this

Appendix, we give the four remaining transformations, given by

k̃1 =
k̃k̃
′
1

k̃
′
2

, k̃2 =
k̃2

k̃
′
2

, k̃3 =
k̃k̃
′
3

k̃
′
2

, k̃4 =
k̃k̃
′
4

k̃
′
2

and k̃5 =
k̃k̃
′
5

k̃
′
2

, (B.1a)

with Jacobian J = −
(
k̃/k̃

′
2

)6
.

k̃1 =
k̃k̃
′
4

k̃
′
3

, k̃2 =
k̃k̃
′
5

k̃
′
3

, k̃3 =
k̃2

k̃
′
3

, k̃4 =
k̃k̃
′
1

k̃
′
3

and k̃5 =
k̃k̃
′
2

k̃
′
3

, (B.1b)

with Jacobian J = −
(
k̃/k̃

′
3

)6
.

k̃1 =
k̃k̃
′
5

k̃
′
4

, k̃2 =
k̃k̃
′
3

k̃
′
4

, k̃3 =
k̃k̃
′
2

k̃
′
4

, k̃4 =
k̃2

k̃
′
4

and k̃5 =
k̃k̃
′
1

k̃
′
4

, (B.1c)

with Jacobian J = −
(
k̃/k̃

′
4

)6
.

k̃1 =
k̃k̃
′
3

k̃
′
5

, k̃2 =
k̃k̃
′
4

k̃
′
5

, k̃3 =
k̃k̃
′
1

k̃
′
5

, k̃4 =
k̃k̃
′
2

k̃
′
5

and k̃5 =
k̃2

k̃
′
5

, (B.1d)
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with Jacobian J = −
(
k̃/k̃

′
5

)6
.
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Appendix C

Derivation of the Interaction

Coefficients for the Biot-Savart

Equation

In this Appendix, we derive the interaction coefficients for the Hamiltonian description

for the BSE. Recall from Chapter 3 that the BSE Hamiltonian can be written as

H2 =
κ

8π

∫ [
2<
(
w
′∗(z1)w

′
(z2)

)
− ε2

]
|z1 − z2|

dz1 dz2, (C.1a)

H4 =
κ

32π

∫ [
3ε4 − 4ε2<

(
w
′∗(z1)w

′
(z2)

)]
|z1 − z2|

dz1 dz2, (C.1b)

H6 =
κ

64π

∫ [
6ε4<

(
w
′∗(z1)w

′
(z2)

)
− 5ε6

]
|z1 − z2|

dz1 dz2. (C.1c)

We would like to deal with Hamiltonian (C.1), in Fourier space by introducing

the wave amplitude variable ak. Using the Fourier representation, (2.16), we introduce

additional integration variables, the wave numbers. Moreover, invoking a cut-off at

a0 < |z1 − z2|, to avoid the singularity in the BSE (3.2), we derive the coefficients of

H2, H4 and H6 in terms of cosines in Fourier space [11]. Once Equations (C.1) are

written in terms of wave amplitudes, we can transform to variables z− and z+, defined

as z− = |z1− z2|, which ranges from the vortex core radius a0 to ∞, and z+ = z1 + z2,
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ranging from −∞ to∞. Cosine functions arise due to the collection of exponentials with

powers in variable z−. Subsequently, the remaining exponentials with powers of variable

z+ can be integrated out with respect to z+, yielding the corresponding delta function

for the conservation of wave numbers δ1,2,3
4,5,6 . The explicit formulae of the four-wave,

T 1,2
3,4 , and the six-wave, W 1,2,3

4,5,6 , interaction coefficients can be expressed as [11]

ωk =
κ

2π
[A−B] , (C.2a)

T 1,2
3,4 =

1

4π
[6D − E] , (C.2b)

W 1,2,3
4,5,6 =

9

4πκ
[3P − 5Q] , (C.2c)

where A, B, D, E, P and Q are integrals of cosines:

A =

∫ ∞
a0

1

z−
k2Ck dz−, (C.3a)

B =

∫ ∞
a0

1

z3
−

[
1− Ck

]
dz−, (C.3b)

D =

∫ ∞
a0

1

z5
−

[
1− C1 − C2 − C3 − C4 + C3

2 + C43 + C4
2

]
dz−, (C.3c)

E =

∫ ∞
a0

1

z3
−

[
k1k4

(
C4 + C1 − C43 − C4

2

)
+ k1k3

(
C3 + C1 − C43

−C3
2

)
+ k3k2

(
C3 + C2 − C43 − C3

1

)
+ k4k2

(
C4 + C2 − C43

−C3
2

)
] dz−, (C.3d)

P =

∫ ∞
a0

1

z5
−
k6k2[C2 − C5

2 − C23 + C5
23 − C4

2 + C45
2 + C4

23 − C6
1

+C6 − C56 − C6
3 + C56

3 − C46 + C456 + C46
3 − C12

]
dz−, (C.3e)

Q =

∫ ∞
a0

1

z7
−

[1− C4 − C1 + C4
1 − C6 + C46 + C6

1 − C46
1 − C5 + C45

+C5
1 − C45

1 + C65 − C456 − C56
1 + C23 − C3 + C4

3 + C13 − C4
13

+C6
3 − C46

3 − C6
13 + C5

2 + C5
3 − C45

3 − C5
13 + C6

2 − C56
3 + C12

+C4
2 − C2] dz−, (C.3f)

where the variable, z− = |z1 − z2| and the expressions C, are cosine functions such

that C1 = cos(k1z−), C4
1 = cos((k4 − k1)z−), C45

1 = cos((k4 + k5 − k1)z−), C45
12 =
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cos((k4 + k5 − k1 − k2)z−) and so on.

The trick used for explicit calculation of the analytical form of these integrals

was suggested and used in [7]. First, we apply integration by parts to all the cosine

integrals, so they can be expressed in the form of

∫ ∞
a0

cos(z)

z
dz. Then, we use the

following cosine identity for this integral [173], given by

∫ ∞
a0

cos(z)

z
dz = −γ − ln(a0)−

∫ a0

0

cos(z)− 1

z
dz,

= −γ − ln(a0)−
∞∑
i=1

(
−
(
a2

0

))i
2i (2i)!

,

= −γ − ln(a0) +O(a2
0). (C.4)

For example, let us consider the following general cosine expression that can be found

in Equation (C.3c):

∫ ∞
a0

z−3 cos(Kz) dz, where K is an expression that involves a linear

combination of wave numbers, i.e. K = k1 − k4. Therefore, applying integration by

parts to this integral yields

∫ ∞
a0

cos(Kz)
z3

dz =

[
−cos(Kz)

2z2

]∞
a0

+

[
K sin(Kz)

2z

]∞
a0

− K
2

∫ ∞
a0

cos(Kz)
z

dz,

=
cos(Ka0)

2a2
0

− K sin(Ka0)

2a0
− K

2

2

∫ ∞
Ka0

cos(y)

y
dy. (C.5)

Subsequently, we consider the Taylor expansion cos(Ka0) and sin(Ka0) in powers of

small a0, and apply the cosine formula, (C.4), to the last integral. This method give

the final expression of

∞∫
a0

cos(Kz)
z3

dz =
1

2a2
0

− 3K2

4
+
K2

2
[γ + ln(|Ka0|)] +O(a2

0). (C.6)

With a similar application to the other cosine integrals, we produce an expansion of the

interaction coefficients (C.3) in terms of the cut-off parameter, a0. After the summation

of each contribution we find that all negative powers of a0 (that will diverge in the limit

a0 → 0) cancel in the final expression for each interaction coefficient. Neglecting,
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terms of O(a0) or higher1, our final expression for the interaction coefficients involve

the leading logarithmic divergent and the O(1) contributions given by [7]

Λ0 = ln(`/a0), (C.7a)

ωk =
κk2

4π

[
Λ0 − γ −

3

2
− ln(k`)

]
, (C.7b)

T 1,2
3,4 =

1

16π

[
k1k2k3k4 (1 + 4γ − 4Λ0)−F1,2

3,4

]
, (C.7c)

W 1,2,3
4,5,6 =

9

32πκ

[
k1k2k3k4k5k6 (1− 4γ + 4Λ0)− G1,2,3

4,5,6

]
, (C.7d)

where F1,2
3,4 and G1,2,3

4,5,6 are defined in the next Section.

C.1 The Four-Wave Function F1,2
3,4

A rather cumbersome calculation, presented above, results in an explicit equation for the

four-wave interaction function F1,2
3,4 in Equation (3.13b) and Equation (C.7c). Function

F1,2
3,4 is a symmetrical version of F 1,2

3,4 : F1,2
3,4 =

{
F 1,2

3,4

}
S

where the operator {. . . }S
implies symmetry with respect to k1 ↔ k2, k3 ↔ k4 and {k1,k2} ↔ {k3,k4}. The

definition of F 1,2
3,4 is given by

F 1,2
3,4 ≡

∑
K∈K1

K4 ln(|K|`) + 2
∑
i,j

∑
K∈Kij

kikj K2 ln(|K|`) . (C.8)

In Equation (C.8),
∑

i,j denotes sum of four terms with respect to

(i, j) =
{

(4, 1), (3, 1), (3, 2), (4, 2)
}

, and K is either a single wave number or a linear

combination of wave numbers that belong to one of the following sets:

K1 =
{−[1],− [2],− [3],− [4],+ [32],+ [43],+ [42]

}
, (C.9a)

K41 =
{

+[4],+ [1],− [43],− [42]
}
, (C.9b)

K31 =
{

+[3],+ [1],− [43],− [32]
}
, (C.9c)

K32 =
{

+[3],+ [2],− [43],− [31]
}
, (C.9d)

K42 =
{

+[4],+ [2],− [43],− [41]
}
. (C.9e)

1These terms will vanish in the limit as a0 → 0.
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Here we have used the following notations with α, β, γ = 1, 2, 3, 4: [α] = kα,

[β] = −kβ, [αβ ] = kα − kβ, [
αγ ] = kα + kγ , [βγ ] = −kβ − kγ . The + or − before [. . . ]

refer to prefactors +1 or −1 in the corresponding terms in the sum, e.g.

K4 ln(|K|`) for K ∈ {−[1]} is − k4
1 ln(|k1|`) ,

K4 ln(|K|`) for K ∈ {+[42]} is + (k4 − k2)4 ln(|k4 − k2|`) ,

kikj K2 ln(|K|`) for i = 4, j = 1,

K ∈ {−[43]} is − k4k1 (k4 + k3)4 ln(|k4 + k3|`) .

C.2 The Six-Wave Function G1,2,3
4,5,6

Function G1,2,3
4,5,6 =

{
G1,2,3

4,5,6

}
S

is the symmetric version of function G1,2,3
4,5,6. The opera-

tor {. . . }S denotes symmetry with respect to k1 ↔ k2 ↔ k3, k4 ↔ k5 ↔ k6 and

{k1,k2,k3} ↔ {k4,k5,k6}. The definition of G1,2,3
4,5,6 is derived from the previous Sec-

tion and is given by

G1,2,3
4,5,6 ≡

∑
K∈K3

k6k2K4 ln(|K|`) +
1

18

∑
K∈K4

K6 ln(|K|`) , (C.10a)

where

K3 =
{

+[2],−[52],−[23],+[523],−[42],+[45
2 ],+[423],−[61],+[6],−[56],−[63],

+[56
3 ],−[46],+[456],+[46

3 ],−[12]
}
, (C.10b)

K4 =
{−[4],−[1],+[41],−[6],+[46],+[61],−[46

1 ],−[5],+[45],+[51],−[45
1 ],

+[65],−[456],−[56
1 ],+[23],−[3],+[43],+[13],−[413],+[63],−[46

3 ],

−[613],+[52],+[53],−[45
3 ],−[513],+[62],−[65

3 ],+[12],+[42],−[2]
}
. (C.10c)
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Appendix D

The Asymptotic Expansion of

cW1,2,3
4,5,6

D.1 The Analytical Expression for cW1,2,3
4,5,6 with Two Small

Wave Numbers

In this Section, we will consider the asymptotic limit of cW1,2,3
4,5,6 when two wave num-

bers tend to zero. In order to achieve this, we will use the terms of the interaction

coefficient cW1,2,3
4,5,6 given in Equations (3.19) and (3.25), and apply the consider the

parametrisation of the LIA resonance condition (2.112). We presented in Section 3.6,

using the Mathematica package, the Taylor expansion of cW1,2,3
4,5,6 with respect to one

wave number, e.g. k6, we obtain a remarkably simple result - expression (3.27a).

Now we will consider the asymptotical limit when two of the wave numbers, say

k3 and k6 (let them be on the opposite sides of the resonance condition), are less than

the other wave numbers in the sextet. Again, by using Mathematica, we can compute

the Taylor expansion of cW1,2,3
4,5,6 with respect to two small wave numbers, k3 and k6,

giving

lim
k3 → 0

k6 → 0

cW1,2,3
4,5,6 = − 3

4πκ
k2

1k3k
2
4k6. (D.1)
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Simultaneously, in the same limit, the parametrisation for the LIA resonance condition,

(2.112), implies

lim
k3 → 0

k6 → 0

k2 = k4 , lim
k3 → 0

k6 → 0

k5 = k1. (D.2)

Therefore, Equation (D.1) coincides with Equation (3.27a). Note, that this was not

obvious a priori, because formally, Equation (3.27a), was obtained when k6 was much

less than the rest of the wave numbers, including k3.

For reference, we provide expressions for the different contributions to the full

six-wave interaction coefficient, cW1,2,3
4,5,6, given in Equations (3.19) and (3.25). Then in

the limits of k3,k6 → 0, each contribution to the full six-wave interaction coefficient

146



can be expressed as

1W
1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
3

2
ln (k`)− 1

24
(49

− (1− x)2(7 + 10x+ 7x2)

x2
ln |1− x|

+ 2x(12 + 7x) ln |x| − 7
(1 + x)4

x2
ln |1 + x|

)]
, (D.3a)

1
1Q

1,2,3
4,5,6 = 1

2Q
1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
−3

2
ln (k`) +

1

48
(59

− (1− x)2(9 + 10x+ 9x2)

x2
ln |1− x|

+ 2

(
9x2 + 14x− 6 +

2

1− x

)
ln |x|

− 9
(1 + x)4

x2
ln |1 + x|

)]
, (D.3b)

1
3Q

1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
3

2
ln (k`) +

1

48

(
7

+
(1− x)2

(
1 + x2

)
x2

ln |1− x|

+ 2

(
1− 5x+ x3

1− x

)
ln |x|+ (1 + x)4

x2
ln |1 + x|

)]
, (D.3c)

1S
1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
1

6

(
1 + x

1− x

)
ln |x|

]
, (D.3d)

1W1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
1− 1

6

(
1 + x

1− x

)
ln |x|

]
, (D.3e)

x = k4/k1.

The other possibility is for the two vanishing wave numbers to be on the same

side of the sextet. We have checked that when the LIA resonance condition is satisfied,

it also implies (3.27a).
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D.2 The Analytical Expression for cW1,2,3
4,5,6 with Four Small

Wave Numbers

We calculate the asymptotic behaviour of cW1,2,3
4,5,6 when four wave numbers are smaller

than the remaining two. Again we utilise the Mathematica package and note, that the

parametrisation for the LIA resonance condition automatically implies k2, k3, k4, k6 �

k1, k5 from Equations (D.2). Therefore, we have

lim
k2,3,4,6→ 0

cW1,2,3
4,5,6 = − 3

4πκ
k2

1k3k
2
4k6. (D.4)

Thus, we have obtained an expression which coincides with (3.27a). We conclude that

Equation (3.27a) is valid when k6 is much smaller than just one other wave number in

the sextet, say k, and not only when it is smaller than all of the remaining five wave

numbers.

For reference, we present the term by term results for each contribution of

cW1,2,3
4,5,6 , in the limit k2, k3, k4, k6 � k1, k5:

1W
1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
−1 +

3

2
ln(k`) + 0

]
,

1
1Q

1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
1

2
− 3

2
ln(k`)− 1

6
ln

(
k4

k1

)]
,

1
2Q

1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
1

2
− 3

2
ln(k`)− 1

6
ln

(
k4

k1

)]
,

1
3Q

1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
1 +

3

2
ln(k`) +

1

6
ln

(
k4

k1

)]
,

1S
1,2,3
4,5,6 → − 3

4πκ
k2

1k3k
2
4k6

[
0 + 0 +

1

6
ln

(
k4

k1

)]
.

Hence the the sum of these contributions give

cW1,2,3
4,5,6 → −

3

4πκ
k2

1k3k
2
4k6 [1 + 0 + 0] . (D.5)
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Appendix E

The Intensity Spectrum

Experimentally, due to the difficulty in measuring the phase of ψ(x, z), we cannot cal-

culate nk easily. However, we can measure the spectrum of Intensity Nk = |
(
|ψ|2

)
k
|2.

Theoretically, we are able to relate the scaling of Nk with that of the KZ solution derived

from the KE, (2.94). In this Appendix, we present the derivation of this relationship.

Firstly, we must consider the expression for the light intensity in k-space. Using the

usual definition for the Fourier transform in R, this implies

Ik = (|ψ|2)k =

∫
ψ(x)ψ∗(x)e−ikx dx, (E.1a)

=

∫
a1a
∗
2 δ

k,2
1 dk1 dk2. (E.1b)

Hence, for the intensity spectrum Nk = 〈|Ik|2〉 this gives

〈|Ik|2〉 =

∫
〈a1a2a

∗
3a
∗
4〉 δ

k,4
1 δk,23 dk1 dk2 dk3 dk4. (E.2)

The next step is to average over phases, using our definition of an RPA field. This

implies that only wave number pairings k1 = k4, k2 = k3 and k1 = k3, k2 = k4 will

contribute to the intensity spectrum. Therefore, the intensity spectrum can be expressed
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as

Nk =

∫ 〈
|a1|2

〉 〈
|a2|2

〉
δkδkdk1 dk2 +

∫ 〈
|a1|2|a2|2

〉
δk,21 δk,21 dk1 dk2(E.3a)

=

(∫
n1δ

k dk1

)2

+

∫
n1n2 δ

k,2
1 dk1 dk2. (E.3b)

We will examine the intensity spectrum, when the system is in a statistically non-

equilibrium stationary state and the KZ solution is realised. Therefore, we can assume

that the wave action spectrum is of the KZ form, i.e. nk = Ck−x, where C is a

constant determining the amplitude of the spectrum and x is the spectrum exponent.

The first term of Equation (E.3b) contains a Dirac delta function, centred around k = 0.

Therefore, this implies that the contribution from this term will only appear at the zeroth

mode1. Conversely, the second term in Equation (E.3b) will contribute to the whole of

k-space, and will determine the scaling for the intensity spectrum. We can manipulate

the second term, by using the Dirac delta function to eliminate one of the integration

variables, i.e.

∫
n1n2 δ

k,2
1 dk1 dk2 =

∫
n1n1−k dk1

= C2

∫
k−x1 |k1 − k|−x dk1. (E.4)

If Expression (E.4) converges on the KZ solution, then the integral will yield the intensity

spectrum power law. To check for convergence, we change the integration variable to a

non-dimensional variable s = k1/k. Then, the intensity spectrum can be approximated

by the integral:

Nk ≈ C2k−2x+1

∫ ∞
−∞

s−x|s− 1|−x ds.

≈ C2k−2x+1

∫ ∞
0

s−x
(
|s− 1|−x + |s+ 1|−x

)
ds. (E.5)

1Numerically and experimentally this may be seen as a contribution around k = 0.
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Convergence must be checked in the regions where s → 0 and s → ∞. Therefore, as

s→ 0, Relation (E.5) behaves as

∫
0
s−x

(
|s− 1|−x + |s+ 1|−x

)
ds ∝

∫
0
s−x ds, (E.6)

and therefore, the integral converges for x < 1.

In the limit when s→∞, integral (E.5) can be expressed as

∫ ∞
s−x

(
|s− 1|−x + |s+ 1|−x

)
ds ∝

∫ ∞
s−2x ds. (E.7)

The right-hand side of Expression (E.7) converges for x > 1/2. Therefore, the intensity

spectrum integral, (E.5), is convergent in the region:

1/2 < x < 1, (E.8)

Experimentally, we can only set up the inverse cascade scenario. Subsequently, we only

measure the intensity spectrum in the inverse cascade regime. The exponent of the KZ

solution for the inverse cascade is given in Equation (4.20b), which lies inside the region

of convergence (E.8), and corresponds to an intensity spectrum of

Nk ∝ k−1/5. (E.9)
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Appendix F

Non-Dimensionalisation of the

Optical Wave Turbulence Models

The dimensional models for OWT contain several physical constants and parameters.

For convenience and clarity, it is preferred to consider dimensionless models. Therefore,

we present our non-dimensional descriptions for the LWE, (4.6) and the SWE, (4.8).

We follow the non-dimensionalisation that was performed in [154], where the authors

introduced the following dimensionless variables:

ψ = (ψc/
√
α)ψ∗(x∗, z∗), x∗ = x/xc

√
α, z∗ = z/zcα (F.1)

with ψ2
c = 2K/ε0k

2
0n

4
al

4
ξ , zc = 2ql2ξ and xc = lξ. The electrical coherence length of the

LC was already introduced in Chapter 4 and is defined as lξ =
√
πK/2∆ε(d/V0).

Non-dimensionalisation (F.1), expresses the LWE in the form:

i
∂ψ

∂z
= −∂

2ψ

∂x2
− 1

2
ψ|ψ|2 − 1

2α
ψ
∂2|ψ|2

∂x2
, (F.2)

where α is a tunable parameter that adjusts the strength of the second nonlinear term.

The weak nonlinearity of the system can be adjusted by the amplitude of ψ(x, z),

however, parameter α, provides additional control on the balance of the two nonlinear

terms. This is important as the long-wave limit implies that (k∗)2 /α� 1, where k∗ is
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the dimensionless wave number.

Similarly, we can derive a non-dimensional model for the SWE. Using the same

dimensionless variables, (F.1), we can represent the SWE in the dimensionless form:

i
∂ψ

∂z
= −∂

2ψ

∂x2
+

1

2
ψ
∂−2|ψ|2

∂x−2
. (F.3)
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