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Thermodynamic models were constructed for a calorically imperfect gas and for

a non-ideal gas. These were incorporated into a quasi one dimensional flow solver to
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the perfect gas model. The models were also incorporated into a two dimensional flow

solver to investigate their effects on transonic airfoil flows. Specifically, the calculations

simulated airfoil testing in a proposed high Reynolds number heavy-gas test facility. The

results indicated that the non-idealities caused significant differences in the flow field,

but that matching of an appropriate non-dimensional parameter led to flows similar to

those in air.
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Chapter 1

Introduction

In the past few decades, the design and development of large transport aircraft has

relied on wind tunnel data taken at significantly lower Reynolds numbers than those

found in operation. The drawbacks of this subscale data become apparent when one

considers phenomena such as attachment line transition or similar aspects of boundary

layer behavior at high Reynolds numbers.

The need for accurate wind tunnel data clearly mandates the construction of a

suitable high Reynolds number test facility. However, the cost of building a large at-

mospheric tunnel and large tunnel models is prohibitive. Higher Reynolds numbers are

often achieved by pressurizing tunnels to effectively increase the density of the air. This

alternative is practical only up to a point.

A potential solution following the same basic idea relies upon the use of gases with

significantly higher molecular weights than air. Candidate gases include Freon-12 or

Sulfur Hexaflouride (SF 6 ), but the use of non-breathable gases clearly causes some

problems. These problems will likely be insignificant to the cost and operational ad-

vantages of such a facility. Combining heavy gases with pressurization would allow test

Reynolds numbers comparable to those on large transports in flight [1].

One complication is that Freon and SF6 have significantly different thermodynamic

properties than air, especially at elevated pressures. Heavy gases do not follow the ideal

equation of state P = pRT nearly as well as air does, nor do they maintain a constant

ratio of specific heats 7 - cp/c, over any significant temperature range. The following

discussion will attempt to quantify the potential importance of these effects through a

computational study.



Chapter 2

Real Gases

The thermodynamic relations specifically subject to real gas effects are the state equa-

tion

p = pRT (2.1)

and the caloric equation,

h cp dT = cpT (2.2)

these particular forms only being valid for a perfect gas. Real gas effects may be divided

into two categories:

1. Calorically imperfect gases for which c, depends on temperature, but which still

satisfy equation (2.1).

2. Non-ideal gases for which c, depends on both pressure and temperature, and

equation (2.1) no longer holds.

The first effect results from the introduction of multiple vibrational modes for poly-

atomic molecules which become more important at higher temperatures. The second

effect depends on intermolecular forces which become stronger as a gas moves towards

liquefaction, ie. higher pressures and lower temperatures.

2.1 Calorically Imperfect Gases

The only difference between a perfect and an imperfect gas stems from the dependence

of c, on temperature in the imperfect case. A cursory examination of experimental data

for SF6 shows that, in the range of temperatures likely to be found in a wind tunnel



test, this dependence is linear in temperature.

cp(T) = a + bT (2.3)

Therefore, equation (2.2) becomes

bT2
h(T) = aT + 2  (2.4)

which may be easily inverted to find T(h).

T(h) = )+ L (2.5)

2.2 Non-Ideal Gases

The state equation for a perfect gas (2.1) derives from a kinetic model of gas molecules

which assumes that the molecules are point masses and that they do not exert any forces

on one another except instantaneously during collisions. Clearly these assumptions

become less accurate as the molecular weight of the gas increases. Van der Waals's

equation

(p + p2a) (1 - p) = pRT (2.6)

contains two correction to equation (2.1): a corrects the pressure to account for inter-

molecular attraction, and 3 corrects for the volume of the molecules themselves.

Using a non-ideal state equation like Van der Waals's causes many serious compli-

cations as enthalpy, cp, 7, etc. now depend on pressure as well as temperature. Despite

these complications, enthalpy and entropy must remain state variables regardless of the

form of the state equation. That is, local entropy and enthalpy must depend only on

the local pressure and temperature and not on the upstream conditions (ie. the gas

history).

Liepmann and Roshko [2] equate this condition with the requirement that a canonical

equation of state must have one of these four forms:

e = e(a,p) (2.7)



h = h(s,p) (2.8)
f = f(T,p) (2.9)

g = g(T,p) (2.10)

Here e = h - p/p is the usual internal energy, f e - Ts is the free energy, and

g = h - Ts is the free enthalpy.

For a conventional flow solver, the enthalpy defintion (2.8) appears best; however,

specifying the state in this specific form is not convenient because the entropy s is not

readily available to the flow solver. Liepmann and Roshko propose a more suitable form

= Z(p,T) (2.11)
pRT

which requires T(p, h) to have a form which makes h a state variable.

For a Van der Waals's gas

Z = 1 p (2.12)1- pp RT

which clearly approaches the ideal state equation for a, / -- 0. For typically small

values of a and 0

Z 1+P)RT RT RT (2.13)

where the second approximation is made to make Z = Z(p, T) explicitly. Liepmann and

Roshko write equation (2.13) in more general form as

Z = I +) (2.14)

with Pc and T, being the critical pressure and temperature of the gas, and 0 evidently

being a universal function which they tabulate for gases other than air but with ap-

proximately the same molecular weight. For heavier gases such as SF6 it is best to fit a

curve to experimental data as explained in Appendix A. For SF6 , a good curve fit takes

the form

( ')= +e C + c() + co (2.15)

It is now necessary to determine the specific heat capacity Cp(p, T) so that the enthalpy

function h(p, T) can be obtained. Liepmann and Roshko combine two forms of the



equation of state h(p, T) and s(p, T) into the fundamental reciprocity relation between

h(p, T) and p(p, T)
Oh 1 O(l/p) (2.16)
Op p OT

which is valid for any gas. Combining this with the state equation (2.11) gives

Oh RT 2  OZ) RTc (T) (2.17)

Op p OT Pc T p (.

Since Oh/Op = F(T) only depends on the temperature, both h and cp must be linear in

the pressure as follows.

h(p, T) = /p(T)dT + p F(T) (2.18)

Oh
cP(p,T) = (2.19)

Od

= c-p(T) + p d (2.20)

= ,(T) - R Z T 0" (2.21)

As in the case of the calorically imperfect gas, cd(T) has the form

cp(T) = a+ bT (2.22)

Substituting this into the enthalpy equation gives

bT 2 pRT Tc
h(p,T) = aT + +  c '(-) (2.23)

2 Pc T

It is also possible to determine the caloric equation by expressing the internal energy

(e) as e(p,T) [3].



Chapter 3

Solving the Euler Equations

These gas models may be readily integrated into an existing flow solver which solves

the integral form of the steady Euler equations:

IpU..h dA = 0 (3.1)

(p -A + ph)dA = 0 (3.2)

ho - h + = constant (3.3)
2

These equations are exact for any fluid flow, but must be supplied with a state equation

to relate the pressure p to the enthalpy h and the density p. In addition, the upwinding

scheme used to capture the shocks requires the local Mach number while the boundary

conditions and evaluation of shock losses require the local stagnation conditions.

It is desirable to nondimensionalize the equations, and the following scheme is used

where () denotes the dimensional quantitiy and (),.f denotes a reference quantity:

P = P/Pref

P = A/Pre

T = 'I/Tr

.Pr.!

Furthermore, cp, c., and R are nondimensionalized using R resulting in several new

nondimensional parameters.

a = a/R
bTrv
2a

S= Prf/Pc

T = Trf/Tc



For the results presented here, the reference conditions are chosen to be stagnation

conditions.

3.1 Calorically Imperfect Gas

The nondimensional form of the caloric equation which governs the behavior of the

imperfect gas is:

h(T) = f cdT (3.4)

= aT + aT 2  (3.5)

which may be inverted to give T as a function of h.

-1 + I1+43h/a (3.6)T(h) = (3.6)
2P

With T obtained from h, p may be determined using the ideal gas law (2.1) and a

specified value of p. The local Mach number comes from the familiar defintion of the

speed of sound:

a2  LP =yT (3.7)

The local value of 7 may be found from equation (2.3).

c - a + 2aPT
c7 - - 2afT (3.8)
c, 1 - a - 2apT

The last remaining difficulty is the determination of the isentropic relations between

pressure, density, and temperature. These relations are necessary to calculate stagnation

conditions from flow conditions. The familiar perfect gas relations

T + 2 ) p T _-fl_ T =-1
To Po To Po To

do not hold for a calorically imperfect gas.

The proper forms are obtained from the formal statement,

dh = T ds + d (3.9)
P



and for an isentropic process ds = 0:

dh - (3.10)
P

From the definition of enthalpy dh = cp dT, and for an ideal gas p/p = T, so equation

(3.10) becomes
c,(T) dT dp

= - (3.11)T p

Integrating this equation gives

- = exp(-alogT + 2ap(1 - T)) (3.12)
p

and the isentropic density relation then follows directly from the state equation.

P p T(ho)
- (3.13)Po Po T(h)

Strictly speaking, solution of the Euler equations requires nothing else. However, if

a Newton-Raphson technique is used, all of the necessary equations must be linearized

for the Jacobian matrix. In the case of the calorically imperfect gas, the equations

are slightly more complicated than for a perfect gas, but they may still all be written

explicitly. Therefore the linearizations are easily done by differentiating the relevant

equations.

3.2 Non-Ideal Gas

The nondimensional equations describing the non-ideal gas are the state equation

p + P=f •( ) (3.14)
pT Zo

and the caloric equation.

h(p, T) = aT + aTT2 + p- ( (3.15)

Zo is another parameter which may be described in terms of r and 7.

Zo = = 1 + por4( 1 ) (3.16)
poTo TTo



The non-ideal gas presents some difficulty as the enthalpy depends on the temper-

ature and the pressure. Therefore, from equations (3.14) and (3.15), p and T may be

found using a Newton-Raphson system to drive the following residuals to zero.

Rj(p,T) = -T + (3.17)
TT 

Zo

R 2(p,T) = h- aT + a/3T2 +- p- ()] (3.18)o

The local Mach number depends on the speed of sound which must be found from

the definition:

a2 = P. (3.19)

Op

This is calculated as follows:

dp = p d + dh (3.20)
p h Ah ,

but dh = dp/p for an isentropic process, and hence

Op a Ih~a Op . (3.21)

The local y really has no meaning and need not be calculated.

The extra complexity of the non-ideal gas appears in the calculation of the sensitiv-

ities. Since p and T are found by an iterative process they must be found by perturbing

the Jacobian matrix of the converged Newton-Raphson system. A perturbation in h

and p is related to a perturbation in p and T by the condition that the R(p, T, h, p) must

remain zero.

2( [ h [ Re R ] p
= 0 = + (3.22)

6R2  - 6P [W T

Numerically inverting this system gives the required derivatives.{ p 6h= a O (3.23)
6T -OT T ,6p

The second derivatives are found in a similar fashion starting instead with Q and OR

as the residuals. Using a subscript notation for the derivatives ( - ph):

SS [[ 0 9 ]+ Op, h j (3.24)
6R2h 2& aTh



A similar system with Rip and R 2p as residuals is also formed. As above, numerically

inverting gives h = = , etc. These manipulations are implemented in

the source code in Appendix B.

The last remaining task is calculation of the stagnation conditions and, again, it

is not possible to find an analytic expression. Another Newton-Raphson system is

constructed where the first residual comes from equation(3.15):

R1 = ho - h(p,T) (3.25)

The second residual is derived by rearranging equation(3.9)

dh dp
ds = pT(3.26)

T pT
- d(p F) dp-= dT + Z (3.27)

T T p
cP 1 dp-dT + d(pr- 4') -1 rd(p) dp (3.28)
T TT P

Integrating gives:

s(p,T) =- edT+ pr -b'- b] - In(p) (3.29)

The second residual may then be formed

R 2 = s1 - s(p, T) (3.30)

where sj is the entropy of the static conditions..

Driving these two residuals to zero gives the stagnation conditions po, To. The

derivatives ), •, etc, needed for the Newton-Raphson solver may then be found by

perturbing the converged Jacobian matrix and relating the resulting derivatives to the

static conditions through the chain rule and equations (3.15) and (3.29). This process

is identical to the one used above to find p and T and their derivatives.



Chapter 4

Results

After developing the models for the calorically imperfect and non-ideal gases, the next

step was to evaluate the differences these changes caused in inviscid flows. The primary

quantities of interest are the location of shocks and their strength which is defined as the

ratio of of stagnation pressures across the shock. For a perfect gas, the shock strength

may be expressed as a function of the upstream Mach number M 1.

2_ 1+ M 2 _ 1) 1)M,2Po 7 + 1 (M ( 1)M 2 + 2(4.1)

However, for the non-ideal gas, this relation must be calculated numerically.

Streng

M1

Figure 4.1: Stagnation Pressure Ratio(Strength) vs. Upstream

SF6 at latm and 3atm

Mach No. for Air and



Macl

X

Figure 4.2: One dimensional Duct Flow

4.1 One Dimensional Duct Flow

The first comparison of the different gas models was a study of the flow in a converg-

ing/diverging nozzle using a quasi one dimensional Euler solver. This flow is character-

ized by sonic flow at the throat with a shock downstream to match the specified exit

pressure as shown in figure(4.2).

As a basis for comparison of the different gas models in a duct flow, the non-

dimensional reference enthalpy (hoPo/Po) was made equal for all three cases.

he - (4.2)
7-1

= a(1 + 3) (4.3)

a(1 + 3) + VrC'() (44)
Zo

With ho held constant, 7 therefore depends on a, P, r, and r. The exit presure ratio is

also held constant. Under these conditions, the slope of the c, versus T curve (13) had

little or no effect on shock strength or position relative to the perfect gas as shown in

figure(4.3).
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Figure 4.3: Shock Strength and Location vs. P

For the non-ideal gas, 7r and T are not really independent parameters and may be

combined into Zo. Figure(4.4) shows the variation in shock strength and position as

functions of Zo and the corresponding perfect gas results with 7 adjusted to preserve the

stagnation enthalpy as above. These plots clearly show that it is not possible to mimic

the effects of the non-ideality by changing 7 as in the case of the calorically imperfect

gas. The difference in shock strength and position becomes larger and larger as the gas

becomes less ideal.
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The last test conducted with the one dimensional flow model was to determine the

effects of the various gas models on the upwinding scheme needed for stability of the

numerical scheme. The flow solver drives the momentum equation residual to zero,

R1 = piqAi(qT - qi-l) + piAi - pi-1Ai + + (Ai - Ai-1) (4.5)

where the upwinded speed is defined as

fi = qi - PA(qj - qi-) (4.6)

and 14 is non-zero only if Mi is greater than Me.

KY [1- (4.7)pi(Mj(qj)) = - 1 _ (4-7)

Initially, the exact 7 was calculated at each node along with all the necessary lin-

earizations and used in the upwinding scheme. Under these conditions, the flow solver

converged with Me <! 1. However, the upwinding is relatively insensitive to the exact

value of 7 even though the stability analysis used to derive equation(4.7) ignored 7

perturbations. Using a constant value of 7 had absolutely no effect on the viable range

for M, or the rate of convergence.

4.2 Two Dimensional Results

The subroutine which appears in Appendix B was incorporated into MSES, the multi-

element version of the two dimensional transonic airfoil design/analysis code ISES [4].

Numerical experiments carried out were limited to single-element inviscid cases to more

clearly demonstrate the effect of the new gas model. Figure(4.5) shows an overlay of the

Mach distributions for a test airfoil run in SF6 at two different stagnation conditions and

in air. All three cases are at matched freestream Mach number and lift coefficient. Note

that they are not at the same angle of attack. The SF6 is characterized by stagnation

pressures of latm and 3atm and a stagnation temperature of 310K.

Airfoils tests in heavy gases will be much more worthwile if some relationship may

be found so that the tests reflect the airfoil performance in air. The only parameters
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Figure 4.5: Comparison of Air and SF6 at Fixed M and CL

which may be adjusted in a wind tunnel test are the Mach number, stagnation con-

ditions, and angle of atttack or CL. Figure(4.5) shows an attempted match keeping

M and CL constant: clearly, this is not an effective technique. After a good deal of

experimentatation, the best match was achieved by running the different gases at the

same M* which is defined as the ratio of freestream velocity to the speed of sound at

sonic conditions. Figure(4.6) shows the case in air from figure(4.5) compared with SF6

(latm and 3atm) at the same M*.
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Air
SF6 (Utlm)

Figure 4.7: Comparison of SF6 at latm and 3atm to Air, M* = .732, CL = .75

A case with a weaker shock, figure(4.7) was used to further verify this relationship.

The match is slightly worse, but this is to be expected because a weak shock is much

more sensitive to small changes in M than a strong one. As an alternative to matching

M*, Anderson [5] proposes matching the small disturbance similarity parameter x and

ACL where

(M(( 7 ' + 1))2/3

A = 1 - M2

(4.8)

(4.9)

IV 2.

Figure 4.8: Comparison of SF6 at latm and 3atm to Air, x = .439, ACL = 2.18
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Chapter 5

Conclusions

The models derived above adequately describe the thermodynamic behavior of non-ideal

and calorically imperfect gases. Despite some minor complications in linearizing these

models, they were implemented in routines suitable for incorporation into existing flow

solvers based on Newton's method. First, a quasi one-dimensional flow solver was used

to examine the influence of the various non-dimensional parameters which govern the

behavior of the different gases.

Transonic airfoil test cases for air and SFe were then used to study the influence of

parameters which may be controlled in a wind tunnel experiment: stagnation pressure,

freestream Mach number, and angle of attack. The goal of this study was determine

the conditions under which a wind tunnel test in a heavy gas would produce results

comparable to those found in air. Matching M* and CL or . and ACL were both

effective for the test cases presented here. Further study is necessary to determine

which is best for multi-element cases.

The results are encouraging in that they definitely hint at the possibility of directly

relating heavy gas test data to performance in air. It is first necessary to verify experi-

mentally the model for SFe, and to investigate the effects of non-ideal gases on viscous

flows.



Appendix A

Curve Fit For SF6 State Equation

A curve fit may be found for the function 0 (T) for any gas given experimental state

data. With the density (p) measured at a number of different pressures (p) and tem-

peratures (T), a vector is defined containing the difference between the real gas and a

perfect gas at each data point.

-1J = (A.1)

Defining 0 - 4, the matrix A contains the state information.

A=: i . : i i (A.2)

PSo, PmO - ... PmO6  Om Pm

The goal is to find a state equation agreeing closely with the experimental data in g
but of the simple form:

on

Z(p, T) = 1 + C C, o . (A.3)

1

Therefore

9_= Ad (A.4)

and I is found by the technique of linear regression:

S= (ATA)-lATZ (A.5)

The results presented in this thesis were based on a quadratic fit for 0 from approximate

data for SFB. The required data may be found in [6].



Appendix B

MSES Subroutine for Non-Ideal Gas Model

subroutine hgparm(alfl,btal, taul, ccO,cci,cc2, hO)
C---------------------------------------

c Initializes non-ideal gas routines.
c Formulation derived in Schafer SM thesis.
C

c Input:
c alfl Constants for Cp(T) in caloric equation: Cp = a(1 + bT)
c betl
c

c taul Constant in phi(T) in non-ideality factor Z(p,T)
c

c ccO Constants defining phi(T) in polynomial form:
c ccl

c cc2 phi = cO + cl(tau/T) + c2(tau/T)**2
c

c Output:

c hO Enthalpy at reference conditions pO, TO
c
c Internal output:
c zO Non-ideality factor Z(pO,TO) at reference conditions
c
c--------------------------------------------------------------

implicit real*4 (a-h,m,o-z)
common /nongas/

& all, bta, pi, tau, zO
common /nonfit/

& c2, cl, cO
C

c---- put input parameters into common blocks
all = alft
bta = btal

c
tau = taul

c
cO = ccO
ci = ccl
c2 = cc2

c
pi = 1.0

c
c---- calculate reference non-ideality factor and enthalpy

zO = 1.0 + pi*(c2/tau**2 + cl/tau + cO)
hO = (alf*(1. + bta) + pi/tau*phid(i./tau)) / zO

c



return
end

subroutine nideal(hO,r,q, p ,pr ,p.q,
k msq,msq.r,msqq)

C----- ------------------------------ --------------------------------

Calculates pressure and Mach number for specified
stagnation enthalpy, density, and speed.

Input:
hO
r

q

stagnation enthalpy
density
speed

c Output:
c p pressure
c pr dp/dr
c pq dp/dq
c msq square of Mach number M^2
c msq.r dMn2/dr
c msqq dM^2/dq
c-------------------------------------------------------

implicit real*4 (a-h,m,o-z)
c
c---- set static enthalpy

h = hO - O.6*q**2

hq = -q
c
c---- set pressure and temperature and derivatives

call ngaspt(h,r,p,pr,ph,prr,phh,prh,
St,tr,th,trr,t_hh,t_rh)
pq = ph*hq

C
c---- set speed of sound

asq = pr / (1.
asq-r = prr / (1.
& -pr I(1.

asq h = prh / (1.
k + pr / (1.

asq q = asq.h*hq

squared: a^2 = dp/dr
- p.h/r)
- ph/r)

- ph/r)**2 *(ph/r**2

- ph/r)
- ph/r)**2 *phh/r

(at constant s)

- prh/r)

c---- set Mach number squared
msq = q**2/asq
msq.r = -msq/asq * asqr
msqq = -msq/asq * asq.q + 2.*q/asq

return
end

subroutine ngaspt(h,r,,ppr,ph,prr,p.hh,prh,



.t t,t_r,t_h,t_rr,tlh,t_rh)
c---------------------------------------
c Calculates pressure and temperature for
c specified static enthalpy and density.
c
c Input:
c h enthalpy
c r density
c
c Output:
c p pressure
c pr dp/dr
c ph dp/dh

c prr d^2p/dr'2
c phh d'2p/dh^2
c prh d'2p/drdh
c t temperature
c t_r dt/dr ... etc.

c------------------------------------------------
implicit real*4 (a-h,m,o-z)
dimension a(2,2), ai(2,2), aih(2,2), air(2,2),
& b(2,2), bh(2,2), br(2,2)
common /nongas/

& all, bta, pi, tau, zO
c
c---- Newton convergence tolerance

data eps /5.OE-6/
c
c---- initial guess from imperfect ideal gas

if(bta.eq.0.0) then
t = h/alf

else
t = (-1.0 + sqrt(1.0 + 4.0*bta*h/alf)) / (2.0*bta)
endif
p = r*t

c
c---- Newton loop to converge on correct p,t

itcon = 15

do 100 iter=l, itcon
c
c---- set and linearize non-ideality factor Z(p,t)

ttc = 1./(tau*t)
ttct = -1./(tau*t**2)

c
z = 1. + p*pi*phi(ttc)
zp = pi*phi(ttc)
z_t = p*pi*phid(ttc)*ttct

c
c---- residual 1: state equation

resi = p/(r*t) - z /zO
rlp = 1./(r*t) - z_p/zO

rlt = -p/(r*t**2) - z_t/zO
c



tml = (alf*t + alf*bta*t**2) / zO
tml p = 0.

tmlt = (alf + 2.*alf*bta*t ) / zO
c

tm2 = p*pi/tau*phid(ttc) / zO
tm2-p = pi/tau*phid(ttc) / zo
tm2_t = p*pi/tau*phidd(ttc)*ttc_t / zO

c
c---- residual 2: caloric equation

res2 = h - (tmi + tm2)
r2_p = - (tmlp + tm2_p)
r2_t = - (tm1_t + tm2_t)

c

c---- set Jacobian matrix
a(1,1) = rlt

a(1,2) = rl-p
a(2,1) = r2_t
a(2,2) = r2_p

c

c---- find inverse Jacobian matrix
detinv = 1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))
ai(1,1) = a(2,2)*detinv
ai(2,2) = a(1,1)*detinv
ai(1,2) = -a(1,2)*detinv
ai(2,1) = -a(2,1)*detinv

c

c---- set Newton changes
dt = -(ai(1,1)*resl + ai(1,2)*res2)
dp = -(ai(2,1)*resl + ai(2,2)*res2)

c
rlx = 1.0
if(rlx*dp .gt. 2.5*p) rlx = 2.5*p/dp
if(rlx*dp .lt. -.8*p) rlx = -.8*p/dp
if(rlx*dt .gt. 2.5*t) rlx = 2.5*t/dt
if(rlx*dt .it. -.8*t) rlx = -.8*t/dt

c
c---- update variables

t = t + rlx*dt

p = p + rlx*dp
c
c---- convergence check

if (abs(dp/p) .le. eps .and. abs(dt/t) .le. eps) goto 3
c
100 continue

c
write(*,*) 'NGASPT: Convergence failed.'
write(*,*) 'dp dT :', dp, dt
write(*,*) 'p T h r:', p, t, h, r

c
3 continue

c
c---- set residual derivatives wrt input r,h variables

rlir = -p/(r**2*t)
rh = 0.



r2 r = 0.
r2_h = 1.

b(1,1)
b(1,2)
b(2,1)
b(2,2)

= ri_r

= rl_h
= r2_r
= r2_h

c

c---- set p,t derivatives wrt r,h
tr = -(ai(1,1)*b(1,i) + ai(1,2)*b(2,1))
t_h = -(ai(1,1)*b(1,2) + ai(1,2)*b(2,2))
pr = -(ai(2,1)*b(1,1) + ai(2,2)*b(2,1))

p-h = -(ai(2,1)*b(1,2) + ai(2,2)*b(2,2))
c

c
c---- set second residual derivatives wrt r,h

ttc = 1./(tau*t)

ttc_t = -1./(tau*t**2)
ttctt = 2./(tau*t**3)

c

z =

zp =

z_pt =

zpp =
z_t =

ztt =

1. + p*pi*phi(ttc)

pi*phi(ttc)
pi*phid(ttc)*ttc_t

0.

p*pi*phid(ttc)*ttc_t

p*pi*(phidd(ttc)*ttc_t**2 + phid(ttc)*ttctt)

ri =
rip =
rlpt = -
rlpp =
rilt =
ritt = 2.
rilr =
rih = 0.
rlthp = 0.
r lht = 0.
rlirp = -
rirt =
ri-rr = 2.

tml

tmlt
tmitt

tmlpt

tmip
tmipp

tm2

tm2_p

tm2_pt

tm2_pp
tm2_t

tm2_tt

p/(r*t)
1./(r*t)

l./(r*t**2)

-p/(r*t**2)
*p/(r*t**3)

-p/(r**2*t)

-z /zO

- z-p /zO

- z.ptlzO

- z.pp/z0

- z-t 1z0

- z.tt/z0

1./(r**2*t)

p/(r**2*t**2)

*p/(r**3*t)

= (alf*t + alf*bta*t**2) / zO

= (alf + 2.*alf*bta*t ) / zO
= ( 2.*alf*bta ) / zO
= 0.

= 0.

= 0.

= p*pi/tau*phid(ttc) / zO

= pi/tau*phid(ttc) / zO
= pi/tau*phidd(ttc)*ttc t / zO
= 0.

= p*pi/tau* phidd(ttc)*ttc_t / z0

= p*pi/tau*(phiddd(ttc)*ttc_t**2 +



phidd(ttc)*ttc_tt) / zO

r2 = h - (tml

r2_p = - (tmlp

r2_t = - (tml_t

r2_h = 1.

+ tm2)

+ tm2_p)
+ tm2_t)

c---- set and linearize

ph = ph

th = t_h

new residuals: rlh = drl/dh = 0, r2h = dr2/dh = 0

r1h = rilp *ph + rilt *th + rlh
rlhph = rl-p
rlh_th = rlt
rlh_p = rlpp*ph + rl-pt*th + rlhp
rlh_t = rl-pt*ph + rltt*th + rlht
rlhh = 0.
rlhr = -ph/(r**2*t) + th*p/(r**2*t**2)

r2h = 1.
r2hph =
r2hth =
r2hp =
r2h_t =
r2h_h = 0.
r2h_r = 0.

a(1,1) = r
a(1,2) = r
a(2,1) = r
a(2,2) = r

- tmlt*th

- tml.t

- tml pt*th

- tml tt*th

- tmlip*ph
- tmlp

- tmtlpp*ph
- tml pt*ph

- tm2_t*th -

- tm2_t
- tm2_pt*th
- tm2_tt*th

tm2_p*ph
tm2_p

- tm2_pp*ph
- tm2_pt*ph

lhth

lh-ph

2h_th

2hph

detinv =
aih(1,1) =
aih(2,2) =
aih(1,2) =
aih(2,1) =

1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))
a(2,2)*detinv
a(1,1)*detinv

-a(1,2)*detinv

-a(2,1)*detinv

dth = -(aih(1,i)*rlh + aih(1,2)*r2h)
dph = -(aih(2,1)*rlh + aih(2,2)*r2h)

ph = ph + dph
th = th + dth

c---- set and linearize new residuals: rir = drl/dr = 0, r2r = dr2/dr = 0
pr = pr
tr = t_r

rlr = rlp *pr + rlt *tr + rlr
rlrpr = rlp
r1r_tr = rlt



rlr-p = ri-pp*pr + rlpt*tr + rlrp
rir-t = rl_pt~pr + rl_tt*tr + rlrt
rir-r = rlrp*pr + rlrt*tr + rl-rr
rlrh = 0.

r2r = - tmlt *tr

r2rpr =
r2rtr = - tmi_t

r2rp = - tmlpt*tr
r2rt = - tmltt*tr
r2rh = 0.
r2r-r = 0.

a(1,1)
a(1,2)
a(2,1)
a(2,2)

- tml_p *pr - tm2_t *tr - tm2_p *pr
- tmlp - tm2_p

- tml-pp*pr -

- tmlipt*pr -

tm2 t
tm2_pt*tr - tm2_pp*pr

tm2_tt*tr - tm2_pt*pr

= rlrtr
= rlrpr
= r2r-tr
= r2rpr

detinv = 1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))
air(1,1) = a(2,2)*detinv
air(2,2) = a(1,1)*detinv
air(1,2) = -a(1,2)*detinv
air(2,1) = -a(2,1)*detinv

c

dtr = -(air(1,1)*rlr + air(1,2)*r2r)
dpr = -(air(2,1)*rlr + air(2,2)*r2r)

c

c pr = pr + dpr
c tr = tr + dtr
c

c

c---- calculate responses in dt/dh and dp/dh to unit h perturbation
drlh = rlh_h + rlh-p*ph + rlh_t*th
dr2h = r2h_h + r2h-p*ph + r2h-t*th

c

drir = rir_h + rlrp*ph + rlr-t*th
dr2r = r2r_h + r2rp*ph + r2rt*th

c

dth = -(aih(1,1)*drih +
dph = -(aih(2,1)*drlh +
thh = dth
phh = dph

dth = -(air(i,l)*drlr +
dph = -(air(2,1)*drlr +
thr = dth
phr = dph

aih(1,2)*dr2h)
aih(2,2)*dr2h)

air(1,2)*dr2r)
air(2,2)*dr2r)

c---- calculate responses in dt/dh and dp/dh
dr1h = rlh-r + rlhp*pr + rlht*tr
dr2h = r2h-r + r2hp*pr + r2ht*tr

to unit r perturbation



drlr = rlrr + rirp*pr + rlrt*tr
dr2r = r2r.r + .r2rp*pr + r2rt*tr

-(aih(1,1)*drlh
-(aih(2,1)*drth
dth
dph

-(air(1,1)*drlr

-(air(2,1)*drlr
dth
dph

+ aih(1,2)*dr2h)
+ aih(2,2)*dr2h)

+ air(1,2)*dr2r)
+ air(2,2)*dr2r)

final first and second derivatives wrt (r,h)
= pr
= tr
= ph
= th

h = phh
h = thh
r = prr
r = trr
h = .6*(prh+phr)
h = .5*(trh+thr)

return
end

subroutine nonstag(hO,rho,q, pO,pOr,pO-q,
k rO,rO r,rO0q )

C--------------------------------------------------------

Calculates stagnation pressure and density for
specified stagnation enthalpy, density, and speed.

Input :
hO
rho
q

Output:

pO-q
pOr

rO
rOr
rOq

stagnation enthalpy
density
speed

stagnation pressure
dpO/dr
dpO/dq
stagnation density
drO/dr
drO/dq

implicit real*4 (a-h,m,o-z)
dimension a(2,2), ai(2,2), b(2,2)
real*4 h_p,h_t

dth
dph
trh
prh

dth
dph
trr
prr

c---- set
pr
tr

p-h
th
p h
t_hl
p-r
tri
p-rl

t rl

=

=

=

=



common /nongas/

& allf, bta, pi, tau, zO

common /nonfit/

& c2, cl, cO

data eps /5.OE-6/

z(pp,tt) = 1. +

z.p(pp,tt) =
z_t(pp,tt) =

pp*pi*phi (1./(tau*tt))

pi*phi (1./(tau*tt))

pp*pi*phid(1./(tau*tt)) / (-tau*tt**2)

c

h = hO - .5Sq**2

hq = - q

ccc h_hO = 1.0
c

r = rho
c
c---- set input pressure and temperature and derivatives

call ngaspt(h,r,p,pr,ph,p-rr,phh,prh,

& t,t_r,t_h,trr,thh,trh)

c

c---- set entropy s and derivatives wrt p,t

ttc = 1./(tau*t)

ttct = -1./(tau*t**2)

ttc_tt = 2./(tau*t**3)

ph
phd

phdd

phddd

= phi(ttc)

= phid(ttc)

= phidd(ttc)

= phiddd(ttc)

ph-t = phd * ttct
phdt = phdd * ttct

phddt = phddd * ttct

S =

s_p =
st =

& -

&

&

alf*log(t) + 2.0*alf*bta*t

p*pi*( t*phd *ttc-t + ph

- pi*( t*phd *ttc-t + ph

alf/t + 2.0*alf*bta

p*pi*( phd *ttc_t + pht

+ t*phdt*ttct

) - log(p)
) - 1.0/p

+ t*Dhd *ttctt

initial guess for pO,tO from imperfect gas

if(bta.eq.0.0) then

tO = hO/alf
else

tO = (-1.0 + sqrt(i.0 + 4.0*bta*h0/alf)) / (2.0*bta)

endif

pO = p * exp(-alf*log(t) + alf*2.0*bta*(1.0-t))

tO = t

pO = p

c----
cc

cc

cc

cc
cc
CC

dL



c---- Newton loop to converge on correct pO,tO
itcon = 15
do 100 iter=1, itcon

c

ttc = 1./(tau*tO)

ttctO = -1./(tau*tO**2)
ttc_ttO = 2./(tau*tO**3)

c

ph = phi(ttc)
phd = phid(ttc)
phdd = phidd(ttc)
phddd = phiddd(ttc)

c

phto = phd * ttc_tO
phdto = phdd * ttc_t0
phddtO = phddd * ttc_t0

c
c---- enthalpy residual

resl = (alf*(tO + bta*tO**2) + pO*pi/tau*phd )/zO - hO
rlpO = ( pi/tau*phd )/zO
rltO = (alf*(1.0+ bta*tO*2.) + pO*pi/tau*phdtO)/zO

c
c---- entropy residual

res2 = alf*log(tO) + 2.0*alf*bta*tO
& - pO*pi*( tO*phd *ttc-tO + ph ) - log(pO) s
r2_pO = - pi*( tO*phd *ttctO + ph ) - 1.0/pO
r2 tO = alf/tO + 2.0*alf*bta
& - pO*pi*( phd *ttc_tO + phtO
& + tO*phd_tO*ttc_tO

& + tO*phd *ttc_ttO )
c
c---- setup and invert Jacobian matrix

a(1,1) = rltO

a(1,2) = rlpO
a(2,1) = r2_tO
a(2,2) = r2_pO

c

detinv = 1.0 / (a(1,1)*a(2,2) - a(1,2)*a(2,1))
ai(1,1) = a(2,2)*detinv
ai(2,2) = a(l,1)*detinv
ai(1,2) = -a(1,2)*detinv
ai(2,1) = -a(2,1)*detinv

c
c---- set Newton variables

dt = -(ai(1,1)*resl + ai(1,2)*res2)
dp = -(ai(2,1)*resl + ai(2,2)*res2)

c

rlx = 1.0
if(rlx*dp .gt. 2.5*pO) rlx = 2.5*pO/dp
if(rlx*dp .lt. -.8*pO) rlx = -.8*pO/dp
if(rlx*dt .gt. 2.5*tO) rlx = 2.5*tO/dt
if(rlx*dt .it. -.8*t0) rlx = -.8*tO/dt

c
c---- update variables



pO = pO + rlx*dp
tO = tO + rlx*dt

c
c---- convergence check

if(abs(dp/pO) .le. eps .and. abs(dt/tO) .le. eps) go to 2
c

100 continue
c

write(*,*) 'NONSTAG: Convergence failure.'
write(*,*) 'dp dT :',dp, dt
write(*,*) 'po To h r:',pO,tO,h,r

c
2 continue

c
c---- set residual derivatives wrt (s,hO)

ris = 0.

r2_s = -1.0
rih = -1.0
r2_h = 0.

c
b(1,1) = ris
b(1,2) = rl_h
b(2,1) = r2_s

b(2,2) = r2_h
c
c---- set (tO,pO) derivatives wrt (s,hO)

tO_s = -(ai(1,1)*b(1,1) + ai(1,2)*b(2,1))
ccc tOhO = -(ai(1,1)*b(1,2) + ai(1,2)*b(2,2))

pOs = -(ai(2,1)*b(1,1) + ai(2,2)*b(2,1))
ccc pOhO = -(ai(2,1)*b(1,2) + ai(2,2)*b(2,2))
c
c---- convert derivatives wrt (s,hO) to wrt (p,t,hO)

tOt = tO_s*s_t
tOp = t0_s*s_p
pO t = pOs*s t
pOp = po_s*s_p

c
c
c---- set stagnation density rO and derivatives wrt (pO,tO)

zz = z(pO,tO)
zzp = zp(po,to)
zzt = zt(pO,tO)

c
rO = zO/zz * pO/to
rOz = -zO/zz**2 * pO/tO

c
rOpO = rO z*zz p + zO/(zz*tO)
rO-tO = rOz*zz_t - zO*pO/(zz*tO**2)

c
c---- convert derivatives from wrt (pO,tO) to wrt (p,t,hO)

rO.p = rO.pO*pO_p + rOtO*tO_p
rOt = rOpO*pO_t + rO_tO*tO_t

ccc rO-hO = rO.pO*pOhO + rOtO*tO_hO
C



c---- convert derivatives from wrt (p,t) to wrt (r,q,hO)
rOr = rO.p*p-r + rOt*t-r
rOq = (rO p*p-h + rO-t*tLh)*h.q
pOr = pO0p*p-r + pOt*t-r
pOq = (pO-p*p-h + pO-t*t-h)*hq

c
ccc rO_hO = (rO-p*ph + rOt*th)*h-hO + rO_hO
ccc pO_hO = (pO.p*ph + pOt*th)*h-hO + pO hO
C

return
end

real*4 function phi(ttc)
implicit real*4(a-h,m, o-z)

C- ----------------------------------------------------------

c Returns function phi used in non-ideality parameter
c Z = 1 + pi*phi(ttc)
c---------------------------------------

common /nonfit/
& c2, ci, cO

c

phi = c2*ttc**2 + cl*ttc + cO
c

return
end

real*4 function phid(ttc)
implicit real*4(a-h,m, o-z)
common /nonfit/
& c2, ci, cO

c

phid = 2.*c2*ttc + cl
c

return
end

real*4 function phidd(ttc)
implicit real*4(a-h,m,o-z)
common /nonfit/
& c2, cl, cO

c
phidd = 2.*c2

c

return
end

real*4 function phiddd(ttc)
implicit real*4(a-h,m,o-z)
common /nonfit/
k c2, cl, cO



phiddd = 0.
c

return
end

subroutine hgent(hO,r,q, 8)
c ---------------------------------------
c Returns entropy a from input variables h0,r,q
c ---------------------------------------

common /nongas/
& alf, bta, pi, tau, zO

common /nonfit/
& c2, cl, cO

C

h = hO - .5*q**2
c

c---- set input pressure and temperature and derivatives
call ngaspt(h,r,p,pr,ph,prr,p_hh,prh,

& t,t_r,t_h,t_rr,t_hh,t_rh)
C

ttc = i./(taust)
ttct = -1./(tau*t**2)

c
ph = phi(ttc)
phd = phid(ttc)

c

s = alf*log(t) + 2.0*alf*bta*t
& - p*pi*(t*phd*ttct + ph) - log(p)

c

return
end

subroutine nongamv(h0,r,q, gam,gainr,gamq)
e-------------------------------------------------------
c Returns "equivalent" gamma for BL density profile
e-------------------------------------------------------

common /nongas/
& allf, bta, pi, tau, zO
common /nonfit/
k c2, ci, cO

c
c---- set static enthalpy

h = hO - 0.5*q**2

hq = -q
c
c---- set pressure and temperature and derivatives

call ngaspt(h,r,p,pr,ph,prr,phh,prh,
& t,tr,th,trr,tbh,trh)

c
c---- set speed of sound squared: a^2 = dp/dr (at constant s)

asq = pr / (1. - ph/r)



asq-r = p-rr
t - ppr
asq.h = p-rh
& + p-z

ttc
ttc-t
ttctt

ph
phd
phdd
phdd d

/ (1. - p-h/r)

/ (1. - ph/r)**2 *(ph/r**2 - prh/r)

/ (1. - p-h/r)

/ (1. - p-h/r)**2 *phh/r

= 1./(tau*t)
= -l./(tau*t**2)
= 2./(tau*t**3)

phi(ttc)
phid(ttc)
phidd(ttc)
phiddd(ttc)

z = 1. + p*pi*ph
zp = pi*ph
zt = p*pi*phd*ttct

cp = (
S +

cpp = (
cpt = (
a +

zet
zet h
zetp

a

zet t
a

a

gam
gai-r =
gam.h =
gam-p
gam-t =

alf*(1.O + 2.0*bta*t)
p*pi/tau* phdd*ttct )
pi/tau* phdd*ttct )

all*( 2.0*bta )
p*pi/tau*(phddd*ttc-t**

= h/(cp*t)*(1.O
= 1.0/(cp*t)*(1.0
= h/(cp*t)*(

- (zet/cp)*cpp

= h/(cp*t)*(

- (zet/cp)*cp t -

/ zO

/ zO

k2 + phdd*ttc-tt) ) / zO

- p*pi/(t*tau)*phd/z) * zO
- p*pi/(t*tau)*phd/z) * zO
- pi/(t*tau)*phd/z

- p*pi/(t*tau)*phd/z*(-z-p/z)) * zO

- p*pi/(t*tau)*phd/z*(-z-t/z - 1.O/t)
- p*pi/(t*tau)*phdd*ttct/z ) * zO
(zet/t )

asq/(h*zet) + 1.0

asq/(h*zet)*(-zeth/zet -
asq/(h*zet)*(-zetp/zet)
asq/(h*zet)*(-zett/zet)

asqr/(h*zet)
1.0/h) + asqh/(h*zet)

gam.h = gai.p*p.h + ga&.t*t.h + gam-h
gam-r = gai.p*p-r + gai-t*t-r + gam-r

gai-q = gammh*h.q

return
end

subroutine sonic(hO,pO,rO, q,p,r)
C-----------------------------------------------

c calculates sonic quantities q,p,r
c from specified sonic quantities hO,pO,rO



C------------------------------

implicit real (m)
data eps / 1.Oe-5 /

c---- initialize with perfect gas
gam = rO*hO / (rO*hO - pO)

gml = gam - 1.0

q = sqrt(2.0*hO/(2.0/gml + 1.0))

trat = 1.0 + 0.5*gml
p = pO*trat**(-gam/gml)
r = rO*trat**(-1.O/gml)

c---- converge on non-ideal values by forcing
do 10 iters=l, 15

call nideal(h0,r,q, p ,pr ,pq,

call nonstag(hO,r,q,

M^2 = 1, and pstag = pO

msq,msqr,msqq )

pstag,pstagr,pstag.q,
rstag,rstagr,rstag.q )

msq - 1.0

msq.r
msqq

pstag - pO

pstag-r
pstag.q

detinv = 1.0/(all*a22 - al2*a21)
dr = -(resl*a22 - a12 *res2)*detinv

dq = -(all *res2 - resl*a2l )*detinv

dp = pr*dr + p.q*dq

rlx = 1.0
if (rlx*dr
if (rlx*dr
if (rlx*dq
if (rlx*dq

.gt.

.lt.

.gt.

.lt.

1.5*r)
-. 6*r)
i.5*q)

-.6*q)

rlx
rlx
rlx
rlx

1.5*r/dr
-. 6*r/dr
1.5*q/dq
-. 6*q/dq

r = r + rlx*dr
q = q + rlx*dq
p = p + rlx*dp

dmax = amaxl( abs(dr)/r , abs(dq)/q )

if(dmax .It. eps) go to 11

10 continue
write(*,*) 'sonic: convergence failed. dmax =', dmax

11 continue
c

return
end ! sonic

resl
all
a12

res2
a21
a22
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