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Abstract

A critical study of the process necessary to create structural control models is made.
Exact closed-form solutions of beams and truss-beams continuous models open and closed
loop dynamics are given, and used to evaluate the low frequency accuracy of h- and p-
refined finite element models. For trusses condensed models and refined joint behavior are
considered, using the equivalent continuum approach and a refined "midbay plane"
approach. Updates of the continuous idealized model and the corresponding finite element
model are considered, in cases where component and global dynamic properties are
known. An analysis of modelling assumptions leads to sensitivity analyses, giving a better
understanding of the origins and form of uncertainties in modal models. High modal
density is considered as a major limiting factor for modal model accuracy, and is linked to
structural symmetries and uncoupled local vibrations. The stability of input-output
characteristics is studied for a damped truss subject to modal localization, and the
desensitizing influence of damping is shown. To obtain small input-output state-space
models of the structural dynamic response, a systematic treatment of modal truncation is
introduced. Open and closed loop static corrections are considered for structures with and
without rigid-body modes. Finally correction modes are introduced to completely represent
the asymptotic low frequency behavior of truncated modes in both open and closed loop
cases.
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CHAPTER I

INTRODUCTION

1.1. Motivation and methodology

The growing development of Controls Structures Technology (ref. [1]) has made

the need of accurate models of structural dynamics more important and more demanding.

Because of stringent constraints on weight and stiffness, large spacecraft components (such

as booms, solar arrays, or antennas) tend to flexible deflections which exceed requirements

on allowable deflections. One solution to this problem is to accept the passive flexibility

and use active control procedures to reduce either the flexibility itself or the observed

flexibility seen by science instruments. Different laboratory testbeds have proved the

feasibility of the method, but its use on a large scale still requires many improvements of

the available methodology.

One of the essential problems of the method is the construction of accurate state-

space input-output models (that will be called structural control models) of the low

frequency structural dynamics, which contain a small number of dynamic states, and that

give good models of the response in both open and closed-loop cases. Most often such

models still cannot be created with sufficient confidence to assure high gain robust control.

Therefore, improvements of the methods used to deal with the difficulties in structural

modelling are needed.

This report will study the construction of structural control models and address

some of the issues specific to the modelling of distributed-mass system dynamics. Much

work has already been done and the report, referencing some of it, will evaluate the effect



of usual modelling errors on the response estimates, show some of the limitations of modal

models for structures with a high modal density, and introduce a systematic way of

constructing accurate control models from finite element results.

Figure 1.1. Structural control modelling methodology.

Figure 1.1. shows the standard methodology used to create structural control

models. The first step is to create a conceptual continuous idealized model of the structure

as an assembly of beams, rods, plates, joints, etc. A dynamic solution of this model can be

computed exactly in some simple cases, but in general an approximate numerical solution is

required. In this report finite element approximations will be considered.

Refinements of two types are done on the initial finite element model: first a better

repartition of dynamic degrees of freedom can be made by refining the mesh where



important flexibilities are seen, while condensing other degrees of freedom if possible.

Then an update of the finite element model can be made to correlate the model properties

with actual measurements.

From the finite element solution only a part of the information is useful and,

usually, accurate. Therefore, a finite number of modes and low frequency characteristics

are retained in a modal model, which is transformed to a control evaluation model (state-

space input-output of moderate order), which serves as a reference for future evaluation of

designed high authority compensators on this best estimate of the "real structure." Low

authority control is usually included in the evaluation model, as its effects are well known

and its performance is robust.

The evaluation model is usually too detailed for use in a control design so that one

further reduces it to get a control design model, used as a basis to design high authority

controllers. The effect of the controller on the real structure is never exactly its effect on the

design model. A check of the control design validity is made by impacting the controller on

the evaluation model. This would eventually lead to changes in the control design, and

potentially the structural model itself. The process could be pursued iteratively until

satisfactory results are achieved.

1.2. Error and accuracy

1.1.2. Modal model errors

The objective in modelling the structural response is to obtain high fidelity

representations of the transfer functions, over a finite frequency range. The frequency

range of interest corresponds to the bandwidth affected by the controller including the band



in which the controller "rolls-off"', which usually is at low frequencies. As pointed out in

reference [2], the important characteristics of transfer functions cannot be completely

defined without more precision on the use of the model: for example a poor open-loop

model might give accurate closed-loop results. In this report, the attention will be focused

on the open-loop response, except in the last chapter where the influence of modal

truncation on the ability of a control model to give accurate closed-loop responses will be

studied.

The only general purpose approach available to describe low frequency structural

dynamics is the modal description. It will be used throughout this report, even though it

will be shown to be unnecessarily sensitive to perturbations in the case of high modal

density (the effects of sensitivity disappear if the damping is high enough for modal

overlap). The frequency response of all continuous structures can be decomposed in an

infinite sum of modal contributions of the form:

y()= c ' b u(0) (1.1)
i mi( i2+2j 0iý i- ,t)

where oi is the modal frequency, Ci is the modal damping ratio, mi the modal mass, Oi the

modeshape, c the observation matrix (coi is the measured output for a unit modal

amplitude), and b is the control matrix (0 b gives the influence of a unit generalized force

on the mode).

All the terms of the modal contribution are subject to errors. Errors in frequency are

usually treated first as the pole location is an important factor for control. Errors in damping

ratios are difficult to deal with, as both estimates and measurements of damping tend to be

very inaccurate, but by using minimum estimates stability and performance are often

maintained. Errors in the modal masses correspond to global modeshape errors integrated

over the whole structure. Only the weighted modeshape (4(ii/i) is a uniquely defined

quantity of the problem, so that errors in the modal mass must be treated as scaling factors



of the observability (cti) and the controllability ( fb). The observability and controllability

correspond to measurements of the modal response at points or integrated over small

regions. Corresponding amplitude errors can be important, especially near nodes (points

where the quantity of interest is zero); and phase errors, due to sign flips, exist and will

never be avoidable near nodes. Scaling errors due to the modal mass tend to be of lesser

amplitude and are not as important for control purposes, as they do not induce phase

errors.

Errors in the input-output modal contributions do not correspond exactly to the

accuracy measurements generally used in structural dynamics. The accuracy of modal

frequencies is the same, but for modeshapes structural dynamicist tend to define the errors

in terms of quantities integrated over the whole structure; which is the case of the modal

mass, but certainly not of the observability and controllability. It is therefore necessary,

when using approximate modes, to clearly distinguish the accuracy in the sense of general

structural modelling metrics and the metrics necessary for controlled structure applications.

All the modes of a continuous structure cannot be known, so that the objective of

structural modelling for control can only be to create a finite state-space model that

represents accurately the structure input-output open-loop response over a fixed frequency

range (the low frequencies here). The closed-loop accuracy can only be checked a

posteriori, as it will not be obtained if the truncated modes have a low frequency dynamic

influence (spill-under), or the controller has unexpected interaction with poorly or

unmodelled higher frequency modes (spill-over). However, for limited classes of

controllers it may be possible to assess the closed-loop accuracy.

Control models are created by including some of the modes within the anticipated

bandwidth, and by introducing correcting terms to get a reduced order realization of the

dynamics of the truncated modes. The closed-loop accuracy is in most cases checked using

a model with a much larger bandwidth than that of the controller, so that a natural

distinction appears between the control design model and the control evaluation model.



No general theory enables the determination of important model characteristics for

control design, but one can use the following heuristic arguments: most control techniques

involving dynamic compensation consist in an approximate inversion of the open-loop

dynamics and their replacement by the desired response. The most important dynamic

characteristics for the dynamic inversion are pole and zero locations. The ability of different

models to represent the pole/zero structure is therefore one of the most important factors in

the model value. For lightly damped structures, the error in modal contribution (Eq. 1.1) is

dominated by the error in modal frequency near the resonance and by the error in the modal
c~i Tb

residue ( ) ) elsewhere. So errors in zero placement are influenced by errors in the

location of nearby poles and in the residues of all poles.

This confirms the assumption, which will be used throughout this report, that a

good knowledge of the modal characteristics in the bandwidth of interest, and of the

asymptotic behavior of other modes will result in models accurate for most uses. Further

discussion of control model error definitions pertinent for different applications can be

found in the literature (e.g., ref. [2] or [3]) and are of interest in the evaluation of the

general performance of different control design methodologies.

1.2.2. Perturbation methods

Variations of the response when different model parameters are changed are studied

for different reasons. For updates of an initial model, the influence of different possible

errors can be computed to establish which are the most likely, so that a change in the model

can be performed. For control design, the effects of some possible errors cannot be

accepted, so that one designs controllers with a satisfactory response for all the possible

plant dynamics. Such controllers are not the best possible, but guarantee robust

performances.



The response could be recomputed for all possible values of an uncertain parameter,

but this approach becomes impossible, if the parameter variation is continuous, or too

expensive, if iterations have to be considered (as in optimal updating methods). The

difficulty is circumvented by computing eigenvalue and eigenvector derivatives (also called

sensitivities) with respect to different parameters. This multi-purpose approach is called the

perturbation method and is described in many textbooks. The basic assumption is that

variations from a nominal response of all the quantities involved in the problem can be

accurately described as a series of terms, functions of a single parameter ., and of

increasing order in that parameter. In the case of an undamped structure described by a

finite element model this assumption will translate into:

M = M(0)+ M(1) + h2 M(2) + O(X5

K = K( ) + X K(1 + i2 K(2)+ 0(15

02 0 = + ) (X op )2 + ,2 0) (2) 2
+ o(M2)

S 0) +% OM + 2 X(1) O(2) (1.2)

where M(, K() j)2, ( i) are terms of the same order and X is assumed small. Most of the

time only the first perturbation (terms in X) will be used, but, if the phenomena involves

quadratic variations, the use of the second variation is definitely needed. As the series

expansions involve terms of different orders, the general equation (-co M + K)4i = 0 gives

rise to different equations for each order in the parameter X. The first two orders give:

_ (0)2 MP (0) (o)+ K(o) (0) = 0 (1.3)1) + K ) ) 0)= (1.4)

_0)2 M(O)(1) + K(o) _ ,)-)(0)2 M(0) (°) + K( 1 ) ¢(0) - (1)2 M(0) (1.4)



The oth order corresponds to the nominal response. From the first order one gets

the sensitivities (or derivatives). Multiplying the 1st order by O(o)T gives the perturbation on

frequency:

- CO(0)2 ((O)T M(1) ) ()T K(1) o)

0(1)2 = (1.5)
1(o)

One usually chooses to express #1) as a linear combination of the OT) with no first

order component in the direction 0() (this choice is arbitrary but affects the error on the

modal mass, so that the estimate of j/4i/m is correct):

=1)=I C (o0)  (1.6)

Multiplying the 1st order equation (1.6) by (O(T gives the different Cij coefficients:

)T (0) 2 M(1) +K() (o)

mCij (((0) 2 7 (0))2 (1.7)

The first order perturbation on the modal mass can be computed by solving the 1st

order equation linked to the evaluation of TMj :

(1) (0)T (1) (()
mi M i () (1.8)

Eventually, one is interested in the variation of the modal residue c ,i i b whose

first order perturbation can be found by using the first order perturbations on the

modeshapes and modal mass :



(1)
c 4 i b (1) mi(

m (0)
ij +

jCj~i MP o"~~bi

If the variations of K and M are regular enough this first perturbation corresponds

to a derivative, but in some cases the perturbation gives good results even if the derivative

does not exist. When eigenvalues are multiple, one has to use higher order derivatives to

solve for the actual modes and first order sensitivities.

Equation (1.9) shows how different errors influence the modal residue. The first

term is the error on the modal mass (or equivalently on the normalization of the

modeshape). If the variation in the mass distribution (M) is not due to initial omission of

important masses, this error is usually small. The following terms, which correspond to the

errors in modeshapes, can be important if either the controllability or the observability (1 b

or c4i), and the error components (Cij) are important. The error components are inversely

proportional to the modal frequency separation , so that the magnitude of errors increases

with modal density. For usual cases, errors on the observability and controllability

completely dominate the error on residues. Throughout this report it will be assumed that

the only significant errors in the modal residue come from inaccurate approximations of the

modeshapes. Equations (1.5) and (1.7) also give a useful insight on how different

modelling errors affect the estimate. The numerator is the energy estimation error and, for

modeshapes, the denominator includes the frequency separation which corresponds to the

energy level separation between different modes. So, errors in frequency are as important

as errors in energy estimation, and errors on modeshapes depend on the relative importance

of energy estimation errors and on the energy level separation between different modes.

(1.9)



1.3. Major examples

To be of any use, considerations on the construction of structural control models

must be related to realistic examples. Many practical problems are linked to structures with

local resonances and high modal density. A truss-beam, presenting these two properties,

will be used to assess the levels of finite element refinement, needed to get accurate modal

characteristics, and to analyze different properties linked to high modal density. To address

some of the difficulties encountered in practice, the MIT/SERC interferometer testbed and

the Sandia National Laboratory F-truss testbed will be used. Different modelling errors

found during the development of their models will be analyzed, and the interferometer will

be studied as a structure presenting symmetry induced modal degeneration.

The truss-beam sample problem

Truss structures are envisioned for use in many large space structure applications,

and have therefore been the focus of great deal of research. Their modes include low

frequency local resonances, which is one of the main difficulties associated with the use of

large structures with distributed mass. And they have the advantage that known closed-

form solutions of their dynamics exist for standard cases, so that a good evaluation of

model accuracy is possible.

A truss-beam will be used in this report as a supporting example in the description

of the modelling process. The sample problem considered was first designed (ref. [42]) by

E. Wehrli and R. Ohayon at ONERA/OR (BP 72, 92322 Chatillon Cedex, France), and

corresponds to very similar trusses studied by different authors (see refs. [14], [18], [41],

or [43]).



The truss is formed of 20 square bays with a diagonal stiffener of constant

orientation along the truss. All the struts, formed of duralium tubes, have the following

properties: p = 2800 kg/m 3, E = 75 109 Pa, section area S = 1.1309 10-4 m2, section

inertia I = .458 10-8 m4. The joints, considered as massless, constrain the strut tips in

position and can be (for rotation) pinned, rigid, or rotationally stiff.

As was shown in the initial study by E. Wehrli, modelling problems are important

for this truss, so that standard approaches such as equivalent continuum models are

inaccurate. In chapter II, the influence of bending motions will be considered and the level

of finite element refinement, needed to represent them, analyzed. In chapter IV a

characterization of the modal response in terms of local resonances will be done. These

resonances will then be shown: to induce a high modal density, be subject to localization,

and present filtering properties, for damped motions, that are insensitive to perturbations.

The interferometer testbed

In the modelling process the analysis of actual properties of a structure is essential,

and many points made in this report were motivated by research on the modelling of the

MIT/SERC interferometer testbed (ref. [4]).

This testbed is meant to focus research on a real structure that captures most of the

difficulties encountered to meet mission requirements of a 35 meter baseline orbiting optical

interferometer. Large baseline interferometers pose stringent pathlength and pointing

problems so that active control solutions seem necessary. Although many requirements

motivate the research program (see ref. [4]), only the construction of analytical models of

the structural dynamics will be considered here, for their necessity in the design of

sensor/actuator architecture and high authority controllers.



Figure 1.2. The naked interferometer testbed.

No full identification of the complete structure being available to date, the naked

interferometer (without science instruments) will be considered here. The testbed is a 36 kg

tetrahedral truss lattice (shown in figure 1.2.), constructed from 696 aluminum tubes of

3/8" outer diameter and .058" wall thickness, bolted tightly to 228 aluminum nodes. The

struts have local bending resonances above 200 Hz, well above the fundamental frequency

at 35 Hz.
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In chapter III, an analysis of the truss structural response and of the sensitivity of

its modal properties to modelling errors will be done. In chapter IV, a characterization of

the observed modal degeneration will be done using symmetry properties of the structure.

The Gamma-Truss

This section is a summary of relevant information about the F-truss found in

reference [22].

The F-truss is a research project of the Sandia National Laboratories initiated to gain

experience in practical distributed parameter system control theory by focusing attention on

a realistic control experiment. During the testbed development a careful attention was paid

to the dynamic model, so many interesting points can be found in reference [22] on this

issue.

The F-truss is constructed of polycarbonate tubes rigidly bonded into universal

polycarbonate joining blocks. Each bay of the truss is a foot cube. A five-bay truss

segment is cantilevered vertically from a large isolation mass supported by four air-bags. A

horizontal three bay segment of the truss is cantilevered from the top of the vertical

segment, forming a shape like the Greek letter F.

The vibration is sensed by four axial strain sensors (PVDF gauges) and the

structure has four actuators formed of piezoelectric ceramic bonded to the outside of

diagonal struts in the bottom bay of the truss.



Table 1.1. Modal frequencies of the

estimate with updated axial

modelled.

F-truss and errors of initial estimate,

stiffness, and estimate with air-bags

•mesura (Hz) AOinitial (%) Aupdate 1 (%) A•update 2 (%)

10.28 8.04 2.38 0.00

10.84 5.24 4.91 0.28

19.86 7.56 2.80 2.72

21.28 12.50 1.64 0.28

45.70 12.00 1.23 0.37

60.45 8.46 1.98 1.87

62.46 13.50 2.58 0.93

78.30 12.18 1.10 1.19

88.70 9.52 1.14 2.04

115.47 16.19 4.52 3.30

Table 1.1. reproducing data from reference [22], shows the close spacing of the

modes of the F-truss and the accuracy obtained for different steps of the modelling. The

initial error is important, but the updates give very good results for the frequency

agreement, shown here, and also for modeshapes. The two updates were made using

global dynamic measurements, and correspond respectively to an update of the strut axial

stiffness, and a simultaneous update of the strut axial stiffness and of the isolation system

stiffness. Finally, many more details on the F-truss can be found in references [22] and

[26]. In chapter III, the F-truss will be used as a supporting example for the analysis of

updating methodologies of initial continuous idealized models.



1.4. Report outline

Chapter II will consider the creation of a finite element model from an initial

continuous idealized model. Exact closed-form solutions of the open and closed loop

dynamic responses will be introduced for beam and truss beams. Then different refinement

levels of finite element beam models will be considered, and their accuracy evaluated by

comparison to exact solutions. For truss-beams, different descriptions will be introduced,

degree of freedom condensations will be considered, and effects influencing the model

accuracy will be analyzed.

Chapter III will consider the update of the initial model, by reviewing the possible

modifications to the continuous idealized model in order to match measured properties

better. A general methodology will be exposed and a list of usual modelling errors given.

Throughout the development the interferometer testbed (see section 1.3.) and the F-truss

(see section 3.2.) will be used to highlight different points.

One of the essential limitations to the possible modelling accuracy is high modal

density, which implies descriptions highly sensitive to modelling errors. Chapter IV will

expose some of the reasons that lead to high modal densities, to get a better understanding

of dynamic characteristics important for the design of identification experiments and

eventually of controllers. A general algebraic treatment of close modal spacing due to

symmetry will be introduced and applied to the case of the naked interferometer testbed.

Using the truss-beam sample problem, closely spaced modes linked to local resonances

will then be considered. Near degeneration and localization will be shown. In the case of

damped motions, filtering properties linked to the resonance of diagonal struts will be

studied, and the input/output response will be shown to be insensitive to perturbations.



As it is impossible (and unnecessary) to represent all the modes, the objective of

modelling is to give an accurate representation of the structure within a finite bandwidth.

Chapter V will consider the corrections that should be introduced to represent the low

frequency influence of truncated modes. First the usual approach of a static correction for

the truncated modes will be introduced. Structures with and without rigid-body modes, in

both the open and closed loop cases, will be considered. Then a much more efficient

approach, considering correction modes, will be exposed and its accuracy will be compared

with the static correction. This approach will be shown to provide a simple, general, and

effective method to account for the open and closed-loop asymptotic effects of truncated

modes.

Finally chapter VI will give some conclusions on the work examined in this report

and give recommendations for future work.



CHAPTER II

CONTINUOUS MODELS AND
SOLUTION PROCEDURES

2.1. Introduction

The standard methodology for creating a structural model for control has been

described in chapter I. In the modelling process, two essential steps are to develop a

continuous idealized model defined as an "exact" representation of the structure, and then a

finite element model, which will actually be evaluated. This chapter will discuss the

differences that may exist between the exact solution of the continuous idealized model and

finite element estimates, using the definitions of error developed in chapter I.

The continuous model is, at least conceptually, formed of partial derivative

equations characterizing the motions in volumes (areas for plates, and segments for

beams). At boundaries, conditions characterize interface behavior on surfaces (lines for

plates, and points for beams). In the case of beams, general closed-form solutions of the

continuous model exist even though they are not always numerically computable. For

plates and volumetric solids the exact solutions are rarely known, so approximate solutions

must be used and accuracy estimation becomes a much more difficult problem.

Therefore in this chapter the approach will be to compare the results of "conceptual"

models, in those cases where they can be exactly solved, and finite element models, to

determine the nature and magnitude of errors introduced at this step in the structural

modelling process.



In section 2.2., as a basis for the analysis of the accuracy of finite element methods,

the computation of exact closed-form solutions of the dynamic response of beams and

truss-beams is considered. Since the final objective is to compute closed-loop models of the

structure, the effect on beams of actuation and of homogeneous feedback is also

considered, briefly for actuators with a large spatial extension (called distributed) and in full

detail for point actuators. Some of the effects falling in the category of distributed actuators

are often included as open-loop effects so that they are considered in some detail.

In section 2.3., the quality of the representation of beam behavior by the finite

element method is analyzed and a comparison of different model refinements is made. A

study is made of different beam elements and the frequency range over which they can be

expected to be an accurate representation of the continuous model.

In section 2.4., the approximate modelling of truss structures is discussed and

detailed in the case of the truss-beam sample problem (described in chapter I). The validity

ranges of equivalent continuum models and refined models are analyzed. The effect of

rotational rigidities at joints is discussed in order to highlight the importance of carefully

modelling bending effects in truss structures, as they are the usual limit of accuracy of the

finite element models.

2.2. Exact solutions of beam and truss-beam
continuous models

This section, describing beams and truss beams, discusses the type of structure for

which closed form solutions of the continuous model are known. The objective is to

introduce a methodology that enables the computation of closed form solutions of the

structural response both in open- and closed-loop cases so that a good assessment of the



accuracy of approximate solutions found by the finite element method is possible. This

comparison will then be the object of sections 2.3. and 2.4. below.

2.2.1. Exact solutions of beam models

The simplest structural form to analyze is a one dimensional rod/beam, both

because it is important as a structural element and because it is the constituant element of

trusses. It is unnecessary in a first step to use refined beam theories. Some structural

modifications that necessitate the introduction of elaborated beam models will be discussed

later in the section. More refined beam theories are described in reference [5].

In this report, the Bernoulli-Euler beam model will be used in general. Three types

of displacements are considered: compression, bending, and torsion. They are assumed

uncoupled. Given this assumption, motions can be described by a set of partial derivative

equations for each beam segment, between discontinuities due to point actuators or joints:

EA u - pA ii = Fu(x,t) (2.1)

El v + pA v = Fv(x,t) (2.2)

GJ 0 - pJ 0 = Mu(x,t) (2.3)

where u describes axial motions, so that (2.1) is the partial derivative equation describing

compression; v describes transverse motions, so that (2.2) is the partial derivative equation

describing bending; 0 describes axial rotation, so that (2.3) is the partial derivative equation

describing torsion. E is Young's modulus, A is the section area, I is the section moment of

inertia about the horizontal axis, G is the shear modulus, J is the section polar moment of

inertia.



Free segments

For segments with no external force actuators (Fu = 0 ...), harmonic motions can

be expressed simply as a superposition of basic harmonic motions corresponding to wave

modes of the general form e j(Rx + ot). The solutions of equations (2.1)-(2.3) are in this

case:

u(x,t)= [e os(px)+fsin(px)] os(cx) with EA

v(x,t)=[acs(Kx)+bcosh(hx)+csinx)+dsinh(kx)]cos(ox) with X= 4 EI

O(x,t)= [g cos(vx)+h sin(vx)]cos(ot) with v= (2.4)

where the wave modes have been combined to give real motions and a, ... , h are real wave

amplitudes. The beam supports left and right propagating modes of wavenumber ± gt in

compression, ±+ in bending, and ± v in torsion. In bending, there are also left and right

evanescent modes of wavenumber ± jX (which give rise to the cosh and sinh functions).

On a free segment the amplitudes of different wave modes are constant for a steady-state

harmonic motion. Their changes at boundaries will be discussed later; but for

completeness, the limits of validity of this wave guide description should be discussed

first.

Modification in the distributed properties of the continuous model

In a certain number of cases, the initial continuous model, equations (2.1)-(2.3),

has to be modified to be an accurate representation of the structure. Actuators with a large

spatial extension (which will be called distributed) modify the type of harmonic motions

that can be present in the beam. The action of these actuators can be homogeneous,



corresponding to a closed linear feedback loop, or non-homogeneous if commands are

input through distributed actuators. The non-homogenous case has to be used for the

computation of the effect of distributed actuators or sensors on a controlled structure (see

refs. [6] and [7]). However, in general the necessary modifications to the initial model are

due to passive collocated effects so that only the homogeneous case is seen.

Prestress and predeformation are among the usual phenomena that can modify the

behavior of the beam as a wave-guide. The initial model does not include a description of

static stresses (e.g., due to cable tensions) and deformations (e.g., due to gravity) in the

structure. However, a proper analysis of simplifying assumptions, and the use of a non-

linear strain description, would show that these modify the beam wave-guide properties.

For example, an axial tension introduces the homogeneous term -Tu v in equation (2.2) so

that even for a compression of a few percent of the buckling load, significant changes in the

bending behavior would be observed. These modifications are usually not available in

standard softwares for the computation of approximate solutions of the continuous model,

but this is the object of current research (ref. [32]).

Local damping is often introduced by the mean of constraining viscoelastic [8] and

piezoelectric [9] layers. Due to damping, otherwise propagating waves have a spatial

decay. As an example of modification due to damping, one can consider the damping of

axial motions. Two mechanisms are possible: position rate damping (Fu = C ii), which

corresponds to a damping mechanism linked to the external environment, such as a viscous

foundation; and strain rate damping (Fu = - C iHi), which is more likely to represent an

internal damping mechanism such as a constraining viscoelastic layer. In the case of strain

rate damping, the wavenumbers of compression harmonic motions are:

ppA:02pi = - (2.5)
EA+jCo



which are very similar to those of the usual beam (equation (2.4)) at low frequencies, but

differ significantly for Co > EA.

Modifications of the beam behavior can in general be introduced in the closed form

solutions, but the equivalent corrections of the approximate methods are rarely done. This

constitutes an important limitation for the usual approximate models.

Point boundaries

The behavior of a structure formed of beams depends on the different beam

segments described in the preceding paragraphs, but is also strongly conditioned by the

behavior of boundary points such as beam tips, point actuators, or joints connecting

different beams. At these points the amplitudes of different wave modes must be such that

all the boundary conditions are met, even for transient motions. The boundary conditions

are composed of continuity and equilibrium conditions. Continuity of position, which

applies to axial and transverse motions,

means for example that a clamped beam
VF

tip does not move or that the tips of two

M Fu  beams connected by a joint have the

same position. Continuity of slope,

which applies to bending motions, refers

to the fact that when beam segments are
Figure 2.1. Local beam coordinates.

connected by a rigid joint they have

geometrically related slopes. Moment

equilibriums, which apply to bending and torsion motions and couple them in some cases,

are the moment equilibriums of each of the beam tips connected to a joint and the moment

equilibrium of the joint itself. The usual moments present at a joint are: beam-tip moments

due to bending or torsion, joint stiffness moments, inertial moments for massive joints, and

external actuator moments. Force equilibrium, which applies to both compression and



bending motions, is the force equilibrium of each joint which is subject to beam-tip forces

due to compression and bending, inertia forces due to the joint mass, and external input

forces.

In order to express the equilibriums, it is necessary to know the forces and

moments transmitted by the beams. Using the standard local conventions for a beam (figure

2.1.), the forces that the beam exerts on a point located at the tip, and the moments exerted

by the boundary on the beam tip are:

(2.6)

The continuity and equilibrium conditions can then be simply expressed using a

common global coordinate system.

Modes vs waves

In structural dynamics one usually uses modes as a specific basis of motions to

describe the structural behavior. Modes are particular harmonic solutions of the equations

of motion for which all the boundary conditions are met without the presence of an external

harmonic excitation. In wave propagation terms they are standing waves. Until now,

although some wave propagation terminology has been used, only possible harmonic

motions and boundary conditions of the beam have been described so that the preceding

paragraphs can be used to compute closed form frequency responses of the structure or

closed form solutions for modes. The description in terms of waves and wave modes



would imply the use of an Eulerian point of view (a travelling description) and the

expression of boundary conditions in terms of scattering coefficients. The link between the

two approaches corresponds to the fact that wave modes are basic possible harmonic

motions. For more details on the subject see [10] for example.

Modeshapes may be real or complex and have real or complex eigenvalues. In the

latter case the modes are damped so that their amplitude diminishes with time.

The main characteristics of modes are: the time and space dependance of motion are

decoupled for a mode so that one can consider non-dimensional time-invariant modeshapes

and dimensional time-varying modal amplitudes; any displacement of the structure can be

decomposed as a sum of modal responses (the approache to obtain accurate responses with

a finite sum is the object of chapter V); as the modes are unforced responses they verify

homogeneous equilibrium conditions at all points, so that forces and moments are

continuous on any one dimensional part of the structure even at material discontinuities.

Example: Cantilever beam with midspan force actuator

The purpose of this example is to show an application of the analysis that has just

been discussed to the computation of the exact open and closed loop frequency response of

a beam (shown in figure 2.2.) with two free segments (1 and 2) and three different

boundary points (O, A, and B).

The solution assumes that compression and torsion displacements are negligible.

Section constants EI =1 and pA =1 are used for numerical simulations.



input

Figure 2.2. Cantilever beam with midspan actuator

Harmonic displacements of the two free segments are given according to (2.4) by:

vl(x,t) = (a1 cos(,x) + bl ch(Xx) + c, sin(Lx) + dl sh(kx)) cos(cot)

v2(x,t) = (a2 cos(Lx) + b2 ch(Xx) + c2 sin(kx) + d2 sh(Xx)) cos(cot)

pIpAo 2
with X= EI (2.7)

The boundary conditions at O only constrain position and slope:

vl(xo,t) = 0 v1(x0 ,t) = 0 (2.8)

The boundary conditions at B only constrain moment and force:

El v2(xB,t) = 0 EI v 2(xB,t) = 0

At A the boundary conditions give rise to four constraints:

Vl(XA,t) = V2(XA,t)

El vl(xB,t)

i i

Vl(xA,t) = V2(XA,t)

- EI vl (xB,t) + Finp = 0

-El vl(XA,t) + El v2(XA,t) + Mi.= = 0

(2.9)

iS

(2.10)



Using (2.7) in (2.8)-(2.10) gives a set of linear equations that can be assembled in

matrix form as:

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

c(X) cdx) sx) sx) -c4x) -d~h() -sQ(x) -sCU)

-s(Mx) s*X) c(A) dch) sh) -sNh) -c-x) 4 cA- )
-cx) chd) -sx) slxh) c(x) -cld) s(N) -sW(x)

s(Xx) sh*) -cAx) chx) -sJx -sd&h) c(x) -dch)

0 0 0 0 chx) -dAhx) s(hX) -s*(x)

o o 0o o -sx) -sWXX) c(hA) -c•(x)

at

b,

Cl

d,

a2
b2

C2

d2

0
0
0

0

-F k/j
3

0

0

(2.11)

For the remainder of the example, MAut will be assumed zero so that Vl(XA,t) =

v2(xA,t). For an open-loop system, Finput represents a command or disturbance force

entering the structure through the force actuator located at A. For a linear closed-loop

system, Finput is the sum of an homogeneous term corresponding to the closed feedback

loop, and an external excitation term corresponding to commands or disturbances. The

homogeneous term depends on the time and space derivatives of the displacement at some

set of points on the structure and/or integrated over some regions. As seen in (2.7), the

displacement at a given frequency lies in a finite vector space so that the homogeneous

forcing due to each of the base vectors of this vector space can be computed and assembled

to form the columns of a compensator matrix K, which may depend on frequency if time

derivatives of the displacement are involved. The forcing can therefore be described in the

form:

Fipu.t = K(to) [a1 b c1 d1 a2 b2 C2 d2] T + Fcmand (2.12)

i



where the columns of K((o) are the homogeneous forcings that would appear for a basic

harmonic motion, the ai, bi, ci ,di are the actual amplitudes of the basic motions, and

Fc. d is the external forcing.

The most usual form of K(co) is a static feedback. For example:

K(w) = - k [0 0 0 0 c(Xx s) ch(kxs) s(Xx s) sh(Xxs)] (2.13)

is a static position feedback of a sensor located at xs (between A and B). For xs = xA the

feedback is collocated and if k is positive real, it only acts as a spring. For k<0 the

feedback loop is a negative spring, and, for k = jcc, the feedback act as a damper. Other

general linear controllers can always be represented in the form (2.12), and for any given

frequency it is possible to compute the exact (within the limits of the continuous idealized

model) closed loop response of the structure.

Exact closed loop modes can be computed by solving for the singularities of the

homogeneous part of (2.11). For an undamped system this is easily done by any root

solver (e.g., Newton-Raphson algorithm) as one looks for the real roots of the determinant

of the homogeneous part of (2.11). For damped systems the poles are complex so that the

singularities must be searched out in the complex plane, which is much more difficult

numerically. Finally, numerical conditioning would be a major issue if this method was to

be used extensively. But it does provide in principle an exact solution to the open and

closed-loop behavior of structures composed of beams.

2.2.2. Exact solutions of truss models

The choice of a description for the exact solution has a strong influence on the

creation of approximate models. In this section, a general exact description of one-

dimensional trusses will be introduced and two possible descriptions of the truss bay will



be given, so that approximate solutions can be derived in section 2.4. Exact solutions of

continuous truss models have been used in different occasions and usually in a transfer

matrix formalism (ref. [13] or [12]). As the objective is the creation of approximate

methods in section 2.4., the following description only summarizes the essential points of

the method. For more details one could refer to [13] or [14] which have similar treatments

of the problem (although applied to wave-modes).

Truss beams considered here are formed by a certain number of identical (or almost

identical) interconnected cells placed by translation along a single axis. Truss beams are

similar to beams in the fact that one can use a single position variable to describe the whole

truss (they have a mono-dimensional description), but they differ in that portions of the

truss are similar only at periodically spaced points and not at all points. Because of this

inherent periodicity, waves are only described as transmitted motions from one of these

periodically spaced points to the next.

The choice of points at which the sustained harmonic motions are computed is

arbitrary, but different choices lead to more or less accurate approximate methods. Placing

the points with the cell periodicity simplifies the process when the truss is composed of

many identical cells.

Having a set of points spaced along the truss, harmonic motions of the truss in the

plane of these points can be described at each frequency as a finite number of displacements

and slopes (ui, of number p) corresponding to a finite set of forces and moments (Fi, also

of number p). If the set fully describes truss motions it is possible to express the

transmission of states from one point to its neighbor as a linear frequency-dependent matrix

Tn (figure 2.3.).



Tn is called the transfer matrix from the states of position n to the states of position

n+l. In most cases it can be computed exactly at each frequency by applying the

methodology developed in section 2.2.1. to each of the free beam segments composing the

bay and by properly modelling the boundary conditions at the joints. For cells connected in

series, the transmission from one end to the other is given by :

uN UN-1 [u
FN = Tn- 1 FN-1 =Tn-1 ... T1 F (2.14)

Computing the product TN-1...T 1 can be difficult for large N but if the truss is

actually periodic the Ti are identical and one can use their eigenvalue decomposition T =

UAV (where A is a diagonal matrix and U=V-1) so that TN-1...T1 = UAn-1V. Numerically

the eigenvalues of T are often separated by several orders of magnitude so that using the

eigenvalue decomposition is a sound numerical procedure which is much better conditioned

than the direct product.

At external boundaries,
Un  Un+ 1

F Tn F states are not transmitted but one

n n+l1 has a set of boundary conditions

(found by using the methodology

of 2.2.1.).
Figure 2.3. State transfer for a 1-D structure

IIIB uN[F (2.15)B1I F1 =0 BN FN =0 (2.15)

where B is a p by 2p matrix (p = size of ui) which can be constant (clamped or free

conditions, etc.) or frequency dependent (nodes linked by a beam, dynamic actuator, etc.).



Internal boundaries can be treated similarly and, if Fi (a set of either commanded or

feedback forces and moments) corresponds to the input of the internal boundary, a matrix

relationship of the following type can be found (where B is a 2p by 5p matrix):

UN-1
FN-1

B uN = 0 (2.16)FN

The transmission equations (2.14) and the boundary equations (2.15)-(2.16) define

an over constrained problem if no command is input. The homogeneous part of this system

has unforced non-zero solutions only at some particular frequencies of the s-plane and the

associated motions are called modes in structural dynamics and standing waves in wave

propagation theory. Modes are found by solving for singularities of the system (2.14)-

(2.16), as was done in the example of the cantilever beam with midspan actuator (section

2.1.).

The bay can be described using many different approaches, two of which will be

described in the following paragraphs. The development will use the truss-beam sample

problem but could be easily generalized.

Joint-plane description of truss-beams

This approach, which is the classical approach to the problem, considers the bay

shown on figure 2.4. The joints are taken as boundary points so that the states transmitted

are states at these points. In some cases, as when defining an equivalent continuum, it is

useful to use another linearly equivalent set of states (see section 2.4.2.) but the results

linked to this approach do not change. For the 2-D truss shown, assuming pinned joints,

the states are: two position coordinates and two associated forces at each node. The



moments are always zero so that they and their associated position states (the slopes) do not

have to be considered.

qQq1 111

(n+t

Figure 2.4. Joint-plane bay for the transfer matrix description of a truss-beam.

Therefore, on each side, there are 8 states, four positions and four forces. At any

frequency the response of the bay is described by 24 independent coefficients (4 struts with

2 states for compression, and 4 states for bending according to (2.4)), and the boundary

conditions at the four joints give rise to 16 constraints (8 on position and 8 on the

moments). Therefore, if the states are known on one side of the cell, the states on the other

side can be computed exactly at each frequency.

For clamped joints, the moments shown at each joint in figure 2.4. are non-zero, so

that there are 12 transmitted states, but the

problem is still solvable. If other joints

(such as the one shown on figure 2.5.) are

used, boundary conditions of moment

equilibrium involve cross constraints

between the states of two adjacent bays so

that the formalism of the transfer matrix is

Figure 2.5. Stiff joint much more difficult to use.

q2n'Q~n



Midbay-plane description of truss-beams

This approach, first introduced in [15], uses strut midspans as boundary points so

that any discontinuity linked to joints is included in the computation of the transfer matrix

and does not appear as a problematic behavior at the boundary points. For exact solutions

this approach only reorganizes computations so that the transfer matrix methodology can be

used with joints that are other than pinned or clamped. Irrespective of the type of joints

there are 18 transmitted states (9 displacement and 9 moments) and 24 boundary conditions

at the internal joints so that the 42 independent coefficients describing possible harmonic

motions in each of the 7 beam segments are known at each frequency. Position continuity

conditions at the upper and lower joints are:

1
V1 =V 5 = u4 - (U2 +v 2 )

1v = v7 = -u4 =- (u6+v6)4F2

1 5

2

4
6

3 7

1
U1 =U 5s =4 - (u2-V2)

1
u3 = u7 = V4 =- (u6+v6) (2.17)

:t qn11,Qn1 1

qn2+,1 Qn2+l

qn 1,Qn3+l

1 -,.qn3+lvun+l

Figure 2.6. Midbay-plane transfer matrix description of a truss-beam.

SqA,2

4,Qn3



where u is the axial and v the transverse beam displacement, and the indices correspond to

the beam numbering shown on figure 2.6. Force equilibriums at the joints are:

fli iii i 1 iM i
- E v1 + El v5 + EA u4 + (-El v2 + EA u ) = 0

i I iM 1 W, i
EA uI - EA u5 + El v4 + (EI v2 + EA u2) = 0

- El v3 + EI v7 - EA u4 + (EI v6 - EA u6) = 0

i i ii 1 iii
EA u3 - EA u7 - EI v4 + (-EIv 6 - EA u6) = 0 (2.18)

Supposing the joint massless, moment equilibrium conditions for a joint with

rotational joint rigidity k are, for each of the beam segments connected to the joint:

Hi i i i Hi i i i
EI v, + k (2v, - v2 - v5) = 0 EIv 3 + k (2v3 - v7 - v4) = 0

i i i i ii i i i
EIv 2 + k (2v2 -v -v-4) = 0 EI v6 + k (2v6 - v7 -v 4) = 0

i i i i ii i i i
EI v5 + k (2v5 - v, - v4) = 0 EIv 7 + k (2v7 - V3 - V6) = 0

ii i i i ii i i i
EIv 4 + k (2v4 -v 2 - V5) = 0 EI v4 + k (2v4 -v3 - 6) = 0 (2.19)

If the joints are clamped, these last 8 conditions are replaced by 6 slope continuitty

and 2 moment equilibrium conditions. These conditions enable the analytical expression of

the transfer matrix. Numerically this problem is inherently ill-conditioned. For example, the

analysis cannot be performed for the truss beam sample problem without special

precautions giving a better precision than the standard 16 digit precision.

The real advantages of this approach will be shown in section 2.4., where it is used

to create approximate models.



2.3. Finite-element representation of beams: H-
version versus P-version

2.3.1. Introduction

Having exact closed-form solutions of the response of beams, the objective is now

to assess the validity of different approximate models. This section will consider simple

beams, and determine the accuracy that can be expected for different levels of beam finite

element refinement. Here the validity will be examined in the control sense (as defined in

chapter I) although global integrated errors will sometimes be used.

When applying the finite element method to compute controlled structure dynamic

response, one seeks to estimate the lower frequency eigenvalues and eigenfunctions of the

structure. Usually an initial finite element model places nodes at structural junctions and

uses elements such that at least the static response is described exactly. In many cases the

model thus obtained needs to be refined to obtain accurate dynamic results. The FEM

theory introduces two classical ways of refining the model: the h-version where the mesh is

refined and the p-version where the order of the polynomials used as interpolating

functions is increased. Hundreds of papers discuss the merits of the two approaches for

different structures or physical phenomena but usually not for controlled structure

applications. Reference [16] however, is a very useful discussion of the problem for

structures, and [17] gives a sound basis for the proof of results seen in practice, although

an important mathematical background is required to read it.

Actual modes, as they are unforced responses, satisfy force and moment

equilibriums at all points. If only two parts of a structure are connected to a given point,

forces and moments at that point will be continuous. The refinement of a finite element



model is done separately for each free segment or element of the initial model. The error in

a modeshape estimate can be found by finding the size of the modeshape estimate

projection on the space spanned by the exact modeshapes of other modes. For an h-

refinement inexact discontinuities are present that imply more important components of the

error on high frequency exact modes, than for a p-refinement which conserves continuity.

So the p-refined modeshapes tend to be more accurate. In practice, this is balanced by the

fact that h-refinements tend to capture more modes.

At boundary points of initial elements (which remain the same even if the model is

refined), equilibrium conditions on force and moment, which govern the actual

discontinuities of spatial derivatives of displacement, are never met exactly, since this

cannot be imposed in the finite element method; for these points, the type of refinement

does not make a difference. It is possible to impose strict compatibility conditions on the

complete structure using an integrated force method (ref. [11]) or other similar approaches,

but they are not of generalized use and would therefore be rather costly to implement on a

realistic engineering basis.

For finite beam elements there are other reasons to use at least a partial p-

refinement. The constraint of exact static response will not be met by the usual 2-node

beam element (cubic interpolation) if the definition of static is extended to include uniformly

accelerated motions (in translation and rotation), as is often done in the Component Mode

Synthesis literature. A first p-refinement of the 2-node beam element would add inertia

relief modes to the static modes already modelled, resulting in an element with quintic

interpolation and an exact "static" response in the extended sense.

High order refinements are usually not needed, but some rules can be given for the

eventual case where this would apply. the p-refinement also has, in general, the advantage

of having a guaranteed monotonic convergence (consistent mass will always be assumed

here). This guarantee comes from the fact that a p-refinement always includes the preceding

model (this is called the inclusion property). But, when using usual 2-node beam elements



in an h-refinement, this property is also verified so that monotonic convergence is also

guaranteed. In general, monotonic convergence is only guaranteed for refinements that

include the non-refined model, but no other general consideration can be given. The

monotonic convergence of point errors on the modeshapes is also guaranteed but may not

be as quick as the global modeshape convergence.

In order to asses the accuracy of different beam elements, the addition of inertia

relief modes to the standard beam element as a first step of p-refinement is discussed in

section 2.3.2. In section 2.3.3., errors in the prediction of modeshapes are studied for a

simple beam configuration using the control-approach error definition. Finally, conclusions

on the expected accuracies of finite element models are drawn in section 2.3.4.

2.3.2. An 18 dof beam element

As a first step to a p-refinement this section discusses the creation of a 18 dof beam

element that could be used without restrictions in a 3-D finite element code such as

NASTRAN.

The usual 12-dof, 3-D, 2-node beam element, which represents exactly the static

response of a Bernouilli-Euler beam, uses a set of 12 shape functions:

Bending (2 axes) Compression Torsion

v1(s) = 2 s3 - 3 s2 + 1 ul(s) = - s + 1 01(s) = - s + 1

v2(s) = -2 s3 + 3 2  u2(s) = s 02(s) = s

v3(s) = S3 - 2 + s

v4(s) = S3 - S2

where s is the non-dimensional local coordinate along the element (which varies from 0 at

node 1 to 1 at node 2), ul, vi and u2, v2 correspond to unity axial and transverse



displacements at nodes 1 and 2 respectively, v3, 01 and v4, 02 correspond to unity torsion

angle and bending slope at nodes 1 and 2, respectively.

For a p-refinement of this element, the solution depends only on the functional

space spanned by the interpolating functions, but the added shape functions should be

chosen so as to simplify the mixed use of the initial and refined elements by keeping

unchanged the interpretation of the 12 initial functions in terms of unitary displacements at

the boundary nodes. Here the shape functions have also been chosen to have an

interpretation in terms of midspan displacements, and take the following forms in terms of

the non-dimensional coordinate s:

Bending (2 axes) Compression Torsion

v5(s) = 16 s4 -32 s3 - 16 s2  u3(s) =- 2s2 + 2s 03(s) = - 2s2 + 2s

v6(s) = 16 s5 - 40 s4 + 32 s3 - 8 s2

where u3 and v5 correspond to unity axial and transverse midspan displacement, the end

nodes being fixed; 03 and v6 correspond to unity torsional and transverse midspan slopes,

the end nodes being fixed.

The addition of these higher order shape functions enables the exact description of

inertia relief modes. A detailed definition of inertia relief modes is given in chapter V but,

as an example where their influence is seen, one can consider the steady-state response of a

free-free beam with a constant load at one point. The beam undergoes an infinite rigid body

motion and a finite constant flexible deformation, which is called the inertia relief

deformation and corresponds to the fact that the structure must be stressed so that the

external force applied at one point results in forces applied at all points which induce the

rigid-body motion of all the structure. Inertia relief modes of a beam are quadratic

polynomials in compression and torsion, and quintic polynomials in bending, so that the

new element describes them exactly.



Using these shape functions the corresponding mass and stiffness matrices have

been derived and are shown on figure 2.7.

To develop higher order p-refined general elements similar approaches could be

used, introducing more intermediate nodes and their associated shape functions, but it is

obvious that this would require a full automation within the finite element code, which is

not generally available at the present time.
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2.3.3. Accuracy of models of controlled beams

Having defined the exact solution and the different refinement levels of finite

element beam models, the problem is now to determine the accuracy of different

approximate solutions in the sense of control applications (as described in chapter I).

Figure 2.8. summarizes the characteristics of the several current point actuators and

sensors. The force actuators and position, velocity, or acceleration sensors (cases a and c)

will be accurately modelled if the point displacements are accurate. Differential force

actuators and axial strain sensors (case b) will be as accurate as the integrated axial strain

which is equal to the difference of the displacements at the two extremities of the

sensor/actuator. Similarly for case d the slope at the actuator/sensor point determines the

accuracy and for case e the integrated curvature (equal to the slope difference) must be

accurate over the sensor/actuator location.

U U' v / v' v"I I

F F -FT F (:

(a) (b) (c) (d) (e)

Figure 2.8. Typical structural sensors and actuators.

So for the representation of typical sensors and actuators considered in figure 2.8.,

the accuracy depends on estimated point values of axial displacement and transverse

displacement and slope. In order to assess the accuracy of different finite elements of a

beam, figures 2.9. and 2.10. compare the exact and estimated response for a beam in



bending and compression. Torsion follows the same partial derivative equation as

compression and has the same shape-functions so that its case, when non-dimensionalized,

corresponds exactly to compression and will therefore not be considered.

Figure 2.9. considers the axial motions of the tip of a free-free beam undergoing a

collocated harmonic axial forcing at the tip. Figure 2.10. compares the transverse motions

of the cantilevered beam with an intermediate collocated force actuation (the example of

figure 2.2.. with xA = .5 xB). In both cases the motions are undamped so that differences

in the height of the spikes are due to numerical discretization of the frequency axis.

The first characteristic of these plots is that as expected the static behavior of the

structure is well represented. In figure 2.9., where a rigid body mode is involved, only the

quadratic element captures exactly the static response, as it includes inertia relief modes.

For other models the inertia relief flexible deformation is not exactly represented, and the

difference between the exact and estimated transfer functions tends to a finite error at DC

(as the response is infinite the relative error does go to zero). In figure 2.9., this results in a

much better estimate of the low frequency behavior: at a normalized frequency of 1, the

linear element has a 13% relative error, the 2 linear a 3%, and the quadratic a .07%. This

effect is also seen in the accuracy of the first zero location.

The estimates of the first resonance are poor in figure 2.9. For one and two linear

elements, the relative frequency error is 10%, and for four elements still 3% (two quadratic

elements, with the same 5 dof, have only .5% error). This poor accuracy of the linear

interpolation functions is seldom a limitation, since resonant frequencies in compression

(and torsion) are in most structures decades above the frequency range of interest.

In bending, the frequencies of interest often correspond to wave modes that are not

well approximated by the cubic interpolation functions. As shown in figure 2.10., the

initial finite element model, which uses one cubic element for each of the beam segments, is

fine enough to represent the first two modes but is inaccurate afterwards. The refinement is

done seperately for each of the two initial elements by a p- and an h-refinement. As



expected after the heuristic arguments of the introduction, the figure shows that the p-

refinement (2 quintic elements) gives a better estimate of the low frequency response (the

4th mode is much better captured). At higher frequencies (not shown on the figure) the h-

refinement (4 cubic elements) captures a few more modes.

Although the frequency estimates for the first modes of p-refined models tend to be

more accurate, the trend on modeshapes may not be true for control applications. This can

be seen by comparing modeshapes or, equivalently, residues. The exact and approximate

first modeshape (and first three spatial derivatives, plotted as transverse displacements) of a

free-free beam in bending are plotted in figure 2.11. Although the modeshapes of quintic

elements are closer in a spatial L2 sense to real modeshapes, the tip values of all the spatial

derivatives of the displacement are better approximated by the two cubic elements.

Therefore if actuators and sensors are located near the tips, the relative error in an estimated

transfer-function will in fact be smaller for the h-refined element, although a structural

dynamicist would consider the model to be less accurate.

In conclusion, the value of the two different refinements depends on the model

objective. The p-refinement will tend to give fewer but usually more accurate modes than

the h-refinement. In choosing a type of refinement, one should not forget that innacuracies

in the solution estimate of the continuous idealized model are of no importance if they are

much smaller than the discrepancies between the real stucture and the idealized model. So,

the h-refinement, beeing often easier to implement, is the practical solution in cases with no

hard limit on the number of degrees of freedom and no extreme confidence in the

continuous idealized model.
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Figure 2.11. 1st mode position and curvature shapes of a free-free
beam in bending. Left: 2 cubic elements, right: 1 quintic element,
dashed : exact.

The extension to trusses of these considerations made for beams can be done by

considering separately the beam elements of the truss (as the accuracy of the each element is

a sufficient condition for the accuracy of the complete model). The accuracy of an element

is limited in frequency: if the harmonic motions that it must represent have too short

wavelengths the element will be inaccurate and should be refined. In practice, if the

wavelength is twice the element length (which happens at the pinned-pinned mode

frequency) significant differences begin to appear, so that a refinement may be needed.

In the case of the initial interferometer model (introduced in chapter I), a wavelength

of two element lengths (50 cm) would be found around 8500 Hz in compression, but

around 200 Hz in bending. So, as is usually true for truss-structures, the compression is

very accurately modelled. However, if bending influences the global behavior, the

convergence of the model can be expected to be inaccurate above 200 Hz.
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The exact influence of insufficient refinement is also strongly dependent on the

influence of the mismodelled phenomena on the modeshape characteristics. A good

indicator of this influence is the relative amount of energy linked to the inaccurately

modelled phenomena. For the interferometer, modes below 100 Hz have less than 1%

energy in bending, so that modelling bending has almost no influence, at higher

frequencies bending energy is a few percent so that inaccurate modelling of the quasistatic

bending and of the local bending resonance can be expected and has been shown to be

significant, above 100 Hz because of inaccurate modelling of static bending, and above

200 Hz because of insufficient mesh refinement.

2.4. Modelling truss-beams

2.4.1. Introduction

While the previous section considered the model accuracy for simple beams, the

results can be extended to the case of trusses by considering the accuracy of the model of

each strut. This section will introduce different truss-beam models, consider their accuracy,

and show the main causes for the existence of dicrepancies between the response of the

continuous idealized model and the corresponding finite element model.

The first step in the computation of an approximate solution is to introduce

kinematic assumptions that describe the possible motions of the structure included in the

model (Ritz or FEM shapes).

The second step is the introduction of simplifying assumptions that will enable a

reduction of unnecessary degrees of freedom. The neglected degrees of freedom can either

be set to zero (neglecting axial motions for example) or statically condensed, if the

considered deformation behaves quasistatically. The difficulty associated with a valid static



reduction is that in many cases the degrees of freedom that should be condensed are not

those of the initial description of the structure, but rather the degrees of freedom of a new

description found by a linear, non-singular transformation of the initial degrees of freedom.

For example, in the truss beam sample problem, the extension of the vertical strut can be

considered as quasistatic but the vertical displacements of the two nodes at the extremities

of the strut cannot. The main advantage of equivalent continuum ideas is to introduce a

description where good simplifying assumptions can be made.

Finally, the dynamic response is computed and can be reexpanded to a form using

all the initial degrees of freedom by inverting the expressions used at the simplifying stage.

These steps are discussed in the following sections, for the joint-plane approach,

from which equivalent continuum models are derived, and for the midbay-plane approach

that enables a low cost model accurate at higher frequencies. The discussion of the classical

approach assumes that the reader is familiar with the construction of equivalent continuum

models by comparison of energies (if such is not the case, [18] and [19] document the

process in detail). In section 2.4.4. the accuracy of these models is compared using the

truss-beam sample problem, and discrepancies are shown to correspond to frequencies

where bending motions become important.

2.4.2. Joint-plane bay, equivalent continuum models

The classical approach considers a bay limited by joint points, as was shown in

figure 2.4. For equivalent continua it is necessary to define relations between the

displacements of the truss and those of the continuum. The linkage is made using Taylor

series expansions of the continuum displacements and matching truss and continuum

displacements at truss joints. The expression of truss displacement in terms of continuum

displacment is, therefore, only meaningful at joints, which is a hard limitation on the

accuracy of equivalent continuum models. It should be clear that this step is essential in the



use of the method for anything other than a conceptual model, since it links displacement

and therefore modal information between the two models. In most cases, including the case

of equivalent continuum approaches, the kinematic assumptions are that the motions for

each individual strut are those of a standard 2-node static finite element, which (as shown

in 2.3.2.) are cubic polynomials for transverse displacements and linear functions for axial

and torsional displacements.

The dynamics of the model are defined as those of an initial finite element model

with 1 cubic element per strut. The kinetic and strain energy estimates of an equivalent

continuum bay-element are equated to this estimate using the kinematic assumptions. The

equivalent continuum properties are fixed by this equation and the continuum beam element

models the same dynamics as the initial model if no simplification is done.

After the definition of the dynamics, the model can be simplified or solved directly.

No easy simplification can be done on the model with one element per strut, so that by

changing the definition of degrees of freedom one simplifies the equivalent continuum

form. Three types of simplifications are performed. To describe the truss as a series of

repeated continuum bay-elements, compatibility conditions must be imposed with no other

justification than the final model accuracy. Model reductions are performed by

condensation of a certain number of degrees of freedom. As stated before, this is justified if

the behavior of these degrees of freedom can be accurately modelled as quasistatic in the

frequency range of interest. Finally, dynamic assumptions can be introduced which neglect

or use different values for coupling terms in the stiffness and mass matrices (this is needed

if one wants an equivalent beam in terms of equivalent cross-section properties: density,

section area, section inertia, etc.). These assumptions are valid in many cases although no

general justification exists.

Using this approach, the frequency limit of accuracy is linked to the proximity of

local strut resonances, and refined models, such as the one proposed in section 2.4.3., are

needed to get accurate results even below the actual local strut resonance frequency.



Midbay-plane model

This approach considers the bay shown on figure 2.6. as the repeated truss

element. The initial modeled kinematics are those of 2-node elements for each strut of the

bay, which corresponds to two elements per strut in the joint-plane description. As will be

shown in chapter IV (in the study of the classical bay dynamics) this model captures

accurately the first resonances of the truss members, so that truss dynamics found with the

model used here are accurate up to and above the first local strut resonances.

As for the equivalent continuum methods, the real interest of this new approach lies

in the simplifying assumptions that can be made. The degrees of freedom associated with

joint nodes of the bays shown as circles in figure 2.12. are internal degrees of freedom that

0 Dynamic nodes

O Static nodes (condensed)

Figure 2.12. Dynamic and static nodes for a truss-beam model using the new
approach.

can be statically condensed with almost no loss of accuracy in the frequency range of

interest, which includes the first local resonances. The physical reason is that the joints are

geometrically stiff, therefore fixing the states of strut midspans induces high frequency

dynamics on the joint which, at low frequencies, are seen as a quasistatic behavior. The

remaining dynamic degrees of freedom shown on figure 2.12. form a set complete enough

2.4.3.



to represent accurately the truss dynamics up to the frequency where longeron and diagonal

bending motions have an important effect. The number of active degrees of freedom is in

this model slightly larger than for the equivalent continuum model, but the refinement is in

different cases necessary to have accuracy in the full frequency range of interest.

On the truss beam sample problem, condensation of the joint degrees of freedom

changed the approximate modal frequencies (up to and including the local modes) by less

than .1% in both the pinned and clamped joint cases; it changed the modeshapes by only a

few percent for an Euclidian norm on the nodal displacements.

The definite advantage of this approach compared to the classical method is that

linear joint behaviors can be introduced easily and without increasing the size of the

dynamic problem. Since it has been found that the joints behave quasistatically in the two

extreme cases of the pinned and the clamped joint, one assume that they will still do so in

the intermediate cases of joints with linear rotational stiffness. The correction of joint

behavior will only appear as a correction on the mass and stiffness matrix of the dynamic

degrees of freedom, so that the model cost is increased only by the computation of the

correction. For other linear joints or non-linear joints approximated by describing

functions, the quasistatic joint behavior would have to be assessed, but the method

definitely provides a very effective tool to get a first estimate of the dynamic behavior of a

truss with non-trivial joint behavior.

The importance of modelling rotational rigidity at joints depends partially on the

energy stored in bending, and the new approach gives much more accurate estimates of the

strut bending behavior so that even if joint models were possible in the classical approach,

the midbay-plane model would be much more accurate without using many more dynamic

degrees of freedom.



Comparison of results and validity ranges

As a mean of assessing the validity range of the different models, the truss-beam

sample problem (see description made in section 1.3.) will be used. Figure 2.13. shows

modal frequencies of three models of the truss-beam.

The first set of frequencies corresponds to a Bernoulli-Euler beam with a first mode

matched to the actual first frequency of the truss, which is the result of a simple equivalent

continuum modelling approach. For this model even the second mode is innacurate. For

other truss configurations it could match more of the behavior, but when bending effects

due to clamped joints or resonant struts are present no agreement can be expected. The

second set of frequencies corresponds to a model with one element per strut, which is the

limiting performance achievable by equivalent continuum approaches. The first and second

modes are good, but not the following ones. The bending half-wavelength is the length of

the diagonal element at 103.5 Hz, so that significant influence of diagonal strut resonance

should be, and indeed is, seen above that frequency. The third set of frequencies

corresponds to a model with two elements per strut, which is the limiting performance of

I I I I
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50 Hz 100 Hz 150 Hz 200 Hz 250 Hz

Figure 2.13. Modal frequencies of the truss beam models: Bernouilli-Euler
beam, 1 element per strut, 2 element per strut.

2.4.4.
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Figure 2.14. Effect of joint rotational stiffness on modal frequencies of the
truss-beam.

the midbay-plane modelling approach. For most purposes, accuracy can be expected in the

frequency range of interest (0 to 200 Hz). The presence of internal degrees of freedom on

each free segment (nodes at strut midspans) gives a good a priori confidence in the

agreement that is effectively observed. The accuracy of the model will be confirmed by the

study of bay resonances in chapter IV.

As an application of the new method, the evolution of modal frequencies of the

truss-beam sample problem was computed as a function of joint rotational stiffness and is

plotted on figure 2.14. The first two modes are almost independent of joint stiffness (.5%

and 2.5% variation in frequency): they are global modes that would be well predicted by

both the classical and the new approach. The following modes show a much heavier

dependance on joint properties(>25% variation in frequency); bending influences the truss

behavior and therefore the classical equivalent continuum method would give innacurate

results. The micropolar equivalent continuum developed by A.K. Noor [15] would



probably give acceptable results for the third mode but not afterwards, since the subsequent

modes involve local resonances of the bays that are not accurately described by the model

with one element per strut.



CHAPTER III

CORRELATION WITH EXPERIMENTAL
RESULTS

3.1. Introduction

The purpose of all models is to give a good representation of actual physical

phenomena. In structural dynamics applied to controlled structures one is essentially

interested in the low frequency dynamics of the structure, with a special interest in a good

representation of modal frequencies and modal residues linked to the different sensors and

actuators, or in other words, one is interested in good representations of the input/output

transfer functions. The construction of the structure dynamic model is one of the most

important steps in the control design, since it conditions the validity of any control

methodology that may be applied.

In chapter II, so that finite element solutions could be of effective use, the size and

form a finite element model should have to be a good representation of the continuous

idealized model of the structure was discussed. This chapter will: give a better

understanding of the different parameters that enter the definition of the continuous

idealization, show how different updates of this conceptual model can be introduced using

measured data to get a better estimate of the response, and list some of the errors that are

often present in this idealized model.

For truss structures many testbeds (refs. [21]-[23]) give examples of comparisons

between models and experiments. In this chapter the interferometer testbed and the F-truss

(both described section 1.3.) will be used as examples to support different considerations.



Section 3.2. discusses the methodology usually applied in the modelling approach:

construction of an initial model from hardware specifications, update using component

properties measurements, and update using structural dynamic measurements.

Section 3.3. reviews usual modelling errors focusing on both causes and effects.

3.2. Methodology

This section discusses the standard steps in the creation and update of structural

dynamic models, and the framework is illustrated by the case of the interferometer and of

the F-truss testbeds.

Initial model

Before a structure is built, an initial finite element model is usually created based on

the hardware specifications. The normal procedure is to create a detailed continuous model

describing the structure as an assembly of components (beams, plates, joints, ...) with

precise local properties (stiffness, densities) and simple behavior descriptions in the form

of partial derivative equations. In the model, assemblies (struts composed of different

connected parts) should be described as different parts.

As the continuous solution is not computable with available analytical tools, one

usually creates from the continuous idealized model a detailed finite element model, as was

done in chapter II. This model has typically many more degrees of freedom than acceptable

or useful for the dynamic model so that a static condensation of many of the degrees of

freedom should be performed.

For the F-truss, the model was reduced from 1900 dof to 216 dynamic dof. For the

interferometer testbed, the reduction was done as an initial step before assembly of the

model. Each strut was described by a 48 dof model which was condensed to 12 so that



equivalent properties (matching the mass and stiffness matrix diagonal elements) could be

computed and incorporated in the model as one strut element. This process reduced an

initial model that would have had 26424 dof to a 1368 dof model.

The accuracy of this initial model is a central issue since it is the only working tool

for control designers, as long as no update is performed using experimentally obtained

data. Many assumptions are usually made for the creation of this initial model concerning

the phenomena that are and should be modelled, and these will be discussed in more details

in section 3.4. However, assuming that the structure is built according to the specifications

and that there is no major unmodelled dynamic effect (e.g. suspension effects), the usual

accuracy that can be expected is less than 10 % percent error for modal frequencies and an

acceptable accuracy for modeshapes (no phase error far from nodes and global shape

agreement, with node meaning "point where the quantity of interest is zero). This of course

assumes that the finite element model gives a proper solution of the underlying continuous

model, as was discussed in chapter II.

The accuracy of the modeshapes is heavily dependent on modal density: the

sensitivity to perturbations in the structure is inversely proportional to modal frequency

separation (see section 1.2.2.), so that the higher the modal density the less confident one

can be in the modeshapes. In the limiting case of modes having identical frequencies,

individual modeshapes are not defined but span a subspace. Reasons for the presence of

high modal density, at low frequncies, will be analyzed in chapter IV, but it is generally

caused either by approximate symmetry or by decoupled local vibration.

For the F-truss, the identification of the first two modes was not valid in the initial

model: their proximity, coupled with a inaccurate stiffness estimate, induced a significant

modification of the modeshapes, which caused a phase error between the sensor and the

actuator location.

The sensitivity due to high modal density makes both analytical and experimental

measurements inaccurate, so it is always difficult to analyze. The consequences on MIMO



controller stability and performance are not completely known, so no general conclusions

can be drawn in terms of the influence of such perturbations on controlled structure

characteristics. Damping, though, dimishes the importance of modelling errors by

augmenting the modal overlap (see chapter IV).

No general rule can be given on the accuracy of point informations of a model, but

some of the following considerations may help. Continuous models are able to represent

the response of the structure and it is possible to create finite element models that give

accurate estimates of the low frequency modes of the continuous idealized model (as seen

in chapter II). If the material properties are well known, if the modes are well separated (for

example, relative separation greater than 15%), and if no omission has occured in the

modelled dynamic phenomena, the continuous model underlying the finite element model

can be expected to give modal frequencies with less than 10 % error and all the major

dynamic characteristics of the response, even though zeros (i.e. transfer-function phases)

could be very inaccurate. The accuracy of the finite element model is limited in the high

frequencies by the kinematic assumptions made on the structural behavior (mesh and

element type of the finite element model) as these assumptions put a upper limit on the

wavenumbers that can be accurately represented. Under the previous assumptions, and for

frequencies where displacements can be considered quasistatic over an element length, one

can expect local results to be accurate if they are not near nodes. Where nodes are points at

which the quantity of interest is zero, so that nodes of displacement, slope and curvature

are different points.

Updating with component measurements

The first possible update of the initial model is the inclusion of measured

component properties. Once the structure is built, but not necessarily assembled, it is often

relatively easy to measure actual properties of components, such as mass and stiffness

distributions of the struts composing a truss. Using these measurements the model can be



corrected. This step is clearly desirable and is probably the only affordable update that can

be done for a structure which could not be fully tested before its first real use; but it can be

very tricky: the definition of boundary conditions for the element test is essential. In the

component test a distinction must be made between the measurement and the parameter that

will be used to update the model of the real structure, and careful attention must be paid to

get results that can be extrapolated to the real structure. Usually one measures stiffness and

mass distribution properties.

The struts of the interferometer are formed of aluminum tubes tightly screwed to

aluminum ball joints. The initial guess for the strut properties was based on a detailed

model of the strut. The aluminum tube and the screws were modelled as beams and the ball

joints as rigid bodies. This model gave an axial short strut stiffness EA/I = 12.83 N/p.m

(which was later measured as 12.9 N/gpm). The assumption of rigid aluminum ball joints

was an error that resulted in an axial stiffness overestimated by 12% and gave frequencies

for the first 20 modes overestimated by approximately 6 %. A first test with the ball joints

replaced by aluminum fittings gave an estimate of the axial stiffness EA/1 = 10.5 N/gpm, but

this component test did not include the real joint stiffness so that the estimated modal

frequencies were under the actual ones. A test with a real ball joint at one end gave an

estimated axial stiffness EA/1 = 11.2 N/p.m. This test included the real joint stiffness, and

the corresponding last update gave frequencies of the first 12 modes within 2% of the

actual ones (see section 3.3. and table 3.2. for further details). At that point, the remaining

uncertainty in the real stiffness distribution, still accounted for more than the measured

error in frequency.

Errors in modelling the mass distribution have a strong influence on local bending

motions. For the first twelve of modes of the interferometer, which are characterized by

axial strut motions, uncertainty in the mass distribution could account for up to about .5%

error in the modal frequencies. At higher frequencies bending motions having more

influence, and errors could go up to 5% or more after the 20th mode.



In general the component test update should be considered with caution and cross-

checked with global structural dynamic measurements. The failure to do so might lead to

the update of some properties, while others having a comparable influence are not updated,

so that the global change could be meaningless.

Updating with structural dynamic measurements

The first difficulty when updating with structural dynamic measurements is with the

generation of the measurements. The object of this analysis is not to give a detailed review

of all the difficulties encountered in a structural dynamic identification, and textbooks such

as references [24] and [25] have much more information than could be given here. In

practice, modal frequencies can be measured quite accurately but damping and modeshapes

measurements should be considered with much more caution. Nevertheless, assuming that

accurate modal characteristics are available, the question is how to update the initial model

to match the actual properties better. No generally accepted method is available for that

update, so a number of references corresponding to different methods should be cited:

[26]-[29].

The first step of the update, and also the one where engineering judgement has the

most influence, is the determination of the form of the error. The errors that can be handled

by an update can lie in the mass or the stiffness distributions, they can be global

(parameter, such as Young's modulus, incorrectly estimated over the whole structure) or

local (one particular strut is less stiff). Global errors are the easiest to handle, but there exist

some ways of characterizing local errors (refs. [27] and [28]) within a restricted error-form

framework. The restriction of the type of local and global errors is necessary since there are

never enough measurements to deterministically update all the parameters of the model. Of

course this restriction itself introduces an arbitrariness which may be the source of error

(see ref. [30]).



The second step is the determination of what is expected to match. Obviously,

modal frequencies should match, but for modeshapes the question is unclear since

measurements and modelled modeshapes do not have the same forms. As seen in section

1.2.1., different methods to define the agreement can be used and give different results

(also see refs. [27] and [29]).

Finally, the update can be done in an exact approach (matching exactly a finite

number of characteristics), or in an optimal sense (minimizing a cost that includes all the

"important" parameters of the problem). In the optimal case, one computes different

complete solutions, or more efficiently makes a mixed use of complete solutions and of

sensitivities to different parameters found using the perturbation method.

In both cases the method gives a new model that matches characteristics considered

important. But wether this model is a better approximation of reality depends essentially on

the definition of "better", or, in other words, on the intended use of the model. For further

details on the characterization of model error see section 1.2.1.

3.3. Review of usual modelling errors

In the modelling process several modelling errors are usually made because of

inexact assumptions about the structure. Errors can be voluntary (neglected suspension,

neglected prestress ...) or involuntary (geometric reality differs from engineering drawings,

...). The engineering problem is to assess which of these errors should be corrected to get a

good model. Errors can be categorized according to their causes or their effects, and the

object of this section is to give a list of these categories, supported by examples found

during the modelling of the interferometer testbed.

The main cause of error is human: bad measurements, bad acquisition of numerical

parameters for the model, discrepancies between engineering specifications and actual



hardware, etc. are well known to all engineers but have no cure and no predictable effects

in general. Other essential causes of error, which will be further detailed, are unmodelled

geometric reality, inaccurate estimation of the model solution, unmodelled phenomena, and

non-linearities. The effects can be of many types, but the following categories will be used

as subsections: biased and unbiased global errors, local errors, neglected stiffness and

resonances, and other unmodelled phenomena.

Biased global errors

Biased errors in the estimation of global parameters cause the model to give

consistently under or overestimated modal frequencies and induce changes in the

modeshapes that affect all the structure. The amplitude of model errors is closely related to

the relative error in the strain and kinetic energy estimation: if for a given mode 99% of the

energy is due to compression, a percent error in the transverse moment of inertia will have

almost no effect (see expression of the first order perturbation in section 1.2.2.), but a

percent error in the axial stiffness will induce almost a percent error on the frequency

squared (1.01 error on the frequency). The effect on modeshapes is essentially dependent

on whether or not the modelled mass and stiffness matrices can be considered as

proportional to the actual ones. For a truss structure dominated by axial motions, an error

in the strut axial stiffness is proportional, so estimated modeshapes are correct, but an error

in bending is not proportional, so modeshapes will change for modes influenced by

bending. Modal frequency separation is an important factor for the general accuracy of all

models but in the case of global errors its influence tends to be small. The following

paragraphs describe some of the factors that cause biased global errors.

Innacuracies of global property estimates, such as axial strut stiffness for trusses,

are usual and should be corrected (with component measurements) during the update (as

detailed in section 3.2.). Table 3.2. gives the variations of the estimate due to the use of

different values of the strut axial stiffness (as discussed in section 3.2.). The first column



gives measured frequencies (the presense of the modes in parenthesis is deduced from the

finite element model, suspension modes are not included see table 3.3. which focuses on

this problem), and the last two give the relative error in the frequency estimate for axial

stiffness EA/1 = 12.83 N/mm and 11.2 N/mm respectively. For the first twelve modes

which are characterized by the same first bending mode of the legs, the frequencies squared

all decreased by about 6.5% between the first and the second approximate model. For the

following modes, bending has more influence and the frequency shift is smaller. The

change of stiffness and mass distribution is basically proportional for the first twelve

modes, so that the sensitivities of the modeshapes to the change of modelled axial stiffness

are below .1%, but for modes 13 to 20, bending becomes more important and the

sensitivities go up to 3%.

Table 3.2. Measured modal frequencies of the naked interferometer testbed, and
relative error on modal frequency for strut axial stiffness
EA/1= 12.83 N/mm and 11.2 N/mm.

cOmeas (Hz) ACOE1 (%) ACOE (2) M omeas (Hz) AwOE (%) A)E2 (%)

35.10 5.73 2.30 55.20 4.64 1.36
(35.10) 5.73 2.30 55.60 4.59 1.30
38.90 6.98 3.42 100.80 6.19 3.80
39.40 5.62 2.11 101.70 5.25 2.88

(39.40) 5.81 2.29 102.00 4.96 2.58
43.30 6.27 2.80 105.50 6.27 2.72
43.70 5.39 1.96 111.00 5.96 2.57
(43.70) 5.39 1.96 111.50 5.49 2.11
52.10 5.56 2.13 112.50 4.38 2.16
54.70 5.60 2.28 112.50 6.37 3.54

Non-uniform distribution of some properties can lead to biased global errors of

unknown amplitude. For the interferometer, strut misalignment always leads to a smaller



apparent axial stiffness. As a simple way to prove this, one can consider a segment with

two half struts separated by a ball joint. If the junction points of the struts with the joint are

offset from the nominal straight line, with the struts remaining straight but not following

the nominal direction, a coupling between compression and bending motions is introduced

resulting in apparently lower axial stiffness. For 10 rotation of the connection points on the

joint, the axial stiffness is reduced by .5%, and for 20 by almost 2%. A 2% overestimate of

the mean axial stiffness would result here in approximately 1% error in frequency, but there

is no way to measure the real mean stiffness so this error has to be considered generic and

may be used in updates with structural dynamic measurements.

Prestress and predeformation also modify the behavior in sometimes biased

manners. For example, pretensioning cables in a truss will lower the bending frequency of

the struts so that the influence of bending motions increases with pretension. General tools

to include these effects are not readily available, but it would be possible to introduce in a

finite element code an automatic correction for initial structural modifications.

Unbiased global errors

Unbiased global errors are global errors for which the best estimate is zero. This

usually means that some structural properties are not or cannot be known with a better

precision than that used in the model. Such properties include initial estimates of

component material properties, which can be updated through component tests, and

distributed geometrical properties of nominally identical components, which cannot usually

be updated.

Unbiased global errors can be corrected either by measuring estimated properties

(the error is then biased until the model is corrected), or by updating the model through

structural dynamic measurements (as described in section 3.2.). In the later case the

process is not unique, so careful attention must be paid to the physical significance of the

solution (see ref. [30]).



Local errors

This type of error groups all the cases for which voluntarily or involuntarily a part

of the structure (one or a few struts of a truss for example) is very different from the model

description. The effect of such modelling errors depends essentially of two factors: the

relative amount of strain and kinetic energy energy found in the mismodelled part compared

to global strain and kinetic energies, and the modal frequency separation which is related to

the minimal variation in the energy distribution needed to get significant changes in the

modeshapes.

Using the definition of the first perturbation (given in section 1.2.2.), one could

prove that if the relative error in energy is small (so that 1-2 TM(1) + OTK(1) 1 < .1 mC02)

and the frequency separation is important ( Io)? - o)2I > .1 o2), the sensitivities to the

perturbation are small (cij < .01). For the interferometer unmodelled active struts, with a

third of the nominal axial stiffness, where present in the structure. Placing an active strut in

the middle of a leg, the resulting relative error in energy was, for the first 20 modes, less

than .5% for the kinetic energy and less than 3% for the strain energy , so that the

perturbation should only be noticeable for the degenerated modes. The actual perturbation

analysis gave modeshape sensitivities of less than 2% except for almost degenerated modes

for which the analysis is not valid.

Obviously local errors that have a significant influence should be corrected, but it is

often hard to pinpoint involuntary errors. Some attempts ([28]) have been made to identify

such errors from measured modal data, but these cannot to date be used as general tools.

Unmodelled stiffness and resonances

Three important cases fall in this category: internal resonances, suspension effects,

and unmodelled resonances.



Internal resonances of continuous systems produce modelling errors when the

resonances are near or in the bandwidth of interest and the form chosen for the finite

element solution is not able to represent them (see chapter II). An example, often used in

this report (chapters II and IV), is the bending resonance of struts in truss structures. For

the interferometer testbed, local resonances appear a little above 200 Hz and significant

errors due to inaccurate modelling of bending can be expected down to 100 Hz (at that

frequency bending represents more than 5% of the strain energy, and wavelengths in the

struts are of the order of two strut lengths).

Suspension effects are an major difficulty of ground testing, as the stiffness of the

suspension may have some non-negligible effects. The F-truss, for example, was

cantilevered from a large isolation mass supported by air-bags, but although the mass

largely outweighed the truss, rotational inertia effects were important and a model of the

support was necessary to get good agreement between measured and estimated

modeshapes.

For the testing of proposed space based structures, the ideal suspension induces

very low frequency modes with an almost rigid structure. Passive solutions to this problem

use very soft springs. However, as was found for the interferometer testbed, long soft

springs have high levels of internal axial resonances (i.e. surge modes of the suspension),

so that a trade-off must be made between low rigidity and low levels of internal resonance.

Table 3.3. gives measured and predicted modal frequencies for the interferometer (the

predicted frequencies are those of the second update considered in table 3.2.). The surge

modes of the suspension, which appear clearly in the testing, where not modelled. This

resulted in a misinterpretation of the measured results. The testing also missed many of the

almost degenerated modes of the structure, but a multi-input experiment would have been

necessary to separate these, so that the model gives some essential information about the

structure which could not be seen during the single actuator testing.



Table 3.3. Measured modal frequencies of the naked interferometer testbed,
compared with the predictions of a model without suspension.

m=measured oedicted measuled Oxdicted

31.35 suspension 55.20 55.95

31.75 suspension missed 56.32

35.10 35.91 62.70 suspension

missed 35.91 63.40 suspension

38.90 40.23 94.10 suspension

39.40 40.23 94.80 suspension

missed 40.30 95.00 suspension

43.30 44.51 100.80 104.63

43.70 44.56 101.70 104.63

missed 44.56 102.00 104.63

52.10 53.21 105.50 108.36

54.70 55.95 111.00 113.85

Other unmodelled phenomena

The list here could be very long so only usual and well known cases are treated.

Damping is almost never modelled initially, and is added for control purposes as

modal damping on the undamped estimated modes. This is accurate, if proportional

damping is a good hypothesis, and damping levels can be estimated from measurements

(measured damping levels should be taken with caution as 100% errors are usual). But in

any case, initial models of damping would be hard to introduce since many real

unintentional damping mechanisms are not well understood. For example, wires add

significant damping to testbeds. Damping treatments are better understood, and can be

modelled with high fidelity, though usually requiring the introduction of additional states.

Modelling and study of proportional and non-proportional damping mechanisms is

certainly of major importance for future developments of controlled structure technologies.



Non-linearities (ref. [31]), which occur for trusses essentially at joints and in

cables, can be sources of errors. The main effects of small non-linearities are amplitude

dependence and non-harmonic response, which are difficult to deal with and much more

work is needed on the subject.

Gravity is an important factor in the use of ground tests as update bases for space

structure models. The modification of behavior due to gravity can be important and should

be taken into account, but little work has been done to date on the subject ([32] is in

preparation)



CHAPTER IV

HIGH MODAL DENSITY

4.1. Introduction

One of the most challenging difficulties in future space structures is their high

modal density. Due to stringent mass and stiffness requirements, they will tend to have a

fair portion of their mass distributed over large areas, which induces low frequency and

often very closely spaced resonances. As seen in chapter I, the sensitivity of modeshapes

characteristics to perturbations is inversely proportional to the relative modal frequency

separation, so that the characterization of structural response by the use of modeshapes

becomes more and more difficult when modal density increases. As high sensitivity implies

high influence of modelling errors, it is essential, for control and identification purposes, to

study the porperties of structures with high modal density. An assessment of the exact

influence of errors in the estimation of modal characteristics on the actual input-output

response should then be possible.

The limiting case of high modal density is modal degeneration where different

modes have the same frequency. The appearance of degeneration is always linked to

uncoupled vibrations, which may be linked to symmetry or local vibration. This chapter

will study the general properties of degeneration due to symmetry and the effects of near

degeneration due to substructure vibration. In the case of the truss-beam sample problem

(described in section 1.3), this will present a clearer picture of the properties of almost

degenerated modes and, in one case, show how damping has a desensitizing influence that

increases with modal density.



In section 4.2., algebraic properties of symmetric structures will be used to gain a

better understanding of their dynamics. The decomposition of modes into symmetry types

and the cases of symmetry imposed degeneration will be treated. Two examples, a simple

triangle of beams and the interferometer testbed, will be used to show typical conclusions

that can be drawn.

In section 4.3., the case of substructure vibration will be examined. For the truss-

beam sample problem, in the case of clamped joints where the structure seems fully

coupled, the conjecture that degenerated modes correspond to the vibration of uncoupled

substructures will be confirmed by finding a small perturbation inducing modal

localization. The effect of diagonal strut vibration, which characterizes the modes subject to

localization, will then be analyzed as the effect of distributed proof-mass dampers. Using

this point of view the desensitizing influence damping on the response in terms of transfer

functions will be shown, giving a better perspective on real characteristics of the structure,

than the highly sensitive modal description.

4.2. Degeneration due to symmetry

4.2.1. Theoretical results

Symmetric structures have dynamic properties that can be deduced from the

algebraic properties of the group of transformations that leave them invariant. This fact is

well known in quantum mechanics where group theory plays a leading role. But the

application of such considerations to structural mechanics is rather unusual (see ref. [33]).

This section details essential results in this field so that the reader may understand the main

implications of the theory and apply them to simple cases. To be used these results

necessitate the knowledge of a number of definitions that will be given in the following



paragraphs. In practice, the most useful information is found in character tables, such as

4.1., which will be analyzed as the different critical ideas are introduced.

Table 4.1. Character table of T, tetrahedral group with no reflections.

T

A

E

T

E 8C3 3 C2

1 1 1

2 -1 2

3 0 -1

V, the vector space of possible deformations is the space of functions that

mathematically represent the deformations and motions that can affect the structure. If the

structure is represented by a discretized model, V is a m-dimensional real vector-space,

V=Rm, where m is the number of degrees of freedom of the discretized model. In further

developments the model will always be assumed discrete but all results still hold for

continuous cases with minor modifications.

One says that a structure is symmetric if there is a set of isometric transformations

that leave the structure invariant. An isometric transformation (such as a rotation or a

symmetry) is a transformation that leaves lengths unchanged. The structure is left invariant

if the structures before and after the transformation cannot be distinguished. For the

mathematical discretized model each physical transformation is represented by a matrix, and

carrying out the transformation is done by multiplying the state vector on the left by the

matrix. The isometric operations leaving a structure invariant always form a group, called

G, the group of symmetry of the structure. The name of the group is given in the upper left

cell of the character tables (here T for tetrahedral). The structure group of symmetry does

not depend on a particular basis chosen to describe the motions of the structure and certain



dynamic characteristics of the structure can be deduced from the mathematical structure of

the group.

Groups are formed of elements, a, wich are listed in the first row of the character

table (in table 4.1., E is the indentity; there are 8 rotations of 2x/3, noted as 8 C3; and 3

rotations of x, noted as 3 C2). For a given space of possible motions (V or any of its

subspace for which it makes sense) a representation of the group is the set of isometric

transformation matrices, ov, associated with each of the group elements, which carry out

the group operations on the considered vector space. The transformation matrices (av)

depend on choices of basis that can be done, but the algebraic structure of the group they

form is fixed.

The character of a matrix element of a representation is the trace (i.e. the sum of the

diagonal elements) of the transformation matrix. Although the matrices that form the

representation are dependent on specific choices of basis, their characters are invariant and

contain the important information about the algebraic properties of the representation. For

groups composed of a finite number of elements, the characters of the elements of an

associated representation cannot be arbitrary: the vector formed by the characters of each of

the matrices in the representation (vector of the tr(av)) is a linear combination (with positive

integer coefficients) of a small number of minimal character vectors (Xi(a)). The minimal

character vectors are character vectors of minimal representations, defined as

representations such that no change of basis exists that gives to all the group element

matrices a block diagonal form other than the "one block per matrix". Character tables give

a list of all the minimal representations of a given group. Their names are listed in the first

column of the table with the standard convention that A designs a one-dimensional

representation, E a 2-D, and T a 3-D. Then, for each minimal representation, the characters

of the matrix elements of the minimal representation (Xi(a)) are given in the rest of the

table. The construction of character tables is difficult and usually not necessary since they

are widely available in standard texts on group theory (see ref. [33] for example).



The expression of the characters as a linear combination of minimal characters is

called a decomposition and corresponds to another very important property: a change of

basis exist, for which all the matrices of the representation have a common block diagonal

form.

The dynamics of the structure are, for a discretized model, characterized by a mass

and a stiffness matrices. The fact that the transformation matrices of a representation (the

ov) leave the structure invariant implies that all these matrices commute with M and K:

Mav = Moa, ovK = Kay. This property of commutation with a group of matrices having a

particular block diagonal form imposes a block diagonal form to K and M.

M= K=

Figure 4.1. Block decomposition of the mass and stiffness matrices of a
symmetric structure according to symmetry types.

In the basis where all the ov are block-diagonal K and M are also block diagonal

(see figure 4.1.) and each block of K and M is associated with a single minimal

representation so that the base vectors of each block have common properties which are

usually refered to as symmetry types (the most familiar symmetry types are symmetric and

antisymmetric behaviors for a beam). In many cases the block has a dimension much

greater than the minimal representation it is associated with, but its base vectors can be

divided in subsets such that the representation of the group for each subset is the minimal

representation associated with the block. The decomposition in block diagonal form can be

obtained by application of simple formulas that give the projections on the subspaces of

each symmetry type:



7i = Xi(a) Ov (4.1)
GE G

where xi is the projection of V on the subspace of vectors of the ith symmetry type

(corresponding to the ith minimal representation of the group as given by the character

table). hi is the dimension of the ith minimal representation (also equal to the character of

the identity) and h is the number of elements in the group. Xi(a) is the character of the

element a in the ith minimal representation of the group, which is found at the intersection

of the ith row and of the column corresponding to a in the character table. a~ is the matrix

associated with a in the representation of the group on V.

The dimension of each block, or number of vectors of each symmetry type is found

by applying the following formula derived from orthogonality conditions on the character

vectors (with the same notations as (4.1)):

dim(Ui) =h- X tr(ov) Xi(o) (4.2)
aE G

Now that all these properties have been introduced, the main useful results that are

derived from this theory are:

All the modes of a structure have a symmetry type. This is quite obvious since K

and M are decomposed in a block diagonal form with the base vectors of each block having

a common symmetry type. For a non-symmetric structure, the group of symmetry only

contains the identity so that a symmetry type has no characteristics. Otherwise, geometrical

characteristics of the different symmetry types are found by considering the spaces onto

which the ni project. Familiar characteristics are symmetric and antisymmetric, but more

interesting properties exist for more complex symmetries (see the examples treated in

4.2.2. and 4.2.3.). Consequently the number of modes of a given symmetry type is given



by the dimension of the subspace of that symmetry type: dim(U i) which is found using

(4.2).

The modes of a symmetry type have at least multiplicity hi (the dimension of the

minimal representation associated with the symmetry type). This result is very important

since it governs the degeneration of modes at low frequencies. At low frequencies it is very

unusual to have two different modes of different or identical symmetry type at the same

frequency. Therefore, the degeneration of low frequency modes is almost always the

multiplicity of their symmetry type (it cannot be less but could eventually be more).

The application of these results to the "a priori" analysis of the response of a

symmetric structure enables: the characterization of geometrical properties of different

modes by the decomposition into symmetry types, and the knowledge of the number and

degeneration number of modes of each symmetry type for a discretized model.

4.2.2. Example: Trifold symmetry

This first example considers an equilateral triangle formed of three beams connected

at their vertices by rigid joints fixed in translation. The simplest discretized model of this

structure uses a 2 node beam element for each beam and assumes planar motions. This

model, which gives a good idea of the first three planar modes of the structure, considers

one degree of freedom for the rotation of the each of the 3 joints: V = R3.

The structure is invariant by the identity transformation (called E), by rotations of

+27t/3 (called C-3 and C+3), and by reflections about the beam medians (called R1, R2, and

R3). The elements of the representation of the group on V are the following matrices:



100
E= =0 10

001 C3

001 0
R2 = 010 1 R3= 1

100 0
L- - -/ L

R1 = 0 0 1
010

The character table of this

reflections, is given in table 4.2.

trifold cyclic group, which includes both rotations and

Table 4.2. Character table of the trifold symmetry group, C3, .

C3v
A1

A2

E

E 2C3 3R3

As do all cyclic groups, C3v, has minimal representations of dimensions 1 and 2.

Higher dimensions are very unusual and are found for more elaborate symmetric structures

as tetrahedrons, but never for cyclic structures. From this character table the projections on

the symmetry types of the representation can be computed using (4.1):

1 000 2 -1 -1
1 000 1 -1 2 -1
1 J t2= 0 0 0 3 -1 -1 2 (4.4)

For any displacement u, 1rlu will be proportional to [1 1 1]T, so the first symmetry

type of this representation is characterized by equal rotations of the 3 joints. The second

type is never observed and a further analysis would show that it corresponds to equal axial

(4.3)

0
C-3 0

1
1 1

·Tcl



Mode 1

MkA 2

Figure 4.2. First modes of a triangle of beams.

motions of the beams which are not modelled here. R3 projects on a subspace of dimension

2 whose base vectors (any two column of i 3) are characterized by two joint angles being

equal and the third double and opposite, so that a type 3 mode will be a linear combination

of two such vectors. As pointed out earlier the modes of the structure will have either one

of these symmetry types and, for the case of R3, they will be double modes since the

minimal representation is 2 dimensional. The number of modes of each type is found easily

using (4.2):

1
dim(U 1) = (1x3 + lx(0+0+0) + lx(l+l+) ) = 1

dim(U2 ) = - (1x3 + lx(0+0+0) - 1x(l+l+1)) = 0

2
dim(U3) = 6 (2x3 - lx(0+O+0) + Ox(l+l+1) ) = 2 (4.5)

Computation of the modal response of the structure gives the results shown in

figure 4.2.. As predicted by (4.5) there is a double mode of symmetry type 3 and a single

mode of symmetry type 1. If a more elaborate model able to represent more modes were

ModPe I



used, the decomposition in symmetry type could still be easily done, and the response

would be composed of single type 1 modes and double type 3 modes. Type 2 modes

correspond to equal axial motions of the beams, which here are uncoupled, so that a case of

triple degeneration appears. Degeneration not due to symmetry is always due to

uncoupling, but the uncoupling may be difficult to handle. Section 4.3. will describe an

interesting case of uncoupling of local vibrations.

4.2.3. Example: Tetrahedral symmetry

The trifold symmetry example treated in the preceding section was rather simple.

Here, the purpose of the analysis is to help understand the modal properties of the naked

interferometer testbed, which has a tetrahedral shape. The structure is not exactly

symmetric because of differences in the lacing of the different truss legs and this will

appear as near degeneration, which is even easier to handle.

The first clump of 12 modes is characterized by the bending of each leg in a first

beam bending mode shape, so a discretized model of these modes will include for each leg

a displacement degree of freedom in the 2 transverse directions, and V = R12. For the

projections onto symmetry types, the first 6 dof correspond to the local z axis (pointed

towards the center of the tetrahedron), and the other 6 dof correspond to local y direction

(orthogonal to the leg axis and the z direction). The group of symmetry of the structure is

Td, the tetrahedral group with reflections. Td has 24 elements: E the identity, 8 C3 rotations

of 2n/3, 3 C2 rotations of xc, 6 S4 reflections, 6 Sd rotations coupled with a reflexion. The

character table of Td is given in table 4.3.



Table 4.3. Character table of the tetrahedral group Td.

E 8C3 3C2 6S 4  6Sd

1 1 1 1 1

1 1 1 -1 -1

2 -1 2 0 0

3 0 -1 1 -1

3 0 -1 -1

The projection operators of possible displacements onto the different symmetry

types can be computed using (4.1). They have the following matrix expression for the

chosen form of the vector space of possible displacements.

7E2 =L

124 =

12 0 0 0 0 -12 0 0 0 0
0 12 0 -12 0 0 0 0 0 0
0 0 12 0 -120 0 0 0 0
0 -12 0 12 0 0 0 0 0 0
0 0 -120 12 0 0 0 0 0
-120 0 0 0 12 0 0 0 0
0 0 0 0 0 0 12 6 -6 6
0 0 0 0 0 0 -6 12 -6 0
0 0 0 0 0 0 -6 -6 12 -6
0 0 0 0 0 0 6 0 -6 12
0 0 0 0 0 0 -6 6 0 6
0 0 0 0 0 0 0 -66 6

Td
A1

A2

E

t 24

S3=--

4 4
4 4
4 4
4 4
4 4
4 4
0 0
0 0
0 0
0 0
0 0
0 0

8 4
-4 8
-4 -4
-4 8
-4 -4
1 4
8 -4
0 0
0 0
0 0
0 0
0 0
0 0

4 4
4 4
4 4
4 4
4 4
4 4
0 0
0 0
0 0
0 0
0 0

4 4
4 8
8 4
4 8
8 -4
4 4
0 0
0 0
0 0
0 0
0 0
0 0

4 4
4 4
4 4
4 4
4 4
4 4
0 0
0 0
0 0
0 0
0 0
0 0

4 8

4 -4
4 4
0 04
4 3
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
12 6
6 12
6 6
-6 0
6 -6
0 6

0 0
0 0
0 0
0 0
0 0
0 0
6 -
6 0
12 6
6 12
0 -6
-6 4-6

1L
5=-



7c1 only has non-zero terms for the local z degrees of freedom so that modes of the

first type correspond to breathing modes with all the legs bent towards the center of the

tetrahedron (equal displacement in the local z direction). Type 2 modes correspond to equal

axial motions in the legs, which have not been represented in the choice of V. As for type

1, type 3 modes have displacement only in the local z direction. Type three modes also are

double modes. Similarly, type 4 modes are triple modes characterized by motions in the

local y direction, and 5 are triple modes with coupled y and z displacements.

Using formula (4.2), one finds the number of modes of each type that will be found

in the first twelve modes of the interferometer testbed.

1dim(U 1)= 24 (1x12 + 1xO + lxO + 1 + lx12) = 1

1dim(U2)= - (lxl2 + 1xO + lxO + lxO - 1x12) = 0

2dim(U3) = 4(2x12 - ix0 + 2x0 + Ox0 - 0x12) = 2

dim(U4) = (3x12 + x0- lx0 + x0 - 1x12) = 3

dim(Us) = 2(3x12 + Ox0 - IxO - lxO + 1x12) = 6

These conclusions on the type and number of the modes composing the first clump

of twelve modes of the interferometer have been checked for both the analytical predictions

and experimental measurements (see table 4.4.). For the numerical estimate, results are

almost perfect, and the small non-degeneration of the triple modes is explained by the small

non-symmetry of the truss lacing. For experimental measurements all mode shapes are not

available, but all the measured modes have a very strong component on the symmetry type

predicted by the theory, which is the best that can be hoped for with the quality of

modeshape measurements available. The use of the prediction of degeneration enabled a

clear identification of the frequencies of unmeasured modes and the eviction of unknown

modes later identified as suspension resonance modes.



Table 4.4. Measured and estimated 12 first modal frequencies of the naked

interferometer testbed, and classification by type.

Fmeas (Hz) Fpred (Hz) Type Fmeas (Hz) Fpred (Hz) Type

31.35 - suspension 43.70 44.56 type 5

31.75 - suspension - 44.56 type 5

35.10 35.91 type 3 52.10 53.21 type 1
- 35.91 type 3 54.70 55.95 type 5

38.90 40.23 type 4 55.20 55.95 type 5

39.40 40.23 type 4 - 56.32 type 5

- 40.30 type 4 62.70 - suspension

43.30 44.51 type 5 63.40 - suspension

4.3. Degeneration due to uncoupling

4.3.1. Introduction

By definition, modes are uncoupled. So the dynamics of degenerated modes

correspond to a juxtaposition of uncoupled oscillators. In section 4.2., the presence of

different uncoupled harmonic motions at one frequency was related to the symmetry

properties of the structure. However, if the structure does not present a symmetry implying

degeneration of some modes, what does the mathematical uncoupling physically represent?

If one omits cases of decoupled motions (such as bending and torsion in a beam), it seems

that degeneration can only be due to substructure vibration. For a really degenerated mode,

there would be two substructures, having uncoupled harmonic motions at a given

frequency. In particular one substructure could be moving and the other be still. The

appearance of such modes (called localization) was studied in physics, where it applies to



lightly disordered crystals (see ref. [34]), and in mechanics for several different structures

(refs. [35]-[37]).

For mono-coupled mono-dimensional structures with light substructure coupling,

perturbations in the periodicity of the structure have been proven to localize modes. The

conjecture of the present analysis is that even for multicoupled structures with degenerated

modes some, but not all, arbitrarily small perturbations result in modal localization. No

proof is known for this conjecture, but, for the truss-beam sample problem with clamped

joints, perturbations of the local resonances indeed results in modal localization.

The objective of this section is to analyze the properties of degenerated modes

linked to local vibrations. First, a characterization of the local vibration modes of the truss

beam-sample problem is given. Then the classic high sensitivity of modeshapes is shown

by the introduction of a localizing perturbation. Finally, the desensitizing effect of damping

on the actual input-output response is considered.

In section 4.3.2., a study of the bay dynamics shows the importance of the

diagonal strut resonance and the minimum complexity of a finite element model needed to

model local resonances. The modal response of the truss is then be analyzed, and the first

set of highly dense modes (called local modes) related to the resonance of diagonal

members. Aapplying the conjecture in section 4.3.3., a particular small perturbation that

localizes the normal modes of the structure is found. The poor significance of normal

modes in presence of damping is then be shown, considering the filtering properties of

local resonances for a damped truss.

4.3.2. Frequency response up to the resonance of the

diagonals

In 2.4.4., the frequency response of the truss-beam sample problem has already

been analyzed and shown to be accurately represented by a model with two elements per



strut. Here in order to get a better understanding of this structure, analysies of the

modeshapes have to be done. First, a study of the bay and of how different models capture

its dynamics will give a good understanding of its characteristics, then the shape

characteristics of the truss-beam modes will be analyzed.

Characteristics of bay vibration

Considering a single bay with joints fixed in translation, the simplest model (which

would be used by an equivalent continuum method) uses one 2-node quasistatic element for

each strut. A refined model would at least consider 2 quasistatic elements for the diagonal

strut: its frequency of half wavelength for strut length is 103 Hz, and the bandwidth of

interest goes up to 200 Hz. The first mode estimate for these two models and for two

others (diagonal strut modelled by one quintic element, and all struts modelled by 4 quintic

elements to get an almost exact response) are plotted on figure 4.3., where the modeshape,

and the curvature along the struts plotted as a transverse displacement, are shown for each

model.

In model (a), the middle strut does not have internal dynamic degrees of freedom so

that the first bay mode cannot be characterized by the resonance of this strut. The two

curvature nodes of this strut present in the real mode cannot appear in the model so that the

estimate is very poor: almost 40% error in frequency. In models (b) and (c), internal

dynamic degrees of freedom are added to the diagonal strut so that the strut resonance is

represented and the error in frequency is about 1%. The differences between the behavior

of these models and the highly refined model (d) are very small both in terms of frequency

error and displacement and curvature shape error, so that a model of the truss with two

finite elements per strut will be accurate even for the first internal resonance of the bay.

In conclusions the first mode of the bay is characterized by the resonance of the

diagonal strut and an almost quasistatic behavior of the short struts. This characteristic



resonance is also found for the truss beam formed assembled bays and is the source of

almost degenerated modes.



(b) 180.0 Hz

(c) 179.9 Hz (d) 178.0 Hz

Figure 4.3. Modeshape and curvatures (plotted as a transverse displacement) of
the first bay mode estimate for models: (a) all struts modelled as cubic
elements, (b) the diagonal modelled as two cubic elements, (c) the
diagonal modelled as a quintic element, (d) all the struts modelled as
four quintic elements (almost exact)

(a) 250.0 Hz



Analysis of truss modal characteristics

Figure 4.4. shows different modes of the structure. Up to mode 5 the modes have

global beamlike characteristics. In figure 4.4. mode 1 clearly has the shape of a first beam

bending mode and mode 4 the shape of a first compression mode. The following modes

show heavy local deformations that make the identification of a shape characteristic very

difficult. However, as seen in the previous section, the diagonal struts begin to resonate

around 180 Hz for a bay, so that one should expect heavy influences of this resonance in

the truss around the same frequency, which corresponds here to the 6th mode. To get a

better idea of the relative influence of global truss bending and local diagonal strut

resonance the horizontal displacement of the diagonal strut midspan point is plotted (figure

4.5.) for the first 14 modes. This figure clearly shows the global modeshapes of modes 1

to 5; and for modes 6 and 7, global modeshapes perturbed by local resonances of the

diagonals near the tips of the truss-beam. The higher modes show the clear importance of

diagonal resonance (with no visible global motions) and correspond to almost degenerated

modes. As is usually done, these modes will be called local modes.

For a truss with pinned joints it is rather obvious that the bending resonance of

struts is almost uncoupled from other motions so that it should appear as clumps of almost

degenerated modes. In the case of clamped joints, it is interesting to note (as was already

done in chapter II) that the resonance of diagonal struts is still the source of almost

degenerated modes although the coupling is much stronger.



Mode 1 : 29.10 Hz

Mode 4 : 153.10 Hz

Mode 6 : 179.10 Hz

Mode 7 : 181.20 Hz

Mode 8: 182.00 Hz

Figure 4.4. Modes 1, 5, 6, 7, 8 of the nominal structure.

29.1 Hz .................. 182.0 Hz

73.1 Hz .182.0 Hz

124.8 Hz . . . .182.3 Hz

153.1 Hz ................ 182.4 Hz

165.2 Hz ................................ 183.5 Hz

179.1 Hz 183.6 Hz

181.2 Hz . 185.0 Hz

Figure 4.5. Horizontal displacement of diagonal strut midspan for modes 1 to 14.



Perturbations, localization, filtering properties

Based on the substructure vibration conjecture, it should be possible to localize

modes 8 and 9 with a small perturbation. These modes are characterized by the resonance

of the diagonal struts, so logically, a perturbation on the diagonal struts should localize

these modes. Figure 4.6. shows the response of modes 7 to 9 for the nominal truss (n), a

truss (2) perturbed by a 2g mass at the middle of the 8th diagonal (1% of strut mass), and a

truss (5) perturbed by a 5g mass at the same point. Figure 4.6. clearly shows how the

perturbation localized the local modes to the left and the right side of the beam. In this case

the perturbation could not be arbitrarily small since the modes are not exactly degenerated,

but a 2 g added mass would be obtained for standard accelerometers, so that in any

experimental setup these modes could not be considered separately but would have to be

related by comparison of spanned vector-spaces.

The 5g perturbation shows an interesting phenomena: the perturbation is large

enough for the frequency changes to be more than the modal frequency separation. So

mode 8 (n) is now below the initial mode 7 (n), whose shape has not significantly changed

(compare modes 8 (5) and 7 (n)). In general, such phenomena can be understood by the

fact that the sensitivities of different modal characteristics to perturbations are greatly

dependent on the perturbation. Here the added mass on the diagonal strut perturbs the

resonance of that strut. Therefore the local modes (characterized by this resonance) but not

the global modes (which barely depend on it) are heavily perturbed. At the point where the

local and global modes have the same frequency, the conjecture would give the existence of

a small perturbation that localizes the combination of local and global modes. But finding

which seems rather difficult.

4.3.3.
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Distributed proof-mass damver conceptual model

The previous perturbation test showed how the local modes have decoupled

substructures: left and right half of the truss-beam. Generalizing this idea, one could say

that the resonance of each diagonal strut can be described as the resonance of a proof-mass

oscillator coupled to beam motions, but not to the other oscillators. The resulting

conceptual model (ref. [41] for example) is shown in figure 4.7. The oscillators are

coupled by beam motions, but for a great number of bays the coupling is weak so that one

has almost degenerated modes as in the truss-beam. If the proof-mass motions are damped,

propagating waves at the resonant frequency of the proof-mass dampers will be attenuated

very quickly, since much energy will be transfered to and dissipated by the proof-masses.

Some interesting previous work exists on the damping of wave propagation by distributed

proof mass dampers: see reference [40].

Figure 4.7. Diagonal strut vibration seen as distributed proof-mass effect

To verify the validity of this interpretation of the structure behavior, the transfer

function from a vertical force at one end of the truss to a vertical displacement at the other

end is plotted (figure 4.8.) for zero, .6%, 5% and 7% modal damping. The level of

response in the frequency range of the local modes is low in general, and for 5% damping

the local modes drastically enhance the effect of damping, reducing the response by more

than 20 dB (see figure (4.8)). This is exactly the effects that one could expect from a beam
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Figure 4.8. Transfer function from Fv, vertical force, at left-tip to v,
vertical displacement, at right tip for zero, .6%, 5% and 7%
proportional damping of all modes.

with distributed proof-mass dampers. For low levels of damping, much energy goes into

the proof-mass dampers, but since it is not dissipated, it is eventually transmitted. For an

optimal intermediate level of damping (5% here) a balance between energy input in the

resonance of the proof-masses, and energy dissipated by them is obtained, so the global

response of the group of local modes is that of a zero. For higher levels of damping, not

enough energy can be transmitted to the diagonal struts, so that benefit from their resonance

in terms of energy dissipation is lost.

To further validate the concept, the same transfer function was computed for the

perturbed structure with localized modes. No measurable difference could be seen for the

damped cases. The perturbation changed significantly the location and characteristics of the

modes which are singularities of the problem (see chapter II), but the actual measurable



behavior for the damped structure was insensitive to the perturbation. For an experimental

test one could not expect to be able to prove the localization of this sample problem.

This points out that the description of structural dynamics in terms of orthonormal

real modes is, for structures with high modal density but a some damping, a description

highly sensitive to perturbations that can give a distorted image of insensitive characteristics

of the transfer functions.



CHAPTER V

MODELS FOR CONTROL

5.1. Introduction

While the previous analysis assessed the correspondence between modal estimates

and actual modes, this chapter will discuss the construction of models for control purposes.

Models of structural dynamics for control must include an accurate representation of

input-output behavior of the structure, in a given frequency range (which should include

the expected cross-over region), with a finite (in fact small) set of dynamic states. The

obvious dynamics to be retained are the modes of the structure found in the bandwidth but

some of the effects of other modes are significant and should be included in the model (see

previous work in ref. [44]). For a closed-loop system the truncated modes influence not

only the output but also, through the feedback-loop, the dynamics of the system.

Correcting for truncated modes in a closed-loop system, therefore implies many more

corrections than for an open-loop system.

Section 5.2. discusses the creation of an open-loop model from a set of retained

modes. The inclusion of the quasistatic displacement response of truncated modes is

discussed for structures with and without rigid-body modes. The creation of state-space

models is treated, for use in section 5.4., and the correction for modes below the

bandwidth is discussed, for its importance in identification. Section 5.3. quickly reviews

selection principles for retained dynamic states. Section 5.4. discusses the use of the static

correction in the case of closed-loop systems, and considers the addition of filtered static



modes, called correction modes, as the practical way of using a correct model and a way of

introducing a correction for the asymptotic low frequency velocity of the truncated modes.

5.2. Model truncation and static correction

5.2.1. Simple truncation

The response of a structure can be exactly represented by the infinite series of the

dynamic modes. But all the modes will not be kept in the control model: some will be

retained and the response of the others will be approximated. An exact measurement y

would be expressed as the sum of the response of the retained modes and that of the modes

which will be truncated:

y(x,t) = i (t) ci (x) + i (t) ci (x) (5.1)
i=1 i=Nr+1

with

ýi (t) + (Oj2 i (t) = (t) (5.2)mi
and

Ei (t) = Oi (x)TQ(x,t) (5.3)

where Oi(x) is the non-dimensional shape function of the mode, c the output operator (a

matrix for a discretized model of the plant) which associates to a mode shape with unit

amplitude the corresponding measurement y, 4i (t) the modal coordinate, oi the frequency

of mode i, Ei the generalized modal force for the load profile Q(x,t), and mi the modal

mass of mode i. The normalization of equations (5.1)-(5.3) is done naturally by taking



Oi(x) non-dimensional. In equation (5.2), the modal load can be normalized by the modal

mass and a normalization of time can be introduced (so that oi = 1).

Oi verifies orthogonality conditions with respect to the mass distribution, from

which the modal masses are derived, and orthogonality conditions with respect to the

stiffness distribution:

4i(x)T m j(x) = mi ij and *i (x)T k Oj(x) = mi ji 2 8ij (5.4)

Multiplying on the left by O-T and on the right by 0-1, gives m = -T m8 0-.

Inverting this relation, a useful expression for m-1 is found. This expression and the

corresponding one for k-1, which will be called "inversion formulas", are:

m'1 i ((x) T(x) an kx) and kx) W iT (x)
i mi i mi (oi2

where m-1 is always defined as all degrees of freedom have inertias, but k-1 only exists if

the structure has no rigid-body degrees of freedom. Cases with rigid-body motions can

also be treated, using (5.5), but demand the use of special precautions which are the object

of section 2.3. These formulas, although useful for the analysis, are useless in practice, as

all the modes of a model are usually not known.

From (5.2) the modal response of an undamped system can be conveniently

described in the frequency domain as a function of modal force and frequency:

i (CO) = #(O) (5.6)

When a reduced order model is created, the simplest reduction process is to choose

a certain number of modes, whose response is included completely in the modeled

response, and to neglect completely the other modes. The selection of retained modes is an



important issue that will be briefly treated in section 5.3. Assuming the selection has been

performed, the estimate of the structure behavior based on simple truncation is:

Nr
Ys(x,t) = i (t) ci i (x) (5.7)

i=1

or, using equation (5.6), in the frequency domain

Nr

9s(x,to) = E'i (0) ci (x) (5.8)
i= 1 mi(i2-02)

This approach, although simple, completely ignores truncated modes. But, even if

the dynamics of truncated modes are negligible, their static influence is often significant, so

that this estimate is not accurate.

5.2.2 Exact Static Correction

The response of each mode of the structure has the form shown on figure 5.1. At

frequencies much below the resonance, the behavior of the mode is constant (1% error for

co/coi=.l, 4% for .2, 33% for .5, see the dashed line asymptote on the figure). This

physically corresponds to the fact that time constants of the mode are, at low frequencies,

much smaller than the time-steps of interest, so that the modal response can be considered

as instantaneous or quasistatic. Thus, for modes well above the frequency range of interest,

the response can be approximated by a constant feedthrough term corresponding to the

modal static response. At high frequencies the mode behaves as a rigid-body: asymptote in

1/c02. For modes truncated below the bandwidth, the dynamics could be truncated and

replaced by a single 40 dB/decade roll-off, but this is rarely useful and will only be outlined

in section 5.2.5.
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Figure 5.1. Response of a single mode.

The static correction of the simple modal truncation is achieved by including the low

frequency asymptotic position behavior of the truncated modes (the velocity is assumed to

be zero, which will be corrected in section 5.4.2.). By rearranging equation (5.2), the

modal behavior can be expressed as the sum of a quasistatic response and a dynamic

response corresponding to inertia effects. In the time and in the frequency domain, this

gives:

W - i (ýo)
ii (t)(t) and 5i (o) _ + (5.9)

mijci 2  i 2  mi i2  miCoi 2 (coi2-O 2)

si (t)The static contribution of each mode is coi. So the complete static response
mimi2

is given by:

I c_(t___ i = c1iijTQ = ck-1Q (5.47)
i=1 mici 2  i=1 miCOi2

where the passage to k-l was done using the inversion formula (5.5). The modal dynamic
cni (t)contributions are c~i. A statically correct model, that includes the complete static

ci2
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response of the structure and the dynamic effects of the retained modes, has therefore the

form:

yc(x,t) = ck-1Q(x,t) - 0 2 ci(x) (5.10)
i=1 i

And in the frequency domain.

Nr 02 P-
9c(x,w) = ck-1Q(x,w) + -- c(x) (5.11)

i=1 miwi2 (o)i2-o 2)

In both cases the stiffness matrix (or operator for a continuous case) has to be

inverted. When rigid body modes are present, assumptions can be made about the rigid

body behavior of the structure, or special precautions, detailed in section 2.3., have to be

taken in order to invert k and use the frequency domain form.

In practice the computation of this quasistatic response can be interpreted using

different methods.

Mode Acceleration Method

This method has been mainly used in aeroelasticity (ref. [45]) to predict deflections,

accelerations, and stresses, on wings and fuselages, due to disturbances. It is the direct

application of the estimate form (5.10) or (5.11). The physical interpretation of it is

relatively simple: the complete quasistatic response of the system is included and a dynamic

correction for a few modes is added.

Residual Stiffness Method

This method (ref. [46]), which is completely equivalent to the mode acceleration

method, has an interpretation which appears more like an addition of a correction to the

simple truncation. The new estimate is the simple truncation estimate corrected by the
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quasistatic effect of the residual load which has not yet been accounted for (in other words:

the asymptotic effect of the truncated modes):

Nr Nr

YC(x,t) = C ti(t) c~i(x) + ck-"1 (Q(x,t) - I Qi (x,t)) (5.12)
i=l i=l

where the loads Qi associated with the retained modes i are found using:

#i (x)T Q(x,t)
Qi (x,t) = i mi (x) (5.13)

mi

o0 Nr
The actual load is the sum of all the modal loads Q = I Qi. So that Q - I Qi is

i=l i=l

the residual load applied on all the truncated modes. The operator k-1, in equation (5.12), is
Nr

the compliance of the system, and operates here on the residual load (Q - I Qi), hence the
i=l

name residual stiffness method.

Implementation

In all practical cases, mechanical structures are actuated by a finite number of

actuators and disturbance sources, whose action can be expressed in a basis of Ns

independent load patterns Bj (should be dimensional) applied with intensities uj (should be
N,

non-dimensional): Q = Y Bj(x) uj(t). For unit uj these load patterns are typically a unit
j=1

force, or moment, applied on one actuator, all the others being set to zero. Attachment

modes are then defined to be the deformation shape Yj associated with each of the load

patterns Bj: T-j = k-Bj. The response estimate e can then be written easily, as in (5.10):

Ac(x,t) = cyj(x) uj(t) - c i(x) (5.16)
j=1 i= 1 2 c
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or in the frequency domain

Nr 2 2i i(x)
9c(x,)) = c-yj(x) uj(Co) + (5.17)

j=1 i=1 mi0i2 (Oi2-0)2)

AIn practice one wants to express ye in terms of states so that • (which is not a state)

must be eliminated. This is done by grouping the static and dynamic contributions of the

retained modes (the sum of the static and the dynamic modal contributions is 4ioi, as seen

in (5.9)), which leads to the final form that should be used. This form is given in the time

domain by:

N Nr
9c(x,t) = cyj(x) uj(t) + 1i(t)coi(x) (5.18)

j=1 i=l

and in the frequency domain

No Nr i() ci(x)
9c(x,O) = cyj(x) uj(O)) + i() i(x) (5.19)

j=1 i=1 mi(ci 2-02)

As will be further detailed in section 5.2.4., in these equations the first sum

corresponds to feedthrough terms correcting for the position contribution of truncated

modes (this is the D matrix in the usual state-space form) and the second sum corresponds

to the retained dynamics (A, B, and C matrices). The mode acceleration method computes

the yj by orthogonalization of the -j to the retained modes:

yj(x) = Yj(x)- m iT m O f ti(x) (5.20)
i=1 m

The fact, that the summed terms in equation (5.20) correspond to the static

contributions of the retained modes ( m i  from (5.9)), can be easily found by replacing
mimi2

fj by k- Bj, using the inversion formula (5.5) to express k-1, and applying the

orthogonality condition for the mass matrix (5.4):
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OiT m yi m Tm k-Bj kkTBj
mi mi =1 2  m (5.14)

k=l mi mk (Oi2  mii 2

The residual stiffness method does the orthogonalization at the level of the loads by

computing displacement due to the load that does not excite the retained modes:

Nr
yj(x) = k-1 { Bj(x) -  Bji(x)} (5.15)

i=1

The two methods lead to the same final form (5.18) and (5.19), but do an

orthogonalization at two different levels (load or displacement). In section 5.2.3. where

rigid-body modes will be considered, two steps will be used, first an orthogonalization of

the loads to the rigid-body modes, then an orthogonalization of the static flexible

displacement to the retained flexible modes. The Mode Acceleration Method has the small

advantage of being easier to implement for continuous structures: the orthogonalization in

equation (5.20) is never a problem, and k-1 may be easier to compute for simple loads (as

the Bj) than for the residual loads, which usually have non-zero components over the

whole structure. Of course if the whole process is already programmed there is no

difference between the two methods.

In some cases, the attachment modes are not a very convenient way to describe the

system. For instance, if high impedance actuation (displacement actuation) is used, a unit

force is not a good description of the system. Therefore constraint modes are defined as

base displacement patterns yj (x) corresponding base actuation patterns. In this case, the

state space description underlying the whole approach cannot be used, as it does not allow

direct displacement actuation. So special corrections have to be made which are out of the

scope of this presentation.

Finally it should be noted that although finite element methods give approximate

results for the dynamics of a structure, they are usually constructed to give an exact static
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response. So, if the continuous idealized model of the structure is exact (as seen in chapter

III), for all purposes the static correction is exact and the dynamic correction for modes is

approximate.

5.2.3 Cases with Rigid-Body Modes

When rigid-body modes are present the formalism linked to the static

correction cannot be used as such, since the response to static loads is in many cases

infinite. To get valid results one must consider separately the infinite rigid-body response

(for static loads only the acceleration may be finite) and the finite flexible response. To get

this separation the first step is to express the load as a sum of modal loads:

Q = 1 QRB + I QFlex (5.45)
RB Flex

where for each mode (rigid or flexible) the modal load is given by:

Q T Q

Qi= Q m4i (5.21)mi

with Oi is the modeshape , mi is the modal mass (found by #i mOi = mi), and Q is the

applied load. The rigid-body loads only excite rigid-body motions. The response of a rigid

body mode is exactly described by equation (5.2) (with ORB--O) :

4RB (t) = ORB (x)TQ(x,t) (5.46)
min

Each flexible modal load excites the corresponding flexible mode. If all the modes

of a model could be known, the inversion formulas (5.5) used without the rigid-body

modes would give the flexible response. But in practice, the number of modes is such that

this cannot be done. Only the sum of the flexible modal loads is known (QF = X QFlex)
Flex
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by subtraction of the rigid-body modal loads (I QRB) from the total load (Q). The only
RB

thing that can be done is the computation of the flexible response of the structure to the

flexible load QF. Although the solution is uniquely defined, finite element codes may have

problems solving for the static response of a structure with rigid-body modes. This

problem may be circumvented by computing the static flexible response of the structure

with a point fully constrained (FCons=kcnsQF), so that rigid-body motions are not present

(the following might not be true if constraints were imposed at different points). The

flexible response (4 F) of the unconstrained structure can then be recovered by

orthogonalizing the constrained response to the rigid body modes:

F = FCons - R BT M FCons B (5.22)
RB mRB

The response can then be computed using the same steps as the previous sections.

In summary the procedure is the following. First a finite number of base loads Bj

(corresponding to actuators or disturbance sources) is defined. Each base load is

decomposed into different rigid-body modal loads and a flexible load (using equations

(5.45) and (5.21)). The response of each rigid body mode is exactly described by equation

(5.46). Using (5.22), the complete flexible response (YjF) to each base load is found by

solving for the static response to the flexible load (this involves the inversion of the

stiffness matrix, which is routinely done by finite element codes). The dynamic response of

the retained modes is then included, but, as previously, the static and dynamic response of

the retained modes must be grouped to get a description in term of states (the modal

acceleration is not a state). This is done by orthogonalizing the flexible response to the

retained modes (as in equation (5.20)). The final form (corresponding to the state-space

model described in section 5.2.4.) is then the sum of the rigid-body response (given by
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(5.46)) and of the flexible response given by equations (5.18) or (5.19) (with "flexible"

applying to all quantities). In the time domain this is:

Nr
9c(x,t) = 4 5RB CORB + CTjF(x) uj(t) + Xi(t)coi(x) (5.23)

RB j=1 i=l

and in the frequency domain :

TNK Nr
c(x,O)) = - • O c R + CYPjF uj(O) + ci (5.24)

RB mRBO2 j=1 i=1 mji(i 2 -o.2)

5.2.4 State space description

Previously the response has been considered in the expanded residue form. Two

other forms of description are generally useful. The polynomial transfer function form

should not be used for structures having more than two or three modes since polynomial

coefficients tend to be a numerically ill-conditioned way of conveying the information on

roots. The state space form which is more commonly used has much better numerical

properties and will be the only one considered here. The state space description of the

structure, using modal coordinates, has the generic form (with no feedthrough term as all

the modes of the system are considered):

= AX + BU (5.26)

Y=CX (5.27)

with

0 1
-012 -2 o

0 1

(5.28)
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C (5.29)

where each block in the matrix A corresponds to a mode, oi and Qi are the frequency and

the damping ratio of the mode, the two states corresponding to the block are 4i and ti: the

modal amplitude and the modal rate (as used in the preceding sections). In matrix B and C,

Oi is the non-dimensional modeshape, m i the modal mass, Bj the dimensional load

corresponding to a unit command on the jth actuator, Cq4i and C4li are column vectors (a

row for each sensor) corresponding to the output that would be measured for, respectively,

a unit modal amplitude and a unit modal velocity of mode i.

One should note the dissymmetry of sensing where position and rate can be sensed

and actuation where only force can be input, and no direct change on the modal velocity can

exist. In the limit of high gains the force is high enough for the time constant of

modification of modal velocity or position to be small. This appears as rate or position

actuation but corresponds to it only at low enough frequencies. Incidentally, this

dissymmetry implies that damping has no influence on the static response of the structure

so that the results on the static correction, given in the previous sections for an undamped

structure, remain valid.

When modes are retained, the A, B, and C matrices are partitioned into a retained

and truncated part (assuming that modal states are used):

BR1 AR 0 BR (XR
x AN BN XN (5.30)
Y L CR CN 0 J Y
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The simple truncation approach drops the truncated part, but the static correction

assumes that it behaves quasistatically (CN = 0) so that XN = - AN- 1 BN U and the new

model of the structure is:

XR = AR XR + BR U (5.31)

Y=CRXR+DU with D=-CNAN-1BN (5.32)

The D term corresponds to the direct feedthrough term implied by neglecting the

dynamics but not the static position response of truncated modes. The columns of the D

matrix are the vectors cyj found in the form of the previous sections. For computations

from FEM code results, the following expression of D in terms of mode shapes can be

used (this corresponds exactly to the mode acceleration method):

Nr
D Cq k-1(B) - 2• (5.33)

i=1 mioi

where Cq is the position observation matrix (note that velocity measurements will never

influence this correction), k is the stiffness matrix, whose inverse is computed by finite

element codes for static tests, and B is the control input shape matrix. Other forms using

the inversion formulas (5.5) cannot be used, as in general all the modes of a model are not

known.

The state space form is the standard form used for control design so that it will be

used in section 5.3., which considers the closed loop response of the structure. In practice

using a D term is not a good idea as it makes the computation of closed-loop dynamics

rather difficult and does not allow a correction for the low-frequency velocity of truncated

modes. This feedthrough term should be replaced by a correction mode rolling off above

the bandwidth of interest. Further considerations on the use of correction modes will be

given in section 5.4.2.
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Correction at a non-zero frequency

As the exact static correction represented the exact response at DC, other

approaches could correct at a non zero frequency cag. This is very useful to get accurate

representations in the considered bandwidth if the DC behavior is not well known. For

example if an identification is made using accelerometers the DC response is often

unknown and there might be modes below the considered bandwidth. To explain the

procedure the frequency response of the structure is used. The exact static approach

estimated the response by:

Nr oo
9c(x,m)=j Ei(O) cj i (x) + E (i)i(O) ci (x) (5.34)

i=1 mi(oi2-c2) i=Nr+1 mii 2

which of course does not correspond to the y we could find from the complete model. All

the truncated modes well below the chosen frequency, ag, behave as 1/o2 so the inertia
1

terms linked to these modes behave as Q (x,t) (where P is a matrix to be determined)

and introduce an error between y and 9A. All the modes well above behave as constants

near cog so the inertia terms linked to those modes induce a constant bias aQ (x,t) (where a

is a matrix to be determined). So a better estimate of y would have the form:

Nr
n(x) = () ci (x) + aQ + Q (5.35)

i=1 mi(oi 2-O2)  02

The difficulty is to compute the matrices (or operators) a and 3, but the exact
1response at cag is supposed to be known, and the operator a + L is found using the

Og2
following formula:
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Nr
(a+ 1 p) Q = y(,g) - () ci (x) (5.36)

Og2 i=1 mi(COi2-g 2)

If A and B are constant over the frequency range of interest, and this is the best
1

assumption that can be done, the operator a+ [3 need only be known at two different

frequencies. This approach is used extensively in identification softwares, such as STAR

(ref. [48]).

In a state space description this correction would be done by adding two correction

modes (4 states) per actuator or disturbance source. The first mode with a roll-off

beginning below the bandwidth corresponding to the [ matrix. The second mode with a

roll-off after the bandwidth corresponding to the static correction and velocity correction

(for cases with velocity measurement).

The exact static correction can in fact be considered as a special case of this method,

where it is assumed that no mode is present below the bandwidth (B = 0) and the given

frequency response is the static response.

5.3. Choosing retained dynamics

The purpose of this section is to review quickly the principles leading to the choice

of retained dynamics. The simplest idea in truncating some of the structural dynamics of an

open-loop system is that modes above the bandwidth only contribute with their static

response and modes below the bandwidth only with their roll-off level (see section 5.2.5.).

It is therefore unnecessary to represent their dynamics and the corrections introduced in

section 5.2. account for these contributions with a fixed number of modes, depending only

on the number of actuators. In many cases the number of modes obtained by doing this

first simplification is still too important for the purpose of control design, and different
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methodologies have been developed to evaluate the influence of different modes on the

dynamics and be able to retain only the most important ones.

The internal balancing theory (ref. [49]) matches the controllability and

observability grammians so that the Hankel singular values corresponding to each mode

can be computed. In practice, internal balancing scales the different inputs, outputs, and

states so that it becomes meaningful to compare the numerical amplitudes of states. The

Hankel singular values give an estimate of the importance of each state in the response: if it

is important the state will have a great influence and should be kept, if it is small it will be

almost uncontrollable or unobservable so that neglecting its dynamics should not influence

a later use of the model.

The component cost analysis, due to Skelton (refs. [50]-[52]), defines a cost for the

open-loop model: response of a single performance metric to an expected form of input.

Using a balanced realization, the cost of each state by itself (neglecting cross-products) is

uniquely defined and one can retain the states with the highest cost. For modal systems, a

modal cost is defined and the same approach can be used (modal cost analysis).

Other approaches, used essentially for compensators, consider different dynamics

to get a reduced order realization of the model (ref. [53]). These approaches tend to use

optimal solutions but, as often in optimal approaches, the reasons and implications of

different results are not well understood, so that their exact value depends on the field of

application and is not known in general.

Finally, in all these methods, the full problem is not addressed. The purpose of the

open-loop model is in general to serve as a basis for the design of a controller, and it must

therefore be able to represent accurately the closed-loop dynamics of the system. But the

accuracy of the closed-loop response can only be computed once the controller is known,

so that an iterative process between model reduction and control design is necessary.
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The check of the accuracy of the closed-loop estimate is not often done, so section

5.4. will consider the way to compute accurately a reduced model of the closed-loop

dynamics.

5.4. Models of closed loop systems

5.4.1 Static correction in presence of output feedback

For a closed-loop system the truncated dynamics not only influence the output but

also the dynamics of the system through the feedback loop. The steps needed to account for

the full static closed-loop influence of truncated modes will be described in this section.

Assuming perfect sensors and actuators (with no dynamics and no noise) the response can

be described in the standard form, with no feedthrough terms if all the modes of the model

are included:

A Bw I Bu
Z = Cz 0 0 w (5.37)

where w corresponds to disturbance or command inputs, u is the control, y is the output

used by the controller and z is the output used as performance metric. In this form z does

not correspond to the cost that optimal control design theories use as a design parameter but

rather to the ultimate engineering performance metric of interest in the experiment. For

optimal designs another design-performance would have to be introduced.

The open-loop static correction introduced in section 5.2. becomes in the form

of (5.37) :
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C z D; Dz w (5.38)

OL OL OL OL OL

where AL= AR, B = BiR, C° i = CiR, Dij = -CiN AN- BjN. And the D ij can also be

computed from FEM results using (5.33).

As mentioned earlier, even though all the dynamics described by the A matrix are

not representative of the real dynamics, their quasistatic behavior is the most accurate

estimate available. So y = C x is the best available estimate of the output, with some of

the dynamics truncated; either because they do not represent real phenomena, or because

their influence is negligible in the frequency range of interest (modal cost considerations

that have been described in 5.3.).

To compute the most accurate estimate of the closed-loop dynamics in the case of

output feedback, the closed loop dynamics should be partitioned and some of the dynamics

truncated, as was done in the open-loop case. In the subsequent development static output

feedback is assumed but the results could easily be extended to dynamic feedback.

Partitioning, as in section 2.4., the closed loop-dynamics into retained and truncated states

gives:

R AR - BuRKCyR - BuRKCyN [xRl +BwR=1 - + d (5.39)
NJ - BuNKCyR AN - BuNKCyN xN BwN

To get an accurate response the dynamics but not the static response of the truncated

states are omitted. Assuming a quasistatic response (iN = 0), the value of the truncated

states is given at all times (or frequencies of interest) by:

xN = (AN - BuNKCyN)-I (BuNKCyR xR - BwN d) (5.40)
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This is the best possible low-frequency estimate of the state position if one

measures truncated modal dynamics. The best estimate of modal velocity is this times jco,

but this estimate is not recovered when doing a static condensation of the truncated modes.

The introduction of correction modes in section 4.2. will permit the use of the velocity

correction, which can have quite an importance for compensators based on rate feedback.

Using this expression the new closed loop system model can be found from

equation (5.39):

iR ] CL (5.41)

A = AR - BuR K (I + CyN(AN - BuNKCyN) 1 BuNK) CyR

CL
B w = BwR + BuRKCyN (AN - BuNKCyN)-1 BwN

CCzL = CzR + CzN (AN - BuNKCyN)-1 BuNKCyR

CCL = CyR + CyN (AN - BuNKCyN)-1 BuNKCyR

CL
Dzw = - CzN (AN - BuNKCyN)- 1 BwN

CL
Dw = - CyN (AN - BuNKCyN) - 1 BwN

If K is of rank the number of controls (otherwise the number of controls is

arbitrarily expanded), one can simplify these expressions and make them computable using

FEM results. First the inversion of the truncated dynamics can be reformulated as:

OL )-1 KCyNAN1 (5.42)(AN - BuNKCyN)-1 = AN-1 + AN-1BuN (I - KDyu )- KCyNAN 1  (5.42)

Then using this expression to simplify those of (5.41) one finds a new statically

correct model of the closed loop dynamics of this system with static output feedback:

115



AR - BuR (I-KD )-1 K C2R

CzR - Dzu (I-KDyu)-1 K CyR

CyR - D (I-KDu)1 K CyR

wR- B uR (I-KD )-1K

:~~~~~`p~ L~`~~" ~ mr-------------y-------- ME --------- Mr --------------- O L ------------------ o rL -----
D -Dzu (I-KDyu)-1 K Dyw

D; -DT (I-KDyu)- K DY
YW

In this form of the statically correct closed loop dynamics, all the terms can be

computed from the open-loop form (5.38), which can be computed for a finite element

model.

These results show that the compensator enters directly in the computation of

statically correct sensor and actuator matrices (CiL, BCiL), adds a direct feedthrough term

from the commands to the performance metric z (DCL), as was the case for the open-loop

system, but also modifies the closed-loop dynamics in a non-linear manner.

These corrections are based on a knowledge of the actual behavior of the plant and

would not appear had the plant been taken to be its truncated model. It would certainly be

useful to use these corrections in the controller evaluation stage where the most accurate

model is looked for. But the use of feedthrough terms is usually cumbersome and not

considered in control design methodologies, so that an alternative solution is proposed in

the next section.

5.4.2. Correction modes: a basis for easier control

designs

The use of the formulas given in 5.4.1. in the process of control design would not

fit the usual working assumptions of control theories, especially since the compensator

enters non-linearly in the definition of the closed-loop dynamics. As often the problem can

be circumvented by adding dynamics to the retained modal states. The idea is to use

116

R1
y

wE (5.43)



relatively high bandwidth filters to feedthrough the truncated mode static response up to a

certain frequency. The use of modes instead of direct feedthroughs also introduces a

correction for the truncated modes velocity, which was not possible using a static

condensation of the truncated mode dynamics; but corresponds to the physical reality that

the velocity contribution of modes, below their resonance, is an asymptote of slope

20 dB/dec and not zero as assumed in a static condensation.

For each actuator or disturbance source (each column of Bw and Bu in (5.37)) one

defines a correction mode with dynamics of the following form:

:C= 0 12• + [ ui (5.44)

The low frequency response of truncated modes is then approximated by the sensed

output of these correction modes. For a truncated mode displacement response of the form

Yt = 1 Cq C, the estimate of the truncated position response will be:
trunc

S=- CqN AN 1 BN xC (5.48)

with CqN = [Cq(l 0 Cq02 0 ...]. For a truncated mode velocity response of the form

pt = X CI4 r, the estimate of the truncated position response will be:
trunc

Yt = C4IN ANI BN ic (5.49)

with C4N = [C4t1 0 C4•2 0 ...] (note the position of the C4i in C4iN). The computation of

the correction terms C4N AN-1 BN and CqN AN-1 BN is done exactly as the evaluation of the

open-loop static correction (section 5.2.) and will therefore not be exposed again.

This corresponds to the classical feedthrough terms for position, but also corrects

for the velocity asymptote of the truncated modes. The correction is only valid in the low

frequency range of the correction mode whose dynamics are described by (5.44), but the
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choice of co and C is arbitrary. If they are such that the correction mode behaves statically in

the bandwidth of interest and rolls off afterwards the correction is exact for all practical

purposes. Typical numbers would be C = 1 and co about a decade above the frequency of

the last retained mode. One might also think of having a pole near the roll-off of the

controller and with a damping ratio such that the phase is correct.

This model of the feedthrough terms corresponds to a reduced order realization

approach. One seeks to represent the behavior of all the truncated modes by one mode per

actuator. The most important characteristic of the truncated modes in the bandwidth of

interest is their asymptotic response, and this is exactly represented by the added modes for

all the time derivatives: position, velocity, and also acceleration. Without much more

complex considerations (reduced order realization, ref. [53]), one cannot choose adequate

dynamics that would get the response of the added mode to match more closely the

response of the truncated modes so a simple roll-off (I = 1 and co about a decade above the

bandwidth of interest) is used.

The new augmented open-loop dynamic model includes an exact asymptotic

response of the truncated modes in the bandwidth of interest (not only the asymptotic

position response, as is the case for a model with feedthrough terms) and does not have the

difficulty of direct feedthrough terms. The computation of closed-loop dynamics from the

open-loop model is much simplified since one can just use y-Cx, where x is the augmented

state vector (retained modes states + correction modes states) and C measures the

contributions in position and velocity of both the retained and truncated modes. The

intricate formula (5.43) becomes unnecessary since the truncated mode asymptotic

response is present in the actuator modes. And, what may be the most important point, the

correction for the truncated modes rolls off so that one has proper transfer functions.

For modes truncated below the bandwidth one could define similar correction

modes rolling-off before the first frequency of interest (see section 2.5 which gave more
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ideas on the subject). But rigid body modes should be included, and all the development

can be applied, separating the rigid and the flexible response, as was done in section 5.2.3.

5.4.3. Example: three mode system

As an example, a three mode spring-mass system will be considered and different

models will be used to compute the closed-loop response to collocated position and rate

feedback.

F1  F2• q3

Ij
Figure 5.3. Three mode spring mass system

The numerical solution corresponds to m=l, k=l. As shown on the figure the

output is displacement at node 3, and the feedback is a collocated force feedback of the

displacement and displacement rate difference between node 2 and 3. Analytically this

feedback loop is described by:

F2 = -F1 = -5 (q2-ql) -10 (12-41)
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Figure 5.4. Models of the closed-loop response of the spring-mass system.
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Figure 5.4. shows the estimated response for different models. The exact response

is computed with the three modes of the system and the estimates have access only to the

first two. The controller overdamps the third mode, which therefore does not appear in the

plots of the exact closed-loop response. The simple truncation estimate gives a bad estimate

of the closed-loop poles, misplaces the zero, and has not the right low frequency behavior.

The exact closed-loop static correction gives an exact low frequency response (the

correction has been made for this), places the poles and the zero much more accurately (as

it models the position feedback accurately), but gives over-estimated damping levels (as the

velocity contribution of the truncated mode is not accounted for). The model augmented

with correction modes is very accurate up to the second closed-loop mode (as the effect of

the truncated mode is well modelled at low frequencies) and differs afterwards (as the

correction is not the exact third mode).

The main characteristics of the different models can be seen in this example:

- the static correction is necessary to get accurate models of open-loop and closed-

loop responses.

- the introduction of feedthrough terms in the open or closed-loop model gives much

better results and an exact low frequency response. The principal limitation of these

models is the absence of correction for the velocity of truncated modes, so that

velocity measurements and therefore rate feedback loops are inaccurately modelled.

- the model augmented with correction modes gives very good results and is probably

the best estimate that can be used for both open and closed-loop systems.
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CHAPTER VI

CONCLUDING REMARKS

Steps in creating state-space input-output models of the low frequency dynamics of

continuous structures have been discussed throughout this report. First, a continuous

idealized model of the structure was introduced. For structures composed of beams, exact

closed-form solutions of the open and closed loop responses were introduced, although

numerical conditioning became a limiting factor even for relatively simple problems. In

practice approximate solutions are computed. Using the finite element method, the initial

approximate solution is in many cases inaccurate. H- and p-refinements of the finite

element model were introduced to get better approximations of the continuous idealized

model solution. Compared to the h-refinement, the p-refinement tends to give more

accurate approximations of the first modes, but usually has a smaller number of significant

modes. For structures composed of beams, the two methods gave similar results, and

could easily correct inaccuracies, leaving remaining errors that were smaller than expected

discrepancies between the structure and the idealized model. For structures composed of

beams, the h-refinement is easier to implement and should be used. For plates and other

structural components, few exact solutions are known, the accuracy of the continuous

idealized model depends on many refinements that have to be considered, and the accuracy

of finite element solutions is limited by several factors such as the existence of line or

surface boundaries. For such components, at least partial p-refinements should be

considered, as they often have definite advantages over h-refinements.

In general, finite element models of structures composed of beams are constructed

to have an exact DC response. Standard 2-node beam elements meet this requirement for
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structures without rigid-body modes, and h-refined beam/rod elements can be used

otherwise. Beam/rod finite elements were shown to be accurate up to a certain frequency.

The simplest check of their accuracy is the comparison of their length with the wavelengths

of harmonic motions present at the frequency of interest (a wavelength of two times the

element length imply significant inaccuracies in the model). For usual structures,

compression and torsion have resonances at very high frequencies, so that for practical

purposes they are very accurately represented. The limit of accuracy for bending motions

tends to be in the frequency range of interest, so that refinements are often needed.

Modelling errors at the element level do not necessarily imply that the quantities of interest

in the global modeshapes are inaccurate. Roughly, if the modal density is not too

important, the relative error magnitude cannot be greater than the relative amount of energy

present in inaccurately modelled elements.

For truss beams, the joint-plane model, which underlies equivalent continuum

methods, must be refined if bending motions influence the behavior in the frequency range

of interest. The influence of bending is usually important for frequencies corresponding to

bending wavelengths shorter than two times the strut length. The midbay-plane model was

shown to be an efficient way of doing the refinement, and to give the possibility of

modelling joint behavior easily. After refinement, models often have too many degrees of

freedom for practical uses. Degree-of-freedom condensations were performed, and smaller

problems obtained without important losses of accuracy.

The second modelling step considered was the update of the continuous idealized

model (and concurrently of the finite element model, as the idealized model solution is not

actually computed) using measurements of component properties or global dynamics. The

update using measured component properties although very useful, should be considered

with care. It is often difficult to define which properties of the model correspond to

measurable quantities, and the selective update of some properties may not lead to models

that are more accurate for control purposes. When possible, the modifications should be
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correlated with measured modal information to assess the validity of updates. For updates

with structural dynamic measurements, one defines an assumed form for the error or

uncertainty in the continuous idealized model and a measurement of the solution accuracy.

These are then used to obtain a new model that matches the measured dynamic response

better. As there is almost never a unique link between the idealized model definition and a

finite set of measured properties of its solution (the measurable structural response), the

update cannot be unique. The definition of the agreement, which leads to a particular

update, is a relatively arbitrary choice whose consequences on the model validity are not

well known. The form, condensed or expanded, of correlated modeshapes, the influence of

different definitions of the agreement on stability guarantees for closed-loop systems, or the

exact link between error for control design methods and for modal models are current

research topics, which should lead to better model updates by enabling the specific

reduction of uncertainty on parameters important for control design.

The assessment of the model validity required a study of sensitivities to different

modelling errors. Human errors will always be the main limitation, but the effect of many

usual modelling errors were evaluated, and if important they could be either corrected or

kept as uncertainty in the model. Typical errors that were treated are global errors in

component properties, and measurable local variation between the modelled and the actual

structures. Future developments should lead to a better analysis of damping, non-

linearities, prestress, and predeformation.

A fundamental limit to the accuracy structural dynamic models is the presence of

high modal densities, which make both the prediction and measurement of modal

characteristics inaccurate. The limiting case of high modal density is modal degeneration.

Symmetry in a structure was shown to cause degeneration. Using the algebraic properties

linked to the structural symmetry a priori cases of modal degeneration and corresponding

modal geometric properties were determined. These properties gave essential information

on the structure that were not experimentally identified. Local resonances, as those of struts
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in truss structures, are another usual source of high modal density. For structures with

such resonances, perturbations were shown to sometimes lead to modal localization, and

generally induce important modifications of the modes, so that modelling errors and

experimental modifications (such as the presence of sensors or actuators) might lead to

inaccurate estimates of the modal characteristics. Damping, inducing modal overlap (this

effect increases with modal density), was shown to have a desensitizing effect on the

effective input/output characteristics. For low levels of damping, but high modal density,

the transfer functions were known very accurately even if the uncertainty on modal

characteristics was very high.

For further work on localization, the selective attenuation of wave modes due to

disorder in the structure should be analyzed as a good point of view to study the effect of

general, and not only mode-localizing, perturbations for mono-dimensional multi-coupled

structures (see reference [38]). A study of the influence of substructure vibration could lead

to interesting structural designs taking advantage of local vibration properties. But more

important results should come from the study of high modal density in the presence of

damping. The appearance of very uncertain modal systems with accurate transfer-function

characteristics is a point of major interest for both system identification and control design.

First a study of the influence of damping on the possibility of characterizing modes should

be performed. Then, for identification, methods should be developed that enable, for

structures with high modal density, the design of MIMO identification experiments, and

give a methodology to correlate experimental results with finite element based models. For

control, a multivariable treatment of closely spaced modes, as inseparable groups with

known and relatively insensitive input-output properties, but high uncertainty on the

individual modal characteristics, could be very useful for the definition of bounds on the

achievable performance by controlled structure systems.

The last considered step in modelling structural dynamics for control was the

construction of state-space input output models from modal characteristics. The creation of
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such models implies the truncation of a certain number of modes. In a given frequency

range, it is accurate to approximate the response of a certain number of modes by

asymptotic responses. The usual approach of static corrections was extended to the case of

closed-loop systems, but did not give accurate results for the estimation of velocities. The

use of correction modes, that represent for each actuator the complete asymptotic response

due to truncated modes, was introduced as an efficient approach that should be used both

for control and identification. For future developments, a full understanding of the

influence of errors in the representation of truncated modes, could lead to a better

assessment of the guarantees offered by control design methodologies based on truncated

modal models of continuous structures.
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