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Abstract

A quantum theory of optical solitons is developed. Two kinds of optical soliton
phenomena are studied : solitons in optical fibers and self-induced transparency
(SIT) solitons. Quantum effects of optical soliton propagation are investigated.
Among various quantum effects examined, two of them are of particular interest : the
position spreading effect and the squeezing effect. The former places a fundamental
upper limit on the achievable bit-rate of proposed long distance communication
systems using solitons while the latter may help to overcome the standard quantum
limit in precision measurements.
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Chapter 1 I

Introduction

1.1 Thesis objective

Solitons, as originally defined, are pulses that propagate in dispersive or absorp-

tive media without changing their pulse shapes, and that can survive after collisions.

Two kinds of optical soliton phenomena have been known for a long time : solitons

in optical fibers (the nonlinear SchrSdinger solitons) and the self-induced trans-

parency (SIT) solitons. Solitons in optical fibers were first predicted by Hasegawa

and Tappertl'] in 1973 and were first experimentally observed by Mollenauer et al.[12

in 1980. Since then, the use of solitons in optical fibers for information transmission

has been proposed as an attractive alternative to current long-haul communication

systems. In the conventional approach to long-haul communication, the signal is

transmitted at the frequency where the dispersion of fibers is very small (dispersion-

less regime). The loss of fiber can be as low as 0.2 dB/km and is compensated using

Erbium-doped fiber amplifiers. However, as the length of transmission increases, the

effect of the third order nonlinearity (i.e., the self-phase-modulation effect) in opti-

cal fibers will show up and place a limit on the transmission bit-rate. On the other

hand, if the signal is transmitted in the negative dispersion regime, the dispersion

and nonlinearity can achieve balance and solitons are formed. Solitons in optical

fibers have been successfully generated using modelocked F-center lasers[2] or using

Q-switched semiconductor laser diodes followed by Erbium-doped fiber amplifiers[3 ].

They have the special property that the interplay between negative group veloc-

ity dispersion and the fiber nonlinearity causes their shape to remain unchanged

as they transverse the optical fiber. They are also transform-limitted, which fa-

cilitates optical switching[4- 71. These properties make the soliton-based long-haul

communications system potentially the first large-scale application of modelocked



pulses.

Inclusion of optical amplifiers in the communication link is not without its own

problems. The spontaneous emission in optical amplifiers increases the position

uncertainty of solitons. This effect places an upper limit (known as the Gordon-

Haus limit[s]) on the achievable bit-rate in the long-haul communications system.

Although this effect has been studied semi-classically[8 ], a full quantum theory is

needed to analyze the problem rigorously.

With the advance of technology, new effects of soliton propagation may be ob-

served and utilized. The high quantum efficiency of today's detectors makes the

quantum noise one of the dominant sources of detector noise. This leads to the

possibility of studying quantum effects of soliton propagation. A good example is

the soliton squeezing effect. The concept of squeezing (or squeezed states) was first

introduced by Yuen [9] in 1976. Up to now, squeezed states have been successfully

generated and detected by several research groups[1o-19 ]. In early experiments, the

bandwidth of generated squeezed states was narrow because the generation processes

were inherently bandwidth-limited. Recently consideration has been given to the

high peak power of pulsed lasers to achieve large squeezing. Squeezed pulses gener-

ated by parametric down-conversion have been demonstrated[l6,17I. A pulse scheme

working in the dispersionless region and utilizing Kerr nonlinearity in a optical fiber

ring has been carried out in our group(1s]. It is expected that, if one uses solitons in

the same scheme, the performance should be better because the squeezing phase is

constant across the whole soliton. Therefore one does not need to generate a special

local oscillator (L.O.) pulse ( which is experimentally difficult ) to achieve optimum

detection. Soliton squeezing in optical fibers has been recently demonstrated by

the IBM group[l19 . It has also been proposed that one can use solitons to achieve

quantum nondemolition measurements[201.

Self-induced transparency, an effect of resonant and coherent coupling between

the electromagnetic field and a collection of atoms, was first discovered by McCall

and Hahn[21] in 1967. Although many of the theoretical results were originally ob-

tained by McCall and Hahnl22 1, it was soon recognized[23 -26] that the SIT problem



can be completely solved by the inverse scattering formalism of Zakharov-Shabat[ 271.

Since then, SIT has become one of the few examples of completely solvable non-

linear systems' for which we have experimental results[281 to compare with theory.

Recently, it was estimated[29] that the self-phase modulation of a 27r soliton and the

mutual-phase modulation of two 27r solitons can achieve a very large phase shift for

picosecond pulses in the excitonic range of the spectrum in CdS . This makes SIT

a promising candidate for the realization of pulsed squeezed states and quantum

nondemolition measurements.

To study these new effects, one needs a quantum theory of optical solitons.

Unfortunately, past work on these two soliton phenomena is mainly classical or semi-

classical. The main objective of this thesis is to develop a rigorous quantum theory

of optical solitons so that one can study quantum effects of soliton propagation

quantitatively.

1.2 Historical background

The literature on soliton phenomena is a rich one. Different types of nonlinear

equations that may have soliton solutions have arisen from different area of research.

The most surprising thing is that some important nonlinear equations can be solved

analytically from a unified point of view. In this section we will only review the

developments that are directly related to optical solitons. Those who are interested

in other types of nonlinear systems that have soliton solutions are referred to the

books[30-3 2]:

The story of solitons begins with the observation by John Scott Russell[33 in

1844 of the water surface-wave solitons. However, it was until 1895 that Korteweg

and deVries [341 wrote down the (unidirectional) governing equation (which is now

known as the KdV equation) for this type of solitons. After 70 years, Zabusky and

Kruskal [35 ] did the first numerical study of the KdV equation in 1965 and announced

the real discovery of solitons. Stimulated by the numerical results, Gardner et

al.[ 36 quickly discovered a general method (the inverse scattering transform) to

solve the KdV equation analytically in 1967. Their discovery is just the beginning



of the theoretical development. One year later, Lax [3 ]7 introduced his famous "Lax

pair" formulation. The importance of Lax's discovery is that all the solvable (or

integrable) nonlinear equations like KdV can be expressed in Lax form.

Almost at the same time, a new soliton phenomenon was discovered in the area of

nonlinear optics : the self-induced transparency (SIT) soliton[21,2 2]. If one assumes a

two-level medium and neglects the effect of inhomogeneous broadening, the problem

can be described by a single field equation : the sine-Gordon equation, which also

arose from the field theory [38]. Besides the sine-Gordon equation, the nonlinear

SchrSdinger equation, which is the governing equation of optical self-focusing (in one

dimension) and optical self-phase-modulation with dispersion (in one dimension),

was also well known at that time. So the problem that mathematicians were facing

in those days (and even today) is how to solve these nonlinear equations analytically

and moreover how to solve them from a unified point of view. The inverse scattering

transform developed for the KdV equation seems to be a powerful method. Can it

be applied to other problems ?

In 1972 (published in 1971 in the Soviet Union), Zakharov and Shabat [2 ~] found

the Lax pair for the nonlinear Schradinger equation and carried out the solution

in the framework of the inverse scattering transform. The sine-Gordon equation

was solved independently by Ablowitz et al.[24] and by Lamb [231. Soon thereafter,

Ablowitz et. al.13 9] were able to show how to write down the full set of equations that

can be solved through the use of the Zakharov and Shabat eigenvalue problem. In

this way, one can generate infinite equations that have soliton solutions. The point

is that, beginning with any eigenvalue problem, any evolution equation that keep

its (inverse scattering) spectrum invariant can be solved by the inverse scattering

transform. It was also soon found that the self-induced transparency problem of a

two-level medium with line-broadening also can be solved in the framework of the

Zakharov-Shabat inverse scattering transform[25,261.

With the advance of technology, solitons can be actually generated. The soliton

phenomenon in optical fibers is a good example. To lowest order, solitons in opti-

cal fibers are described by the nonlinear SchrSdinger equation. This leads to the



prediction of their existence by Hasegawa and Tappert [ll in 1973. However, only

after modelocked F-center lasers arround the wavelength of 1.55 rnm became avail-

able, Mollenauer et al.[2] were able to actually generate and observe these solitons in

1980. Since then, a lot of theoretical and experimental work has been carried out.

Equations with higher-order dispersion and nonlinearities have been derived and

solved analytically in some special cases and numerically in most cases [401. Some

of the highe-order effects like self-frequency shift have also been been observed

experimentally[41]. The coupling between the two polarizations in optical fibers

brings in new effects [42]. Interesting phenomena have been found and promising

applications have been proposed[4 3].

The development of a quantum theory of solitons can also be dated back to 60's.

Two nonlinear equations attracted a lot of attention due to their simple form: the

nonlinear SchrSdinger equation, which is a nonrelavistic one, and the sine-Gordon

equation, which is a relavistic one. Historically, the quantum nonlinear Schradinger

equation arose from a totally different research area : quantum statistical mechanics.

It is the evolution equation of a one-dimensional system of bosons with S-function

interactions in the second quantization form [44]. By solving the problem in the

SchrSdinger picture using Bethe's ansatz method, Lieb and Linger[4l], McGuire [46 ],

and Yang[47,48] were able to construct its eigensolutions. They also found the bound

state eigensolutions, which are closely related to the soliton phenomenon. Since

then, mainly in the 70's, Bethe's ansatz method has been successfully applied to a

number of models in statistical physics and quantum field theory[49,50], including the

nonlinear Schr6dinger equation as just mentioned and also the sine-Gordon equation.

Inspired by the development of classical inverse scattering transform, several

groups[ l - s5 3] began to develop the quantum inverse scattering method in the the

late 70's and early 80's. The quantum inverse scattering method solves the problem

in the Heisenberg picture. The creation operators of the eigenstates are constructed

algebraically and their commutation relations are derived. Compared to Bethe's

ansatz method, the quantum inverse scattering method is definitely more compli-

cated. However, the quantum inverse scattering method is expected to have a greater



applicability.

When we began to study the problem in 1989, we soon found that an important

link between quantum and classical soliton theory is missing. That is, how the

bound state solutions are related to the classical soliton phenomenon. Nohl [541 was

the first one to try to answer this question. Unsatisfied with Nohl's results, Wadati[ 5s]

presented an improved theory. Although Wadati's results provide a good basis for

our work, his approach is still not fully satisfactory. In our opinion, the construction

of soliton states should satisfy the following three criteria:

* A soliton state should be a time-independent superposition of the bound states

so that it is a solution of the governing equation.

* One should be able to construct a soliton state with the expectation value of

the field operator approaching the classical soliton solution.

* The construction should be generalized to higher order soliton states to provide

information about soliton collisions.

One of the achievements of the thesis is to construct soliton states that meet the

three criteria listed above. The construction also enables us to study the quantum

effects of soliton propagation and soliton collisionsl56,57 ]

In 1987, Carter, Drummond and Shelby et. al.[5 s,59] solved the quantum non-

linear Schadinger equation numerically based on the linearization approximation.

The nonlinear operator equation is linearized around the classical soliton solution.

The linear operator equation obtained in this way is then Fourier-transformed into

frequency space and the correlation matrix of field operators in the frequency space

is calculated numerically. Using this method, they show that solitons are squeezed

during propagation. In a later paper, they included the effects of detection in the

calculation of squeezing ratio[6 ].

The linearization approach has the advantage that it reduces the quantum prob-

lem to a classical one. This is because in solving a linear equation, one does not



encounter the commutation relations as long as they are conserved. The commu-

tation relations enter only when one begins to calculate the second or higher order

moments of field operators. However, the numerical approach does not fully exploit

the advantages of linearization since not many physical insights can be abstracted

from a numerical approach. In the thesis, an analytical theory is developed based

on the linearization approximation. The formulation also leads to a novel numerical

method for noise analysis of soliton-like systems. Most importantly, the same lin-

earization approach can be used to quantize and solve all the problems that can be

solved by the classical inverse scattering transform. In the thesis, this is illustrated

by using the SIT problem as an example.

1.3 Thesis content

The structure of the thesis is organized as follows. In Chapter 2, three ap-

proaches (linearization approximation, time-dependent Hartree approximation and

exact solution based on Bethe's ansatz ) are developed to solve the quantum nonlin-

ear SchrSdinger equation. The first one is a linear analysis in the Heisenberg picture

while the other two are nonlinear analyses in the Schradinger picture. Each method

offers different physical insights into the problem. Especially, the linear analysis

provides the basis for the remaining chapters in the thesis. Under the linearization

approximation in the Heisenberg picture, a soliton is characterized by four soliton

operators (photon number, phase, momentum and position) plus the continuum.

Evolution of these operators is derived and the orthogonality relation between the

soliton parts and the continuum are proved. On the other hand, in the SchrSdinger

picture, the soliton is described by the quantum state. In the thesis, we use the time-

dependent Hartree approximation and the exact solution based on Bethe's ansatz

to construct soliton states. Both fundamental and higher order soliton states are

constructed.

In Chapter 3, soliton squeezing effects in optical fibers are studied in the frame-

work of the linearization approximation and Hartree approximation. In light of the

projection interpretation of homodyne detection, schemes for squeezing detection



are described and the optimal squeezing ratio is derived analytically. A general nu-

merical approach for calculating squeezing ratios is then presented and applied to

the study of fiber gyros using squeezed states.

In Chapter 4, we study the quantum effects of soliton propagation in optical fibers

with loss and periodic amplification. When the spacing between optical amplifiers

is much shorter than the soliton period, to lowest order, the nonlinear SchrSdinger

equation (with an additional scaling factor) still can be used to describe the prop-

agation of solitons[61]. However, both loss and amplification introduce their own

noise operators. Using the same linearization approach, the evolution equations of

the soliton parameters are derived and solved. The position spreading effect is stud-

ied and the Gordon-Haus limit is derived rigorously. We also discuss the possibility

of overcoming this limit.

In Chapter 5, the self-induced transparency solitons are studied. The quantiza-

tion is performed in the scattering data space under the linearization approximation.

The evolution of the scattering data is derived and the quantum effects of soliton

propagation are studied in comparison with the nonlinear Schradinger solitons. Es-

pecially, the concept of generalized squeezing is introduced and examined.

Finally, in Chapter 6, we summarize the achievements in the thesis and mention

several possible topics for future studies.



Chapter 2

Solitons in optical fibers

In optical fibers, due to the interplay between negative dispersion and the third

order nonlinearity, a class of optical pulses called solitons can propagate without

changing their pulse shapes. The objective of this chapter is to develop a quantum

theory of soliton propagation in loss-free optical fibers. We first review the classical

theory of solitons in optical fibers. The quantum formulation of the problem is

then presented and three methods (linearization approach, time-dependent Hartree

approximation, and exact solution based on Bethe's ansatz) are developed to solve

the quantum problem. The first method is a linear analysis in the Heisenberg picture

while the latter two are nonlinear analyses in the Schradinger picture. Each method

offers different physical insights into the problem.

2.1 Classical formulation

Under the slowly varying envelope approximation, the evolution equation of a

optical pulse propagating through a nonlinear optical fiber is given by[57]

[0 1 ] 1 _0
+ 9 A(xz,t) = i-k"-A(z, t) - iiA*(x, t)A(x, t)A(x,t) (2.1)

Here z is the propagation distance, t is the time, A(z, t) is the field envelope of the

pulse, v, = 1/k' is the group velocity with k' being the first derivative of the propa-

gation constant with respect to frequency, k" -= Ov; ,/w = -(A 2 /27rc)v;'/O~A are

the second derivatives of the propagation constant with respect to frequency and

I = 2irn2/A expresses the magnitude of the Kerr nonlinearity.. By the following

change of variables,
t - vz: Area k"t - g with to - Area k" (2.2)

to hw r



x Area 2 k"
Z with zo- 2( )2 (2.3)

A hw ,
U = -sign(k")- with A.o =• l- (2.4)

AO Area V k"
one can reduce Eq.(2.1) into the following classical nonlinear Schr6dinger equation

(CNSE):
S802i U(z, 7) = -- ,U(z, r) + 2cU*(z, 7)U(z, 7)U(z, r) (2.5)

Oz '2

Here z is the normalized propagation distance, 7 is the normalized time deviation, U

is the normalized field amplitude, Area is the effective cross section of the propagat-

ing mode and w is the carrier frequency. The normalization units are chosen in such

a way that : (1) the coefficient of the second order derivative term is -1, (2) c = 1 in

the positive dispersion region and c = -1 in the negative dispersion region, and (3)

U(z, r) represents the photon flux at (z, 7) or, in other words, f JU(z, r)12dr is the

photon number in the pulse. Since we only have three adjustable normalization pa-

rameters, the normalization that satisfies the above three criteria is unique. The nor-

malization units are also given in Eq.(2.2-4). As a numerical example, if one assumes

A = 1.55pm, avi/OAA = 3(ps/nm)/km, n2 = 3.18x 10'-1cm 2 /W and Area = 51m 2,

then to = 1.15 x l0-sec, xo = 4.0 x 1012km and Ao = 1.5 x 10-3W/cm. Although

lcl = 1 after normalization, we still keep it in the formulation to label the effect of

nonlinearity.

The CNSE has been solved analytically by the inverse scattering transform of

Zakharov-Shabat [27 1. The solution has the following interesting properties :

1. In the negative dispersion region (c < 0), it has (bright) soliton solutions (or

bound solutions). The fundamental soliton solution is given by :

nolc 11/2
Uo(z, r) = 2 exp[ipr + iO(z)]

(2.6)

sech[ - (r - T(z))]

with

O(z) = 02 + n2 z -pCz (2.7)



T(z) = To + 2poz (2.8)

Here no, 00, Po and To are four free parameters that characterize a fundamental

soliton. They correspond respectively to the photon number, initial phase,

momentum (frequency) and initial position of the soliton. Equation (2.7) and

(2.8) show the evolution of the phase and position of the soliton as a function of

z. In contrast, the photon number and momentum of a soliton do not change

during propagation. Following the terminology of inverse scattering transform,

no, O(z),p, and T(z) will be refered as the soliton parts of the scattering data.

2. Beside soliton solutions, the CNSE also has unbound solutions (the contin-

uum). Figure 1 shows the evolution of a rectangular pulse in an optical fiber.

One can clearly see that the continuum parts quickly disperse away and even-

tually only the soliton parts are left.

3. After two solitons collide, the photon number (and thus the shape) and mo-

menta of each soliton are maintained. The collision simply introduces a time

delay and a phase shift to each soliton. If nl, pl and n2, p2 are the photon

numbers and momentums of two solitons, then the magnitudes of these shifts

for the soliton with nl photons is given by[27 ]:

601(nlj Pln2, P2 ) = -2{tan -l[ I " 22 ] - tani--1[ l2 -- ?I )]} (2.9)
P2 - P (P - pI)

Ti(n ,pi,n 2p. 2) = -{ln[(p2 - pl)2 + ~(n2 -n )2]
(2.10)

-In[(p2 - pi)2 + cý (nz + n1)2]}
Expressions for the shifts of the other soliton are analogous.

From the correspondence principle, one would expect these classical results

should also arise from the quantum theory. This provides a test for the quantum

soliton theory we are going to develop.

2.2 Quantum formulation



Figure 1 : Evolution of a rectangular pulse in a optical fiber
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In quantum theory, field amplitude functions U and U* become field amplitude

operators U and Ut. Since photons are bosons, U and Ut should obey the following

commutation relations :

[U(z, r'), Ut(z, r)] = 6(r - r') (2.11)

[U(z, r'), r(z, r)] = [Ut(z, r'), Ut(z, r)] = 0 (2.12)

In writing commutation relations like these, U(z, r) and UTt(z, r) are also the an-

nilhilation and creation operators of photons at (z, r), which is consistent with our

normalization. Also note that we have chosen to use "equal space" commutation

relations instead of the usually used "equal time" commutation relations because

it is easier to quantize a traveling wave problem using "equal space" commutation

relations.

In the quantum theory, the CNSE becomes the QNSE :

8 8a2i U(z, 7) = -5,jU(z, 7) + 2cct(z, 7)U(z, ,7)U(z, 7) (2.13)

This is an operator equation in the Heisenberg picture and can be derived from the

following Hamiltonian:

H if[ 1Tt(z, )r (zr)dr c + U U(z, 9r)t(z, ),)J(z, )^(z, r)dr] (2.14)

In the Heisenberg picture, the evolution equation of the operator U is given by:

di TU(z, ) = [U(z, ) ),H] (2.15)

Substituting (2.14) into (2.15) and using (2.11)-(2.12) to simplify the expression,

the QNSE [(2.13)] is obtained.

The same problem also can be formulated in the Schradinger picture. Starting

from the Hamiltonian in the Schradinger picture,

the evolution equation of the quantum state of the system is

idle ) = Hao•> (2.17)



Here (7r) and Ut(r) are field operators in the Schrodinger picture and satisfy the

following commutation relations :

[U(r'), Ut(r)] = =(r - r') (2.18)

[U(7'), (7r)] = [Ct(r'), ut(r)] = 0 (2.19)

Up to this point, it is interesting to note that although in the Heisenberg pic-

ture one has a nonlinear equation, the equation is linear in the Schfdinger picture.

However, in the SchrSdinger picture, the problem is in fact a many-body problem.

To show this, one notes that any quantum state of the system can be expanded in

Fock space as follows :

1) = a f,(r71,.. r,, z)(t(r) ... . t(r,)dr ... dr10) (2.20)

The state 14) is a superposition of states produced from the vacuum state by creating

photons at the points r1, 72... , with the weighting functions f,. Since photons are

bosons, f, should be a symmetric function of rj. We require a, and f, to satisfy

the following normalization conditions so that (414) = 1.

lanlI = 1 (2.21)

nIf, (r...rn,,z)12dr...d,= 1 (2.22)

Substituting Eq.(2.16) and (2.20) into (2.17) and using Eq.(2.18) and (2.19), we

obtain an equation for fn(r, ... rn, z):

d na2

ifl( ( ÷.. T, Z) 1:- + 2c E b(ri- ri) ((r1... .. Tz) (2.23)dz=1 1<i<j<n

This is just the Schradinger equation for a one-dimensional system of bosons with

delta-function interactions[4l - 48]

2.3 Linearization approximation in the Heisenberg picture



In this section, we solve the QNSE under the linearization approximation in the

Heisenberg picture. We are going to linearize the equation around the fundamental

soliton solution and solve the linearized equation to study the evolution of quantum

fluctuations. Our starting point is the QNSE [Eq.(2.13)]. From section 1 of this

chapter, we know Eq.(2.13) has classical fundamental soliton solution Uo(z, r) given

by Eq.(2.6). Without loss of generality, from now on we will always assume O =

po = To = 0. This simply means we choose the coordinate system that moves along

with the soliton pulse center and choose the phase reference that follows the soliton

phase. By doing so, the pulse shape is independent of z and the phase is independent

of 7.

In the Heisenberg picture, if one linearizes Eq.(2.13) by substituting

UT(z, r) = [Uo(0, r)I + fi(z, r)]exp[i z] (2.24)

into Eq.(2.13) and ignoring all the higher order terms of U(z, 7), one has the following

linear equation :

=(z,7) )= i[ +- 41cllUo(0, r) 12]G(z, 7)

(2.25)
+i2IcjjUo(0, ,r)I2 t(z,r )

Here ?(z, r) is the perturbation field operator that satisfy the following commuation

relations :

[li(z, r), it(z, r')] = 6(r - r') (2.26)

[U(z, r), i(z, 7')] = [jt(z, r), ft(z, r')] = 0 (2.27)

By separating the real and imaginary parts, Eq.(2.25) can be considered as two

coupled differential equations. Written in a vector form, one has

2 (z,7) = Pi(z, 7) (2.28)

with

S= . (2.29)
U2



P 0[= P ] (2.30)
82 n21c12P, = 22 n4 + 21cjllU(0, 7)12 (2.31)-72 4

2 = 2  + 61lUo(o, 7) (2.32)
2=r 4

Here iil and u2 are the real and imaginary parts of ii.

By eliminating either fi or fi2 from Eq.(2.28), one obtains the equations for fil

and u2. Ua2
-iu(z, r)= -PIP 2 iu1(z,r) (2.33)

a2

=z2(Z• 7) = -P 2Pipi2(z,r) (2.34)

Since P1 and P2 do not commute with each other, equations (2.33) and (2.34) are

not the same. This suggests one should expand ^il and i2 in terms of different basis

sets : i1, in terms of the eigenstates of P1P2 and ii 2 in terms of the eigenstates of

P2 P1 . Before proceeding to do the expansion, it is important to make the following

observations:

1. One should distinguish the eigenstates with the zero eigenvalue and the eigen-

states with a nonzero eigenvalue. The former are soliton excitations that travel

with the soliton while the latter are the continuum excitation. The eigenstates

with the zero eigenvalue are bound states (i.e., they vanish when Inr goes to

infinity) while the eigenstates with a nonzero eigenvalue are not bound states.

2. The soliton excitations can be easily obtained by perturbing the classical soli-

ton solution Eq.(2.6) with z set to zero. The results are :

8U0(0, r) 1 tcl nolcI
f,() = [  7 tanh( r)]U(O, r) (2.35)Ono no 2 2

1 UVo(O, 7)fe(r) 1 U0, = Uo(0, r) (2.36)

1 aUo(O, 7)
f 1(r) - = r7U(0, 7) (2.37)z 8po



fT(T) 8Uo(O, r) 2 [nO_ tanh(?.~2r)]Uo(0, r)
The four functions are plotted in Fig. 2

The four functions are plotted in Fig. 2.

(2.38)

It is easy to prove the following relations:

Pxfe() =0

P2fT(r) = 0

P2f,(') = 2fe(r)

Plfp(r) = 2fT(r)

(2.39)

(2.40)

(2.41)

(2.42)

Therefore, f, and fT are really eigenstates of P1 P2 with a zero eigenvalue while

fe and f, are eigenstates of P2P1 with a zero eigenvalue. Also note that f,, fe

are even functions while f,, fT are odd functions.

3. Since

P2 P1P2I
0

01

P2P1
(2.43)

The expansion we just proposed is equivalent to expand i^(z, 7) in terms of

the eigenstates of p 2. Therefore, if one defines

fn(r) [f()] (2.44)

fe(r) [ 0] (2.45)

fp(7) (2.46)

fT(r) r ) (2.47)

then fn, fe, fp and fT are eigenstates of P2 with the zero eigenvalue.

4. Under the following usual definition of inner product

(f(r)Ig(r)) -f [f i(r)g(r) + f2()2(r)2 (r)]dr (2.48)
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Figure 2: Pulse shapes of soliton excitations
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the adjoint operator of P defined by

(f(7r) Pg(r))= (PAf(7) g(r)) (2.49)

is given by

PA [ 0 P2  (2.50)-P1 0
Also note that

(pA)2 [ 2P 0(2.51)
0 P P2

5. If f is an eigenfunction of P2 , then Pf is also an eigenfunction of P2 with the

same eigenvalue. Similiarly, if f is an eigenfunction of (pA)2, then pAf is

also an eigenfunction of (pA)2 with the same eigenvalue. Here we have used

underlines to denote eigenfuctions of the adjoint operator pA.

6. Comparing (2.51) with (2.43), it is easy to show that if f is an eigenfunction

of P2 and

S=[0 1] (2.52)

then Sf is an eigenfunction of (pA)2 with the same eigenvalue. Therefore, if

one defines

(r) Sf(r) = f(r)] (2.53)

f(r) Sfn(r) f,(r) (2.54)

fp(7) SfT(r) = fT (r) (2.55)

fT(r) Sfp(r) = [f( (2.56)

then f~, fa, fp and fT are eigenstates of (pA)2 with the zero eigenvalue. The

reason for defining f_ - Sfe instead of fn - Sfn will become clear very soon

[see Eq.(2.57-59)].



7. Mutual orthogonality: If f is an eigenfunction of P2 and f is an eigenfunction of
(pA)2, then they are orthogonal to each other if their eigenvalues are different.

Here the orthogonality is defined in terms of the inner product projection. A

consequence of the orthogonality relations is that all the four vectors fn, f , fp

and fT are orthogonal to the continuum of P2 . Moreover, if k, I = n, 0, p, T,

then

(fk(7r)fl(r)) = 0 ifk 0 1 (2.57)

and

(fn(r)lfn(r)) = (fe(7)lfe(7)) = (2.58)

(fP(7r)fP(r)) = (fT(7r)fTr()) = (2.59)

With all these observations in mind, the expansion can then be written (in a

vector form) as

i(z, 7) = A^a(z)fn(r) + AT(z)fT(r) + AO(z)fe(r) + AP(z)fp(r)
(2.60)

+the continuum

The expansion coefficients A^(z), A (t), AP(z) and A'(z) in Eq.(2.60) represent
the quantum parts of photon number, phase, momentum and position of the soliton.

Since we are only interested in the soliton part, we did not write down the continuum

part explicitly in Eq.(2.60). Nevertheless, their analytical expressions can be found

in Ref.[77].

An(z), AO(t), A^(z) and AT(z) can be determined from Si(z, r) by projections:

A,•(z) - (fi(r)li(z, r)) = 2(fn(7)Ii(z, 7)) (2.61)(f.(r)Ilfn(z7))

A(z) = ()li(z,) = 2(f,(r)I (z, r)) (2.62)
(f.=(r)jlf(r))

A(f((r)zI^Z r))- 2(fap(r) I (z,r)) (2.63)
(fpT(-r)ifp (r)) no(

AT(z)- =fT(r)lf(o T)) 2(fT(7)lI(z , r)) (2.64)(fT(r))fT(,r)) no



These are the consequences of the mutual orthogonality.

Substituting the expansion (2.60) into (2.28) and using Eq.(2.39)-(2.42) and

Eq.(2.61)-(2.64), one obtains the evolution equations of the four soliton operators :

dA(z) = 0 (2.65)

d = nocl'
a•(z)= -- I\Aa(z) (2.66)

d

dA-(z) = 0 (2.67)

d
A-iT(z) = 2AP(z) (2.68)

The solutions are :

Aft(z) = Afz(0) (2.69)

AO(z) = AL(0) + n zAnA(0) (2.70)
2

A-(z) = A -(0) (2.71)

ATi(z) = AT(0) + 2zA ^(0) (2.72)

The photon number and momentum fluctuations do not change but they cause the

spreading of the phase and position. Equations (2.69)-(2.72) also can be obtained

directly from perturbing the classical evolution equations from the inverse scattering

transform.

From Eq.(2.61)-(2.64), one can easily prove that the four operators obey the

usual commutation relations of photon number, phase, position and momentum[631.

[Ah(z), A0(z)] = i (2.73)

[AT(z), no Z (z)] = i (2.74)
This proves our interpretation of their physical meaning is self-consistent.

If one assumes the quantum state represented by Ui(0, r) is the vacuum state, then

the variances of these operators at z = 0 can be calculated from Eq.(2.61)-(2.64).

The results are found to be

(Ln'(0)) = no (2.75)



1 r2 1 0.607
3 12 no no

(A A2(O) ) = _n o IC12

(A2(0)) (2.77)
(=2 1 3.29(A (0)) = c2 c2 (2.78)

It is interesting to note that

(A' 2 (0)) x (AO2 (0)) ; 0.607 > 0.25 (2.79)

n (A2(0)) x (AT2(0)) M 0.27 > 0.25 (2.80)
We have thus found that a "vacuum fluctuation" excitation of the perturbations

does not give a minimum uncertainty state. This is in contrast with the case of

a coherent state associated with a sinusoidal steady state which, when linearized,

can be viewed as a sinusoid with "vacuum fluctuations". The reason for this state

of affairs is that different operators are "projected out" by functions of different

shapes. Under these conditions, the operators operating on vacuum do not yield

vectors in Hilbert space that are related to each other by an imaginary multiplier

as required for a minimum uncertainty state.

The evolution of these variances also can be derived easily.

(An'(z)) = no (2.81)

(AO(z)) o.607 +n z4  (2.82)
no 4

(2a=1(z) 2 (2.83)

(A(z) = 3.29 nolc2 2 (2.84)(An'(z)) = 11 z-(2.84)

From these equations, one can estimate quantitatively the phase and position spread-

ing. It is also obvious that the phase spreading effect is much stronger than the

position spreading effect.

The coupling between photon number and phase also produces squeezing. We

shall study this squeezing effect in next chapter.



2.4 Time dependent Hartree approximation in the SchrSdinger
picture

In this section we present a (nonlinear) approximate analysis by the time-

dependent Hartree approximation[4,56]. This approach was first introduced by Yoon

and Negelel[4] to the study of one-dimensional bosons with 6-function interaction.

By following this approach, we construct approximate fundamental and higher-order

soliton states56 1.

2.4.1 Construction of fundamental soliton states

In this subsections, we switch to the Schradinger picture and construct funda-

mental soliton states using the time dependent Hartree approximation. Our starting

point is Eq. (2.23). The Hartree approximation is valid when the number of bosons

is large. Its basic assumption is that every particle sees the same potential caused

by the interaction with other particles. Therefore, we can use a single particle

wavefunction to describe a system of particles. To be explicit, we define a Hartree

wavefunction by the following Ansatz:

f H)('(, ... r,, z) = Ijn ln('j, z) (2.85)

with

j/I(r, z) j2dr = 1 (2.86)

The functions (,n are to be determined by minimizing the following functional:

J = ]f*(H)(,*r. n+ 2
j=1 j

- 2c Ei<j:s. 6(7j - r-)]fnH)(r1 . ..r, z)dr1 ... dr (2.87)

- nf 4[i~•, + § •2, - (n - 1)cý*,4nl]dr

It turns out that the above functional reaches its minimum value if 4, obeys the

classical nonlinear SchrSdinger equation with the nonlinearity scaled by n - 1.[1•

S - •, n + 2(n - 1)c0K4.W, (2.88)dZ 5:i



This fact is one of the connections between quantum theory and classical theory.

Equation (2.88) under the constraint (2.86) has the following fundamental soliton

solution:
S= • Ic•l/' exp [i(-) Ic2z - ip2z + ipr + ioo]

(2.89)
xsech[ (n cI(r - To - 2pz)]

With Eq.(2.85) and (2.89), the Hartree product eigenstate is given by

In, p, Z)Ht = [ np(r, z)lt(r)dr]"10) (2.90)

Since In, p, z)H is an eigenstate of the photon number operator, in order to have a

classical phase, one needs to superimpose these eigenstates over n. Following the

construction of a coherent state in the CW case, a superposition of these eigenstates

using a Poissonian distribution of n gives the fundamental soliton state

IV))H = En ie-lolnpz)H(2

(2.91)
= E. -3lo~'[f #,,(7, z)t(r)dr]l10)

From (2.91), the mean field can be easily calculated:

H(09 uI(7)IC0)H -e-ao12 •tI2n 0--•IcI1/2 exp [ lc12z - ip2Z + ip. + i0o]

xsech[!Icl(r - To - 2pz)]
(2.92)

In deriving (2.92), we have used the following approximation :

J n,(r, z)((n+x)p(r, z)dr ; 1 (2.93)

This is a very good approximation as long as the mean photon number is large

enough.

Equation (2.92) makes a very important statement. The expectation value of the

field is the average of a set of classical solitons. This is a surprising result, because

the field propagates in a nonlinear medium, and hence a simple superposition of

solutions as the expectation value of the field was not anticipated. Since in Eq.(2.92),



components of different n's have different phase velocities, a soliton experiences

phase spreading when it propagates (we have seen this in the linearization approach).

Note that we have used a single value of the "momentum" p, not a superposition.

However, In, p, z)H is not an eigenstate of the momentum operator fi and thus a

distribution of momenta is in fact associated with the state. In next section, we

shall find that a distribution of momenta is necessary to construct a soliton state.

Moreover, the Hartree approximation predicts phase spreading due to the selfphase

modulation effect. We know that the selfphase modulation effect is caused by the

uncertainty of photon number. One may expect that the uncertainty of momentum

should cause a dispersion effect of its own, as we have seen in the linearization

approach. This dispersion effect is lost under the Hartree approximation and will

show. up in the exact analysis of the next section.

Also note that the time-dependent Hartree approximation also allows one to

study the initial value problem. That is, given an initial wavefunction, one can

solve Eq.(2.88) numerically or perturbationally and thus obtains the evolution of

the quantum state. This approach has been recently taken by E. M. Wright[741 and

was shown to give good results.

2.4.2 Construction of higher order soliton states

In this subsection we use the Hartree approximation to construct two-soliton

states and study soliton collision effects [5 ]6 . The construction is not as straightfor-

ward as that of the fundamental soliton states in the last section because the two-

soliton states in collision and two-soliton states not in collision have to be treated

differently. When a two-soliton state is in collision, all the photons occupy the same

space and interact. Every photon behaves in the same way and therefore has the

same wavefunction. However, when a two-soliton state is not in collision, it con-

sists of two independent groups of photons. Photons in different groups behave

differently and therefore have different wavefunctions although photons in the same

group still interact and can be assumed to have the same wavefunction. Based on

the above argument, we construct a two-soliton state that has n = nl + n2 photons



with nl and n2 photons bound together respectively. We can assume that the total

wavefunction is

fn(C)n ,z) (71 =n Z =n2nin2 (7j, z) (2.94)

in collision and

f'( i,) t)= ( fl'rl -(Tn2, ((2.95)
Al n2 "' ·nj+ n2., )

{Q)

not in collision. In the latter expansion the summation is over Q, over all possible

permutations of [1,2,... nj + n2] with the grouping of photons into [1,2,... ni] and

[nl + 1, ni + 2,... ni + n2] unchanged. The summation appears because f(O) has to

be symmetric with respect to the rj's. All the wavefunctions -i 2l, ~ I, n) satisfy

the the normalization condition(2.72). The connection between tnn2 and . 42, c)
can be established by noting that in a sense ln,-2 is the "mean" wavefunction of a

photon. When the two-soliton state is not in collision, since there are ra1 photons

with wavefunction C(I) and n 2 photons with wavefunction t(2) we can conclude

that the asymptotic approximation of 4•,2 should be

nl (+1)+ % n t(2) (2.96)
n2nl+n 2

We shall use(2.96) to establish the connection between the wavefunctions before

and after collision. This approach is somewhat analogous to the WKB method in

quantum mechanics. By substituting Eq.(2.94) into Eq.(2.87) and minimizing the

functional, one gets

-i ',,, = j-,n + 2(ni + nz - 1)c ,2,- 2', ,  (2.97)

Substituting Eq.(2.95) into Eq.(2.87) and minimizing the functional, one has

iz0 - ) + 2(nI- )c()1 )  (2.98)

z = -
2 ) + 2(n 2 - 1)c(2) (2.99)

0z z 62 02 nzfl 2



In the above derivation, we have used the fact that (C1) and I(V) are two well-

separated functions. This approximation is used frequently in the derivation of this

section.

Note that if one substitutes Eq.(2.96) into Eq.(2.97) and separates 1() and f(2),

one obtains Eq.(2.83), (2.84) again. This proves that Eq.(2.96) is consistent with

the criteria of the Hartree approximation. Moreover, Eq.(2.98) and (2.99) are the

same equations as Eq.(2.88). This justifies our expectation that a two-soliton state

not in collision is the product state of two fundamental soliton states.

From Eq.(2.88), the solutions of Eq.(2.98) and (2.99) are :
4) = V 1CI exp[i )•• i2z _ iPZ + ip7r + ig,]

(2.100)

xsech[2 1 IcI(r - T - 2pjz)]

with j=1,2 . However, the phases and mean positions can be different before and

after collision. The difference can be determined by noting that before and after

collision, (1)+ (2) is the asymptotic approximation of the samen+ V ni +n2+, n2

f,,,,, i.e. the asymptotic solution of the CNSE (Eq.(2.88)). It has been shown that

the CNSE has two-soliton solutions. Before collision, a two-soliton solution is like

two fundamental soliton solutions. After collision, it is still like two fundamental

soliton solutions except for a phase shift and a position shift given in Eq.(2.9) and

(2.10). With these solutions, one can construct the following Hartree eigenstates

before and after collision:

Irn, p, n2, p2, z) = 1/ [ D(1)(r, z)A(r)dr 'n [ (r, z)4t(r)dr]n10)

(2.101)
and the two-soliton states before and after collision:

If,) = s al(nl)a 2(n2)nl,pi,n 2,p2,7z) (2.102)
W1 ,42

The natural choices for al(ni), a2(n2) are Poisson distributions.

al(ni) = ( e-I71ol2 (2.103)



a2(n2z) ) = ) eI2l (2.104)

The mean field can be calculated.

(^(()2) 8 ) ni,n l aI(ni)2 ja2(n2 )I2[aiopI (7,Tz) + a2o4(+)(r, z)]

SEnlan2)I 2 1 12

+[En ra 2(n2) 1a 2 o(2)+1(7, z)]
(2.105)

before collision and

En ,n ·2 a(n ) 1a2 (n2) [aioeie~+1+ (r - ,ST, z)]

(2.106)
+[En,,~, I•l(l)I2a (n)a2 0e'i62 )+1( (- UT2, z)]

after collision.

This result also contains the quantum fluctuations produced in the collision.

The SO0 's and ST; 's (i = 1,2) are functions of n,(j = 1, 2) and thus are determined

probabilistically.

2.5 Exact solution in the Schrodinger picture

In this section we present an exact (nonlinear) analysis based on Bethe's ansatz

method. This approach was first introduced by Lieb and Linger[45], McGuire [461

and Yang [471 to the study of one-dimensional bossons with 6-function interactions.

The eigenfunctions of the system were constructed. Following this approach, we

construct (exact) fundamental and higher order soliton states.

2.5.1 Construction of fundamental soliton states

In this subsection, we solve Eq.(2.23) exactly to construct fundamental soliton

states[571. The z-dependence in Eq.(2.20) can be factored out by assuming a solution

of the form

f,(Tr1,. . .rn, z) = f,(71 .. .,r)e -iEnz (2.107)



The equation for f,(rl ... r) is

j=1j 1<i<j<n

It turns out that Eq.(2.108) can be solved exactly.

Since f, is a symmetric and continuous function, it is enough to specify its value

in the region rl < 72 ... T5 rn. In the regions rj # ri, all the delta-functions in

Eq.(2.108) vanish and the solutions of Eq.(2.108) are of the exponential form

expi E k 3rj (2.109)
j=1

To satisfy the symmetry condition, all the permutation terms should be included.

Therefore, the general form of the solutions is

fn(r,...mr) = AQ exp (i kq(j),j) (2.110)
{Q} j=1

where the summation over {Q} is the summation over all possible permutations of

[1, 2,... n] and Q(j) is the j-th component of Q. The delta functions in Eq.(2.108)

impose boundary conditions at the boundaries rj = ri. At these boundaries, there

is a discontinuity in the slope of the function f,. It can be shown[5 2] that these

boundary conditions impose the relation among the AQ's:

A kq(j+l) - kQ(j) + iA(2.111)
Aq0 Aq (2.111)kq(j +l) - kQ(j) - ic

Here Q' is the permutation derived from Q by interchanging the j-th and (j + 1)-th

components.

Reintroducing the z-dependence, one has

f(r7,.. . r, z) = eiEn- z Aq exp[i E kQ(j),j] (2.112)
{Q} j=1

for r 5 72 ... :5 r~ with the energy expressed by

E. = kj (2.113)
j=1



In general, kj must be real because the wavefunctions cannot be infinite. How-

ever, for negative c, a rising exponential for ri < Tj can be matched to a falling

exponential for Ti > rj. Thus negative values of c make "bound" states possible,

states that cluster around the planes ri = rj in multidimensional space. No such

solutions exist for positive c. To be explicit, in the case of c < 0, bound state

solutions exist if kj satisfies the following condition.

k =p+i[n-2j + 1] j = 1,2,...n (2.114)

The reason why we need condition (2.114) can be seen by substituting it into (2.111).

We find that all the Aq vanish except A[l,2,...). Therefore

n

fnp(r1 .. , r) = .=,1 exp[ip rj + 2 y rj - rij] (2.115)
j= 2 1<i<j<n

An = A[1, 2,...- ]  (2.116)

If any other AQ is nonzero, the wavefunction is not bound. This fact thus leads to

the condition (2.114). f,p of expression (2.115) is symmetric in the ri's and applies

to all regions.

If any pair of rj values is widely separated, the wavefunction expression (2.115)

is very small. This is why these solutions are called bound state wavefunctions.

With Eq.(2.115), one can construct the bound states that are the eigenstates of the

Hamiltonian.

In, p) = -. f,p(Tra .. ). )t(r)...t(rn)dr ... drnI0)
(2.117)

- Rt(n,p)10)

with the eigenvalue

E(n, p) = np'2  n(n - 1) (2.118)

The energy is the sum of the net kinetic energy of the bosons with momentum p

each and (negative) potential energy due to the binding force of the Kerr nonlinearity

lf(n2 - 1). The dependence on n follows from the functional dependence of the12



nonlinearity which is quadratic in Ut(r)U((r). Reintroducing the z-dependence, we

have

np, z) - eiE(n1pP)zin, p) (2.119)

It is easy to prove that In, p, z) is also the eigenstate of the photon number operator

N and the momentum operator P.

NIn,p, z) = nln,p, z)

Pn, p, z) = anpn, p, z)

(2.120)

(2.121)

Here the photon number and momentum operators are defined as follows:

= JUt(r)((r)dr
i 0Jt()

(2.122)

(2.123)- [tt(r) ]d9 r
87

The fundamental soliton state is constructed by superimposing these eigenstates

in both n and p spaces :

kb,)Z an
n

gn (p)In,p,z)dp

The natural choices for a,, and g,(p) are a Poisson distribution and a Gaussian

distribution respectively

a71 - --- e 4IaroI
=!

1e- -inp ogn (P) =VP,(re(P

(2.125)

(2.126)g(p)e-inpTo

To justify our construction we calculate the mean value of the field operator in

the limit of a large photon number. The result is[57 :

(4's1I(r)1b.) S, exp[-laol 2] f (-P)

-alcllf2{ exp[i Ic2n(n+1) - ip2 z + ipr + iOo]

sech[njlcl(r - To - 2pz)]}dp

(2.124)

(2.127)



The approximations we used in the derivation are (1) no >> 1 (2) Ap >> Icl. We

need the second condition to ensure that the soliton pulse shape is a sech function[ 7 ].

Equation (2.127) makes a very important statement. The expectation value of

the field is the average of a set of classical soliton solutions with different group

and phase velocities. The phase velocities depend on the photon number, the group

velocities depend on the momentum. This is a surprising result, because the field

propagates in a nonlinear medium, and hence a simple superposition of solutions

as the expectation value of the field was not anticipated. The result has valuable

predictive value. Since the superposition is of many different pulse-shapes with

different phase velocities and group velocities, a spreading of the phase and position

is to be expected, as we have seen in the linearization approach.

One may think of the position spreading effect as a walk-off of different soliton

components. This is in fact rigorously true in the case of coherent excitation. As

we have mentioned, in order to have a sech-like pulseshape, the superposition band-

width Ap should satisfy Ap >> Icl. From Eq.(2.77), we know the bandwidth under

coherent excitation is Ap , ,~jlcl/v-7 . Therefore, under coherent excitation,

one can divide the superposition into many sections, each section with a bandwidth

S101cl. Thus each section behaves like a soliton with a slightly different momentum

and the position spreading is due to the walk-off of these sections.

2.5.2 Construction of higher order soliton states

In this section we construct two-soliton states under the exact analysis [s71. Other

higher order soliton states can be constructed in the same way.

We start from the general solution Eq.(2.110) with n = nl + n2. If one chooses

kj = pl + -[nl - 2j + 1] j = 1,... n (2.128)

kn,+j = p2 + -[n 2 -2j+1] j= 1i,... n2  (2.129)

Then

fnilpn2p2(. ,,(1 +,2) = n AqFq(rl,. .. , .. . ,,1+,,2 ) (2.130)



Here FQ is a symmetric function of rj.

FQ(rl,.. r, 1+,2 ) = exp [ip ,EZ Q7-1(j) + i' 2 g+n2 1 Q(C"''Y / j--1 7-•7(j) + ip2 3j=nl+l ·Q-a(j)]

x exp [2 El<i<j<n1 (TQ-1(j) - TQ-1 ())] (2.131)

x exp [ En,+1<i<j<ni+n 2 (Q-_(j) - TQ-1(i))]

for 71 < 72 < .. _< w,+n 2 .

In Eq.(2.110) the summation over {Q} is the summation over all possible permu-

tations of [1,2,... nl +n2]. However, because of the special values of kj in Eq.(2.128)

and (2.129), AQ is zero if the order of [1, 2,... nl] or [n, + 1,... ni + n2] is permuted.

Therefore, in Eq.(2.131) the summation over {Q} is the summation over all possible

permutations of [1, 2,... n + n22] with the order of [1,... nI] and [nl + 1,... ni + n 2]

unchanged. In Eq.(2.131), Q-1, the inverse of Q, appears because we have converted

the permutation over k into the permutation over r.

The coefficients AQ in Eq.(2.130) also have to satisfy Eq.(2.111). It can be

seen from Eq.(2.111) that they differ from one another only by a certain phase.

As an example and also for later use, we calculate the relation between Ain =

A(1, 2,...n , a +1,...ni+n 2] and Aout = A[n +1,...n. +n2,1 .... ]. The result is[157 :

Aout = eiO(nl , p l n2P2)A i n  (2.132)

with

0(ni,Pi, n2,2) = -4 4E, 1 tan-1 [ (el(n2-+2j)]

+2tan- 1 1[1c(n2-n)] (2.133)

L2P -P1

P2 -Pl



With the solution, one can construct the bound state.

Inl,pi,n2,p2) = Eqj}Aqf , Fq('r,...r,+,,2)

IIJf="2 t(-)drj10)
(2.134)

S(nl + n2)! Ff, Aq f 1:52..._ 1+,9n
FQ(71,... nl,)II =l+ t(rj)drjlo0)

Reintroducing the z dependence, one has

Inl,, pln2, 2, z) = e-iE(na,p1',n )P)zIn , 1p, n2, p2 ) (2.135)

with

E(n,pi, n2, p2) = nlp + n2p - i (n - 1) - nz(n2 - 1) (2.136)

The localized two-soliton states can be constructed by superimposing the bound

states.

I,) = al(n1)a2(n2) J9n,(Pi)9n2(p2)In1,pl n 2 ,P2, z)dPldp2  (2.137)
nltn2

with

a°(n)) ( e-½i2 2 (2.138)

a2(n2) (ar2)' 1e-OI2  (2.139)

g1-p) 2 e (2-) e-iniplT2on(P) )r e(2.140)

91 (pl)e
- inlPiTlo

1. (P2-P2) 2

gn,2(p2) - 2 e j L  () e-in2T2o( 
(2.141)

g 2 (P 2 )e-in2P2T20

Without loss of generality, we assume plo > P20 and T1o < T20.

The above construction is justified by studying the two-soliton state before col-

lision and after collision. In the two limits, the two-soliton state is composed of two



well separated fundamental solitons. To be explicit, it can be shown [ l5 that before

collision, the two-soliton state is approximately equal to

i,) ; - [E,,al(nl)fg,,(Pl)e-i'E(n,,P)zl t(nl,pl)dpx]
(2.142)

-[E., a2(n 2) f g 2 (p2 )e-iE(n2,P2)Z ¢t(n 2, p2)dp2]10)

where the two brackets are identified as the creation operators for fundamental

solitons.

After collision,

I).) En,n ai(nj)az(n 2) f f ee'M(n'p 2 ',P1 2)

9n (Pi)g9, (P2) exp[-iE(nl, pl)z - iE(n 2, p2)z] (2.143)

R~t(ni,P 2) Rt(n2, p2)dpidp2j0)

with 0(nj,pi, n2,p2) defined in Eq.(2.133) and E(n,p) defined in Eq.(2.118). Note
that the only difference between Eq.(2.142) and Eq.(2.143) is the phase factor

0(nx,pp, n2, p2). To see the effect of this factor, we write Eq.(2.143) as

I10) ; " Cn,n, al(nl)a2(n2) exp[iO(no, Plo, n2o,P2o)

+iO (nx - nlo) + i -(n 2 - n2o)]

(2.144)
[Ign- (pi) exp[i (pl - Plo) - iE(ni, P)z]Rt(nI , pI)dp] (2.144)

[I f 9 (P2) exp[i ̀ 9 (p2 - P20) - iE(n2 , p2)z]Rt (n2, p2 )dp2 ] 10)

Here we have used the expansion

00
0(ni,Pl,nz2, p 2) O0(nlo, n2o, no,P 2o) + - (nl - nio)

Oni
(2.145)

+ (nz - n 2 0) + -(p - pio) + (P2 - P20o)8n2 8p2 1pz

All the derivatives of 0 are evaluated at (njo, n2o, Plo, p20).
It is now clear that the two-soliton state after collision is still composed of two

well separated fundamental solitons except for a phase shift and a "position" shift.



The mean phase shift for the first soliton is

80601 0 (no, plo, n20,P2o)On,1  (2.146)

s 0(njo + 1, Po, n2o,P2o) - 0(nxo, Plo, n2o, P2o)

and the "position" shift is

1 80
Sr ( 1 (nopo, Po, n2o, P2o) (2.147)

tnlo pl

For the second soliton the phase shift is

80
602 9 -(n1 o, p1 o, n2o, p2o)On2  (2.148)

0 0(n1o,Po, n20o + 1,P20) - 0(n1o,p1 o, n20,P2o)

and the "position" shift is

1 8067r2 a (nxo, plo, n2o, P2o) (2.149)
n20 8P2

It can be shown[s2] that when nio, n20 are large , the magnitude of 601 and ,ri in

Eq.(2.146) and (2.147) approach the classical results.

The increase of the uncertainties due to a collision can be estimated by expanding

0(nl, pi, , Pn2,) to second order. The phase uncertainty for the first soliton is

820 820
601 a I jAn + 1 a AP18,12 191aap,

(2.150)
820 820

+1 jAn 2 +I Ap2+ In1 8n2  n+ lap2

and the position uncertainty is

a20 820
6T, M IAnx + I Ap,

(2.151)
820 820

+1 p IAn2 + I IAp2

These results also can be obtained directly by perturbing the classical relations (2.9)

and (2.10).



Chapter 3

Soliton squeezing in optical fibers

Solitons get "squeezed" during propagation. In this chapter, we explain what

is the definition of squeezing, why soliton get squueezed and how to calculate the

squeezing ratio using the linearization approach and the time-dependent Hartree

approximation. Analysis of a fiber ring gyro system is also presented.

3.1 Soliton detection using balanced homodyne scheme

Before studying the soliton squeezing effect in optical fibers, in this section we

discuss the way to detect the quantum fluctuations of optical solitons, or more

specific, about the way to detect the four soliton operators introduced in Chapter 2,

section 3. From expressions (2.61)-(2.64), one notes that all the four operators are

related to the field operators by a (inner-product) projection. Therefore, if one can

find detection scheme whose operations are simply projections, then one can detect

all the four operators and their linear combinations. It turns out the balanced

homodyne detection with a pulsed local oscillator behaves just as described.

The fundamental setup of balanced homodyne detection is shown in Fig. 3.

A 50-50 beam splitter and two balanced photodetectors form the principal part of

the setup. The input signal is mixed with the local oscillator (L.O.) pulse through

the beam splitter and detected by the photodetectors. The difference of the out-

put currents is monitored by a spectrum analyzer. To predict the performance of

homodyne detection schemes, a quantum treatment of optical pulse detection is

necessary. The problem of wideband optical detection has been treated by many

authors recently[65 ,66]. Although in the literature, there is still disputation about the

response of photodetectors to photon flux or energy flux, the difference of predictions



from two pictures are very small for a quasi-chromatic field, unless the magnitude

of squeezing is very large. In the thesis, a wideband photodetector is modeled as an

ideal photon flux detector followed by a filter which represents the finite bandwith

of the electronics. The description of homodyne detection for optical pulses follows

directly from this photodetector model and a projection interpretation can be given.

In Fig. 3, we also show the models and symbols for the photodetectors, input signal,

L.O. pulse, beam splitter, and spectrum analyzer. The c-number function UL(r) is

the pulse from the local oscillator. We assume that the local oscillator is powerful

enough for it to be treated as a classical function. The operation of the spectrum

analyzer is modeled as a Fourier transformer followed by a variance detector.

In Appendix 1, we show that the output of the whole setup is the variance of

the following operator :

M(z) = H(k) [uL(r)t(Zr)t + ut,(z, r)(r)]exp(ik'r)dr

(3.1)
= H(k)J [Re[uL(T)]?il(z, r) + Im[uL(r)]?i2(z, r)]exp(ikr)dr

Here H(k) is the Fourier transform of the detector response function h(r). For
simplicity, in the following analyses we will assume the detector is ideally broadband

and thus H(k) is simply a constant (independent of k).

If one introduces vector notation, then the operator M is simply the inner prod-

uct of fL and it.

AMr(z) = (fL(r)|i'(z, 7))
(3.2)

- [fLr(T)r4(z, ) + fL2('r)2(, 7r)]dr

with

fL(r) [Re[uL(r)]exp(ik'r)](33)
[)Im[uL(r)]exp(ikr) (3.3)

We also require the following normalization condition :

fLtfLdr = 1 (3.4)
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Figure 3 : Balance homodyne detection with a pulse local oscillator
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so that when the incoming field is the vacuum state, (MI/t M) = t (the shot noise

level).

Expression (3.2) suggests the following projection interpretation : the homodyne

detection followed by a spectrum analyzer detects the "projection" of the input

field operator into the characteristic function of the detection; the characteristic

function of the detection is simply the local oscillator times exp(ikir). The meaning

of "projection" should be understood as the inner product defined in Eq.(2.48) or

Eq.(3.2).

Note that in the definition (3.3), fL is a complex vector in general. However,

most of the time we are only interested in the case of k = 0. When k = 0, fL is real.

3.2 Analytical approach

From section 1 of this chapter, we know how to suppress the contribution of

the continuum and detect the four soliton operators and their linear combination

using homodyne detection. From section 3 of Chapter 2, we also know that the

photon number fluctuations are coupled to the phase fluctuations during propagation

and the momentum fluctuations are also coupled to the position fluctuations [see

(2.69)-(2.72)]. This coupling produces correlation between the photon number and

phase fluctuations and between the momentum and position fluctuations. If one

can take advantage of this correlation by detecting a suitable linear combination

of Af(z),(z), a(z), A(z) and Ai'(z), one is able to reduce the detected noise and

observe "squeezing". For nonlinear SchrSdinger solitons, the problem is even simpler

because An(z) and AO(z) form a pair, A$(z) and AT(z) form a pair, and there is no

coupling between two pairs. Obviously, one only needs to consider the pair that can

give rise to a larger squeezing (that is, the photon number and phase pair). Here,

the definition of "squeezing" is understood as follows. One makes a measurement

of the input state (which is assumed to be a vacuum state) and make the same

measurement of the output state. If the quantum noise of the second measurement

is less than the first measurement, then one says he observes "squeezing" and the



ratio of two outcomes is the squeezing ratio.

Another way to visualize how squeezing occurs is to plot the contour line of the

joint probability function of Afi(z)/V (Af 2(0)) and A0(z)/ V(A 2(0)) (see Fig. 4).

At z = 0, the two operators are uncorrelated and thus the probability function is

circular. At z > 0, the distribution becomes elliptical due to the coupling. If one

tunes the detector to detect the component in the direction of the minor axis, he

will see a reduction of the detection noise. This is the squeezing effect.

Now let us calculate the squeezing ratio. By choosing the characteristic function

of the homodyne detection to be

fL = 2[c~f + cefe] (3.5)

one can detect the operator

MI(z) = [cAai(z) + coAO(z)] = [c, + 2 o(z)]Ai(0) + ceAO(0) (3.6)
no

with all contributions from the continuum suppressed. Here #(z) = -2I 2 z is the

classical phase shift of the soliton.

At z = 0, i(0, 7) is assumed to represent the vacuum state. The normalization

condition (3.4) requires

1
c~(A 2(0)) + c (A 2(0)) = (3.7)

so that (MA 2(0)) = a (the shot noise level).

The squeezing ratio is then given by :

R(z) =
(M2(0))

= 4[c + 2•]'(AA (0)) + 4c(A 2(0))
no

The minimum value of R(z) as a function of z is achieved by adjusting cn and co

under the constraint (3.7) and is found to be

Ropt(z) = 1 + f(z) -_ 1l(Z)1+ z) (3.9a)



z=O
phase

number

z>O
phase

lumber

Figure 4: Evolution of the contour line of the joint probability function of
AA(z) / and AO(z) 14(A 0)



with
2 (An2 (0))2(z) - 2(z) - (3.9b)

no (A02(0))

Ropt(z) as a function of the nonlinear phase D(z) is plotted in Fig. 5. Since

the contribution of the continuum is totally suppressed, this is also the optimum

squeezing ratio one can achieve. From the values of c, and ce that minimize R, one

can determine the optimum local oscillator according to Eq.(3.5).

3.3 Numerical approach

Although the analytical approach provides us the optimum detection scheme

and the optimum squeezing ratio, it does not allow us to calculate the squeezing

ratio for an arbitrarily given local oscillator. In this section, we develop a numerical

approach that enables us to do so. The starting point is the linearized equation

(2.26).

Since P is independent of z, Equation (2.28) has the following formal solution:

5(z, r) = exp[Pz] i(0, r) (3.10)

According to the projection interpretation of homodyne detection, we are only in-

terested in the projection of the field operator. Therefore,

(fL(r)t I(z, r)) = (fL(r)lexp[Pz](O, r))

= (exp[PAz]fL(,r)l (O, r)) (3.11)

- (FL(z, r7)I^(0,7))

Here we have used the adjoin operator defined in Chapter 2. Now FL(Z, r) can

be evaluated conveniently because only differentiation and 2-by-2 matrix operations

are involved.

Equation (3.11) has an interesting interpretation. The original problem is to

propagate the operator ui(0, r) over a distance z and then to project Ui(z, 7) into

the characteristic function of the detection fL(r). Equation (3.11) says that one can

simply "backpropagate" fL(7) using the adjoin operator pA and then project Ui(0, r)
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into it. This is a big simplification because it is easier to visualize the propagation

of classical functions than operators. Of course, this kind of backpropagation is

only possible for linear problems. In optics, a classic example of this technigue is

Siegman's antenna theorem for heterodyne detection.

The above derivation applies equally well to both the classical problem and

the quantum problem. For linear problems there is a one-to-one correspondence

between the classical theory and quantum theory. Discrepancies occur only when

one calculates higher moments.

At z = 0, we assume the soliton is a coherent pulse and thus ti(0, 7) represents

the vacuum state. Based on this assumption, the expectation value of the squared-

magnitude of the operator M(z) = (fL(Tr)li(z, r)) then is

(Ct(z)I(z)) = -R(z) (3.12)
4

with the squeezing ratio R(z) given by

R(z) = J[IFL(z, r)l' + IFL2(z, r)I2 - 2Im[IF1(z, r)FL2(z, r)]]dr (3.13)

Using Eq.(3.13), one can analyze the performance of homodyne detection with any

given local oscillator.

In actual experiments, an interferometric setup (i.e., a fiber ring interferometer,

see Fig.6) should be used to separate the squeezed quantum part from the classical

soliton pulse and the phase of the local oscillator relative to the phase of the squeezed

"vacuum" is adjusted to minimize the noise. Corresponding to this situation, the

local oscillator is now given by

f= cosG[ fLA ] ±sinOL [fL (3.14)

Here OL is the phase adjustment of the local oscillator. Using Eq.(3.14) in the

evaluation of Eq.(3.13), one finds the squeezing ratio R(z) is a quadratic function

of cos0L and sinOL.

R(z) = A(z)cos'OL + 2B(z)cos0LsinOL + C(z)sin2 0L (3.15)
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A, B and C are coefficients that can be easily determined. If one defines

exp[-Pz] (3.16)

[F3  exp[-Pz][ -f21 (3.17)

then

A(z) = /[IF 21 + IF2 1 - 21m(F,*F2)]dz (3.18)

B(z) = [Re(F,*F3) + Re(F;F4) - Im(FF 4 + F;F2)]dz (3.19)

C(z) = J F 12 
412 - 2Im(F3F 4)]dz (3.20)

The minimum squeezing ratio is then given by

A(z) + C(z) - [A(z) - C(z)]2 + 4B(z) 2 (3.21)
RPin(z) = (3.21)2

The recovered soliton pulse can be reused as the local oscillator of the homodyne

detection. The squeezing ratio that can be achieved in this way is plotted in Fig.7

as a function of the nonlinear phase shift 4(z) and the spectrum analyzer frequency

k. One can see that minimum R(z) occurs at k = 0 for a fixed 4(z). Note that this

squeezing is close to, but by no means equal to the optimum result. The squeezing

ratio at k = 0 is also plotted in Fig. 5 along with the optimum squeezing ratio from

Eq.(3.14).

3.4 Squeezing ratio from Hartree approximation

In this section we derive expressions for the squeezing ratio using the Hartree

approximation.

From (3.2), we know the homodyne dtection detects the following operator:

M;^(z) = (fL(r)lU(r))

(3.22)J lf((r) U(r) + fL2 (r)U2(r)]dr
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Here we have replaced U^(z, r) by U(r) because now we are in the Schrodinger picture.

For simplicity, we will also assume both fL1 and fL2 are real functions and f(IfL12 +

IfL212)dr = 1. The variance of the operator • then is given by

Var[MI] (4'.IA^2I'.,) - ((4,M103) -)2
(3.23)

= [1 + 1 + S2 + S3]

with

S, = 2f (fLr1(fLr2) + fL2(r1)fL2(72))

(3.24)
[(0.1&t(ro)^(r2)l¢s) - (¢ lA t(r)l¢>(4,lC(r2)l¢,b)]didr 2

S2= 2 A(fTLl(r)fAL(r2)- fL2(r1)fL2(72))

(3.25)

S3 = 4fJfR lA)f(A

(3.26)
Im[(,lIU(rlt)CU(r72) 0.) - (O,'ll2(,r)14I)(OljU(7r2) 1',)]drdr2

The first order moment has been given in (2.127) from exact analysis. For the

calculation of squeezing ratio, the position spreading effect can be ignored since it

is important only after many soliton periods[(57 . Thus one has

() aaovIIcl 2n(n + 1) 1(iu('r),) )•E la,2 _2 ecl'/exp[i12 + 1)z]sech[1ncl1r] (3.27),, 4 2

Therefore, to evaluate Var[MI], one only needs to evaluate the correlation func-

tions of the field operator. Within the Hartree approximation, this is an easy task.

Using the (approximate) soliton state constructed in (2.90), one has

H< 7(r1) (2) ,H n +2)+2(clexp1[i) lcl(n+1)2 Z]
(3.28)

sech[I(n + 1)Icil'rIsech[I(n + 1)jclr 2]
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H(4,aIUt(T1)U(T 2)I.s)H En a*an (n - 1)

(3.29)
sech[ (n - 1)Iclri]sech[1(n - 1)IcIr2 (2

Substituting (3.27-29) into (3.23-26), Var[M] and thus the squeezing ratio R can

be evaluated numerically. The optimal squeezing ratio for a given local oscillator

pulseshape can be obtained readily using the same trick in section 3 of this chapter.

The calculated results are shown in Fig.8. There are several interesting things:

1. The squeezing ratio does not decrease monotonically.- Eventually it will reach

a minimum value and then begins to increase. The reason for this is that when

the phase spreading is too large, the shape of joint probability density of the

field operators gets bent in order to satisfy the requirement of photon number

conservation. This is the difference between the squeezing in a X(2) medium

and that in a X(3) medium1751.

2. However, when the mean photon number gets larger, the minimum point also

gets pushed farther and the lowest squeezing ratio gets smaller. This is because

when the photon numer (or the field amplitude) becomes larger, the joint

probability density can be further stretched without violating the conservation

of photon number.

3. In the experiments that have been performed, the photon number of the soliton

is of the order of 10' or higher. Therefore the minimum point is far off and

cannot be observed.

4. Initially, the decreasing of the squeezing ratio from Hartree approximation is

steeper than that from the linearization approximation. Strictly speaking, the

two figures correspond to two different problems. In the Heisenberg picture

under the linearization approximation, we are solving the initial value problem

with a vacuum state injection, while in the SchrSdinger picture, we are solving

the eigenvalue problem and then superimpose eigenstates to construct the

soliton state. The soliton state constructed in this way seems to have a smaller



phase noise compared to the quantum state with a vacuum state injection.

However, as can be also seen in Fig.8, the phase noise of the Hartree state is

still bigger than that of the (ideal) minimun uncertainty state.

3.5 Soliton gyros with squeezed vacuum injection

As an application of the theory developed in the chapter, we are going to consider

the following fiber gyro setup ( Fig.9). The whole setup contains two fiber loops

(both loops are nonlinear). The first loop acts as the squeezer while the second

loop is the gyro. The squeezed "vacuum" from the squeezer is injected into the

gyro to improve the signal-to-noise ratio. The recovered soliton pulse from the

other port of the squeezer is also injected into the gyro to act as the pump. Non-

reciprocal couplers are required to direct the squeezed "vacuum" into the gyro and

to completely recover the pump. Before entering the gyro, there is a phase shifter

that can adjust the relative phase between the squeezed "vacuum" and the pump.

Homodyne detection is used to detect the signal from one of the output ports of

the gyro and the soliton pulse from the other output port is reused as the local

oscillator. Maximum signal energy is achieved by adjusting the phase of the local

oscillator while the minimum noise energy is achieved by adjusting the relative phase

between the squeezed "vacuum" and the pump (or the local oscillator). As can be

shown easily, the signal energy for such gyro setup is given by

S = FnnL(Aq) 2  (3.30)

Here n, is the photon number in one arm of the gyro, nL is the photon number of

the local oscillator, /AO is phase imbalance of the gyro and F is the pulse-matching

factor (0 < F < 1).

F = f (3.31)
(fLIfL)(f Ifs)

If we use the same soliton pulse as the oscillator (fL o c f), F = 1. The noise energy
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is given by

N = 1-R (3.32)
4

Here R is the squeezing ratio. When R = 1, it is simply the shot noise level. The

signal-to-noise ratio then is
4Fn,SIN = (Ak) 2  (3.33)

It is now obvious that in order to maximize the signal-to-noise ratio S/N, one needs

to minimize the squeezing ratio R.

If the gyro loop is linear, then the squeezing ratio is just what we have calculated

in section 3 of this chapter. In this case, if we can shape the soliton pulse from the

gyro into the optimum local oscillator pulse shape determined in section 2 of this

chapter before it enters the homodyne detector, then in fact we can achieve the

optimum squeezing ratio predicted by Eq.(3.8). In practice, this could be achieved

by using the femtosecond pulseshaping technique developed by A.M. Weiner et.

al[671.This process could be quite lossy. Since the energy of the local oscillator does

not enter in the expression of S/N, the performance of the gyro is not affected as

long as the energy of the local oscillator is large enough that the quantum noise

dominantes. However, the pulse matching factor F is reduced due to the mismatch

between the local oscillator and the signal.

If the gyro loop is nonlinear, then the analysis can only be done numerically.

This is because once we rotate the phase of the squeezing "vacuum" relative to the

pump before it enters the gyro loop, we have destroyed the orthogonality between

the soliton part and the continuum. In Ref.[68], it has been shown that for a gaussian

pulse in the dispersionless region, the nonlinearity of the gyro always degrades the

overall squeezing. We expect the same statement to be true also for solitons. The

question then is how bad is the degradation ?

The method developed in section 3 of this chapter can be applied equally well

here. Now the output quantum part is related to the input quantum part by

ii(z, + z., r) = exp[Pz,]R[O]exp[Pz,]ii(O, r) (3.34)



Here z, and z, are lengths of the squeezer and gyro respectively, which also rep-

resent the nonlinearities in the squeezer and gyro. exp[Pzg] and exp[Pzg] are the

"propagators" of the squeezer and gyro respectively, and R[O] is the phase rotation

matrix

R[] = cosin cosin] (3.35)

The operator measured by the homodyne detection is the squared-magnitude of the

following operator:

(fL(r)ji(zs + zg,r)) = (fL(r)lexpPzg]R[O]exp[Pz,]fi(O, 7)10)

= (exp[PAz,]R[-O]exp[PAzg]fL(7r)1(0, Q) (3.36)

(FL(zs + zg, r)lIi(0, 7))

Again, the squeezing ratio can be calculated according to equation (3.13).

R = [IFLI(z, + z,r)' 2 + IFL2(Zs+ g, r)j2

(3.37)
-21m[IFZl(z, + Zg, )FL2(Z + g, r)]dr

The minimization of R can be easily achieved using the same trick we used at the

end of section 3 of this chapter. The minimum squeezing ratio with the same soliton

pulse as the local oscillator is plotted in Fig. 10 as a function of the nonlinear phase

shift in the squeezer (),) and in the gyro (4tg). One can see that as the nonlinearity

in the gyro loop becomes comparable to the nonlinearity in the squeezer loop, it

quickly destroys the magnitude of the overall squeezing. Compared to the cases

using square pulses Fig. 11 and gaussian pulses Fig. 12 in the dispersionless region,

one can see that the effect of the nonlinearity of the gyro loop is more severe for the

scheme using solitons than that using square pulses. Nevertheless, the achievable

squeezing ratio using solitons is much better than that using gaussian pulses. The

reasons are as follows. The squeezing direction is not a constant across a gaussian

and thus the local oscillator cannot match the minimum squeezing direction at any

point without performing pulse shaping. So the performance of gaussian pulses
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Figure 10 : Squeezing ratio of fiber gyros using solitons.
We cut the portion with R > 1 (the flat region).
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Figure 11 : Squeezing ratio of fiber gyros using square pulses.
We cut the portion with R > 1 (the flat region).
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Figure 12: Squeezing ratio of fiber gyros using gaussian pulses
We cut the portion with R > 1 (the flat region).
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is the worst of the three. Solitons have a constant phase and thus do not have

this problem. However, as we have explained, the continuum in the squeezer is

coupled to the soliton parts in the gyro due to the phase rotation. There is no

way to discriminate them. Moreover, since we use the same soliton pulse as the

local oscillator, parts of the continuum in the gyro loop also enter the homodyne

detection. These two effects make the scheme using solitons more sensitive to the

nonlinearity in the gyro loop.



Chapter 4

Solitons in optical fibers with loss and periodic
amplification

In long-haul communication systems, Er-doped fiber amplifers are used to com-

pensate the loss of optical fibers (see Fig.13). When the spacing between amplifiers

is small compared to the soliton period, the soliton can maintain itself and a equiva-

lent nonlinear Schr6dinger equation can be derived. The quantum theory developed

in Chapter 2 using the linearization aproach is generalized to take into account the

noises introduced by loss and gain.

4.1 The equivalent nonlinear Schridinger equation

The normalized Schrodinger equation for the fiber with loss is given by

a 92
i U(z,r) = 2U(z, r)+ 2clU(z,7)j2 U(z,•7) - irU(z, r) (4.1)

If the attenuation per section is large and the dispersion and phase shift are small,

one may treat the GVD and the nonlinearity as perturbations. In this way, one can

write

U(z, 7) = U1(z, r)exp[-rz] (4.2)

with Ui(z, r) is a slowly varying function of z compared to exp[-Fz]. Substituting

Eq.(4.2) into Eq.(4.1), one has

. 0 02
Z Ux(z, 7) = - 2U(z, 7) + 2e- 2rzcU (z, r)12U1(z, r) (4.3)
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Figure 13: Lomg-haul communication systems using solitons



The change of U1 after a distance Az (the spacing between amplifiers) is

82 Az
AUI(z,7) = iAz-U(z, r) - i2c[ .e-2rdz]U(z, r) 2U(Z,r)

(4.4)
82 1 -e - 2r A z

SiAz'z •U(z,r) - i2c 2r IU(z,r)12U(z,r)

Treating the length Az of the fiber as a differential with regard to the perturbations

by GVD and the nonlinearity, we have a new Schr6dinger equation15 6]

i Ul(z,r ) = OU(z, r) + 2cr)2lU(z, 7) 2U(z,r ) (4.5)

with the nonlinear coefficient scaled by a factor r2 A 1

1 - e- 2rAz
rz = (4.6)2rAz

Therefore, the shape of the "soliton" that would be preserved in this new system is

Uo (z,7) - Y sech 2 (r - T, - 2pz)

(4.7)

exp [inrIcI z-1ipZ+ip+ or+Oo

It should be noted that the "soliton" solution (4.7) behaves soliton-like only

globally, i.e., when each section between amplifying stages is treated as a differential

distance. Between the amplifiers, the pulse decays essentially without change of

width and, thus, does not behave soliton-like. We were able to derive an equivalent

lossfree nonlinear Schr6dinger equation, because the effects of GVD and of the Kerr

nonlinearity within one amplifier spacing is very weak so that the contribution to

the pulse shaping could be treated as a differential contribution.

The derivation in this section also can be used in the quantum theory except

that in the quantum theory both loss and gain introduce noise operators. Therefore,

in the quantum theory one now has the following linearized equation :

-i Y(z, 7) = j-U(z, r) - 2r2IcIUt(z, r)U(z, r7)(z, r) + Ai(z, r) (4.8)
0Z 2



The question is what is the properties of the noise operator fi(z, r) ? We will deal

with this problem in next section.

4.2 Introduction of loss and gain in quantum theory

In the quantum theory, the properties of the noise operators introduced by loss

or gain can be obtained by requiring the conservation of commutation brackets.

They can be determined by temporarily ignoring the nonlinearity and dispersion.

The simplified equation is

u(z, 7) = -Pri(z, 7) + (z, r) (4.9)

where # is the noise source. Conservation of commutator brackets requires that [64 ,65]

[(z, 7), t(z',7')] = 2F1(z - z')6(r - r') (4.10)

One may integrate Eq.(4.9) to obtain

(a~z, r) = e-r·j erz(z, )dz + U(0, 0,)e -r = S(r) + U r(0, )e-rAz (4.11)

where

I(7) r e-Az ] erPz(z, t)dz (4.12)

We find the commutator of R from

[N(7_), St(r')] = e-2rAz ] dz ] dz'er(z+')[3(z, 7), t(z', 7')]
(4.13)

= 2re 2r z Az dze2rz = (1 - e-2raz)(r - ')

The signal and noise source are amplified by the gain VUr = exp[PAz]. Then the

continuum limit is introduced so that the distributed noise source due to the loss,

Fi(z, r) is defined by

n ,N(4.14)
aZ



with the commutator

[,(z, ), 4(z, ')] = G(1 - 2 z) (z - z')6(r - r') = G - 16(z - z')6(, - 7')Az Az (4.15)
The reservoir of the noise source is in the ground state (approximately), because

at room temperature hwo > kT. The gain introduces noise of its own. The noise

source has the commutator bracket

[(Z,"),(W(,,,r')] (- (Z - )6z')(( - -') (4.16)
Az

where, again, we made it into a distributed source by division by Az. The com-

mutator is negative, indicating that the operator fig is a creation operator, fl an

annihilation operator.

The total noise operator in (4.8) is thus given by

f(z, r) = nA9(z, 7) + ig,(z, 7) (4.17)

Note that the commutator of z(z, r) is equal to zero. This is as it must be if

the equivalent "lossless" nonlinear Schrodinger equation is to conserve commutator

brackets.

For the noise source associated with the loss, (94fit) is zero since the reservoir

of the noise source is also in the ground state. On the other hand, for the noise

source associated with the gain, (Aa"i.) is zero if one assumes total inversion. Using

these facts along with the commutation relations, one can calculate fluctuations

introduced by these operators. As an example, if one defines

ff(z) = (f(r)Iii(z, 7)) (4.18)

then the autocorrelation of this new defined noise operator is

(n nG(z)hIf((z')) = Jf('r)12drS(z - z') (4.19)

4.3 Linearization approximation and Gordon-Haus limit



Equation (4.8) can be solved by using the same linearization approach developed

in Chapter 2, section 3. Linearizing Eq.(4.8) around the classical soliton solution,

one has
86 (z, 7) = i[~ -- _ + l I 4cIr2 Uo(0, 7)12]1(z, ,r)

(4.20)
+i2cljr2 1Uo(0, r)12ft(z, r) + n(z, r)

Applying the projections (2.61)-(2.64) to both sides of (4.20) with Icl replaced by

Iclr2 , one obtains the evolution equations of the soliton operators.

d
Afi(z) = A,(z)dz

d
A (z) =dz

nocl (nz
FiAA(z) + ^ie(z)2

-A

z(f 
) 

= 

A 

(z)

d
TAT(z) = 2A ̂ (z) + ^iT(z)

Here the four noise operators are defined by

(4.21)

(4.22)

(4.23)

(4.24)

= 2(fn(r) in(z,,r))

= 2(fre(r)Ifi(z, r))

(4.25)

(4.26)

(4.27)

(4.28)

2
= -(f_(r)lii(z, 7))no

2
no

Using Eq.(4.19), the autocorrelation of these noise operators can be calculated :

G-1
= 2 no8(z - z') (4.29)

(•.z).(') =2 z

(ae(z)fe(z')) =

(A,(z),(z')) =

G- 1 0.607
2 6(z- z')

Az no

2 C- l12 ( - z')Az 12

An,(Z) =

A np (Z

An^T(z) =

(4.30)

(4.31)

I F
"-,-

In (r) I (z, 'r)
(f, (T) Ifn (0)

nf()~(,)
An~o~) = (fo(,)l^(Z(7))

(1p (r) ̂  (z "))
(fp (r) Ifp (0)

(fT (r) I (z "r)
(fT (r) IfT (0)



G--1 3.29
(T(z)AT(z')) = 2 z n1 6(z - z') (4.32)

All the cross-correlations are zero.

The solutions of Eq.(4.21)-(4.24) are

Z
A n(z) = Af-(o) + J 0,(z')dz' (4.33)

AO(z) = AO(0)++ f eo(z')dz'+ zAn(0)+ n( "d (.34)Z
A-(z) = A ^(0) + ,(z')dz' (4.35)

AT(z) = AT() + j T(z')dz' + 2zA1 (0) + 2f (z")dz"dz' (4.36)

The variances of these operators can be calculated using Eq.(4.29)-(4.36). As an

example, the position uncertainty is

(A' 2(z)) = Ao + Alz + A2zz2 + A3z3  (4.37)

with
3.29

Ao = (AT2(0)) = 3.c2 r (4.38)

A1 =2 G-(A (0)) - 6.6 C - 1 (4.39)Az n31cl2r4 Az

nolcl 2r4  (4.40)A2 = 4(A/2(0)) - 3 (4.40)

8A 8G-1 2nolcl 2r4 G - 1A3 - (A(0))= (4.41)3 A = 9 Az
The cubic dependence on z is due to the random walk of the momentum (frequency).

The quadratic dependence on z is due to the initial fluctuation of the momentum

(frequency). The linear dependence on z is due to the noise-source produced dis-

placement. The constant term is the initial fluctuations of the position.

When z is large, only the cubic term is important. This term reduces to Eq.(16)
of Ref.[8] when r = 1 and G - 1 = 2'Az, the case treated there. It is known as

the Gordon-Haus limit for communication systems using solitons because it places



a upper limit on the product of bit rate (R) and transmission length (z) [8]. To see

this, from (4.37) [keeping only the z3 term], one has

= (AT(z))(4.42)
As

To achieve a 10- 9 error rate, assuming a Gaussian distribution one must have

(aT( <( L) (4.43)6.1
Here 2t, is the window of detector acceptence for a soliton and usually t,, = 1/(3R).

Also note that no,lcr 2/2 = 1.763/t, with t, being the full width at half power of the

solitons and usually t, = 1/(10R). If one follows these usual design rules, Eq.(4.42)

becomes

R3z 3 < 3.8 x 10-4 A- (4.44)

Note that in (4.44), R, z and Az are normalized quantities. Transforming back to

unnormalized quantities, one has

bitrate x distance < 1.6 x 1 013 spacing] 1 /3 (km/sec)
I G- 1('1

If one assumes the spacing between amplifiers is 40km and G = 10, one has

bitrate x distance < 2.6 x 1013 (km/sec)

With a 10GHz bitrate, the maximum transmission distance would be about 2,600km.

One interesting problem is how to overcome the Gordon-Haus limit. One ap-

proach is to put a intensity modulator (driven by a microwave source) in the link to

directly limit the position spreading. Recently the group at NTT, Japan has claimed

that they are able to transmit information at a bit rate as high as 10 Gbit/sec over

1M km[761 using this scheme. Another approach is to introduce bandwidth limitting

elements in the link to limit the random walk of the frequency. Right now these are

still active research topics.

4.4 Numerical analysis



The numerical approach developed in section 3, chapter 3 also can be applied

to soliton-like systems with additional noises. This provides a general method to
perform noise analysis of such systems.

The evolution equation of the perturbation field operator is now given by

a
--F(z, r) = Pfi(z, r) + n(z, r) (4.45)

Here P is the linear operator given in (2.30-32) and n^(z, r) is the noise operator.

Equation (4.45) has the following formal solution:

a(z, ) = exp[Pz]i(0,,) + exp[P(z - z')]h(z',7)dz' (4.46)

Taking the projection and transfer the operator from the right to the left, one obtains

M(z) A (fL(r)Ii(Z,7))

(4.47)
=- (FL(z,r)i(0,r)) + j(FL(z - z', r)I (z',r))dz'

If one assumes the noise is white and has a noise strengh

(i(z, r)f t(z', 7') + ft(z, r)i(z', r')) = No(z - z')6(r - r') (4.48)

then

(Mt (z)Mi(z))= -[R(z) + No R(z')dz'] (4.49)

with R(z) given in (3.13). The first term in (4.49) is the quantum noise while the

second term is the spreading due to ni(z, 7).

For the soliton problem treated in this chapter, the numerical analysis gives

the same results as those obtained analytically. This is because for the nonlin-

ear Schr6dinger equation, the soliton part and the continumm are not coupled and

therefore both approaches are exact under the linearization approximation. How-

ever, for other soliton-like systems, if the soliton part is coupled to the continuum,

then analytical expressions can be obtained only through approximations and it

becomes necessary to compare the analytical solution with the numerical solution.

Right now this is also an active research topic.



Chapter 5

Self-induced transparency solitons

Let us consider a medium consisted of a collection of two-level atoms with. their

resonance frequencies centered around a certain value C. If all the atoms are in the

ground state and a optical pulse with a carrier frequency around C is sent into the

medium, then in most cases the optical pulse will experience strong absorption due to

the resonant interaction with the medium. However, if both the dephasing time and

the carrier relaxation time of the medium are long, a special class of optical pulses

[the self-induced transparency (SIT) solitons] can propagate through the medium

without experiencing appreciable absorption. This is the well-known self-induced

transparency effect and the physical picture is as follows. The front part of the pulse

gets absorbed. This excites electrons from the ground state to the upper state. The

electrons later return to the ground state and amplify the back part of the pulse.

Therefore, the net effect is simply a slowing-down of the propagation of the pulse

while the pulse shape remains unchanged. The objective of this chapter is to develop

a rigorous quantum theory for these SIT solitons. We first review the conventional

semiclassical theory of SIT solitons based on the Zakharov-Shabat inverse scattering

transform. Since the nonlinear Schr6dinger equation also can be solved in the same

framework of Zakharov-Shabat inverse scattering transform, some of the results in

section 2.3 [especially, (2.61)-(2.64)] can be applied to the present problem. With

these results, we then quantized the problem in the "scattering data" space under

the linearization approximation. Squeezing effects of SIT solitons are then studied.

5.1 Semiclassical formulation

The SIT problem is modeled by the following set of equations and boundary



conditions (see Appendix 2):

a 1
Va(z,7,•) + iCVi(z,r,,) = -U(z,•)V 2(z,7,) (5.1)

o 1
V2 (z,r, ,) - i(V2(z, r, ) = --2U*(z, 7)V (z, , r) (5.2)

U(z,r ) = 2(V2*(z,r, rC)VI(z, 7, -)) (5.3)

Vi(z, -0oo,) = 1 (5.4)

V2(z,-oo, ) = 0 (5.5)

Here r is the normalized time, z is the normalized propagation distance, C is the

normalized frequency deviation, V1, V2 are the complex conjugates of the slowly

varying amplitudes of the wavefunctions of the two-level atoms and U(z, r) is the

normalized electric field which represents the photon flux ( that is, f IU12dr = photon

number). We use capital letters for the independent variables in anticipation of the

linearization. Small signal variables will be denoted by lower case letters. The

brackets in Eq.(5.3) represent an average over all two-level atoms:

(...) J g(C)...d (5.6)

where g(C) is the distribution of two-level atoms over the (normalized) resonance

frequencies C. Equations (5.1) and (5.2) are just the Zakharov-Shabat equations.

Equation (5.4)-(5.5) have the following 27r soliton solution :

U(z, r) = 4ipl(0) exp[ ( c_(+i,))z] exp[-2i(a + ip)] ()
1 + 2() exp[-)( 4 )z] exp(4r7)

In terms of the terminology of inverse scattering, a + if/ is the pole position and

P (O) is the residue at z = 0. The two complex parameters completely determine a

27r soliton. If one defines
1

Ic = (5.8)

4P
no -- (5.9)

IC1



po = -2a (5.10)

00- a rg[p(0)] + - (5.11)
1 ,P1(0) 1TO In O)(5.12)2P 20

Eq.(5.7) can be put into a more "physical" form:

Uo(z, 7) = "ic'/2 exp[ipor + iK(no,po)z + iOo]2
(5.13)

sech[noc(r- - To - G(no,po)z)]
with

1 2(( + po/2)K(no,Po) 1( + p2 )  (5.14)
4 (C + po/2)2 + -n4|cl2

G(no,p1o) 1 2C12 (5.15)4 ((+ po/2)2 + ,n1c2)
The meaning of these new parameters can be easily identified: no = S IUo(z, 7)12d- is
the photon number, Po the momentum per photon (frequency), ro the initial position

in time, 0, the initial phase, G the inverse of group velocity and K the wavevector.

Without loss of generality, we will assume from now on po = To = 00 = 0.

The similarity between the solution of SIT and that of CNSE is not surprising.

Since both problems can be solved in the framework of Zakharov-Shabat inverse

scattering transform, the transformation between the scattering data and the field

function is therefore the same. So the only difference of two problems is the way

the scattering data evolve. This can be clearly seen by comparing Eq.(5.13) with

Eq.(2.6).

By linearization, one obtains the following integro-differential equation for the

small signal field function u(z, 7) .

-u(z, r) = (A(z, r, C)) (5.16)

with

A(r) = 2[V2*0(r)v(7r)+ Vo•(7)v*(r)j

= V22())f u(r')V2o(r')dr' - V7 (r) fo u(r')V1 (r')dr' (5.17)

+V2*o () foo u*(r')V,2o(r')dr ' - V120(r) f'--o u*(')V2*'(r')dr'



Here u is the small signal field function, {Vio,V2o} are the solution of Eqs. (5.1)

-(5.2) with U = Uo and A is the perturbed dipole moment. For convenience, we

have not indicated the independent variables z and ( in Eq. (5.17).

Eq.(5.17) looks formidable to solve. Fortunately one does not need to actually

deal with it. Since both SIT and CNSE can be solved in the same Zakharov-Shabat

transform, the expansion we developed for the linearized CNSE (QNSE) can be

applied to the linearized SIT here. Thus in the vector form, one has

u(z, r) = An(z)fn(r) + AT(z)fT(r) + A0(z)f(7r) + Ap(z)fp(r)
(5.18)

+ [Ap,(z, ()ucr(r, () + ApA(z, )uci(r, )(dC(

Here we have put in the continuum perturbations. Ap = Ap, + iApi is the perturba-

tion "residue" of the continuum in the terminology of inverse scattering transform

and Ucr, uci are the corresponding perturbation functions. The evolution of per-

turbed scattering data can be obtained by perturbing the evolution equations of

scattering data from the inverse scattering theory[25 ]. For the soliton parts,

d-An(z) = 0 (5.19)

d MK OK
AO(z) - An(z)+ Ap(z) (5.20)dz ano dpn

-Ap(z) = 0 (5.21)
d OG OG

AT(z) '-An(z)+ Ap(z) (5.22)
dz On0  dp0

and for the continuum,

Ap(z, )g(') d('Ap(z, )
5z 2 ( C -iO+

(5.23)
I[- -g() + P fg((') - 1I d(']Ap(z, C)

Here P indicates principal value.

The solutions are:

An(z) = An(0) (5.24)



OK OK
AO(z) = LO(0) + ynezAn(0)+ -j zAp(0) (5.25)

Ap(z) = Ap(O) (5.26)
OG OGAT(z) = AT(0) + -z n(0) + azp(O) (5.27)

Ap(z,) = exp[ -_g(()z + 2zPg(c')V, -1 dC'] Ap(0, 0) (5.28)

In contrast to solitons in optical fibers, the perturbation of photon number is also

coupled to the perturbation of position and the perturbation of momentum is also

coupled to the perturbation of phase.

Since we use the same expansion as we did for QNSE, the same projections can

be used to obtain these perturbation scattering data from the perturbation field

function.

An(z) = (_(r)j 0 u(z,-)) = 2(f_(r)j 0 ju(z,7)) (5.29)
(f(r))1 Ifn( r))

AO(z) = (f(r) j® 0u(, -)) = 2(f(7-)1 0 Iu(z, 1)) (5.30)
(f(r) 01 Ife(7))

(fp(r)l 0 ju(z,7)) 2
Ap(z)= =() ()) -(np(7)I 0 ju(z,7)) (5.31)

A(fp(r)| ® (fp(r))  no

(fT(r7)l 0 ju(z, 7)) 2AT(z) =(fT(r)l r) -=.o(fT(7)I 0 lu(z,r)) (5.32)
(f.=(r) 0 I(f'(r)) no

(jcr(T, C) I 0 u(z, 7))
(,p,(z, )0) u(, ) (5.33)f(Our,(7, )1 0 lucr(7, ('))d('

Api(z, () = (5.34)f (ui(r, ()010juci(r, ('))dT'
5.2 Quantization in the scattering data space

The quantization of SIT solitons is more subtle than that of the NSE solitons.

For a traveling wave (only in one direction) the commutation brackets of the field

operator should be conserved even though the field system is coupled to the material

system. This may be argued as follows. Suppose the medium is of finite length and

light is coupled into and out of the medium without reflection. Then the input and

output fields are in free space and therefore have to obey the commutation relations



of free space fields. In principle one can cut the medium at any place and the field at

that place has to obey the same commutation relations. Therefore, the commutation

brackets are also preserved inside the medium.

Our quantization procedure is as follows [71]. The commutation relations of per-

turbation field operators are given by Eq.(2.26)-(2.27). The relation between the per-

turbation field operator and the perturbation scattering data is given by Eq.(5.29)-

(5.34) perturbation scattering data. The conservation of the commutator brackets

for the field requires the conservation of the commutator brackets for the perturbed

scattering data. If the commutator brackets of the scattering data are preserved

during evolution, no additional noise operator is needed. Otherwise additional noise

operators are introduced to preserve the commutator brackets. This can be eas-

ily accomplished in the "scattering data space" due to the decoupling of different

"frequency" components.

To check the conservation of commutation brackets, it is easier to start from the

evolution equations. The evolution equations of the perturbation scattering data are

given by Eq.(5.19)-(5.23). It is easy to show that the commutator brackets of the

soliton parts are conserved. However, those of the continuum are not. To see this,

note that equation (5.23) is, in fact, the equation for a damped harmonic oscillator.

The magnitude squared of Ap(t, C) decays exponentially.

lap(t, 0)1' = -a(() Ap(t, C)12  (5.35)

with a decay rate

=a()= rg() (5.36)
Conventional laser theories[6 9,70] show that a damped harmonic oscillator calls for an

additional noise operator to preserve the commutator brackets (also see section 2,

chapter 4). The noise operator can be introduced formally and/or can be obtained

through the concept of a reservoir. Here we follow the first approach and rewrite

Eq.(5.23) as

(z, g((') - I d -'A (z, ) + P(z, C) (5.37)(z 2 ,( d(1A± - ( - 3o+



In principle, one can determine the commutation relations of A^(0, () using Eq.(5.33)

and (5.34). Suppose, initially

[A(0o, C) A~t(o, C')] = po(C)'(C - C') (5.38)

then to preserve the commutation brackets, F(z, () has to satisfy

[P(z, (), Ft(t', C')] = a(()po(()6(z - z')6(C - (') (5.39)

Equations (5.37) and (5.39) are the proper operator equations for the continuum

part. We do not study the evolution of the continuum part because, as we have

shown, its contribution can be suppressed by suitable detection schemes. Yet it is

still interesting to ask for the physical origin of the noise sources. The reservoir

theory of a damped harmonic oscillator derives the noise operator from the initial

conditions of the reservoir. Here we have the same situation. When we eliminated

the atomic variables to derive the classical equation (5.17), the initial conditions of

vl and v2 dropped out because they are zero classically. However in quantum theory

v, and V2 are operators and cannot be set equal to zero.

In the literature, it was proposed by several authors(72,73] to quantize the problem

in the scattering data space directly using the classical results of inverse scattering

transform without linearization. However, there are two problems with this ap-

proach : (1) The commutation relations of the field operators [Eq.(2.11) and (2.12)]

cannot be justified. (2) Soliton problems that cannot be derived from a Hamiltonian

(like the SIT problem) cannot be treated. The two problems are solved simultane-

ously under the linearization approach.

5.3 Squeezing

After quantization, the evolution equations for the soliton parts of the SIT prob-

lem are given by

A-(z) = A (0O) (5.40)

AO(z) = AO(0) + AnozA^(0) + zai(o ) (5.41)dno opo



A13(z) = A i(0) (5.42)

OG aGAT(Z) = AT(o) + zAA() + zA^(0) (5.43)
On, zPo

In contrast to solitons in optical fibers, the fluctuations of photon number are also

coupled to the fluctuations of position and the fluctuations of momentum are also

coupled to the fluctuations of phase.

Because of this, in the consideration of squeezing effects, one needs to consider

the linear combination of all the four operators[7 ]:

M(z) = cA A(z) + ceAO(z) + cpA3 (z) + CTLT(z) (5.44)

Without loss of generality, we will require

c2(Af 2 (0)) + c•(A 2(0)) + c (Ap~ (0)) + c•(AT '(o)) = (5.45)

so that (2•t2(0)) = I (the shot noise level). The local oscillator time function that

will measure the operator is then given by

1 1
fL(r) = 2[cf-(7r) + cesf(r) + cpfp(r) + -cTfT(r)] (5.46)

n. no

Now we are going to use some matrix algebra to calculate the squeezing ratio.

First, let us introduce the column matrices

Y co (5.47a)

AT(z)

so that Eq.(5.44) can be written as:

•M(z) = yT (z) (5.48)



The correlation matrix of operator vector a(z) is defined as:

C(z) = [(a(z)T(z)) + (A(z)Ta(z))T] (5.49)

The operator vector a(z) is related to the initial operator vector &(0) according to

Eq.(5.40)-(5.43).

^(z) = S(z)^(0) (5.50)

where the transformation matrix is

z 1 0 0 0aK Z1MZ

S(z) ano •Po (5.51)0 0 1 0
-z 0 az 1

LOno 8Po

What the local oscillator actually measures at the output of the medium is yTA(z).

Thus the fluctuation registered by the local oscillator is

yTC(z)y = yTS(z)C(O)ST(z)y (5.52)

In the matrix form, the constraint (5.45) becomes

yTC(o)y = 1 (5.53)

Therefore the squeezing ratio is given by:

R(z) = yTC(z)y = 4yTC(z)y (5.54)
yTC(O)y

The constraint (5.53) can be handled by the Lagrange multiplier method. The

extrema of (5.54) are the eigenvalues of the determinantal equation:

S(z)C(0)ST(z)y = AC(0)y (5.55)

or equivalently,

c-1(0)S(z)C(0)ST(z)y = Ay (5.56)

Thus, the eigenvalues are found by diagonalizing the matrix C-I(O)S(z)C(O)ST(z).

The lowest eigenvalue tells us the optimum squeezing that can be achieved and



the corresponding eigenvector gives the operator that one should measure in order

to achieve the optimum. Full advantage of squeezing can only be taken when the

matrix appears in its diagonal form, when the inphase and quadrature components

are uncorrelated.

For the SIT problem, assuming the soliton is a "white" soliton at z = 0, one has

(A!) 0 0 0

C(0) = • o (5.57)
0 0 0 (A ~2>

The lowest eigenvalue of Eq.(5.56) gives us the optimum achievable squeezing ratio

R.

For homogeneous broadening media, g(() = ((-,(o), maximum squeezing occurs

at ( = 0 due the symmetry. The optimum squeezing ration as a function of z for a

soliton with no = 1.8 x 104 is plotted in Figure 14. no = 1.8 x 104 is the number of

photons contained in a ps soliton in CdS and the normalization unit for distance is

1.6 x 10-2 m (see Appendix 2).
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Chapter 6

Summary and future research directions

The objective of the thesis has been to develop a rigorous quantum theory of

optical solitons. The investigation has involved the study of solitons in optical fibers

and self-induced transparency solitons.

For solitons in optical fibers, the governing equation is the classical nonlinear

SchrSdinger equation (CNSE). After imposing commutation relations, the CNSE

becomes the quantum nonlinear Schrodinger equation (QNSE), which turns out be

a valid operator equation since it can be derived from a well defined Hamiltonian.

The QNSE has been solved in the Heisenberg picture under linearization approxi-

mation. The perturbation field operator is expanded in a special set of basis so that

different "frequency" components are decoupled. The soliton parts are characterized

by four operators : photon number, phase, momentum and position. All the four

operators can be detected using homodyne detection with a complete suppression

of the continuum. The evolution of the four operators are determined. The cou-

pling between photon number and phase produces squeezing. An optimum detection

scheme using homodyne detection has been presented and the optimum squeezing

ratio has been calculated. A general numerical approach for calculating squeezing

ratios has been developed and applied to the study of fiber gyros using squeezed

soliton.

The QNSE has also been solved in the SchrSdinger picture. In the SchrSdinger

picture the QNSE is equivalent to the evolution equation of a system of bossons with

6-function interaction. The eigenstates of the system can be constructed analyti-

cally using Bethe's ansatz method. There are bound eigenstates which are closely

related to the soliton phenomena. Both fundamental soliton states and higher order

soliton states are constructed by superposition of bound eigenstates. The phase



spreading effect and position spreading effect come out of superposition naturally.

The soliton collision effects have also been studied using the constructed higher or-

der soliton states. The system is also studied under the time-dependent Hartree

approximation. Approximate eigenstates are constructed by assuming each photon

has a same wavefunction. The wavefunction is determined by a variational princi-

ple. The phase spreading effect is correctly predicted while the position spreading

effect is missing under Hartree approximation. Squeezing ratio calculation based on

Hartree approximation is also performed.

Solitons in optical fibers with loss and periodic amplification have been studied in

the framework of the linearization approach. An equivalent nonlinear SchrSdinger

equation has been derived, quantized and solved. Noise operators introduced by

both loss and gain give rise to the random walk of soliton frequency (momentum),

which in turn causes the spreading of soliton position. This effect places a upper

limit (known as the Gordon-Haus limit) on the achievable bit rate of soliton commu-

nication system. In the framework of our theory, the Gordon-Haus limit has been

derived rigorously. A numerical approach for noise analysis of soliton-like systems

is also presented.

The same linearization approach has been directly applied to the study of self-

induced transparency solitons by taking the advantage that both the SIT and NSE

problems can be solved by the Zakharov-Shabat inverse scattering transform. The

same procedure can be applied to all the systems that can be solved in the same

framework of Zakharov-Shabat inverse scattering transform. The quantization is

performed in the scattering data space by requiring the conservation of commutation

relations. In contrast to solitons in optical fibers, the fluctuations of photon number

are also coupled to the fluctuations of position and the fluctuations of momentum

are also coupled to the fluctuations of phase. The coupling gives rise to a squeezing

effect. The correlation matrix technique has been applied to the calculation of

squeezing ratio and the determination of optimum receiver structure.

Finally, in view of these developments, we would like to point out some research

directions that call for future studies.



1. Although all our developments are on optical solitons, the ideas like solution

and superposition in the SchrSdinger picture, linearization in the Heisenberg

picture or the quantization in the scattering data space under linearization

approximation are in fact very general and are applicable to other quantum

soliton systems.

2. Recently, the quantum inverse scattering method, which solves the problem

exactly in the Heisenberg picture, has been advanced a lot. It would be inter-

esting to compare and combine what we have done with this newly developed

method.

3. Quantum effects of soliton propagation in optical fibers need more investiga-

tion. The nonlinear Schradinger equation is correct only to the lowest order.

By putting in higher order terms and different polarizations, interesting effects

may show up.

4. Since the Gordon-Haus limit plays a fundamental role in long-haul commu-

nication systems using solitons, it is of particular interest to find a way to

overcome this limit. We have pointed out the possibility of using intensity

modulators or/and frequency filters to limit the spreading of position or/and

frequency. However, the introduction of modulators or/and filters may perturb

the steady state solution and thus call for a general theory of noise analysis of

soliton-like systems.

5. Another important class .of soliton-like system are the modelocked laser sys-

tems. Recently (classical) theory of modelocked laser systems has been ad-

vanced a lot due to the stimulus of experimental success. To study their noise

properties again calls for a general theory of noise analysis of soliton-like sys-

tems.

There are many other interesting topics worthy of investigation. We are pretty

sure that the studies on quantum effects of nonlinear pulse propagation will become



richer and richer. We sincerely hope that our studies have made some contributions

to this development.



Appendix 1

In this appendix we prove equation (3.1).

From figure 3, the difference of the currents from two photodetectors is given by

b(z,) = 2l1()+(,)-le()-(,) h(r)
L (A1.1)

= [uL(r)^(z, 7) + UL(r)tt(z, r)] 0 h(r)

Here 0 is the operation of convolution.

After the Fourier transform, one has

MA(z) = j e'[ut(r)(z, r) + UL(r) t(z, r)] 0 h(r)dr

(A1.2)

= H(k) J eik[r ( i)(z, r) + ULQ()t(z, r)]d-

This proves (3.1).



Appendix 2

According to Ref[26], the SIT problem can be modeled by three equations.

V (z', t', 6') + ib'Vi(x', t', 6') = 2 E'(z', t')V2(z', t', 6') (A2.1)at2

5F (', t'7,6') - i'V 2(x', t',~') = -- E'*(', t')VI(z', t', ') (A2.2)

-E'(x', t') = 2(V2*(z', t', ')Vi(z', t', 6')) (A2.3)

Here t', X', 6' and E' are the normalized quantities (time, propagation distance, fre-

quency deviation and electric field) used in Ref[26] and are related to the unnormal-

ized quantities t, x, 6 and E by

t' = fit (A2.4)

z' = (A2.5)
vc

6' - (A2.6)
2fl

2p21EE' = (A2.7)
iht

with
woNalpu 12

S= 2 (A2.8)

Here N, is the density of atoms, p21 = p*2 is the dipole moment per atom, wo is the

"carrier" frequency and v, is the velocity of light in the "background" index. We

want to renormalize the field so that energy can be expressed in terms of photon

number, while keeping the form of equations (A2.1)-(A2.3) unchanged. This can be

achieved by the following change of variables:

r = Kt' (A2.9)

z = x'/K (A2.10)

b = 6'/K (A2.11)

U = E'/K (A2.12)



This reduces equations (A2.1)-(A2.3) to (5.1)-(5.3). The constant K is determined

from the following energy condition:

1 f IEI2drArea = nhwo (A2.13)

which leads to the following expression for K:

8rlo P2112

K = (A2.14)
hAlArea

Here r7 = V and Area is the cross section of the beam. The new variables are

related to the unnormalized quantities by

87= wjp2
2 t (A2.15)

i2 Area

z = h2Ae (A2.16)
8rswo lp2112vc

hArea
S= 6- 6• 6 (A2.17)

169w0Ipzi 12
Area

U = r E (A2.18)

As a numerical example 29, consider excitons bound to a neutral donor in CdS

at 2 *K with an absorption peak wavelengh of A=487 nm, an exciton intensity

N, = 1 x 1021 m-3 and a dipole moment 1 x 10- 28 Cm. Assuming the beam

crosssection is 1 ym2 and the pulse duration is 1 ps, and one has :

t = 2.2 x 10-9r [sec]

x = 1.6 x 10-8z [m]

6 =-9.1 x 10s( [Hz]

E =2.4 x 102U [V/m]

and the photon number is

no = 1.8 x 104
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