
Control Interfaces and Handling Qualities
for Space Telerobotic Vehicles

by

Anna Gibbs Cinniger

B.S. Aeronautical and Astronautical Engineering, University of Washington

(1989)

Submitted to the Department of Aeronautics and Astronautics
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in
Aeronautics and Astronautics

at the

Massachusetts Institute of Technology
June, 1991

© Anna G. Cinniger, 1991

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Aeronautics and Astronautics

May 28, 1991

Certified by

Accepted by

Professor Harold L. Alexander
Thesis Supervisor

Department of Aeronautics and Astronautics
r tr

Professor Harold Y. Wachman
Aero Chairman, Departmental Graduate Committee

Department of Aeronautics and Astronautics
MASSACtiUSflS INSTITUTE

OF TECHNnM OGY

JUN 12 1991
LIBRARIES

//

_ _ __ _ _

1

Control Interfaces and Handling Qualities
for Space Telerobotic Vehicles

by

Anna Gibbs Cinniger

Submitted to the Department of Aeronautics and Astronautics in Partial Fulfillment of
the Requirements for the Degree of Master of Science in Aeronautics and Astronautics

Abstract

The goal of this thesis was to improve control interface designs for remotely
controlled vehicles. It is hypothesized that operator performance is substantially affected
by the need to share attention between multiple control devices. It is further hypothesized
that attention sharing between the hands and feet is easier than between the hands alone,
and that interfaces which require hand/feet attention sharing will permit higher quality
control than those which require hand/hand attention sharing. The impact of attention
sharing and control interfaces on the handling qualities of a free flying, space telerobot is
discussed. Experiments are described that use pilot ratings and performance indices to
compare control interfaces which include hand and foot generated control devices.

The hypothesis was tested by comparing three different control device and
command assignment configurations. The first configuration was the traditional two hand
controller combination with translational degrees of freedom assigned to the left hand
controller and rotational to the right. The second included a foot controller with one
rotational degree of freedom assigned to it. The third included the foot controller with two
rotational degrees of freedom assigned to it.

Eight pilots flew two different tasks for a total of 18 flights each. The first task
required the pilots to reorient the vehicle from an unusual attitude. The second task
required the pilots to hold position in the presence of disturbances. The flights were
divided evenly between two tasks and the three configurations. The configurations were
evaluated based on pilot rating, using a Cooper-Harper rating system, and on performance
indicators like fuel expenditure and maximum velocity.

Conclusions are made that support the hypothesis to the extent that there appears to
be no significant difference between the traditional configuration and the configuration with
one degree of freedom assigned to the feet. Error source analysis reveals biases which
suggest that improved experiments might support the hypothesis conclusively. It was also
concluded that the foot controller design used in these experiments was unsuitable for pitch
commands.

Matt (IRIS God)
Machlis:

Wonder UROP-ers:

Students of ASL:

Test Subjects:

Rob (Editor
Extraordinaire) Sanner

Professor Graves

for developing the simulation and supporting the experiments
and being one of the most all around helpful people I know.

Patrick Chu for pulling all of the pieces of the control station
together, and Paul Stach for his most amazing foot controller.

for being so cooperative about scheduling IRIS time.

Patrick (Just let me tighten these bolts) Chu, Kurt Eberly, Beth
(Is it moving?) Kader, Rob (Wildman) Sanner, Paul Stach, Mike
Valdez, Harald Weigl and Franz Busse for making my rather
hectic schedule possible.

for speed-editing my thesis and making incredibly clear and
helpful suggestions.

for loaning me his copy of SYSTAT and for letting me keep the
documentation for so long.

To the powers that be:

Dave Akin:

Sandy Alexander:

for creating the lab and hiring me from afar.

for carrying on in the face of adversity and accomplishing good
things with little or no money, for helpful advice, brainstorming,
editing, and for working with me to get this thing done this
term!!

And on a more personal level:

Sam Druker:

Mom, Dad & especially
Carmen!!!

for all the food and affection that kept me going thru stressful
times, for having the strength of personality to butt heads with
me, and for being an incredibly great person despite his
reputation.

for being the most awesome family possible and for inspiring
curiosity about life and everything.

Acknowledgements

First of all, I really must thank all of the people who directly contributed to the contents of
this research. Without their help it would have been a great struggle to even complete the
experiments:

Table of Contents

Title Page ... 1
Abstract..2
Acknowlegements .. 3
Table of Contents... 4
Table of Figures 5
Chapter 1. Introduction 6

1.1 Space Robotics and Teleoperation ... 6
1.2 Problem Statement 7
1.3 Motivation and Background .. 9
2.4 Thesis Overview 13

Chapter 2. Experiment Design .. 14
2.1 Control Devices and Command Assignment 14
2.2 Telerobot Simulation ... 18
2.3 Tasks and Display 19
2.4 Subjects and Initial Evaluation 21
2.5 Test Matrix and Parameters 22
2.6 Experiment Procedure... 26

Chapter 3. Implementation 28
3.1 Virtual Environment Simulation and Display 28
3.2 Control Devices ... 29
3.3 Control Station 29

Chapter 4. Results and Analysis 32
4.1 General Observations ... 32
4.2 D ata A nalysis .. 38
4.3 R esults ... 40

4.3.1 Pilot Evaluation .. .40
4.3.2 Performance Evaluation .. 43
4.3.3 Summary.................................. 52

4.4 Error Analysis.............................. 53
Chapter 5. Conclusion ... 59

5.1 Summary of Results .. 59
5.2 Recommendations for Future Work .. 60

References .. 63
Appendix A. 64

Al. Control Station Software .. 65
A2. Simulation Software ... 80

Appendix B. .. 118
B 1. Test Subject Survey Questionaire 119
B2. Pilot Evaluation Comment Sheet .. 122

Table of Figures

1.1 Pilot Evaluation Scale Based on the Cooper-Harper Pilot Opinion Rating
Scale[3] ... 11

1.2 Closed-Loop Man-Machine Representation Adapted from McRuer, et al.[8]..... 12
2.1 Illustration of Command Assignments to the Control Devices................... 17
2.2 Command Assignment Directions with Respect to Vehicle Coordinate

Fram e .. 19
2.3 Three Dimensional Task Environment Display Including Vehicle Reference

M arks .. 21
2.4 Three Dimensional Environment Display Used to Evaluate Pilot Skill 23
2.5 Test M atrix .. 24
3.1 Teleoperation Control Station System Block Diagram............................. 30
3.2 Control Device Layout 31
4.1 Example Rotation Angle and Command Time Histories for the Reorientation

Task .. 34
4.2.a Example X, Y, and Z Position Time Histories for the Position Hold Task 35
4.2.b Example Roll, Pitch and Yaw Rotation Angle Time Histories for the

Position Hold Task 36
4.3.a Example X, Y, and Z Command Time Histories for the Position Hold Task..... 37
4.3.b Roll, Pitch and Yaw Command Time Histories for the Position Hold Task...... 38
4.4 Distribution of Pilot Rankings of Each Control Device Configuration for the

Reorientation Task 41
4.5 Distribution of Pilot Rankings of Each Control Device Configuration for the

Position H old Task ... 42
4.6 Histogram of Integrated Command Magnitudes for Each of the Control

Device Configurations for the Position Hold Task 44
4.7 Histogram of Maximum Single Degree of Freedom Velocity Magnitudes for

Each of the Control Device Configurations for the Position Hold Task 47
4.8 Histogram of Maximum Pitch Velocity Magnitudes for Each Control Device

Configuration for the Reorientation Task.................................... 48
4.9 Histogram of Maximum Pitch Velocity Magnitudes for Each Control Device

Configuration for the Reorientation Task.................................... 50
4.10 Histogram of Maximum Displacement Errors for Each Control Device

Configuration for the Position Hold Task ... 51
4.11 Illustration of Overshoot, Spurious Commands, and Reverse Commanding

in the Reorientation Task .. 54

Chapter 1. Introduction

1.1 Space Robotics and Teleoperation

Even with the most advanced technology, robots of all types are limited in their

ability to make decisions and to react to unexpected situations. Adding human controllers

to systems will remove these limitations until such time as artificial intelligence is advanced

sufficiently to allow true autonomy. Teleoperation, or remote control of robots, is

especially well suited for working in dangerous environments; while secure in a less risky

environment a human operator can teleoperate a robot to perform dangerous construction,

maintenance or exploration tasks. Space is a good example of an inhospitable environment

where telerobotics is already very effective; the remote manipulator arm on the Space

Shuttle is regularly teleoperated to assist the astronauts.

Even with the remote manipulator arm, current satellite servicing activities and

future plans for Space Station construction require humans to perform extravehicular

activity (EVA). EVA's, however, are dangerous and time consuming; for example,

today's space suit technology requires astronauts to pre-breath pure oxygen for two hours

before they can begin an EVA. The problems of EVA might be solved with a more capable

and mobile telerobot so that the the astronaut could remain in the shuttle or a space station

module, remotely pilot a robot to the worksite, and perform the necessary construction,

maintenance, or repairs without requiring EVA.

Teleoperation of a remote vehicle, however, is a difficult activity which requires the

coordination of several complex systems, the three most significant of which are the robot,

the control station, and the human operator. The robot must combine coordinated

mechanical and electronic systems which are capable of performing the desired task; the

control station must provide the operator with the capability to control and communicate

with the robot; and finally, perhaps most complex, the human operator must process the

information provided by the robot and respond accordingly. Careful integration of all these

elements is required to ensure that the total system accomplishes the task in a productive

manner.

1.2 Problem Statement

The research described here aims at improving teleoperation by changing the

interface between the vehicle and the human operator. Specifically, control device options

and assignments of command degrees of freedom to the control devices were varied to

investigate their impact on the handling qualities of a simulated space telerobot.

Remote vehicles are generally piloted by commands entered at a control station

which are then transmitted to the vehicle. In previous control stations commands have been

issued using a two-joystick combination; both joysticks were typically three degree of

freedom, displacement-type controllers with one used to control translational motion and

the other for rotational motion. Whenever possible, the translational controller's third

degree of freedom was a push-pull action, and the rotational controller's was a twist action.

Experience showed that this method of relating joysticks motion to the vehicle motion made

it easier for the pilot to fly the vehicle. This rather subjective initial evaluation of joystick

types was one of the early motivations for the search for other, potentially superior,

interface types and command assignments described herein.

The first step in this search was to identify attention sharing as an important factor

in handling qualities. Attention sharing has been studied extensively in the context of

cockpit scanning where the pilot must survey several different instruments during flight.

This problem also occurs in multi-degree of freedom tasks where the pilot is trying to

manage several simultaneous tasks. In the control of free-flying telerobots the pilot

attempts to independently command six degrees of motion and must divide attention

between the various degrees of freedom. With the traditional two-joystick configuration

the alternation of attention is further divided between the hands.

The main hypothesis of this research is that, for certain types of command

assignments and tasks, hand/foot attention sharing is easier than hand/hand. Human

beings regularly attempt to simultaneously use their hands and feet. Driving a car with a

manual transmission is a common example of a multi-task situation where one uses both

hands and feet to perform different functions.

Virtual environment experiments were designed to evaluate the handling qualities of

a teleoperated space vehicle as a function of the attentional demands of the control interface.

These experiments compared three different control device configurations which divided

the command assignments between the hands alone and the hands and feet. One

configuration was the traditional two-joystick combination described above, and the other

two substituted a foot controller for one and two degrees of freedom, respectively.

Rotational commands were assigned to the foot controller because people are accustomed to

using their feet and legs to balance and maintain their attitude while walking. The two

degree of freedom foot controller was assigned pitch and roll commands. The one DOF

foot controller configuration used the same foot controller, but only roll was assigned.

/

Eight pilots flew eighteen flights each. The flights were divided evenly between

two tasks and the three configurations. The first task was a three DOF task which required

the pilot to reorient the vehicle from an unusual attitude. The second task was a six DOF

task which required the pilot to hold position and attitude in the presence of random

disturbances.

1.3 Motivation and Background

The underlying assumption of this research is that success of vehicle teleoperation

depends on the vehicle control interface independent of variations in the open-loop

dynamics of the teleoperation system. Furthermore, it is assumed that different control

interface configurations have different attention sharing characteristics, and that these

contribute significantly to the handling qualities of the teleoperated vehicle. These two

assumptions form the basis for the hypothesis of this research that control interfaces that

require hand/feet attention sharing are superior to those that require hand/hand attention

sharing. The purpose of this section is to summarize the results of past research which

support these assumptions and which motivate the experiments presented in the following.

The goal is to explain how handling qualities are evaluated and explain how attention

demands are expected to affect the handling qualities.

Success of vehicle teleoperation is measured by the ease with which the human

operator can fly the vehicle, which is. commonly called the handling qualities of the vehicle

by flight test engineers and human factors researchers. George Cooper and Robert Harper,

pioneers in the application of pilot rating scales to the evaluation of aircraft handling

qualities, define "Handling Qualities" as "those qualities or characteristics of an aircraft that

govern the ease and precision with which a pilot is able to perform the tasks required in

support of an aircraft role"[3]. The key here is that handling qualities are a combined

function of the closed loop stability and control characteristics of the man-vehicle system,

of the display and control interfaces, and of the task being performed.

Pilot opinion ratings obtained using the Cooper-Harper Rating Scale are very

generally used to evaluate handling qualities, especially in aerospace vehicles[3,6]. This

rating scale, which can be seen in Figure 1.1 as it was used in these experiments, uses

answers to specific questions about the controllability and performance of the vehicle to

direct the pilot to a specific rating between "1" and "10", "1" being best. The directed

nature of the pilot's evaluation reduces the subjectivity of the rating. The relative

relationship between pilot rating and handling qualities has been found to be consistent, but

the absolute ratings must be calibrated for each pilot[3,6].

Handling qualities research generally views the human being as a quasi-linear

control element in the closed-loop system. The closed-loop, man-machine representation,

which can be seen in Figure 1.2, illustrates the major contributions the human teleoperator

makes as a control element: perception and compensation. The pilot perceives the

information displayed, makes decisions and operates the control devices to command the

vehicle. The more intuitive and less stressful the human processing is, the lower the

workload and the better the handling qualities.

Attention sharing affects handling qualities whenever a pilot must make decisions,

perform managerial tasks, or respond to a failure while still performing the primary task of

flying the vehicle, or when the task of flying itself is too complex to manage all at once.

When the pilot must divide his attention between the six degrees of motion of a free-flying

vehicle, only a fraction of time is spent on any given degree of freedom. As attentional

demands grow, the duration of attention given to any one of the degrees of freedom

decreases and the performance suffers. Specifically, as attentional demands worsen the

pilot-induced noise, pilot workload, and time delay increase[9].

10

Excellent: Pilot compensation not a
Highly desireable factor for desired performance
Good
Negligible deficiencies

Pilot compensation not a factor
for desired performance

Fair - Some mildly Minimal pilot compensation
unpleasant deficiences required for desired performance

Minor but annoying Desired performance requires
deficiencies moderate pilot compensation

Moderately objectionable Adequate performance requires
deficiencies considerable pilot compensatior

Very objectionable but Adequate performance requires
tolerable deficiencies extensive pilot compensation

is it
satisfactory without No

improvement?

Yes

Is adequat
performance Noattainable

with tolerable
workload

Yes
Is it No

Controllable? -----

START

Major deficiencies Adequate performance not attainable

Adequate performance not attainable
with maximum tolerable pilot compensation 7

Considerable pilot compensation is
Major deficiencies required for control

I Major deficiencies Intense pilot compensation is required 9
to retain control

M ajor deficiencies Control will be lost during some portion 10
of required operation I

Figure 1.1 Pilot Evaluation Scale Based on the Cooper-Harper Pilot
Opinion Rating Scale[3 1. Notice the directed nature of the scale which reduces
the subjectivity of the rating.

Yes

1 I
3

0 0 0 0 0 0 0 0 0 0 N N N

S Perceptual
I e
9 a

Neuromuscular
Actuation System

Figure 1.2 Closed-Loop Man-Machine Representation Adapted from
McRuer, et al.[8].

In these experiments the task, the display, and the vehicle dynamics were held

constant, and pilot ratings and performance indices were used to evaluate potentially

superior configurations based on the hypothesis that foot controller configurations are

superior because they have better attention sharing characteristics.

2.4 Thesis Overview

The remaining chapters describe the experiments and results.

Chapter 2, "Experiment Design", discusses in detail the decisions that were made in

order to test the hypotheses described above. The discussion includes the human factors

and technical issues which were relevant to the choice of control device configurations and

command assignments, tasks, and the test matrix and parameters. The test procedure is

also outlined.

Chapter 3, "Implementation", discusses the technical details of the equipment and

software.

Chapter 4, "Results and Analysis", is divided into four sections. The first section,

"General Observations", uses sample flights to illustrate typical results and uses these

examples as a basis for discussion of observations made during the experiments and

subsequent data analysis. The second section, "Data Analysis", describes the data

reduction and analysis methods used in the third section, "Results", which is divided

between the pilot evaluations and the performance evaluations. "Error Analysis", the

fourth chapter, discusses error sources and their effects on the results.

Chapter 5, "Conclusion", summarizes the results of the evaluations and makes

recommendations for future work.

13

Chapter 2. Experiment Design

The goal of these experiments was to evaluate three different control device

configurations in an attempt to test the hypothesis that using feet to control one or two of

the six degrees of freedom of a free flying robot is a good alternative to the traditional

division of control of these motions between the two hands. The experiments required test

subjects to fly a simulated telerobot from a control station using a reconfigurable control

interface. In this chapter, each element of the experiment design is examined and the

motivations behind the control device configurations and command assignments are

discussed. Descriptions of the simulation, the tasks, and the test subjects and parameters

are also given.

2.1 Control Devices and Command Assignment

Control devices contribute to the closed-loop, man-vehicle system dynamics in two

ways: 1) The dynamics of control devices, such as lags, delays, and fly-by-wire control

modes, contribute directly to the overall dynamics, and 2) The devices change the control

response dynamics of the human operator. Attentionally demanding and non-intuitive

configurations change the pilot transfer function because they change the processing the

operator must do to respond to the input they receive. The Human Engineering Guide for

Equipment Designers states, "Control movements that seem 'natural' for the operator are

15

more efficient and less fatiguing than those that seem awkward or difficult"[11]. Pitch and

roll commands were assigned to the foot controller to make the command-motion

relationship seem natural to a human pilot who would be accustomed to standing, walking

and balancing with the feet and legs. The muscular actuation requirements of the devices

may also affect the dynamics of the pilot by changing the neuro-muscular contribution to

the pilot transfer function; and control devices that require excessive exertion or large forces

will increase pilot workload and may degrade performance[4].

Control devices should be selected and oriented so that their motion consistently

matches either the display or the vehicle motion. The relationship between the control

device motion and the display motion is especially important to reaction and decision time

when the number of control actions is high and when the control actions have a non-

sequential nature; and all of the devices in a single configuration should have the same

relationship[2]. Human factors research has shown that control-display compatibility is

preferable for cockpit instrument design[12], however control-vehicle compatibility was

selected for these experiments since the display was designed to simulate a video signal

coming from cameras on board the vehicle. In most of the previous neutral buoyancy

teleoperations research at MIT's Space Systems Laboratory (SSL) the only display has

been the video signal.

Multi-degree of freedom joysticks or pressure sticks are recommended by human

factors guidelines for multi-degree of freedom positioning of a vehicle such as space

vehicle maneuvering. Foot pedals are recommended for continuous gross adjustments, like

for a throttle or accelerator, or for large force applications, like braking or steering. In

general, foot controls are useful when continuous control is required, as long as precision

of control positioning is not important[2,4]. For the experiments described below a multi-

degree of freedom foot controller was used in an attempt to combine the benefits which

make a joystick-pedal device suitable for a space vehicle application.

Velocity or rate control is generally preferable over acceleration control, but in a

space vehicle application the vehicle's position and translational velocity can not be sensed

accurately enough to implement velocity control. Integrating the accelerometer readings to

obtain velocity would be highly sensitive to initial conditions and noise. It is possible to

have velocity control in the rotational degrees of freedom; however, since it is important in

multi-degree of freedom manual control systems to have all degrees of freedom have the

same dynamics, acceleration control was selected for all six degrees of freedom[12].

Since the control devices were the major point of interest in the experiment design

careful thought was given both to their selection and to the commands assigned to each of

their degrees of freedom. Both the type of controller and number of DOF's were important

factors.

For the experiments described below, the pilots used three different configurations

of control devices and command assignments. The first configuration was the traditional

configuration of two, three degree of freedom, hand controllers, sometimes referred to as

the no-foot-controller configuration. This configuration was arranged using the traditional

translational/rotational division of control to provide a basis for comparison. Both hand

controllers were displacement-type, proportional controllers. The translational controller's

third DOF required a push/pull motion, while the rotational controller's required a twisting

motion.

The commands were assigned in accordance with human engineering guidelines for

control movement and vehicle response relationships[2,4,11]. The command assignments

for all of the devices can be seen in Figure 2.1. The translational hand controller had

vertical, lateral and horizontal commands assigned to it to make the motion of the joystick

correspond to the intuitive motions of the vehicle. The rotational hand controller had roll,

pitch and yaw command assigned to it in the traditional aircraft relations: pushing the

|

16

joystick forward commanded a pitch down; backward, pitch up; to the right, roll right; to

the left, roll left; twisting to the right, yaw right; twisting to the left, yaw left.

Up -- Down 7-__
I aw

Left -- Right

Reverse -- Forward

i-u- Left -- Right

Translational
Hand Controller

Pitch
own -- Up

Roll
Left -- Right

Rotational
Hand Controller

Roll
Left-- Right

Pitch F
Down -- Up

Foot Controller

Figure 2.1 Illustration of Command Assignments to the Control
Devices.

The second and third configuration used the same two hand controllers, but also

included a two DOF, non-displacement-type, force-sensing foot controller. The second

configuration, referred to as the two DOF foot controller configuration, had pitch and roll

commands assigned to the foot controller. The foot controller was configured such that

when the operator pushed flat with his right foot, he would command a roll to the right;

17

with his left foot, a roll to the left. When the operator pushed with the ball of his foot, he

would command pitch down; with his heel, a pitch up. The translational and yaw

commands were assigned to the hand controllers in the same fashion as the traditional

configuration.

The third configuration, referred to as the one DOF foot controller configuration,

had only roll assigned to the foot controller in the same sense as above; the other degree of

freedom was not used. The translational, yaw and pitch commands were left unchanged

from the traditional configuration. The third configuration was added because early testing

suggested that the foot controller design was less suitable for pitch commands.

An ideal comparison of control division between just the hands and a combination

of the feet and hands, would have employed a foot controller which was also a three DOF,

displacement-type controller. However, it proved difficult to design such a controller, so

the foot controller was designed with only two degrees of freedom. The differences

between displacement control and force control are most noticeable at low frequency,

where force control phase lag is higher than displacement control[9 1. In general, force

control is preferable for high order systems where excessive delay is a problem[12].

2.2 Telerobot Simulation

The simulation of the space telerobot was developed for these experiments by Matt

Machlis while he was a graduate student in the MIT Laboratory for Space Teleoperations

and Robotics (LSTAR).

The simulation used an extremely simple dynamic model for the space telerobot and

it's environment. The robot was considered a rigid body moving with no damping or

resistance in a drag free, zero gravity space environment. The mass of the vehicle was

taken as 500 kg and the moments of inertia around each of the axes were 4000 kg-m 2.

18

Commands from the control station were exerted as forces on the vehicle with respect to the

vehicle coordinate frame as shown in Figure 2.2. The maximum commandable force was

100 N, which would result in a maximum translational acceleration of 0.2 m/s 2 ; and the

maximum commandable torque was 100 N-m, resulting in a maximum rotational

acceleration of 0.025 rad/s2 .

-Z -- Up

Yaw

Forward (Camera View)

Y -- Right

Figure 2.2 Command Assignment Directions with Respect to
Vehicle Coordinate Frame. Notice that the vehicle coordinate frame is
not a "right-hand" coordinate frame.

The simulation software polled the control station for commands every 0.1 seconds

and the equations of motion were integrated using the backward Euler method. The control

station and simulation software is listed in Appendix A. The dynamics calculation algorithm

can be found on page 91.

2.3 Tasks and Display

Two different tasks were selected for the experiments. The first task required the

operator to reorient the vehicle from an unusual attitude. For this task, motion was limited

19

to the three rotational DOF's; no translation was required. This task was selected to reduce

the division of attention between degrees of freedom, hence it concentrates the attention

sharing between the feet and hands. The results from this task were used to directly

compare foot control and manual control modes.

The second task required the operator to maintain the vehicle's position and attitude

in the presence of disturbances. These disturbances acted on the body in all six DOF's and

were uniformly distributed random forces and torques with an absolute maximum

magnitude of 25 N and 25 N-m, respectively. This task forces the operator to act like a

regulator and reject disturbances and challenges attention sharing more than in the

reorientation task.

For both tasks the display was the same. It was designed to attempt to provide the

operator with enough information to determine the translation and rotation of the vehicle.

The "space" in which the vehicle moved contained a grid wall with a wire frame cube in

front of it. Both the grid wall and the wire frame cube were fixed in the "space" and the

vehicle moved with respect to them. Refer to Figure 2.3 for an illustration of the display.

Notice the two diagonal lines which form an arrow indicating up on the front face of the

cube. This arrow was added to indicate the zero-roll orientation.

Since commands acted with respect to the moving vehicle coordinate frame, vehicle

reference marks in the form of corner markers were added to give the operator additional

information about how commands would affect the vehicle's motion. These reference

marks can be seen in Figure 2.3. Without the vehicle reference marks the pilot could have

encountered problems similar to those associated with high canopy cockpits where the pilot

loses sense of how the vehicle is oriented and moving with respect to the fixed world. Past

teleoperation research at SSL has shown vehicle reference marks to be useful in docking

tasks[10].

20

I

r -i
L R M

Vehicle Reference Marks

-CCF-
Figure 2.3 Three Dimensional
Vehicle Reference Marks.

Task Environment Display Including

A stereo display was selected because the 3-dimensional illusion provides better

depth cues to the operator than a flat 2-dimensional image. Stereo displays have been

observed to reduce docking time in a teleoperator docking task[10].

2.4 Subjects and Initial Evaluation

The eight test subjects were volunteers from LSTAR. All of the pilots were familiar

with at least the concept of teleoperating a vehicle. A few had limited experience flying an

actual or simulated telerobot. Before any experiments were performed the test subjects

were told that they would be flying the robot using three different control configurations.

21

Grid Wall

W
I I

F

L

Ire Frame Cube-

Each subject filled out a survey which recorded certain relevant skills such as driving,

flying and video game playing. The survey, which can be found in Appendix B, also

recorded the subjects' vision, any tendency for vertigo or confusion of left with right.

In order to assess the pilots' initial skill level and provide each with equivalent

training, they flew a series of evaluation flights before the experiment began. The

evaluation flights involved flying the simulated telerobot through the center of three

rectangles. The rectangles were arranged such that they each defined a vertical plane, and

the center of each rectangle was marked by a cross. The display for the evaluation flights is

illustrated in Figure 2.4. As the pilots flew the telerobot through each of the planes the

distance between the vehicle and the center of the rectangle associated with that plane was

recorded. The pilots flew the evaluation flight three times, once with each of the

configurations.The results of the evaluation flights were used to create an initial ranking of

the pilots.

2.5 Test Matrix and Parameters

Experiments using human test subjects must be carefully designed to prevent

excessive random error and systematic biases. Human vary from day to day, and they

learn and adapt easily. Furthermore, factors such as fatigue and emotion can affect their

performance. These experiments made use of two techniques, multiple trials and counter

balanced trials, to reduce the impact of random errors and systematic biases,

respectively[l].

The experiments were arranged so that each pilot flew a total of eighteen flights

distributed over three days, six on each day. Each set of six flights was called a run. The

three configurations were each used twice during a run, once for each of the two tasks

described above. The order of flights in a run was such that three flights were flown for

22

one task and then three flights for the other task. Half of the pilots flew the experiment in

an AB-BA-AB sequence (reorientation task = 'A', position hold task = 'B') and the other

half in a BA-AB-BA sequence to prevent experience from one task from influencing

performance in second task. For each task, the order of control device configurations

changed from run to run; within a run, the order of configurations was different for each

new task. For every task the pilots used the configurations in a 1-2-3, 2-3-1, or 3-1-2

order (no foot controller = '1', 2 DOF foot controller = '2', and 1 DOF foot controller =

'3'). Figure 2.5 shows how the task and configurations were assigned for each flight for

each pilot.

Vehic

Ideal Flight Path

_I
Vehicle

Start Position

Figure 2.4 Three Dimensional Environment Display Used to
Evaluate Pilot Skill. Pilots attempted to fly from the vehicle start position
through the center of each successive rectangle.

23

Run #1 Run #2 Run #3
Subject Flights 1 - 6 Flights 7-12 Flights 13-18

a A A A B B B B B B A A A A A A B B B
2 3 1 1 2 3 2 3 1 3 1 2 1 2 3 3 1 2

b B B B A A A A A A B B B B B B A A A
3 1 2 1 2 3 2 3 1 1 2 3 2 3 1 3 1 2

A A A B B B B B B A A A A A A B B B
3 1 2 2 3 1 3 1 2 1 2 3 2 3 1 1 2 3

d B B B A A A A A A B B B B B B A A A1 2 3 2 3 1 1 2 3 3 1 2 2 3 1 3 1 2

e A A A B B B B B B A A A A A A B B B
2 3 1 1 2 3 2 3 1 3 1 2 1 2 3 3 1 2

f B B B A A A A A A B B B B B B A A A
3 1 2 1 2 3 2 3 1 1 2 3 2 3 1 3 1 2

g A A A B B B B B B A A A A A A B B B
3 1 2 2 3 1 3 1 2 1 2 3 2 3 1 1 2 3

h B B B A A A A A A B B B B B B A A A
1 2 3 2 3 1 1 2 3 3 1 2 2 3 1 3 1 2

KEY: "A" = Reorientation Task, "B" = Position Hold Task
Number corresponds to Inital Condition or Random Number Seed

Figure 2.5 Test Matrix

As mentioned above in section 2.4, the evaluation flight was used to rank the pilots

by skill. These rankings were used to design the test matrix by matching each of the first

four pilots with the last four based on relative skill. Figure 2.5 was created by first listing

the test subjects in order of skill as determined in the evaluation flight. The three best pilots

and the three configurations were used to form six 3x3 Latin squares, one for each task for

each run. The fourth pilot repeated the pattern of the first pilot in the first run, the third

pilot in the second run, and the second pilot in the last run. The pattern for the four best

pilots was repeated for the four worst pilots. Creating matched sets in this fashion reduces

the degrees of freedom in the statistical analysis and enables the use of a smaller data set.

The matched sets were not used in the final data analysis because the validity of the

rankings was questioned.

The parameters changed for each flight, except the practice flights, so that learning

would not affect the pilots' performance. Within each run the same parameters were used

for each of the practice flights so that the difficulty of practices remained consistent for each

pilot. In the reorientation task the parameters were the initial roll, pitch and yaw angular

offsets, which are listed in Table 2.1. These initial angles were generated randomly using

dice and entered into the simulation input files. In order to make sure that the pilot could

initially see at least part of the grid wall, no dice roll was allowed that resulted in an angle

over 90 degrees, and any combination of angles that did not have the grid was in the field

of view was discarded.

In the position hold task the random disturbance was generated by a random

number generator based on a particular "seed" number. It is important to note that the same

seed always produced the same set of random numbers. For each run, four three-digit seed

numbers were selected with dice: one seed to be used repeatedly in the practice flights and

one seed each for the three experiment flights. There were a total of three practice seeds

and nine experiment seeds so that the pilots did not learn what to expect from the random

25

disturbances as time went on. Every pilot used the same seeds to make sure that each

experienced similar levels of task difficulty.

Ruw

1

2

3

Table 2.1: Initial Rotation Values for the

Reorientation Task

Parameter
n Number Roll [deg] Pitch [deg] Yaw [

P1 42.97 -24.64 42.
1 17.76 26.36 23.
2 -77.92 -29.79 71.
3 -77.35 -69.90 42.!

P2 -86.52 57.87 46.!
4 -67.04 -55.58 -20.
5 -1.15 -31.51 4.5
6 -22.92 -48.70 -10.

P3 3.44 58.44 41.
7 69.90 56.72 17.

8 -10.31 -63.03 24.4
9 -67.04 42.40 -81.

deg]
97
49
05
97

98
63
8
89

25
19
06
93

2.6 Experiment Procedure

For each of the evaluation flights, the practice flights, and the actual experiment

flights the test procedure went as follows:

1) The pilot was informed which task and configuration would be used.

2) The pilot put on the Eyephones helmet mounted display and was told to

"relax and get neutral" which meant to put his hands and feet on the

appropriate control devices and to relax so that the calibration reading in the

software would set the zero point at the pilot's relaxed neutral point.

26

3) The control station software was started.

4) The pilot was told to close his eyes and the simulation video output was

switched from the IRIS monitor to the Eyephones. This step was added to

prevent eye fatigue from the static and flashes associated with switching the

video

5) The simulation software was started and the pilot was told to open his eyes.

6) In the position hold task the disturbances were started by the experimenter

five seconds after the simulation began.

7) The simulation ended automatically in the reorientation task and was

terminated by the experimenter two minutes after the start of the

disturbances in the the position hold task.

In the actual experiment flights the pilot finished by removing the Eyephones and

filling out the pilot evaluation form shown in Appendix B.

27

Chapter 3. Implementation

A control station was built with the desired command interfaces and integrated with

a computer simulation of a telerobot to perform the experiments described in the previous

chapter. This chapter describes the computer simulation and display, as well as the

equipment, including the control station and the control devices. The control station and

simulation software can be found in Appendix A.

3.1 Virtual Environment Simulation and Display

The virtual environment simulation of the space telerobot, created by Matt Machlis

while he was a Graduate Research Assistant in LSTAR, was programmed in C to run on a

Silicon Graphics Personal IRIS Graphics Workstation. The simulation received the

commands from the control station, calculated the motion of the vehicle, and produced

updated stereo video images which were transmitted to the helmet mounted display. The

helmet mounted display used for the experiments was the VPL Eyephones system, which

consists of a video display inside a set of specially made goggles and a weight at the back

of the head to counter the weight of the display.

3.2 Control Devices

The control devices used in the experiment were two joysticks and a foot controller.

The joysticks were manufactured by P-Q Controls. The first joystick was a three DOF,

displacement-type, proportional hand controller with a push pull action, P-Q Controls

Model 220-19. The second joystick was a three DOF, displacement-type, proportional

hand controller with a twist action, P-Q Controls Model 220-21. Both joysticks were

purchased with the 30% voltage swing option, so that when supplied with ±8 volts DC

each degree of freedom would output between ±4.8 volts DC.

The foot controller was designed and built by Paul Stach while he was an

Undergraduate Research Assistant at LSTAR. The foot controller was a two degree of

freedom, force sensing, non-displacement-type controller. Force sensitive resistors,

manufactured by Interlink Electronics, sensed the force exerted by the operator's feet.

Preliminary evaluation revealed that the pilots would commonly exert maximum forces of

around 35 lbs. Circuitry was included to output a voltage proportional to the force exerted

by the operator. The circuitry was tuned such that when the foot controller was supplied

with ±15 Volts DC the output would range between ±5 volts for forces up to 35 lbs.

3.3 Control Station

The control station was comprised primarily of a micro-computer, the control

devices, and a helmet mounted video display. The interface between the control devices

and the micro-computer consisted of a custom I/O box and an analog to digital converter

(A/D) board mounted in one of the computer's bus slots. Communications to and from the

vehicle simulator were via the serial port on the computer. The system block diagram

shown in Figure 3.1 illustrates the relationship between the components. Each of these

29

components is described below, except for the control devices and the video display which

are treated separately above.

Video Simulation

Figure 3.1 Teleoperation Control Station System Block Diagram.
This figure illustrates the relationships between each of the control station
components including the human operator. The input from and the output to the
computer simulation are also noted.

The control station computer was a 20 MHz 80386 computer purchased from

Gateway 2000. The operating system was QNX Version 2.15E, a real-time, multi-tasking,

message-passing operating system produced by Quantum Software of Ottawa, Canada.

The A/D board was model PC-74, a sixteen channel, variable gain board, purchased from

Industrial Computer Source.

The I/O Box was custom designed and built for easy control station assembly and

modularity. The purpose of the I/O Box was to supply power to the control devices and to

connect the outputs of the control devices to the A/D board. Each of the control devices

30

was connected to the I/O box via DB-15 connectors. The I/O Box contained a ±15 volt DC

power supply which was regulated to ±8 Volt DC for the two hand controllers. The analog

voltage signals from the control devices were output by the box at a 50 pin DB to Ribbon

Cable connector. A 50 wire ribbon cable connected the I/O box to the A/D board.

The hand controllers were mounted on a wooden support such that when the

operator was holding them the operator's arms and shoulders were not raised in an

uncomfortable fashion and were extended evenly. The translational controller was

mounted horizontally on the left so that the push/pull action would be forward and back.

The rotational controller was mounted on a fifteen degree incline. The foot controller was

placed flat on the ground at the operators feet. Figure 3.2 shows the placement of the

control devices on the control station.

Translational
Hand

Controller Rotationalr

Foot Controller

Figure 3.2 Control Device Layout. This figure illustrates the
relative position of each of the control devices on the control station.

31

Chapter 4. Results and Analysis

The purpose of these experiments was to test the hypothesis that division of

attention between the hands and feet is better than between the hands alone. As described

in the preceding chapters this was accomplished by contrasting three different

configurations of control devices and command assignments. This chapter reports the

results of these experiments while evaluating and comparing the different configurations.

In the first section, sample flights and general observations are briefly described for each of

the tasks. The second section includes a description of the data reduction and statistical

analyses and presents the results of the evaluations. The pilot evaluation results are given

first, followed by the performance evaluation results. The evaluation results are

summarized at the end of the second section. The third section describes errors and

problems which may have affected the data.

4.1 General Observations

This section discusses the data recorded and describes the flights, including

example time histories of variables representing various motion and command degrees of

freedom. In both tasks these time histories reveal interesting information about how the

pilots commanded the vehicle and how unexpected problems affected the data.

During the experiments the following data was recorded for both tasks: time

histories of state values and commands and pilot evaluations. For the position hold task the

disturbance time histories were also recorded. Time of completion was also recorded for

the reorientation task.

The reorientation task was designed to provide the operator with a reasonably

simple, multi-degree-of-freedom task. Figure 4.1 shows time histories for each of the

three rotational degrees of freedom. The pitch overshoot in the flight shown is

characteristic of many of the flights where overshoot occurred frequently, independent of

pilot or configuration.

During the experiments it was observed that the pilots typically commanded one

degree of freedom at a time. Occasionally they would command pitch and yaw together,

but rarely combined roll with the other two degrees of freedom. Figure 4.1 shows

command time histories for the reorientation task for each of the degrees of freedom. In the

reorientation task the intervals of time in which one degree of freedom was being

commanded rarely overlapped; in the example shown they did not overlap at all. This style

of discretely controlling each degree of freedom meant that the pilots did not multi-task

between the degrees of freedom. As a result, the comparison of the configurations for the

reorientation task highlights the differences between the devices rather than the differences

in the attentional demands of the devices.

The position hold task was designed to force a great deal of attention sharing.

Figures 4.2.a and 4.2.b show the X, Y and Z position and roll, pitch and yaw angle time

histories. Figures 4.3.a and 4.3.b show the command time histories for each of the

degrees of freedom.

33

b10 20 30 40
Time [s]

Time [s]

Time [s]
Yaw Command

Am
11
I

10 20 30 40
Time [s]

Figure 4.1 Example Rotation Angle and Command Time Histories
for the Reorientation Task. The pilot was using the Traditional two-joystick
configuration. Notice the pitch overshoot at 50 seconds and how the pilot broke the
flight up into three segments: roll first, then yaw, and pitch last. Both of these
phenomena were typical for the reorientation task independent of pilot or
configuration. (run = 3, subject = "a", initial condition set = 7).

34

50 60 70

80 -

60-

40 -

20 -

0-

-20

100

50

0

-50

100
z

00

S-50

O

100 -

0

-50 -

50 60 70

_ I

- · 1 · ·

_ ·

Rotation Time History

- -- -.- - ROLL
S - PITCH

% • YAW

I -z- . "- -
i *\b...sr,

(5

I a

I I I
20 40 60

Time

I I
I I I

20 40 60 8
Time [s]

100

I I

80
[s]

100 120 140

I I
I I I I
0 100 120 140

Figure 4.2.a Example X, Y, and Z Position Time Histories for the
Position Hold Task. The pilot was using the Two DOF Foot Controller
configuration. The corresponding command time histories are shown in Figure
4.3.a. (run = 3, subject = "b", random seed parameter #8)

35

5-

4-

3-

2-

1-

0-

-1 -

-2 -
U

4-

3-

2-

1-

0-

-1 -

· · · · · ·

II I II

Time [s]

36

20

15

10

5

0

-5
-10

-15

-20

20

15

10

5

0
-5

-10

-15

-20

20
15

10
5

0
-5

-10

-15

-20

I I

20 40 60
Time

80
[s]

I I

100 120 140

Time [s]

Figure 4.2.b Example Roll, Pitch and Yaw Rotation Angle Time
Histories for the Position Hold Task. The pilot was using the Two DOF
Foot Controller configuration. The corresponding command time histories can be
found in Figure 4.3.b. (run = 3, subject = "b", random seed parameter #8)

Time [s]

- _

0 20 40 60 80
Time [s]

I I I I
20 40 60 80

Time [s]

100

50

0

-50

-100

100

100 120 140

Z Command

I I I
100 120 140

Figure 4.3.a Example X, Y, and Z Command Time Histories for the
Position Hold Task. The Pilot was using the Two DOF Foot Controller
configuration. The corresponding position time histories can be found in Figure
4.2.a.

37

0 20 40 60 80
Time [s]

60

20

-20

-60

100

100 -
60 -

20 -

-20 -

-60 -

-100 I I I I I

-L~

IL SI II
I

100 120 140

fl I

I ('vJ

Z 60

; 20
0-o

= -20
EE -60
-100

-100
0

Time [s]
if."'
100

Z 60

S20

-20

-60

-100

Time [s]

Figure 4.3.b Roll, Pitch and Yaw Command Time Histories for the
Position Hold Task. The pilot was using the Two DOF Foot Controller
configuration. See related Figures 4.2.a, 4.2.b, and 4.3.a.

38

IUU

50
0)

-1 0

-50

-100

39

4.2 Data Analysis

Data reduction included integrating the magnitude of the commands from time zero

to the end of the flight to create a total command effort for each DOF. The integration was

performed using the trapezoidal approximation method. The individual absolute command

efforts were added to create a total command effort for each flight. For the position hold

task, displacement errors were calculated at each time increment, where displacement error

was defined to be the sum of the squares of the displacements from the zero point in each

of the translational degrees of freedom. The displacement error was equivalent to the

magnitude of the vector pointing from the zero point to the vehicle. For both tasks

maximum, minimum, and average state values and commands were determined for each

flight. In addition maximum, minimum, and average displacement errors and disturbances

were determined for each of the position hold task flights.

This data reduction produced a set of numbers for each flight which were prepared

along with pilot pre-flight survey information for statistical analysis, which included

analysis of variance to investigate the relationships of the important variables to the

configurations and other parameters if necessary.

Analysis of variance was used to test the significance of the differences in the mean

pilot ranking and performance index values between each configuration. The result of

analysis of variance indicates the probability that the differences in the means is not due to

chance and is likely to be a function of the specified factor. In most engineering

applications a probability of 95% or greater is considered significant and a probability of

99% or greater is highly significant. For the purposes of the pilot and performance

evaluations discussed below, a probability of 90% or greater was classified as "almost"

significant, and was treated as significant for the purposes of contrasting the effects of one

configuration against another. The analysis of variance and contrasting of effects was

performed using SYSTAT 5.0 for the Macintosh.

4.3 Results

4.3.1 Pilot Evaluation

Evaluation of the different configurations was based partly on pilot evaluations of

the handling qualities. Pilot evaluations were obtained using a Cooper-Harper pilot rating

scale. The Cooper-Harper rating scale is commonly used in flight test evaluations of

aircraft handling qualities. It is a directed evaluation which rates the system from 1 to 10, 1

being the best rating and 10 being the worst. The pilot determines the rating by answering

a sequence of questions relating to the controllability and performance of the system. The

scale used in these experiments is shown in Figure 1.1. The pilot ratings were used to rank

the configurations for each task within each run. The best rating was assigned a ranking of

"1"; the next best, a "2"; and the worst, a "3"; in that order. When more than one

configuration had the same rating they were given the same ranking.

In both tasks the pilots preferred the traditional configuration over the two

configurations with the foot controller. The distributions of pilot ranking for each of the

configurations are shown in Figures 4.4 and 4.5 for the reorientation and position hold

tasks, respectively. In the reorientation task the no-foot-controller configuration had

significantly higher rankings than the other two, and there was no significant difference

reported between the one and two DOF foot controller configurations. In the position hold

task the two DOF foot controller was rated significantly worse than the other two, and there

was no significant difference between the traditional configuration and the one DOF foot

controller configuration.

40

Best Worst
Ranking

One DOF Foot Controller

Ranking
Worst

Two DOF Foot Controller

Ranking
Worst

Figure 4.4 Distribution of Pilot Rankings of Each Control Device
Configuration for the Reorientation Task. These rankings were determined
from pilot opinion ratings (ties were given the same ranking).

41

16
14

12

10

8

6
4

2

0

10 -

14 -

12 -

10 -
8-

6-
4-

2-

0-

16 -
14 -

12 -

10 -
8-

6-
4-

2-

0-

Best

Best

,ki~BI~B1~BiB~,

No Foot Controller

·Ir

-

No Foot Controller

Best Worst
Ranking

One DOF Foot Controller

4

Ranking
Worst

Two DOF Foot Controller

Ranking
Worst

Figure 4.5 Distribution of Pilot Rankings of Each Control Device
Configuration for the Position Hold Task. These rankings were
determined from pilot opinion ratings (ties were given the same ranking).

5

0

15 -

10 -

5-

0-

15 -

10 -

5-

0-

Best

Best

42

4

-4-
II

4.3.2 Performance Evaluation

Evaluation of the configurations was also based on performance parameters. For

both tasks performance was based on command effort and velocity. Additionally

performance was based on on displacement error in the position hold task and time of

completion in the reorientation task.

COMMAND EFFORT: For both tasks command effort was considered important

because it would represent fuel expenditure in a real world situation. In space activities fuel

mass is a critical cost driver. A configuration that resulted in a smaller command effort

would require less fuel and would therefore be a superior choice. It is assumed, also, that

if attention sharing were easier with the foot controller then the command efforts would be

smaller for a given task. This assumption is based on the fact that poor attention sharing

adds lag and therefore increases the tendency for overshoot and for unnecessary extra

compensation.

A good evaluation of handling qualities is obtained from the total command effort

because this measure reflects the overall performance. Total command effort is the sum of

the individual command efforts for each of the degrees of freedom and represents the total

fuel expenditure for the task. The command efforts for the reorientation task were smaller

than the command efforts for the position hold task.

The total command efforts for the reorientation task were not significantly different

for the three configurations. For the position hold task, the distribution of the total

command efforts for each of the configurations are shown in Figure 4.6. The mean values

for each are indicated to allow easy comparison. Statistical comparison of the total

command effort for each of the configurations reveals that there is a greater than 90%

chance that the difference is due to the configurations. By contrasting the individual

configurations, the two DOF foot controller configuration was found to be significantly

43

Better Worse g

No Foot Controller

7000 13000
Command Effort [N-s]

One DOF Foot Controller

IMean = 5315.5 1

7000
Command Effort [N-s]

13000
13000

Two DOF Foot Controller

I Mean = 6707.8 1

7000 13000

Command Effort [N-s]

Figure 4.6 Histogram of Integrated Command Magnitudes for Each
of the Control Device Configurations for the Position Hold Task.
Command Effort is an indication of fuel expenditure and workload.

IL

10

8

6

4

2

0
1000

I -
1z -

10 -

8-

6.

4-

2-

0-
1000

4-

2-

0-
1000

44

lr'•

I

worse than the no foot controller configuration, there was no significant difference between

the one DOF foot controller configuration and the traditional configuration.

By examining the results for pitch and roll command efforts, the differences

between the control devices and command assignments can be analyzed more carefully.

For both tasks, the roll command effort was not significantly different for any of the

configurations. This result indicates that fuel expenditure due to roll commands would be

approximately the same for each of the configurations.

In the reorientation task the differences between the pitch command efforts for each

of the configurations were not significant. In the position hold task both the no foot

controller configuration and the one DOF foot controller configuration had significantly

lower pitch command efforts than the two DOF foot controller configuration. Furthermore

there was no significant difference between the no foot controller configuration and the one

DOF foot controller configuration. This result indicates that fuel expenditure due to pitch

commands would be significantly worse for the two DOF foot controller configuration.

VELOCITY: Velocity was considered important for different reasons in each task.

Maximum absolute value of the velocity is important for the reorientation task because it is

an indication of the ease with which the pilot can command the vehicle. It is assumed that

confident and comfortable pilots would command more authoritatively and fly the vehicle

faster, a higher velocity would hence signify a better configuration. This assumption was

supported by the fact that the better pilots generally had shorter completion times in both the

preliminary evaluation task and the reorientation task. Alternatively, velocity can be

considered an indicator of the bandwidth of the closed loop, man-vehicle system: again,

the higher the velocity, the higher the bandwidth, and possibly, the better the configuration.

Conversely, in the position hold task, a large velocity is an indication of the lack of control

the pilot exhibited during the flight; since the object or goal of the task was to remain

45

stationary; the faster the vehicle was moving, the less success the pilot was having. In this

task a lower velocity would denote a better configuration.

Maximum overall velocity was defined as the fastest the vehicle was moving in the

direction of any of the principal axes of the fixed reference frame, or the fastest it was

rotating around any of the Euler axes, whichever was greater.

Statistical analysis of the maximum overall velocity for the reorientation task did not

indicate any significant difference between the three configurations. Figure 4.7 shows the

distribution of the maximum overall velocities for each of the configurations in the position

hold task. Analysis of variance of the data revealed a probability of greater than 90% that

the differences between the mean overall velocities for each of the configurations were

likely to have been due to the configurations. Contrasting each of the configurations

suggested that there was no significant difference between the traditional configuration and

the configuration with a one DOF foot controller. When these two controllers were

contrasted with the two DOF foot controller configuration the analysis indicated that the

two DOF foot controller configuration was significantly worse than the other two.

By looking at the results for pitch and roll velocities the effects of the differences of

the configurations can be seen more directly.

Statistical analysis of the maximum roll velocities for both tasks did not indicate any

significant difference between the three configurations. Statistical analysis of the maximum

pitch velocity data for the reorientation task produced results very similar to the overall

velocity results for the position hold task. Figure 4.8 shows the distributions of the

maximum pitch velocities for the reorientation task. The probability that the differences in

the means were due to the configurations is not quite 95%. However, contrasting the

configurations revealed that the configuration with the two DOF foot controller was

significantly worse than the configuration with no foot controller. Also there was no

46

Worse .

No Foot Controller

Mean 4 .27

Velocity [m/s]

One DOF Foot Controller

Mean = 4.31

8 10
I I I

4 6
Velocity [m-/s]

Two DOF Foot Controller

Mean = 5.62

4 6 8
Velocity [m/s]

Figure 4.7 Histogram of Maximum Single Degree of Freedom
Velocity Magnitudes for Each of the Control Device Configurations
for the Position Hold Task. High Maximum Velocity is an indication of poor
task performance.

47

8

6-

4-

2-

8-

6-

4-

2-

0- I I

- -

-- Better

i

Better Mo

Controller

Mean = 3.65

2
Pitch

0-

Pitch

-

i

4 6 8 10
Velocity [deg/s]

One DOF Foot Controller

Mean = 2.81

4 6 8 10
Velocity [deg/s]

Two DOF Foot Controller

.Mean = 2.211

-4---
4 ~ ~ 6gib

Pitch Velocity [deg/s]
Figure 4.8 Histogram of Maximum Pitch Velocity Magnitudes for
Each Control Device Configuration for the Reorientation Task. High
velocity is assumed to correspond to good pilot comfort and confidence.

48

-7

6

5

4

3

2

1

0

7-

6-

5-

4-

3-

2-

0-

5-

3-

2-

1-

0-

- Worse

v

1

m I i ----]

i

significant difference between the one DOF foot controller configuration and the others.

This result indicates that the pilots tended to pitch more slowly with the two DOF foot

controller configuration.

The maximum pitch velocity data for the position hold task is shown in Figure 4.9.

There is a probability of over 99% that the differences in the means was due to the

configurations. This is a highly significant result. Further comparison of the

configurations showed that the one DOF foot controller configuration was significantly

better than the two DOF foot controller configuration, and that there was no significant

difference between the one DOF foot controller configuration and the traditional

configuration. This result indicates that the pilots were less successful with the two DOF

foot controller configuration.

DISPLACEMENT ERROR: In the position hold task displacement error was

another indicator of the pilots' success at maintaining the vehicle's position in the presence

of disturbances. A smaller displacement error would suggest a better configuration.

Figure 4.10 shows the distributions of the maximum displacement errors for each of the

control device configurations. Statistical comparison of displacement errors revealed that

there was only approximately a 90% probability that the difference wasn't due to chance.

Contrasting the different configurations indicated that there was no significant difference

between the no foot controller configuration and the one DOF foot controller configuration.

COMPLETION TIME: It was originally thought that completion time would be an

indication of the ease and confidence with which the pilot had commanded the vehicle in the

reorientation task. While many factors may have contributed to the pilot's ease and

confidence, completion time turned out to be more of an indication of the pilot's skill and

style than an evaluation of the configurations. The talented pilots generally had shorter

49

Worse D-

er

~1

Pitch Velocity [deg/s]

Foot Controller
Mean =2.93

4 6
Pitch Velocity [deg/s]

8 10

Two DOF Foot Controller

Mean = 4.82

Pitch Velocity [deg/s]
10

Figure 4.9 Histogram of Maximum Pitch Velocity Magnitudes for
Each Control Device Configuration for the Reorientation Task. High
velocity corresponds to poor task performance.

50

6-

6-

4-

2-

0-

8-

6-

4-

2-

.4- Better

t'l

i I

/

*•- Better

6-

4-

3-

2-

0-

5-

4-

3-

2-

6-

5-

4-

3-

2-

1

Worse 0--

No Foot Controller
U--

12 18 24
Position Error [m]

_!

30

Foot Controller
Mean = 11.75

Iee17 I

6 12 18
Position Error [m]

Two DOF Foot Controller
Mean = 17.82

0 12 18 24 30
Position Error [m]

Figure 4.10 Histogram of Maximum Displacement Errors for Each
Control Device Configuration for the Position Hold Task. High
Displacement Error is an indication of poor task performance.

51

1

f

0t'-"-" m

completion times, and the less adept pilots had longer completion times, regardless of

configuration.

4.3.3 Summary

A survey of the data analysis reveals patterns associated with each of the tasks. For

the reorientation task pilots preferred the traditional configuration, but the performance

evaluation did not show any significant difference between the configurations, except in the

case of pitch velocity.

The pilot evaluation result for the reorientation task suggests that the workload for

the configurations with the foot controller was higher than that for the traditional

configuration. Since the pilots typically broke the flight up into three segments, one for

each of the degrees of freedom, it is not likely that high attentional demands was the source

of the high workload.

Since the reorientation task showcases the differences in the rotational command

assignments the performance evaluation result suggests two things: 1) that the differences

in the individual devices did not contribute significantly to the command effort, and 2) that

the pilots ability to command with his feet was not significantly different than his ability to

command with his hands, except in the case of pitch commands. It is important to note that

neither the differences in the control devices nor the pilots' ability to command are the same

as the attention sharing characteristics of the configurations.

The position hold task results can be used to compare the attention sharing

characteristics of each of the configurations because the task is very demanding and

requires the pilot to command all six degrees of freedom. None of the evaluation

parameters indicate any significant difference between the traditional configuration and the

52

one DOF foot controller configuration; and all of the evaluation parameters argue that the

two DOF foot controller configuration is undesirable.

In general the results indicate that the foot controller configurations were not

superior to the traditional configuration, and that the pilots especially had difficulty with

pitch commands when assigned to the foot controller. For the position hold task the

traditional configuration and the one DOF foot controller configuration produced similar

results and it seems likely that with an improved foot controller the hypothesis would be

supported. The next section discusses sources of error which probably contributed to the

poor performance of the foot controller configurations.

4.4 Error Analysis

There were four primary sources of error: spurious commands, problems with the

foot controller, problems with the display, and other equipment related problems. All of

these error sources would have tended to bias the data against the foot controller

configurations or have equal effect on all three of the configurations.

SPURIOUS COMMANDS: Examination of the data showed that in over 50% of

the flights there were spurious commands lasting for one time increment that were too large

to have been generated by the operator. The magnitude of the commands was always

approximately 300% of the normal maximum commandable force or torque and they did

not occur at any regular interval. Figure 4.11 illustrates example of spurious commands

affecting the time histories for the reorientation task. These spurious commands would

have resulted in a higher total command effort and would have increased the velocities

slightly, which would be especially noticeable in the reorientation task. However, the

spurious commands occurred in flights using all three configurations so the net result in the

comparison would not have been apparent.

53

IVU

50
-o

-! 0

-50

-100
0 45 90 135 180

, 00 Time [s]

60

20
o

-e -20

3 -60

Q -100

100

602o
g -20

• -60

-100

0

0 45 90 135 180
_. Time [s]

It-nj

S60

20
-20

E -60

r. -lOO
0 45 90 135 180

Time [s]

Figure 4.11 Illustration of Overshoot, Spurious Commands, and
Reverse Commanding in the Reorientation Task. The pilot was using the
One DOF Foot Controller configuration. Notice the significant effect the spurious
yaw command has on the yaw angle. (run = 2, subject = "b", initial condition set =
5)

54

10f'

55

The source of this problem was found to be a serial communications protocol

setting that caused the serial port drivers on the control station computer to expand DEL

(ASCII 127) to backspace-space-backspace (ASCII 8-32-8). As a result the commands

read by the simulation software were incorrect. Occasionally this problem affected the

commands in more than one degree of freedom at a time.

Because the spurious commands typically lasted for only one time increment, their

effect on the vehicle's motion remained small as long as they did not occur frequently. In

the reorientation task, the flights which had spurious commands occurring more than three

times were not used in the data analysis. In the position hold task spurious commands

were not considered as much of a problem because they were, for the most part,

indistinguishable from the random disturbance forces. Although, they required additional

reaction from the pilots, the spurious commands were averaged out of the position hold

flights before the data was reduced because their magnitude was high compared to the

disturbance forces.

FOOT CONTROLLER PROBLEMS: During the experiments the test subjects

expressed two concerns about the foot controller, one of which affected the commands.

The most common complaint was that it was difficult to sense how much command was

being applied. The primary effect that this problem had on the flights was that the pilots

occasionally over compensated in response to undesired motion; they would think the foot

controller wasn't working until the vehicle's acceleration or deceleration was large. This

over compensation in turn contributed to the occurrence of overshoot. The sample flights

shown in Figure 4.1 and 4.11 include instances of overshoot. The over compensation

problem was further exacerbated by the fact that in some attitudes acceleration and

deceleration were difficult to detect. The implications of overcompensation in the data

analysis are that pitch and roll command efforts and displacement errors could be expected

to be larger for the configurations which use the foot controller. It's possible that the two

DOF foot controller configuration is not significantly worse than the traditional

configuration and that the one DOF foot controller configuration is actually better.

The second problem with the foot controller related to pilot discomfort and only

occurred with the test subjects who had small feet. The placement of the force sensors in

the foot controller made it easier for people with medium-size or large feet to use the foot

controller effectively. Observations of the pilots with small feet showed that they

compensated for the problem by moving their feet around on the foot controller. One pilot

used the balls of her feet for both positive and negative pitch by sliding her feet back and

forth as needed. Pilot discomfort associated with the foot controller would have

contributed most significantly to the workload. It is also very likely that pilot prejudices

affected the pilot ratings. Most pilots expressed dissatisfaction with a control device

configuration at one time or another.

DISPLAY PROBLEMS: Another problem that affected the commands was

associated with the display. The pilots frequently seemed to experience the common visual

illusion that the display was moving and the vehicle was fixed. As a result they would

affect commands as if to move the grid wall and cube, rather than move the vehicle with

respect to the grid wall and cube. For example, the pilots would react to a left roll motion

(the grid wall and cube rolling to the right) by commanding the vehicle further to the left,

thinking that they were moving the grid wall and cube to the left. The pilots usually

realized their mistake quickly, but that did not prevent it from occurring again. The impact

of this problem was that the pilots would have to then correct for their mistake and

therefore would increase the command effort. In the position hold task, reverse

commanding may have resulted in increased displacement error as well as command effort.

Reverse commanding effects can be seen in Figure 4.11.

56

Over commanding due to foot controller problems may have also increased the

velocities in pitch and roll making the one and two DOF foot controller configuration seem

worse than they really are. So it is quite possible that the one DOF foot controller

configuration is actually superior to the traditional configuration and that the two DOF foot

controller configuration is only slightly worse.

Although the display was designed to provide motion cues in all six degrees of

freedom, the pilots had some difficulty detecting motion in certain attitudes. Pilots would

frequently mistake a sideways translation for a yaw motion. Also, as in the reorientation

task, when the pilots were not facing the grid wall dead on, the relationship between the

rotational commands and the vehicle's rotation with respect to the grid wall presented the

operator with some problem.

It was also observed that the pilots got disoriented easily, especially when

commanding more than one degree of freedom at a time. This disorientation was caused

most likely by the complexity of the transformation between the commands in the vehicle

coordinate frame and the vehicle's motion in the fixed reference frame. In the case of one

pilot the resolution of the display interfered with flying slowly. Disorientation and motion

detection difficulties were not a function of the configurations, however may have

increased pilot noise and increased the ambiguity of the results.

GENERAL EQUIPMENT PROBLEMS: It was observed that the control station

configuration worked quite well for the pilots whose height was in the range of about 5'6"

to 6'. The pilots who were shorter than 5'6" could only reach the foot controller if they sat

toward the edge of the chair. The pilots who were taller than 6' would sometimes bang

their knees on the underside of the hand controller mounting. The pilots seemed to adjust

as needed and this problem is not thought to have any significant effect on the results. In

general, pilot discomfort would increase pilot stress and workload and could in turn affect

57

the pilot's rating of the flight. At worst the discomfort or awkwardness may have slightly

lowered the pilot evaluations of the configurations which used the foot controller.

Another problem relating to discomfort was associated with the helmet mounted

display. The helmet's counter-weight at the back of the operator's head pulled the top of

the goggles into the operator's forehead. This problem was lessened by carefully adjusting

the helmet for each pilot and by giving the pilots ample time to position the helmet

comfortably before every flight. Since this problem did not relate specifically to any of the

control device configurations, it was not expected to be significant.

Another problem with the control station was that the hand controller mounting and

the controller cart were not completely secure. Occasionally, when the operator would

exert substantial force on the hand controllers, the mounting would tip or the controller cart

would move. The motion was small, however, and did not seem to interfere with the

pilots' ability to fly the simulation.

The only effect of any software problems was procedural. The software had been

set up so that the program did not have to be restarted for each flight; it could simply be

reset. However, in the position hold task, not all of the variables were reset properly so the

experiment procedure was adjusted slightly to allow stopping and restarting of the program

before each flight. This problem did not have any significant effect on the results.

_ _

58

Chapter 5. Conclusion

5.1 Summary of Results

The results of these experiments did not conclusively support the hypothesis that

attention sharing between the hands and feet is superior to attention sharing between the

hands alone. It is important to note, however, that the results did not overwhelmingly

dispute the hypothesis either and there were considerable factors that may have increased

the ambiguity of the data. Furthermore, interpretation of the attention sharing

characteristics of the configurations revealed some interesting trends and patterns which did

illuminate the configurations' impact on the handling qualities of the vehicle.

1) The attention sharing characteristics of the traditional configuration and the

configuration with roll assigned to the foot controller were not found to be significantly

different, and it is possible that an improved experiment would reveal that the one DOF foot

controller configuration was actually superior to the traditional configuration. Suggestions

for improving the experiment are discussed in the next section.

2) The ability of the pilots to manipulate the various command devices did not

appear to make any significant difference in the handling qualities of the vehicles, except in

the case of the foot operated pitch command.

3) The foot controller design was not well suited for pitch commands. When pitch

command was assigned to the foot controller the handling qualities of the vehicle were

compromised.

5.2 Recommendations for Future Work

The recommendations for future work, described in this section, are divided into

two categories. The first category addresses the problems encountered during these

experiments and makes recommendations for improvements. The second category

suggests additional experiments or investigations which were inspired by observations

made during these experiments.

Most of the problems with these experiments were associated with the foot

controller design and may have biased the data in favor of the traditional configuration.

Because the pilots expressed difficulty in determining how much force they were applying

with the foot controller and because they did not have this problem with the hand

controllers, the pilots may have developed preferences for the hand controllers. These

preferences would not have been related to the attention sharing characteristics of the

configurations and would have influenced both the pilot evaluation and the performance

evaluation of the configurations.

This problem could be solved by including in the display an indication of the

amount of force being applied to the foot controller. A simple analog display, similar to a

light meter needle in a camera, could be placed alongside one edge of the image. The

information could also be presented to the pilot via an audio signal, where, for example, the

pitch of a steady tone changed as the force changed. An alternative to adding a display

would be to change the foot controller to a displacement-type controller. Making both the

hand and foot controllers displacement type would allow a more direct comparison of

60

manual control and foot control. Matching the controller types would reduce any

interaction between the type of controller and the performance variables which was not

related to the attention sharing characteristics.

Because the foot controller had only two degrees of freedom, the configurations

which used the foot controller also required the pilot to use both hands. A better

comparison of hand-feet and hand-hand attention sharing could be made with a three DOF

foot controller. The foot controller configurations demanded three-way attention sharing

whereas the traditional configuration only required two-way, and this problem may have

biased the results against the foot controller configurations. Any attempt to solve this

problem should be carefully considered to address the ramifications of some of the

difficulties associated with designing a three DOF foot controller. These difficulties were

discussed in Section 2.1.

Other problems were a result of the experiment design and may have contributed to

the ambiguity of the results. These experimental design problems involved both the task

design and the display design. The reorientation task did not provide for a balanced

comparison of the command assignments. The addition of a fourth configuration which

had pitch only assigned to the foot controller would allow a better understanding of how

the foot controller and the command assignments contribute to the evaluations.

The hold position task was good for forcing the pilot to divide his attention between

the degrees of freedom, but it was very demanding, and the associated high workload may

have reduced the variance of the pilot evaluation into a tight range. It would be interesting

to simplify the task by reducing the total number of degrees of freedom. A total of two or

four degrees of freedom evenly divided between translation and rotation would reduce the

pilot workload and might better highlight the attention sharing characteristics of the control

device configurations.

The problem of reverse commanding was frequently encountered during both tasks

and with all configurations. It would be interesting to experiment with reversing the

direction of the commands assigned to the foot controller. This would make the control-

display relationship compatible rather than the control-vehicle relationship. Also, since the

balancing forces a person typically applies with the feet and legs are reaction forces a

reverse command configuration would probably be more intuitive.

The remaining recommendations for future work fall under the second category of

suggested experiments. Since the pilots typically commanded the vehicle with large

discrete commands it would be interesting to investigate whether or not bang-bang (on-off)

control would work well for teleoperation. Bang-bang control could be implemented easily

with a foot controller by making each degree of freedom behave like an on-off-on switch.

The foot controller could be modified to snap into each of the positions to make it clear to

the operator that the command had been affected.

Another interesting investigation of the handling qualities of a telerobot could be

made by varying display designs. Certain displays would make it easier to determine the

motion of the vehicle. Also, an instrument panel could be added to the display to indicate

velocity which would reduce the amount of lead equalization required by the operator.

Improving the display would also reduce pilot induced noise due to disorientation.

62

References

[1] Chapanis, Alphonse, Research Techniques in Human Engineering, The Johns

Hopkins Press, Baltimore, 1959

[2] Chapanis, Alphonse and R.G. Kinkade, "Design of Controls", Human Engineering

Guide to Equipment Design, Van Cott and Kinkade, editors, 1972

[3] Cooper, George E. and R.P. Harper, "The Use of Pilot Rating in the Evaluation of

Aircraft Handling Qualities", NASA TN D-5153, 1969

[4] Fogel, Lawrence J., Biotechnology: Concepts and Applications, Prentice-Hall,

Englewood Cliffs, 1963

[5] Frost, George, "Man-Machine Dynamics", Human Engineering Guide to Equipment

Design, Van Cott and Kinkade, editors, 1972

[6] McDonnell, John D., "Pilot Rating Techniques for the Estimation and Evaluation of

Handling Qualities", AFFDL-TR-68-76, 1968

[7] McRuer, Duane and D.K. Schmidt, "Pilot-Vehicle Analysis of Multi-Axis Tasks",

AIAA Paper No. 87-2538-CP, 1987

[8] McRuer, Duane, et al., "Minimum Flying Qualities Volume II: Pilot Modelling for

Flying Qualities Applications", Technical Report No. 1235-1 Preliminary Version,
Systems Technology, Inc., Hawthorne, CA, 1989

[9] McRuer, Duane and R.E. Magdaleno, "Human Pilot Dynamics with Various

Manipulators", AFFDL-TR-66-138, 1966

[10] Rowley, Vicky M., Effects of Stereovision and Graphics Overlay on a Teleoperator

Docking Task, Masters Thesis, MIT, 1989

[11] Woodson, Wesley E., and D.W. Conover, Human Engineering Guide for

Equipment Designers, 2nd Ed.,University of California Press, Berkeley, 1964

[12] Young, Laurence R., "Human Control Capabilities", Bioastronautics Data Book,

NASA SP-3006, Parker and West, editors, 1973

63

Appendix A.

Control Station and Simulation Software

Al. Control Station Software

iriscom.c
Anna G. Cinniger
8/13/90
A preliminary program to communicate with the iris

#include <stdio.h>
#include <dev.h>
#include "iris.h"

#define
#define
#define

main()

RED
CYAN
GREEN

0x8440
0x8340
0x8240

char monitor;

screeninit();

*/
comminitO;
*/

/* Prepare screen for display

/* Get serial port ready

term_printf(9,3,CYAN,"Run IRIS graphics program");

hc_readO; Read Rotational handcontroller
*/

65

/* iris funcs.c */
/* Anna G. Cinniger */
/* 8/15/90 */
/* Functions for use with iriscom.c */
*******************include <stdio.h*************************************

#include <stdio.h>
#include <dev.h>
#include <math.h>
#include "newreg74.h"
#define data_74
#include "newpc74.h"
#include "iris.h"

#define RED 0x8440
#define CYAN 0x8340
#define GREEN 0x8240
#define BRIGHT 0x2
#define x_chan 5
#define y_chan 3
#define z_chan 4
#define rchan 0
#define p_chan 1
#define yaw_chan 2

#define TRUE 1

static FILE *serial_r;
static FILE *serialw;
extern int Error_status;

/* screen_init() is a function to set up the computer screen */
/* displaying information */

void screen inito

int e_attr, cattr, s_attr, d_attr;
int shadow, blank;

set_option(stdout,get_option(stdout) & -(EDITIECHO));

if (termload(stdout))
{

term_clear(0);
term_boxfill(0,0,80,25,(0x80 1 7) << 8,0,0xdb);
e_attr=- (4 1 0x80) << 8 10;
c_attr = (0x80 1 2) << 8;
s_attr = (0x80 1 5) << 8;
d_attr = (0x80 I 1) << 8;
blank = 0x80 << 8;
shadow = 0x80 << 8 1 0x2;

66

/* Status Box */

/* Data Box */

/* Error Box */

/* Command Box */

/~~~~1* ***

comm_init(is a function to open the device (serial port)
and set the stty parameters

void comminit()
{

struct stty_entry
char mtype;
char stty_devno;
char stty_type;
unsigned stty_baud;
char stty_parity;
char stty_stop_bits;
char sttydatabits;

}buf;

serial_r = fopen("$mdm","r");
serial_w = fopen("$mdm","w");

if (!serial_r II !serial_w)

term_printf(3,42,RED,"serial file(s) could not be opened");
exit(-1);

set_option(serial_r,get_option(serial_r) & -(EDITIECHOIETABIERS));
set_option(serial_w,get_option(serial_w) & -(EDITIECHOIETABIERS));

if (tty_getstty(serial_r, &buf))
{

term_printf(3,42,RED,"serial port parameters not got");
exit(- 1);

buf.stty_baud = 19200;

67

term_box_fill(2,2,37,4,shadow,0,Oxdb);
term_box_fill(1,1 ,36,4,blank, 1,Oxdb);
term_box(1,1 ,36,4,s_attr,0,0xdb);

term_box_fill(8,2,37,16,shadow,0,0xdb);
term_box fill(7,1,36,16,blank, 1,0xdb);
term_box(7,1,36,16,dattr,0,0xdb);

term_boxfill(2,41,38,6,shadow,0,0xdb);
term_box_fill(1,40,37,6,blank, 1,Oxdb);
term_box(1,40,37,6,e_attr,0,0xdb);

term_box_fill(10,41,38,14,shadow,0,0xdb);
term_box_fill(9,40,37,14,blank, 1,Oxdb);
term_box(9,40,37,14,c_attr,0,0xdb);

buf.stty_parity = 0;
buf.stty_stop_bits = 1;
buf.stty_data_bits = 8;
if ((ttyset_stty(serialr,&buf)) II (tty_set_stty(serial_w,&buf)))

term_printf(3,42,RED,"serial port parameters not set");
exit(- 1);

********* *********** ***** **************** ******

console_init is a function to prepare the monitor screen
for display

void console_init(monitor)
char monitor;
{

1* ********** **
s_write is a function to write data to the serial port

void s_write(x,y,z,roll,pitch,yaw)
unsigned char x[2], y[2], z[2];
unsigned char roll[2], pitch[2], yaw[2];

f
fput(&x[0], 1, serialw);
fput(&x[1], 1, serial_w);
term_printf(12,60, GREEN,"%3d
fput(&y[0], 1, serial_w);
fput(&y[1], 1, serialw);
term_printf(13,60, GREEN,"%3d
fput(&z[0], 1, serial_w);
fput(&z[1], 1, serial_w);
term_printf(14,60, GREEN,"%3d
fput(&roll[0], 1, serial_w);
fput(&roll[1], 1, serial_w);
termprintf(15,60, GREEN,"%3d
fput(&pitch[0], 1, serial_w);
fput(&pitch[1], 1, serial_w);
term_printf(16,60,GREEN,"%3d
fput(&yaw[0], 1, serial_w);
fput(&yaw[1], 1, serial_w);
term_printf(17,60,GREEN,"%3d
fflush(serialw);

%3d ", (int) x[O], (int) x[1]);

%3d ", (int) y[O], (int) y[1]);

%3d ", (int) z[0], (int) z[1]);

%3d ", (int) roll[0], (int) roll[1]);

%3d ",(int) pitch[0], (int) pitch[1]);

%3d ",(int) yaw[0], (int) yaw[1]);

1** ** ** *** ** ** ** ** ** ** *** ** ** ** ** ** ** *** ** ** **

68

hc_read() is a function to read the hand controller input
from the a2d board

void hc_ readO

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
int
int
int
int
float

base_74 = 0x300;

k=O;

inito;
clk_md(0);
ad_clock(0x08);

roll[2], pitch[2], yaw[2];
x[2], y[2], z[2];
r_offset[2], p_offset[2], yaw_offset[2];
x_offset[2], y_offset[2], z_offset[2];
c= '
i,k,n,1;
xc, yc, zc, rollc, pitchc, yawc;
r_offsetc, p_offsetc, yaw_offsetc;
x_offsetc, y_offsetc, z_offsetc;
xcom, ycom, zcom, rollcom, pitcom, yawcom;

/* Single conversion upon ctrlstat load */
/* Clock circuit operating freqency = 60KHz */

i_adin(x_chan, x_offset);
i_ad_in(y_chan, y_offset);
i_adjin(zchan, zoffset);
i_adin(r_chan, r_offset);
i_adin(p_chan, p_offset);
i_adjin(yaw_chan, yaw_offset);

x_offsetc= (((int) x_offset[0]) << 8) I ((int) xoffset[1]);
y_offsetc= (((int) y_offset[0]) << 8) I ((int) y_offset[1]);
z_offsetc= (((int) z_offset[0]) << 8) 1 ((int) z_offset[1]);
r_offsetc= (((int) r_offset[0]) << 8) 1 ((int) r_offset[1]);
p_offsetc= (((int) p_offset[O]) << 8) 1 ((int) p_offset[1]);
yaw_offsetc= (((int) yaw_offset[O]) << 8) 1 ((int) yaw_offset[1]);

term_printf(10,41,GREEN I BRIGHT,"
term_printf(12,43,GREEN,"X: ");
termprintf(13,43,GREEN,"Y: ");
termprintf(14,43,GREEN,"Z: ");
termprintf(15,43,GREEN,"ROLL: ");
term_printf(l 16,43,GREEN,"PITCH: ");
term_printf(17,43,GREEN,"YAW: ");

COMMANDS");

k= 1;

while (i > -1)

1=1;

while (c != '-' && c != '!')
{

_____ _

69

term_printf(3,42,RED,"Waiting for IRIS");
term_printf(4,42,RED,"%d",1++);
c=getc(serial_r);
termprintf(4,45,RED,"%c %d",c, (int) c);

if (c == '!')
s_write(x_offset,yoffset,zoffset,r_offset,p_offset,yawoffset);
else if (c == '-')
{

iad in(x_chan, x);
iadin(y_chan, y);
iadin(z_chan, z);
iadin(r_chan, roll);
i_ad_in(p_chan, pitch);
iLadin(yaw_chan, yaw);

s_write(x,y,z,roll,pitch,yaw);

C=' ';

xc= (((int) x[0]) << 8) 1 ((int) x[1]);
yc= (((int) y[0]) << 8) I ((int) y[l]);
zc= (((int) z[0]) << 8) I ((int) z[1]);
rollc= (((int) roll[0]) << 8) I ((int) roll[l]);
pitchc= (((int) pitch[0]) << 8) I1 ((int) pitch[1]);
yawc= (((int) yaw[0]) << 8) I ((int) yaw[1]);

if (fabs(xcom=(xc-x_offsetc)*5.0/2048) < 0.2)
xcom = 0;

if (fabs(ycom = (yc-y_offsetc)*5.0/2048) < 0.3)
ycom = 0;

if (fabs(zcom = (zc-zoffsetc)*5.0/2048) < 0.2)
zcom = 0;

if (fabs(rollcom=(rollc-r_offsetc)*5.0/2048) < 0.2)
rollcom = 0;

if (fabs(pitcom = (pitchc-p_offsetc)*5.0/2048) < 0.3)
pitcom = 0;

if (fabs(yawcom = (yawc-yaw_offsetc)*5.0/2048) < 0.15)
yawcom = 0;

term_printf(12, 50, GREEN,"%5.2f", xcom);
term_printf(13, 50, GREEN,"%5.2f', ycom);
term_printf(14, 50, GREEN,"%5.2f', zcom);
term_printf(15, 50, GREEN,"%5.2f", rollcom);
term_printf(16, 50, GREEN,"%5.2f", pitcom);
term_printf(17, 50, GREEN,"%5.2f', yawcom);

term_printf(2,42,RED,"Did loop %d times",k++);
}
term printf(18,3,CYAN, "Closing files");
fclose("serial_r");
fclose("serialw"); }

70

void clean()

71

/* File: pc74s.c
Copyright (C) 1988 A.D. McGuffog

Module description:

This module provides simple I/O functions, which are not language
dependant. These are the following :

Initialization functions.
Clock functions.
Digital 1/O functions.
Simple polled I/O A/D input functions.

This module can be compiled by almost all C compilers, and is
suitable for use on UNIX/XENIX systems.

Modifications: by Anna G. Cinniger
7/26/90 Changed variable names

Re-wrote Clean() and inserted in Init()

8/22/90 Added i_ad_in for iris programs

#include <stdio.h>
#include "newreg74.h"
#include "newpc74.h"

void rtc_offO
{

imr_bits imrd;

imrd.by = io_in(int_mr);
imrd.bi.irq0 = masked;
io_out(int_mr, imr_d.by);

I

void rtc_onO
{

imr_bits imrd;

imr_d.by = io_in(int_mr);
imr _d.bi.irq0 = enabled;
io_out(int_mr, imr_d.by);

I

ctrlstat_bits ctrlstat_d;
gainchan_bits gainchand;
register int i;

/* First we disable everything. */

/* ctrlstat_d.bi.mode = 0;
ctrlstat_d.bi.i_en = 0;
ctrlstat_d.bi.d_en = 0;
ctrlstatd.bi.clr_err = 1;

*/

ctrlstatd.by = Ox 10; /* Does the same thing as above */

io_out(ctrlstat, ctrlstat_d.by);

io_in(A2Dlow);
io_in(A2Dhigh);

w_busy;

/* Then we clear the A/D done bit. */

/* Wait for any current conversion to end. */

/* Now wait either for 100 uS or for done.
for (i = 0; ((i < 20) && (!(io_in(ctrlstat) & 0x80))); i++);

*/

io_in(A2Dlow);
io_in(A2Dhigh);

io_out(ctrlstat, ctrlstatd.by);

/* Then we clear the A/D done bit. */

/* and clear any error bits. */

void init()

ctrlstat_bits
gainchan_bits
register int

ctrlstat_d;
gainchan_d;

ctrlstat_d.by = Ox 10;
io_out(ctrlstat, ctrlstat_d.by);
ioin(A2Dlow);
io_in(A2Dhigh);
w_busy;
io_in(A2Dlow);
io_in(A2Dhigh);
io_out(ctrlstat, ctrlstat_d.by);
io_out(tmrctr, 0x35);

/* Clear error and disable */

/* Then we clear the A/D done bit. */

/* Wait for any current conversion to end. */
/* Then we clear the A/D done bit. */

/* and clear any error bits. */
/* Sets a frequency of 1 KHz */

void clk_md(c mode)
int cmode;f

72

ctrlstat_d;

ctrlstat_d.by = io_in(ctrlstat);
ctrlstat_d.bi.mode = c_mode;
io_out(ctrlstat, ctrlstat_d.by);

/* Preserve the other stuff. */

void ad_clock(clk_val)
int clk_val;

io_out(tmrctr, clk_val);

int read_clocko

return(ioin(tmrctr));

int ad_in(chan, inval)
int chan;
int *in_val;

ctrlstat_bits
gainchan_bits

ctrlstatd;
gainchan_d;

if ((chan < 16) && (chan > -1)) {
gainchan_d.bi.chan = chan;
gainchan_d.bi.gain = gain_74[chan];
io_out(gainchan, gainchan_d.by);
w_done; /* Wait for A/D completion. */
*in_val = (ioin(A2Dhigh) << 8) I ioin(A2Dlow);
ctrlstat_d.by = ioin(ctrlstat);
return((ctrlstat_d.bi.error) ? err_74 : ok_74);

else return(par_74);

int iLadin(chan, inval)
int chan;
char in_val[2];
{

ctrlstat_bits
gainchan_bits

/* adin() for the IRIS programs
/* doesn't combine high & low
/* bytes

ctrlstatd;
gainchan_d;

if ((chan < 16) && (chan > -1)) {
gainchan_d.bi.chan = chan;
gainchand.bi.gain = gain_74[chan];
io_out(gainchan, gainchan_d.by);
w_done;
in_val[0] = io_in(A2Dhigh);
inval[1] = io in(A2Dlow);

/* Wait for A/D completion. */

73

ctrlstat_bits

ctrlstatd.by = ioin(ctrlstat);
return((ctrlstatd.bi.error) ? err_74 : ok_74);
}

else return(par_74);

int ccalb(chan)
int chan;

int i, offset, offset_sum;

for (i=l;i<=lO;i++)
{

ad_in(chan, &offset);
offset_sum = offset_sum + offset;

}
return(offsetsum/10);

74

75

/* iris.h */
/* Anna G. Cinniger */
/* 8/15/90 */
/* Function declarations for iriscom.c. Code for functions */
/* is in iris funcs.c */

void screen_init();

void comminit();

void console_init();

void hc_read();

/* File: pc74.h
Copyright (C) 1988 A.D. McGuffog

Module description:

This module provides function and data definitions for the PC-74
driver system.

This module can be compiled by almost all C compilers, and is
suitable for use on UNIX/XENIX systems.

Modifications: by Anna G. Cinniger
7/27/90 Eliminated unnecessary items for

preliminary a2dread.c

8/22/90 Added i_adin for iris programs.

#ifndef data _74
extern int gain_74[16];
extern unsigned base_74;
#else
int base_74;
int gain_74[16];
#endif

#define ok_74 0
#define par_74 -1
#define err _74 -2
#define n_comp_74 1

void init();

void clean0;

void rtc_off();

void rtc_on();

int ad_in(;

int i_adino;

void clk_md();

int read_clock();

void ad_clock();

76

77

diag();

ccalb();

/* File: reg_74.h
Copyright (C) 1988 A.D. McGuffog

Module description :

This module provides register definitions for both the PC-74 and
certain PC hardware.

This module can be compiled by almost all C compilers, and is
suitable for use on UNIX/XENIX systems.

**

Modifications : by Anna G. Cinniger
7/26/90 Changed some variable names

Removed interrupt & DMA stuff

/* Now the defs for the PC-74 itself. */

0x21 /* Interrupt mask register. */
/* Interrupt masked (also DMA). */
/* Interrupt enabled. */

/* Now we define a bit field for the IMR. */

typedef union {
int by;
struct {

unsigned irq0 :
unsigned irql :
unsigned irq2 :
unsigned irq3 :
unsigned irq4 :
unsigned irq5 :
unsigned irq6 :
unsigned irq7 :
I bi;

ctrlstat
gainchan

A2Dlow
A2Dhigh

D2AlowO
D2AhighO

base_74
(base_74

(base_74
(base_74

(base_74
(base_74

/* Timer mask. */
/* Keyboard/RTC/Pointing device. */

/* Video. */
/* Serial. */
/* Serial. */
/* Fixed disk. */
/* Diskette. */
/* Parallel port. */

+ 1)

+ 2)
+3)

+2)
+ 3)

/* Control/status register */
/* Gain/channel register */

/* A/D low byte. R. */
/* A/D high byte. R. */

/* D/A 0 low byte. W. */
/* D/A 0 high byte. W. */

#define
#define
#define

intmr
masked
enabled

} imr_bits;

#define
#define

#define
#define

#define
#define

78

D2Alowl
D2Ahighl

diginp
digoutp

tmrctr

(base_74
(base_74

(base_74
(base_74

(base_74

+ 4)
+ 5)

+ 6)
+ 6)

+ 7)

#define w_done while (!(io_in(ctrlstat)&0x80))
done. */
#define w_busy while ((io_in(ctrlstat)&0x20))
conversion done. */

/* D/A 1 low byte. W. */
/* D/A 1 high byte. W. */

/* Digital input port. R. */
/* Digital output port. W. */

/* Timer/counter. R/W. */

/* Macro to check for A/D

/* Macro to wait until current

/* Now we define a bit field for the control/status register. */
/* Some of these bits are read, some write and some read/write. */

typedef union {
int by;
struct (

mode. */

} bi;
} ctrlstat_bits;

unsigned mode : 2;
unsigned i_en : 1;
unsigned d_en : 1;

unsigned clr_err : 1;
unsigned busy: 1;
unsigned error: 1;
unsigned done : 1;

/* Clock mode bits. R/W. */
/* Interrupt enable. R/W. */
/* DMA enable. R/W. W only in PC-74

/* Clear error condition. W. */
/* A/D busy. R. */
/* Error. R. R. */
/* A/D done. R. */

/* Now we define a bit field for the gain/channel register. */

typedef union {
int by;
struct {

u
U
U

} bi;
} gainchan_bits;

nsigned chan : 4;
nsigned : 2;
nsigned gain : 2;

/* Channel address. R/W. */
/* Not used. */
/* Gain bits. R/W. */

79

#define
#define

#define
#define

#define

A2. Simulation Software

/* sim.c */
/* by Matthew Machlis */
/* updated 3/6/91 */

#include "sim.h"

main(argc, argv)
int argc;
char **argv;
{
int i;

if (sys_setup(argc, argv) == 1) exit(0);

ginit();

mmode(MVIEWING);
resetls(TRUE);
linewidth(3);
backface(FALSE);
zbuffer(FALSE);
doublebuffer();
cursoff();
gconfig();

init_queue();
init_colors();

if (pcmode == '1') init_pc();
if (htmode == '1') init_vpl();

while (inp_next() && !getbutton(ESCKEY)) {
outpfile = strcmp(".",outfname);
init_env();
init_monitor();
dynamics(1);

while (!getbutton(NKEY) && !endflag) {
get_control();
if (htmode == '1') get_track();
dynamics(0);
endflag = setflag();
writemask(4095);
color(BLACK);
clear();
if (vmode == '1' II vmode == '2') 1

/* Helmet mounted display view */

80

/* Write text on screen */

/* Left eye (red) */
pushmatrix();
writemask(63);
window (ocular - (SCREENSEP/2 + SCREENWIDTH),

ocular -SCREENSEP/2, -SCREENDN,
SCREENUP, SCREENDIST, FARCLIP);

if (vmode == '2') translate(ocular,0.,0.);
drawenvO;
popmatrix();

/* Right eye (blue) */
pushmatrix();
writemask(4032);
window (SCREENSEP/2 - ocular, (SCREENSEP/2 +

SCREENWIDTH) - ocular, -SCREENDN,
SCREENUP, SCREENDIST, FARCLIP);

if (vmode == '2') translate(-ocular,0.,0.);
draw_env();
popmatrix();

} else if (vmode=='3' II vmode=='5') (

/* Mono monitor view */

pushmatrix();
perspective(500,1.25,0.1,1000.);
drawenvO;

popmatrix();

} else (

/* Stereo monitor view */

/* Left eye (red) */
pushmatrix();

writemask(63);
perspective(500,1.25,0.1,1000.);
translate (0.025,0.,0.);
draw_envO;

popmatrix();

/* Right eye (blue) */
pushmatrix();

writemask(4032);
perspective(500,1.25,0.1,1000.);
translate(-0.025,0.,0.);
draw_env();

popmatrix();

I

if (vmode=='5' II vmode=='6') {

pushmatrix();
ortho2(-100.5,100.5,- 100.5,100.5);
writemask(4095);
color(4095);

if (mouseflag == 0) {
cmov2i(-90,-70);
sprintf(mess,"xcmd= %6.4f',cx);
charstr(mess);
cmov2i(-90,-80);
sprintf(mess,"ycmd= %6.4f',cy);
charstr(mess);
cmov2i(-90,-90);
sprintf(mess,"zcmd= %6.4f",cz);
charstr(mess);

} else if (mouseflag == 1) {
cmov2i(-90,-70);
sprintf(mess,"roll cmd= %6.4f",c
charstr(mess);
cmov2i(-90,-80);
sprintf(mess,"pitch cmd= %6.4f',cry);
charstr(mess);
cmov2i(-90,-90);
sprintf(mess,"yaw cmd= %6.4f",
charstr(mess);

crz);

cmov2i(0,-70);
sprintf(mess,"xw= %6.4f",xw);
charstr(mess);
cmov2i(0,-80);
sprintf(mess,"yw= %6.4f',yw);
charstr(mess);
cmov2i(0,-90);
sprintf(mess,"zw= %6.4f',zw);
charstr(mess);
cmov2i(60,-70);
sprintf(mess,"roll= % 10.7 f"',phi* 180./PI);
charstr(mess);
cmov2i(60,-80);
sprintf(mess,"pitch= % 10.7f',theta* 180./PI);
charstr(mess);
cmov2i(60,-90);
sprintf(mess,"yaw= % 10.7f',psi* 180./PI);
charstr(mess);

popmatrix();

I
swapbufferso;

82

rx);

printf("# skipped screen updates = %d\n",numskip);
numskip=0;
writemask(4095);
color(BLACK);
clear();
swapbuffers();
clear();
if (outpfile) out_data();
ringbell();
while (getbutton(NKEY)) {);
while (!getbutton(NKEY) && !getbutton(ESCKEY)) {);
while (getbutton(NKEY)) {);

if (pcmode == '1') close(pc);
if (htmode == '1') close(vpl);
tponO;
curson();
qreset();
setmonitor(HZ60);
system("blanktime 67000");
greset();
gexit();
exit(0);

int set_flag()
/* Set end-of-run flag if appropriate conditions are met */
{

register int tmpflag--0;
float vl,v2,v3,wl ,w2,w3,val;

if (loop >= 9990) tmpflag=l;
else if (pmmode == '2') (

vl=fabs(psi); v2=fabs(theta); v3=fabs(phi);
wl=fabs(p); w2=fabs(q); w3=fabs(r);
if ((v1<0.0698) 11 (v1>(TWOPI-0.0698)))

if ((v2<0.0698) II (v2>(TWOPI-0.0698)))
if ((v3<0.0698) II (v3>(TWOPI-0.0698)))

if ((w1<0.0349) II (wl>(TWOPI-0.0698)))
if ((w2<0.0349) II (w2>(TWOPI-0.0698)))

if ((w3< 0.0349) 11 (w3>(TWOPI-
0.0698))) tmpflag=1;

} else if (pmmode == '3') {
v 1= vec3[rectnum][0];
v2 = vec3[rectnum][1];
v3 = vec3[rectnum][2];
w1 = x - targloc[rectnum+1][0];
w2 = y - targloc[rectnum+1][1];
w3 = z - targloc[rectnum+1][2];
val = vl*wl + v2*w2 + v3*w3;
if (val > 0.) (

rectt[rectnum] = (float)(inttime - start_time)/(float)HZ;
rectd[rectnum++] = fsqrt(wl*wl + w2*w2 + w3*w3);

83

if (rectnum > 2) tmpflag=l;

return(tmpflag);

init_env()
/* Initialize environment if necessary */
{

mass = masses[emode-'l'];
inertia = inertias[emode-'l'];
if (emode == '2') initenv2();
if (dsave != '1') srand48(rndseed);

init_env2()
/* Initialize fly-through rectangles */
{

int i,j;
float vecl[3], vec2[3], rvec[3], uvec[3];
float targhvec, targwvec;

for (i=1;i<NUMTARG-1;i++)
for (j=0;j<3;j++) {

vecl[j] = targloc[i][j] - targloc[i-l][j];
vec2[j] = targloc[i+1][j] - targloc[i][j];
vec3[i-1][j] = targloc[i+l][j] - targloc[i-1][j];

cross_product (vec1, vec2, rvec);
normalize(rvec);
cross_product (rvec, vec3[i-1], uvec);
normalize(uvec);
for (j=0;j<3;j++) {

targhvec = uveclj] * fcos(targroll[i])
+ rvec[j] * fsin(targroll[i]);

targwvec = rveclj] * fcos(targroll[i])
- uvec[j] * fsin(targroll[i]);

targvl[i][j] = targloc[i][j] - TARGWD * targwvec
+ TARGHT * targhvec;

targv2[i][j] = targloc[i][j] + TARGWD * targwvec
+ TARGHT * targhvec;

targv3[i]j] = targloc[i][j] + TARGWD * targwvec
- TARGHT * targhvec;

targv4[i][j] = targloc[i][j] - TARGWD * targwvec
- TARGHT * targhvec;

targv5[i][j] = targloc[i][j] - XSIZE * targhvec;
targv6[i][j] = targloc[i][j] - XSIZE * targwvec;
targv7[i][j] = targloc[i][j] + XSIZE * targhvec;
targv8[i][j] = targloc[i][j] + XSIZE * targwvec;

I

drawenv()

84

/* Draw environment */
{

if (htmode == '1') {
rotate((Angle)(1 800.*t2/PI),'x');
rotate((Angle)(1 800.*tl/PI),'y');

}
if (bfmode != '1') getmatrix(bodmat);
if (camht != 0.) translate(0.,-camht,0.);
rotate(rz,'z');
rotate(rx,'x');
rotate(ry,'y');
translate(0.,0.,-z);
translate(-x,-y,0.);
if (emode == '1') draw_env1();
else if (emode == '2') draw_env2();
else if (emode == '3') draw_env3();
else if (emode == '4') draw_env4();
if (bfmode != '1') {

loadmatrix(bodmat);
draw_bodref();

}

draw_bodrefO
/* Draw body-fixed references */
{

register int i;

color(4095);
for (i=0;i<=9;i+=3) {

bgnline();
v3f(bfv[i]);
v3f(bfv[i+l]);
v3f(bfv[i+2]);

endline();
}
if (bfmode == '3') {

for (i=12;i<=21;i+=3)
bgnline();

v3f(bfv[i]);
v3f(bfv[i+1]);
v3f(bfv[i+2]);

endline();

for (i=24;i<=54;i+=2) {
bgnline();

v3f(bfv[i]);
v3f(bfv[i+l]);

endlineO;

I
I

draw_env 1()

85

/* Draw box environment */
{

color(4095);
translate(0.,0.,-50.);
drawbox();

drawbox()
/* Draw a box */
{

bgnclosedline();
v3s(boxv[0]);
v3s(boxv[1]);
v3s(boxv[2]);
v3s(boxv[3]);

endclosedline();
bgnclosedline();

v3s(boxv[4]);
v3s(boxv[5]);
v3s(boxv[6]);
v3s(boxv[7]);

endclosedline();

bgnline();
v3s(boxv[0]);
v3s(boxv[4]);

endlineO;
bgnline;()

v3s(boxv[1]);
v3s(boxv[5]);

endline();
bgnline();

v3s(boxv[2]);
v3s(boxv[6]);

endline();
bgnline();

v3s(boxv[3]);
v3s(boxv[7]);

endlineO;

bgnlineo;
v3s(boxv[5]);
v3s(boxv[8]);
v3s(boxv[6]);

endline();

draw_env2()
/* Draw fly-through rectangles environment */
{

register int i;

color(4095);
for (i=O;i<NUMTARG;i++) {

86

bgnclosedline();
v3f(targv 1 [i]);
v3f(targv2[i]);
v3f(targv3[i]);
v3f(targv4[i]);

endclosedline();
bgnline();

v3f(targv5[i]);
v3f(targv7[i]);

endline();
bgnline();

v3f(targv6[i]);
v3f(targv8[i]);

endline();

draw_env3()
/* Draw dual-grid environment */
{

register float i;
float tmpv[3];

color(4030);
tmpv[2]= -5.;
for (i= -5.; i<=5.; i+=0.5) {

tmpv[1]=i;
tmpv[0]= -5.;
bgnline();

v3f(tmpv);
tmpv[O]=5.;
v3f(tmpv);

endline();
tmpv[0]=i;
tmpv[1]= -5.;
bgnline();

v3f(tmpv);
tmpv[1]=5.;
v3f(tmpv);

endline0;
}
color(4095);
tmpv[2]= -2.5;
for (i= -5.; i<=5.; i+-0.5) {

tmpv[1]-i;
tmpv[0]= -5.;
bgnline();

v3f(tmpv);
tmpv[0]=5.;
v3f(tmpv);

endline();
tmpv[0]=i;
tmpv[1]= -5.;
bgnline();

87

88

v3f(tmpv);
tmpv[1]=5.;
v3f(tmpv);

endline();

draw_env4()
/* Draw box plus grid environment */

register short i;
short tmpv[3];

color(4030);
tmpv[2]= -10;
for (i= -10; i<=10; i++) {

tmpv[1]--i;
tmpv[0]= -10;
bgnline();

v3s(tmpv);
tmpv[0]=10;
v3s(tmpv);

endline();
tmpv[O]-i;
tmpv[l]= -10;
bgnline();

v3s(tmpv);
tmpv[1]=10;
v3s(tmpv);

endline();

color(4095);
scale(0.05,0.05,0.05);
translate (0.,0.,- 140.);
draw_box();

get control()
/* Get commands from (Gateway or IRIS mouse) and IRIS keyboard */
{

static float mxcmd=0., mycmd=0.;
long xmouse, ymouse, btnid;
short btndata, *bdata;

bdata = &btndata;
if (pcmode == '1') {

/* Read command input from Gateway */
getpc();
while (qtest() != 0) {

btnid = qread(bdata);
if (btndata == 1) {

switch (btnid) {
case RKEY : dynamics(1); break;
case PKEY : while (!getbutton(OKEY)) ();

89

inttime=times(&buffer); break;
case BKEY : if (bfmode=='3') bfmode='l';

else if (bfmode=='2') bfmode='3';
else bfmode='2';
break;

case CKEY : if (rcmode=='l') rcmode='2';
else rcmode='1'; break;

case DKEY : if (dmode=='l') dmode=dsave;
else {dmode='1';
xdist=ydist=zdist=pdist=qdist=rdist=0.;
} bre ak;

case MKEY : markline[marknum++]=loop; break;

else {
/* Get command input from IRIS mouse */
while (qtesto != 0) {

btnid = qread(bdata);
if (btndata == 1) {

switch (btnid) {
case MIDDLEMOUSE :

mxoff = getvaluator(MOUSEX);
myoff = getvaluator(MOUSEY);
btncmd = 0.0;
if (mouseflag == 0) {

cx = cy = cz = 0.;
} else (

crx = cry = crz = 0.;
}
mouseflag = !mouseflag;
break;

case LEFTMOUSE : btncmd = btncmd - 0.1;
break;

case RIGHTMOUSE : btncmd = btncmd + 0.1;
break;

case RKEY : dynamics(1); break;
case PKEY : while (!getbutton(OKEY)) {};

inttime=times(&buffer);
break;

case BKEY : if (bfmode=='3') bfmode='l';
else if (bfmode=='2') bfmode='3';
else bfmode='2';
break;

case CKEY : if (rcmode=='l') rcmode='2';
else rcmode='l';
break;

case DKEY : if (dmode==' ') dmode=dsave;
else {dmode='1';
xdist=ydist=zdist=pdist=qdist=rdist-0.;
} break;

case MKEY : markline[marknum++]=loop; break;

90

}

mxcmd = (float)(getvaluator(MOUSEX) - mxoff) / 200.;
if ((mxcmd>-0.1) && (mxcmd<0.1))

mxcmd = 0.;
} else if (mxcmd <= -0.1) {

mxcmd = mxcmd + 0.1;
} else {

mxcmd = mxcmd - 0.1;
}
mycmd = (float)(getvaluator(MOUSEY) - myoff) / 200.;
if ((mycmd>-0. 1) && (mycmd<O. 1)) {

mycmd = 0.;
} else if (mycmd <= -0.1) {

mycmd = mycmd + 0.1;
} else {

mycmd = mycmd - 0.1;

if (mouseflag == 0) {
cx = -mycmd;
cy = mxcmd;
cz = btncmd;

} else if (mouseflag == 1) {
crx = mxcmd;
cry = mycmd;
crz = -btncmd;

}
if (vcmode == '1') {

fxcmd = FMAX*cx;
fycmd = FMAX*cy;
fzcmd = FMAX*cz;

) else
fxcmd = fycmd = fzcmd = 0.;

txcmd = TMAX*crx;
tycmd = TMAX*cry;
tzcmd = TMAX*crz;

get-track()
/* Get head dircos matrix from 3SPACE, calculate Euler angles */

getvpl();

/* calculate yaw-pitch-roll Euler angles from 3SPACE dir cos matrix */
/* tl=yaw t2=pitch t3=roll */
t2 = fasin(dircos[2] [0]);
tl = fasin(dircos[1][0]/fcos(t2));
if (sgnf(dircos[0][0]/fcos(tl)) == -1) tl = PI - tl;
t3 = facos(dircos[2][2]/fcos(t2));
if (t3 > (PI/2.)) {

tl = tl + PI;
t2 = (float)sgnf(t2) * PI - t2;

dynamics(reset)
/* Dynamics code */
int reset;

if (reset == 1) {
/* Reset all dynamics & program control variables */
xw = yw = zw = 0.;
vxw = vyw = vzw = vxb = vyb = vzb = 0.;
phi = init_phi;
theta = init_theta;
psi = init_psi;
p = q = r = 0.;
loop = 0; endflag = 0; marknum = 0;

rectnum = 0;
if (pcmode == '2') {

btncmd = 0.;
cx = cy = cz = crx = cry = crz = 0.;
mxoff = getvaluator(MOUSEX);
myoff = getvaluator(MOUSEY);

start_time = times(&buffer);
inttime = times(&buffer);
if (outpfile) store_data();
return;

/* integrate forward one loop period */

calc_dynamics(loopt);

/* keep integrating forward until catch up to or pass current time */

while (times(&buffer) > inttime) (
calc_dynamics(loopt);
numskip++;

I

/* wait for current time to catch up to integration time */

while (inttime > times(&buffer)) ()

calc_dynamics(lstep)
/* Do dynamic calculation, integrations */
long lstep;
{

register float phidot,psidot,thetdot;
register float cthet,sthet,cphi,sphi,cpsi,spsi;
register float tstep;

tstep = (float)lstep / 100.;

91

/* do rotations first */
/* convert body rates to euler rates */

sphi = fsin(phi);
cphi = fcos(phi);

sthet = fsin(theta);
cthet = fcos(theta);
if (cthet == 0.) cthet=.0001; /* protect against singularity at theta = 0 */

spsi = fsin(psi);
cpsi = fcos(psi);

/* calculate new EULER rates */

phidot = p + q*sphi*sthet/cthet + r*cphi*sthet/cthet;
thetdot = q*cphi - r*sphi;
psidot = q*sphi/cthet + r*cphi/cthet;

/* get random disturbances if necessary */

if (dmode == '2' 11 dmode == '4') {
xdist = TDIST * getrnd();
ydist = TDIST * getrnd();
zdist = TDIST * getmd();

}
if (dmode == '3' 11 dmode == '4') {

pdist = RDIST * getmd();
qdist = RDIST * getrnd();
rdist = RDIST * getmd();

/* do dynamics calculations */

vxbdot = (fxcmd + xdist) / mass;
vybdot = (fycmd + ydist) / mass;
vzbdot = (fzcmd + zdist) / mass;

if (rcmode == '1') (
pdot = (txcmd + pdist) / inertia;
qdot = (tycmd + qdist) / inertia;
rdot = (tzcmd + rdist) / inertia;

) else {
pdot = (ROTLAG * (ROTGAIN * txcmd - p) + pdist) / inertia;
qdot = (ROTLAG * (ROTGAIN * tycmd - q) + qdist) / inertia;
rdot = (ROTLAG * (ROTGAIN * tzcmd - r) + rdist) / inertia;

/* calculate translational motion */

vxwdot = cthet*cpsi*vxbdot + (sphi*sthet*cpsi-cphi*spsi)*vybdot
+ (cphi*sthet*cpsi+sphi*spsi)*vzbdot;

vywdot = cthet*spsi*vxbdot + (sphi*sthet*spsi+cphi*cpsi)*vybdot

92

93

+ (cphi* sthet*spsi-sphi*cpsi)*vzbdot;
vzwdot = -sthet*vxbdot + sphi*cthet*vybdot + cphi*cthet*vzbdot;

/* integrate world accelerations to obtain world velocities */

vxw += vxwdot * tstep;
vyw += vywdot * tstep;
vzw += vzwdot * tstep;

/* integrate to obtain positions */

xw += vxw * tstep;
yw += vyw * tstep;
zw += vzw * tstep;

/* integrate rotations */

p += pdot * tstep;
q += qdot * tstep;
r += rdot * tstep;

phi += phidot * tstep;
while (phi > TWOPI) phi -= TWOPI;
while (phi < 0.) phi += TWOPI;

psi += psidot * tstep;
while (psi > TWOPI) psi -= TWOPI;
while (psi < 0.) psi += TWOPI;

theta += thetdot * tstep;
while (theta > TWOPI) theta -= TWOPI;
while (theta < 0.) theta += TWOPI;

/* assign world rotations to graphics rotations */

rx = (Angle)(theta* 1800./PI);
ry = (Angle)(-psi* 1800./PI);
rz = (Angle)(phi* 1800./PI);

/* assign world positions to graphics positions */

x = yw; y = -zw; z = xw;

/* store state data if necessary */

inttime += istep;
if (outpfile) store_data();

storedata()
/* Temporarily save output data in arrays */
{

atime[loop]=(float)(inttime- start_time)/HZ;
axw[loop]=xw; ayw[loop]=yw; azw[loop]=zw;

aphi [loop] =phi* 180./PI; atheta[loop] =theta* 180./PI;
apsi[loop]=psi* 180./PI;
avxw[loop]=vxw; avyw[loop]=vyw; avzw[loop]=vzw;
ap[loop] =p* 180./PI; aq[loop]=q* 180./PI; ar[loop]=r*180./PI;
afxc[loop]=fxcmd; afyc[loop]=fycmd; afzc[loop]=fzcmd;
atxc [loop] =txcmd; atyc [loop] =tycmd; atzc [loop] =tzcmd;
if (dmode == '2' II dmode == '4') {

axd[loop]=xdist; ayd[loop]=ydist; azd[loop]=zdist;
}
if (dmode == '3' 11 dmode == '4') (

apd[loop]=pdist; aqd[loop]=qdist; ard[loop]=rdist;

loop++;

outdata()
/* Write output data to disk file(s) */

register int oloop, tmpmknum=0;

if (pmmode == '3') {
outfptr = fopen(rectfname, "w");
for (oloop=0; oloop<=2 ; oloop++)

fprintf(outf_ptr,"rectangle #% ld time=%7.2f dist=%7.4t\n",
oloop, rectt[oloop], rectd[oloop]);

fclose(outf_ptr);

outfptr = fopen(outfname, "w");
for (oloop=O; oloop<loop; oloop++) {

if (tmpmknum < marknum)
if (oloop == markline[tmpmknum])

fprintf(outf_ptr,"MARK %d\n",++tmpmknum);

fprintf(outfptr,"%ld",oloop);
putc(TAB,outfptr);

fprintf(outf_ptr,"%.2f',atime[oloop]);
putc(TAB,outfptr);

fprintf(outfptr,"% .2f,axw [oloop]);
putc(TAB,outfptr);

fprintf(outfptr,"%.2f',ayw[oloop]);
putc(TAB,outfptr);

fprintf(outLptr,"%.2f',azw [oloop]);
putc(TAB,outfptr);

fprintf(outfptr,"%.2f',aphi[oloop]);
putc(TAB,outfptr);

fprintf(outfptr,"%.2f',atheta[oloop]);
putc(TAB,outfptr);

fprintf(outfptr,"%.2f",apsi[oloop]);
putc(TAB,outfptr);

fprintf(outfptr,"%.2f',avxw[oloop]);
putc(TAB,outfptr);

fprintf(outfptr, "%.2f',avyw [oloop]);
putc(TAB,outf_ptr);

94

loop++;

95

fprintf(outf_ptr,"%.2f',avzw[oloop]);
putc(TAB,outLptr);

fprintf(outf_ptr,"%.2f',ap[oloop]);
putc(TAB,outfptr);

fprintf(outf_ptr," %.2f",aq[oloop]);
putc(TAB,outf ptr);

fprintf(outfptr,"%.2f',ar[oloop]);
putc(TAB,outfptr);

fprintf(outfptr,"%.2f',afxc[oloop]);
putc(TAB,outfptr);

fprintf(outfptr," %.2f',afyc[oloop]);
putc(TAB,outfptr);

fprintf(outfptr,"%.2f',afzc[oloop]);
putc(TAB,outfptr);

fprintf(outf_ptr,"%.2f",atxc[oloop]);
putc(TAB,outfptr);

fprintf(outLptr,"%.2f',atyc[oloop]);
putc(TAB,outfptr);

fprintf(outfptr, "%.2f',atzc [oloop]);
if (dsave == '2' II dsave == '4') {

putc(TAB,outf _ptr);
fprintf(outfptr,"%.2f',axd[oloop]);

putc(TAB,outfptr);
fprintf(outfptr,"%.2f",ayd[oloop]);

putc(TAB,outfptr);
fprintf(outfptr,"%.2f',azd[oloop]);

}
if (dsave == '3' II dsave == '4') (

putc(TAB,outfptr);
fprintf(outfptr,"%.2f',apd[oloop]);

putc(TAB,outfptr);
fprintf(outfptr,"%.2f',aqd[oloop]);

putc(TAB,outfptr);
fprintf(outf_ptr,"%.2f',ard[oloop]);

)
fprintf(outfptr,"•n");

}
fclose(outfptr);

init_queue()
{

qdevice(RIGHTMOUSE);
qdevice(MIDDLEMOUSE);
qdevice(LEFTMOUSE);
qdevice(RKEY);
qdevice(OKEY);
qdevice(PKEY);
qdevice(BKEY);
qdevice(CKEY);
qdevice(DKEY);
qdevice(MKEY);

init_colors()
/* Initialize color map */
{

unsigned short i;
int bind,rind;
float bintens,rintens;
unsigned char gred,ggre,gblu;

mapcolor(62,40,40,0);
mapcolor(63,255,255,0);

mapcolor(3968,0,0,40);
mapcolor(4032,0,0,255);

mapcolor(4030,40,40,40);
mapcolor(4031,255,255,40);
mapcolor(4094,40,40,255);
mapcolor(4095,255,255,255);

init_monitoro

system("blanktime 0"); /* disable screen saver*/
color(BLACK);
clear();
swapbuffers();
clear();
if (vmode!='5' && vmode!='6') {

/* VPL Eyephones or NTSC monitor */
setvideo(DE_R1, DER1_170 I DER1_UNBLANK I DER1_SYNCG);
viewport(0,NTSC_XMAX,0,NTSC_YMAX);

I

int syssetup(argc, argv)
/* Read all parameter values from keyboard or disk file */
int argc;
char **argv;
{

int tmp;
char iomode;

vmode = emode = iomode = pmmode = '0';
rcmode = bfmode = vcmode = pcmode = htmode = '0';
dmode = '1';

camht = 0.;

if (argc == 1) (

inmode = '1';

printf('"n'nOutput filename (.=none)? ");
scanf("%s",outfname);

96

97

printf('\n\nVideo mode:");
printf("'nl - VPL Eyephones (monoptic)");
printf('\n2 - VPL Eyephones (stereoptic)");
printf('"\n3 - NTSC RGB Monitor (mono)");
printf('\n4 - NTSC RGB Monitor (stereo)");
printf("'n5 - IRIS Screen (mono)");
printf('"\n6 - IRIS Screen (stereo)");
printf("\n (1-6)? ");
while (vmode<'1' II vmode>'6') {

scanf("%c",&vmode);
}

printf('\n\nEnvironment mode:");
printf('\nl - Box target");
printf('\n2 - Fly-through rectangles");
printf("\n3 - Grids");
printf('"\n4 - Box in foreground, grid behind");
printf('"\n (1-4)? ");

while (emode<'l' II emode>'4') {
scanf("%c",&emode);

}

printf('\n\nInitial orientation:");
printf("\n1 - Aligned with world frame");
printf('\n2 - User-entered initial Euler angles");
printf('\n (1-2)? ");
while (iomode<'l' II iomode>'2') {

scanf("%c",&iomode);
I
if (iomode == '2') (

printf('\n\nInitial orientation:");
printf('NnRoll (int,degrees) ?");
scanf("%f',&tmp);
init_phi = (float)tmp * PI / 180.;
printf("\nPitch (int,degrees) ?");
scanf("%f",&tmp);
init_theta = (float)tmp * PI/ 180.;
printf('•nYaw (int,degrees) ?");
scanf("%f',&tmp);
init_psi = (float)tmp * PI / 180.;

printf('Nn\nEnd-of-run flag mode:");
printf("\n1 - None");
printf('"n2 - Orientation-derived");
printf("\n (1-2)? ");
while (pmmode<'1' II pmmode>'2') {

scanf("%c",&pmmode);
p
printf("\n\nRandom disturbance mode:");

98

printf('\nl - None");
printf('Nn2 - Translational only");
printf('"n3 - Rotational only");
printf('"n4 - Translational and rotational");
printf('Nn (1-4)? ");
while (dsave<'l' II dsave>'4') (

scanf("%c",&dsave);
}

if (dmode != '1') {
printf("'n\nDisturbance random number generator seed:");
printf('"n (long)? ");
scanf("%ld",&rndseed);

I

printf('\n\nVehicle control mode:");
printf('Nnl - Rotation and translation");
printf('"n2 - Rotation only");
printf('Nn (1-2)? ");
while (vcmode<'l' II vcmode>'2') I

scanf("%c",&vcmode);
I

printf('\nnRotational control mode:");
printf('"nl - Acceleration control");
printf('\n2 - Velocity control (with first-order lag)");
printf('Nn (1-2)? ");
while (rcmode<'l' II rcmode>'2') (

scanf("%c",&rcmode);
I

printf('"n\nBody-fixed references:");
printf('Nnl - None");
printf('"n2 - Inner set only");
printf('"n3 - Full set");
printf('"n (1-3)? ");
while (bfmode<'l' II bfmode>'3')

scanf("%c",&bfmode);
I
bfsave = bfmode;

printf('An\nCamera offset from vehicle center? ");
scanf("%f",&camht);

printf('"n\nControl hardware mode:");
printf('\nl - Control station");
printf('Nn2 - IRIS");
printf('"n (1-2)? ");
while (pcmode<'l' 11 pcmode>'2') {

scanf("%c",&pcmode);

printf('"A\nHead-tracking mode:");
printf('n1l - 3SPACE");

printf('"n2 - None");
printf('N (1-2)? ");
while (htmode!='l' && htmode!='2') {

scanf("%c",&htmode);
}

printf('\n\nLoop time in hundredths of a second:");
printf('"n (long)? ");
scanf("%ld",&loopt);

if (vmode=='l' II vmode=='2') {if (getocular(&ocular) == 1) return(l); }

) else if (argc == 2) {
inmode = '2';
if ((inf_ptr = fopen(argv[l], "r")) == NULL) return(l);
fscanf(infptr,"%c %c %c ", &vmode, &pcmode, &htmode);
if (vmode=='1' II vmode=='2') {if (getocular(&ocular) == 1) return(l); }

} else return(1);

return(0);

int inpnext()
{

char mmode, iomode;

if (inmode == '1') {inmode='O';
if (inmode == '0') return(0);

return(l); }

fscanf(inf_ptr, "%s ", outfname);
if (!strcmp("EOF",outfname)) return(0);

fscanf(infptr, "%c ", &mmode);
if (mmode == '1') {

emode='4';
camht=0.;
fscanf(inf ptr,

/* Anna's random initial orientation setup */
pmmode='2'; dsave='l'; rcmode='l'; bfmode='2';
loopt=10; vcmode='2';
"%f %f %f ",&init_phi,&init_theta,&init_psi);

I else if (mmode == '2') (

/* Anna's random disturbances setup */
emode='4'; pmmode='l'; dsave='4'; rcmode='l';
camht=0.; loopt=10; vcmode='l';
init_phi = init_theta = init_psi = 0.;
fscanf(inf_ptr, "%ld ",&rndseed);

bfmode='2';

I else if (mmode == '3') (

emode='2';
camht=0.;

/* Anna's subject matching test setup */
pmmode='3'; dsave='l'; rcmode='l'; bfmode='2';
loopt=10; vcmode='1';

99

init_phi = init_theta = init_psi = 0.;
fscanf(inf_ptr, "%s ",rectfname);

} else {

/* Explicit parameter values */
fscanf(inf_ptr, "%c %c ", &emode, &iomode);
if (iomode == '2') fscanf(infptr, "%f %f %f ",&init_phi,&init_theta,

&init_psi);
else init_phi = init_theta = init_psi = 0.;
fscanf(infptr, "%c %c ", &pmmode, &dsave);
if (dsave != '1') fscanf(inf_ptr, "%ld ", &rndseed);
fscanf(infptr, "%c %c %f %ld ", &rcmode, &bfmode, &camht, &loopt);

dmode = '1';
bfsave = bfmode;
return(1);

int getocular(ocu)
float *ocu;
{

float iod;

iodf_ptr = fopen("iod.data", "r");
if (iodf_ptr == NULL) return(1);
else (

fscanf(iodfptr, "%f', &iod);
fclose(iodfptr);
*ocu = (iod / 2.) * 2.54 / 100.;
return(O);

I

100

101

/* com.c */
/* Communications routines for sim.c simulation */
/* by Matthew Machlis */
/* updated 3/6/91 */

#include <gl.h>
#include <device.h>
#include <stdio.h>
#include <fcntl.h>
#include <termio.h>
#include <get.h>
#include <string.h>
#include <math.h>

PC_abort()
{

extern int pc;

tpono;
curson();
qreset();
setmonitor(HZ60);
system("blanktime 670000");
close(pc);
greset();
gexito;
printf("PC comm error\n");
exit(0);

VPL_abort()

extern int vpl;

tpono;
curson();
qreset();
setmonitor(HZ60);
system("blanktime 670000");
close(vpl);
greset();
gexito;
printf("VPL comm error\n");
exit(0);

init_pc()

/* Open & set up port #1 to communicate with Gateway */
int ij,insize;
unsigned char s;
unsigned int datastr[12];
extern unsigned int x_0,y_0,z_0,rx_0,ry_0,rz_0;
extern int pc;

m

102

static struct termio comportl = {
0,0,B 192001CS 81CREADIHUPCLICLOCAL,0,0, { (0,0,0,0,0,1,0 } 1;

pc = open("/dev/ttydl",ORDWRIO_NDELAY);
ioctl(pc,TCSETAF,&comportl); /* Set port parameters */

S '!:

if (write(pc,&s,1) != 1) PC_abort();
i = j = 0;
while (i<12 & j<5000) {

if (insize=read(pc,&s,1) == 1) {datastr[i++] = (int) s;

else if (insize == -1) { PC_abort(); I
j++;

if (j == 5000) PC_aborto;

x_0 = ((datastr[0]<<8) I datastr[1]);
y_O = ((datastr[2]<<8) I datastr[3]);
z_0 = ((datastr[4]<<8) I datastr[5]);
rx_0 = ((datastr[6]<<8) I datastr[7]);
ry_0O = ((datastr[8]<<8) I datastr[9]);
rz_0 = ((datastr[10]<<8) I datastr[11]);

initvpl()
{
/* Open & set up port #2 to communicate with 3SPACE */

extern int vpl;
extern char cmpstl[22], cmpst2[22], outstr[8];
char s, instr[60];
int i,j,insize;
static struct termio comport2 = {
0,0,B 192001CS 81CREADIHUPCLICLOCAL,0,0, { 0,0,0,0,0,1,0);

vpl = open("/dev/ttyd2",O_RDWRIO_NDELAY);
ioctl(vpl,TCSETAF,&comport2); /* Set port parameters */

s = 'S'; /* Request status */
if (write(vpl,&s,1) != 1) VPL_abort();
i =j =0;
while (i<55 & j<5000) {

if (insize=read(vpl,&s,1) == 1) {instr[i++]=s;)
else if (insize == -1) VPL_abort();
j++;

if (j==5000) VPL_abort();
instr[21] = '000';
if (strcmp(cmpstl ,instr) & strcmp(cmpst2,instr)) VPL_abort();

/* Next set output to direction cosines matrix */
if (write(vpl,outstr,7) != 7) VPL_abort();
s = 'f'; /* Change VPL to binary output format */
if (write(vpl,&s,1) != 1) VPL_abort();

get pc()

extern float cx,cy,cz,crx,cry,crz;
extern unsigned int x_0,y_0,z_O,rx_0,ry_O,rz_0;
int insize;
unsigned int tx,ty,tz,trx,try,trz;
unsigned char s,garbin[12];
unsigned int datastr[12];
int i,j;

read(pc,garbin, 12);

if (write(pc,&s,1) != 1) PC_abort();
i =j = 0;
while (i<12 & j<5000) {

if (insize=read(pc,&s,1) == 1) {datastr[i++] = (unsigned int) s;
}

else if (insize == -1) { PCabort(); I
j++;

if (j == 5000) PC_abort();

tx = ((datastr[0]<<8) I datastr[1]);
ty = ((datastr[2]<<8) I datastr[3]);
tz = ((datastr[4]<<8) I datastr[5]);
trx = ((datastr[6]<<8) I datastr[7]);
try = ((datastr[8]<<8) I datastr[9]);
trz = ((datastr[10]<<8) I datastr[11]);

cx = ((int)tx-(int)x_O) / 2048.;
cy = ((int)ty-(int)y_O) / 2048.;
cz = -((int)tz-(int)z_O) / 2048.;
crx = ((int)trx-(int)rx_O0) / 2048.;
cry = ((int)try-(int)ryO) / 2048.;
crz = -((int)trz-(int)rz_O) / 2048.;

if (fabs(cx)<0.10) cx=O.;
else if (cx>O.) cx=cx-0.1;
else cx=cx+0. 1;

if (fabs(cy)<0. 10) cy=O.;
else if (cx>O.) cy=cy-0. 1;
else cy=cy+0. 1;

if (fabs(cz)<0.10) cz=O.;
else if (cz>O.) cz=cz-0.1;
else cz=cz+O. 1;

if (fabs(crx)<0.10) crx-0.;
else if (crx>O.) crx=crx-0. 1;
else crx=crx+O. 1;

if (fabs(cry)<0. 10) cry=0.;

103

else if (cry>O.) cry=cry-0. 1;
else cry=cry+0.1;

if (fabs(crz)<O.10) crz=O.;
else if (crz>O.) crz=crz-0.1;
else crz=crz+O.1;

get_vpl()
{

unsigned char datastr[21];
extern float dircos[3][3];
int i,j,tmpint,insize;
char s;

s = 'P';
if (write(vpl,&s,1) != 1) VPL_abort;
i =j =0;
while (i<21 & j<1500) (

if (insize=read(vpl,&s,1) == 1) {datastr[i++] = s;)
else if (insize == -1) VPL_abort; }
j++;

if (j == 1500) VPLabort();
for (i--O; i<3; i++)

for (j--0; j<3; j++) {
tmpint = datastr[3 + i*2 + j*6] + 256 * datastr[4 + i*2 + j*6];
if (tmpint > 32767) tmpint = tmpint - 65536;
dircos[i][j] = tmpint / 32768.;

)

104

vect add(vl, v2, res)

105

/* mymath.c */
/* updated 1/17/91 */

#include <math.h>
#include "gl.h"
#include "mymath.h"

sgnf(x)
/*---
* Returns the sign of the floating point number x.*---*/

float x;

if (x < 0.0)
return(-1);

else if (x > 0.0)
return(1);

else
return(0);

float dot_product(v1, v2)
*.--------------------------------------

** Returns the dot product of the two vectors v I and v2.
*/

Vector v1, v2;

register float res;
register int i;

res = 0.0;

for (i = X ; i < W; i++)
res += vl[i]*v2[i];

return(res);

vect_cpy(vl, v2)
/*---
* Copy vector v2 into vl.
*---

Vector v , v2;

register int i;

for (i = X ; i <= Z ; i++)
vl[i] = v2[i];

106

/*---
* Add vector vl to vector v2 and put the result in res.
*---
*/

Vector vl, v2, res;
(

register int i;

for (i = X; i <= Z; i++)
res[i] = vl[i] + v2[i];

vect mult(v 1, n)
/* ---......................................
* Multiply all of the elements of the vector v1 by n and put the result back
* in vl.
*---

*/
Vector v1;
float n;
(

register int i;

for (i = X; i <= Z; i++)
v 1 [i] *= n;

I

cross_product(v1, v2, res)
/*---
* Loads the cross product of v1 with v2 into the vector res.
*/---

Vector v1, v2, res;
{

res[X] = vl[Y]*v2[Z] - vl [Z]*v2[Y];
res[Y] = vl[Z]*v2[X] - vl[X]*v2[Z];
res[Z] = v 1 [X]*v2[Y] - v 1[Y]*v2[X];

)

float norm(v1)
/*---
* Returns the norm (ie length) of the vector v1.

Vector v1;
{

return(sqrt(dot_product(v1, vl)));
I

normalize(v1)
/*---
* Normalize the vector vl.
*---
*/

107

Vector v1;
{

register float n;

n = norm(v 1);
vectmult(v1, 1.0/n);

}

vector_print(vec)
/*---
* Print the 3 diminsional vector vec.
*

Vector vec;

register int i;

printf(" [");
for (i = 0 ; i <= Z ; i++)

printf("%4.6f ", vec[i]);
printf("]'\n");

hvector_print(vec)
/*---
* Print the 4 diminsional vector vec.

*/
Vector vec;

register int i;

printf("[");
for (i = 0 ; i <= W ; i++)

printf("%4.6f ", vec[i]);
printf("]']n");

matrix_print(mat)
/*---
* Print the 4x4 matrix mat.
*

Matrix mat;
{

register int i, j;

for (i = 0; i < 4; i++)(
for (j = 0 ; j < 4 ; j++)

printf("%4.6f ", mat[i] [j]);
printf('"\n");
I

108

matrix_cpy(matl, mat2)/*---
* Copy matrix mat2 to matrix matl.
*

Matrix mat1, mat2;
{

register int i, j;

for (i = 0 ; i < 4 ; i++)
for (j = 0; j < 4; j++)

matl[i][j] = mat2[i][j];

float getrnd()
/* Generate Gaussian-distributed random number */

static int iset=0;
static float gset;
float fac,r,v1,v2;

if (iset == 0) {
do {

vl = 2.0 * drand48() - 1.0;
v2 = 2.0 * drand48() - 1.0;
r = vl*vl + v2*v2;

} while (r >= 1.0 II r == 0.0);
fac = fsqrt(-2.0 * flog(r) / r);
gset = vl * fac;
iset = 1;
return (v2 * fac);

} else {
iset = 0;
return (gset);

I

109

/* iod.c */
/* Program to determine iod for Eyephone projection calculations */
/* by Matthew Machlis */
/* based on Eyephones manual example */
/* updated 3/6/91 */

#include "iod.h"
#include "stdio.h"
#include </usr/include/gl/cg2vme.h>
#include </usr/include/gl/addrs.h>
main()

FILE *fopeno, *file_ptr;
int monitor,
int sy,i;
int angle;
float iod;
long dev;
short value;

ginito;

resetls(TRUE);
linewidth(3);
backface(FALSE);
zbuffer(FALSE);
doublebuffer();
gconfig();

color(BLACK);
clear();
swapbuffers();
clear();

sys_setup();

iod = 2.5;

dev = 0;
while (dev != ESCKEY) {

i++;
writemask(4095);
color(BLACK);
clear();

drawcal(iod);

swapbuffers();

dev = 0;
while (dev!=ESCKEY & dev!=LEFTMOUSE & dev!=RIGHTMOUSE)
dev=qread(&value);

i

110

if (dev == LEFTMOUSE & value == 1) iod = iod - 0.005;
if (dev == RIGHTMOUSE & value == 1) iod = iod + 0.005;

tponO;
curson();
qreset();
setmonitor(HZ60);
system("blanktime 67000");
greset();
gexito;

printf("'\\nIOD = %5.3f\n\n",iod);
file_ptr = fopen("iod.data", "w");
fprintf(file_ptr, "%5.3f\n", iod);
fclose(file_ptr);

exit(0);
}

drawcal(iod)
float iod;
{

float ocular,
ocular = iod / 2;

/* Draw circle for right eye */
writemask(4032);
color(4032);
window (SCREENSEP/2 - ocular, (SCREENSEP/2 + SCREENWIDTH) - ocular,

-SCREENDN, SCREENUP, SCREENDIST, FARCLIP);
pushmatrix();
translate (ocular, 0, -FARAWAY);
circf(0,0,50);
popmatrix();

/* Draw rectangle for left eye */
writemask(63);
color(63);
window (ocular - (SCREENSEP/2 + SCREENWIDTH), ocular - SCREENSEP/2,

-SCREENDN, SCREENUP, SCREENDIST, FARCLIP);
pushmatrix();
translate (-ocular, 0, -FARAWAY);
rect(-5, 50, 5, 250);
popmatrix();

sys_setup()
{
/* set Monitor type */

setvideo(DE_R1, DER1_170 1 DER1_UNBLANK I DERI_SYNCG);
viewport(0,NTSC_XMAX,0,NTSC_YMAX);
system("blanktime 0");/* disable screen saver*/

II

111

mapcolor(63,255,0,0);
mapcolor(4032,0,0,255);

/* enqueue iod-adjustment keys */
qdevice(RIGHTMOUSE);
qdevice(LEFTMOUSE);
qdevice(ESCKEY);

}

112

/* sim.h */
/* by Matthew Machlis */
/* updated 3/6/91 */

#include "stdio.h"
#include "math.h"
#include "mymath.h"
#include "gl.h"
#include "device.h"
#include "get.h"
#include "string.h"
#include </usr/include/gl/cg2vme.h>
#include </usr/include/gl/addrs.h>
#include <sys/types.h>
#include <sys/times.h>
#include <sys/param.h>
#include <sys/time.h>

/* NTSC monitor screen boundaries */
#define NTSC_XMAX 645
#define NTSC_YMAX 484

/* Vehicle definition constants */
#define FMAX 100.
#define TMAX 100.

#define MASS 500.
#define I 4000.

#define CDX 1.
#define CDY 1.
#define CDZ 1.

#define CDROTX 1.
#define CDROTY 1.
#define CDROTZ 1.

#define DTOR 0.0174533

/* Communications stuff */
int pc,vpl;
FILE *fopenO, *infptr, *outf_ptr, *iodfptr;
char outfname[20], rectfname[20];
float cx,cy,cz,crx,cry,crz;
unsigned int x_0,y_0,z_O,rx_0,ry_0,rz_0;
#define TAB 9
float atime[10000],axw[10000],ayw[10000],azw[10000],aphi[10000],atheta[10000],

apsi[10000],avxw[10000],avyw[10000],avzw[10000],ap[10000],aq[10000],
ar[10000],afxc[10000],afyc [10000],afzc[10000],atxc [10000],atyc [10000],
atzc[10000],axd[10000],ayd[10000],azd[10000],apd[10000],aqd[10000],
ard[10000];

float rectt[3], rectd[3];
char mess[40];

/* Timing variables */
struct tins buffer;
long loopt, inttime, start_time; /* time steps */
int numskip=0; /* # of skipped scrc

/* Random number generator variables */
struct timeval tp;
struct timezone tzp;
long mdseed;
float getrnd();

/* Program control variables */
int loop=0, markline[50];
char vmode, emode, pmmode, dmode, rcmode;
char vcmode, htmode, bfmode, inmode, pcmode;
char dsave, bfsave;
short marknum-0;
Boolean endflag=FALSE, outpfile;

/* Control input variables */
float fxcmd=0., fycmd=0., fzcmd=0.;
float txcmd=0., tycmd=0., tzcmd=0.;
short mouseflag=2;
long mxoff=0, myoff=0;
float btncmd-0.;

/* Graphics transformation variables */
Angle rx,ry,rz;
Coord x,y,z;
float camht;
float tl,t2,t3;
Matrix bodmat;

/* Vehicle dynamics variables */
#define ROTGAIN 0.003
#define ROTLAG 3000.
float mass,inertia;
float masses [5]= 500.,500.,500.,500.,500. });
float inertias[5]={ 4000.,4000.,4000.,4000.,4000.);
float xw, yw, zw; /* world coord position */
float p, q, r; /* body rotation rates */
float phi, /* roll (Euler angle) */

theta, /* pitch */
psi; /* yaw */

float init_theta-0., init_phi=0., init_psi-0.;
float vxw, vyw, vzw; /* world coord velocities *
float vxb, vyb, vzb; /* body coord velocities */

float
float
float

vxbdot,vybdot,vzbdot;
vxwdot,vywdot,vzwdot;
pdot,qdot,rdot;

:en updates */

/

/* body coord accels */
/* world coord accels */
/* body coord angular accels */

#define TDIST 25.
#define RDIST 25.

/* max translational dist magnitude */
/* max rotational disturbance magnitude */

113

float xdist--0.,ydist=0.,zdist=0.;/ * translational disturbance forces */
float pdist=0.,qdist-0.,rdist=0.; /* rotational disturbance forces */

/* Body-fixed reference data */
float bfv[56][3] = { 15.,9.,-100.),{ 15.,11.,-100.},{ 13.,11.,-100.),

{-13.,-11.,-100. }, {-15.,11.,-100. },{-15.,9.,-100.),

{33.,24.,-100.}, {33.,26.,-100.),{131.,26.,-100. },
{-31.,26.,-100.),{-33.,26.,-100. },{-33.,24.,-100.),
{ -33.,-24.,-100. },{ -33.,-26.,-100.),{ -31.,-26.,-100.),
{31.,-26.,-100. },{ 33.,-26.,-100. },{33.,-24.,-100. },

{-1.,100.,-100. },{ 1.,100.,-100.), {0.,100.,-100. }, {0.,97.,-100.),
{-72.,70.,-100.), {-70.,72.,-100.), -71.,71.,-100.),{-69.,69.,-100.},
{70.,72.,-100.),{ 72.,70.,-100. },{71.,71.,-100.),{ 69.,69.,-100.),
{ 100.,1.,-100.),{ 100.,-1.,-100.),{ 100.,0.,-100.), {97.,0.,-100.),
{72.,-70.,-100. , {70.,-72.,-100. , (71.,-71.,-100., { 69.,-69.,-100.},
{-1.,-100.,-100.),{ 1.,-100.,-100. }, {0.,-100.,-100. }, {0.,-97.,-100. },
{ -70.,-72.,-100.), { -72.,-70.,-100. , { -71.,-71.,-100.), { -69.,-69.,- 100. },
{-100.,-1.,-100. }, {-100.,1.,-100. ,{-100.,0.,-100.), {-97.,0.,-100. } ;

/* Fly-through rectangle data */
#define NUMTARG 5
#define TARGHT 6.
#define TARGWD 7.5
#define XSIZE 1.
/*
float targloc[NUMTARG][3] = { {0.,0.,-30.),{ 0.,5.,-60),{0.,15.,-85),

{ 10.,20.,-100.), { 20.,25.,-125. }, { 35.,25.,-150.), {40.,30.,-170.),
{40.,30.,-200.),{ 50.,30.,-225.),{ 60.,32.,-250. });

float targroll[NUMTARG] = (0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.);

*/
float targloc[NUMTARG][3] = { {0.,0.,-30.),{0.,5.,-60)},0.,15.,-85},

({ 10.,20.,-100.),{ 20.,25.,-125. });
float targroll[NUMTARG] = {0., 0., 0., 0., 0.);
float vec3[3][3];
short rectnum--0;
float targvl[NUMTARG][3], targv2[NUMTARG][3], targv3[NUMTARG][3];
float targv4[NUMTARG][3], targv5[NUMTARG][3], targv6[NUMTARG][3];
float targv7[NUMTARG][3], targv8[NUMTARG][3];

/* Cube data */
short boxv[9][3] = ({ 10,10,-10},{ 10,-10,-10),(-10,-10,-10},

{-10,10,-10},{ 10,10,101,{ 10,-10,10),{-10,-10,10),
{-10,10,10), 0,10,10));

/* 3SPACE stuff */
float dircos[3][3];
char cmpstl[22] = "21S208 0 0 2 3";
char cmpst2[22] = "21S209 0 0 2 3";
char outstr[8] = "O5,6,7\r";
float borevec[3];

114

115

/* Eyephone stuff */
#define SCREENSEP 0.0222
#define SCREENWIDTH 0.0542
#define SCREENUP 0.0218
#define SCREENDN 0.0185
#define SCREENDIST 0.0351
#define FARCLIP 100
float ocular;

116

/* mymath.h */
/* Type definitions etc for the math library. */
/* updated 1/17/91 */

#define X 0
#define Y 1
#define Z 2
#define W 3

#define ABS(A) (A < 0.0 ? -A:A)
#define SGN(A) ((A < -A) ? -1:1)
#define PI 3.141592654
#define TWOPI 6.283185308
typedef float Vector[3],

HVector[4];

float dot_product();
float norm();
int ascii to int();
float getmd();

117

/* iod.h */
/* by Matthew Machlis */
/* updated 1/17/91 */

#include "math.h"
#include "gl.h"
#include "device.h"
#include "get.h"

/* NTSC monitor screen boundaries */
#define NTSC_XMAX 645
#define NTSC_YMAX 484

/* Eyephone constants */
#define SCREENSEP 0.875
#define SCREENWIDTH 2.133
#define SCREENUP 0.860
#define SCREENDN 0.730
#define SCREENDIST 1.383
#define FARCLIP 100000
#define FARAWAY 500

Appendix B.

Test Subject Survey Questionaire and Pilot Evaluatior

B1. Test Subject Survey Questionaire

Date: ,1991

All of the questions below are optional. Please do not feel pressured to answer any
questions you do not feel comfortable answering. This questionaire will be kept on file
with the experiment data for future bias analysis and is not part of the actual experiment. If
you have any questions please feel free to ask them. Thank you for your cooperation.

Name:

Male , Female

Birthdate:

Skills Questions:

1. Do you know how to drive? Yes , No

If yes:

la. How often do you drive? (Daily, Regularly, Rarely)

2. Are you a pilot? Yes _, No

If yes:

2a. How often do you fly? (Weekly, Monthly, Rarely)

2b. How many hours do you have?

3. Do you play video or computer games?

If yes:

3a. Do you play flight-type video games?

3b. How often do you play?

Yes -, No

Yes -, No

(Daily, Weekly, Rarely)

119

Yes , No

If yes:

Please Describe:

6. Do you wear lenses of any type? Yes , No

If yes:

6a. Why?

6b. What is your vision with your lenses?

6c. Do you wear contacts?

7. Are you colorblind?

Yes

Yes

, No

, No

If yes:

Please Describe:

Do you have any chronic or frequent problems
with depth perception? Yes , No

If yes:

Please Describe:

Miscellaneous Questions:

9. Are you dyslexic? Yes , No

120

Vision Questions:

4. What is your vision? (20/400, for example)

5. Do you have any vision irregularities?
(Astigmatism, ...)

Yes , No

Yes , No

121

10. Do you experience chronic or frequent vertigo?

11. Do you have serious difficulty telling your right
from your left?

B2. Pilot Evaluation Comment Sheet

Name:

Flight

Date:

Please answer the following questions:

Rate the flight using the rating scale:

Comment on your ability to accomplish the task:

Comment on your ability to control the vehicle:

Comment on your ability to perceive the translation and rotational motion of the vehicle:

During the flight did you get confused about the task objective?

Yes , No

During the flight did you get confused about the controls?

Yes , No

During the flight did you get confused about your translational motion?

Yes , No

During the flight did you get confused about your rotational motion?

Yes , No

122

123

During the flight did the display ever confuse you?

Yes , No

Please comment on any confusion you might have had:

Please add any comments of your own:

