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ABSTRACT

In many real-time expert systems, a custom-built Database Management System (DBMS) is
needed to manipulate data in an organized and effective manner. This research concludes
that a unique approach, by implementing a database in an expert system shell, can indeed
make this data manipulation more effective. Several design considerations are presented
that apply to a developer who wishes to build DBMS functionality into a rule-based
representation scheme. These considerations include host language constraints, data
models, real-time constraints, and common real-time mechanisms.

An analysis of various access mechanisms is given, specifying how they can be used more
effectively. Also discussed is how computational overhead is to some extent dependent on
how the data model is implemented in the knowledge base. The real-time mechanisms
described include query optimization, shared processes and results, and minimization of
file access. Their effectiveness is determined by comparison to access schemes in a
distributed file system. The goal of this thesis is to provide DBMS capability to a
knowledge shell so that data and knowledge can interact more efficiently.
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CHAPTER 1

INTRODUCTION

1.1 Background

All expert systems consist of two primary components: an inference engine with

which reasoning may be performed and a knowledge base containing the facts and

heuristics on which reasoning may be applied. The inference engine uses a certain

knowledge representation, usually in the form of rules (also known as production rules) or

units (also called frames, schemas, or list structures). [9]

Rules come in only one simple syntactical structure: the IF/THEN statement. [17]

For example, Rule 1: IF Joe is late to work THEN he is out of a job. The rule consists of

a conditional predicate, which if true, establishes a conclusion from causal relationship. By

chaining a series of IF/THEN statements, certain aspects of a complicated process of the

human mind known as reasoning can be duplicated in a computer program:

Rule 2: IF Joe forgets to set his alarm clock THEN he will oversleep.

Rule 3: IF Joe oversleeps THEN he will miss his ride.

Rule 4: IF Joe misses his ride THEN he will be late to work.

By putting the four rules together, a computer program follows the logic to conclude that if

Joe forgets to set his alarm clock, he will be out of a job.

Units are a more passive way of representing knowledge. Such a representation

scheme is based on the relationships between entities and properties associated with each

entity. Typically, a unit consists of a list of values associated with those properties. For

example, "a car has an engine system, electrical system, and brake system." Because in a

task domain, the entities must stand in various relations with each other, links can be

established between the units. The carburetor is part of the fuel system, which is part of

the engine system, and so forth. [17]

The knowledge base contains the facts and heuristics on which the rules may be

applied. This includes factual knowledge commonly accepted by experts in the task



domain, which may come from journals and textbooks. It also includes heuristic

knowledge, or "rules of thumb." This type of knowledge is more a priori and

experimental, being based on the good judgement of an expert in the field. Heuristics

encompass the problem-solving know-how of someone who is able to deal efficiently with

problems in the task domain and who can provide good guesses. It is the heuristics which

give the expert a problem-solving edge. [17]

A subset of the knowledge base is the database. The database contains pieces of

information from which the facts and heuristics can be built. It also organizes this

information in a form that can be recognized by the knowledge base so that data

manipulation can be performed. Data manipulation can mean, among many things,

information retrieval, storage, modification, and removal. Within the database, there is a

Database Management System (DBMS) consisting of various functions that allow the

knowledge in an expert system to interact with the data more effectively.

What gives an expert system its power is the amount of knowledge it contains. The

more knowledge it has, the smarter it is at solving problems in the task domain. Therefore,

the most important ingredient in an expert system is the high-quality knowledge residing in

its inference engine and knowledge base. [17] To this end, knowledge engineers have

built expert systems consisting of thousands of rules and enormous databases to house all

the information needed as part of the knowledge base. Most important, as the database

grows, the knowledge base grows. As the knowledge base grows, the system gets

smarter. It is for this very reason that expert systems also consist of a database to

encompass much of the data needed in making decisions. The database may contain

historical data which the system accumulates to allow statistical analysis, or it may contain

temporary variables as intermediary information for other calculations.

To illustrate, the Nippon Life, Japan's largest life insurance company, receives

some 2.7 million life insurance applications a year. Of these, 800,000 applications must be

evaluated by their expert system called Underwriter's Aid, developed by Computer



Services Kaisha (CSK) using Intellicorp's KEE expert system shell, based on medical data

and mortality statistics related to a compendium of diseases. In order to evaluate each

application, the expert system must assess the data provided by each applicant and analyze

it against the information related to previous life insurance policies. All this medical and

statistical data reside in IBM data-processing mainframes, one of the largest in installations

in Japan. The advisory applications for the expert system run on microcomputers linked

directly to the mainframe complex. [9] Without a database, the evaluations simply could

not be made.

Likewise, when Britain's social security system needed an expert system to offer a

Retirement Pension Forecasting Service to the citizens, Arthur Anderson built a prototype

called Pension Advisor consisting of 330 rules to navigate the maze of Britain's social

security rules and regulations and help pensioners handle a variety of inquiries and

circumstances related to a citizen's Basic Pension and Additional Pension plans, including

change in retirement schedule, payment of debts, insurance existing overseas, and much

more. When a citizen's question arrives, the citizen's record is retrieved from a mainframe

containing the database. The pensioner then sets to work with the expert system residing

on a microcomputer. It is therefore a two-step process. Within minutes, an answer is

provided for the citizen's query. [9] Although the database is not physically part of the

expert system's knowledge base, it is clear that the information within the database is

critical to the system's decision-making process.

1.2 The Problem

Because the database is such an important part of the knowledge base, expert

system shell vendors incorporate some facility for manipulating and storing data in their

systems, and/or they provide access mechanisms to existing database applications to

eliminate the need for writing hooks. For example, Gold Hill Computers' GoldWorks II

allows direct access to dBase, a data processing application, without requiring the

knowledge engineer to write special code. GURU, from MDBS Inc., has a built-in



complete SQL language interface, an internal relational database management system, and

spreadsheet. Furthermore, it provides hooks to external sequential files, mainframe

Database Management Systems (DBMS'), PC DBMS', and PC spreadsheets. [11]

For real-time applications, however, many of these commercial tools are

inappropriate for a number of reasons. The system runs too slowly, or the architecture

does not allow the inference engine to directly access the database, or the access

mechanisms are too inefficient for real-time purposes, or the DBMS facilities come with a

great deal of unnecessary overhead, or funding is insufficient to purchase such a

sophisticated yet expensive piece of software. For one or more of these reasons,

knowledge engineers usually rely on a custom-made DBMS, a feature that is quite common

in the artificial intelligence community. [10] Moreover, if the last reason is applicable,

they get a more economical development environment like CLIPS, a rule-based expert

system shell that provides neither a database nor hooks to external database applications,

thereby forcing the knowledge engineers to develop their own custom DBMS.

Although real-time applications have been built using an expert system shell with

built-in storage functions and hooks to external databases, it is in many cases simply more

appropriate to write a custom database. The problem may be that the architecture of the

expert system imposes too many storage and retrieval problems for the application's real-

time purposes, or access to an external database cannot be achieved directly or efficiently,

or the shell simply does not provide a good enough DBMS, or undesirable overhead creeps

into the system by using external DBMS facilities. For the American Express Authorizer's

Assistant expert system, some of these problems became true. For the "Principal

Investigator-in-a-Box" [PI] expert system currently under development, all of these

problems are true.

1.2.1 The American Express Approach

When a buyer goes to make a purchase at a store using an American Express Card,

the sales clerk takes the amount of purchase, reads the magnetic strip, and sends the



information over telephone lines to one of two operating centers at Phoenix, Arizona or

Brighton, England. At one of these operating centers, some statistical analysis takes place

and returns the approval to the point-of-sale terminal in front of the sales clerk. If a

questionable case arises, the transaction is changed over to human authorizers at one of the

authorizing centers such as the Fort Lauderdale center. Here, the human authorizer is

presented with the transaction under question and has seventy seconds to decide to approve

or reject the purchase. The conventional way of making such a decision was to analyze the

individual's credit record, maybe talk to the merchant or purchaser, and then decide yes or

no by applying a large body of knowledge, policies, and rules accumulated over years of

experience American Express has had with these transactions. This procedure may include

consulting a four to five inch authorizers' training manual. [9]

The Authorizers' Assistant (AA) expert system was built to help authorizers with

this high pressure, complicated, and demanding task of deciding whether or not to

authorize a transaction, and at the same time reduce the losses due to poor judgements. The

AA system was developed by Inference Corp. using ART to run on a Symbolics Lisp

machine, piggybacking twelve databases on an IBM mainframe. From the beginning, this

architecture imposed many problems in storage and retrieval. Worse, the expert system

does not access the information directly from the databases. The system gets the data by

first retrieving the screens that an authorizer would normally see in a transaction and then

parsing the information before being digested by the knowledge base. Problems crept in

during the development of AA. Errors and extra overhead appeared in the database

systems. Even the project manager, Bob Flast, admitted that this was a suboptimal

solution. [9]

1.2.2 The "Principal Investigator-in-a-Box" [PI] Approach

The expert system with which the author is personally involved is called "Principal

Investigator-in-a-Box" [PI], or more formally, Astronaut Scientific Advisor. The purpose

of [PI] is to advise astronauts on the Space Shuttle during scientific experiments. This



advice usually takes the form of information required in trouble-shooting a malfunctioning

piece of equipment or changes in the experiment's schedule. [2,20]

The motivation for this system was that, despite their rigorous training and

scientific backgrounds, astronauts are often unprepared to handle all the contingencies and

unexpected events that may occur during an in-flight experiment. Although the astronaut

can sometimes rely on communication with the experiment's Principal Investigator (PI),

who is on the ground when unexpected circumstances occur, this spacecraft-to-ground

communication is often not timely enough or is of insufficient bandwidth to permit the PI to

effectively assist the astronauts. Hence, the [PI] expert system is being developed such

that it would be capable of performing rapid data analysis and providing recommendations

to the astronauts that the PI would provide if he were available on board during the

experiment. [2,20]

The [PI] system is being developed using CLIPS, from the Artificial Intelligence

Section at NASA/JSC, and HyperCard on the Macintosh platform. It currently consists of

eight different software modules on two Macintosh lix's to collect and reduce raw data

from an experiment, monitor an experiment's progress and suggest modifications to the

schedule when necessary, recognize experimental data that are likely to be "interesting",

diagnose and correct problems in the experimental equipment when they occur, generate

new experiments based on previous "interesting" results, moderate inter-module

communication and properly allocate system resources, and allow astronauts to interact

through an interface. [2,20] Of these modules, three are knowledge bases already in

operation. At present the setup uses an ad hoc distributed file system to store its data.

There are four files, each with its own file structure, to store the processing results of the

three knowledge base modules residing in the CLIPS shell, and to store the information

contained in an inter-module communication software residing in the HyperCard

application. Such a file structure was used because the CLIPS shell does not provide a

built-in DBMS. The problems of this architecture are readily apparent.



When one of the knowledge base modules wishes to retrieve historical data needed

for its processing, it must first send a message to the communication module requesting the

piece of information. The communication module interprets the message and retrieves the

information from its own file or one of the other files and sends the data to the inquiring

knowledge base module. In this set-up, much time is wasted by first asking for the data,

having its request interpreted, and then getting the information from outside its shell

environment. Furthermore, updating data for concurrency is difficult. Four different

update mechanisms for four different file formats are used. Although historical data are

stored in the HyperCard environment, this information is not directly accessible by those

knowledge bases residing in CLIPS. As a result, some of the information needed in the

reasoning is requested from the user even though the information already exists in one of

the files. This indirect information retrieval scheme is obviously not the optimal solution.

An alternative was to use a commercial database application. This was one of the

considerations during the project's initial development stages. Unfortunately, commercial

databases usually come with a large DBMS. The DBMS provides facilities for

"concurrent" access, update, protection, and security of the database. For systems, like

[PI], which have only a small concurrency requirement and do not need much data

security, an extensive DBMS is of little use and causes unnecessary overhead. Also, a

commercial database not compatible with the expert system language and paradigm (e.g.

rule-based, object-oriented, model-based, etc.) involves significant overhead needed in

communicating with the modules of that expert system. Worse, most commercial

databases require that they run as single, independent applications, allowing no other

application to run while a database is being used. Because of these factors, the project team

realized that [PI] does not need all the facilities of a commercial database, as the needs of

[PI] are small scale, and the overhead of a general purpose database would consume

extensive computing resources that would compromise the performance of the expert

system.



1.3 A Better Solution

The solution that the author finally chose to implement for [PI] is based primarily

on the real-time constraints of the expert system and the fact that some DBMS capabilities

are needed in order to store and retrieve the data in an organized fashion. The database

must provide some of the functions of a commercial database, but not all. At the same

time, it must perform access operations quickly enough to fall within the real-time

constraints. More importantly, the data must be directly accessible to the knowledge base

modules in order avoid the unnecessary overhead and waste in time associated with the

distributed file system. This means that centralization of the data is required.

The scheme chosen is to implement the database entirely within the CLIPS shell. A

relational database in the CLIPS environment offers a number of advantages. First, the

problems of the distributed system immediately vanish. Concurrency updates involve only

a single location where the data needs to be changed. In the distributed system, multiple

occurrences of the data require multiple updates. Historical data must reside in the CLIPS

environment where the knowledge base modules can directly access without going through

an intermediary communication module residing in HyperCard, who must collect it from a

real-time data stream and the various CLIPS modules of [PI]. Because historical data is

readily accessible, the user is no longer prompted for information that already exists in the

database. With this approach, the expert system needs only one set of data access

mechanisms, instead of four. Second, file management considerations are handled by a

single piece of software, thus avoiding the possibility of file lock-out which can occur

when multiple pieces of software want to access the same file. [8] Third, the knowledge

bases no longer need to worry about opening and closing files. Accesses to historical data

involve fewer rules, making it easier to retrieve and store information. Fourth, functions

built into the relational model, such as record insertion, selection, updating, and deletion

allow off-line data manipulation to be performed once the expert system returned to

ground, something that is not offered by the distributed set-up. The real-time
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considerations are also important for this solution. As will be seen later, this

implementation scheme provides access times that fall within the real-time definition for the

[PI] expert system.



CHAPTER 2

EMBEDDING A CUSTOMIZED REAL-TIME DATABASE

WITHIN AN EXPERT SYSTEM

2.1 Introduction

A number of considerations must be made when building a database for an expert

system, especially when the database is to operate in real-time. Many of these

considerations are application dependent For example, selection of the host language in

which the database will be written is for the most part dependent on the representation

scheme already selected for the expert system. Likewise, the way the data is stored and

retrieved should be a direct procedure involving little or no interfacing to an external

environment. The more interfacing required, the more overhead will be present in the final

product. This overhead can result in a waste of memory and access time. Closely related

is the way the data is to be inserted into the knowledge base. The database needs to be

compatible with the expert system language and paradigm, else extra overhead can creep

into the system. Finally, the real-time behavior must fall within the bounds of the time

constraints. This is dependent on the definition of real-time imposed by the external

environment, which is in itself related to the system's application.

2.2 The Host Language

Considerations for the host language include selection of the method for

manipulating the database. One method, which will be described first, involves an

application program with embedded capabilities to access an external database. This

architecture uses procedure calls and a temporary storage pool for information retrieved

from the database.

Because it must perform a variety of ordinary computational tasks, it is usually

necessary for the application program to do more than just manipulate the database. For

example, a program used by an airline to book reservations does not only need to retrieve

from the database the current number of available seats on the flight and to update that



number. It needs to make a decision: are there enough seats available? It might well print

the ticket, and it might engage in a dialog with the user, such as asking for the passenger's

frequent flier number. [16]

Thus, this approach involves writing the database in a conventional host

programming language such as C or even COBOL. The host language is used for making

decisions, for displaying questions, and for reading answers. In fact, it is used for

everything but the actual querying and modification of the database. [16]

Here, the commands of the data manipulation language are invoked by the host

language program in one of two ways, depending on the characteristic of the DBMS. (1)

The commands of the data manipulation language are invoked by host language calls on

procedures provided by the DBMS. (2) The commands are statements in a language that is

an extension of the host language. Possibly there is a preprocessor that handles the data

manipulation statements, or a compiler may handle both host and data manipulation

language statements. The commands of the data manipulation language will thereby be

converted into calls to procedures provided by the DBMS, so the distinction between (1)

and (2) is not a great one. [16]

In this configuration, there is local data belonging to the application program, data

that is manipulated by the program in the ordinary way. Embedded within the application

program are procedure calls that access the database. A query asking for data causes the

answer to be copied from the database to variables in the local data area. If there is more

than one answer to be retrieved when a fetching procedure is called by the application

program, then these solutions are retrieved one at a time. [16]

The disadvantages with this approach are obvious, especially for real-time

applications. The host language does not do the actual data manipulation. It relies on

procedure calls, or messengers, to do its job. The application program is not directly tied

to the database. It uses a local pool of information through which data is shuttled to and

from the database. The local area acts as an intermediary liaison that sits between the



application program and its database. In real-time expert systems, the waste in time and

overhead used to send procedure calls and temporarily store information may be

unacceptable.

An alternative approach is to bring the database so intimately close to the expert

system that they become almost one and the same. Here, the host language is the same

language in which the application program is built. By writing the database in the expert

system's host language, the procedure calls are no longer present Manipulation of the data

in the knowledge base is now done through the same rules that were used in the

application. Because the database is an integral part of the knowledge base, the expert

system can perform reasoning based directly on the database, which may reside in the

knowledge base's list of facts. Using the airline example, the expert system can bind the

frequent flier number contained in the database directly into one of its rules and decide

whether or not the passenger deserves a discount.

With this approach, manipulation of data is done through commands which are

extensions of the expert system's rules. For example, data insertion involves triggering the

rules that perform the insertion. Once certain conditions are satisfied, such as the fact that

an insertion has been requested by the application program, and the fact that the record to

be inserted contains the passenger's name and frequent flier number, several rules are fired

to insert the information into the database. Likewise, data retrieval involves triggering the

rules which perform the retrieval procedure. By specifying the fact that a retrieval has been

requested, that the number of miles the passenger has traveled is the parameter to be

retrieved, and that the passenger's name and frequent flier number are Joe and 123456,

several rules are fired to retrieve the requested information. Once the information has been

retrieved, the expert system can reason directly with the data to see if the passenger

deserves a discount In other words, the rules perform the DBMS functions.

Because the database resides within the expert system's knowledge base, there is

no local data area where information is temporarily stored. The DBMS functions in the



application access the database directly without using procedure calls written in C or

COBOL. The DBMS functions can retrieve, store, update, and delete information as

needed because the data it manipulates sits directly in the expert system's knowledge base.

This is definitely the better approach, especially for real-time systems with a small

database.

The disadvantage with this approach is that it may actually become too unwieldy for

systems with large databases. The rules themselves may not be proficient at searching

through an extensive array of information. Furthermore, the expert system may impose

memory constraints which would make storing an extensive database within its knowledge

base impractical. The limits of this methodology are therefore mostly application

dependent. For [PI], a system with relatively small memory requirements for its data, this

approach is a viable solution.

2.3 Knowledge Base Considerations

It should be noted that, at this point, discussion will proceed assuming that the host

language selected for the database is the same as that used in developing the expert system,

which would be the more viable approach for a real-time expert system with a small data

set. With the host language considerations already made, the appropriate framework, by

which the database is to be embedded within the knowledge base, should be pursued.

Here, much of the consideration is centered around the expert system shell already

chosen for the application. It is the shell that determines the appropriate compatible

paradigm to be used for the database. In general, expert system shells allow knowledge to

be represented in one of two ways: framed-based reasoning or rule-based representation.

The types of knowledge that can suitably be structured using a frame-based organization

can range from collections of related facts, to relationships between such collections, to

rule-based and even procedural representations of knowledge. In rule-based tools,

knowledge is conceptually represented as IF/THEN statements as described before. In

some sense rule-based reasoning is a subset of frame-based reasoning. What follows will



first be a description of the framed-based representation paradigm, then a description of the

rule-based paradigm. [17]

The knowledge structures provided by a frame-based form of representation

facilitate the development of a knowledge-based application in two ways. First, they assist

the knowledge crafter in understanding the relationships that exist among the data being

assembled. Second, they enhance the ability of the inference engine to operate on those

data as well as on those structural relationships.

A frame can be viewed as a collection of related information about a topic. This

information may be factual or procedural. A frame may be taken to represent a class of

similar objects; other frames, representing subclasses or specific instances of those objects,

can be formed from the initial class frame. The properties contained in a class frame can be

inherited by its subclass and instance frames. Rule-based and procedural knowledge

representations can operate on frame-based representations. A style of programming,

termed object-oriented programming, has been developed on the frame foundation.

Frame-based representations offer an attractive way to structure a knowledge-based

application and, together with frame-based reasoning, offer a powerful way to analyze

problems. They also facilitate the rapid prototyping of knowledge-based applications and

the modification of the knowledge base.

One of the major dissatisfactions expressed with frame-based reasoning concerns

efficiency. The structures and capabilities of this representation scheme offer a wide

variety of benefits, but these benefits are achieved only at a price. The dynamic ability to

modify the knowledge structure or to modify the facets associated with a slot of a frame

during execution of the application system requires that a considerable amount of checking

be performed at execution time. The computer cannot store a fact in a frame with the

execution of a single store command. Instead, the various facets governing the slot must

be referenced to verify that storage of this particular value is permitted, to check whether

this action is to be trapped, and so on. A simple store instruction that would involve only a



single computer command in systems using other forms of knowledge representation can

easily explode into tens of hundreds of instructions in a frame-based scheme. This

expansion, of course, is accompanied by a degradation in the application's execution

speed. [17]

In rule-oriented expert system shells, knowledge representation is based on the

logical statement IF <predicate> THEN <consequent>. Using such statements, knowledge

crafters formulate the knowledge they obtain form the experts into sets of such rules. The

inference engine then analyzes and processes these IF/THEN rules in one of two ways,

backward or forward. In backward-chaining, the inference engine works backward from

hypothesized consequents to locate known predicates that would provide support. In

forward-chaining, the inference engine works forward from known predicates to derive as

many consequents as possible.

One of the most distinguishing features of rule-based developments tools is the

pattern matching capabilities of the inference engine. This allows them to match a new data

value with only those rules that reference that data value. Thus, predicates need only be

tested only for those rules that might be affected by the new value. The effectiveness of the

pattern matcher in an inference engine can significantly affect the tool's execution

efficiency, a critical consideration for real-time systems.

Another characteristic of some pattern-matching algorithms is the ability to evaluate

a given predicate only once, even though it might appear in more than one rule. Not only

do such pattern-matching algorithms contribute to the efficiency of the inference engine's

operation, but they also prevent some of the side-effect problems that can occur from

multiple evaluations of a predicate. Some inference engines are much less sophisticated

and much more brute force in approach. Rather than working only with those rules whose

predicates include new facts or newly provided data items, some forward-chaining

inference engines arbitrarily test every rule in the knowledge base to see if it can be fired.

If any rules are actually fired, then every rule in the knowledge base will again be tested,



and so on until no further rules can be fired. Obviously, the inference engine of such tools

are inefficient.

Therefore, when building a customized real-time database in an expert system shell,

the considerations to be made are largely centered around the representation scheme on

which the shell is based. The paradigm may be frame-based to take advantage of the

powerful structural relationships offered by the frame-based representation scheme. Or, it

may be some other paradigm, more suited toward taking advantage of the pattern-matching

capabilities of rule-based inference engines.

Furthermore, efficiency is an important factor for real-time expert systems. The

large overhead imposed by the framed-based scheme needed in providing the storage

capabilities of a DBMS may be impractical for real-time applications. On the other hand,

the pattern-matching facilities of a rule-based inference engine may be so brute force that a

pattern-matching paradigm will cause poor execution performance when storing, retrieving,

updating, and deleting information from the database.

2.4 Data Model Considerations

The next major consideration is the database itself. To start with, a data model,

formally defined as a notation for describing data and a set of operations used to manipulate

that data, must be chosen. There are many data models that can be considered, including

the entity-relationship model, relational data model, network data model, hierarchical data

model, and object-oriented model, each with their own special capabilities, characteristics,

and functionality. [16] Although data models have a rather abstract characterization of

how data are to be manipulated, the following provides some distinctions that should be

noted:

Purpose. In general, models serve the purpose of providing a notation for data and

notation on which a data manipulation language is based. The entity-relationship model, on

the contrary, provides a notation for conceptual design, before the implementation of the



model of whatever DBMS is finally used. It therefore lacks a definition of how the data is

to be manipulated. In some sense, it is not really a data model.

Object- or Value-Orientedness. The network, hierarchical, and object-oriented

models come with object identity and are therefore called object-oriented. Value-oriented

models, such as the relational and logical models, are declarative. That is, they support

query languages. Nondeclarative models have been known to require less optimization.

Dealing with Redundancy. All models provide some way of helping the user

prevent data from being stored more than once. Redundancy tends to waste memory space

and requires concurrency control to keep the data consistent. Object-oriented models are

able to cope with redundancy better than the other models because they allow the user to

create a single object and refer to it using pointers from many different locations.

Dealing with Many-Many Relationships. Frequently, a database needs the

capability to store many-many relationships, where each element in a group is related to

many of another group and vise versa. For example, the relationship between students and

courses is that each class contains many students and each student takes many courses.

Designing a storage structure to allow the querying of these many-many relationships is not

easy. Each model deals with this problem differently. The relational model puts the

problem at the design level, while the network model does not allow many-many

relationships at all, forcing the designer to factor the problem differently.

Whatever data model is finally chosen for implementing the DBMS in the expert

system shell, however, the functionality must as a minimum include the abilities to (1) store

data, (2) retrieve data, (3) change data, and (4) remove data. There may also be indexing

functions to reduce data search time, ability for storage of views, security capabilities for

data confidentiality, integrity checking mechanisms like masking and placing data range

constraints, and locking to prevent the lost update problem in shared systems. [7]

Nevertheless, the least a DBMS must be capable of doing is storing, retrieving, changing,

and removing data. Taking the relational model as an example, the notation that may be



provided for these data access functions might include INSERT, SELECT, UPDATE,

DELETE (in SQL); I., P., U., D. (in QBE); INSERT, LIST, CHANGE, DELETE (in

NOMAD); APPEND, DISPLAY, REPLACE, DELETE (in dBase). Although the notation

may vary, the functionality is the same.

2.5 Real-Time Constraints

For real-time expert systems, there is one more important consideration. This

concerns the real-time constraints in which the database must behave. Again, the definition

of real-time behavior is largely dependent on the application for which the expert system

was developed. The constraint may come from the external environment in which the

system operates. Or, it may come from the expert system itself, as when information needs

to be accessed before a specified deadline in order to perform acceptably. For the American

Express Authorizer's Assistant system, a seventy second time limit is the constraint. For

[PI], the DBMS functions must execute sufficiently fast to prevent the database from

noticeably holding up the rest of the system.

2.5.1 Definition of Real-Time

Many ideas of real-time exist. In some cases, real-time is used to signify "fast" or

"faster". A system which processes data quickly is often considered to be a real-time

system. An alternative idea of a real-time system is one which yields a response after a

"small" number of processing cycles have passed. Given more processing cycles to work

with, the system refines its response. Yet, a third concept of real-time can be given. A

system is said to exhibit real-time behavior if its response time is of the same order as the

time scale in which external events occur. This definition suggests a notion of real-time

which concentrates on the relationship between response time and the length of time it takes

for environmental events to occur. [8]

There is, however, a crucial distinction between real-time behavior that provides

guaranteed deadlines and behavior that exhibits high speed. In practice, the two behaviors

are linked. In general, guaranteed deadlines require manipulation of in-memory objects.



High speed refers not only to hardware enhancement, but also to main-memory techniques,

such as caching, prefetching, and parallel access. Because the issues of real-time systems

have been the subject of much discussion in the literature, some of the issues pertinent to

building a real-time database will be presented.

2.5.2 Issues of Real-Time

One of the most important measures of performance in real-time systems is

response time. In these systems, the application task is often broken up into sub-tasks

called modules, much like the way [PI] is composed of different software modules, each

with a different functionality. In some cases, groups of one or more modules are assigned

to different processors for processing. Response time is dependent on factors such as

interprocessor communications, allocation of resources for the modules, data storage

scheme, priority of the processors, and concurrency control procedures used in regulating

shared resources. [4]

Concurrent operations and contention over resources in such systems are usually

modelled using queueing networks. The processors are represented as servers, and

modules are thought of as customers. The rate at which modules are invoked is thus the

rate the customers arrive. Queueing networks, however, are limited in that they can

represent only some forms of priority relationship and synchronization between modules.

Moreover, the complexity of the model grows quickly when more modules are added to the

application. As a result, it is sometimes impractical to use the queueing model for judging

response time. [4]

Fortunately, there is a better model, developed at UCLA, for estimating the

response time in multi-modular system. This model takes into account the queueing delay

of each processor and then sums the module response times according to the module

priority relationships. As it turns out, the model serves to predict response times fairly

well. [4]



Although more related to schedulers than to databases, one interesting issue under

discussion in the literature concerns the case of multiple deadlines. A difficult problem

dealt with in the design of real-time systems is the handling of sporadic tasks, which are

tasks that come with hard deadlines and at random times. Because the arrival times of

sporadic tasks are unpredictable in nature, it is difficult to design a system able to guarantee

that the deadlines of the all the sporadic tasks will be met. One way to handle this problem

is by having an on-line scheduler decide if, given the execution times and deadlines of new

tasks arriving at the system, all the deadlines can be met. If they can, the system executes

the schedule constructed by the on-line scheduler. If they cannot, the system tries to meet

the deadlines of the most important tasks and allows the deadlines of the least important

tasks to be missed. An on-line scheduler is said to be optimal if it is able to schedule all the

tasks such that they can be feasibly executed by the system's processors. It is interesting to

note that no optimal on-line scheduler exists if the tasks have a multiple number of

deadlines. [14] This may be something to consider when building a real-time database

with an on-line scheduler to handle tasks that are inherently sporadic in nature.

In some real-time systems, it may be appropriate to implement a scheduler

according to a time-driven scheduling model. In this model, the importance or value of a

task is a direct function of its execution time. This function may not always be linear. The

goal of a time-driven scheduler is to decide which are the most important tasks to complete,

and as a result maximize the overall value. Depending on the application of the expert

system, this approach can work very well. On uniprocessor systems, however, this

approach is known to impose high processing overheads that make it rather impractical.

Under heavy loads, a time-driven scheduler has been shown to spend 80% of its time

deciding which task to execute next, and only 2% of its time doing actual scheduling.

Therefore, this approach can work advantageously or poorly, depending on the type of

system used for the application. [18]



One more issue worth mentioning is the distinction between hard and soft

deadlines. In some applications, it is imperative that time bounds are met. Examples of

such applications include flight control systems, nuclear reactor processing systems, and

many real-time control operations in industry. For such systems, the time bounds impose

hard deadlines, else failure to meet the deadlines will result in some form of damage, like

loss of lives, nuclear melt-down, etc. The other type of deadline is the soft deadline. This

is usually expressed by some percent probability that a requested task will be carried out in

a specified time. Soft deadlines are important to systems that have a bound on the response

time, but failure to meet them does not result in death, disaster, etc. Examples in which

such deadlines exist include telephone switching networks and computer networks. When

building a real-time database, the type of deadline applicable to the system should be

considered. [12]

2.5.3 Common Real-Time Mechanisms

There are several real-time mechanisms that can be employed when implementing a

database. Some mechanisms focus on the process of database updating while others on

query computation. Real-time behavior can be approached by making database updates and

query computation speedier, or by making the database more intelligent This may include

both software and hardware enhancements. The mechanisms considered here will strictly

be software-based solutions. They include query optimization, minimization of the number

of database queries, permitting processes to share memory with the database, prioritization

of updates, and establishing an update sampling frequency. [8]

Query Optimization. The objective of query optimization, as often discussed in the

literature, is to take a query expression, find functionally equivalent expressions that

require less evaluation time, and evaluate the expression that costs the least in terms of

computation. This may prove useful in expert systems that use only a finite set of queries.

Although flexibility is sacrificed for speed, much time can be saved if frequently used

expressions are optimized in such a way that they do not need complete re-evaluation.



Minimization of Database Queries. Because all queries require some amount of

time to be executed by the system, reducing the number of queries that are made to the

database means reducing the total time spent processing database functions. With fewer

queries, computational resources can be shifted away from the database and be used by

other parts of an expert system, like process control or data quality monitoring. There are a

number of ways of reducing the number of queries. They include the use of triggers,

which allow data to be directly sent from the database to a display screen without actually

performing a database retrieval operation, and the use of prefetching to keep data

manipulation within the main memory as much as possible and to minimize the number of

file accesses.

Shared Database Memory. In practice, databases tend to prevent their data from

being accessed directly. Accesses are permitted only through some interface to avoid

storage of invalid data and unauthorized data accesses. This kind of control, however, can

impede the data access to a point that is unacceptable in a real-time environment. Accesses

can be performed more quickly if processes are allowed to share memory with the

database, for example by putting some or all of the database's information in the expert

system's knowledge base. The disadvantage of this approach is that some control over the

data is lost, resulting in relaxation of concurrency control and thus, possibly, data integrity.

Prioritized Updates. Sometimes it may be necessary to prioritize updates,

especially when the volume of updates is high. Similar to the time-driven scheduling

model, the goal is to perform updates that are more important and queue other updates for

later processing. This approach assumes that a response time and value is assigned to each

update request. Again, the value is some linear or nonlinear function of the response time.

The updates must be prioritized such that the sum of the values of the executed updates is

maximized.

Update Sampling Frequency. In some real-time systems, the sensors collect

information at a rate that is faster than the database is able to process the information. A



solution to this problem is to be selective about the information to be processed, or by

setting a maximum update frequency. If done correctly, the database has enough time to

digest one set of values and to update its views before the arrival of the next set of values.

The drawback with this approach is that unprocessed values are lost if the system's data

acquisition buffer is too small to temporarily store all the incoming values.

Of these real-time mechanisms, the most relevant to [PI] are those which speed up

query computation, allow processes and results to be shared between modules, and

eliminate as much file access as possible. The most frequently used queries should be

identified and optimized. Sharing data between modules will eliminate much of the

overhead involved when going through an intermediary communication module.

Furthermore, minimization of file access would reduce reading and writing information to

and from the disk, which are time-consuming processes that should be avoided as much as

possible. Although prioritizing updates would be useful, the volume of data is not high.

Therefore time-driven scheduling would have limited applicability. Similarly, because the

data set is relatively small for [PI], setting an update sampling frequency is not needed.



CHAPTER 3

IMPLEMENTATION OF REAL-TIME CLIPSBASE IN [PI]

3.1 Introduction

The project on which many of the previous considerations are centered, [PI], is a

real-time expert system developed using a Macintosh application called HyperCard and a

rule-based knowledge shell called CLIPS. [1,5] Lacking an internal database and hooks to

external database applications, CLIPS was provided with several custom-built DBMS

functions to allow storage, retrieval, modification, and removal of real-time information.

These DBMS functions were written within the CLIPS shell itself, hence CLIPSBase.

This chapter first describes the space experiment, Dome, for which [PI] was

developed, the organization of the real-time data used in the system, and the data model

chosen for the database. Then, it discusses the methods used to embed CLIPSBase into

the [PI] expert system by giving a background on CLIPS, pointing out various host

language constraints, identifying the knowledge base scheme, and detailing the DBMS

functions implemented. At the end, the real-time mechanisms employed in the database are

presented. These include query optimization, allowing results to be shared between

different modules, and minimizing file access.

3.2 [PI] and the Dome Experiment

[PI] is currently tailored to meet the needs of the M.I.T. Dome Experiment. This

specific experiment was chosen to illustrate the potential of [PI] in helping the Principal

Investigator (PI) and, ultimately, in improving space experimentation in general. By doing

so, the project team hopes to uncover some of the generic issues surrounding the use of

expert systems in space science. At this point, the Dome Experiment will be described,

followed by details of the [PI] system.

3.2.1 The Dome Experiment

Professor Laurence Young, at M.I.T., has implemented a series of experiments

whose goal is to understand how the human body adapts to microgravity encountered by



astronauts in space. As the Principal Investigator, he has designed the "Rotating Dome

Experiment" in his motivation to understand the relationship between human adaptation to

space and sensory cues. In the following, a description of the experiment is provided by

Professor Young: [21,22]

"The purpose of the Dome Experiment is to study the interaction of several spatial

orientation senses during and following adaptation to weightlessness. Normally, all the

senses (visual, vestibular, proprioceptive, tactile) act in harmony during voluntary head

movements. In orbit, however, the otolith signals, acting as linear accelerometers, no

longer produce signals which the brain can use to deduce the angular orientation of the head

with respect to the vertical-and of course the vertical itself ceases to have any real

significance. Nevertheless, the brain still searches for a reference system, within which it

can place external (scene) and body position measurements. Visual cues, both static and

dynamic, as well localized tactile cues, may become increasingly important in signaling

spatial orientation as the brain adapts by reinterpreting otolith signals to represent linear

acceleration, rather than tilt of the head with respect to the vertical. Semicircular canal cues,

which normally signal head rotation, are not necessarily affected by weightlessness, but

some evidence suggests that their influence also may be altered in space.

"Understanding of the level of brain adaptation to altered gravio-inertial forces may

help to explain and possibly alleviate the symptoms of space motion sickness, which are

thought to be related to sensory-motor conflict concerning spatial orientation.

"The hypothesis is that, in the course of exposure to weightlessness, visual, tactile,

and proprioceptive cues will all become increasingly important relative to vestibular

(particularly otolith) information in the judgement of body motion.

The procedure of the experiment is to have a subject stare into a hollow dome

covered with multi-colored 1.9 cm dots at a density of approximately 800 per square meter.

This dome rotates at various speeds and directions, while several measurements are made.

The operation normally takes an hour with two astronauts, alternating as operator and



subject. When the dome rotates, the subject, after some delay of several seconds, feels the

illusion that he himself is rotating instead of the dome. The latency of the illusion's onset

and its magnitude are recorded using a joystick manipulated by the subject. The data

coming from the joystick is supposed to be of good quality. Upon inspection, it is

relatively easy to interpret the amount of latency, magnitude, and other characteristics with

which the PI is able to determine how adequate the test was, and if unexpected responses

were encountered. Other measurements in the rotating dome experiment include video

recording of the ocular torsion (rotation of the eyeball), strain gauge response resulting

from the subject's neck torque, and electromyography (EMG) signals resulting from neck

muscle activity.

"The first part of the operation is unstow and setup of the dome, TV cameras and

recorder, and a portable oscilloscope. The next step is subject preparation, including the

application of neck electromyography (EMG) electrodes, a contact lens and a bite-board.

"The experiment is paced by a dedicated computer, the Experiment Control and

Data Systems (ECDS), which generates instructions, starts and stops the dome rotation

according to preprogrammed sequences, acquires, digitizes and transmits data, and permits

routing of analog test signals for hardware testing and for calibration.

"A brief test phase consists of verifying, on the oscilloscope, that each of the

signals is coming through cleanly and with the correct polarity, and that the dome runs.

"A calibration phase consists of monitoring (and having the ECDS store) standard

subject initiated movements of hand and head. The contact lens is irrigated to make it stick

to the eye and the eye-camera is set and focused.

"Each run contains 6 trials, with the three possible dome speeds (30, 45, 60

degrees/second) and two directions (clockwise and counter-clockwise) arranged in a

different fixed order for each of six possible runs. Each trial consists of a 20 second dome

rotation at constant speed and a 10 second stationary period, so that each run consumes 3

minutes.



"Each subject will normally undergo three conditions. The free float condition has

the subject restrained only by his or her bite-board and right hand on a joy stick. This is

the basic dome experiment, testing simple visual-vestibular interaction. The otolith organs

come into play in their failure to confirm head tilt, and the semicircular canals are relevant

because of their failure to confirm any initial angular acceleration.

"The neck twist condition is like the previous one, except that the subject starts each

dome trial by tilting his or her neck (which really means rotation of the rest of the body) in

roll-always to the same side for each run. This condition is motivated by the hypothesis

that proprioceptive signals from the neck lead to enhanced ocular torsion and perhaps also

enhance neck righting reflexes.

"The bungee (or tactile) condition has the subject held down to a foot restraining

grid plate (adjustable platform) by stretched elastic bungee cords. This condition, which

places a localized tactile pressure cue under the feet, is to examine the substitution of tactile

for inertial cues in weightlessness.

"Both for efficiency and to reduce order effects, the experiment usually is

conducted in the above order for the first subject and in reverse order for the second, with

the sequence of subjects kept the same during the flight.

"Following each subject's experience in the dome he or she is expected to report to

the PI on Air-to-Ground to discuss qualitative sensations and any unusual occurrences.

"The final phase is deactivation and stowing of the equipment.

"During the course of an experiment seven types of data are recorded, as

summarized below.

"Identification consists of the subject's ID (currently limited to 1-4 characters), and

the dome run and trial.

"The domne speed and direction (TACHometer) is available as a series of pulses

from a photocell located opposite silvered stripes on the back of the dome, and is computed

as an alphanumeric value.



"The joy stick (JS) signal comes from a potentiometer adjusted by the subject. The

subject uses it to indicate the strength of his or her visually induced rotation rate (not angle)

relative to the speed of the dome. Full deflection of the potentiometer clockwise, for

example, would indicate that the subject felt that he or she was rotating to the right (right

ear down) and that the dome (which was actually turning counter-clockwise) was

apparently stationary in space. It is a continuous signal, and it may be selected for display

on the oscilloscope by the astronaut.

"The biteboard measures the neck torque by means of strain gauges attached to the

support. It measures the tendency of a subject to straighten out his or her head to the

upright when sensing that he or she is falling. It is principally sensitive to roll strain, but

may respond to pitch and yaw torques as well. It is AC coupled with a 10 second time

constant, so only changes in neck torque are recovered. It too can be selected by the

astronaut.

"The neck muscle EMG from the right and left sides are also indicators of the

initiation of righting reflexes to straighten the head. They normally consist of a low level of

noise (both biological and instrument) during rest, and a burst of wide band activity during

muscle contraction. We are interested primarily in the direction and timing of these bursts.

"The ocular torsion (OT) is measured by a video camera focused through a hole in

the dome on the subject's right eye. Automatic data analysis of the OT is made possible by

the opaque landmarks on the contact lens, which adheres to the eye briefly by application of

distilled water. This measurement is very sensitive to camera adjustment, and the operator

must assure proper focus, centering on the lens and bite-stick marks, and non slippage of

the lens.

"The neck angle measures body sway, since the head is held stationary by the bite

board. To accomplish this, a second video camera is aimed at the astronaut's back,

suitably marked for automatic data reduction."



3.2.2 The [PI] System

Because of the problems mentioned before of limited resources in space, such as

small bandwidth and lack of real-time access from the ground to data and astronauts, the

[PI] project was initiated to take advantage of expert system technology. The goal of the

project is to provide advice to the astronauts that the PI would provide if he or she were on

board the Shuttle during the experiment. The system would embody the knowledge and

know-how of the PI in order to make changes in the experimental protocol in response to

unexpected events in the external environment. These events may include malfunctioning

of a piece of experimental equipment, poor data quality, and "interesting" data.

The system must therefore be eminently real-time. While response time need not be

instantaneous, the system must be able to keep up with the events during a one hour Dome

session in which nominally six runs occur. Astronauts are under a great deal of pressure to

complete many experiments according to a schedule. They do not have much time that can

be devoted to fixing equipment failures and designing new protocols when things go

wrong. The system must be able to provide useful advice as needed in the event

troubleshooting or instant analysis is required. The variety of circumstances under which

the astronaut must deviate from the pre-defined protocol include: [2]

The experiment is running late. This could, among other things, be due to a late

start or delay in performing some of the steps of the experiment. Since the ending of the

session is strictly enforced, some parts of the experiment may have to be eliminated.

There are equipment problems. A piece of equipment may have failed, possibly

degrading the quality of the collected data by eliminating one of the data sources. A

decision has to be made as to whether to continue the experiment with degraded data or to

spend valuable session time trying to troubleshoot and fix the problem.

The subject's collected data may be "interesting" or it may be useless. When the

data is found to be "interesting", it might be desirable to perform addition runs on that



subject. On the other hand, when subject provides "erratic" data that is useless, it might be

desirable to concentrate on the other subject.

3.2.2.1 The [PI] Architecture

The present version of [PI] consists of the following modules:

(1) The Data Acquisition Module (DAM) collects and reduces the raw data from the

on-board experiment equipment.

(2) The Data Quality Monitor (DQM) ensures that the incoming data is reliable and

error-free.

(3) The Protocol Manager (PM) helps keep the experiment on schedule by

monitoring the experiment's progress and suggesting modifications to the protocol when

necessary.

(4) The Interesting Data Filter (IDF) recognizes experimental data that is likely to be

"interesting" to the PI, and helps the protocol manager suggest ways to pursue the

interesting results.

(5) The Diagnostic and Troubleshooting Module (DTM) helps the astronaut isolate,

diagnose, and correct problems in the experimental equipment.

(6) The Experiment Suggester (ES) uses input from the IDF to construct new

experiments that investigate previous "interesting" results.

(7) The Executive moderates all inter-module communications, and ensures proper

and timely allocation of system resources.

(8) The Human Interface (HI) allows the astronaut to interact with most of the

modules.

The current architecture of [PI] is shown in Figure 1. [2] When raw time-series

data arrives from the ECDS computer, it is relayed to the DAM and DQM on the Data

Computer for statistical analysis and reduction. The parameters extracted from the raw data

include means, maxima, and signal quality. The extracted parameters are then relayed, via

a serial port connection, to the Executive on the AI Computer where it is stored in a local



database residing in the HyperCard environment. Any communication between the other

modules on the AI Computer as well as any information retrieval is done so through the

Executive.
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Figure 1. Architecture of [PI]

3.2.2.2 [PI] Data Model

Without getting into any detailed descriptions, the data from the experiment can be

summarized as follows:

Trial Data. Trial data consists of (a) vection onset time, (b) number of dropouts, (c)

average vection, (d) maximum vection, (e) first movement detected by the biteboard, (f)

second movement detected by biteboard, (g) first movement detected by the EMGs, (h)

second movement detected by the EMGs, (i) joystick quality, (j) joystick average, (k)

biteboard quality, (1) biteboard average, (m) left EMG quality, (n) left EMG average, (o)

right EMG quality, (p) right EMG average, and (q) quality override flag.

Run Data. Run data consists of (a) trial numbers (1-6), (b) trial quality, (c) start

time, (d) end time, (e) duration, (f) environment, (g) condition, (h) subject, (i) mean

vection onset time, (j) standard deviation (sd) of vection onset time, (k) mean number of

dropouts, (1) sd of number of dropouts, (m) overall average vection, (n) sd of overall

average vection, (o) mean maximum vection, (p) sd of maximum vection, (q) mean first

movement detected by the biteboard, (r) sd of first movement detected by the biteboard, (s)

mean second movement detected by the biteboard, (t) sd of second movement detected by
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-40-

-40m-

-410- 0



the biteboard, (u) mean first movement detected by the EMGs, (v) sd of first movement

detected by the EMGs, (w) mean second movement detected by the EMGs, (x) sd of

second movement detected by the EMGs, (y) interestingness flag, and (z) level of

interestingness.

Session Data. Session data consists of (a) run numbers (1-6) and (b) run quality.

General Information. There is general information used occasionally by the various

modules. This includes (a) time left in the current session, (b) validity of various signals,

and (c) troubleshooting time estimates for various possible malfunctions.

Subject Information. Subjects have attributes such as (a) name, (b) crew code, (c)

MIT subject code, (d) height, (e) weight, and (f) age.

Altogether, there are five entities, namely trial data, run data, session data, general

information, and subject information. Some of them have only a few properties, while

others have many. To find a data model that fits this sort of organization is fairly

straightforward because the data is inherently relational. For example, the subject entity

has several attributes, which includes astronaut's full name, his or her NASA crew code

(like PS, MS, etc.), MIT subject code (M, N, O, P, Q, R, S, or T), and other properties

like height, weight, and age. The subject entity is related to the run entity through the

subject name. Although the frame-based model is also a possible approach, the

relationships between the trial, run, session, general, and subject entities do not closely fit

the classes and subclasses of object-oriented knowledge representation. For this reason

and the fact that the frame-based approach imposes a great deal of overhead, required in

implementing frames and slots and in referencing slots to verify that a storage instruction is

permitted, the relational model was chosen.

There are other reasons why the relational model was chosen. Because [PI] is a

real-time system, response time is critical to the design consideration. Response time is

largely dependent on how efficiently the DBMS functions are implemented. The relational

model requires relatively little overhead to create records and fields. The cost of defining



the structure of a relational organization is small. Tables are compact and make efficient

use of memory. Furthermore, relational algebra is succinct yet versatile. In a rule-based

shell such as CLIPS, relational access mechanisms require relatively less overhead to

implement compared to the frame-based approach.

There are a number of ways to organize the data. It may be organized according to

the five entities just given using five tables. Or, it can be organized into four tables, with

the entities being run data, session data, subject information, and general information.

Here, everything is the same as above, except the trial data would be organized into records

within the run table. The trial numbers can be the primary key within the run table and the

various attributes of trial data can be organized into fields, each field being a property of the

trial data. Likewise, the run numbers can be the primary key within the session table, and

the various attributes of the run data can by organized into fields, each field being a

property of the run data. Because the procedure for designing a database can get rather

complicated, the details will not be given here. A good reference is C. J. Date's

Introduction to Database Systems. [7]

3.3 Methods Used to Embed CLIPSBase within [PI]

With the data model established, the next task is the actual implementation. In order

to do so, familiarity in the knowledge shell as well as its constraints is first required. Then,

the design criteria must be outlined according to real-time constraints, interaction scheme

between different modules, the data set size, and system resource availability. The method

by which records are to be integrated with the knowledge base must be determined.

Finally, a set of DBMS functions are developed according to the above considerations.

3.3.1 Background on CLIPS

For the reasoning part of [PI], CLIPS (C Language Integrated Production System),

was used. [5] CLIPS, inspired by OPS5 and using an ART-like syntax, was developed

by NASA specifically to provide high portability, low cost, and easy integration with

external systems. [13] Knowledge representation is done through a forward chaining rule



language based on the Rete algorithm. CLIPS is reasonably simple yet powerful. It

includes tools for debugging and can handle customized extensions to its language. Best of

all, it is free!

As presented in the CLIPS Reference Manual, "the primary method of representing

knowledge in CLIPS is a rule. The developer of an expert system defines rules which

describe how to solve a problem. CLIPS provides an inference engine which attempts to

match the rules to the current state of the system and applies the actions. The current state

is represented by a list of facts.

"Facts are the basic form of data in a CLIPS system. Each fact represents a piece of

information which has been placed in the current list of facts, called the fact-list. Rules

execute (or fire) based on the existence or non-existence of facts. A fact is constructed of

several fields separated by spaces. Any number of fields may be stored in a fact, and the

number of facts in the fact-list is limited only by the amount of memory in the computer.

Facts may be asserted into the fact-list prior to starting execution and may be added

(asserted) or removed (retracted) as the action of a rule firing."

For example, the rules of a simple knowledge base may contain:

(defrule define-computer-programmer
(it does not eat quiche)
(it wears thick glasses)
(it thinks in binary)

(assert (it is a computer programmer)))

If, during the course of the knowledge base's execution, the three facts (it does not eat

quiche), (it wears thick glasses), and (it thinks in binary) exist in the fact-list, the rule

define-computer-programmer is fired and the fact (it is a computer programmer) is asserted

into the fact-list.

Among many capabilities, CLIPS allows variables to be bound to values, read/write

functions to manipulate text files, printing to the computer display screen, logical operation

of a rule's predicate conditional list, and fast pattern matching between facts in the fact-list



and rules in the knowledge base. All of these functions are useful in building the DBMS of

a relational database in a rule-based environment.

3.3.2 Host Language Constraints

Despite its versatility and power, CLIPS imposes a number of limitations on the

developer. Unlike Lisp, where there is no distinction between data types, CLIPS makes a

distinction between single field variables and multi-field variables. These two types cannot

be used interchangeably within the rules. Certain functions applicable to one type of

variable cannot be used on the other. As a result, a developer is forced to use tricks to

swap values between the data types.

CLIPS provides a very small set of file access functions. Manipulation of data in

files is therefore extremely limited. CLIPS allows only sequential reading, writing, and

appending of data in the ASCII format to text files. Pointers cannot be provided to directly

access values within a record structure, a capability readily available in languages like C.

Many of the abilities of a procedural language are not present. These include definition of

arrays, assignment operations to variables, data type conversions, and random access to

file structures. Getting around many of these limitations can be a frustrating experience.

3.3.3 CLIPSBase Design Criteria

It would be desirable to have a system with instantaneous response. Every

process, however, takes some time to execute. Some of these processes include data

transfer, reasoning, updating the display screen, and transfering control between modules.

Although time limits for data processing have not been strictly defined, one consideration is

the fact that data is transfered from the Dome Experiment to the expert system regularly in

30 second intervals. Therefore, all the data processing, reasoning, and any other system

processes must be performed quickly enough to keep up with the incoming data stream.

With so many functions being performed during a single 30 second interval, little time is

left for data manipulation. A DBMS function must therefore consume a very small fraction

of this period whenever the database is accessed. Although this is a soft deadline, an



inefficient implementation of CLIPSBase can cause information to accumulate in the

system's data buffer, which is undesirable.

Interaction between different modules is currently being handled by the Executive

module, which resides in the HyperCard environment. This poses a problem because most

of the [PI] modules reside in the CLIPS environment. Whenever data needs to be passed

between two CLIPS-based modules, it must first be transfered from the CLIPS shell to the

Executive's HyperCard application. Then, the data is transfered back to the CLIPS

environment where the other module exists. The design of the database must eliminate this

indirect exchange of information. Some pool of information sitting in the CLIPS shell,

allowing a common storage area, would be more efficient than the current scheme. The

database must therefore be designed so that information can be transfered between two

CLIPS-based modules without leaving the CLIPS environment. Anything less would be

inefficient.

Compared to other expert applications, like the ones used by Nippon Life and the

British Pension Advisor, the data set size for [PI] is relatively small. In a single Dome

session, there are six runs, each run containing six trials, each trial containing fewer than

fifty parameters. Even with all the miscellaneous session information and all the sessions

conducted over the course of a number of missions and several baseline data collection

periods, the volume of information can easily fit into the memory of a Macintosh equipped

with eight megabytes of RAM. This makes it possible to minimize a great deal of data

swapping between the system's main memory and its files. In fact, with this data set, it is

possible to keep all the relational tables in memory and do all the data manipulation without

first swapping information between RAM and the text files.

One limitation of the Macintosh platform is its lack of true multi-tasking. This is

one of the main reasons why data collection and reasoning is performed on separate

processors. The system, however, does provide some background processing capabilities.

This is done through a piece of system software called Multifinder. Currently, Multifinder



is the primary vehicle by which control of the processor can be switched between the

HyperCard application and CLIPS shell. When reasoning is required, HyperCard first

relinquishes control of the processor and passes it to CLIPS where reasoning takes place.

Upon completing execution of the rules, control is passed back to HyperCard. Another

design consideration is the fact that the DBMS can only execute its functions when control

is passed to CLIPS, where the rules for the database reside. Although Multifinder allows

some background processing of some tasks in the system's event queue, like mouse

control and disk access, the rules can only fire when CLIPS is in control of the processor.

The current version of Multifinder does not allow CLIPS to be run as a background task.

3.3.4 Knowledge Base Scheme

The next task is to identify the method by which relational tables can be embedded

into the knowledge base. Since CLIPS only allows data to be represented in the form of

facts in the fact-list, this is the way the relational tables must be defined. In the relational

model, there are a number of tables, each containing field names that describe their

contents. The contents are structured according to records, which can vary in number and

field volume. Sometimes, there is a primary key that allows every record to be distinct

from other records within a table. For example, the following is a table designed according

to the relational model:

Table 1: My Magazine Collection

TITLE DATES VOLUMES MAIN FEATURE
MacTutor 10/89 to 9/90 V5N10 to V6N9 Mac Development
Presentation 12/89 to 12/90 N/A Computer Products
Products
Technology Review 1/88 to 12/90 N/A Technology
Hustler 4/88 to 6/89 N/A Interesting Photos
MacWorld 9/88 to 1/91 N/A Macintosh

In this table, the primary key is TITLE because each magazine has a different name

distinguishing it from the rest. The DATES, VOLUMES, and MAIN FEATURE fields are

properties that modify the magazine entity.



The table would be implemented in the CLIPS fact-list by asserting the following

facts:

(magazine field-name TITLE DATES VOLUMES MAIN-FEATURE)
(magazine field-width 30 20 25 20)
(magazine record 1 MacTutor 10/89-to-9/90 VSNIO-to-V6N9 Mac-Development)
(magazine record 2 Presentation-Products 12/89-to-12/90 N/A Computer-Products)
(magazine record 3 Technology-Review 1/88-to-12/90 N/A Technology)
(magazine record 4 Hustler 4/88-to-6/89 N/A Interesting-Photos)
(magazine record 5 MacWorld 9/88-to-1/91 N/A Macintosh)

Here, each fact is prefixed by the table name (magazine), fact type (field-name,field-width,

or record), and a record index (if it is a record). The table name allows multiple tables in

the fact-list to be distinguished from each other. The fact type allows facts within a table to

be distinguished between a field name (describing its contents), field width (defining the

character length of the field), and record (containing the actual data). Within the records,

the index allows DBMS functions to access records according their position in the table, in

the event a primary key is not available to distinguish between records.

This type of structure is compact, efficient, and flexible enough to allow any

number of tables with any number of records and fields. When a new record is inserted

into the table, it is simply appended into the fact-list with an index of 6. When a new row

is created to accommodate another field name, the facts are expanded by attaching a new

field at the end of each fact. Record accesses are quick using the CLIPS pattern matching

capabilities. To retrieve a value within a record, a predicate such as

(magazine record ?n MacWorld ?volwnumes ?dates ?feature)

will automatically bind the DATES field to the variable ?dates, VOLUMES field to the

variable ?volumes, and MAIN FEATURE field to the variable ?feature. This is much like

the relational statement "select VOLUMES DATES MAIN-FEATURE from magazine

where TITLE equals MacWorld". No search is required because CLIPS does all the work

through its fast pattern matching abilities. As a result, this makes CLIPSBase very efficient

and flexible at record retrievals.



The most important feature of this approach, however, is the fact that the tables all

reside in the CLIPS shell. This makes information storage and exchange between the

different knowledge modules clean and efficient By providing a common pool of memory

in the form of tables in the fact-list, knowledge base modules like the

Diagnosis/Troubleshooting Module, Protocol Manager, and Interesting Data Filter can

share information directly through the CLIPSBase DBMS functions. This is remarkably

advantageous over the distributed file system where the Executive had to handle any data

storage and communication needs. Now, the modules can fulfill these needs through a

common set of functions without resorting to an intermediary module. Furthermore, the

Executive can devote its efforts to resource allocation and control over module execution

priorities.

3.3.5 Implementation of Access Functions

With the record structure defined, the DBMS functions are implemented. Among

other things, the basic features of a relational database should be supported. This includes

table creation, retrieval of a portion of a table, linked selection among a multiple number of

tables, record and field insertion, record and field deletion, and multi-parameter updates.

Here, the fundamental functions of CLIPSBase are described to demonstrate the database's

abilities. A common feature among these functions is that updates to the disk files are

performed concurrent with the updates to the fact-list This is done to prevent loss of data

in the event of a system crash, which can sometimes occur unpredictably on the Macintosh.

3.3.5.1 Table Creation

Before a table can be used, it must be created. The create table command is

provided for this purpose. The parameters it receives are the table name, the field names

within the table, and the character widths of the fields. The command sets up a table both

in the fact-list and in a text file, where the field names and their widths are specified. With

the table format in memory, it is ready to accept records.



3.3.5.2 Data Insertion

Data is inserted using the insert command. If a record is to be inserted, the

parameters it takes are the table name and the record's field values. The command

automatically inserts the new record into the fact-list and appends the text file. If a field is

to be inserted, the parameters it takes are the table name, the new field name, and its

character width. The command expands the facts in the fact-list by attaching the new name

to the list of field names, the new width to the list of field widths, and asterisks to the

records as padding for unknown values. It also expands the records in the text file

accordingly.

3.3.5.3 Data Update

Records are updated using the update command. The parameters it takes are the

table name, a list of fields and their new values, and a list of conditions under which

records are to be updated. The list of conditions describes the relational algebra applied to

the field names. The command evaluates the relational algebra and determines which

records need to be updated. Then, it modifies the records according to the list of field

names and their new values. Both the records in the fact-list and the text file are modified.

3.3.5.4 Data Retrieval

Data is retrieved using the select command. The parameters it takes are the table

name, a list of fields, and possibly a list of conditions under which records are to be

selected. If a list of conditions is specified, it gets evaluated to see which records are

retrieved. If no list is specified, then all the records in the table are retrieved. The list of

fields contains the field names-which can be in any order-to be used in the selection

process. A new table is then created in the fact-list containing the results of relational

evaluation. The table consists of facts prefixed by asterisks to indicate that it is the result of

a select command.



3.3.5.5 Data Deletion

Data is removed using the delete command. If records are to be deleted, it takes the

table name and a conditional list as parameters. The conditional list is evaluated according

to its relational algebra, and the corresponding records are removed from both the fact-list

and text file. If a number of field rows are to be deleted, it takes the table name and a list of

fields. Here, no relational algebra is evaluated. The specified field rows are simply

removed from both the fact-list and text file.

3.3.5.6 Linking with the HyperCard Environment

Because CLIPS and HyperCard do not provide facilities to communicate with each

other, a tool called HyperCLIPS was developed by Chih-Chao Lam at Stanford University

to provide simple inter-application communication. HyperCLIPS permits developers to

build user interfaces in HyperCard while issuing knowledge-intensive queries for

processing by a CLIPS knowledge base. It consists of several HyperCard XCMDs that

initialize the system, two Macintosh drivers that provide a channel of communication

between the two environments, and extensions to the CLIPS knowledge shell that allow it

to poll for commands coming from HyperCard. [15]

Commands can be sent from HyperCard to CLIPS by issuing a command in

HyperCard using its HyperTalk scripting language, allowing CLIPS to process the

command according to its rules, and receiving the results through the channel provided by

extensions in the knowledge shell. With HyperCLIPS, queries can be thus sent directly to

the database where they get evaluated, and where results can be returned directly to the

HyperCard application. [15]

3.3.5.7 Examples of CLIPSBase in Use

A number of examples of how CLIPSBase functions are used in CLIPS will now

be given. The details of their syntactical structure and functionality can be found in

Appendix A: CLIPSBase User's Guide. The examples given here are purely for

demonstration of how they can be embedded within the [PI] knowledge rules.



create table: setting up a subject table

(defrule set-up-subject-table
(initialize the system)

(assert (create table Subject fields name crew-code MIT-subject-code height
weight age widths 30 5 3 7 7 5)))

insert: inserting a new record

(defrule insert-trial-parameters
(put new trial parameters into run table)

(assert (insert into Run values 1 bungee MS1 t41*32*20 76 34 45 55)))

select: retrieving a portion of a table

(defrule get-run-quality
(get quality of run 4)

(assert (select quality from Session where run eq 4)))

update: modifying a table value

(defrule override-run-quality
(astronaut says quality of run 4 is bad)
([pi] says quality of run 4 is good)

(assert (update Session set quality eq bad where run eq 4)))

delete: removing a record from a table

(defrule remove-astronaut-from-table
(astronaut MS1 not on mission)

(assert (delete from Subject where crew-code eq MS1)))

where: defining relational algebra

(defrule get-bad-run-records
(declare (salience 6100))
(find records with bad runs in session table)

(assert (in Session where quality eq bad)))

insert file: inserting a record from a text file

(defrule insert-new-trial-values-from-file
(get text file record)

(assert (insert into Run file New-trial)))



fast-select: retrieving a value using optimized selection

(defrule get-run-quality
(get quality of run 4)

(assert (fast-select quality from Session where run eq 4)))

linked-select. retrieving information using relationships between tables

(defrule get-run-quality-of-MS1
(get run quality of MSJ from session table)

(assert (linked-select quality from Session where
subject eq
fast-select name from Subject where crew-code eq MS1)))

display-table: displaying a table onto the screen

(defrule show-subject-table
(show subject table)

(assert (display-table Subject)))

load-table: "smart-loading" a table into memory

(defrule load-general-information-table
(prefetch general information table)

(assert (load-table General)))

do-load-table: "force-loading" a table without checking

(defrule load-table
(reload run table)

(assert (do-load-table Run)))

save-table: saving a table in memory to its file

(defrule save-session-table
(save session table)

(assert (save-table Session)))

retract-table: removing a select evaluation

(defrule evict-run-information
(remove evaluation on run table from memory)

(assert (retract-table Run)))



remove-table: removing a table from memory

(defrule remove-run-table
(remove run table)

(assert (remove-table Run)))

3.4 Real-Time Mechanisms Employed

Because time is indeed a precious commodity in [PI], efficiency of the DBMS

functions is important. To that extent, real-time mechanisms are employed to minimize

processing performed when manipulating data. These mechanisms include query

optimization, allowing results to be shared between different modules, and minimizing the

amount of file access.

3.4.1 Query Optimization

Query optimization presents both a challenge and an opportunity to relational

systems: a challenge because it can become a necessity in some real-time applications, an

opportunity because relational expressions are at a sufficiently high semantic level that

optimization is feasible in the first place. The overall purpose of an optimizer is to choose

an efficient strategy for evaluating a given relational expression. [7]

It should be noted that the definition of query optimization discussed here is not the

same as that commonly held in database literature. In C. J. Date's Introduction to Database

Systems, optimization is performed through a strategy chosen automatically by the system.

In such a definition, it is the system, not the user, who decides what record-level

operations are needed and in what sequence those operations are to be executed. The

strategy typically includes (1) casting the query into some internal representation, (2)

converting to canonical form, (3) choosing candidate low-level procedures, and (4)

generating query plans and choosing the cheapest. [7]

Here, however, optimization refers to implementation of special purpose functions

by identifying commonly used queries. The strategy of these functions is already set by the

system and cannot be changed. This type of optimization is used by some real-time



applications where the queries are predetermined and the processes of casting queries,

converting queries, choosing procedures, and generating plans are not necessary. [8]

For [PI], the most heavily used type of query is the selection of values from the

tables. An optimized command called fast-select was therefore provided. The fast-select

command allows retrieval of a single value from the database by asserting the statement

(fast-select <field-name>from <table-name> where <field-name> eq <value>)

into the fact-list. Here, flexibility of the normal select command was sacrificed for speed.

The parameters it takes are the field name, table name, and a restricted conditional. The

conditional currently allows for the matching of a only one value to the field name because

it works by retrieving the first value occurrence in a table. For example in the magazine

table, a statement such as

(fast-select TITLE from magazine where VOLUMES eq N/A)

would result in the fact

(fast-select: Presentation-Products)

being asserted into the fact-list. Although an extended conditional list is not supported and

only a single value is retrieved at a time, fast-select has an improvement in execution speed

of about six times over the normal select function.

3.4.2 Sharing Results Between Different Modules

One of the virtues of having a fact-list is that evaluations of relational algebra can be

shared among different modules. When a complicated select function is executed, the

result is asserted into the fact-list and can be used by any number of modules without re-

evaluation of the select statement. The fact-list acts as a common pool where results can be

temporarily stored and communicated to the knowledge bases, much like the blackboard

technique. [6]

Of course, the results of a select statement reside in the fact-list only until the next

select statement is issued. The current implementation of CLIPSBase allows for only one

set of results to be stored per table in memory. But even with one set stored per table,



much time can be saved if its results are shared between different modules. The strategic

design guideline is to issue select statements in a proper sequence such that modules can

avoid re-evaluation in order to make use of the results.

3.4.3 Minimization of File Access

One of the most time consuming processes during the execution of CLIPSBase

DBMS functions is access to text files. There are basically two ways in which DBMS

functions can manipulate data. The first way is to swap tables in and out of the fact-list as

needed. In this approach, only one table is stored in main memory at any time. Although

this saves on memory usage, much time is spent removing a table from the fact-list and

loading a new one in. The second way is simply to load all the tables into memory and

avoid accessing their files as much as possible. The only access performed will be that of

updating the records in the event of data insertion, updates, and deletion. This prefetching

technique has been used by a number of applications to make database access more

efficient. [3] The time savings using this method have been found to be a factor of two or

three over the swapping scheme in CLIPSBase.



CHAPTER 4

ANALYSIS OF [PI] DATABASE IMPLEMENTATION SCHEME

4.1 Introduction

The implementation of CLIPSBase described in the last chapter is intended to

enhance the functionality and/or performance of knowledge bases built in the CLIPS shell.

The motivation behind the use of real-time mechanisms, the selected relational model

structure, DBMS functions, and the data access scheme is to provide a means by which

real-time applications can efficiently share and manipulate information. This chapter

analyzes the CLIPSBase implementation scheme in terms of time and/or computation

overhead required to perform various DBMS operations.

The database functionality has been to some extent tailored to the needs of [PI], as

reflected in the design choices made for the real-time mechanisms employed. Therefore,

many of the examples given will be extracted from a data structure suitable for use by the

various [PI] modules. First, examination of the access mechanisms will be given in terms

of the amount of overhead required to manipulate information in the database and how data

organization can affect access efficiency. Second, discussion of the real-time mechanisms

will entail the improvements attained through query optimization, shared processes and

results, and file access minimization. Third, examples will be given of how DBMS

functions can be used in the [PI] knowledge base. Fourth, discourse will cover the

extendibility of CLIPSBase and how the reasoning capabilities can be built on top of the

database functions. In its conclusion, the chapter gives a general assessment of the

database implementation in terms of its functionality, including strengths and weaknesses.

4.2 Overhead Requirements

The overhead of CLIPSBase can be broken down into several components: the

overhead required to interpret a relational statement, the overhead needed to evaluate

relational algebra, the overhead constituting a search process, the overhead required to



manipulate facts in the fact-list, and the overhead needed in defining the structure of the

relational model.

Interpreting a Relational Statement. A CLIPSBase statement is issued by asserting

it into the CLIPS fact-list. The statement would contain the actual SQL command and the

required parameters for execution. In the form of a fact, a rule fires when the pattern

corresponding between the sequence of fields in the fact matches the sequence of fields in

the predicate of one of the database rules.

Usually, the fields of the statement are parsed by separating the list of conditions,

specifying the relational algebra, from the other parameters like table name, field name,

field width, etc. In the case of an insert command, the record is extracted from the rest of

the statement, gets inserted into the fact-list, and gets appended to the table's corresponding

text file. In the case of an update command, the new field values are extracted and used in

the fact manipulation process. In all cases, the table name is extracted from the statement

so that the rules know which table to operate on.

Evaluating Relational Algebra. Given a designated table, the next stage is the

evaluation of the relational algebra contained in the list of conditions. The conditions are

specified according a where clause embedded within the relational statement. The where

clause consists of a sequence of and's, or's, field names, values, and comparators making

up the tuple relational calculus. The clause would be evaluated in some order depending on

the algebra used. For example, given a where clause such as where A < 5 or B eq 3, the

conditional would be evaluated according to the order contained in where (A < 5) or (B eq

3). The clause can be of any length and any complexity. The evaluation time, of course,

would be greater for complicated, non-trivial clauses.

The tuples in the where clause specify the records on which the function is to

operate. Once evaluation is completed, a fact containing a series of record indexes is

asserted into the fact-list. The record indexes correspond to the assigned order for the

records placed in the fact-list. The asserted fact looks like



(prefix-junk record-seq 12 3 4 5)

meaning that records 1, 2, 3, 4, and 5 have been chosen in the relational evaluation. The

prefix-junk is a sequence of parameters used only by CLIPSBase during the processing of

rules and has no significance to the developer. The overhead used in processing the where

clause is probably the greatest compared to the other types of overhead. On a large table,

over half the time required in executing a command can be taken up by this stage.

The Search Process. After evaluating the relational algebra, a search is performed

on the records of a designated table. The search rules use the asserted record indexes that

were asserted into the fact-list during the evaluation stage. The search process is relatively

quick because it relies on the fast pattern matching abilities of the CLIPS inference engine

to determine which records correspond to the record indexes in the asserted fact. The rules

work by trying to bind variables in the rule predicate according to a statement like

(subject-table record 5 $?bunch-of-values)

This means that, given the table called subject-table, the rules must bind the variable

$?bunch-of-values to the field values in record 5. Once the variable is bound, the values

contained within it can be manipulated according to string functions, mathematical

operations, etc. The overhead imposed by the search process, again, depends on the size

of the table. Compared to the other stages, however, it is fairly insignificant.

Manipulating Facts. Manipulation of the facts can involve several different forms

of operation, depending on whether the DBMS command requires data insertion, selection,

updating, deletion, or display. When a new field is to be added in a data insertion

command, the facts are manipulated by attaching the field name, field width, and asterisks

to the appropriate facts, then removing the old facts, and finally asserting the extended

facts. When data selection is required, values are extracted from the appropriate records,

then reorganized according to the sequence of field names in the select command, then

joined together into a string that contains the table name, fact type, and selected values, and

finally re-asserted into the fact-list as a new table. When data updating is requested, the



record fields containing the values in need of modification are spliced out of the facts,

replaced by new values, and re-asserted into the fact-list. When a field needs to be

removed from a table, the delete command uses a sequence of processes that is the opposite

of the processes used when inserting a field. Instead of appending new values to a series

of facts, it cuts them out. It does this by splicing a fact at the position where the field is

located, removing the unwanted field, re-attaching the two fact segments, and re-asserting

the fact into the fact-list. Finally, when a table needs to be displayed, the facts constituting

the table are simply severed to remove the table name, fact type, and record index. The

data that is displayed to the screen contains only the field names and their corresponding

values.

Some of these processes require little computational overhead while others require a

lot. Those that must do a great deal of field re-organization and fact splicing tend to take

more time. Of the fact manipulation processes just mentioned, the data display function is

the most time consuming. This is due to the slow screen update mechanism provided by

CLIPS. As a result, the display-table function is used primarily for development purposes

and not for the actual expert system application.

Defining the Relational Structure. Fortunately, the structures of relational tables are

compact and make efficient use of memory. Little overhead is used to define the relational

structure. The facts constituting a table contain only five elements: the table name, fact

type, field names, field values, and the record index. The many-many relationship of the

relational model is not implemented as part of the structure. Rather, the relationships are

defined according to the rules that access tables using information from other tables. For

example, the linked-select function is provided to allow selection of information from one

table based on information from many other tables. The concepts of primary key and

foreign key are left to the developer, who must make sure that a selection based on a many-

many relationship is performed using proper entity types.



File Access. Another large piece of overhead is taken up by the file access

mechanisms of CLIPS. This is due mostly to the fact that the CLIPS shell is not powerful

at making file accesses, all of which must be performed sequentially. As a result, loading

of large tables into the CLIPS fact-list is a slow process. This forces the developer in a

real-time application to avoid reloading of tables and to do as much prefetching as possible.

The time overhead of file access is mostly dependent on the way tables are set up in the

knowledge base, as discussed below, and not on the overall size of the database. It is

possible to have an extremely large database, provided that it fits into the computer's

memory, and yet have efficient data access, simply by trying to manipulate data in small

chunks.

4.3 Analysis of Data Organization Scheme

There are a number of ways in which relational tables can be set up in the CLIPS

knowledge base. For example, an entity might be a run, which contains six trials, each

trial with the properties start time, end time, duration length, environment, condition,

subject, joystick average, EMG average, and biteboard average. The following are two

ways in which a run table can be set up.

Table 2: Run Example 1

trial-# start end length envir cond subject js-av emg-av bite-av
1 al a2 a3 a4 a5 a6 a7 a8 a9
2 bl b2 b3 b4 b5 b6 b7 b8 b9
3 cl c2 c3 c4 c5 c6 c7 c8 c9
4 dl d2 d3 d4 d5 d6 d7 d8 d9
5 el e2 e3 e4 e5 e6 e7 e8 e9
6 fl f2 f3 f4 f5 f6 f7 f8 9



Table 3: Run Example 2

parameter trial-1 trial-2 trial-3 trial-4 trial-5 trial-6
start al b1 cl dl el fl
end a2 b2 c2 d2 e2 f2

length a3 b3 c3 d3 e3 3
envir a4 b4 c4 d4 e4 f4
cond a5 b5 c5 d5 e5 f5

subject a6 b6 c6 d6 e6 f6
js-av a7 b7 c7 d7 e7 fl

emi-av a8 b8 c8 d8 e8 f8
bite-av a9 b9 c9 d9 e9 f9

Several tests were performed on various CLIPSBase DBMS functions using a

Macintosh lIx to compare computation times required to operate on each table. Although

both tables contain the same amount of information, there was a disparity in the results, as

shown in Table 4. Here, results were obtained by averaging several computation times for

each operation. All tests for each operation on a table were consistent within 1/10000 of a

second. The command statements were constructed such that the same field values were

retrieved from either table.

Table 4: Comparison of Overhead (in seconds) for Run Examples 1 and 2

DBMS Operation Overhead for Example 1 Overhead for Example 2
fast-select .0468 .0625
select .2812 .4141
insert .6015 .6328
update 1.1796 .9531
delete .6015 .6875

The difference between the tables is that, although they contain identical

information, Example 1 uses a fewer number of records but greater number of fields than

Example 2. With the exception of the update operation, as indicated, CLIPSBase

operations are more efficient at handling tables with a small number of records, though they

may have a large number of fields, than tables with a large number of records, though they

may have a small number of fields.

In terms of [PI], these are acceptable overhead values. During the course of a trial,

it is estimated that a total of two insert instructions, ten fast-select requests, and perhaps



two update commands will be issued among five or six tables, each table having an

approximate data size of nine fields and six records. Altogether, the system would spend

about four seconds executing DBMS functions during each trial. In the distributed file

architecture, over fifteen seconds are spent in a single data retrieval operation just

transfering data and passing processor control between the CLIPS and HyperCard

environments. With the implementation of CLIPSBase this inefficiency is avoided, giving

a time savings of at least eleven seconds per data retrieval operation! This is a remarkable

improvement, especially since each trial is performed within a 30 second time constraint.

Another method for improving data organization is by breaking large tables into

smaller ones. This is not the same as ignoring certain pieces of data. For example, the run

table in Run Example 1 above can be broken down into two smaller tables called Run

Assumptions and Run Calculations:

Table 5: Run Assumptions

trial-# start end envir cond subject
1 al a2 a4 a5 a6
2 bl b2 b4 b5 b6
3 cl c2 c4 c5 c6
4 dl d2 d4 d5 d6
5 el e2 e4 e5 e6
6 fl t2 f4 f5 f6

Table 6: Run Calculations

trial-# length js-av emg-av bite-av
1 a3 a7 a8 a9
2 b3 b7 b8 b9
3 c3 c7 c8 c9
4 d3 d7 d8 d9
5 e3 e7 e8 e9
6 f3 f7 f8 f9

The idea is to group certain fields into a common category and putting the category's

description in the table name. The effect of using smaller tables is that the overhead

required in the fact manipulation process gets reduced because there are fewer fields within

each record to deal with. Some time comparisons are given in Table 7:



Table 7: Comparison of Overhead (in seconds)
for Run Example 1 and Run Calculations

DBMS Operation Overhead for Example 1 Overhead for Calculations
fast-select .0468 .0468
select .2812 .2601
insert .6015 .4375
update 1.1796 .7656
delete .6015 .5781

The disadvantage of this method is that relational algebra is more complicated when

accessing data across more than one table. This can, in fact, cause a greater overhead due

to the increase in computation required in evaluating relationships between tables. In order

for this approach to be effective, the database designer must predetermine how fields

should be grouped in order to avoid inter-table data manipulation. For some expert

systems, predetermination of the data accesses is possible. [PI] is one of these systems.

For other systems, the gain in speed may not be enough to compensate for the loss in

flexibility.

4.4 Analysis of Real-Time Mechanisms Employed

The real-time mechanisms used in CLIPSBase will now be discussed in terms of

their effectiveness in reducing overhead. This overhead, as mentioned before, can come in

different forms. Query optimization works by simplifying the computation required to

evaluate a relational expression. Sharing processes and results is way of reducing the

number of data access mechanisms needed in the system and preventing re-evaluation of

relational statements that are frequently used by various modules within [PI]. More

importantly, communicating data between different modules is achieved without going

through an intermediary Executive module. File access minimization is achieved by

prefetching tables into main memory and avoiding unnecessary delays in the middle of a

real-time process.



4.4.1 Query Optimization

Query optimization is effective only in relative terms. It depends on how frequently

certain database queries are made and how much time is saved by optimizing these queries.

In the case if [PI], where at most ten data retrieval operations are estimated per trial, there

would a reduction in access time of only a few seconds. This improvement will probably

go unnoticed because it is relatively small compared to the savings achieved by preventing

control and data from being passed between the CLIPS and HyperCard environments.

For example, when a query is made by the Diagnostic/Troubleshooting Module, the

request must be sent to HyperCard, where it is interpreted and the desired information is

collected from various HyperCard fields. This process alone takes several seconds. In

CLIPSBase, the query is optimized in the sense that the information already resides in the

knowledge base. With the distributed file system, data from the Data Computer is sent

only to HyperCard fields. When information is needed, the data is first saved to individual

text files belonging to various knowledge base modules, and then read by modules when

they do reasoning. If after each trial, data coming from the Data Computer is, instead, sent

directly from the serial port to CLIPSBase files, the retrieval process would not need to

take the extra step of getting the data from the HyperCard fields. Here, optimization exists

in the retrieval process. The computation is simplified because an extra step is avoided.

4.4.2 Sharing Processes and Results

Being able to share processes and information is probably the greatest advantage

offered by CLIPSBase. Instead of using a multitudinous number of access mechanisms

between different [PI] modules, the DBMS is reduced to a single set. The database

establishes a standard in the form of SQL statements, which is more versatile and organized

than the current access mechanisms offered by the distributed file system. This set is

shared and it can be used to access a common pool of data.

The data resides in the knowledge base in the form of relational tables, allowing

information to be shared between different modules. Relational evaluations are stored not



in HyperCard fields which are not directly accessible to the reasoning modules, but within

the fact-list where knowledge rules can simply bind the information into their predicates.

The rules can be IDF rules, DTM rules, or PM rules. It makes no difference, because the

data is consolidated into a centralized storage area and not divided into separate files as in

the distributed file architecture. As a result, an evaluation performed by one module can be

openly shared with many other modules, something that is not easily achieved in a

distributed set-up.

There is yet another plus of having shared information. When a module needs to

do reasoning based on historical data, all the necessary information will be available within

the knowledge base. This allows the expert system to reduce the number of queries it must

make to the astronaut. In the distributed file system, the historical information is

hopelessly scattered in an unorganized format. As a result, a module is ignorant of what

resides in the localized database of another module. This forces it to pose an unnecessary

number of questions to the user, questions that can already be answered by information

sitting in one of the files. In CLIPSBase, this ignorance is eliminated altogether, making it

possible for [PI] to pose queries to which it definitely does not have an answer and reduce

the amount of attention that the astronaut must provide to the system.

4.4.3 File Access Minimization

With the current implementation of CLIPSBase, file access minimization is

achieved by keeping all the tables within the fact-list, and avoiding the information from

being swapped between main memory and disk files. This is possible because the data size

of [PI] is relatively small compared to expert systems like Nippon Life Underwriter's Aid

and Britain's Pension Advisor, where the databases for these applications are much too

large to fit into the memory of a microcomputer.

Swapping tables in and out of memory is an expensive disk process that should be

avoided as much as possible. For [PI], this means that static data should be prefetched into

memory and kept there so that information is readily available when modules need to do



reasoning based on that data. Static data can include the subject and general information

tables, containing astronaut names, crew codes, MIT codes, and other information that

never change during the course of a session.

Also, accesses to the tables should be consolidated as much as possible. For

example, instead of updating values within a table one at a time, the developer can take

advantage of the update function's ability to modify a multiple number of fields within a

record in a single sweep. CLIPSBase can then change the values in a table file all at once,

which is more efficient then changing them individually.

4.5 Database Extendibility

One of the virtues of embedding a database in a knowledge shell is that reasoning

functions can be built directly on top of the data model used in the application.

Consequently, it is easy to make the database smarter. For example, sophisticated [PI]

rules can be written based on the information in the session table to determine if a run is

considered good or bad. The results of this analysis can then be stored in a historical

analysis table where statistical rules can be applied to suggest a trend in the quality of the

data. This new functionality would become part of the database, where any module can

use it. Eventually, the functionalities of the database and reasoning modules would in a

sense merge so that there would be really no distinction between issuing a DBMS

command that performs data manipulation and firing DTM (or IDF or PM) rules that do

reasoning based on data. Admittedly, this is a bold statement. It is, however, the trend in

future architectures for data processing systems, where "knowledge and data interact to

create information." [19]

4.6 Overall Assessment of Database Implementation

CLIPSBase comes with various types of overhead. This includes the overhead

used in interpreting a relational statement, evaluating relational algebra, searching for

records, manipulating facts, defining the relational structure, and file access. Of these,

evaluating relational algebra and file access require the most time to execute. This is



because the current implementation of CLIPSBase is not particularly fast at evaluating

tuples and the CLIPS environment is very limited in terms of its ability to manipulate data

in text files. This imposes some constraints on the developer to be careful about defining

complicated relational statements and being efficient with certain data access functions.

Despite these constraints, it is estimated that CLIPSBase can save at least eleven seconds

worth of time in each retrieval operation, simply by organizing the data in the form of

relational tables in the fact-list.

Efficiency of data access is to some extent dependent on how the tables are set up in

the knowledge base. It is best to keep the number of records as small as possible. Certain

CLIPSBase functions, like fast-select, select, and insert, are more efficient at manipulating

a small number of records with a large number of fields, than at dealing with a large

number of records, even if they have a small number of fields. Certain functions, like

update, delete, and again insert are particularly sensitive to the number of fields in a record.

As a result, tables should be broken down into smaller tables whenever possible. The

method achieves some speed at the cost of some flexibility. Depending on the application,

this can be either advantageous or disadvantageous. For systems like [PI], where much of

the data accessing can be predetermined, the fields within a table should be grouped so that

the DBMS functions have smaller facts to deal with. At the same time, however, there

should be no need to access data across different tables.

The real-time mechanisms employed are query optimization, sharing processes and

results, and file access minimization. Query optimization is effective only in relative terms.

The optimization is achieved in [PI] because computation is simplified in the retrieval

process where the step of collective data from HyperCard stacks can be eliminated.

Sharing processes and results is the greatest advantage offered by CLIPSBase. One of the

most wasteful processes in the distributed file architecture is its need to collect and transmit

information through an intermediary Executive module. This has the effect of forcing

modules to repeat many processes and pose an unnecessary number of questions to the



astronaut. By centralizing the data in the form of tables and providing a common set of

access mechanisms, there is greater flexibility and organization in the way data is

manipulated. Furthermore, while file access is not one of CLIPS' strong points, it can be

minimized to reduce delays in the middle of a real-time process. This is done by

prefetching tables into the computer's main memory and preventing data from being

swapped between the fact-list and text files.

Finally, embedding a database in a knowledge shell is a step toward the future

architecture where knowledge and data work synergistically to produce information. This

approach provides the ability to build functions directly on a given data model, adding

functionality to the DBMS and making the database smarter. The vision is to have one day

a database that is one and the same as the reasoning modules of [PI].



CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

This thesis shows that embedding DBMS functions in the shell of a real-time

knowledge application can reduce overhead required to manipulate data. In particular, the

real-time application considered here is [P1], an expert system used to advise astronauts in

space life science experiments. The advantages to be gained through this approach include

elimination of communication time between different environments, reduced number of

queries to the user, and decrease in the amount of reprocessing that is performed between

modules. The real-time mechanisms that were implemented as part of the database

architecture include query optimization, allowing processes and results to be shared

between different modules, and minimizing the amount of file access. The ideas presented

here are especially applicable to those applications that come with a small data set.

The implementation of CLIPSBase, a real-time database for [PI], is achieved by

structuring the information based on the relational model and building tables in the form of

facts in the CLIPS fact-list. This had the effect of providing a common pool of information

on which different knowledge base modules can apply their reasoning. The functionality

of CLIPSBase also provides a uniform set of access mechanisms using SQL syntax, giving

greater organization and flexibility in manipulating data than the current distributed file

system.

Of the real-time mechanisms implemented, sharing processes and results offers the

greatest advantage because it eliminates much of the overhead involved when transfering

data and processor control in the distributed system. Query optimization is effective in the

sense that computation is simplified in the data retrieval process. File access minimization

is based on the prefetching technique, which reduces or avoids swapping of information in

and out of the computer's main memory.



When using the functions of CLIPSBase, some design considerations should

always be kept in mind. The efficiency with which the DBMS operates depends to some

extent on the size of the tables how the tables are set up in the fact-list. When it is possible,

a database designer should break large tables down into smaller ones and avoid an

excessive number of records. This does not mean that the database cannot contain much

information. Rather, the information should be structured so that accesses can be

performed more quickly.

The functions provided by CLIPSBase include, among others, select, insert,

update, and delete. The select function allows portions of a table to be retrieved and

asserted into the CLIPS fact-list as new tables. The insert function allows new tables and

fields to be appended to existing tables. The update function allows modification of values

in table records. The delete function allows deletion of records and fields from tables when

it becomes necessary. Although the current implementation comes with a limited set of

DBMS functions, it is a drastic improvement over the distributed file system, where at

present there is no DBMS functionality, other than the ability to store and retrieve ASCII

strings from text files.

For [PI], the implementation of CLIPSBase suffices for its real-time purposes.

Compared to other real-time database systems, however, the access functions are relatively

slow at data manipulation. One limitation of the database is that it is only appropriate for

applications with small data sets. With larger data sets, the functions are found to perform

rather poorly. For example, the update and delete functions require time overheads that are

linear in relationship to the number of records in a table. This behavior would be

inappropriate for a system like that used at American Express where a table can contain

thousands of records. As a result, the implementation scheme described in this thesis

would require enhancements to the access functions so that large tables can be handled

more efficiently.



5.2 Directions for Future Research

This research addresses a number of ideas for providing DBMS functionality to

knowledge shells that require a custom-built real-time database. These ideas, however, can

be extended even further. This section describes five directions in which the work done

here can be improved or enhanced by providing more efficient functions and building

features on top of existing capabilities.

5.2.1 Tuple Evaluations

The current CLIPSBase implementation is not particularly strong at evaluating

tuples, which comprise the relational algebra in the where clause. Some of the overhead

time involved in manipulating data can thus be reduced if the a more efficient algorithm is

used. Although the conditional clause does not impose length or complexity restrictions,

this versatility was achieved at the expense of speed. For real-time applications, this

versatility is probably not necessary. A future version of the where function may be

reduced in terms of the number of rules required to evaluate it, which would improve

execution time.

5.2.2 Higher Level Functionality

As mentioned before, the implementation of a DBMS in a knowledge shell allows

for easy database extendibility. Functions that make the database smarter can be quickly

built onto the data model. Some of these functions may include the ability to perform trend

analysis on a series of runs, complicated reasoning processes that can lead to the

conclusion that a certain set of data is "interesting", or analysis on the amount of time

consumed in each session to see which steps in the protocol tend to run over.

This type of functionality is the direction in which future architectures of

information processing systems are going. Data and knowledge must interact to produce

more information. With more information, a system becomes more intelligent and thus

more powerful. CLIPSBase is a step in that direction for [PI] by organizing data more

effectively and allowing a synergistic merge of the knowledge base and database.



For example with many object-oriented databases, performance has received a great

deal of focus. In such systems, the performance is improved through extended

functionality, that is by making the database more intelligent. With greater intelligence,

they can make better decisions that influence their ability to perform well. As a result,

greater efficiency is achieved not only through improvements in the procedures, but also

through improvements in strategies used to execute these procedures.

5.2.3 Extended Storage of Evaluations

In the current implementation of CLIPSBase, only one set of select evaluations can

be stored per table in the database. This imposes constraints on the database designer who

must determine the way the database can be accessed that will reduce re-evaluation. With a

multiple number of storage areas for select evaluations, such a constraint is lifted, allowing

more flexibility in the sequence in which modules can retrieve and share data. Because of

the limited data set, a large number of evaluations can be stored in the knowledge base

simultaneously.

There are a number of ways this can be accomplished. Perhaps, evaluations can

have indexes assigned to them. When a number of modules wish to access the same

evaluation, they would simply refer to the index. Perhaps, some form of "smart"

evaluation can be implemented like the "smart-loading" capability of the load function,

which loads a table into memory only if it is not already there. Here, a module would issue

a select statement and some rules would be applied to see if the evaluation already exists in

the fact-list. If the evaluation was already performed, the statement would get ignored.

5.2.4 Alternatives

A design consideration during the development of CLIPSBase included the fact that

some of the DBMS functionality can be implemented in the form of simple external

commands, as extensions to the CLIPS shell. The performance improvement using this

approach, however, is not known. The trade-offs must be considered in order to make

these external commands work properly.



One advantage is that external commands are compiled functions, not interpreted

functions like those in CLIPS, and can sometimes execute faster. Furthermore, special

disk functions can be written. They would allow pointers to values in the text files and

provide random access reading and writing. However, development of a database using C,

the language used in making extensions in CLIPS, would require a substantially greater

development time. Also, external commands cannot be ported directly from the Macintosh

to other platforms, whereas the current CLIPSBase implementation is entirely within the

CLIPS shell and can work on an IBM, a SUN using UNIX, a VAX using VMS, and any

other platform for which CLIPS is available.

Moreover, the current implementation of CLIPSBase allows results of relational

evaluations to be deposited directly into the fact-list. A DBMS using external functions can

do this only with difficulty. Although they will run faster, extra overhead will be required

in order to transfer evaluations performed by the external commands to the fact-list.

In order for external commands to work effectively, therefore, certain

functionalities of CLIPSBase need to be judiciously selected. For example, search

mechanisms currently used by CLIPSBase and fact manipulation rules can probably work

faster using external commands. Also, tuple evaluation is another time consuming process

that an external command can do more efficiently. On the other hand, extracting values

from a list of facts is something that CLIPS rules can already do quite well. An external

command would have a difficult time accessing the fact-list, extracting the values, and

depositing the result back into the fact-list. These are alternatives that need further

research.

5.2.5 Off-line HyperCard Interface

Finally, an off-line interface is needed for CLIPSBase. This would allow easier

entering of data. Perhaps, a full-blown relational database can be implemented in

HyperCard that would allow storage of views and more complicated relational commands

like join and project. The purpose of this off-line software would not only be to provide



more functionality for CLIPSBase, but also to give it the look and feel of a fully functional

database.

Such an interface is intended to make off-line analysis of data much easier. Instead

of typing commands into the CLIPS dialog window, a user could simply manipulate

buttons, fields, and menu functions to generate different views. Afterwards, the

information could be formatted, printed, and saved. The development of such an interface

would be interesting to pursue.

All of these research directions would be exciting extensions to the investigations

presented in this thesis. They make it possible for a generalization of CLIPSBase to many

other applications.
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CLEPOBASE UREH'3 GRUIDE
Introduction
CLIPSBase is a real-time relational database implemented in the CLIPS rule-
based environment. CLIPSBase was written for the specific purpose of
providing a relational database for expert systems developed in CLIPS. All of
the basic features of a relational database are supported. This includes table
creation, retrieval of a portion of a table, linked selection amongst a multiple
number of tables, record and field insertion, record and field deletion, multi-
parameter updates, and more. The instructions below on how to use
CLIPSBase assume familiarity with CLIPS on the part of the developer.

Convention: In the following instructions on CLIPSBase, functions, rules, and
information to be provided by the user are given in Bold Helvetica. Normal
text is given in Plain Text Helvetica.

As a real-time database, CLIPSBase provides a single facility for viewing data.
Using the display-table function, a CLIPS developer may display a table in
the dialog window. CLIPSBase was designed to handle as many tables and
records as the computer memory permits. It runs most quickly with tables
containing 50 or fewer records. On a Macintosh SE/30, the fast-select
function takes about 0.157 seconds to operate on a table 7 fields wide and 50
records long.

To use CLIPSBase, simply load parts 1 and 2 of the rules into memory. To
implement a function, a fact is asserted into the fact-list according to the format
explained below. All of the functions have salience values between 5000 and
6000. This means that CLIPSBase functions will execute before knowledge
base rules with priority less than 5000. To make a knowledge base rule to fire
before any CLIPSBase function executes, assign a priority of more than 6000 to
the knowledge base rule. CLIPS allows salience values between -10000 and
10000. All CLIPSBase functions have the same priority. To operate correctly,
different functions need be asserted into the fact-list in different knowledge base
rules. For example, if the developer wished to assert the create table and
insert functions, they need to be asserted within two different rules.

Normally, CLIPSBase functions are asserted into the fact-list by using the
assert construct within a knowledge base rule. CLIPSBase functions can also
operate on tables by asserting them through the dialog window and selecting
run (command-R) from the Execution menu. To view results of operations
performed in this manner, the developer may list the facts in the facts window, or
display a table in the dialog window by asserting (display-table <table-
name>) and selecting run (command-R) from the Execution menu.

CLIPSBase uses only five basic functions: insert, select, update, delete,
and where. The other functions are merely utilities, variations of the five basic
functions, or higher level procedures built out of the basic functions. Very
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versatile, complicated canned procedures can be written using the CLIPSBase
functions listed below.

CONTENTS

Function Page

1. create table A.4
2. insert A.6
3. select A.7
4. update A.10
5. delete A.11
6. where A.12
7. insert file A.13
8. fast-select A.14
9. linked-select A.15
10. display-table A.16
11. load-table A.17
12. do-load-table A.18
13. save-table A.19
14. retract-table A.20
15. remove-table A.21
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create table

Usage: (create table <table-name> fields <field-list>
widths <width-list>)

Before any table may be used, it must be created using create table. <table-
name> must be a single word and should reflect its contents. A full path-name
is normally used; otherwise, the file is created in the same folder in which the
CLIPS application resides. When the table is created on disk, the suffix ".tbl" is
appended to the end of the table name to indicate that the file is a CLIPSBase
table. <field-list> is a list of field names separated by spaces. Multi-word field
names need to use dashes (-)'s or underscores (_)'s to separate the words.
<width-list> is a list of field widths, numbers separated by spaces, used solely
for displaying the table in the dialog window when the display-table function
is used. A field width is the number of character widths used for displaying a
single field. Maximum width is 40. Field entries, including the field name,
should not exceed the specified width or they will be displayed incorrectly.

Example:

(defrule set-up-database
?fl<-(CLIPSBase is already loaded)
?f2<-(set up pi-in-a-box tables for a single dome session)

(assert (create table SUBJECT fields Subject-Name Code
Height Weight Age widths 20 6 8 8 5))
(assert (create table RUN-n fields Timestamp Trial-# BBAV
BBQ JSAV JSQ EMGAV EMGQ Trial-Quality Subject Condition
Environment Vection-Onset Max-Vection #-Dropouts
widths 12 8 6 6 6 6 6 6 15 9 20 20 17 15 13))
(assert (create table DTM-Results fields Timestamp

EMG-Pin-Level O-scope-Status Umbilical-Status
JS-Power EMG-Switch-Status EMG-Cable-Status
EMG-Power-Status JS-Spring-Status BB-Power-Status
widths 20 20 20 20 20 20 20 20 20 20))

(assert (create table SESSION fields Run-# Run-Quality
Interesting-Flag widths 7 15 19))

(assert (create table DTM-Info fields Problem Repair-Time
widths 40 15))

(retract ?fl ?f2))

This sets up five tables (number of fields), SUBJECT (5), RUN-n (15), DTM-
Results (10), SESSION (3), and DTM-Info (2), based upon the data model
shown below. RUN tables can be created whenever needed, each table with a
different name.
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Data Model
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insert

Usage: (insert into <table-name> values <items-list>)
or (insert into <table-name> field <field-name>

width <field-width>)

To insert records into a table, use the first format. <table-name> specifies the
table. <items-list> is a list of record items separated by spaces. Always insert
the proper number of items within the number of character widths and in the
order specified by (<table-name> field-name <field-name-list>) residing
in the fact-list. Use an asterisk (*) in place of an unknown value, or else
subsequent operations on the table will not work properly.

To insert new fields into a table, use the second format. <table-name>
specifies the table. <field-name> is the name of the new field. The name
cannot be the same as another field within a table. Multi-word fields must use
dashes or underscores to separate the words. <field-width> is the number of
character widths to be used for the display-table function. Since the values
for the new field are initially unknown, asterisks are inserted into existing
records.

Examples:

(defrule insert-new-run-into-session-table
?fl<-(run ?n was completed)
?f2<-(parameters for run ?n are $?run-parameters)

(assert (insert into SESSION values ?n $?run-parameters))
(retract ?fl ?f2))

(defrule insert-new-field-into-session-table
?fl<-(we need another field for session table)
?f2<-(because idf needs another parameter for its reasoning)

(assert (insert into SESSION field Run-Duration width 15))
(retract ?fl ?f2))



A.7

select

Usage: (select <field-list> from <table-name>
where <conditional-list>)

or (select <field-list> from <table-name>)

Use select to retrieve all or portion of a table. The second format differs from
the first in that it has no conditional list attached, implying that all records in
<table-name> are to be selected. The <field-list> is a list of field names to
be included in the selection. All others are excluded. If an asterisk (*) is used in
place of <field-list>, all fields are selected.

Only those records satisfying the <conditional-list> are retrieved. The
<conditional-list> is a chain of conditionals which each follow the format:

<field-name> <comparator> <value>

where <field-name> is the name of the field under comparison and
<comparator> is from the list:

eq, neq, <, <=, >, >=.

Conditionals are chained together using and's and/or or's. Parentheses are
not allowed to force the evaluation sequence of and's and or's. The
conditionals chained by and's have higher precedence in the evaluation
sequence than those chained by or's.

Example: Condition eq bungee or JSAV > 50 and JSAV <= 90

Here, the conditional list is evaluated according to the order:

(Condition eq bungee) or ((JSAV > 50) and (JSAV <= 90)).

The <conditional-list> may be any length; however, a long and complicated
list of conditionals takes more evaluation time than a short and simple one.

Once the selection is made, it is asserted into the fact-list according to the
format:

(* <table-name> field-name <flield-name-list>)
(* <table-name> field-width <field-width-list>)
(* <table-name> record <record-index> <record-items-list>)
(* other records)

The preceding asterisks (*) indicate that the facts are the result of a select
function. The <field-name-list> is the list of field names under selection.
<fleld-width-list> is the corresponding list of field widths. <record-index>
reflects the order number of the record within its file, and is used as a primary
key by a number of CLIPSBase functions.
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In the following example where a diagnostic and troubleshooting module (dtm)
is used to diagnose an equipment failure, a certain run was found to be bad and
a dtm session is initiated to see if time is available for equipment repairs. The
first rule retrieves information pertinent to the problem at hand and asserts the
information into the fact-list. The second rule assumes that an unknown value,
represented by an asterisk (*), means that there is nothing wrong. If a known
value is given for the entry, then the device under scrutiny is assumed to be in
need of repair. The third rule takes the results of the second rule and finds out if
there is time available for repairing the ailing device(s). If time is available, the
user is told to proceed with repairs.

Example:

(defrule get-data-for-dtm-analysis
?fl<-(run ?n was bad)
?f2<-(dtm is initiated)
(time when problem occurred is ?timestamp)

(assert (select Interesting-Flag from SESSION
where Run-# eq ?n))

(assert (select * from DTM-Info))
(assert (select * from DTM-Results

where Timestamp eq ?timestamp))
(retract ?fl ?f2))

(defrule locate-sources-of-problem
?fl<-(time when problem occurred is ?timestamp)
(* DTM-Results record ?Index ?time-stamp ?emg-pin-level
?o-scope-status ?umbilical-status ?js-power
?emg-switch-status ?emg-cable-status ?emg-power-status
?js-spring-status ?bb-power-status)
(* SESSION record ?index ?interesting-flag)

(if (eq ?interesting-flag off) then
(if (or (neq ?emrng-pin-level *)

(neq ?emg-switch-status *)
(neq ?emg-power-status *)
(neq ?emg-cable-status *)) then

(assert (emg needs repair)))
(if (neq ?o-scope-status *) then

(assert (o-scope needs repair)))
(if (neq ?umbilical-status *) then

(assert (umbilical needs repair)))
(if (or (neq ?js-power *)

(neq ?js-spring-status *)) then
(assert (is needs repair)))

(if (neq ?bb-power-status *) then
(assert (bb needs repair))))
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(retract ?fl))

(defrule check-repair-time-availability
?fl<-(?device needs repair)
(* DTM-Info record ?index ?device ?repair-time)
(time available for repair is ?time-available)

(If (<= ?repair-time ?time-available) then
(printout t "Please repair the " ?device "." crlf))

(retract ?fl1))

Although in the preceding example there really was no need for using select to
extract information from the relevant tables, it illustrates how a single value, a
whole table, or a portion of a table can be selected and how historical
experimental data can be recalled for reasoning.
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update

Usage: (update <table-name> set <set-list> where <conditional-list>)

Use update to change one or more values in <table-name>. <set-list> is a
list of set statements, each following the format:

<field-name> eq <value>

<set-IIst> may be any length. <conditional-list> follows the convention
described under the select function.

Example:

(defrule update-session-table
?fl<-(run ?n was found to be interesting and of good quality)

(assert (update SESSION set Run-Quality eq good
Interesting-Flag eq on where Run-# eq ?n))

(retract ?fl 1))
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delete

Usage: (delete from <table-name> where <conditional-list>)
or (delete from <table-name> field <fleld-name>)

To delete records from <table-name>, use the first format. Only those records
satisfying the list of conditionals in <conditional-list> are deleted.
<conditional-list> follows the convention described under the select
function. Use the second format to delete a single field from <table-name>.

Examples:

(defrule delete-bad-run-from-session-table
?fl<-(delete run ?n in the session table)

(assert (delete from SESSION where Run-# eq ?n))
(retract ?fl))

(defrule delete-field-from-subject-table
?fl<-(field ?field is not needed in subject table)

(assert (delete from SUBJECT field ?field))
(retract ?fl))
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where

Usage: (in <table-name> where <cconditional-list>)

Although it is not normally used by the developer, the where function is
available to retrieve those records that satisfy a list of conditionals. The table is
specified by <table-name> and the list of conditions is specified by
<conditional-list>, according to the convention explained under the select
function. <table-name> must be a table already loaded into the fact-list.
where returns those record indexes whose records that satisfy the conditional
list. The result is asserted into the fact-list according to the format:

(<and/or-list> record-seq <record-indexes>)

The <and/or-list> is a list of and's and or's to be ignored by the developer.
To extract the <record-indexes>, use a multi-field variable in the left-hand-
side conditional. The salience value of the rule making the extraction must be
at least 6000 because the record indexes are automatically retracted from the
fact-list by CLIPSBase.

Example:

(defrule get-records-in-run-n-with-bad-quality
(dtm has been initiated)

(assert (in Run-n where Trial-Quality eq bad)))

(defrule extract-record-indexes-with-bad-trial-quality
(declare (salience 6000))
(get trials with bad qualities)
?fl<-($?junk record-seq $?index-list)

(assert (the trials with bad quality have Indexes $?index-list))
(retract ?fl))
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insert file

Usage: (insert into <table-name>. file c<fle-name>)

insert file
other than
its records

is a utility allowing insertion of records residing in an environment
CLIPS, such as HyperCard. The program in HyperCard must save
onto a file according to the format:

<cfield-list> <return>
<record-items-list> <return>
<other-records>

For example, a file called new-trial-parameters may contain:

Trial-# Timestamp BBAV
4 t4*20*24 56 1 40 -1 46
5 t4*20*54 34 1 56 -1 67

BBQ JSAV JSQ EMGAV EMGQ Trial-Quality
00
01

<field-list> is a list of field names separated by spaces and terminated by
<return>. <record-items-list> is a list of record items separated by spaces
and terminated by <return>. Any number of records (two in the above
example) using the same format may be included. Multi-word field names and
record items must use underscores (J's or dashes (-)'s to separate words.
Insert file inserts only those fields that correspond exactly with those in
<table-name>. All others are ignored and missing information is padded with
asterisks. Insertion of records is done without checking if the records already
reside in <table-name>.

Example:

(defrule insert-info-from-hypercard-into-run-n
(run-n has completed)
?fl<-(get info from hypercard)

(assert
(retract

(insert into Run-n file new-trial-parameters))
?fl))
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fast-select

Usage: (fast-select <field-name> from <table-name>
where <field-name> eq <value>)

An optimized select function for the specific purpose of extracting a single
value from a database is provided, fast-select retrieves a single value from
<table-name> and asserts a fact according to the format:

(fast-select: <value>)

<value> may be the empty set. Unlike the normal select function, only one
conditional using the eq comparator is allowed.

Example:

The example here queries the database for information. In the event the
answer is unknown, represented by an asterisk (*), the query is posed to the
astronaut user and the response is saved into the database.

(defrule query-the-database-for-Information
(was the trial quality good for trial ?n)

(assert (fast-select Trial-Quality from Run-n
where Trial-# eq ?n)))

(defrule auto-query-the-astronaut
(auto query on)
(was the trial quality good for trial ?n)
?fl<-(fast select: ?value)

(if (eq ?value *) then
(printout t "What was the trial quality for trial " ?n "?" crlf)
(bind ?answer (read))
(assert (update Run-n set Trial-Quality eq ?answer

where Trial-# eq ?n)))
(retract ?fl))
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linked-select

Usage: (linked-select <flield-list> from <table-name>
where <fast-select-conditional-list>)

A special select function called linked-selection is provided to allow linked
selection using one of more values from different tables. <field-list> is a list of
field names to be included in the resulting retrieval operation. <table-name>
specifies the table from which the fields are taken. <fast-select-conditional-
list> is a list of conditionals, each following the format:

<field-name> <comparator>
fast-select <field-name>
from <table-name>
where <field-name> eq <value>

<fast-select-conditional-list> may be a combination of conditions joined by
and's and or's as described above for <conditional-list> under the select
function.

The first <field-name> is a field name from the first <table-name>.
<comparator> is from the list:

eq, neq, <, <=, >, >=.

The fast-select format follows the standard convention described under the
fast-select function. The second <table-name> may be any table, including
the first <table-name>. The <field-name>'s following fast-select refer to
the second <table-name> in the above format. Like the normal select
function, the selection is asserted into the fact-list according to the format
described under the select function.

Example:

(defrule retrieve-dam/dqm-parameters-for-subject
?fl<-(retrieve dam/dqm results for subject ?subject-code)

(assert (linked-select BBAV BBQ JSAV JSQ EMGAV EMGQ
from Run-n
where Subject eq

fast-select Subject-Name
from SUBJECT
where Code eq ?subject-code))

(retract ?fl))
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display-table

Usage: (display-table <table-name>)

display-table displays the table specified by <table-name> in the Dialog
window of CLIPS. As a real-time database, CLIPSBase provides display-
table only for development purposes.

Example:

(defrule display-the-session-table
?fl<-(display session table)

(assert (display-table SESSION))
(retract ?fl))
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load-table

Usage: (load-table <table-name>)

Manual loading of a table is possible using load-table, load-table loads
<table-name> into the fact-list only if the table is not already there. Certain
CLIPSBase functions automatically execute the load-table command and do
not require the developer to assert load-table before accessing the database.
These functions are:

insert
select
update
delete
insert file
fast-select
linked-select
display-table

Example:

(defrule load-all-tables-into-memory
?fl<-(load all tables into memory)

(assert (load-table SUBJECT))
(assert (load-table RUN-n))
(assert (load-table DTM-Results))
(assert (load-table SESSION))
(assert (load-table DTM-Info))
(retract ?fl 1))
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do-load-table

Usage: (do-load-table <table-name>)

Although not normally used by the developer, do-load-table is provided so
that a table may be loaded into memory without checking to see if it is already
there. This is particularly useful if a user-defined insert function is
implemented to insert records into a CLIPSBase table file.

Example:

(defrule my-insert-function
?fl<-(insert ?my-record into ?table-name-file)

(assert (user-defined insert into ?table-name-file
record ?my-record))

(assert (do-load-table ?table-name-file))
(retract ?fl))
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save-table

Usage: (save-table <table-name>)

Although not normally used by the developer, save-table is provided to allow
manual saving of tables into their CLIPSBase table files. This is particularly
useful for user-defined functions that modify the database. All CLIPSBase
functions that modify the database automatically save their results onto table
files.

Example:

(defrule save-my-custom-modifications-to-session-table
?fl<-(user-defined functions have completed their

changes to session)

(assert
(retract

(save-table SESSION))
?fl))
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retract-table

Usage: (retract-table <table-name>)

Sometimes it may be necessary to remove a table resulting from a select
evaluation from memory. retract-table is provided to do just that.

Example:

(defrule retract-subject-table
?fl<-(subject table is no longer needed)

(assert (retract-table SUBJECT))
(retract ?fl))
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remove-table

Usage: (remove-table <table-name>)

Sometimes it may be necessary to remove a table in the fact-list, remove-
table is provided to do just that.

Example:

(defrule remove-subject-table
?fl<-(subject table is no longer needed)

(assert (retract-table SUBJECT))
(retract ?fl))
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; CLIPSBASE 1.0: A Real-time Relational Database
by Sen-Hao Lai

Simply load parts 1 & 2 of the rules into memory.

;***********************************************************************

******************************** PART 1 *******************************

•***********************************************************************

;CREATE TABLE: Creates a new table specified by <table-name>.
;Usage: create table <table-name> fields <field-list> widths <width-list>
;Multi-word field names must use dashes or underscores.

(defrule create-table
(declare (salience 5000))
?fl<-(create table ?table-name fields $?field-names widths

$?field-widths)

(open (str-cat ?table-name ".tbl") file-tag "w")
(printout file-tag $?field-names crlf)
(assert (?table-name field-name $?field-names))
(printout file-tag $?field-widths crlf)
(assert (?table-name field-width $?field-widths))
(close file-tag)
(retract ?f l))

; ***********************************************************************

;LINKED-SELECT: Allows linked selection using one or more values
taken from different tables.

;Usage: linked-select <field-list> from <table-name> where <conditional-list>
;<conditional-list> follows the format: <field-name> <comparator> fast-select

<field-name> from <table-name> where
<field-name> eq <value>

;<conditional-list> may be any length.
;<comparator> is from the list: eq, neq, <, <=, >, >=.

(defrule linked-select
(declare (salience 5100))
?fl<-(linked-select $?blurbl fast-select ?fieldl from ?table-name

where ?field2 eq ?value $?blurb2)

(retract ?fl)
(assert (fast-select ?fieldl from ?table-name where ?field2 eq

?value))
(assert (linked-select $?blurbl fast-select-function $?blurb2)))

(defrule get-fast-select-function
(declare (salience 5100))
?fl<-(linked-select $?fields from ?table-name $?blurbl

fast-select-function $?blurb2)
?f2<-(fast-select: $?value)

(if (> (length $?value) 0) then
(assert (linked-select $?fields from ?table-name $?blurbl

$?value $?blurb2)) else
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(assert (select * from ?table-name)))
(retract ?fl ?f2))

(defrule get-select-function
(declare (salience 5000))
?fl<-(linked-select $?blurb)

(retract ?fl)
(assert (select $?blurb)))

•***********************************************************************k

;FAST-SELECT: Extracts a single value from <table-name> and asserts the
; fact (fast-select: <value>). <value> may be the empty set.

;Usage: fast-select <field-name> from <table-name> where <field-name>
; eq <value>

; ***********************************************************************

(defrule fast-select
(declare (salience 5400))
(fast-select ?fieldl from ?table-name where ?field2 eq ?value)

(assert (fast-select:))
(assert (load-table ?table-name)))

(defrule fast-select-setup
(declare (salience 5400))
(fast-select ?fieldl from ?table-name where ?field2 eq ?value)
?fl<-(fast-select: ?old-value)

(retract ?fl)
(assert (fast-select:)))

(defrule get-field-number
(declare (salience 5350))
(fast-select ?fieldl from ?table-name where ?field2 eq ?value)
(?table-name field-name $?field-names)

(bind ?field-number2 (member ?field2 $?field-names))
(bind ?field-numberl (member ?fieldl $?field-names))
(if (and (> ?field-number2 0)

(> ?field-numberl 0)) then
(assert (field-numberl ?field-numberl field-number2

?field-number2))))

(defrule compare-record-value
(declare (salience 5350))
?fl<-(fast-select ?fieldl from ?table-name where ?field2 eq ?value)
?f2<-(field-numberl ?field-numberl field-number2 ?field-number2)
?f3<-(fast-select:)
(?table-name record ?index $?record-items)

(bind ?record-iteml (nth ?field-numberl $?record-items))
(bind ?record-item2 (nth ?field-number2 $?record-items))
(if (eq ?value ?record-item2) then

(assert (fast-select: ?record-iteml))
(retract ?fl ?f2 ?f3)))

(defrule clean-up-fast-select
(declare (salience 5300))



B.4

?fl<-(fast-select ?fieldl from ?table-name where ?field2 eq ?value)

(retract ?fl))

(defrule clean-up-field-numberl/2
(declare (salience 5300))
?fl<-(field-numberl ?field-numberl field-number2 ?field-number2)

(retract ?fl))

;INSERT: Allows insertion of new records and fields into the table
; specified by <table-name>.

;Usage: insert into <table-name> values <items-list>
; or insert into <table-name> field <field-name> width <field-width>
;Multi-word items must use dashes or underscores.

(defrule insert-record
(declare (salience 5000))
?fl<-(insert into ?table-name values $?items)

(open (str-cat ?table-name ".tbl") file-tag "a")
(printout file-tag $?items crlf)
(close file-tag)
(assert (do-load-table ?table-name))
(retract ?fl))

(defrule insert-field
(declare (salience 5000))
(insert into ?table-name field ?field-name width ?field-width)

(assert (load-table ?table-name))
(assert (insert-field-into-field-items ?table-name))
(assert (insert-field-into-records ?table-name))
(assert (save-table ?table-name)))

(defrule clean-up-insert-field
(declare (salience 5125))
?fl<-(insert into ?table-name field ?field-name width ?field-width)
?f2<-(insert-field-into-records ?table-name)

(retract ?fl ?f2))

(defrule insert-field-into-field-items
(declare (salience 5150))
(insert into ?table-name field ?field-name width ?field-width)
?fl<-(insert-field-into-field-items ?table-name)
?f2<-(?table-name field-name $?field-items)
?f3<-(?table-name field-width $?width-items)

(retract ?fl ?f2 ?f3)
(assert (?table-name field-name $?field-items ?field-name))
(assert (?table-name field-width $?width-items ?field-width)))

(defrule insert-field-into-records
(declare (salience 5150))
(insert-field-into-records ?table-name)
?fl<-(?table-name record $?record-items)
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(retract ?fl)
(assert (?table-name converted-record $?record-items *)))

(defrule unconvert-records
(declare (salience 5110))
?fl<-(?table-name converted-record $?record-items)

(assert (?table-name record $?record-items))
(retract ?fl))

* ********************************************************************

;RETRACT-TABLE: Retracts a table specified by <table-name> currently
; in the fact-list that was the result of a selection.

;Usage: retract-table <table-name>
• ***********************************************************************

(defrule retract-*-table
(declare (salience 5600))
?fl<-(retract-table ?table-name)
?f2<-(* ?table-name field-name $?field-items)
?f3<-(* ?table-name field-width $?width-items)

(assert (retract-*-records ?table-name))
(retract ?fl ?f2 ?f3))

(defrule clean-up-*-retract-records
(declare (salience 5500))
?fl<-(retract-*-records ?table-name)

(retract ?fl))

(defrule clean-up-*-retract
(declare (salience 5500))
?fl<-(retract-table ?table-name)

(retract ?fl))

(defrule retract-*-records
(declare (salience 5600))
(retract-*-records ?table-name)
?fl<-(* ?table-name record $?record-items)

(retract ?fl))

S***********************************************************************

;REMOVE-TABLE: Removes a table specified by <table-name> currently
in the fact-list.

;Usage: remove-table <table-name>
;***********************************************************************

(defrule remove-table
(declare (salience 5800))
?fl<-(remove-table ?table-name)
?f2<- (?table-name field-name $?field-items)
?f3<- (?table-name field-width $?width-items)

(assert (remove-records ?table-name))
(retract ?fl ?f2 ?f3))
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(defrule clean-up-remove-records
(declare (salience 5700))
?fl<-(remove-records ?table-name)

(retract ?f 1))

(defrule clean-up-remove
(declare (salience 5700))
?fl<-(remove-table ?table-name)

(retract ?f l))

(defrule remove-records
(declare (salience 5800))
(remove-records ?table-name)
?fl<-(?table-name record $?record-items)

(retract ?fl))

;LOAD-TABLE: Loads a table specified by <table-name> from a file into
memory if the table is not already in the fact-list.

;Usage: load-table <table-name>

(defrule check-load-table
(declare (salience 5525))
?fl<-(load-table ?table-name)
(?table-name field-name $?fields)

(retract ?fl))

(defrule load-table
(declare (salience 5500))
?fl<-(load-table ?table-name)

(open (str-cat ?table-name ".tbl") file-tag "r")
(str-assert (str-cat ?table-name " field-name "

(readline file-tag)))
(str-assert (str-cat ?table-name " field-width "

(readline file-tag)))
(bind ?file-input (readline file-tag))
(bind ?index 0)
(while (neq ?file-input EOF)

(bind ?index (+ ?index 1))
(str-assert (str-cat ?table-name " record " ?index

" " ?file-input))
(bind ?file-input (readline file-tag)))

(close file-tag)
(retract ?f 1))

; **********************************tt **************t* ********** * ** *

;DO-LOAD-TABLE: Loads a table into the fact-list without checking if it
is already there.

;Usage: do-load-table <table-name>
; ***********************************************************************

(defrule do-load-table
(declare (salience 5500))
?fl<-(do-load-table ?table-name)
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(open (str-cat ?table-name ".tbl") file-tag "r")
(str-assert (str-cat ?table-name " field-name "

(readline file-tag)))
(str-assert (str-cat ?table-name " field-width "

(readline file-tag)))
(bind ?file-input (readline file-tag))
(bind ?index 0)
(while (neq ?file-input EOF)

(bind ?index (+ ?index 1))
(str-assert (str-cat ?table-name " record " ?index
" " ?file-input))

(bind ?file-input (readline file-tag)))
(close file-tag)
(retract ?fl))

S** * * * ******* ******* *** ************** ************************ *

;SAVE-TABLE: Saves the table specified by <table-name> in the fact-list
into its file.

;Usage: save-table <table-name>

(defrule save-table
(declare (salience 5000))
?fl<-(save-table ?table-name)
(?table-name field-name $?fields)
(?table-name field-width $?widths)

(retract ?fl)
(open (str-cat ?table-name ".tbl") file-tag "w")
(printout file-tag $?fields crlf $?widths crlf)
(assert (save-records ?table-name)))

(defrule save-records
(declare (salience 5010))
(save-records ?table-name)
(?table-name record ?index $?record-items)

(printout file-tag $?record-items crlf))

(defrule clean-up-save
(declare (salience 5000))
?fl<-(save-records ?table-name)

(retract ?fl)
(close))

;A ****************************************** **************************

;DELETE: Deletes a record or field from the table specified by <table-name>.
;Usage: delete from <table-name> where <conditional-list>

; or delete from <table-name> field <field-name>
;<conditional-list> follows the format: <field-name> <comparator> <value>
;<comparator> is from the list: eq, neq, <, <=, >, >=.

(defrule delete
(declare (salience 5100))
(delete from ?table-name where $?conditional)

(assert (load-table ?table-name))
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(assert (in ?table-name where $?conditional)))

(defrule delete-record
(declare (salience 5050))
(delete from ?table-name where $?conditional)
($?operators record-seq $?sequence)
?fl<-(?table-name record ?index $?record-items)

(if (> (member ?index $?sequence) 0) then
(retract ?fl)))

(defrule clean-up-delete-record
(declare (salience 5020))
?fl<-(delete from ?table-name where $?conditional)
?f2<-($?operators record-seq $?sequence)

(retract ?fl ?f2)
(assert (save-table ?table-name))
(assert (reload-table ?table-name)))

(defrule reload-table
?fl<-(reload-table ?table-name)

(retract ?fl)
(assert (remove-table ?table-name))
(assert (load-table ?table-name)))

(defrule delete-field
(declare (salience 5200))
(delete from ?table-name field ?field)

(assert (load-table ?table-name)))

(defrule delete-field-from-field-items
(declare (salience 5140))
?fl<-(delete from ?table-name field ?field)
?f2<-(?table-name field-name $?names)
?f3<-(?table-name field-width $?widths)

(bind ?index (member ?field $?names))
(if (> ?index 0) then

(bind ?name-string (str-implode (mv-delete ?index
$?names)))

(str-assert (str-cat ?table-name " field-name "
?name-string))

(bind ?width-string (str-implode (mv-delete ?index
$?widths)))

(str-assert (str-cat ?table-name " field-width "
?width-string))

(retract ?f2 ?f3)
(assert (save-table ?table-name)))

(retract ?fl))

(defrule delete-field-from-record
(declare (salience 5150))
(delete from ?table-name field ?field)
(?table-name field-name $?names)
?fl<-(?table-name record ?record-index $?items)
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(bind ?index (member ?field $?names))
(if (> ?index 0) then

(bind ?record-string (str-implode (mv-delete ?index $?items)))
(str-assert (str-cat ?table-name " converted-record "

?record-index " " ?record-string))
(retract ?fl)))

;UPDATE: Updates the table specified by <table-name> with new values.
;Usage: update <table-name> set <set-list> where <conditional-list>
;<set-list> may be any length and follows the format: <field-name> eq <value>
;<conditional-list> follows the format: <field-name> <comparator> <value>

(defrule update
(declare (salience 5000))
(update ?table-name set $?fields/values where $?conditional)

(assert (load-table ?table-name))
(assert (in ?table-name where $?conditional))
(assert (extract-fields/values $?fields/values))
(assert (new-value-seq))
(assert (field-number-seq)))

(defrule get-new-values
(declare (salience 5250))
?fl<-(extract-fields/values $?set-statements ?field eq ?new-value)
?f2<-(new-value-seq $?new-values)
?f3<-(field-number-seq $?sequence)
(?table-name field-name $?field-names)

(retract ?fl)
(assert (extract-fields/values $?set-statements))
(bind ?field-index (member ?field $?field-names))
(if (> ?field-index 0) then

(assert (new-value-seq ?new-value $?new-values))
(assert (field-number-seq ?field-index $?sequence))
(retract ?f2 ?f3)))

(defrule update-records
(declare (salience 5200))
(update ?table-name set $?fields/values where $?conditional)
(field-number-seq $?field-seq)
(new-value-seq $?new-values)
($?junk record-seq $?record-seq)
?fl<-(?table-name record ?index $?record-items)

(bind ?sequence-length (length $?field-seq))
(if (and (> (member ?index $?record-seq) 0)

(> ?sequence-length 0)) then
(retract ?fl)
(bind ?record-length (length $?record-items))
(bind ?loop-index 1)
(bind ?string (str-cat ?table-name " converted-record "

?index))
(while (<= ?loop-index ?record-length)

(bind ?index-location (member ?loop-index
$?field-seq))
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(if (> ?index-location 0) then
(bind ?string (str-cat ?string " " (nth
?index-location $?new-values)))
else
(bind ?string (str-cat ?string " " (nth
?loop-index $?record-items))))

(bind ?loop-index (+ ?loop-index 1)))
(str-assert ?string)))

(defrule clean-up-update
(declare (salience 5150))
?fl<-(update ?table-name set $?fields/values where $?conditional)
?f2<-(extract-fields/values)
?f3<-(new-value-seq $?new-values)
?f4<-(field-number-seq $?numbers)
?f5<-($?junk record-seq $?record-seq)

(retract ?fl ?f2 ?f3 ?f4 ?f5)
(assert (save-table ?table-name)))

• ***********************************************************************

;SELECT: Selects from the table specified by <table-name> and asserts
; the selection into the fact-list.

;The asserted selection follows the format:
(* <table-name> field-name <field-name-list>)
(* <table-name> field-width <field-width-list>)
(* <table-name> record <record-index> <record-items-list>)
(* other records)

;<record-index> reflects the number of the record within the file.
;Usage: select <field-list> from <table-name> where <conditional-list>
; or select <field-list> from <table-name>

;<conditional-list> follows the format: <field-name> <comparator> <value>
;The symbol, *, in place of <field-list> selects all fields.
;The second format selects all records.
; ***********************************************************************

(defrule select
(declare (salience 5000))
?fl<-(select $?selected-fields from ?table-name

where $?conditional)

(assert (retract-table ?table-name))
(assert (load-table ?table-name))
(assert (in ?table-name where $?conditional))
(assert (crop-table-records ?table-name))
(assert (get-field-number-seq ?table-name))
(assert (field-seq $?selected-fields))
(retract ?f l))

(defrule select-*
(declare (salience 5200))
(select $?fields from ?table-name)

(assert (load-table ?table-name))
(assert (retract-table ?table-name))
(if (neq $?fields (str-explode "*")) then

(assert (get-field-number-seq ?table-name))
(assert (field-seq $?fields))
(assert (sort-record-items ?table-name))))
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(defrule select-*-record
(declare (salience 5100))
(select $?fields from ?table-name)
(?table-name record $?record-items)

(assert (* ?table-name record $?record-items)))

(defrule select-*-names/widths
(declare (salience 5050))
?fl<-(select $?fields from ?table-name)
(?table-name field-name $?names)
(?table-name field-width $?widths)

(if (eq $?fields (str-explode 11"*"11)) then
(assert (* ?table-name field-name $?names))
(assert (* ?table-name field-width $?widths)))

(retract ?fl))

(defrule clean-up-record-seq
(declare (salience 5000))
?fl<-($?operator record-seq $?record-numbers)

(retract ?fl))

(defrule clean-up-crop-table-records
(declare (salience 5000))
?fl<-(crop-table-records ?table-name)

(retract ?f l))

(defrule clean-up-sort-record-items
(declare (salience 5025))
?fl<-(sort-record-items ?table-name)

(retract ?fl))

(defrule clean-up-field-number-seq
(declare (salience 5000))
?fl<-(field-number-seq $?numbers)

(retract ?fl))

(defrule crop-table-records
(declare (salience 5100))
($?operator record-seq $?record-numbers)
(crop-table-records ?table-name)
(?table-name record ?index $?items)

(if (> (member ?index $?record-numbers) 0) then
(assert (* ?table-name record ?index $?items))))

(defrule get-field-number-seq
(declare (salience 5050))
?fl<-(get-field-number-seq ?table-name)
?f2<-(field-seq $?selected-fields)
(?table-name field-name $?available-fields)
(?table-name field-width $?widths)
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(if (neq $?selected-fields (str-explode "*")) then
(bind ?number-fields (length $?selected-fields))
(bind ?field-index 1)
(bind ?string "field-number-seq")
(while (<= ?field-index ?number-fields)

(bind ?next-word (nth ?field-index $?selected-fields))
(bind ?field-location (member ?next-word

$?available-fields))
(if (> ?field-location 0) then

(bind ?string (str-cat ?string " "
?field-location)))

(bind ?field-index (+ ?field-index 1)))
(str-assert ?string)
(assert (sort-width-seq ?table-name))
(assert (sort-name-seq ?table-name))
(assert (sort-record-items ?table-name)) else
(assert (* ?table-name field-name $?available-fields))
(assert (* ?table-name field-width $?widths)))

(retract ?fl ?f2))

(defrule sort-width-seq
(declare (salience 5050))
?fl<-(sort-width-seq ?table-name)
(?table-name field-width $?widths)
(field-number-seq $?numbers)

(bind ?number-count (length $?numbers))
(if (> ?number-count 0) then

(bind ?index 1)
(bind ?string (str-cat "* " ?table-name " field-width"))
(while (<= ?index ?number-count)

(bind ?next-width (nth (nth ?index $?numbers)
$?widths))

(bind ?string (str-cat ?string " " ?next-width))
(bind ?index (+ ?index 1)))

(str-assert ?string) else
(assert (* ?table-name field-width)))

(retract ?fl))

(defrule sort-name-seq
(declare (salience 5050))
?fl<-(sort-name-seq ?table-name)
(?table-name field-name $?names)
(field-number-seq $?numbers)

(bind ?number-count (length $?numbers))
(if (> ?number-count 0) then

(bind ?index 1)
(bind ?string (str-cat "* " ?table-name " field-name"))
(while (<= ?index ?number-count)

(bind ?next-name (nth (nth ?index $?numbers) $?names))
(bind ?string (str-cat ?string " " ?next-name))
(bind ?index (+ ?index 1)))

(str-assert ?string) else
(assert (* ?table-name field-name)))

(retract ?f 1))
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(defrule sort-record-items
(declare (salience 5050))
(sort-record-items ?table-name)
?fl<-(* ?table-name record ?record-index $?record-items)
(field-number-seq $?numbers)

(bind ?number-count (length $?numbers))
(retract ?fl)
(if (> ?number-count 0) then

(bind ?index 1)
(bind ?string (str-cat "* " ?table-name " converted-record "

?record-index))
(while (<= ?index ?number-count)

(bind ?next-item (nth (nth ?index $?numbers)
$?record-items))

(bind ?string (str-cat ?string " " ?next-item))
(bind ?index (+ ?index 1)))

(str-assert ?string) else
(assert (* ?table-name converted-record ?record-index))))

(defrule convert-sort-record
(declare (salience 5000))
?fl<-(* ?table-name converted-record $?items)

(retract ?fl)
(assert (* ?table-name record $?items)))

S***********************************************************************

;******************************** PART 2 *******************************
S***********************************************************************

S***********************************************************************

;DISPLAY-TABLE: Displays the table specified by <table-name> in the
dialog window.

;Usage: display-table <table-name>
S***********************************************************************

(defrule display-table
(declare (salience 5000))
?fl<-(display-table ?table-name)

(assert (display-field-names ?table-name))
(assert (display-records ?table-name))
(assert (retract-display-records))
(assert (load-table ?table-name))
(retract ?fl))

(defrule display-field-names
(declare (salience 5100))
?fl<-(display-field-names ?table-name)
(?table-name field-name $?field-names)
(?table-name field-width $?field-widths)

(bind ?number-fields (length $?field-names))
(bind ?field-index 1)
(while (<= ?field-index ?number-fields)

(bind ?nth-field-name (str-cat (nth ?field-index
$?field-names)))

(bind ?nth-field-width (nth ?field-index $?field-widths))
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(if (= ?nth-field-width 1) then
(format t "%ls" ?nth-field-name))

(if (= ?nth-field-width 2) then
(format t "%2s" ?nth-field-name))

(if (= ?nth-field-width 3) then
(format t "%3s" ?nth-field-name))

(if (= ?nth-field-width 4) then
(format t "%4s" ?nth-field-name))

(if (= ?nth-field-width 5) then
(format t "%5s" ?nth-field-name))

(if (= ?nth-field-width 6) then
(format t "%6s" ?nth-field-name))

(if (= ?nth-field-width 7) then
(format t "%7s" ?nth-field-name))

(if (= ?nth-field-width 8) then
(format t "%8s" ?nth-field-name))

(if (= ?nth-field-width 9) then
(format t "%9s" ?nth-field-name))

(if (= ?nth-field-width 10) then
(format t "%lOs" ?nth-field-name))

(if (= ?nth-field-width 11) then
(format t "%11s" ?nth-field-name))

(if (= ?nth-field-width 12) then
(format t "%12s" ?nth-field-name))

(if (= ?nth-field-width 13) then
(format t "%13s" ?nth-field-name))

(if (= ?nth-field-width 14) then
(format t "%14s" ?nth-field-name))

(if (= ?nth-field-width 15) then
(format t "%15s" ?nth-field-name))

(if (= ?nth-field-width 16) then
(format t "%16s" ?nth-field-name))

(if (= ?nth-field-width 17) then
(format t "%17s" ?nth-field-name))

(if (= ?nth-field-width 18) then
(format t "%18s" ?nth-field-name))

(if (= ?nth-field-width 19) then
(format t "%19s" ?nth-field-name))

(if (= ?nth-field-width 20) then
(format t "%20s" ?nth-field-name))

(if (= ?nth-field-width 21) then
(format t "%21s" ?nth-field-name))

(if (= ?nth-field-width 22) then
(format t "%22s" ?nth-field-name))

(if (= ?nth-field-width 23) then
(format t "%23s" ?nth-field-name))

(if (= ?nth-field-width 24) then
(format t "%24s" ?nth-field-name))

(if (= ?nth-field-width 25) then
(format t "%25s" ?nth-field-name))

(if (= ?nth-field-width 26) then
(format t "%26s" ?nth-field-name))

(if (= ?nth-field-width 27) then
(format t "%27s" ?nth-field-name))

(if (= ?nth-field-width 28) then
(format t "%28s" ?nth-field-name))

(if (= ?nth-field-width 29) then
(format t "%29s" ?nth-field-name))
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(if (= ?nth-field-width 30) then
(format t "%30s" ?nth-field-name))

(if (= ?nth-field-width 31) then
(format t "%31s" ?nth-field-name))

(if (= ?nth-field-width 32) then
(format t "%32s" ?nth-field-name))

(if (= ?nth-field-width 33) then
(format t "%33s" ?nth-field-name))

(if (= ?nth-field-width 34) then
(format t "%34s" ?nth-field-name))

(if (= ?nth-field-width 35) then
(format t "%35s" ?nth-field-name))

(if (= ?nth-field-width 36) then
(format t "%36s" ?nth-field-name))

(if (= ?nth-field-width 37) then
(format t "%37s" ?nth-field-name))

(if (= ?nth-field-width 38) then
(format t "%38s" ?nth-field-name))

(if (= ?nth-field-width 39) then
(format t "%39s" ?nth-field-name))

(if (= ?nth-field-width 40) then
(format t "%40s" ?nth-field-name))

(bind ?field-index (+ ?field-index 1)))
(printout t crlf)
(retract ?fl))

(defrule display-records
(declare (salience 5050))
(display-records ?table-name)
(?table-name field-width $?field-widths)
(?table-name record ?index $?items)

(bind ?number-fields (length $?items))
(bind ?field-index 1)
(while (<= ?field-index ?number-fields)

(bind ?nth-field-name (str-cat (nth ?field-index $?items)))
(bind ?nth-field-width (nth ?field-index $?field-widths))
(if (= ?nth-field-width 1) then

(format t "%ls" ?nth-field-name))
(if (= ?nth-field-width 2) then

(format t "%2s" ?nth-field-name))
(if (= ?nth-field-width 3) then

(format t "1%3s" ?nth-field-name))
(if (= ?nth-field-width 4) then

(format t "%4s" ?nth-field-name))
(if (= ?nth-field-width 5) then

(format t "%5s" ?nth-field-name))
(if (= ?nth-field-width 6) then

(format t "%6s" ?nth-field-name))
(if (= ?nth-field-width 7) then

(format t "%7s" ?nth-field-name))
(if (= ?nth-field-width 8) then

(format t "%8s" ?nth-field-name))
(if (= ?nth-field-width 9) then

(format t "%9s" ?nth-field-name))
(if (= ?nth-field-width 10) then

(format t "%10s" ?nth-field-name))
(if (= ?nth-field-width 11) then
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(format t "%lls" ?nth-field-name))
(if (= ?nth-field-width 12) then

(format t "%12s" ?nth-field-name))
(if (= ?nth-field-width 13) then

(format t "%13s" ?nth-field-name))
(if (= ?nth-field-width 14) then

(format t "%14s" ?nth-field-name))
(if (= ?nth-field-width 15) then

(format t "%15s" ?nth-field-name))
(if (= ?nth-field-width 16) then

(format t "%16s" ?nth-field-name))
(if (= ?nth-field-width 17) then

(format t "%17s" ?nth-field-name))
(if (= ?nth-field-width 18) then

(format t "%18s" ?nth-field-name))
(if (= ?nth-field-width 19) then

(format t "%19s" ?nth-field-name))
(if (= ?nth-field-width 20) then

(format t "%20s" ?nth-field-name))
(if (= ?nth-field-width 21) then

(format t "%21s" ?nth-field-name))
(if (= ?nth-field-width 22) then

(format t "%22s" ?nth-field-name))
(if (= ?nth-field-width 23) then

(format t "%23s" ?nth-field-name))
(if (= ?nth-field-width 24) then

(format t "%24s" ?nth-field-name))
(if (= ?nth-field-width 25) then

(format t "%25s" ?nth-field-name))
(if (= ?nth-field-width 26) then

(format t "%26s" ?nth-field-name))
(if (= ?nth-field-width 27) then

(format t "%27s" ?nth-field-name))
(if (= ?nth-field-width 28) then

(format t "%28s" ?nth-field-name))
(if (= ?nth-field-width 29) then

(format t "%29s" ?nth-field-name))
(if (= ?nth-field-width 30) then

(format t "%30s" ?nth-field-name))
(if (= ?nth-field-width 31) then

(format t "%31s" ?nth-field-name))
(if (= ?nth-field-width 32) then

(format t "%32s" ?nth-field-name))
(if (= ?nth-field-width 33) then

(format t "%33s" ?nth-field-name))
(if (= ?nth-field-width 34) then

(format t "%34s" ?nth-field-name))
(if (= ?nth-field-width 35) then

(format t "%35s" ?nth-field-name))
(if (= ?nth-field-width 36) then

(format t "%36s" ?nth-field-name))
(if (= ?nth-field-width 37) then

(format t "%37s" ?nth-field-name))
(if (= ?nth-field-width 38) then

(format t "%38s" ?nth-field-name))
(if (= ?nth-field-width 39) then

(format t "%39s" ?nth-field-name))
(if (= ?nth-field-width 40) then
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(format t "%40s" ?nth-field-name))
(bind ?field-index (+ ?field-index 1)))

(printout t crlf))

(defrule retract-display-records
(declare (salience 5000))
?fl<-(retract-display-records)
?f2<-(display-records ?table-name)

(retract ?fl ?f2))

;INSERT file: Inserts records contained in the file specified by
<file-name> into the table specified by <table-name>.

;The file is of the format:
<field-list> <return>
<record-items-list> <return>
<other-records>

;<field-list> is a list of field names separated by spaces and terminated
;by <return>. <record-items-list> is a list of record items separated
;by spaces and terminated by <return>. Any number of records using the
;same format may be included. Multi-word field names and record items must
;use underscores ( )'s or dashes (-)'s to separate words.
;Usage: insert into <table-name> file <file-name>

; ************************************ ********** * *** **

(defrule insert-file-record
(declare (salience 5000))
?fl<-(insert into ?table-name file ?file-name)

(open (str-cat ?table-name ".tbl") file-tag0 "r")
(bind ?table-field-names (readline file-tag0))
(close file-tag0)
(bind ?number-fields (length (str-explode ?table-field-names)))
(open (str-cat ?file-name) file-tagl "r")
(open (str-cat ?table-name ".tbl") file-tag2 "a")
(bind ?file-field-names (readline file-tagl))
(if (neq ?file-field-names EOF) then

(bind ?file-input 0)
(while (neq ?file-input EOF)

(bind ?file-input (readline file-tagl))
(if (neq ?file-input EOF) then

(bind ?field-index 1)
(bind ?record-string "record")
(while (<= ?field-index ?number-fields)

(bind ?next-field-name (nth ?field-index
(str-explode ?table-field-names)))
(bind ?position-in-file (member
?next-field-name (str-explode

?file-field-names)))
(if (> ?position-in-file 0) then

(bind ?record-string (str-cat
?record-string " " (nth
?position-in-file (str-explode
?file-input))))

else
(bind ?record-string (str-cat
?record-string " *"1)))

(bind ?field-index (+ ?field-index 1)))
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(assert (do-load-table ?table-name))
(printout file-tag2 (mv-delete 1
(str-explode ?record-string)) crlf))))

(close file-tag2)
(close file-tagl)
(retract ?fl))

•** ** ******* ** ******** * ****** ***** *** ******* **** ***

;WHERE: Parses the conditional list and returns the records that satisfy
; the conditional list. The records are asserted in the format
; ($?junk record-seq <record-numbers>) into the fact-list.
; <record-numbers> correspond to record indexes. $?junk is to be
; ignored.

;Usage: in <table-name> where <conditional-list>
;<table-name> refers to a table currently in the fact-list.
;<conditional-list> follows the format: <field-name> <comparator> <value>
;A rule extracting values from ($?junk record-seq <record-numbers>) must
;have a salience value of at least 6000, or the rule will not extract
;the values before the fact is retracted from the fact-list.

(defrule where-or
(declare (salience 5300))
?fl<-($?or in ?table-name where $?conditionall or $?conditional2)

(assert (or in ?table-name where $?conditionall))
(assert (or in ?table-name where $?conditional2))
(retract ?fl))

(defrule union-record-seq
(declare (salience 5200))
?fl<-(or $?andl record-seq $?seql)
?f2<-(or $?and2 record-seq $?seq2)

(if (neq $?seql $?seq2) then
(str-assert (str-cat "record-seq " (str-implode $?seql) " "

(str-implode $?seq2)))
(retract ?fl ?f2))

(if (and (eq $?seql $?seq2) (neq $?andl $?and2)) then
(retract ?f2)))

(defrule where-and
(declare (salience 5250))
?fl<-($?and/or in ?table-name where $?conditionall and

$ ?conditional2)

(if (eq $?conditionall $?conditional2) then
(assert ($?and/or in ?table-name where $?conditionall)) else
(assert ($?and/or and in ?table-name where $?conditionall))
(assert ($?and/or and in ?table-name where $?conditional2)))

(retract ?f l))

(defrule intersection-record-seq
(declare (salience 5400))
?fl<-($?orl and record-seq $?seql)
?f2<-($?or2 and record-seq $?seq2)

(if (neq $?seql $?seq2) then



B.19

(bind ?seql-length (length $?seql))
(bind ?seq-index 1)
(bind ?string "record-seq")
(while (<= ?seq-index ?seql-length)

(bind ?next-item (nth ?seq-index $?seql))
(if (> (member ?next-item $?seq2) 0) then

(bind ?string (str-cat ?string " " ?next-item)))
(bind ?seq-index (+ ?seq-index 1)))

(str-assert (str-cat (str-implode $?orl) " " ?string))
(retract ?fl ?f2))

(if (and (eq $?seql $?seq2) (neq $?orl $?or2)) then
(retract ?f2)))

(defrule seed-logical-sequence
(declare (salience 5300))
($?operators in ?table-name converted-where ?field-name ?logical
?value)

(assert (logical-seq))
(assert (cycle-index 1)))

(defrule convert-where
(declare (salience 5300))
?fl<-($?operators in ?table-name where ?field-name ?logical

?value)

(assert ($?operators in ?table-name converted-where ?field-name
?logical ?value))

(retract ?f l))

(defrule where-logical
(declare (salience 5350))
($?operators in ?table-name converted-where ?field-name ?logical
?value)

?f2<-(cycle-index ?record-index)
(?table-name record ?record-index $?items)
(?table-name field-name $?field-line)
?fl<-(logical-seq $?sequence)

(retract ?f2)
(bind ?new-cycle-index (+ ?record-index 1))
(assert (cycle-index ?new-cycle-index))
(bind ?field-index (member ?field-name $?field-line))
(bind ?file-value (nth ?field-index $?items))
(if (eq ?logical eq) then

(if (eq ?file-value ?value) then
(retract ?fl)
(assert (logical-seq $?sequence ?record-index))))

(if (eq ?logical neq) then
(if (neq ?file-value ?value) then

(retract ?fl)
(assert (logical-seq $?sequence ?record-index))))

(if (eq ?logical <) then
(if (< ?file-value ?value) then

(retract ?fl)
(assert (logical-seq $?sequence ?record-index))))

(if (eq ?logical <=) then
(if (<= ?file-value ?value) then
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(retract ?fl)
(assert (logical-seq $?sequence ?record-index))))

(if (eq ?logical >) then
(if (> ?file-value ?value) then

(retract ?fl)
(assert (logical-seq $?sequence ?record-index))))

(if (eq ?logical >=) then
(if (>= ?file-value ?value) then

(retract ?fl)
(assert (logical-seq $?sequence ?record-index)))))

(defrule clean-up-where-logical
(declare (salience 5325))
?fl<-($?operators in ?table-name converted-where ?field-name

?logical ?value)
?f2<-(logical-seq $?sequence)
?f3<-(cycle-index ?record-index)

(retract ?fl ?f2 ?f3)
(assert ($?operators record-seq $?sequence)))


